

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: David Weekley Homes

Model: B326 A CP GRH - 1015 Serenity

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death. 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

General Notes: ** CUTTING OR DRILLING OF COMPONENTS SHOULD NOT BE DONE WITHOUT CONTACTING COMPONENT SUPPLIER FIRST. CUSTOMER TAKES FULL RESPONSIBILITY FOR COMPONENTS IF CUT BEFORE AUTHORIZATION.

I C O PLANT. L COMP H H H TO BY TOLD UNLESS LED DAMAGED COMPONENTS SHOULD NOT BE INSTA *

U Z

WHILE

TO PLANS

REFER

MUST

RAMER

		55-00-00							
	BBA WINNER							/////////	<u> </u>
2-00-00	PBA1								
2-00-00	RBA1 16-0	01-08						1	╞
2.00.00	PBA1					00-0	00-0	00-(
2.00.00		TTIC 20M				2-0	5-00	2-00	
2-00-00	PĒA1			<		D6	D5	D4	۲ ۲
2-00-00	PBA1					I ₹	7	۲ ۲	>
2-00-00 œ									╞
2-00-00					A.				l
2-00-00				2-00	0-00				
2-00-00 ^{нти26}	JUT			L no 2-00	0-00				
2-00-00 ⁸⁰ 80 _{нти26}	J01 J01 Design Span 17-()0-08			0-00	20-11-	.08		
2-00-00 HTU26	J01 12-07-08) 2x6 T	0-00				
2-00-00 _{нт∪26}	J01			End V Stall (2)	0-00				
1-09-08 (For EWP Floor Beam) HGUS414	J01 PBA2				9-08 Bearir	ıg Wall L	Jnder Gi	rder	
9-04	PBA1			8-	12				
2-00-00									4
2-00-00	PBA1	н							
2-00-00	PBA1 PLAT	FORM		q					20
1-10-00	PBA1								Ι
2-00-00	PBA1				2-00-00 2-00-00	2-00-00	2-00-00	2-00-0(-/
2-00-00	PBA1								T
2-00-00	PBA1		00-90		VLB8 VLB7	VLB6	VLB5	VLB4	
2-00-00	PBA1		15-(ſ
2-00-00	PBA1								ſ
2-00-00	PBA1								t
1-11-04	PBA1					///////////////////////////////////////		7//////////////////////////////////////	
32-0	PBA)9-08						24-02-(08	
				İ.					

57-00-00

	_	
		visions Name
ctor.		Name
<u>utra</u>	00/00/00	Name
	00/00/00	Name
	00/00/00	Name
nectors are the responsibility of the bldg designer an	IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are ned as individual components to be incorporated into the building design specification of the building designer. See Individual design sheets for truss design identified on the placement drawing. The building designer	and for the overall structure. The disign of the tuss support structure me and for the overall structure. The disign of the tuss support structure fing headers, beams, walls, and columns is the responsibility of the ng designer. For general guidance regarding the bracing, consult "Bracing bod Truss" available from the Truss Plate Institute, 583 D'Onifrio Drive: son, WI 53179
ANSI/TPI 1, all uplift co	eac	Systemetry of V
ARE READ AS: FOOI-INCH-SIXTE		
SIONS ARE READ AS: FOOT-INCH-SIXTE		
ed Together Prior to Adding any Loads. Dimensions are read as: Foot-Inch-sixte	David Weekley Homes	ROOF PLACEMENT PLAN
Nected Together Prior to Adding any Loads. Dimensions are read as: Foot-Inch-sixte	Scale:	ROOF PLACEMENT PLAN
Connected Together Prior to Adding any Loads. Dimensions are read as: Foot-Inch-sixte	Scale:	BOF PLACEMENT PLAN
ULLY CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS. DIMENSIONS ARE READ AS: FOOT-INCH-SIXTE	Scale:	BOL PLACEMENT PLANE BOL PLACEMENT PLANE MTS 0/2025
IRDERS MUST BE FULLY CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS. DIMENSIONS ARE READ AS: FOOT-INCH-SIXTE	Scale: Date: Date: 5/2 Nic Scale:	NTS

RE: 25050066 1015 Serenity-Roof-B326 A CP GRH

Site Information:

Customer: David Weekley Homes Project Name: 25050066 Lot/Block: 1015 Address: 1219 Serentiy Walk Parkway City: Fuguay-Varina

Model: Subdivision: Serenity State: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2021/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.7 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 36 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	172260058	A01	3/26/2025	21	172260078	PBA1	3/26/2025
2	172260059	A03	3/26/2025	22	172260079	PBA2	3/26/2025
3	172260060	A04	3/26/2025	23	172260080	VLB1	3/26/2025
4	172260061	A05	3/26/2025	24	172260081	VLB2	3/26/2025
5	172260062	A06	3/26/2025	25	172260082	VLB3	3/26/2025
6	172260063	A07	3/26/2025	26	172260083	VLB4	3/26/2025
7	172260064	A08	3/26/2025	27	172260084	VLB5	3/26/2025
8	172260065	A09	3/26/2025	28	172260085	VLB6	3/26/2025
9	172260066	B01	3/26/2025	29	172260086	VLB7	3/26/2025
10	172260067	B02	3/26/2025	30	172260087	VLB8	3/26/2025
11	172260068	C01	3/26/2025	31	172260088	VLD1	3/26/2025
12	172260069	C02	3/26/2025	32	172260089	VLD2	3/26/2025
13	172260070	D01	3/26/2025	33	172260090	VLD3	3/26/2025
14	172260071	D02	3/26/2025	34	172260091	VLD4	3/26/2025
15	172260072	E01	3/26/2025	35	172260092	VLD5	3/26/2025
16	172260073	G01	3/26/2025	36	172260093	VLD6	3/26/2025
17	172260074	H01	3/26/2025				
18	172260075	H02	3/26/2025				
19	172260076	J01	3/26/2025				
20	172260077	PBA	3/26/2025				

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2025

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Trenco 818 Soundside Rd Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	A01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	172260058

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Mar 25 07:55:03 ID:HvYYHe4LpHmiz2Dld9nw5TzRQov-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:94.5

Loading		(psf)	Spacing	2-0-0		CSI	0.40	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15			0.13	Vert(LL)	n/a	-	n/a	999	M120	244/190
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.12	Vert(CT)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES		NB	0.21	Horz(CT)	0.01	33	n/a	n/a		
BCLL		0.0*	Code	IRC2021/1PI2014	r	Matrix-MSH								FT 000/
BCDL		10.0		-									Weight: 546 lb	FT = 20%
LUMBER					Max	Grav 34=419	(LC 1), 3	35=81 (LC 13	B),	BOT CH	IORD	61-62	=-81/150, 60-61=	81/150, ≥-4/150
TOP CHORD	2x6 SP N	0.2				36=197	(LC 41),	37=152 (LC	59),			59-60	=-81/150, 58-59=	-81/150,
BOT CHORD	2x6 SP N	0.2				38=174	(LC 45),	39=221 (LC	45), 45)			57-58	=-81/150, 56-57=	-81/150, 91/150
WEBS	2x4 SP N	0.3	.*			40=230	(LC 45), (LC 45)	42=229 (LC	45), 45)			52-53	=-01/150, 53-55= 81/150, 51-52-	
OTHERS	2X4 SP N	0.3 "Excep		45		46-199	(1 C 40)	47-220 (LC	40)			50-51	81/150, 31-52- 81/150 49-50-	81/150,
	49-17,48-	12.2 1 9.4	0-20,44-22,50-10,51- No 2	15,		48=217	(1 C 40)	49=216 (LC	40)			48-49	= 81/150, 43 30= =-81/150 47-48=	-81/150
	52-14,55-	12.284 35	110.2			50=217	(LC 40).	51=220 (LC	40).			46-47	=-81/150, 44-46=	81/150.
	Structura		othing directly applied	l or		52=199	(LC 40)	53=218 (LC	43),			43-44	=-81/150, 42-43=	81/150,
TOP CHORD	6-0-0 00 1		cent end verticals an	d		55=234	(LC 43)	56=233 (LC	43),			40-42	=-81/150, 39-40=	81/150,
	2-0-0 00 1	ourlins (10-	0-0 max): 13-21	u		57=233	(LC 43),	58=233 (LC	43),			38-39	=-81/150, 37-38=	81/150 ,
BOT CHORD	Rigid ceil	ina directly	applied or 6-0-0 oc			59=199	(LC 43),	60=150 (LC	58),			36-37	=-81/150, 35-36=	≟- 81/150,
	bracing.					61=257	(LC 51),	62=133 (LC	58)			34-35	=-81/150, 33-34=	÷-81/150
WEBS	1 Row at	midpt	17-49, 18-48, 19-47,	FORCES	(Ib) - Maximum Compression/Maximum									
			20-46, 22-44, 23-43,	TODOLODD	Tension									
			24-42, 16-50, 15-51,	TOP CHORD	2-6	52=-245/191, 1-2	=0/23, 2	2-3=-100/91,						
			14-52, 12-53, 11-55,	9-56	3-4 6-7	+=-74/121, 4-5=- 775/201 7-8	48/115,	2-0=-28/120, 8-0106/20	, 1					
REACTIONS	(size)	33=53-3-0), 34=53-3-0, 35=53-	3-0,	Q_1		.12-14.	4/387	1,					
		36=53-3-0), 37=53-3-0, 38=53-3	3-0,	12-	-13=-146/383. 13	3-14=-14	40/380.						
		39=53-3-0), 40=03-3-0, 42=03-	3-U,	14-	-15=-140/380, 1	5-16=-1	40/380,						
		47-53-3-0) 48-53-3-0 49-53-	5-0, 3-0	16-	-17=-140/380, 17	7-18=-1	40/380,						
		50=53-3-0), 51=53-3-0, 52=53-3	3-0.	18-	-19=-140/380, 19	9-20=-1	40/380,						111
		53=53-3-0), 55=53-3-0, 56=53-3	3-0,	20-	-21=-140/380, 21	1-22=-1	46/383,					N''LL CA	DIL
		57=53-3-0	, 58=53-3-0, 59=53-	3-0,	22-	-23=-144/387, 23	3-24=-1	24/338,				1	THUA	ROM
		60=53-3-0), 61=53-3-0, 62=53-3	3-0	24-	-25=-106/291, 2	5-27=-9	0/246,				1	ONVESS	A Alla
	Max Horiz	62=-186 (LC 12)		27-	-28=-75/201, 28-	29=-59	160,			1	52		THAT
	Max Uplift	34=-66 (L	C 14), 35=-170 (LC 1	5),	29	-30=-03/137, 30-	2_221	34/117			-		127 1	4. 4.
		36=-15 (L	C 14), 37=-50 (LC 15),	51-	-52124/100, 52	2-331	J-4/11/			1	<		
		38=-42 (L	C 15), 39=-44 (LC 15),							=	:	SEA	L : =
		40=-43 (L	C 15), 42=-46 (LC 15),							=	:	0363	22 : =
		43=-52 (L	C 15), 47=-29 (LC 11 C 11), 40=-25 (LC 10),							1		0303	22
		40=-20 (L 5028 (l	C 11), 49=-25 (LC 10 C 11), 5129 (LC 10),))							-		•	1 - E -
		55=-52 (L	C 14) 56=-46 (LC 14	.)							5		·	Airs
		57=-43 (L	C 14), 58=-44 (LC 14	.).								25	GIN	EFRANS
		59=-46 (L	C 14), 60=-22 (LC 14),								11	10	BEIN
		61=-137 (LC 14), 62=-88 (LC 1	5)									11, A. G	ILLIN
		,											"IIIIII	mm

March 26,2025

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH		
25050066	A01	Piggyback Base Supported Gable		1	Job Reference (optional)	172260058	
Carter Components (Sanford NC) Sanford NC - 27332	Run: 8.73 S. Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Tue Mar 25 07:55:03					

ID:HvYYHe4LpHmiz2Dld9nw5TzRQov-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Carter Components (Sanford, NC), Sanford, NC - 27332,

WEBS 17-49=-176/57, 18-48=-177/62, 19-47=-180/61, 20-46=-159/6, 22-44=-177/2, 23-43=-190/87, 24-42=-189/81, 25-40=-190/77, 27-39=-181/77, 28-38=-132/77, 29-37=-125/77, 30-36=-138/78, 31-35=-65/120, 32-34=-244/137, 16-50=-177/62, 15-51=-180/61, 14-52=-159/1, 12-53=-178/0, 11-55=-194/87, 9-56=-193/81, 8-57=-193/77, 7-58=-194/77. 6-59=-157/77. 5-60=-115/91. 4-61=-186/159, 3-62=-226/263

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-8-6 to 4-7-0, Exterior(2N) 4-7-0 to 12-4-2, Corner(3R) 12-4-2 to 22-11-14, Exterior(2N) 22-11-14 to 26-2-2, Corner(3R) 26-2-2 to 36-7-0, Exterior(2N) 36-7-0 to 47-11-2, Corner(3E) 47-11-2 to 53-3-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated. 8)
- 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 12) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) N/A
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Page: 2

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	A03	Piggyback Base	8	1	Job Reference (optional)	172260059

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 07:55:05 ID:OFJFx3IDTxFbWWzrBXohbzzRCTM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:94.5

Plate Offsets	(X, Y): [2:0-4-14,0-2-8], [10:0-5-0,0-4-8], [12	2:Edge,0-1	I-3], [14:0-5-0),0-4-8], [21:0-7-4,	Edge]								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MSH	0.70 0.88 1.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.36 -0.56 0.11	(loc) 19-21 19-21 12	l/defl >999 >691 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 471	GRIP 244/19 Ib FT = 2	90
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS JOINTS	2x6 SP No.2 2x6 SP No.2 *Excep 2.0E 2x4 SP No.3 *Excep 6-19,8-17,21-5,19-5, 2x4 SP No.3 Structural wood she 3-2-15 oc purlins, e 2-0-0 oc purlins, (3-9 Rigid ceiling directly bracing. 1 Row at midpt 1 Brace at Jt(s): 26, 27, 28	WE DF 0.2 d or ind NC 1) 0-17, 2)	TES Unbalanced this design. Wind: ASCE Vasd=103m II; Exp B; Er and C-C Ext	2-21=-183/2547, 23-26=-469/261, 17-24=-867/224, 3 8-27=-837/222, 3 5-21=-205/545, 5 9-17=-196/830, 11 9-14=-143/1007, 11-13=-337/230, 3 24-25=-63/45, 18 27-28=-139/30, 7 6-28=-281/725, 8 roof live loads ha E 7-16; Vult=130m ph; TCDL=6.0psf; nclosed; MWFRS	19-23=-44 6-26=-45(24-27=-8: -21=-817/ -19=-107/ 0-14=-911 10-13=-2 23-25=-6: -25=0/27, -28=-268/ ve been (ph (3-sec BCDL=6 (envelope 0 4-7-9. It	82/256, 6/264, 58/226, /328, /788, 6/318, 16/806, 3/45, ,26-28=-15/5: /841 considered fo considered fo cond gust) .0psf; h=25ft; e) exterior zor terior (1) 4-7-	2, r Cat. ne 9 to	 9) * This truss has been designed for a live load of 20.0 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the botto chord and any other members, with BCDL = 10.0psf. 10) Refer to girder(s) for truss to truss connections. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 107 lb uplift at j 12. 12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due t UPLIFT at jt(s) 22 and 15. This connection is for uplif only and does not consider lateral forces. 13) Graphical purlin representation does not depict the si or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard 						
FORCES TOP CHORD BOT CHORD	(3)2e) 122–05-8 Max Horiz 22=-187 (Max Uplift 12=-107 (22=-269 (Max Grav 12=2012 22=2270 ((b) - Maximum Com Tension 1-2=0/25, 2-3=-3090 5-6=-2534/403, 6-7= 7-8=-3068/590, 8-9= 9-11=-4015/460, 11- 2-22=-2317/313 21-22=-138/274, 19 18-19=-183/2429, 1' 15-17=-147/2312, 1: 12-13=-228/3505	LC 12) LC 14), 15=-223 (LC LC 14), 15=829 (LC (LC 47), 15=829 (LC (LC 37) pression/Maximum)/354, 3-5=-3206/547 3068/590, -2512/401, -12=-4055/352, -21=-189/2334, 7-18=-183/2429, 3-15=-192/2990,	15), 39), 3) , 4) 5) 6) 7) 8)	10-1-10, Ext 39-2-5 to 47 end vertical MWFRS for grip DOL=1. TCLL: ASCE Plate DOL= DOL=1.150; Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n Provide ade All plates an This truss ha chord live lo	terior(2R) 10-1-10 -11-2, Exterior(2E left exposed;C-C reactions shown; .60 E 7-16; Pr=20.0 psf 1.15); Pf=20.0 psf 1.15); Pf=20.0 psf ls=1.0; Rough Ca =1.10 I snow loads have as been designed psf or 1.00 times non-concurrent witt quate drainage to e 2x4 MT20 unles as been designed ad nonconcurrent	to 39-2-5) 47-11-2 for memb Lumber I (Lum DC (Lum DC t B; Fully been cor for great flat roof lc h other lin prevent v s otherwi for a 10.0 with any	5, Interior (1) 2 to 53-3-0 zoio pers and force DOL=1.60 pla .: Lum DOL= 2L=1.15 Plate Exp.; Ce=0.9 asidered for th er of min roof pad of 20.0 ps water ponding se indicated. D osf bottom other live load	ne; is & te 1.15); his live of on g. ds.		Withhere		SE 036	ARO Sicht AL 322 NEER GILBE	A Provinsion of the second sec

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

March 26,2025

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	A04	Piggyback Base	3	1	Job Reference (optional)	172260060

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 07:55:05 ID:DGN6a6f8caCKWpHw1clz1BzRCZx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

March 26,2025

818 Soundside Road Edenton, NC 27932

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.68	Vert(LL)	-0.41	18-20	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.91	Vert(CT)	-0.62	18-20	>882	180			
TCDL	10.0	Rep Stress Incr	YES		WB	0.97	Horz(CT)	0.09	12	n/a	n/a			
BCLL	0.0	* Code	IRC202	21/TPI2014	Matrix-MSH]		
BCDL	10.0											Weight: 469 lb) FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS WEBS	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 *Ex 6-18,16-8,16-9,14 Structural wood s 3-4-2 oc purlins, 2-0-0 oc purlins (Rigid ceiling direc bracing, Except 6-0-0 oc bracing: 1 Row at midpt 2 Rows at 1/3 pt	cept* 21-2:2x6 SP No. I-9,20-5,18-5:2x4 SP heathing directly appl except end verticals, 3-10-0 max.): 5-9. ttly applied or 10-0-0 of 12-13. 18-25, 16-26, 9-14 5-18, 22-23 10-13	V No.2 lied or and oc I, 5-20, 2	/EBS OTES) Unbalanced this design.) Wind: ASCE Vasd=103m	2-20=-167/2495, 22-25=-469/306, 16-23=-847/255, 8-26=-827/252, 9-14=-268/136, 1 10-13=-2090/388, 3-20=-817/328, 5 5-18=-164/756, 2 5-18=-164/756, 2 5-18=-164/756, 2 7-27=-267/85, 8- roof live loads have the second secon	18-22=-4: 6-25=-45: 23-26=-8: 9-16=-163; 10-14=-10/ 5, 11-13= 5-20=-219/ 22-24=-61/ 27=-49/99; 27=-276/8 ave been of nph (3-sect f: BCDI = 6	77/306, 7/307, 47/257, /1256, /516, 456/258, /594, /46, 23-24=-1 26-27=-172 363, 6-27=-29 considered for cond gust) 6 (onsf: h=25f	61/46, /51, 93/747 pr	 * Tr on t 3-00 cho 10) Refi 11) Prov bea 12. 12) One recc UPL only 13) Gra or tt bott 	his truss he botto 5-00 tall rd and a er to girr vide me ring plat e H2.5A ommenco LIFT at j v and do phical p ne orien om choi	has be om cho by 2-0 iny oth der(s) f chanic ce capa Simps led to o t(s) 21 es not urlin re tation o	een designed fo rrd in all areas w 00-00 wide will fi ter members, wi for truss to truss al connection (b able of withstand con Strong-Tie c connect truss to and 13. This co consider lateral appresentation do of the purlin alor	r a live load of 20.0psf here a rectangle t between the bottom th BCDL = 10.0psf. connections. y others) of truss to ling 220 lb uplift at joint onnectors bearing walls due to innection is for uplift forces. pes not depict the size ing the top and/or	
REACTIONS	1 Brace at Jt(s): 1 26, 27 (size) 12= M. 21=0-5 Max Horiz 21=-18 Max Uplift 12=88 21=28 21=28 21=28 21=28	25, echanical, 13=0-5-8, -8 7 (LC 12) 0 (LC 14), 13=-482 (L 8 (LC 14) 5 (LC 37), 13=2317 (L 90 (LC 37)	_C 15), .C 39), 3)	II; Exp B; Er and C-C Ext 10-1-10, Ext 39-2-5 to 47 cantilever le right expose for reactions DOL=1.60) TCLL: ASCE	closed; MWFRS erior(2E) -0-8-6 t erior(2R) 10-1-1(-11-2, Exterior(2I ft and right expos d;C-C for member shown; Lumber E 7-16; Pr=20.0 p	(envelope to 4-7-9, In 0 to 39-2-5 E) 47-11-2 sed ; end v ers and for DOL=1.60	e) exterior zo tterior (1) 4-7 5, Interior (1) 2 to 53-3-0 zc vertical left au rces & MWFI 0 plate grip .: Lum DOL=	, out. one 7-9 to one; nd RS =1.15	LOAD	CASE(S) Sta	ndard	ARO	
FORCES	(lb) - Maximum C Tension	ompression/Maximum	n	Plate DOL= DOL=1.15);	1.15); Pf=20.0 ps Is=1.0; Rough C _1 10	f (Lum DC at B; Fully	DL=1.15 Plate Exp.; Ce=0.	e 9;		4		OFES	Real	
TOP CHORD	1-2=0/25, 2-3=-3 5-6=-2451/399, 6 7-8=-3031/589, 8 9-11=-2686/560, 2-21=-2275/301 20-21=-136/270, 17-18=-137/2358 13-16=-200/2157	030/325, 3-5=-3146/5 -7=-3031/589, -9=-2428/397, 11-12=-1525/492, 18-20=-154/2261, , 16-17=-137/2358, , 12-13=-376/1311	18, 4, 5; 6; 7; 8;	 Unbalanced design. This truss ha load of 12.0 overhangs n Provide ade All plates are chord live load 	sed snow loads have been considered for this s has been designed for greater of min roof live 2.0 psf or 1.00 times flat roof load of 20.0 psf on is non-concurrent with other live loads. idequate drainage to prevent water ponding. are 2x4 MT20 unless otherwise indicated. s has been designed for a 10.0 psf bottom a load nonconcurrent with any other live loads.				SEAL 036322					
												in min	unne.	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	A05	Attic Girder	1	4	Job Reference (optional)	172260061

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Tue Mar 25 07:55:05

Page: 1

Carter Components (Sanford, NC), Sanford, NC - 27332,

TCDL		10.0	Rep Stress Incr	NO		WB	0.97	Horz(CT)	0.17	1	7 n/a	n/a			
BCLL		0.0*	Code	IRC2	021/TPI2014	Matrix-MSH		Attic	-0.21	22-40) >931	360			
BCDL		10.0											Weight: 2005 lb FT = 20%		
LUMBER					BOT CHORD	44-45=-126/446, 4	42-44=-7	61/12424,		1) 4	-ply truss	to be c	onnected together with 10d		
TOP CHORD	2x6 SP N	lo.2 *Excep	t* 5-7:2x4 SP No.*	1		41-42=-877/1659	5, 35-41=	-660/17142,		(0.131"x3") nails as follows:					
BOT CHORD	2x4 SP 24	400F 2.0E	*Except* 43-38,43	3-45:2x6		33-35=0/18682, 3	0-33=0/1	9483,		Т	op chords	conne	cted as follows: 2x6 - 2 rows		
	SP No.2,	28-22,20-1	7:2x4 SP No.2			27-30=0/18806, 2	4-27=-28	31/16626,		S	aggered a	at 0-9-0) oc, 2x4 - 1 row at 0-9-0 oc.		
						21-24=-805/13168	3, 19-21=	-553/10974,		В	ottom cho	rds col	nnected as follows: 2x6 - 2 rows		
WEBS	2x4 SP N	lo.3 *Excep	t* 13-21:2x6 SP 2	400F		18-19=-179/3511,	17-18=-	179/3511,		S	aggered a	at 0-9-0	0.00, 2X4 - 1 row at 0-7-0 oc.		
	2.0E, 6-40	6,45-2,41-4	17,41-6,46-13:2x6	SP		26 27 _ 200/0 2	07-09=-0 1 26_ 29	10/040,		2	rowe stor	acrod	at 0.0.0 ac Except member 41.47.2x6		
	NO.2, 44-	SD No 2	160			32-34=-3769/0 3	+-30=-20 1-32=-37	69/0		-	3 rows stag	annered	d at 0-4-0 oc. member 6-41 2x6 - 2		
BRACING	right 274	SF 110.3 -	- 1-0-0			29-31=-3769/0.20	5-29=-28	30/0.		rc	ows staga	ered at	: 0-4-0 oc.		
	Structure	lwood obo	othing directly one	lied or		23-26=-322/1917,	22-23=-	322/1917		A	ttach BC	w/ 1/2"	diam. bolts (ASTM A-307) in the		
TOP CHORD	4-3-4 ocu		cent end verticals	and	WEBS	3-44=-5422/380,	3-42=-24	3/5049,		C	enter of th	e mem	ber w/washers at 4-0-0 oc.		
	2-0-0 00 1	purlins, CA	-0 max). 7-12	ana		4-42=-776/166, 5-	41=-150	/1931,		2) A	ll loads ar	e cons	idered equally applied to all plies,		
BOT CHORD	Rigid ceil	ina directly	applied or 6-0-0 c	С		21-22=-715/6617,	13-22=-	547/7714,		e	xcept if no	ted as	front (F) or back (B) face in the LOAD		
	bracing.	5,				6-48=-11763/751,	48-49=-	11346/727,		С	ASE(S) s	ection.	Ply to ply connections have been		
JOINTS	NTS 1 Brace at Jt(s): 49,					49-50=-11312/68), 50-51=	-11353/682,		р	rovided to	distrib	ute only loads noted as (F) or (B),		
50, 51, 52, 40, 26,						51-52=-16183/978	3, 52-53= 7	-12452/790,		2) U	niess othe	erwise i	ndicated.		
	37, 29, 34	4				13-33=-13064/62	6 40- 5	101/13155,		3) U	nbalance		ive loads have been considered for		
REACTIONS	(size)	17=20-6-0), 18=20-6-0, 19=2	20-6-0,		7-48=-156/2528	8-49 <u>-</u> -54	6/66		u	lis design		ANNIH COMMON		
		21=20-6-0	0, 45=0-5-8			9-50=-137/2538	10-51=-2	41/36					IN CADILL		
	Max Horiz	45=-188 (LC 10)			11-52=-238/66, 12	2-53=-20	7/3427,					TH CARO		
	Max Uplift	17=-141 (LC 13), 18=-383 (LC 12),		22-24=0/2405, 38	-40=0/27	34, 23-24=-54	41/0,			1	ON SESSION AND		
		19=-265 (LC 12), 21=-1173	5 (LC		38-39=-594/0, 24-	26=-213	7/0,				52	1 Thank		
	Max Gray	40), 45=-1	(US (LC 12)	(1.0		37-38=-1092/0, 26	6-27=0/2	655, 35-37=0/	/1905,		-	\mathcal{U}	QI JAR. H.		
	Wax Glav	23) 19=5	(10, 40), 10=7903 365 (1 C 46) 21=1	104 (I C		27-28=-765/12, 3	5-36=-94	2/22,				2 1			
		12) 45=1	2082 (LC 46)	101 (20		27-29=-229/226,	34-35=-2	02/159,					SEAL : =		
FORCES	(lh) - Max	imum Com	nression/Maximur	m		29-30=0/879, 33-3	34=-17/9	45, 30-31=-43 0/254	31/0,			:	026222 : =		
1011020	Tension		procolori/maxima			32-33=-391/12, 7-	-49=-448 2 51- 40	9/201, 02/209					030322 =		
TOP CHORD	1-2=0/24,	, 2-3=-1389	4/811, 3-4=-1785	5/1068,		10-52=-2393/279	12-52=-	5783/334				2	N 2 3		
	4-6=-191	, 96/1164, 6·	-7=-5749/483,			14-19=-9336/551	15-19=-	442/8385.				-	i.A. Airi		
	7-8=-302	4/527, 8-9=	-3021/526,			14-21=-441/8353	5-42=-2	558/146,				25	GINEE		
	9-10=-37	92/720, 10	-11=-1853/1232,			15-18=-7758/466						11	C		
	11-12=-1	853/1232,	12-13=-5041/447,										M. A. GILLIN		
	13-15=-1	8603/1151,	15-17=-4060/262	,	NOTES								THILLINN'		
	2-45=-116	091/120											March 26,2025		
Continued on	page 2														

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A MITEK Affiliate

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	A05	Attic Girder	1	4	Job Reference (optional)	172260061

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Tue Mar 25 07:55:05

ID:VIY0g5gMUgwQZRyxiBXYItzRA_f-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Carter Components (Sanford, NC), Sanford, NC - 27332,

- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 8) Provide adequate drainage to prevent water ponding.
- 9) All plates are MT20 plates unless otherwise indicated.
- 10) All plates are 2x4 MT20 unless otherwise indicated.11) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf.
 13) Ceiling dead load (5.0 psf) on member(s). 6-48, 48-49, 49-50, 50-51, 51-52, 52-53, 13-53; Wall dead load (5.0psf) on member(s). 13-22, 6-40
- 14) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 39-40, 37-39, 36-37, 34-36, 32-34, 31-32, 29-31, 28-29, 26-28, 23-26, 22-23
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 11735 lb uplift at joint 21.
- 16) LGT4-SDS3 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 45. This connection is for uplift only and does not consider lateral forces.
- 17) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 17, 19, and 18. This connection is for uplift only and does not consider lateral forces.
- 18) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 19) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.
- 20) LGT4 Hurricane ties must have four studs in line below the truss.
- 21) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 608 lb down and 52 lb up at 28-8-4, and 9100 lb down and 774 lb up at 16-1-4 on bottom chord. The design/ selection of such connection device(s) is the responsibility of others.
- 22) Attic room checked for L/360 deflection.
- LOAD CASE(S) Standard
- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (lb/ft) Vert: 1-2=-60, 2-7=-60, 7-12=-60, 12-17=-60, 45-54=-20, 22-40=-30, 6-48=-10, 48-49=-10, 46-49=-10, 46-50=-10, 50-51=-10, 51-52=-10, 52-53=-10, 13-53=-10 Drag: 13-22=-10, 40-47=-10, 6-47=-10
 - Concentrated Loads (lb)
 - Vert: 41=-4881 (F), 67=-326 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Page: 2

Job	Truss	Truss Type		Qty	Ply	1015 Serenity-Roof-B326 A CP GRH
25050066	A06	Attic Girder		1	4	Job Reference (optional)
Carter Components (Sanford	NC), Sanford, NC - 27332,	-	Run: 8.73 S Feb 19	2025 Print: 8.	730 S Feb 1	9 2025 MiTek Industries, Inc. Tue Mar 25 07:55:06 Page: 1
Carter Components (Sanford	NC), Sanford, NC - 27332, 7-13 11-0-3 13- 7-13 5-4-5 2-5 6^{12} 4 $4x5 \neq 66$ 3^{65} 66	$\begin{array}{c} 17-8-0 \\ 6-0, 16-2-4 \\ -20-7- \\ 14 \\ 2-8-41-5-122-11- \\ 12x16= \\ 6x8 \\ 7 \\ 8x10 \\ 5 \\ 48 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ $	Run: 8.73 S Feb 19 ID:pGeZvt1?!WuriNE 25-10-14 5 2-7-13 2-7-13 2-7- 1-1-0 12x16 = 4x5= 8 9 5810 12x16 = 4x5= 8 9 5810 12x16 = 4x5= 8 9 5810 12x16 = 4x5= 12x16 = 4x5 = 4x6 II 4x6 II 7 35 35 35 35 32 30	2025 Print: 8. Y xH4fkzRAF -11	730 S Feb 1: 57-RfC?PsB7 32-9-4 1-3-4 4x8 x16= 12 13 19 23 23 5 8	9 2025 MiTek Industries, Inc. Tue Mar 25 07:55:06 Page: 1 70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?i 39-7-10 46-5-3 53-6-0 6-10-6 6-9-9 7-0-13 8x10* 11159 60 4x5* 16 4x5* 17 18 9 18 9 10 18 9 10 10 10 10 10 10 10 10 10 10
4x5 II <u>5</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u>		02 4203 39 4x5 II 31 12x16=8x10=3 12x16=8x10 31 12x16=8x10=3 PROVIDE CONNECTION CONNECTION DUE TO G 0 ARCHITECT/ENGINEE CONNECTION SYSTE 20-0 18-5-8 20-0 18-5-8 2 15-9-11 16-5-0 18-7-4 -9 0-7-5 0-1-12 2-0-8 1 -2-0-8 1 -2-0-8 1 0-10-8,0-2-12], [18:Edg -112, [20:00] 118:Edg -110	x5= 3x5= 3x5= 3x5= 3x5= 3x5= 3x5= 3x5= 3	23 21 2 3x8 = 3: 5 5x6 WB NG PLATE A ED TO THE NECTION O LOAD PATH LIFT. FAILUI 5 29-9-0 3 29-7-8 3 29-7-8 3 29-7-8 3 29-7-8 3 -4-4 1-1-1 1-3-4 8], [28:0-3-0	 22 6x x⁽⁸⁾5x8= AT JOINT 22 TRUSS. IT I F THE TRUS TRUS 29-4 2-6-8 2-6-8 2-4-12 4-0-2-12 50-3-0], [39] 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		2-0-0			.,	
TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psi)Spacing20.0Plate Grip DOL20.0Lumber DOL10.0Rep Stress Incr0.0*Code10.0Log	1.15 1.15 NO IRC2021/TPI2014	TC (BC (WB (Matrix-MSH	0.93 Vert(0.72 Vert(0.87 Horz Attic	- LL) -0. CT) -0. (CT) 0. -0.	Inf (100) //defi D/d FLATES ORF .49 39-42 >803 240 MT20HS 187/143 .73 39-42 >532 180 MT20 244/190 .21 18 n/a n/a
LUMBER		BOT CHORD	45-46=-123/440, 43-4	5=-731/120	74,	1) 4-ply truss to be connected together with 10d
BOT CHORD 2x8 SP BOT CHORD 2x4 SP 2 SP No.2, 2400F 2. WEBS 2x4 SP N 46-2,42-4 13-22:2x4 OTHERS 2x4 SP N SLIDER Right 2x4 BRACING TOP CHORD TOP CHORD Structurar 6-0-0 oc 2-0-0 oc 2-0-0 oc BOT CHORD	400F 2.0E *Except* 28-23,28-4 44-46:2x6 SP No.2, 44-39:2x6 E 0.3 *Except* 7,6-42,6-51,51-13:2x6 SP No.2 SP 2400F 2.0E, 45-2:2x4 SP 0.3 SP No.3 1-6-0 wood sheathing directly applied burlins, except end verticals, a purlins (6-0-0 max.): 7-12. ng directly applied or 6-0-0 oc	1:2x4 SP 2, No.2 WEBS ed or nd	42-53-632/17880, 31-33 29-31=0/16739, 25-25 22-25=-772/12128, 20 19-20=-741/15543, 16 40-41=-1028/0, 38-40 37-38=-2921/0, 35-37 33-35=-3019/0, 26-30 24-26=-370/3083, 23 3-45=-5311/373, 4-43 41-42=-617/7143, 6-4 22-23=-712/6595, 13 6-48=-10655/685, 48 50-52=-11090/661, 55 40 52	==-047942, ==-017942, ==-151/1433 =22=-780/1 =-1102/0, =-2921/0, =-3019/0, =-1178/736 24=-370/30 =-700/162, 1=-530/871 23=-513/72 50=-10276/ 2-53=-15533	, 6089, 5543, 83 7, 29, 663, 2/928, 7/2009	 Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 3 rows staggered at 0-4-0 oc, Except member 6-42 2x6 - 2 rows staggered at 0-4-0 oc, Except member 6-42 2x6 - 2 rows staggered at 0-9-0 oc. Attach BC w/ 1/2" diam. bolts (ASTM A-307) in the center of the member w/washers at 4-0-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), uploes otherwise indicated
bracing. JOINTS 1 Brace a	t Jt(s): 50,		49-53=-12360/771, 13 2-45=-673/12777, 15-	20=-220/18	7/808, 4,	3) Unless otherwise indicated.3) Unbalanced roof live loads have been considered for
51, 52, 5 35, 30, 2	3, 41, 38, 5		16-19=-11/162, 16-20 15-22=-640/213, 3-43	=-132/757, =-237/4930	,	this design.
REACTIONS (size) Max Horiz Max Uplift Max Grav FORCES (lb) - Max Tension TOP CHORD 7-8=-309 9-10=-37 11-12=-1 13-15=-1 16-18=-1 1-2=0/24	18= Mechanical, 22=0-5-8, 46=0-5-8 46=-190 (LC 10) 18=-420 (LC 12), 22=-5361 (L 45), 46=-683 (LC 12) 18=8887 (LC 46), 22=792 (LC 46=11746 (LC 46) imum Compression/Maximum 2/528, 8-9=-3089/526, 27/713, 10-11=-1715/1441, 715/1441, 12-13=-4561/424, 7753/1087, 15-16=-17925/100/ 7697/900, 2-46=-11550/702, 2-3=-13497/782, 3-4=-17366/	.C : 12), ^{3,} NOTES 1032,	7-48=-147/2364, 12-4 8-50=-471/64, 9-51=- 10-52=-109/92, 11-53 12-53=-5376/307, 10- 9-52=-4653/281, 9-50 7-50=-4773/262, 39-4 39-41=0/2886, 38-39= 36-38=0/1265, 36-37 35-36=-160/340, 34-3 33-34=-116/0, 31-32= 29-30=-8180, 28-29= 25-26=-1725/0, 24-25 5-42=-124/1475, 5-43	9=-204/345 120/2271, =-268/67, 53=-2531/2 =-4233/347 0=-446/0, =-859/135, =-671/19, 5=-22/133, -558/0, 30-7 -736/19, 26 =-569/0, 23 =-529/0, 23	1, 78, , 31=0/1422, -29=0/2289 -25=0/1636	SEAL 036322
4-6=-185	64/1120, 6-7=-5994/479					March 26,2025

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

CN

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	A06	Attic Girder	1	4	Job Reference (optional)	172260062

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Tue Mar 25 07:55:06

ID:pGeZvt1?lwruiNEY_xH4fkzRAp7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Carter Components (Sanford, NC), Sanford, NC - 27332,

- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 8) Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated.
 All plates are 2x4 MT20 unless otherwise indicated.
- 10) All plates are 2x4 M120 unless otherwise indicated.11) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf.
 13) Ceiling dead load (5.0 psf) on member(s). 6-48, 48-50, 50-51, 51-52, 52-53, 49-53, 13-49; Wall dead load (5.0psf) on member(s).6-41, 13-23
- 14) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 40-41, 38-40, 37-38, 35-37, 33-35, 32-33, 30-32, 28-30, 26-28, 24-26, 23-24
- 15) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 420 lb uplift at joint 18 and 5361 lb uplift at joint 22.
- 17) LGT4-SDS3 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 46. This connection is for uplift only and does not consider lateral forces.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 19) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.
- 20) LGT4 Hurricane ties must have four studs in line below the truss.
- 21) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 9100 lb down and 774 lb up at 16-1-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 22) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 7-12=-60, 12-18=-60, 46-54=-20, 23-41=-30, 6-48=-10, 48-50=-10, 50-51=-10, 51-52=-10, 52-53=-10, 49-53=-10, 13-49=-10, 1-2=-60, 2-7=-60 Drag: 41-47=-10, 6-47=-10, 13-23=-10 Concentrated Loads (lb)

Vert: 42=-4881 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss		Truss Type		Qtv	Plv	1015 Serenity-Roof-B326 A CP GRH	
25050066	A07		Attic		1	1	17226	0063
Carter Components (Sanfo	d. NC). Sanfo	rd. NC - 27332.		Run: 8.73 S Feb 19	2025 Print: 8	3.730 S Feb 19	Job Reterence (optional) 2025 MiTek Industries, Inc. Tue Mar 25 07:55:07	Page: 1
	-, -,,			ID:1d5INYb_SnpigifH 28-6	l0e1reGzRB -11	HO-RfC?PsB7	0Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f	- 3
-0-10-8	8-4-0	16-2-	20-7-5 4 17-8-0	25-10-14 23-3-2	31-6-	32-10-7 0	9-4-14 46-3-13 53-6-0	1
0-10-8	8-4-0	7-10-	4 1-5-122-11-5	2-7-13 2-7-13 2-7-	13 2-11-	5 1-4-7	6-6-7 6-10-14 7-2-3	
			6xo= 4x8 ≠	4x8= 4x5=		6x8≈		
Ŧ		6 ¹²	6	7 8 529	a 10 🔤	11		
		4x6 =						
		4x5 = 61	44	43 45 46 5x8=	47 5x8=	48 3x6 II	53 8x10.	
		3 ⁶⁰⁴					1354	
-8-0	58 /	59		1-14			4x5≈	
€ 5x8 ≠				°			4	
		A A A A A A A A A A A A A A A A A A A					390	
-10-0						a 1 0°		150
⊥ °⊥ 42 👼		41 57		3 32 30 29 27	26 24			<u>−</u> ∎ ¢I
MT18HS 3	10 =	5x8=	40 39 30 4x6= 4x6= 3x5=	33 31 20 3x5= 3x8=	25 25 . 5x10=	20 2119 12x16=	3x6=	5x8=
			5x8 II 5:0	3x10= 5x6 µ 4x5 µ	4x8=		8x10=	
			17-9-12	3x3 = 3x8	$= 29-10_{10}$	0,182-9-4		
L	8-4-0	13-11-0	16-5-0 20-	22-0-0 25-6-12 28	-4-4 31-1	32-6-8 - <u>12 3</u> 7	6-8 39-4-14 46-3-13 53-6-0	
Scale = 1:93.6	8-4-0	5-7-0	2-3-4 1-4- 0-2-12	12 1-4-12 1-4-12 1-4-12 2-2-0 1-4	1-4-12 1-12 0-1-0	1-4-12 4- 0-2-12	9-4 1-10-6 6-10-14 7-2-3	·
[2 Plate Offsets (X, Y): [3	0-2-12,0-2-0 Edge,0-2-4)], [6:0-5-8,0-3-0], [11:(ŀ], [41:0-3-8,0-2-8])-5-8,0-3-0], <u>1</u> 1 <u>3-4</u> -5 ₂ 0,	0-4-8], [15:Edge,0-0-7]	, [17:0 ^L 3 ³ 1	2, 0-3-4], [19	0-6-12,0-3-0], [26:0-3-0,0-3-0], [28:0-3-8,0-1-8],	
Loading	(psf)	Spacing	2-0-0	CSI	DEF	ïL	n (loc) l/defl L/d PLATES GRIP	
TCLL (roof) Snow (Pf)	20.0 20.0	Plate Grip DOL	1.15 1.15	TC C).97 Vert).95 Vert	(LL) -0.4 (CT) -0.1	7 31-33 >833 240 MT20 244/190 7 31-33 >509 180 MT18HS 244/190)
TCDL	10.0	Rep Stress Incr	YES	WB 0).94 Horz	z(CT) 0.	5 15 n/a n/a	
BCDL	10.0	Code	IRC2021/1P12014	Matrix-MSH	Απιο	-0.,	2 21-38 >604 360 Weight: 454 lb FT = 20	1%
LUMBER		1	BOT CHORD	41-42=-107/220, 39-4	1=0/3431,		2) Wind: ASCE 7-16; Vult=130mph (3-second g	gust)
TOP CHORD 2x6 SP BOT CHORD 2x4 SP	No.2 2400F 2.0F	*Excent* 26-21 40-42	2×4	36-39=0/3347, 33-36= 28-31=0/6100, 25-28=	=0/5184, 31 =0/4804, 20	1-33=0/6303 0-25=0/1822	Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf II: Exp B: Enclosed: MWFRS (envelope) exte	; h=25ft; Cat. erior zone
SP No.	, 18-23,26-3	38:2x4 SP No.2	274	19-20=-2299/0, 17-19	=-2104/0,	0	and C-C Exterior(2E) -0-8-2 to 4-8-2, Interior	(1) 4-8-2 to
WEBS 2x4 SP	No.3 *Excep	ot* 5-39,12-19:2x6 SP		37-38=-1135/0, 35-37	=-1135/0,	9,	23-3-2 to 25-10-14, Exterior(2R) 25-10-14 to	36-10-3,
No.2, 41-2,45	12,20-21,36	3-38,45-5,36-35,35-33,	33-	34-35=-3123/0, 32-34 30-32=-3176/0, 29-30	=-3123/0, =-3176/0,		Interior (1) 36-10-3 to 48-1-13, Exterior(2E) 4 53-6-0 zone; cantilever left and right expose	48-1-13 to d ; end
32,32-3 No 2 - 2	1,28-27,27-2	25,25-24,24-20:2x4 SF	,	27-29=-3176/0, 24-27= 22-24=0/3300, 21-22=	=-690/956, =0/3300	,	vertical left and right exposed;C-C for memb forces & MWFRS for reactions shown: Lumb	ers and er
WEDGE Right: 2	4 SP No.3		WEBS	3-41=-681/82, 13-17=	-267/96,		DOL=1.60 plate grip DOL=1.60	
BRACING TOP CHORD Structu	al wood she	athing directly applied	or	38-39=-47/336, 5-38=	0/1190,		Plate DOL=1.15); Pf=20.0 psf (looi LL: Luii Plate DOL=1.15); Pf=20.0 psf (Luii DOL=1.1	15 Plate
2-10-3 2-0-0 o	oc purlins, e	except end verticals, ar	nd	19-21=-1403/103, 12-2 2-41=0/3476, 5-44=-2	21=-46/114 083/54,	40,	DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Cs=1.00; Ct=1.10	; Ce=0.9;
BOT CHORD Rigid c	iling directly	applied or 2-2-0 oc		43-44=-2008/54, 43-44	6=-1597/13 7-48=-2471	328, //0,	 Unbalanced snow loads have been consider design. 	ed for this
WEBS 1 Row	t midpt	12-47, 13-21, 3-39		12-48=-2567/0, 7-43=	-138/122, (1 10-47-	6-44=0/354, 170/78	5) This truss has been designed for greater of r	nin roof live
JOINTS 1 Brace 45, 46.	at Jt(s): 43, 47, 35, 32,			11-48=0/450, 20-21=0)/2699, 36-	-38=0/1559,	overhangs non-concurrent with other live loa	i 20.0 psi 011 ids.
27, 24	1E - Ma	anical 10,050		36-37=-230/0, 20-22= 33-34=-185/0, 28-29=	-352/0, 25 -533/0, 30	-26=-320/0, -31=-2/95,	6) Provide adequate drainage to prevent water	ponding.
REACTIONS (SIZE)	42=0-5-8	ianical, 19=0-5-6,		13-21=-579/324, 3-39 17-21=0/5329, 6-43=-	=-149/379, 342/1277.	,	TH CAROL	111
Max Hor Max Gra	z 42=-190 15=2298	(LC 12) (LC 48), 19=1793 (LC		8-43=-876/124, 8-46=	-285/0, 7=-923/111	8	Carlo Ba	201
	40), 42=3	002 (LC 38)		35-36=-1294/0, 33-35	=0/1052,	-,	in the second	N B
Tension				3∠-33=-303/181, 31-32 27-28=0/1529, 25-27=	∠=-363/11, =-1405/0, 2	, 24-25=0/2106	SEAL	
I OP CHORD 6-7=-29 8-9=-36	81/411, 7-8= 07/536, 9-10	=-2981/411,)=-2740/425,	NOTES	20-24=-2165/0			E 036322	÷ E
10-11= 12-14=	2740/425, 1 4116/100_1	1-12=-1776/184, 4-15=-4686/98	1) Unbalanced	I roof live loads have b	een consic	dered for	日本に	
2-42=-2	999/91, 1-2=	=0/22, 2-3=-3961/16,	this design.				MGINEER.	A.S.
3-5=-4(u+/JO, J-0=·	2144/102					CA GILBE	1111
							(hummin)	
							March 26,20	25

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS//TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

ENGINEERING BY REN

CO

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	A07	Attic	1	1	Job Reference (optional)	172260063

- 7) All plates are MT20 plates unless otherwise indicated.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- 9) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf.
 11) Ceiling dead load (5.0 psf) on member(s). 5-44, 43-44, 43-45, 45-46, 46-47, 47-48, 12-48; Wall dead load (5.0psf) on member(s).5-38, 12-21
- 12) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 37-38, 35-37, 34-35, 32-34, 30-32, 29-30, 27-29, 26-27, 24-26, 22-24, 21-22
- 13) Refer to girder(s) for truss to truss connections.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 15) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 07:55:07 ID:1d5INYb_SnpjqifH0e1reGzRBHO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

							-			
Job	Truss	Tru	russ Type		Qty	Ply	1015 Serenit	y-Roof-B326 A CP G	RH	
25050066	A08	Att	ttic		6	1	Job Reference	ce (optional)	1722	60064
Carter Components (Sanford, N	C), Sanford, NC - 27332,			Run: 8.73 S Feb 19 2	025 Print: 8.7	730 S Feb 19	9 2025 MiTek Inc	dustries, Inc. Tue Mar 25	07:55:08	Page: 1
				ID:1d5INYb_SnpjqifH)e1reGzRBH 1	O-RfC?PsB7	70Hq3NSgPqnL8	8w3uITXbGKWrCDoi7J4	zJC?f	
			20-7-5	25-10-14	. 32	-10-7				
8 , 8	-4-0	6-2-4	17-8-0	23-3-2	31-6-0	, 3	9-4-14	46-3-13	53-6-0	1
8	-4-0	'-10-4	1-5-122-11-5	2-7-13 2-7-13 2-7-13	3 2-11-5	-4-7	6-6-7	6-10-14	7-2-3	j

			6x8=		6x8👟			
			4x8 ≠	4x8= 4x5=	6x8=			
Т		6 ¹²	4	6 7 518 1-10-8 1-10-8	9 10 9 11 11			
		4x6 = 60	43	42 44 45 5x8=	46 47 5x8= 3x6 II	52 _{8x}	10.	
	5	2 ⁵⁹³		4			54	
11-8	57 5x8 =			9-1-1		*		4x5. 13
	1							50
4	1			34 33 31 29 28 20				
	4x5=	40 56	39 38 35	32 30 27	24 22 19 208	17 1	6	15
		5x8=	4x6= 4x6= .	3x5= 3x5= 3x8=	5x10= 12x16=	3x6=	10	5,0=
			578-	3x10= 3x0 4x3 3x5= 3x	4x8= 8= 3x6=	6X	10=	
			17-9-12	5x5= 5x	6= 29-10 ₇ 0,132-9-4			
	940	12 11 0	16-5-0 16-2-4 19-2	20-7-4 23-4-12 26-11- -8 22-0-0 25-6-12 28	8 29-9-0 32-6-8 3-4-4 31-1-12 27	7 C Q 39-4-1	4 46 2 4	2 52 6 0
	8-4-0	5-7-0	2-3-4	1 - 4 - 12 $1 - 4 - 12$ $1 - 4 - 12$	2 1-4-12 1-4-12 4	-9-4 1-10-6	6-10-1	4 7-2-3
Scale = 1:93.6			0-2-12	1-4-12 2-2-0 1-	4-12 0-1-0 0-2-12	1100		-
Plate Offsets (X	[5:0-5-8,0-3-0], (, Y): [40:0-3-8,0-2-8]	[10:0-5-8,0-3-0], [12], [46:0-4-0,0-2-0]	2:0-5-0,0-4-8], <u>{f4</u> :E	dge,0-0-7], [16:0-3-12,0-3	3-4], [18:0-6-12,0-3-0],	[25:0-3-0,0-3-0], [27:0-3-8,0-	-1-8], [37:Edge,0-2-4],
Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in (loc)	l/defl L/d	PLATES GRIP
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.65 Vert(LL) -0	in (loc)).47 30-32	l/defl L/d >837 240	PLATES GRIP MT20 244/190
TCLL (roof) Snow (Pf)	(psf) 20.0 20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC	DEFL 0.65 Vert(LL) -0 0.95 Vert(CT) -0	in (loc) 0.47 30-32 0.76 30-32	l/defl L/d >837 240 >513 180	PLATES GRIP MT20 244/190
Loading TCLL (roof) Snow (Pf) TCDL	(psf) 20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	DEFL 0.65 Vert(LL) -0 0.95 Vert(CT) -0 0.93 Horz(CT) 0	in (loc) 0.47 30-32 0.76 30-32 0.15 14	l/defl L/d >837 240 >513 180 n/a n/a	PLATES GRIP MT20 244/190
TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI20 ⁷	CSI TC BC WB 14 Matrix-MSH	DEFL 0.65 Vert(LL) -0 0.95 Vert(CT) -0 0.93 Horz(CT) 0 Attic -0	in (loc) 0.47 30-32 0.76 30-32 0.15 14 0.32 20-37	l/defl L/d >837 240 >513 180 n/a n/a >605 360	PLATES GRIP MT20 244/190
TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI207	CSI TC BC WB Matrix-MSH	DEFL 0.65 Vert(LL) -C 0.95 Vert(CT) -C 0.93 Horz(CT) C Attic -C -C	in (loc) 0.47 30-32 0.76 30-32 0.15 14 0.32 20-37	l/defl L/d >837 240 >513 180 n/a n/a >605 360	PLATES GRIP MT20 244/190 Weight: 454 lb FT = 20%
TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI20 ⁻ BOT CHO	CSI TC BC WB Matrix-MSH RD 40-41=-106/246, 38	DEFL 0.65 Vert(LL) -C 0.95 Vert(CT) -C Horz(CT) C Attic -C -40=0/3385,	in (loc) 0.47 30-32 0.76 30-32 0.15 14 0.32 20-37 2) Wind	I/defl L/d >837 240 >513 180 n/a n/a >605 360 : ASCE 7-16;	PLATES GRIP MT20 244/190 Weight: 454 lb FT = 20% Vult=130mph (3-second gust)
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD	(psf) 20.0 20.0 10.0 0.0* 10.0 2x6 SP No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI20 ⁻ BOT CHO	CSI TC BC WB Matrix-MSH RD 40-41=-106/246, 38 35-38=0/3319, 32-3	DEFL 0.65 Vert(LL) -C 0.95 Vert(CT) -C 0.93 Horz(CT) C Attic -C -40=0/3385, 5=0/5160, 30-32=0/629	in (loc) 0.47 30-32 0.76 30-32 0.15 14 0.32 20-37 2) Wind 14, Vasd	I/defl L/d >837 240 >513 180 n/a n/a >605 360 : ASCE 7-16; =103mph; TC	PLATES GRIP MT20 244/190 Weight: 454 lb FT = 20% Vult=130mph (3-second gust) CDL=6.0psf; h=25ft; Cat.
TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD	(psf) 20.0 20.0 10.0 0.0* 10.0 2x6 SP No.2 2x4 SP 2400F 2.0E	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code *Except* 25-20,39-4	2-0-0 1.15 1.15 YES IRC2021/TPI20 ⁻¹ BOT CHO 1:2x4	CSI TC BC WB Matrix-MSH RD 40-41=-106/246, 38 35-38=0/3319, 32-3 27-30=0/6096, 24-2	DEFL 0.65 Vert(LL) -(0.95 Vert(CT) -(Horz(CT) (Attic -(40=0/3385, 5=0/5160, 30-32=0/629 7=0/4806, 19-24=0/183 19-2092	in (loc) 0.47 30-32 0.76 30-32 0.15 14 0.32 20-37 2) Wind 14, Vasd 10, II; Ex	I/defi L/d >837 240 >513 180 n/a n/a >605 360 : ASCE 7-16; =103mph; TC p B; Enclosee	PLATES GRIP MT20 244/190 Weight: 454 lb FT = 20% Vult=130mph (3-second gust) CDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. d; MWFRS (envelope) exterior zone DE L0 2 10 5 6 6 4 Letorior (10 5 6 15 10 10 10 5 6 10 10 10 10 10 10 10 10 10 10 10 10 10
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD	(psf) 20.0 20.0 10.0 0.0* 10.0 2x6 SP No.2 2x4 SP 2400F 2.0E SP No.1, 17-22,25-3	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code *Except* 25-20,39-4 7:2x4 SP No.2	2-0-0 1.15 1.15 YES IRC2021/TPI20 ⁻¹ BOT CHO 1:2x4	CSI TC BC WB Matrix-MSH 14 Matrix-MSH RD 40-41=-106/246, 38 35-38=0/3319, 32-3 27-30=0/6096, 24-2 18-19=-2285/0, 16-1 5-16=-16/4051	DEFL 0.65 Vert(LL) -0 0.95 Vert(CT) -0 Horz(CT) (C Attic -0 -40=0/3385, 5=0/5160, 30-32=0/629 7=0/4806, 19-24=0/183 88=-2093/0, 15=-74/4051 15=-74/4051	in (loc) 0.47 30-32 0.76 30-32 0.15 14 0.32 20-37 2) Wind 14, Vasd 10, II; Ex and 0 0, II; Ex	I/defl L/d >837 240 >513 180 n/a n/a >605 360 : ASCE 7-16; =103mph; TC p B; Enclosee C-C Exterior(2- 3-13 Exterior	PLATES GRIP MT20 244/190 Weight: 454 lb FT = 20% Vult=130mph (3-second gust) 2DL=6.0psf; h=25ft; Cat. ct, WWFRS (envelope) exterior zone 22E) 0-2-12 to 5-6-15, Interior (1) 5-6-15 yr (2R) 12-3-13 to 23-32.
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS	(psf) 20.0 20.0 10.0 0.0* 10.0 2x6 SP No.2 2x4 SP 2400F 2.0E 5 SP No.1, 17-22,25-3 2x4 SP No.3 *Excep	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code *Except* 25-20,39-4 7:2x4 SP No.2 t* 41-1.4-38.11-18:2	2-0-0 1.15 1.15 YES IRC2021/TPI20 ⁻ BOT CHO 1:2x4 x6	CSI TC BC WB 14 Matrix-MSH RD 40-41=-106/246, 38 35-38=0/3319, 32-3 27-30=0/6096, 24-2 18-19=-2285/0, 16-' 15-16=-16/4051, 14 36-37=-1129/0, 34-'	DEFL 0.65 Vert(LL) -0 0.93 Vert(CT) -0 Horz(CT) (C Attic -0 -40=0/3385, 5=0/5160, 30-32=0/629 7=0/4806, 19-24=0/183 8=-2093/0, -15=-74/4051, 36=-1129/0, 6=-1129/0,	in (loc) 0.47 30-32 0.76 30-32 0.15 14 0.32 20-37 2) Wind 14, Vasd 10, II; Ex and 0 to 12 23-3-	I/defl L/d >837 240 >513 180 n/a n/a >605 360 : ASCE 7-16; =103mph; TC p B; Enclosec C-C Exterior(2 -C Exterior(2 3-13, Exterio 2 to 25-10-14	PLATES GRIP MT20 244/190 Weight: 454 lb FT = 20% Vult=130mph (3-second gust) CDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. d; MWFRS (envelope) exterior zone 2E) 0-2-12 to 5-6-15, Interior (1) 5-6-15 pr(2R) 12-3-13 to 23-3-2, Interior (1) 4, Exterior(2R) 25-10-14 to 36-10-3,
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS	(psf) 20.0 20.0 10.0 0.0* 10.0 2x6 SP No.2 2x4 SP 2400F 2.0E - SP No.1, 17-22,25-3 2x4 SP No.3 *Excep SP No.2,	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code *Except* 25-20,39-4 t7:2x4 SP No.2 t* 41-1,4-38,11-18:2	2-0-0 1.15 1.15 YES IRC2021/TPI20' BOT CHO 1:2x4 x6	CSI TC BC WB Matrix-MSH RD 40-41=-106/246, 38 35-38=0/3319, 32-3 27-30=0/6096, 24-2 18-19=-2285/0, 16-' 15-16=-16/4051, 14 36-37=-1129/0, 34-' 33-34=-3124/0, 31-'	DEFL 0.65 Vert(LL) -C 0.95 Vert(CT) -C Horz(CT) (C Attic -C -40=0/3385, 5=0/5160, 30-32=0/629 7=0/4806, 19-24=0/183 8=-2093/0, -15=-74/4051, 6=-1129/0, 33=-3124/0,	in (loc) 0.47 30-32 0.76 30-32 0.15 14 0.32 20-37 2) Wind 04, Vasd 00, II; Ex and 0 to 12 23-3- Interi	I/defi L/d >837 240 >513 180 n/a n/a >605 360 : ASCE 7-16; =103mph; TC p B; Enclosec -C Exterior(2 -3-13, Exterio or (1) 36-10-3	PLATES GRIP MT20 244/190 Weight: 454 lb FT = 20% Wult=130mph (3-second gust) DL=6.0psf; h=25ft; Cat. DL=6.0psf; BCDL=6.0psf; h=25ft; Cat. d; MWFRS (envelope) exterior zone 2E) 0-2-12 to 5-6-15, Interior (1) 5-6-15 or(2R) 12-3-13 to 23-3-2, Interior (1) 4, Exterior(2R) 25-10-14 to 36-10-3, sto 48-1-13, Exterior(2E) 48-1-13 to
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS	(psf) 20.0 20.0 10.0 0.0* 10.0 2x6 SP No.2 2x4 SP 2400F 2.0E SP No.1, 17-22,25-3 2x4 SP No.3 *Excep SP No.2, 40-1,44-11,19-20,35	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code *Except* 25-20,39-4 i7:2x4 SP No.2 t* 41-1,4-38,11-18:2 -37,44-4,35-34,34-33	2-0-0 1.15 1.15 YES IRC2021/TPI20 ⁻ BOT CHO 1:2x4 x6 2,32-	CSI TC BC WB Matrix-MSH 14 Matrix-MSH RD 40-41=-106/246, 38 35-38=0/3319, 32-3 27-30=0/6096, 24-2 18-19=-2285/0, 16-1 15-16=-16/4051, 14 36-37=-1129/0, 34-2 33-34=-3124/0, 31-2 29-31=-3185/0, 28-2	DEFL 0.65 Vert(LL) -0 0.95 Vert(CT) -0 Horz(CT) (0 Horz(CT) (0 40=0/3385, -5=0/5160, 30-32=0/629 -7=0/4806, 19-24=0/183 8=-2093/0, -15=-74/4051, 36=-1129/0, 33=-3124/0, 29=-3185/0, -15=-74/4051 -5=-3185/0, -15=-31	in (loc) 0.47 30-32 0.76 30-32 0.15 14 0.32 20-37 2) Wind 04, Vasd 00, II; Ex and 0 to 12 23-3- Interi 53-6-	I/defi L/d >837 240 >513 180 n/a n/a >605 360 : ASCE 7-16; =103mpt; TC p B; Enclosed C-C Exterior(2 -3-13, Exterior 2 to 25-10-14 or (1) 36-10-3 0 zone;C-C fo	PLATES GRIP MT20 244/190 Weight: 454 lb FT = 20% Wult=130mph (3-second gust) DDL=6.0psf; h=25ft; Cat. CDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. GRIP d; MWFRS (envelope) exterior zone 2E) 0-2-12 to 5-6-15, Interior (1) 5-6-15 pr(2R) 12-3-13 to 23-3-2, Interior (1) 4, Exterior(2R) 25-10-14 to 36-10-3, 3 sto 48-1-13, Exterior(2E) 48-1-13 to or members and forces & MWFRS for
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS	(psf) 20.0 20.0 10.0 0.0* 10.0 2x6 SP No.2 2x4 SP 2400F 2.0E 5 SP No.1, 17-22,25-3 2x4 SP No.3 *Excep SP No.2, 40-1,44-11,19-20,35 31,31-30,27-26,26-2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code *Except* 25-20,39-4 7:2x4 SP No.2 t* 41-1,4-38,11-18:2 -37,44-4,35-34,34-3: 4,24-23,23-19:2x4 S	2-0-0 1.15 1.15 YES IRC2021/TPI20' BOT CHO 1:2x4 x6 2,32- SP	CSI TC BC WB Matrix-MSH RD 40-41=-106/246, 38 35-38=0/3319, 32-3 27-30=0/6096, 24-2 18-19=-2285/0, 16- 15-16=-16/4051, 14 36-37=-1129/0, 34-3 33-34=-3124/0, 31-5 29-31=-3185/0, 28-2 26-28=-3185/0, 28-200000000000000000000000000000000000	DEFL 0.65 Vert(LL) -C 0.95 Vert(CT) -C Horz(CT) -C -A -40=0/3385, -5=0/5160, 30-32=0/629 -2 7=0/4806, 19-24=0/183 8=-2093/0, -15=-74/4051, 36=-1129/0, 33=-3124/0, 29=-3185/0, 29=-3185/0, 26=-708/939, -0/264,	in (loc) 0.47 30-32 0.76 30-32 0.15 14 0.32 20-37 2) Wind 4, Vasd 4, Vasd 40, II; Ex and (to 12 23-3- Interi 53-6- react	I/defi L/d >837 240 >513 180 n/a n/a >605 360 : ASCE 7-16; =103mph; TC p B; Enclosed C-C Exterior(2 -3-13, Exterior 2 to 25-10-14 or (1) 36-10-3 0 zone;C-C fc ions shown; L	PLATES GRIP MT20 244/190 Weight: 454 lb FT = 20% Vult=130mph (3-second gust) DL=6.0psf; h=25ft; Cat. CDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. d; MWFRS (envelope) exterior zone 2E) 0-2-12 to 5-6-15, Interior (1) 5-6-15 or (2R) 12-3-13 to 23-3-2, Interior (1) 4, Exterior(2R) 25-10-14 to 36-10-3, 3 to 48-1-13, Exterior(2E) 48-1-13 to or members and forces & MWFRS for _umber DOL=1.60 plate grip
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS	(psf) 20.0 20.0 10.0 0.0* 10.0 2x6 SP No.2 2x4 SP 2400F 2.0E ' SP No.1, 17-22,25-3 2x4 SP No.3 *Excep SP No.2, 40-1,44-11,19-20,35 31,31-30,27-26,26-2 No.2, 20-16:2x4 SP	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code *Except* 25-20,39-4 17:2x4 SP No.2 t* 41-1,4-38,11-18:2 -37,44-4,35-34,34-3: 4,24-23,23-19:2x4 S No.1	2-0-0 1.15 1.15 YES IRC2021/TPI20' BOT CHO 1:2x4 x6 2,32- SP WEBS	CSI TC BC WB Matrix-MSH 40-41=-106/246, 38 35-38=0/3319, 32-3 27-30=0/6096, 24-2 18-19=-2285/0, 16- 15-16=-16/4051, 14 36-37=-1129/0, 34-3 3-34=-3124/0, 31-3 29-31=-3185/0, 28-2 26-28=-3185/0, 23-2 21-23=0/3264, 20-2 2-40705/77, 12-44	DEFL 0.65 Vert(LL) -C 0.95 Vert(CT) -C Horz(CT) C Horz(CT) C -40=0/3385, - - - 5=0/5160, 30-32=0/629 7=0/4806, 19-24=0/183 8=-2093/0, - 15=-74/4051, 36=-1129/0, 33=-3124/0, 29=-3185/0, 29=-3185/0, 29=-3185/0, 29=-708/939, 1=0/3264 >==-264/09 -	in (loc) 0.47 30-32 0.76 30-32 0.15 14 0.32 20-37 2) Wind 14, Vasd 10, II; Ex and C to 12 23-3- Interi 53-6- react DOL= 3) TCL	I/defi L/d >837 240 >513 180 n/a n/a >605 360 : ASCE 7-16; =103mph; TC p B; Enclosec C-C Exterior(2 -3-13, Exterior 2 to 25-10-14 0 zone;C-C fr ions shown; L =1.60 : ASCE 7-16;	PLATES GRIP MT20 244/190 Weight: 454 lb FT = 20% Wult=130mph (3-second gust) 2DL=6.0psf; h=25ft; Cat. 2DL=6.0psf; BCDL=6.0psf; h=25ft; Cat. 4; MWFRS (envelope) exterior zone 2E) 0-2-12 to 5-6-15, Interior (1) 5-6-15 5r(2R) 12-3-13 to 23-3-2, Interior (1) 4, Exterior(2R) 25-10-14 to 36-10-3, 3 to 48-1-13, Exterior(2E) 48-1-13 to or members and forces & MWFRS for _umber DOL=1.60 plate grip
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS WEDGE	(psf) 20.0 20.0 10.0 0.0* 10.0 2x6 SP No.2 2x4 SP 2400F 2.0E ' SP No.1, 17-22,25-3 2x4 SP No.3 *Excep SP No.2, 40-1,44-11,19-20,35 31,31-30,27-26,26-2 No.2, 20-16:2x4 SP Right: 2x4 SP No.3	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code *Except* 25-20,39-4 7:2x4 SP No.2 t* 41-1,4-38,11-18:2 -37,44-4,35-34,34-3: 4,24-23,23-19:2x4 S No.1	2-0-0 1.15 1.15 YES IRC2021/TPI20 ⁻ BOT CHO 1:2x4 x6 2,32- SP WEBS	CSI TC BC WB Matrix-MSH RD 40-41=-106/246, 38 35-38=0/3319, 32-3 27-30=0/6096, 24-2 18-19=-2285/0, 16- 15-16=-16/4051, 14 36-37=-1129/0, 34-3 3-34=-3124/0, 31- 29-31=-3185/0, 28-2 26-28=-3185/0, 23-2 21-23=0/3264, 20-2 2-40=-705/77, 12-16 13-16=-579/209, 13	DEFL Vert(LL) -C Vert(CT) -C Horz(CT) C Horz(CT) C Horz(CT) C Attic -C -40=0/3385, 5=0/5160, 30-32=0/629 7=0/4806, 19-24=0/183 18=-2093/0, -15=-74/4051, 36=-1129/0, 33=-3124/0, 29=-3185/0, 26=-708/939, 1=0/3264 5=-264/99, -15=0/247.	in (loc) 0.47 30-32 0.76 30-32 0.15 14 0.32 20-37 2) Wind 14, Vasd 10, II; Ex and C to 12 23-33 Interi 53-6- react DOL: 3) TCL: Plate	I/defi L/d >837 240 >513 180 n/a n/a >605 360 : ASCE 7-16; =103mph; TC p B; Enclosec C-C Exterior(2 -3-13, Exterior 2 to 25-10-14 0 zone;C-C fi ions shown; L =1.60 :: ASCE 7-16; DOL=115): :	PLATES GRIP MT20 244/190 Weight: 454 lb FT = 20% Wult=130mph (3-second gust) 200 CDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. 4; MWFRS (envelope) exterior zone 220 0-2-12 to 5-6-15, Interior (1) 5-6-15 5r(2R) 12-3-13 to 23-3-2, Interior (1) 5-6-15 4, Exterior(2R) 25-10-14 to 36-10-3, 3 to 48-1-13, Exterior(2E) 48-1-13 to or members and forces & MWFRS for -umber DOL=1.60 plate grip ; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD	(psf) 20.0 20.0 10.0 0.0* 10.0 2x6 SP No.2 2x4 SP 2400F 2.0E ' SP No.1, 17-22,25-3 2x4 SP No.3 *Excep SP No.2, 40-1,44-11,19-20,35 31,31-30,27-26,26-2 No.2, 20-16:2x4 SP Right: 2x4 SP No.3	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code *Except* 25-20,39-4 7:2x4 SP No.2 t* 41-1,4-38,11-18:2 -37,44-4,35-34,34-3; 4,24-23,23-19:2x4 S No.1 atbing directly applie	2-0-0 1.15 1.15 YES IRC2021/TPI207 BOT CHO 1:2x4 x6 2,32- SP WEBS webs	CSI TC BC WB Matrix-MSH RD 40-41=-106/246, 38 35-38=0/3319, 32-3 27-30=0/6096, 24-2 18-19=-2285/0, 16-1 15-16=-16/4051, 14 36-37=-1129/0, 34-2 33-34=-3124/0, 31-2 26-28=-3185/0, 28-2 26-28=-3185/0, 23-2 21-23=0/3264, 20-2 2-40=-705/77, 12-16 13-16=-579/209, 13 37-38=-45/325, 4-33	DEFL Vert(LL) -C Vert(CT) -C Horz(CT) C Horz(CT) C Horz(CT) C Attic -C -40=0/3385, 5=0/5160, 30-32=0/629 7=0/4806, 19-24=0/183 18=-2093/0, -15=-74/4051, 36=-1129/0, 33=-3124/0, 29=-3185/0, 26=-708/939, 1=0/3264 5=-264/99, -15=0/247, 7=0/1182,	in (loc) 0.47 30-32 0.76 30-32 0.15 14 0.32 20-37 2) Wind 14, Vasd 14, Vasd 14, Vasd 10, II; Ex and C to 12 23-33 Interi 53-6- react DOL: 3) TCLL Plate DOL:	I/defi L/d >837 240 >513 180 n/a n/a >605 360 : ASCE 7-16; =103mph; TC p B; Enclosec C-C Exterior(2 -3-13, Exterio 2 to 25-10-14 0 zone;C-C fi ions shown; L =1.60 :: ASCE 7-16; DOL=1.15); =1.15); I=1.0	PLATES GRIP MT20 244/190 Weight: 454 lb FT = 20% Wult=130mph (3-second gust) DDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. d; MWFRS (envelope) exterior zone 22) 0-2-12 to 5-6-15, Interior (1) 5-6-15 yr(2R) 12-3-13 to 23-3-2, Interior (1) d, Exterior(2R) 25-10-14 to 36-10-3, 3 to 48-1-13, Exterior(2E) 48-1-13 to or members and forces & MWFRS for -umber DOL=1.60 plate grip ; Pr=20.0 psf (roof LL: Lum DOL=1.15 Pf=20.0 psf (Lum DOL=1.15 Plate c; Rough Cat B; Fully Exp.; Ce=0.9;
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD	(psf) 20.0 20.0 10.0 0.0* 10.0 2x6 SP No.2 2x4 SP 2400F 2.0E ' SP No.1, 17-22,25-3 2x4 SP No.3 *Excep SP No.2, 40-1,44-11,19-20,35 31,31-30,27-26,26-2 No.2, 20-16:2x4 SP Right: 2x4 SP No.3 Structural wood shea 2-10-2 oc purlins. et	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code *Except* 25-20,39-4 7:2x4 SP No.2 t* 41-1,4-38,11-18:2 -37,44-4,35-34,34-3; 4,24-23,23-19:2x4 S No.1 athing directly applie xcept end verticals. #	2-0-0 1.15 1.15 YES IRC2021/TPI20 BOT CHO 1:2x4 x6 2,32- SP WEBS ed or and	CSI TC BC WB Matrix-MSH RD 40-41=-106/246, 38 35-38=0/3319, 32-3 27-30=0/6096, 24-2 18-19=-2285/0, 16-1 15-16=-16/4051, 14 36-37=-1129/0, 34-2 33-34=-3124/0, 31-2 29-31=-3185/0, 28-2 26-28=-3185/0, 23-2 21-23=0/3264, 20-2 2-40=-705/77, 12-16 13-16=-579/209, 13 37-38=-45/325, 4-33 18-20=-1401/105, 1	DEFL 0.65 Vert(LL) -C 0.95 Vert(CT) -C Horz(CT) C Horz(CT) C -40=0/3385, - - - 55=0/5160, 30-32=0/629 7=0/4806, 19-24=0/183 - - 7=0/4806, 19-24=0/183 18=-2093/0, - - - -15=-74/4051, -	in (loc) 0.47 30-32 0.76 30-32 0.15 14 0.32 20-37 2) Wind 14, Vasd 10, II; Ex and C to 12 23-3- Interi 53-6- react DOL: 3) TCLL Plate DOL: Cs=1	I/defi L/d >837 240 >513 180 n/a n/a >605 360 : ASCE 7-16; =103mph; TC p B; Enclosec C-C Exterior(2 -3-13, Exterio 2 to 25-10-14 0 zone; C-C fi ions shown; L =1.60 :: ASCE 7-16; DOL=1.15); I=1.15); Is=1.0	PLATES GRIP MT20 244/190 Weight: 454 lb FT = 20% Wult=130mph (3-second gust) CDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. d; MWFRS (envelope) exterior zone 220 - 212 to 5-6-15, Interior (1) 5-6-15 yc(2R) 12-3-13 to 23-3-2, Interior (1) 4, Exterior(2R) 25-10-14 to 36-10-3, 3 to 48-1-13, Exterior(2E) 48-1-13 to or members and forces & MWFRS for -umber DOL=1.60 plate grip ; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate ; Rough Cat B; Fully Exp.; Ce=0.9;
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD	(psf) 20.0 20.0 10.0 0.0* 10.0 2x6 SP No.2 2x4 SP 2400F 2.0E 5 SP No.1, 17-22,25-3 2x4 SP No.3 *Excep SP No.2, 40-1,44-11,19-20,35 31,31-30,27-26,26-2 No.2, 20-16:2x4 SP Right: 2x4 SP No.3 Structural wood shea 2-10-2 oc purlins, e: 2-0-0 oc purlins, (3-9	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code *Except* 25-20,39-4 7:2x4 SP No.2 t* 41-1,4-38,11-18:2 -37,44-4,35-34,34-3; 4,24-23,23-19:2x4 S No.1 athing directly applie xcept end verticals, a -9 max.): 5-10.	2-0-0 1.15 1.15 YES IRC2021/TPI20 BOT CHO 1:2x4 x6 2,32- SP WEBS ed or and	CSI TC BC WB Matrix-MSH Ad-41=-106/246, 38 35-38=0/3319, 32-3 27-30=0/6096, 24-2 18-19=-2285/0, 16- 15-16=-16/4051, 14 36-37=-1129/0, 34-5 26-28=-3185/0, 23-2 26-28=-3185/0, 23-2 21-23=0/3264, 20-2 2-40=-705/77, 12-16 13-16=-579/209, 13 37-38=-45/325, 4-3 18-20=-1401/105, 1 1-40=0/3451, 4-43=	DEFL Vert(LL) -C Vert(CT) -C Horz(CT) -C Horz(CT) (Attic -C -40=0/3385, 5=0/5160, 30-32=0/629 7=0/4806, 19-24=0/183 18=-2093/0, -15=-74/4051, 38=-3124/0, 9=-3185/0, 26=-708/939, 1=0/3264 5=-264/99, -15=0/247, 7=0/1182, 1-20=-47/1134, -2073/58, 1 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =	in (loc) 0.47 30-32 0.76 30-32 0.15 14 0.32 20-37 2) Wind 14, Vasd 10, II; Ex and C to 12 23-3- Interi 53-6- react DOL: 3) TCLL Plate DOL: Cs=1 4) Unba	I/defi L/d >837 240 >513 180 n/a n/a >605 360 : ASCE 7-16; =103mph; TC p B; Enclosec C-C Exterior(2 -3-13, Exterio 2 to 25-10-14 or (1) 36-10-3 0 zone; C-C fo ions show; L =1.60 :: ASCE 7-16; DOL=1.15); I =1.15); Is=1.0 .10; Ct=1.10 lanced snow	PLATES GRIP MT20 244/190 Weight: 454 lb FT = 20% Wult=130mph (3-second gust) CDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. d; MWFRS (envelope) exterior zone 2E) 0-2-12 to 5-6-15, Interior (1) 5-6-15 or (2R) 12-3-13 to 23-3-2, Interior (1) d; Exterior(2R) 25-10-14 to 36-10-3, 3 to 48-1-13, Exterior(2E) 48-1-13 to or members and forces & MWFRS for -umber DOL=1.60 plate grip ; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate b; Rough Cat B; Fully Exp.; Ce=0.9; loads have been considered for this
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD	(psf) 20.0 20.0 10.0 0.0* 10.0 2x6 SP No.2 2x4 SP 2400F 2.0E 1 SP No.1, 17-22,25-3 2x4 SP No.3 *Excep SP No.2, 40-1,44-11,19-20,35 31,31-30,27-26,26-2 No.2, 20-16:2x4 SP Right: 2x4 SP No.3 Structural wood shea 2-10-2 oc purlins, e: 2-00 oc purlins, e: 2-00 oc purlins, e:	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code *Except* 25-20,39-4 7:2x4 SP No.2 t* 41-1,4-38,11-18:2 -37,44-4,35-34,34-3; -4,24-23,23-19:2x4 S No.1 athing directly applie x-ept end verticals, a -9 max.): 5-10. applied or 2-6-0 oc	2-0-0 1.15 1.15 YES IRC2021/TPI20 BOT CHO 1:2x4 x6 2,32- SP WEBS ed or and	CSI TC BC WB Matrix-MSH 40-41=-106/246, 38 35-38=0/3319, 32-3 27-30=0/6096, 24-2 18-19=-2285/0, 16- 15-16=-16/4051, 14 36-37=-1129/0, 34-5 33-34=-3124/0, 31-5 29-31=-3185/0, 28-5 26-28=-3185/0, 23-5 21-23=0/3264, 20-2 2-40=-705/77, 12-16 13-16=-579/209, 13 37-38=-45/325, 4-33 18-20=-1401/105, 1 1-40=0/3451, 4-43= 42-43=-1999/58, 42-20	DEFL Vert(LL) - 0 Vert(CT) - 0 No	in (loc) 0.47 30-32 0.76 30-32 0.15 14 0.32 20-37 2) Wind 14, Vasd 10, II; Ex and C to 12 23-3- Interi 53-6- react DOL: 3) TCLL Plate DOL: Cs=1 4) Unba desig (1) Particular (1) Particu	I/defi L/d >837 240 >513 180 n/a n/a >605 360 : ASCE 7-16; =103mph; TC p B; Enclosec C-C Exterior(2 -3-13, Exterior 2 to 25-10-14 or (1) 36-10-3 0 zone; C-C fit ions shown; L =1.60 :: ASCE 7-16; DOL=1.15); Is=1.0 .00; Ct=1.10 lanced snow in.	PLATES GRIP MT20 244/190 Weight: 454 lb FT = 20% Wult=130mph (3-second gust) CDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. d; MWFRS (envelope) exterior zone 2E) 0-2-12 to 5-6-15, Interior (1) 5-6-15 5rr(2R) 12-3-13 to 23-3-2, Interior (1) 4, Exterior(2R) 25-10-14 to 36-10-3, 3 to 48-1-13, Exterior(2E) 48-1-13 to or members and forces & MWFRS for _umber DOL=1.60 plate grip ; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate D; Rough Cat B; Fully Exp.; Ce=0.9; 10ads have been considered for this
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD	(psf) 20.0 20.0 10.0 0.0* 10.0 20.0 10.0 0.0* 10.0 2x6 SP No.2 2x4 SP 2400F 2.0E SP No.1, 17-22,25-3 2x4 SP No.3 *Excep SP No.2, 40-1,44-11,19-20,35 31,31-30,27-26,26-2 No.2, 20-16:2x4 SP No.2, 20-16:2x4 SP No.3 Structural wood shea 2-10-2 oc purlins (3-9 Rigid ceiling directly bracing.	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code *Except* 25-20,39-4 '7:2x4 SP No.2 t* 41-1,4-38,11-18:2 -37,44-4,35-34,34-3: 4,24-23,23-19:2x4 S No.1 athing directly applie xcept end verticals, a -9 max.): 5-10. applied or 2-6-0 oc	2-0-0 1.15 1.15 YES IRC2021/TPI20 ⁻ BOT CHO 1:2x4 x6 2,32- SP WEBS ed or and	CSI TC BC WB Matrix-MSH RD 40-41=-106/246, 38 35-38=0/3319, 32-3 27-30=0/6096, 24-2 18-19=-2285/0, 16- 15-16=-16/4051, 14 36-37=-1129/0, 34- 33-34=-3124/0, 31- 29-31=-3185/0, 28- 26-28=-3185/0, 28- 21-23=0/3264, 20-2 2-40=-705/77, 12-16 13-16=-579/209, 13 37-38=-45/325, 4-33 18-20=-1401/105, 1 1-40=0/3451, 4-43= 42-43=-1999/58, 42 45-46=-1785/1228, 11-47=-2546/0, 6-4/	DEFL 0.65 Vert(LL) - 0 Vert(CT) - 0 Horz(CT) (Attic - 0 -40=0/3385, 5=0/5160, 30-32=0/629 7=0/4806, 19-24=0/183 8=-2093/0, -15=-74/4051, 36=-1129/0, 33=-3124/0, 29=-3185/0, 26=-708/939, 1=0/3264 5=-264/99, -15=0/247, 7=0/1182, 1-20=-47/1134, -2073/58, -45=-1586/1333, 46-47=-2450/0, -2-139/12, 5-43=0/265	in (loc) 0.47 30-32 0.76 30-32 0.15 14 0.32 20-37 2) Wind 04, Vasd 00, II; Ex and 0 to 12 23-3- Interi 53-66 react DOL: 3) TCLL Plate DOL: 3) TCLL Plate DOL: 5) Provi 8 6) All of	//defi L/d >837 240 >513 180 n/a n/a >605 360 : ASCE 7-16; =103mph; TC p B; Enclosed -C Exterior(2 -3-13, Exterior 2 to 25-10-14 or (1) 36-10-3 0 zone; C-C fi ions shown; L 1.60 : ASCE 7-16; DOL=1.15); Is=1.0 .00; Ct=1.10 Janced snow n. de adequate	PLATESGRIPMT20244/190Weight: 454 lbFT = 20%Wult=130mph (3-second gust)DDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.d; MWFRS (envelope) exterior zone2E) 0-2-12 to 5-6-15, Interior (1) 5-6-15or(2R) 12-3-13 to 23-3-2, Interior (1)4, Exterior(2R) 25-10-14 to 36-10-3,3 to 48-1-13, Exterior(2E) 48-1-13 toor members and forces & MWFRS for_umber DOL=1.60 plate grip; Pr=20.0 psf (roof LL: Lum DOL=1.15Pf=20.0 psf (Lum DOL=1.15 Platec; Rough Cat B; Fully Exp.; Ce=0.9;loads have been considered for thisdrainage to prevent water ponding.MT20 unless otherwise indicated
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS	(psf) 20.0 20.0 10.0 0.0* 10.0 2x6 SP No.2 2x4 SP 2400F 2.0E : SP No.1, 17-22,25-3 2x4 SP No.3 *Excep SP No.2, 40-1,44-11,19-20,35 31,31-30,27-26,26-2 No.2, 20-16:2x4 SP Right: 2x4 SP No.3 Structural wood shea 2-10-2 oc purlins, e: 2-0-0 oc purlins (3-9 Rigid ceiling directly bracing. 1 Row at midpt	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code *Except* 25-20,39-4 r7:2x4 SP No.2 t* 41-1,4-38,11-18:2 -37,44-4,35-34,34-3: 4,24-23,23-19:2x4 S No.1 athing directly applie xcept end verticals, a -9 max.): 5-10. applied or 2-6-0 oc 11-46, 12-20, 2-38	2-0-0 1.15 1.15 YES IRC2021/TPI20' BOT CHO 1:2x4 x6 2,32- 3P WEBS ed or and	CSI TC BC WB Matrix-MSH RD 40-41=-106/246, 38 35-38=0/3319, 32-3 27-30=0/6096, 24-2 18-19=-2285/0, 16- 15-16=-16/4051, 14 36-37=-1129/0, 34- 33-34=-3124/0, 31- 29-31=-3185/0, 28- 26-28=-3185/0, 28- 21-23=0/3264, 20-2 2-40=-705/77, 12-16 13-16=-579/209, 13 37-38=-45/325, 4-33 18-20=-1401/105, 1 1-40=0/3451, 4-43= 42-43=-1999/58, 42 45-46=-1785/1228, 11-47=-2546/0, 6-44 7-44=0/62, 8-45=0/2	DEFL 0.65 0.95 Vert(LL) -0 Vert(CT) -0 Horz(CT) (Attic -0 40=0/3385, 5=0/5160, 30-32=0/629 7=0/4806, 19-24=0/183 8=-2093/0, -15=-74/4051, 36=-1129/0, 33=-3124/0, 29=-3185/0, 26=-708/939, 1=0/3264 3=-264/99, -15=0/247, 7=0/1182, 1-20=-47/1134, -2073/58, -45=-1586/1333, 46-47=-2450/0, 2=-139/121, 5-43=0/353 30, 9-46=-171/78	in (loc) 0.47 30-32 0.76 30-32 0.76 30-32 0.15 14 0.32 20-37 2) Wind 04, Vasd 00, II; Ex and 0 4, Vasd 00, II; Ex and 0 to 12 23-3- Interi 53-6- react DOL: Cs=1 4) Unba desig 5) Provi 8, 6) All pl 7) Thie	I/defi L/d >837 240 >513 180 n/a n/a >605 360 : ASCE 7-16; =103mpt; TC p B; Enclosed -C Exterior(2 -3-13, Exterio 0 zone;C-C fc ions shown; L =1.60 : ASCE 7-16; DOL=1.15); Is=1.0 .00; Ct=1.10 .00; Ct=1.10 .1anced snow In. de adequate ates are 2x4 I russ has bee	PLATES GRIP MT20 244/190 Weight: 454 lb FT = 20% Wute130mph (3-second gust) DDL=6.0psf; h=25ft; Cat. DDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. d; MWFRS (envelope) exterior zone 2E) 0-2-12 to 5-6-15, Interior (1) 5-6-15 or(2R) 12-3-13 to 23-3-2, Interior (1) 4, Exterior(2R) 25-10-14 to 36-10-3, as to 48-1-13, Exterior(2E) 48-1-13 to or members and forces & MWFRS for umber DOL=1.60 plate grip ; Pr=20.0 psf (roof LL: Lum DOL=1.15 Pf=20.0 psf (Lum DOL=1.15 Plate ; Rough Cat B; Fully Exp.; Ce=0.9; loads have been considered for this drainage to prevent water ponding. MT20 unless otherwise indicated. m designed for a 10.0 net bottom metrom

BOT CHORD WEBS JOINTS REACTIONS FORCES TOP CHORD	Rigid ceiling directly applied or 2-6-0 oc bracing. 1 Row at midpt 11-46, 12-20, 2-38 1 Brace at Jt(s): 42, 44, 45, 46, 34, 31, 26, 23 (size) 14= Mechanical, 18=0-5-8, 41=0-5-8 Max Horiz 41=-222 (LC 15) Max Grav 14=2292 (LC 47), 18=1790 (LC 39), 41=2957 (LC 37) (lb) - Maximum Compression/Maximum Tension 5-6=-2972/412, 6-7=-2972/412, 7-8=-3601/537, 8-9=-2737/426, 9-10=-2737/426, 10-11=-1773/186, 11-13=-4095/106, 13-14=-4666/103, 1-41=-2958/58, 1-2=-3909/28, 2-4=-4057/44, 4-5=-2133/163	42-43=-1999/38, 42-49=-1580/1333, 45-46=-1785/1228, 46-47=-2450/0, 11-47=-2546/0, 6-42=-139/121, 5-43=0/353, 7-44=0/62, 8-45=0/130, 9-46=-171/78, 10-47=0/447, 19-20=0/2695, 35-37=0/1556, 35-36=-230/0, 19-21=-351/0, 24-25=-319/0, 32-33=-185/0, 27-28=-531/0, 29-30=-3/94, 12-20=-573/324, 2-38=-131/398, 16-20=0/5298, 5-42=-342/1280, 7-42=-875/124, 7-45=-283/0, 10-46=-314/1437, 8-46=-920/118, 34-35=-1298/0, 32-34=0/1056, 31-32=-307/177, 30-31=-355/12, 26-27=0/1522, 24-26=-1401/0, 23-24=0/2101, 19-23=-2162/0 NOTES 1) Unbalanced roof live loads have been considered for this design.	 design. 5) Provide adequate 6) All plates are 2x4 7) This truss has been chord live load not 	drainage to prevent water ponding. MT20 unless otherwise indicated. en designed for a 10.0 psf bottom inconcurrent with any other live loads. H CARO SEAL 036322 MGINEEER H H H H H H H H H H H H H H H H H H H
Continued on WARN Design v a truss s building is always fabricatio	page 2 NING - Verify design parameters and READ NOTES ON THIS AI valid for use only with MiTek® connectors. This design is base system. Before use, the building designer must verify the appli- design. Bracing indicated is to prevent buckling of individual s required for stability and to prevent collapse with possible pe on, storage, delivery, rection and bracing of trusses and trus	ND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. do only upon parameters shown, and is for an individual building component, not cability of design parameters and properly incorporate this design into the overall truss web and/or chord members only. Additional temporary and permanent bracin rssonal injury and property damage. For general guidance regarding the systems, see ANSUTPTI Quality Criteria and DSB-22 available from Truss Pla	g te Institute (www.tpinst.org)	TRENCO AMiTek Affiliate

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and RCSI Building Component Safety Information, available from the Structural Building Component Association (www.shearonponent Safety Information, available from the Structural Building Component Association (www.shearonponent Safety Information, available from the Structural Building Component Association (www.shearonponent Safety Information, available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	A08	Attic	6	1	Job Reference (optional)	172260064

- * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Ceiling dead load (5.0 psf) on member(s). 4-43, 42-43, 9) 42-44, 44-45, 45-46, 46-47, 11-47; Wall dead load (5.0psf) on member(s).4-37, 11-20
- 10) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 36-37, 34-36, 33-34, 31-33, 29-31, 28-29, 26-28, 25-26, 23-25, 21-23, 20-21
- 11) Refer to girder(s) for truss to truss connections.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 13) Attic room checked for L/360 deflection. LOAD CASE(S) Standard

Run; 8,73 S Feb 19 2025 Print; 8,730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 07:55:08 ID:1d5INYb_SnpjqifH0e1reGzRBHO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job		Truss		Truss	Туре		Qt	/	Ply	1015 Serenity-Roof-E	326 A CP GRH	
25050066		A09		Attic	Supported Ga	able	1		1	Job Reference (option	al)	172260065
Carter Compone	ents (Sanford, NC	C), Sanfor	d, NC - 27332,			Run: 8.73 E ID:8kdnaNVfr	Nov 16 2023 Xy7X5iJovJ2	Print: 8.3 6tzRBB2	730 E Nov 10 2-DRPD10SI	6 2023 MiTek Industries, In HiN6ckAk7iekCPcVRS52N	c. Wed Mar 26 15:3 sSuZrqz77szXBKp	1:08 Page: 1
	8-4-	-0	16-2-4	1	7-8-020-7-5	23-3-225-10-14	28-6-11 3	32 1-6-0	-10-7	46-3-13	I	53-6-0
	8-4-	-0	7-10-4	1	-5-122-11-5 6x8=	2-7-13 2-7-13	2-7-13 2	-11-5 1	-4-7 6x8≈	13-5-6	Ĩ	7-2-3
				4	¹ x8 ≠	4x8= 4	x5= 4 15	6x	8= 6			
T			4×6 ~	10					17	8		
			6 ¹² 8		69 7 ⁻	1 72 7	4 73	70		19 4x6≈		
		70	5 80 5							21822 8	22	
11-8-(3	78 4 3		N N							23	
3	Bx5 2		×							×		826
0-01					. 🖂	X		ব				27 1 29 00
3	_{Вх5 II} 67 66	6 65	64 63 62 6 3	x6= 5	9 516 55 5 6 5x8 II 3x	3 52 50 49 (8= 3x5= 3x	47 46 5= 3x8=	443 42 3x8	49 38 =	37 36 35 34 3x6=	33 32 31	30 29 4x5=
				1	3x8= 7-9-12 3x5=	3x5=	3x5 = 29	3x5= 310 <u>-</u> 0	5x8 ။ 32-9-4			
1	8-4-	-0	13-11-0	16- 16-2-4	-5-0 20-7-4 19-2-8 22	4 23-4-12 26 2-0-0 25-6-12	-11-8 29-9 28-4-4 3	-0 32- 31-1-12	-6-8	-6-8 46-3	13	53-6-0
Scale = 1:90.9	8-4-	-0	5-7-0	2-3-4	1-4-12 1- 2-12 1-4-12 1-4-12	-4-12 2-2-0 2 1-4-12 1-4	1-4- 4-12 0- <u>1-4-12</u>	12 1-4 -1-0 (1-3-12	1-12 4-3 0-2-12	9-4 8-9	.Э	7-2-3
Plate Offsets ((X, Y): [7:0-2-6	6,Edge],	[11:0-6-0,0-3-0], [16:0	0-6-0,0-	3-0], [40:Edge	,0-2-4], [46:0-3-0	,0-3-0], [58	:Edge,0)-2-4], [72:(0-3-0,0-2-0]		
Loading TCLL (roof)		(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		TC	0.44	DEFL Vert(L	_L) -0.	in (loc) l/defl l 01 10 >999 2	/d PLATES 40 MT20	GRIP 244/190
Snow (Pf) TCDL		20.0 10.0	Lumber DOL Rep Stress Incr	1.15 YES		BC WB	0.11 0.65	Vert(C Horz(CT) -0. CT) 0.	01 10 >999 1 02 28 n/a r	30 /a	
BCLL BCDL		0.0* 10.0	Code	IRC20	21/TPI2014	Matrix-MSH					Weight: 504	lb FT = 20%
	2x6 SP No 2	,		٦	OP CHORD	5-80=-100/260, 7-8=-119/313_8	6-80=-94/2 3-9=-135/35	67, 6-7	′=-120/303)=-115/375	, 5) Unbalanced si	ow loads have b	een considered for this
BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3	? } *Excen	t* 10-59 17-39 [.] 2x6 SF	5		10-11=-903/328 12-13=-2147/59	3, 11-12=-2 93, 13-81=-2	147/593 2804/76	3, 64,	 6) Provide adequ 7) All plates are 2 	ate drainage to p x4 MT20 unless	revent water ponding. otherwise indicated.
OTHERS	No.2, 72-17, 2x4 SP No.3	72-10:2)	x4 SP No.2			14-81=-2804/76 15-16=-2132/59	64, 14-15=- 93, 16-17=-	2132/59 894/327	93, 7,	8) Gable studs sp9) This truss has	aced at 2-0-0 oc. been designed fo	or a 10.0 psf bottom
BRACING TOP CHORD	Structural w	ood she	athing directly applied	or		17-18=-121/375 19-20=-137/322	5, 18-19=-1 2, 20-21=-1	43/366, 05/275,		chord live load 10) * This truss ha	nonconcurrent w been designed	ith any other live loads. for a live load of 20.0psf
	6-0-0 oc pur 2-0-0 oc pur	lins, exe lins (4-1	cept end verticals, and -8 max.): 11-16.	, k	VEBS	21-82=-107/270 58-59=-1090/31), 22-82=-1: 1, 10-58=-1	21/265 096/109	9,	on the bottom 3-06-00 tall by	chord in all areas 2-00-00 wide will	where a rectangle fit between the bottom
BOT CHORD	Rigid ceiling bracing, Ex	directly cept:	applied or 10-0-0 oc			39-40=-1083/62 10-69=-39/644,	2, 17-40=-11 69-71=-37	/638, /638,	I, 25	chord and any 11) Ceiling dead lo	other members. ad (5.0 psf) on m	ember(s). 10-69, 69-71,
WEBS	6-0-0 oc bra 1 Row at mi	cing: 48 dpt	-51. 10-58, 17-40, 18-38,			73-74=-447/277	75, 70-73=- 12-71=-25	42/627, 6/67.		(5.0psf) on me	mber(s).10-58, 17	7-40) and additional bottom
JOINTS	1 Brace at J	t(s): 71,	19-37, 9-60, 8-62			11-71=-325/155 14-73=-715/182	58, 13-71=-0 2, 16-73=-3	654/189 27/1553	9, 3	chord dead loa 55-57, 54-55.	d (5.0 psf) applie	d only to room. 57-58, 50, 47-49, 46-47, 44-46.
REACTIONS	47, 44	3-6-0		r 1	NOTES	d roof live loads I	have been o	conside	red for	41-44, 40-41 13) Provide mecha	nical connection	(by others) of truss to
(lb) -	Max Horiz 68	3-0-0. 3=-221 (Il uplift 1	LC 15)	(c) 2	this design. Wind: ASC	E 7-16; Vult=130)mph (3-sec	cond qu	ist)	bearing plate o (s) 68, 28, 64,	apable of withsta 31, 30, 29, 59, 39	nding 100 lb uplift at joint 0, 37, 35, 34, 33, 32, 62,
	28 30	3, 29, 30 3, 59, 62	0, 31, 32, 33, 34, 35, 3 63, 64, 65, 66, 67, 6	5) 7, 8	Vasd=103n II; Exp B; E	nph; TCDL=6.0p nclosed; MWFR	sf; BCDL=6 S (envelope	.0psf; h e) exteri	n=25ft; Cat ior zone	63, 65, 66, 67,	28 except (jt=lb)	38≠132, 60=127.
	75	5 except)=-128 (38=-133 (LC 40), LC 40)	0,	and C-C Co 5-5-15 to 12	orner(3E) 0-1-12 2-3-13, Corner(3	to 5-5-15, I R) 12-3-13	Exterior to 23-3	(2N) -2,		ORIEES	Sicera
	Max Grav Al	Il reactio) 28, 29,	ns 250 (lb) or less at , 30, 31, 32, 33, 34, 3	oint 5,	Exterior(2N 36-10-3, Ex	l) 23-3-2 to 25-10 (terior(2N) 36-10)-14, Corne -3 to 48-1-1	r(3R) 2 3, Corr	5-10-14 to her(3E)	Se S	SINT (hill
	37 68	7, 38, 60 8, 75 exc), 62, 63, 64, 65, 66, 6 cept 39=1111 (LC 40)	7, ,	48-1-13 to 3 MWFRS fo	r reactions show	n; Lumber I	DOL=1.	60 plate		SE	AL
	42	2=334 (L 3=320 (L	.C 20), 45=369 (LC 20 .C 20), 51=320 (LC 20)),)), 3	3) Truss designed	gned for wind loa	ads in the p	lane of	the truss		036	322
	53	5=368 (L 9=1119 (LC 20), 56=330 (LC 20 (LC 40)	J),	see Standa or consult of	rd Industry Gabl	e End Deta designer as	ils as a s per Al	pplicable, NSI/TPI 1.	the second se	A. En	- Rix 3
FURCES	(Ib) - Max. C (Ib) or less e	omp./Ma except wi	ax. Ten All forces 28 hen shown.	5U 2	 TCLL: ASC Plate DOL= 	E 7-16; Pr=20.0 =1.15); Pf=20.0 p	psf (roof LL sf (Lum DC	.: Lum I)L=1.15	DOL=1.15 i Plate		A C A	NEEBER
					DOL=1.15) Cs=1.00; C	; ls=1.0; Rough (t=1.10	Cat B; Fully	Exp.; C	Ce=0.9;		Minin A.	GIL
											Mai	rch 26,2025

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com) ENGINEERING B RE 818 Soundside Road Edenton, NC 27932

6

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	A09	Attic Supported Gable	1	1	Job Reference (optional)	172260065
Carter Components (Sanford, N), Sanford, NC - 27332,	Run: 8.73 E Nov 16 2	2023 Print: 8.	730 E Nov 1	6 2023 MiTek Industries, Inc. Wed Mar 26 15:31:08	Page: 2

Run; 8.73 E Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries, Inc. Wed Mar 26 15:31:08 ID:8kdnaNVfrXy7X5iJovJ26tzRBB2-DRPD10SHiN6ckAk7iekCPcVRS52MsSuZrqz77szXBKp

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

15) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	B01	Common	1	1	Job Reference (optional)	172260066

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 07:55:09 ID:Nseaq6A9EjNfxKX1O6yXnly7LSU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [2:0-7-7,Edge], [23:0-0-0,0-0-10]

Scale = 1:76.1

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-MSH	0.37 0.57 0.49	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.06 -0.16 0.02	(loc) 17-18 22-30 17	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 172 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Exce 6-19:2x4 SP No.2 2x4 SP No.3 Left 2x6 SP No.2 Structural wood she 5-5-8 oc purlins, et	pt* 17-15:2x6 SP No.2 1-6-0 eathing directly applied ccept end verticals.	1) 2) I or	Unbalanced n this design. Wind: ASCE Vasd=103mp II; Exp B; Enn and C-C Exte to 8-7-0, Exte to 21-0-8, Ex left and right exposed;C-C	roof live loads have 7-16; Vult=130mph h; TCDL=6.0psf; B closed; MWFRS (er erior(2E) -0-10-8 to erior(2R) 8-7-0 to 1- terior(2E) 21-0-8 to exposed; end vert for members and	e been (CDL=6 Nvelope 2-1-8, 4-7-0, 1 224-0-8 ical left forces 8	considered fo cond gust) .0psf; h=25ft;) exterior zor Interior (1) 2- nterior (1) 14- 2 zone; cantile and right & MWFRS for	r ; Cat. ne 1-8 -7-0 ever					
BOT CHORD	Rigid ceiling directly	y applied or 10-0-0 oc		reactions sho DOL=1.60	own; Lumber DOL=	1.60 pl	ate grip						
JOINTS	1 Brace at Jt(s): 23	,	3)	Truss design only. For stu	ed for wind loads ir ds exposed to wind	n the pla d (norm	ane of the tru al to the face	ss),					
REACTIONS	(size) 2=0-5-8, Max Horiz 2=265 (L Max Uplift 2=-52 (L Max Grav 2=850 (L 20=746 (17=0-3-8, 20=0-5-8 C 13) C 14), 20=-209 (LC 15) C 21), 17=451 (LC 22) LC 22)	4)),	see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I	I Industry Gable Er alified building desi 7-16; Pr=20.0 psf .15); Pf=20.0 psf (L s=1.0; Rough Cat F 10	igner as (roof LL um DC B; Fully	ils as applicat s per ANSI/TF .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9	ble, PI 1. 1.15 9;					
FORCES	(lb) - Maximum Cor	mpression/Maximum	5)	Unbalanced s	snow loads have be	een cor	nsidered for th	nis					
TOP CHORD	1-2=0/34, 2-4=-907 6-7=-319/158, 7-8= 9-11=-281/132, 11- 12-13=-173/16, 13- 14-15=-43/52, 15-1	/84, 4-6=-756/94, -300/205, 8-9=-266/16 12=-303/87, 14=-309/12, 6=0/42, 15-17=-58/178	5, 6) 7)	This truss has load of 12.0 p overhangs no All plates are Gable studes	s been designed for osf or 1.00 times fla on-concurrent with 2x4 MT20 unless spaced at 2.0-0 oc	or great at roof lo other liv otherwi	er of min roof bad of 20.0 ps ve loads. se indicated.	live sf on				OR FESS	ROUT
BOT CHORD	2-22=-213/692, 20-	22=-39/516, 940/208 17-1840/	9)	This truss ha	s been designed fo	ora 10.0) psf bottom	da					
WEBS	4-22=-236/182, 20- 6-25=-483/105, 24- 23-24=-439/59, 23- 26-27=-457/56, 19- 22-23=-96/81, 6-22	27=-511/335, 25=-483/116, 26=-446/39, 27=-513/67, =0/356, 14-17=-462/0,	10) 11	 * This truss h on the bottom 3-06-00 tall b chord and an One H2.5A S 	as been designed n chord in all areas y 2-00-00 wide will y other members. Simpson Strong-Tie	for a liv where fit betv	e load of 20.0 a rectangle veen the botto	Dpsf Dm		THUR AND		SEA 0363	L 22
NOTES	8-24=-146/151, 7-2 11-26=-81/66, 12-2	5=-31/50, 9-23=-200/2 7=-365/203, 13-18=-30	4,)/97 LC	recommende UPLIFT at jt(and does not	d to connect truss s) 2 and 20. This consider lateral for Standard	to bear onnecti rces.	ing walls due on is for uplift	to t only			the second	A. G	ILBERTIN'

March 26,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	B02	Common Girder	1	2	Job Reference (optional)	172260067

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 07:55:09

Page: 1

GRIP

244/190

FT = 20%

Unbalanced snow loads have been considered for this

chord live load nonconcurrent with any other live loads.

recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1 and 7. This connection is for uplift only

and does not consider lateral forces.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. One H2.5A Simpson Strong-Tie connectors

This truss has been designed for a 10.0 psf bottom

NOTES

Continued on page 2

WEBS

2-13=-173/3283, 2-12=-2563/277,

3-12=-343/5248, 3-11=-4288/419,

4-11=-392/5382, 5-11=-243/3823,

5-9=-6506/469, 6-9=-341/301, 6-8=-438/67

TCDL

BCLL

BCDL

WEBS

WEBS

March 26.2025

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

6)

7)

8)

9)

design.

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	B02	Common Girder	1	2	Job Reference (optional)	172260067

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 07:55:09 ID:iFFKd9_s5HOVK9vBFwqTAGzRAMn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Uniform Loads (lb/ft)

Vert: 1-4=-60, 4-7=-60, 14-17=-20

Concentrated Loads (lb)

Vert: 10=-1799 (B), 13=-1799 (B), 12=-1799 (B), 8=-863 (B), 22=-1799 (B), 23=-1799 (B), 24=-1799 (B), 25=-1799 (B), 26=-1799 (B), 27=-863 (B),

28=-863 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	C01	Half Hip	4	1	Job Reference (optional)	172260068

Run; 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 07:55:09 ID:Je5w06f8goBW?T4xbCQ60Kyfk?K-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:71.5 Plate Offsets (X, Y): [2:0-3-1,0-0-1], [8:0-1-12,0-1-8]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS	(psf) 20.0 20.0 10.0 0.0* 10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202 ⁻¹ 3)	I/TPI2014 Unbalanced design. This truss ha load of 12 0	CSI TC BC WB Matrix-MSH snow loads have l as been designed t	0.83 0.62 0.79 been cor for greate	DEFL Vert(LL) Vert(CT) Horz(CT) asidered for t	in -0.08 -0.14 0.03 his f live	(loc) 8-9 8-9 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 148 lb	GRIP 244/190 FT = 20%	
WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SP No.2 Left 2x4 SP No.3 1 Structural wood shee 4-8-11 oc purlins, e: Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-5-8, 8 Max Horiz 2=387 (LC Max Uplift 2=-49 (LC Max Gray 2=954 (LC	1-6-0 athing directly applie xcept end verticals. applied or 10-0-0 oc 7-8, 6-8 3=0-5-8 ⊂ 14), ≥ 14), 8=-342 (LC 14, ⊂ 5), 8=-1731 (LC 21)	5) 6) ed or 7) c 8)	overhans n All plates are This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar One H2.5A S recommende UPLIFT at jt(and does no	son-concurrent with a 3x5 MT20 unless as been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w by other members. Simpson Strong-Ti ad to connect truss (s) 8 and 2. This of t consider lateral f	to ther live so therwi for a 10.0 with any d for a live s where ill fit betw , with BC e connection connection onnection orces.	ve loads. se indicated.) psf bottom other live load e load of 20. a rectangle veen the bott DL = 10.0ps ctors ng walls due n is for uplift	ads. Opsf f. e to only						
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=0/23, 2-4=-1437 6-7=-166/102, 7-8=- 2-11=-399/1321, 9-1 8-9=-159/721 4-11=0/263, 4-9=-69 6-8=-1026/227	7/30, 4-6=-824/0, 270/93 11=-320/1321, 01/185, 6-9=0/637,	LC 1)	provided suff lb down and design/selec responsibility DAD CASE(S) Dead + Sno Increase=1 Uniform Los	icient to support of 128 lb up at 20-7 tion of such conner of others. Standard bw (balanced): Lui .15 ads (lb/ft)	oncentra -0 on bo ection de	rease=1.15,	752 The Plate				ORTH CA	ROUNT	8_
NOTES 1) Wind: AS Vasd=100 II; Exp 8; and C-C I to 17-4-4, vertical le MWFRS 1 grip DOL3 2) TCLL: AS	CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; BG Enclosed; MWFRS (en Exterior(2E) -0-10-8 to 2 Exterior(2E) 10-10-8 to 2 Exterior(2E) 17-4-4 to ft exposed;C-C for men or reactions shown; Lu =1.60 CE 7-16; Pr=20.0 psf ((3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zon 2-1-8, Interior (1) 2-1 20-4-4 zone; end mbers and forces & imber DOL=1.60 plat roof LL: Lum DOL=1	Cat. e I-8 te	Vert: 1-7 Concentrate Vert: 8=-	=-60, 8-13=-20 ed Loads (lb) 747					Willing		SEA 0363	22 EREAN	Monuna

- to 17-4-4, Exterior(2E) 17-4-4 to 20-4-4 zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 2) DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G minin

March 26,2025

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	C02	Half Hip	1	1	Job Reference (optional)	172260069

10-6-5

3-8-0

12 61

3x5 💋 4

13-7-3

3-0-13

3x5 ≠

17 5

6-10-5

6-10-5

3x5 🛪

Carter Components (Sanford, NC), Sanford, NC - 27332,

Scale = 1:71.3

10-11-0 0-10-2

10-0-14 10-0-14

10-11-0

Run; 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 07:55:09 ID:EGq646Pbf2EXC6nWIJzpaiyfjwU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

20-4-0

6-8-13

18

20-9-8

0-5-8 3x5 II 6

+

×

20 7

3x8=

20-9-8

0-4-8

10-0-14

3x5 🖌 3

Loading TCLL (roof)(psf) 20.0Spacing Plate Grip DOL2-0-0CSI TCDEFLin(loc)I/deftL/dPLATES MT20Snow (Pf)20.0Lumber DOL1.15TC0.82Vert(CT)-0.147-8>999240MT20T20TCDL10.0Rep Stress IncrYESWB0.75Vert(CT)-0.147-8>999240MT20T20BCL0.0*CodeIRC2021/TPI2014Matrix-MSHHorz(CT)0.037n/an/aBCDL10.00Indianced snow loads have been considered for this design.This truss has been designed for a 10.0 psf bottomThis truss has been designed for a 10.0 psf bottomThis truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.Structural wood sheathing directly applied or 4-7-1 oc purlins, except end verticals. BRACING6-7, 5-76One H2.5A Simpson Strong-Tie connectors recommended to concert truss to bearing walls due to UPLIFT at j(ts) 7 and 1. This connection is for uplift only and does not consider lateral forces.7Harger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 7527WEBS1 Row at midpt f 1-370 (LC 14)6-7, 5-7Harger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 7527WEBS1 Row at midpt f 1-370 (LC 14)6-7, 5-7Harger(s) or other connection device(s) sha	
 LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 *Except* 6-7:2x4 SP No.2 OTHERS 2x6 SP No.2 DTHERS 2x6 SP No.2 DTHERS 2x6 SP No.3 1-6-0 BRACING TOP CHORD Structural wood sheathing directly applied or 4-7-1 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 6-7, 5-7 REACTIONS (size) 1=0-3-8, 7=0-5-8 Max Horiz 1=370 (LC 14) Max Uplift 1=-30 (LC 14) Max Uplift 1=-30 (LC 14) A Unbalanced snow loads have been considered for this design. 3) Unbalanced snow loads have been considered for this design. 3) Unbalanced snow loads have been considered for this design. 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for a 10.0 ps f bottom chord and nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0ps f on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0ps f. 6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 7 and 1. This connection is for uplift only and does not consider lateral forces. 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 752 Ib down and 129 lb up at 20-7-0 on bottom chord. The design/celerction of such connection (such consection device) 	GRIP 244/190 FT = 20%
Max Grav 1=900 (LC 5), 7=1714 (LC 20) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-3=-1401/30, 3-5=-812/0, 5-6=-162/100, 6-7=-265/93 BOT CHORD 1-10=-405/1286, 8-10=-319/1286, 7-8=-159/716 WEBS 3-10=0/254, 3-8=-658/185, 5-8=0/624, 5-7=-1018/227 NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-2-0 to 3-2-0, Interior (1) 3-2-0 to 17-4-4, Exterior(2E) 17-4-4 to 20-4-4 zone;C-C for members and forces & MWFRS (for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (tum DOL=1.15 Plate DOL=1.15); Is=-10; Rough Cat B; Fully Exp.; Ce=0.9; Cs=-1.00; Ct=1.10	ROUNT AND

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

March C

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	D01	Common Supported Gable	1	1	Job Reference (optional)	172260070

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 07:55:09 ID:8F2D?hHuvW?rb9K6OMb_Y2zRQrE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

18-6-0

Scale = 1:56.9

Plate Offsets (X, Y): [7:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MR	0.21 0.12 0.20	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 127 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 14=18-6-(21=18-6-(21=18-6-(21=18-6-(24=225) Max Uplift 14=-50 (L 17=-47 (L 21=-115 (23=-168 (C) 17=172 (I 19=224 (I 21=253) (I 23=228 (I 23=228 (I)))	athing directly applied cept end verticals. applied or 6-0-0 oc), 15=18-6-0, 17=18-6), 19=18-6-0, 20=18-6), 22=18-6-0, 23=18-6) LC 12) C 11), 15=-163 (LC 1 C 15), 18=-116 (LC 1 LC 14), 22=-46 (LC 1 LC 14), 22=-46 (LC 1 LC 22), 15=-221 (LC 2 .C 22), 18=253 (LC 2 .C 22), 20=224 (LC 2 .C 21), 22=172 (LC 2 .C 21), 22=172 (LC 2	N 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	YEBS 6 4 9 0 Unbalanced 1 this design. 9 Wind: ASCE Vasd=103mp II; Exp B; End and C-C Corr to 6-3-0, Corr 12-2-12 to 16 cantilever left right exposed for reactions DOL=1.60 0 Truss design only. For stu see Standard or consult qu 0 TCLL: ASCE Plate DOL=1 DOL=1.15); I	2-20=-185/8, 8-19= -22=-142/93, 3-23 -18=-213/163, 10- 1-15=-168/168 roof live loads have 7-16; Vult=130mpl h; TCDL=6.0psf; E closed; MWFRS (e her(3E) -0-10-8 to her(3E) -0-10-8 to her(3E) 6-3-0 to 12 -2-12, Corner(3E) and right exposed t;C-C for members shown; Lumber DC ed for wind loads in ds exposed to wind Industry Gable Er alified building des 7-16; Pr=20.0 psf (l s=1.0; Rough Cat	-185/7, =-174/1 17=-14 a been of a Gased 3CDL=6 nvelope 2-3-4, E 2-2-12, 1 16-2-12 1; end v 2-2-12, 1 16-2-12 1; end v 0DL=1.60 n the pl d (norm and Deta igner a: (roof LL Lum DC B; Fully	5-21=-213/16 60, 3/91, considered for cond gust) considered for cond gust) considered for cond gust) considered for cond gust) considered for considered for	22, Cat. ie 3-4 ne; d S S S S S S S S S S S S S S S S S S	12) * Th on tt 3-06 chor 13) Prov bear 24, { uplif 15. LOAD C	is truss ne botto -00 tall d and a vide me tring plat 50 lb up t at join 18, 47 ASE(S	has b m chc by 2-C ny oth chanicc e capp cape t 22, 1 lb upli b upli) Sta	een designed for rd in all areas wh 00-00 wide will fit er members. al connection (by able of withstandi oint 14, 115 lb up 68 lb uplift at join ft at joint 17 and 1 ndard	a live load of 20.0psf lere a rectangle between the bottom r others) of truss to ng 69 lb uplift at joint dift at joint 21, 46 lb t 23, 116 lb uplift at 163 lb uplift at joint
FORCES TOP CHORD BOT CHORD	(b) - Maximum Com Tension 2-24=-168/63, 1-2=(3-4=-105/90, 4-5=-9 6-7=-94/171, 7-8=-9 9-10=-77/117, 10-11 12-13=0/39, 12-14= 23-24=-106/187, 22 21-22=-106/187, 25 19-20=-106/187, 15 14-15=-106/187	0/39, 2-3=-164/140, 2/118, 5-6=-116/235, 4/171, 8-9=-116/235, -99/72, 11-12=-152/ -155/47 -23=-106/187, -21=-106/187, -19=-106/187, -17=-106/187,	(117, 7 6) (117, 7 8 9) 11 1	Cs=1.00; Ct= Unbalanced s design. This truss ha load of 12.0 p overhangs no All plates are Gable require Truss to be fu braced again Gable studs s This truss has chord live loa	1.10 snow loads have b s been designed for sof or 1.00 times fla on-concurrent with 2x4 MT20 unless es continuous botto Illy sheathed from st lateral movement spaced at 2-0-0 oc s been designed for d nonconcurrent w	een cor or great at roof le other li otherwi om chor one fac one fac one fac one fac one fac one fac one fac	nsidered for the er of min roof pad of 20.0 ps ve loads. se indicated. d bearing. te or securely liagonal web). D psf bottom other live load	live on		Walling		SEA 0363	L 22 EER.K

March 26,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	D02	Common Girder	1	2	Job Reference (optional)	172260071

Run; 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 07:55:10 ID:ahvaep5BsMWascBuTkn6buzRAib-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:59.2

Continued on page 2

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.43 0.57 0.92	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.17 0.04	(loc) 14-15 14-15 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 487 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	2x8 SP 2400F 2.0E 2x12 SP 2400F 2.0E 2x4 SP No.3 *Excep 5-14:2x4 SP No.2 Left 2x4 SP No.3 - 1 1-6-0 Structural wood shea 5-11-12 oc purlins. Rigid ceiling directly bracing.	t* 13-6:2x4 SP No.1, I-6-0, Right 2x4 SP N athing directly applied applied or 10-0-0 oc	1) No.3 d or 2)	2-ply truss to (0.131"x3") n Top chords of staggered at Web connect Except memi 3-16 2x4 - 2 All loads are except if note CASE(S) sec	be connected tog ails as follows: connected as follow 0-9-0 oc. ds connected as follow 0-5-0 oc. ted as follows: 2x4 ber 5-14 2x4 - 1 ro rows staggered at considered equal ad as front (F) or b tion. Ply to ply con	ether wi vs: 2x8 - llows: 2 - 1 row w at 0-5 0-2-0 or y applied ack (B) nnection	th 10d 2 rows x12 - 6 rows at 0-9-0 oc, -0 oc, membe 2. d to all plies, face in the LC s have been	er DAD	 Use 14- 4-4. of b 11) Use 26-' spa end bott 12) Fill 13) Har prov 	Simpso 10dx1 1/ 12 from ottom cl Simpso 10dx1 1/ ced at 2 to 16-4 om chor all nail h iger(s) o vided su	on Stro 2 Trus the lef nord. on Stro 2 Trus -0-0 oc -12 to o d. oles w r other fficient	ng-Tie HTU210 s, Single Ply Gir it end to connect ng-Tie HTU28 (2 s, Single Ply Gir c max. starting a connect truss(es here hanger is in connection dev to support conc	(32-10dx1 1/2 Girder, der) or equivalent at truss(es) to back face 20-16d Girder, der) or equivalent t 6-4-12 from the left to back face of n contact with lumber. ice(s) shall be rentrated load(s) 8867
REACTIONS	(size) 1=(0-5-8 + 0-6-2), 10 Max Horiz 1=-176 (L Max Grav 1=14865 (⊦ bearing block), (req =0-5-8 C 10) (LC 21), 10=10712 (L	l. 3) ₋C 6)	provided to d unless otherv 2x12 SP 240 attached to e	listribute only loads wise indicated. 0F 2.0E bearing b ach face with 6 rc	s noted a lock 12" ows of 10	as (F) or (B), long at jt. 1 0d (0.131"x3"))	lb d des resp LOAD (own and ign/sele consibilit CASE(S)	i 535 lt ction of y of ot Star	o up at 2-7-0 on f such connectio hers. ndard	bottom chord. The n device(s) is the
FORCES	(lb) - Maximum Com	pression/Maximum		is assumed to	o be SP 2400F 2.0	steners)E.	per block. Bea	aring	1) De Inc	ead + Sn prease="	ow (ba 1.15	alanced): Lumbe	r Increase=1.15, Plate
TOP CHORD	1-3=-15578/0, 3-4=- 5-6=-9492/0, 6-7=-9- 8-10=-12158/0	14258/0, 4-5=-12125 463/0, 7-8=-11050/0,	5/0, 5/0, 5)	Unbalanced this design. Wind: ASCE Vasd=103mr	roof live loads hav 7-16; Vult=130mp bh: TCDI =6 0psf: l	e been o h (3-seo BCDI =6	considered for cond gust)	r Cat	Ur Co	iform Lo Vert: 1-6 oncentra	bads (II 5=-60, ted Loa	b/ft) 6-10=-60, 17-21 ads (lb)	=-20
BOT CHORD	1-16=0/10988, 15-16 14-15=0/11862, 13-1 10-11=0/9123	6=0/10988, 14=0/9117, 11-13=0/	9123,	II; Exp B; End cantilever lef	closed; MWFRS (e t and right expose d; Lumber DOL=1.	envelope d ; end v 60 plate	e) exterior zon vertical left and grip DOL=1.6	ne; d 60			an'	HTH CA	ROLI
WEBS	6-13=0/10728, 7-13= 8-12=-1103/0, 8-11= 4-15=-208/3373, 5-1 3-16=-421/1446, 3-1	1571/0, 7-12=0/291 0/1625, 4-14=-4425/ 4=0/5105, 5-13=-318 5=0/2222	18, '101, 6) 39/0,	TCLL: ASCE Plate DOL=1 DOL=1.15); I	7-16; Pr=20.0 psf .15); Pf=20.0 psf (s=1.0; Rough Cat	(roof LL Lum DC B; Fully	.: Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9	1.15);		4 million		FES	
NOTES			7) 8)	Cs=1.00; Ct= Unbalanced design. This truss ha	1.10 snow loads have b s been designed f	been cor or a 10.0	nsidered for th D psf bottom	nis		IIIII.		0363	22

chord live load nonconcurrent with any other live loads. 9) * This truss has been designed for a live load of 20.0psf

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

G munn

March 26,2025

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 1/2/2023 BEFORE USE WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	D02	Common Girder	1	2	Job Reference (optional)	172260071

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 07:55:10 ID:ahvaep5BsMWascBuTkn6buzRAib-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Vert: 14=-1893 (B), 16=-5499 (B), 27=-1897 (B), 28=-1893 (B), 29=-1893 (B), 30=-1893 (B), 31=-1893 (B), 32=-1893 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	E01	Common Supported Gable	1	1	Job Reference (optional)	172260072

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 07:55:10 ID:onyrICEMWITAUsFxYbXALJy7LR6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

17-6-0

Scale = 1:53.1

Plate Offsets (X, Y): [8:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL		(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-MR	0.18 0.11 0.15	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190	
BCDL		10.0		-									Weight: 130	lb FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No. 2x4 SP No. 2x4 SP No. 2x4 SP No. Structural v 6-0-0 oc pu Rigid ceiling bracing.	2 2 3 3 vood shea ırlins, exo g directly	athing directly applie cept end verticals. applied or 6-0-0 oc	BC d or WE	DT CHORD 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	27-28=-98/172, 26 25-26=-98/172, 24 23-24=-98/172, 22 21-22=-98/172, 20 8-20=-98/172, 17 16-17=-98/172 7-23=-141/22, 9-22 5-25=-167/114, 4- 3-27=-124/148, 10 11-20=-167/114, 1	-27=-98, -25=-98, -23=-98, -21=-98, -18=-98, 2=-141/2 26=-150, -21=-18 2-18=-1	(172, (172, (172, (172, (172, (172, (172, (120, 1/127, 50/120,	1/127,	8) Gat 9) Trus brac 10) Gat 11) This cho 12) * Th on t 3-00 cho	ble requi ss to be ced agai ble studs s truss h rd live lo his truss he botto 5-00 tall rd and a	res co fully s inst lat space as bee bad no has be m cho by 2-0 iny oth	ntinuous botto heathed from o eral movemen ed at 2-0-0 oc. en designed fo nconcurrent w een designed f rof in all areas 00-00 wide will er members.	m chord bearing. ne face or securely t (i.e. diagonal web). a 10.0 psf bottom th any other live load: or a live load of 20.0p where a rectangle fit between the bottor	s. osf
REACTIONS	(size) 1 Max Horiz 2 Max Uplift 1 Max Grav 1	6=17-6-0 20=17-6-0 23=17-6-0 26=17-6-0 28=209 (L 16=-135 (l) 18=-70 (L) 21=-84 (L) 21=-84 (L) 21=-84 (L) 21=-211 (L) 16=226 (L) 18=170 (L) 21=214 (L)	0, 17=17-6-0, 18=17- 0, 21=17-6-0, 22=17- 0, 24=17-6-0, 25=17- 0, 27=17-6-0, 28=17- C 13), 17=-215 (LC C 13), 20=-77 (LC 15 C 15), 24=-83 (LC 14 C 14), 26=-69 (LC 14 LC 14), 28=-187 (LC C 15), 17=200 (LC 14 C 31), 20=206 (LC 2 C 22), 22=136 (LC 2 C 2),	6-0, NC 6-0, 1) 6-0 2) (15), 5), 4), 4), (12) (3), 22), 22), 22), 24)	1 DTES Unbalanced i this design. Wind: ASCE Vasd=103mp II; Exp B; Enn and C-C Corr to 5-9-0, Corr to 15-4-8, Co left and right exposed;C-C reactions sho DOL=1.60	I3-17=-111/144 roof live loads hav 7-16; Vult=130mp bh; TCDL=6.0psf; Iclosed; MWFRS (ner(3E) -0-10-8 to ner(3R) 5-9-0 to 1 nrner(3E) 15-4-8 to exposed ; end ver for members and own; Lumber DOL	ve been of BCDL=6 envelope 2-1-8, E 1-9-0, E o 18-4-8 rtical left I forces a =1.60 pl	considered fo cond gust) 5.0psf; h=25ft 3) exterior zo Exterior(2N) 2 xterior(2N) 1 zone; cantile and right & MWFRS fo ate grip	or t; Cat. ne 2-1-8 1-9-0 ever av	13) Pro bea 28, upli join lb u LOAD (vide me ring plat 135 lb u ft at join t 27, 84 plift at jo CASE(S	chanic te capa plift at t 25, 6 lb uplit bint 18) Sta	al connection able of withstaa joint 16, 83 lb 9 lb uplift at joi ft at joint 21, 7 and 215 lb up ndard	by others) of truss to ding 187 Ib uplift at jo uplift at joint 24, 77 Ib nt 26, 231 Ib uplift at 7 Ib uplift at joint 20, 7 ift at joint 17.	oint > 70
FORCES	2 2 (lb) - Maxin	25=136 (L 25=206 (L 27=233 (L	.C 21), 24=214 (LC 2 .C 21), 26=169 (LC 2 .C 12), 28=261 (LC 1 pression/Maximum	25), 3) 11)	Truss design only. For stu see Standard	ed for wind loads ds exposed to wir I Industry Gable E	in the pland (norm and Deta	ane of the tru al to the face ils as applica	uss e), able,		4	i	OF FES	Dia	/
TOP CHORD	Tension 2-28=-168/ 3-4=-116/1 6-7=-104/2 9-10=-104/2 12-13=-90/1 14-16=-142	112, 1-2= 15, 4-5=- 51, 7-8=- 251, 10-1 87, 13-14 2/80	0/38, 2-3=-204/166, 92/94, 5-6=-76/160, 76/166, 8-9=-76/166, 1=-72/160, 11-12=-6 =-185/126, 14-15=0/	4) , , , , , , , , , , , , , , , , , , ,	or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 p overhangs no All plates are	alified building des 7-16; Pr=20.0 psf (15); Pf=20.0 psf (s=1.0; Rough Cat 1.10 snow loads have t s been designed f psf or 1.00 times fl pon-concurrent with (2x4 MT20 upless	signer as f (roof LL (Lum DC B; Fully been cor for greate lat roof lo other lin sotherwi	s per ANSI/T .: Lum DOL= DL=1.15 Plate Exp.; Ce=0. asidered for t er of min rooi pad of 20.0 p ve loads. se indicated	PI 1. e1.15 e 9; this f live osf on		THUNNY.		SE 036	AL 322 NEER. K	AND DITES.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

March 26,2025

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	G01	Monopitch	5	1	Job Reference (optional)	172260073

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 07:55:10 ID:PdAAD85_ICJN?UaWrZNnF5zRQu2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:64.6

Plate Offsets (X, Y):	[2:0-2-0,0-1-8], [3:0-4-0,0-3-4]

	(,,, ,). [2:0 2 0,0 1 0],	[0:0 : 0,0 0 :]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021 4)	I/TPI2014	CSI TC BC WB Matrix-MSH	0.95 0.67 0.39	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.20 -0.01	(loc) 7-8 7-8 7	l/defl >999 >923 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 106 lb	GRIP 244/190 FT = 20%	
TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.1 *Excep 2x4 SP No.2 2x4 SP No.3 *Excep Structural wood she: 2-2-0 oc purlins, exc Rigid ceiling directly bracing. 1 Row at midpt (size) 7= Mecha Max Horiz 9=273 (LC Max Uplift 7=-221 (L Max Grav 7=831 (LC	t* 1-3:2x4 SP No.2 t* 4-7:2x4 SP No.2 athing directly applie cept end verticals. applied or 10-0-0 oc 4-7, 3-7 nical, 9=0-5-8 C 14) C 5), 9=754 (LC 5)	5) ed or 6) ; 7) 8) LO	load of 12.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall t chord and ar Refer to gird Provide mec bearing plate 7. DAD CASE(S)	psf or 1.00 times fl on-concurrent with is been designed fr ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide will by other members, er(s) for truss to tru- hanical connection a capable of withsta Standard	at roof k other lin or a 10.0 vith any for a liv s where Il fit betw with BC uss conru (by oth anding 2	bad of 20.0 p ve loads. 0 psf bottom other live loa e load of 20.1 a rectangle veen the bott DL = 10.0ps hections. ers) of truss i 21 lb uplift a	st on nds. Opsf om f. to t joint						
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS(Vasd=103 II; Exp B; and C-C E to 12-11-8 cantilever exposed;C reactions DOL=1.60 2) TCLL: AS(Plate DOL DOL=1.15 Cs=1.00;C 3) Unbalance design.	(lb) - Maximum Com Tension 1-2=0/27, 2-4=-677/' 4-7=-328/122, 2-9=-1 8-9=-334/218, 7-8=- 3-8=0/313, 3-7=-768 CE 7-16; Vult=130mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (en Enclosed; MWFRS (en Enclosed; MWFRS (en CE 7-16; Pr=20.0 psf (L 2-C for members and for shown; Lumber DOL=1) CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L =1.15); Is=1.0; Rough Cat B Ct=1.10 ed snow loads have be	pression/Maximum 119, 4-5=-12/0, 655/84 195/603, 6-7=0/0 1/250, 2-8=0/486 (3-second gust) CDL=6.0psf; h=25ft; velope) exterior zon 2-1-8, Interior (1) 2-1 to 15-11-8 zone; ; end vertical left prces & MWFRS for I.60 plate grip roof LL: Lum DOL=1 um DOL=1.15 Plate ; Fully Exp.; Ce=0.9 ven considered for the	Cat. e -8 .15 ;							Contraction of the second seco		SEA 0363		Manning

March 26,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	H01	Monopitch Supported Gable	2	1	Job Reference (optional)	172260074

-0-10-8 0-10-8

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 07:55:10 ID:XX6Xm09JsM8Rk RkgNonK3zRRGV-RfC?PsR70Hn3NSnPanI 8w3uITXhGKWrCDoi7 4/ P2f

Page: 1

Scale = 1:43.9

Plate Offsets (X, Y): [2:Edge,0-0-14], [2:0-2-5,Edge], [10:0-0-8,0-1-8]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.99 0.36 0.26	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.08	(loc) - - 17	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 68 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Exce 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ep Except: 9-5-0 oc bracing: 1: Rigid ceiling directly bracing. 1 Brace at Jt(s): 18 (size) 2=10-1-0 14=10-1- 17=10-1- 2=180 (L Max Uplift 2=-48 (Lu 13=-9 (Li 13=-26 (Li 13=129 (15=158 (Li 13=129 (15=158 (Li 15=158 (Li	Det* 8-12:2x4 SP No.2 Det* 8-12:2x4 SP No.2	W N(1) d or 2) -0, 1-0, 3) , , , , , , , , , , , , , , , , , ,	EBS 3 TTES Wind: ASCE Vasd=103mp II; Exp B; End and C-C Corrite to 16-0-0 zorite vertical left ai forces & MW DOL=1.60 pli Truss design only. For stu see Standard or consult qui TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced : design. This truss hai load of 12.0 g overhangs no	3-16=-145/179, 4- 5-14=-168/172, 7- 7-18=-793/656, 1 9-18=-21/26 7-16; Vult=130mm yh; TCDL=6.0psf; closed; MWFRS (ner(3E) -0-10-8 to te; cantilever left and right exposed; FRS for reactions ate grip DOL=1.61 ed for wind loads ds exposed to win 1 ndustry Gable E alified building de 7-16; Pr=20.0 psf s=1.0; Rough Cal :1.10 snow loads have l bsf or 1.00 times for -concurrent with	15=-125, 13=-33/5 0-18=-8 BCDL=6 envelope 2-0-0, E and right C-C for n shown;) in the pla d (norm ind Deta signer a: f (roof LL (Lum DC B; Fully been cor for great lat roof la o ther lin o ther lin o ther lin o ther lin o ther lin o ther lin	(117, i6, D1/669, i0,0psf; h=25ft; exterior zor ixterior(2N) 2: exposed; en nembers and Lumber ane of the tru: ane of the tru: ane of the tru: ane of the tru: ane of the tru: b per ANS/TF L: Lum DOL=' bL=1.15 Plate Exp.; Ce=0.9 and f 20.0 ps re loads.	; Cat. ne -0-0 id ss), ble, -1. 1.15 	11) Pro bea 12, 12) One recc UPL uplii 13) Nor LOAD (vide me ving plat 98 lb up e H2.5A ommenc LIFT at j ft only a Standa CASE(S	chanic te capa lift at ji lift at ji Simps led to o t(s) 17. nd doe trd bea) Stat	al connection (by able of withstandi oint 16 and 9 lb u ion Strong-Tie co connect truss to t , 2, 15, and 14. T is not consider la ring condition. F ndard	others) of truss to ng 72 lb uplift at joint plift at joint 13. nnectors searing walls due to his connection is for teral forces. teview required.
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Cor Tension 1-2=0/17, 2-3=-710 4-5=-606/425, 5-7= 8-9=-633/630, 9-10 12-17=0/0, 8-17=-3 2-16=-383/370, 15- 14-15=-383/370 12-13=-383/370	npression/Maximum /428, 3-4=-650/422, -544/407, 7-8=-542/4 =-632/697, 10-11=-45 64/285 16=-383/370, 3-14=-383/370,	6) 7) 8) /0, 9) 10	All plates are Gable studs : This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an b) Bearing at joi using ANSI/T designer sho	2x4 M120 Unless spaced at 2-0-0 o s been designed 1 id nonconcurrent as been designed n chord in all area y 2-00-00 wide w y other members int(s) 17 considers PI 1 angle to grai uld verify capacity	officer of a formation or a 10.0 with any for a liv s where s where ill fit betw s parallel n formula of bear	 psf bottom other live loa e load of 20.0 a rectangle veen the botto to grain valu a. Building ng surface. 	ds. Dpsf om e				SEA 0363	L 22 EER.K.

March 26,2025

A MiTek / 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	H02	Monopitch	6	1	Job Reference (optional)	172260075

Scale = 1:48.2

Loading

TCLL (roof)

Snow (Pf)

TCDL

Run; 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 07:55:10 ID:nLPVeuW3K4TytrtY3ILLguzRRHK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

JOLL	0.0 ^ Co	ode IRC2	021/1912014	Matrix-MSH			
BCDL	10.0					Weight: 66 lb	FT = 20%
LUMBER TOP CHORD SOT CHORD WEBS WEDGE BRACING TOP CHORD REACTIONS FORCES TOP CHORD WEBS NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Except* 5-5 Left: 2x4 SP No.3 Structural wood sheathin 6-0-0 oc purlins, except Except: 5-3-0 oc bracing: 9-11 Rigid ceiling directly appl bracing. (size) 2=0-3-0, 9=0-5 Max Horiz 2=207 (LC 10) Max Uplift 2=-100 (LC 10) Max Uplift 2=-100 (LC 10) Max Grav 2=377 (LC 1), (lb) - Maximum Compres Tension 1-2=0/17, 2-3=-368/82, 3 5-6=-456/707, 6-7=-45/0, 5-11=-321/163 2-10=-230/338, 9-10=-23 3-10=-124/211, 3-9=-614 CE 7-16; Vult=130mph (3-si imph; TCDL=6.0psf; BCDL= Enclosed; MWFRS (envelo Exterior(2E) -0-10-8 to 2-1-6 zone; cantilever left expose	-9:2x4 SP No.1 ng directly applied or i end verticals. blied or 10-0-0 oc -5-8)) 0), 9=-371 (LC 10) , 9=1084 (LC 21) ssion/Maximum 3-5=-393/465,), 9-11=-847/467, 30/338, 8-9=0/0 4/478, 6-11=-811/468 second gust) _=6.0psf; h=25ft; Cat. ope) exterior zone 8, Interior (1) 2-1-8 ed; porch left and	 Unbalanced : design. This truss ha load of 12.0 p overhangs no This truss ha chord live loa * This truss ha on the botton 3-06-00 tall b chord and an One H2.5A S recommende UPLIFT at jt(and does not LOAD CASE(S) 	snow loads have been cor s been designed for great perfor 1.00 times flat roof li con-concurrent with other li is been designed for a 10.4 ad nonconcurrent with any has been designed for a liv n chord in all areas where by 2-00-00 wide will fit bet yo 2-00-00 wide will fit bet yo other members. Simpson Strong-Tie conne- d to connect truss to bear s) 9 and 2. This connectio t consider lateral forces. Standard	nsidered for this er of min roof live pad of 20.0 psf on ve loads. 0 psf bottom other live loads. e load of 20.0psf a rectangle veen the bottom ctors ing walls due to n is for uplift only	ORTH CA	

DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

036322 G minin March 26,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	J01	Common	5	1	Job Reference (optional)	172260076

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 07:55:10 ID:yPXMLbyKekkHSiWSIZLGINzRR58-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	PBA	Piggyback	2	1	Job Reference (optional)	172260077

5-11-7

5-11-7

Carter Components (Sanford, NC), Sanford, NC - 27332,

0-11-1

3x5 =

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 07:55:10 ID:RPY8AW_GFKIcY3mFoYebvHzRQqK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 12-9-15 11-10-14 0-11-1 5-11-7 6 24

> > 3x5 =

Page: 1

11-10-14

Scale = 1:31.5

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202 ²	I/TPI2014	CSI TC BC WB Matrix-MSH	0.08 0.04 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 52 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc Rigid ceil bracing. (size) Max Horiz Max Uplift Max Grav	o.2 o.2 o.3 I wood shea purlins. ing directly 2=11-10-1 10=11-10 12=11-10 12=11-10 12=52 (LC 2=-9 (LC 2=-9 (LC 10=-45 (L) 13=-47 (L) 2=125 (LC 10=240 (L) 12=143 (L)	athing directly applie applied or 10-0-0 oc 4, 8=11-10-14, -14, 11=11-10-14, -14, 13=11-10-14, -14, 13=11-10-14, -14, 13=11-10-14, -14, 13=12 (LC 15), C 15), 11=-47 (LC 15), C 14), 14=-46 (LC 11, C 14), 14=-46 (LC 12, C 14), 14=-46 (LC 12, C 22), 13=243 (LC 22), C 22), 13=243 (LC 22), C 21)	2) d or 3) 5), 4) , (2), 5), 21), 6)	Wind: ASCE Vasd=103mp II; Exp B; En and C-C Extd 3-11-0, Exter to 10-5-13, E cantilever lef right exposed for reactions DOL=1.60 Truss design only. For stu see Standarc or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha	7-16; Vult=130mp h; TCDL=6.0psf; closed; MWFRS (erior(2E) 0-4-3 to 3 ior(2R) 3-11-0 to 5 xterior(2E) 10-5-1 t and right expose d;C-C for members shown; Lumber D ed for wind loads ds exposed to wird 1 Industry Gable E alified building der 7-16; Pr=20.0 psf s=1.0; Rough Cat 1.10 snow loads have b s been designed f	bh (3-sec BCDL=6 envelope 3-4-3, Ini 9-11-0, I 3 to 13-4 d; end V, s and for OL=1.6(in the pl- nd (norm nd Deta signer as f (roof LL (Lum DC B; Fully) been cor	ond gust) .0psf; h=25ft; b) exterior zor erior (1) 3-4- interior (1) 9-4- interior (1) 9-1 ertical left an ces & MWFR b) plate grip ane of the tru al to the face lls as applical as per ANSI/TF b) L=1.15 Plate Exp.; Ce=0.5 asidered for the er of min roof	(Cat. ne 3 to 1-0 d SS ss), ble, Pl 1. 1.15 ; ; ive	LOAD	CASE(S)) Sta	ndard	
FORCES TOP CHORD	(lb) - Max Tension 1-2=0/17	timum Com , 2-3=-46/3	pression/Maximum 3, 3-4=-56/49,	7) 8)	overhangs no All plates are Gable require	on-concurrent with 2x4 MT20 unless es continuous bott	other liv otherwi	ve loads. se indicated. d bearing.	51 011				TH CA	Route
BOT CHORD WEBS	4-5=-64/1 7-8=-30/2 2-14=-9/5 11-12=-9, 5-12=-10, 6-11=-20	07, 5-6=-6 26, 8-9=0/1 58, 13-14=- /58, 10-11= 2/0, 4-13=- 7/121, 7-10	4/107, 6-7=-56/42, 7 9/58, 12-13=-9/58, -9/58, 8-10=-9/58 207/121, 3-14=-183/ =-183/88	9) 10 88, 11	Gable studs) This truss ha chord live loa) * This truss h on the botton 3-06-00 tall b	spaced at 2-0-0 or s been designed f ad nonconcurrent v as been designed n chord in all area by 2-00-00 wide wi	c. for a 10.0 with any I for a liv s where ill fit betv) psf bottom other live loa e load of 20.0 a rectangle veen the botto	ds.)psf om		Chan and a start of the start o		SEA	L
NOTES 1) Unbalance this design	ed roof live n.	loads have	been considered for	12 13	chord and an) N/A) See Standard Detail for Co consult qualit	y other members. d Industry Piggyba nnection to base to fied building design	ack Trus russ as a	s Connection			LUAN.	and the second sec	0363	EER.

consult qualified building designer.

March 26,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	PBA1	Piggyback	18	1	Job Reference (optional)	172260078

3-5-8

Scale = 1:31.5 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

WEBS

NOTES

1)

2)

TOP CHORD

BOT CHORD

this design

DOL=1.60

REACTIONS (size)

TCDL

BCLL

BCDL

, ч

-4-3

(psf)

20.0

20.0

10.0

10.0

2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

6-0-0 oc purlins.

bracing.

Max Grav

Tension

0.0

10=11-10-14

(LC 15), 10=-87 (LC 14)

2-10=-7/46, 9-10=-2/46, 8-9=-2/46, 6-8=-7/46

4-9=-214/91, 3-10=-377/199, 5-8=-377/199

(Ib) - Maximum Compression/Maximum

1-2=0/17, 2-3=-54/45, 3-4=-124/96,

4-5=-124/96, 5-6=-34/45, 6-7=0/17

2=87 (LC 1), 6=87 (LC 1), 8=423

(LC 22), 9=301 (LC 21), 10=423

Max Horiz 2=52 (LC 18)

(LC 21)

Unbalanced roof live loads have been considered for

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.

II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-3 to 3-4-3, Interior (1) 3-4-3 to

3-11-0, Exterior(2R) 3-11-0 to 9-11-0, Interior (1) 9-11-0 to 10-5-13, Exterior(2E) 10-5-13 to 13-5-13 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

Wind: ASCE 7-16; Vult=130mph (3-second gust)

Spacing

Code

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 07:55:11 ID:Cx19sF4HMnJTVINoGDnTDzzRQqC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12-9-15 11-10-14 -0-11-1 5-11-7 0-11-1 0-11-1 5-11-7 5-11-7 4x5 = 4 12 6 Г 2x4 u 2x4 I 20 19 21 18 5 3 0 6 P ю 10 9 8 2x4 II 2x4 II 2x4 II 3x5 = 3x5 = 11-10-14 2-0-0 CSI DEFL l/defl L/d PLATES GRIP in (loc) Plate Grip DOL 1.15 TC 0.28 Vert(LL) n/a n/a 999 MT20 244/190 BC Lumber DOL 1 15 Vert(CT) 0.12 n/a n/a 999 Rep Stress Incr YES WB 0.07 Horz(CT) 0.00 15 n/a n/a IRC2021/TPI2014 Matrix-MSH Weight: 47 lb FT = 20%3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate Structural wood sheathing directly applied or DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10 Rigid ceiling directly applied or 10-0-0 oc 5) Unbalanced snow loads have been considered for this desian. 2=11-10-14, 6=11-10-14, 6) This truss has been designed for greater of min roof live 8=11-10-14, 9=11-10-14, load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. Max Uplift 2=-11 (LC 15), 6=-4 (LC 11), 8=-87

- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc. 8)
- 9) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) N/A

12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	PBA2	Piggyback	2	4	Job Reference (optional)	172260079

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 07:55:11 ID:m2dQdjvppkexqPVgwg5aZPzRCX1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	VLB1	Valley	1	1	Job Reference (optional)	172260080

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 07:55:11 ID:uRu6rMLa1rImrJyJNhjxxpzRQsR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	VLB2	Valley	1	1	Job Reference (optional)	172260081

9-7-5

Carter Components (Sanford, NC), Sanford, NC - 27332,

1)

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Tue Mar 25 07:55:11 ID:yJIn_UX?VSBe9dbBmLUS1zzRQsC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

18-10-8

Page: 1

19-2-10

Edenton, NC 27932

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	VLB3	Valley	1	1	Job Reference (optional)	172260082

Scale = 1:50.5 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

WEBS

NOTES

1)

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 07:55:11

Page: 1

this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 5-5-3, Exterior(2R) 5-5-3 to 11-5-3, Interior (1) 11-5-3 to 13-5-9, Exterior(2E) 13-5-9 to 16-5-9 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

and a straight SEAL 036322 G mmm March 26,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	VLB4	Valley	1	1	Job Reference (optional)	172260083

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Tue Mar 25 07:55:11 ID:CKtcSNrINSSyGdaBHoyY5SzRQro-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

GRIP

244/190

FT = 20%

- 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 1=14-5-0, 5=14-5-0, 6=14-5-0, 7=14-5-0, 8=14-5-0
- Max Horiz 1=-137 (LC 10) Max Uplift 1=-24 (LC 10), 6=-154 (LC 15), 8=-157 (LC 14) Max Grav 1=123 (LC 25), 5=99 (LC 24), 6=454 (LC 21), 7=403 (LC 24), 8=454 (LC 20) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-152/140, 2-3=-177/118, 3-4=-177/112, 4-5=-121/105

BOT CHORD 1-8=-59/126, 7-8=-59/100, 6-7=-59/100, 5-6=-59/100 WEBS 3-7=-223/0. 2-8=-374/196. 4-6=-374/195

NOTES

Scale = 1:43.4 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

TCDL

BCLL

BCDL

- Unbalanced roof live loads have been considered for 1) this design. 2)
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-2-13, Interior (1) 3-2-13 to 4-2-13, Exterior(2R) 4-2-13 to 10-2-13, Interior (1) 10-2-13 to 11-2-13, Exterior(2E) 11-2-13 to 14-5-5 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) desian.
- 6) Gable requires continuous bottom chord bearing. 7)
 - Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 8)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 9)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 10) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 24 lb uplift at joint 1, 157 lb uplift at joint 8 and 154 lb uplift at joint 6.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	VLB5	Valley	1	1	Job Reference (optional)	172260084

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 07:55:11 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

GRIP

244/190

FT = 20%

IOF CHORD	234 37 11	0.2
BOT CHORD	2x4 SP N	0.2
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural 6-0-0 oc r	l wood sheathing directly applied or ourlins.
BOT CHORD	Rigid ceil bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(size)	1=12-0-3, 5=12-0-3, 6=12-0-3, 7=12-0-3, 8=12-0-3
	Max Horiz	1=114 (LC 11)
	Max Uplift	1=-34 (LC 10), 5=-6 (LC 11), 6=-136 (LC 15), 8=-139 (LC 14)
	Max Grav	1=91 (LC 30), 5=70 (LC 24), 6=434 (LC 21), 7=259 (LC 20), 8=434 (LC 20)
FORCES	(lb) - Max	imum Compression/Maximum

0.4 OD NI- 0

Scale = 1:39.1

TCLL (roof)

Snow (Pf)

TCDL

BCLL

BCDL

LUMBER

Tension TOP CHORD 1-2=-114/101, 2-3=-218/115, 3-4=-218/115, 4-5=-88/63 BOT CHORD 1-8=-32/75, 7-8=-31/73, 6-7=-31/73, 5-6=-31/73

- WEBS 3-7=-172/0, 2-8=-401/220, 4-6=-401/220 NOTES
- Unbalanced roof live loads have been considered for this design.
- 2) Wind: AŠCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 9-0-8, Exterior(2E) 9-0-8 to 12-0-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15)
- Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 34 lb uplift at joint 1, 6 lb uplift at joint 5, 139 lb uplift at joint 8 and 136 lb uplift at joint 6.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	VLB6	Valley	1	1	Job Reference (optional)	172260085

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 07:55:11 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scolo	- 1.22	2
- NUMBER OF		-

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202 ⁻	1/TPI2014	CSI TC BC WB Matrix-MSH	0.45 0.42 0.18	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 37 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structural 9-7-6 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Max	0.2 0.2 0.3 wood shea purlins. ng directly 1=9-7-6, 3 1=90 (LC 1=-49 (LC 4=-108 (LL 1=95 (LC (LC 21) imum Com	athing directly applied applied or 6-0-0 oc l=9-7-6, 4=9-7-6 11) 21), 3=-49 (LC 20), C 14) 20), 3=95 (LC 21), 4: pression/Maximum	4) 5) d or 6) 7) 8) 9) =771 10	TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. Gable requirt Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha on the botton 3-06-00 tall b chord and an) Provide med bearing plate 1, 49 lb uplift	7-16; Pr=20.0 ps 7-16; Pf=20.0 ps 15); Pf=20.0 ps s=1.0; Rough Ca 1.10 snow loads have es continuous bol spaced at 4-0-0 c s been designed tid nonconcurrent ias been designed in chord in all area by 2-00-00 wide w by other members hanical connection capable of withs at joint 3 and 10	f (roof LL (Lum DC at B; Fully been cor ttom chor cc. for a 10.0 with any d for a liv as where vill fit betv s. on (by oth standing 4 8 lb uplift	L: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 asidered for the d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botther ers) of truss to 9 lb uplift at j at joint 4.	1.15 e e e e e his dds. Dpsf oom to oint						
TOP CHORD BOT CHORD WEBS	Tension 1-2=-114/ 1-4=-243/ 2-4=-636/	'372, 2-3=- '172, 3-4=-2 '271	114/372 243/172	LC	OAD CASE(S)	Standard									
NOTES															
 Unbalance this design 	ed roof live I	oads have	been considered for										minin	11111	
 Wind: ASC Vasd=103 II; Exp B; I and C-C E to 6-7-11, left and rig exposed;C reactions s DOL=1.60 Truss desi only. For see Stand or consult 	 CE 7-16; Vu imph; TCDL Enclosed; M Exterior(2E) Exterior(2E) ht exposed C-C for mem shown; Lum igned for wii studs expos ard Industry qualified bu	It=130mph =6.0psf; B(IWFRS (en 0-0-5 to 3-() 6-7-11 to bers and fo ber DOL=1 nd loads in sed to wind Gable End ilding desig	(3-second gust) CDL=6.0psf; h=25ff; (velope) exterior zone)-5, Exterior(2R) 3-0- 9-7-11 zone; cantilev; al left and right orces & MWFRS for .60 plate grip the plane of the trus; (normal to the face), d Details as applicabl gner as per ANSI/TPI	Cat. 9 5 fer s le, 1.							And the second s	King and a start of the start o	SEA O363 WGIN March	RO(1) L 22 EREPTION L 26,2025	Non manning.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	VLB7	Valley	1	1	Job Reference (optional)	172260086

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 07:55:11 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-2-10

Scale =	1:29.1
---------	--------

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing2-Plate Grip DOL1.Lumber DOL1.Rep Stress IncrYICodeIR	-0-0 .15 .15 ES RC2021/TPI2014	CSI TC BC WB Matrix-MP	0.26 0.26 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheat 7-2-10 oc purlins. BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 1=7-2-10, Max Horiz 1=-67 (LC Max Uplift 1=-17 (LC 4=-73 (LC Max Grav 1=105 (LC 4=530 (LC	athing directly applied or applied or 6-0-0 oc 3=7-2-10, 4=7-2-10 10) 21), 3=-17 (LC 20), 14) 20), 3=105 (LC 21), 20)	 4) TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= 5) Unbalanced 6) Gable require 7) Gable studs 8) This truss ha chord live loa 9) * This truss ha on the bottom 3-06-00 tall b chord and an 10) Provide mech bearing plate 	7-16; Pr=20.0 psf (.15); Pf=20.0 psf (.15); Pf=20.0 psf (.10; Rough Cat E .1.10 snow loads have be es continuous botto spaced at 4-0-0 oc. s been designed fo ad nonconcurrent wi as been designed fo n chord in all areas y 2-00-00 wide will by other members. hanical connection i	roof LL um DC 3; Fully een cor m chor r a 10.0 th any or a liv where fit betw (by oth nding 1	: Lum DOL=1 $J_{L}=1.15$ Plate Exp.; Ce=0.9; isidered for th d bearing. 0 psf bottom other live loac e load of 20.0 a rectangle veen the botto ers) of truss to 7 lb uplift at jo	15 s s. osf m					
 Tension TOP CHORD 1-2=-88/228, 2-3=-88 BOT CHORD 1-4=-178/151, 3-4=-1 WEBS 2-4=-419/199 NOTES 1) Unbalanced roof live loads have this design. 2) Wind: ASCE 7-16; Vult=130mph Vasd=103mph; TCDL=6.0pst; BC II; Exp B; Enclosed; MWFRS (en and C-C Exterior(2E) 0-0-5 to 3-C to 4-2-14, Ex	3/228 178/151 been considered for (3-second gust) DL=6.0psf; h=25ft; Cat. velope) exterior zone)-5, Exterior(2R) 3-0-5 7-2-14 zone; cantilever cal left and right orces & MWFRS for .60 plate grip the plane of the truss (normal to the face), 1 Details as applicable.	I, 17 ID UPIIIT LOAD CASE(S)	at joint 3 and 73 ib Standard	υριπ α	t joint 4.			Van 11111		SEA 0363	

818 Soundside Road Edenton, NC 27932

G١ mmm March 26,2025

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	VLB8	Valley	1	1	Job Reference (optional)	172260087

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 07:55:12 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4-9-13

Scale = 1:26

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202 ⁻	1/TPI2014	CSI TC BC WB Matrix-MP	0.09 0.11 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 4-9-13 oc purlins. Rigid ceiling directly bracing. (size) 1=4-9-13, Max Horiz 1=-43 (LC Max Upliff 3=-7 (LC Max Grav 1=88 (LC (LC 20)	athing directly applie applied or 6-0-0 oc 3=4-9-13, 4=4-9-13 10) 15), 4=-33 (LC 14) 20), 3=88 (LC 21), 4	5) 6) 7) 8) d or 9) 10 =292 LC	Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall th chord and ar) Provide mec bearing plate and 33 lb up DAD CASE(S)	snow loads have es continuous bot spaced at 4-0-0 o is been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w hanical connection e capable of withst lift at joint 4. Standard	been cor tom chor ic. for a 10.0 with any d for a liv as where ill fit betw n (by oth tanding 7	sidered for th d bearing.) psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss t i lb uplift at joi	nis ds.)psf om o int 3						
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: AS(Vasd=103 II; Exp B;] and C-C E exposed ; members Lumber D 3) Truss desi only. For see Stand or consult	(lb) - Maximum Com Tension 1-2=-80/102, 2-3=-80 1-4=-82/87, 3-4=-82/ 2-4=-207/95 ed roof live loads have n. CE 7-16; Vult=130mph Enclosed; MWFRS (en Enclosed; MWFRS (en Exterior(2E) zone; canti end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO igned for wind loads in studs exposed to wind lard Industry Gable Enc qualified building desig	pression/Maximum 0/102 /87 been considered for (3-second gust) CDL=6.0psf; h=25ft; velope) exterior zon lever left and right yht exposed;C-C for for reactions shown; L=1.60 the plane of the trus (normal to the face) d Details as application gner as per ANSI/TP	Cat. e s le, l 1.							UN TITUTE		SEA 0363	L 22	Norman

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 4) DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

A. GILLIN March 26,2025

A. GIL

10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	VLD1	Valley	1	1	Job Reference (optional)	172260088

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 07:55:12 ID:?VRASUfm0qfd3oFPBHC5FHzRQud-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:50.8

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.35	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.18	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.27	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 76 lb	FT = 20%
LUMBER			3)	Truss desigr	ned for wind load	s in the pl	ane of the tru	SS					
TOP CHORD	2x4 SP No.2			only. For stu	uds exposed to w	ind (norm	al to the face),					
BOT CHORD	2x4 SP No.2			see Standar	d Industry Gable	End Deta	ils as applica	ble,					
OTHERS	2x4 SP No.3			or consult qu	alified building d	esigner a	s per ANSI/TI	PI 1.					
BRACING			4)	TCLL: ASCE	7-16; Pr=20.0 p	sf (roof Ll	L: Lum DOL=	1.15					
TOP CHORD	Structural wood she	athing directly applie	d or	DOL=1.15);	I.15); Pf=20.0 ps Is=1.0; Rough Ca	r (Lum DC at B; Fully	Exp.; Ce=0.9	e 9;					
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc		Cs=1.00; Ct=	=1.10								
	bracing.		5)	Unbalanced	snow loads have	been cor	nsidered for t	his					
REACTIONS	(size) 1=16-11-6	6, 5=16-11-6, 6=16-1	1-6,	design.			al la sueda su						
	8=16-11-6	6, 9=16-11-6	() () ()	Gable requir	es continuous do	atom choi	ra bearing.						
	Max Horiz 1=161 (LC	C 11)	8)	This trues ha	spaceu al 4-0-0	00. I for a 10 i	0 pef bottom						
	Max Uplift 1=-21 (LC	2 10), 6=-183 (LC 15)	, 0)	chord live lo	ad nonconcurren	t with any	other live loa	ds					
	9=-187 (L	C 14)	9)	* This truss h	has been designe	ed for a liv	e load of 20.0	Opsf					
	Max Grav 1=123 (LC	C 25), 5=86 (LC 21),	-,	on the bottor	m chord in all are	as where	a rectangle						
	6=520 (LC	C 25), 8=496 (LC 24)	,	3-06-00 tall b	by 2-00-00 wide	vill fit betw	ween the bott	om					
	9=526 (LC	J 24)		chord and ar	ny other member	s, with BC	DL = 10.0pst	f.					
FORCES	(lb) - Maximum Com	pression/Maximum	10) Provide mec	hanical connecti	on (by oth	ers) of truss t	to					
		100/100 2 1 100/1	70	bearing plate	e capable of with	standing 2	21 lb uplift at j	oint					
TOP CHORD	1-2=-140/203, 2-3=-	108/190, 3-4=-109/1	70,	1, 187 lb upl	ift at joint 9 and 1	83 lb upli	ft at joint 6.						
	4-3=-111/210	120/121 6 9- 120/1	21 L(DAD CASE(S)	Standard								
DOT CHORD	5-6=-130/131	130/131, 0-0=-130/1	J1,										1111
WEBS	3-8=-312/0. 2-9=-39	7/221. 4-6=-396/219										White CA	D-11.
NOTES												"aTH UT	10
NULES											· · · · ·		

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: AŠCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 5-6-0, Exterior(2R) 5-6-0 to 11-6-0, Interior (1) 11-6-0 to 13-7-3, Exterior(2E) 13-7-3 to 16-7-3 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	VLD2	Valley	1	1	Job Reference (optional)	172260089

Scale = 1:43.7 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

REACTIONS (size)

TCDL

BCLL

BCDL

Page: 1

- TOP CHORD 1-2=-153/145, 2-3=-173/121, 3-4=-173/111, 4-5=-121/110 BOT CHORD 1-8=-61/127, 7-8=-61/101, 6-7=-61/101, 5-6=-61/101
- WEBS 3-7=-227/0. 2-8=-375/197. 4-6=-375/196 NOTES
- Unbalanced roof live loads have been considered for 1) this design Wind: ASCE 7-16; Vult=130mph (3-second gust) 2)
- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-3-10, Interior (1) 3-3-10 to 4-3-10, Exterior(2R) 4-3-10 to 10-3-10, Interior (1) 10-3-10 to 11-3-10, Exterior(2E) 11-3-10 to 14-6-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate arip DOL=1.60
- bearing plate capable of withstanding 24 lb uplift at joint 1, 159 lb uplift at joint 8 and 156 lb uplift at joint 6.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	VLD3	Valley	1	1	Job Reference (optional)	172260090

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Tue Mar 25 07:55:12

Page: 1

TOP CHORD

BOT CHORD

FORCES

Scale = 1:39.3 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

REACTIONS (size)

TOP CHORD BOT CHORD

TCDL

BCLL

BCDL

Unbalanced roof live loads have been considered for 1) this design.

3-7=-174/0. 2-8=-397/217. 4-6=-397/217

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 9-2-2, Exterior(2E) 9-2-2 to 12-2-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

SEAL 036322 G mmm March 26,2025

and a company

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	VLD4	Valley	1	1	Job Reference (optional)	172260091

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 07:55:12 ID:kUxM45s?bF21LX?KCRTFVAzRQqU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale	- 1	1.33 /
Judic	_	1

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.46 0.44 0.19	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 37 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 9-9-0 oc purlins. Rigid ceiling directly bracing. (size) 1=9-9-0, 3 Max Horiz 1=-91 (LC Max Uplift 1=-52 (LC (LC 20) (lb) - Maximum Com Tension 1-2=-117/382, 2-3=- 1-4=-249/175, 3-4=- 2-4=-650/275	athing directly applied applied or 6-0-0 oc 3=9-9-0, 4=9-9-0 21), 3=-52 (LC 20), C 14) 20), 3=94 (LC 21), 4= apression/Maximum 117/382 249/175	4) 5) or 6) 7) 8) 9) .788 10	TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar)) Provide mec bearing plate 1, 52 lb uplift DAD CASE(S)	7-16; Pr=20.0 p 1.15); Pf=20.0 ps Is=1.0; Rough C =1.10 snow loads have res continuous bo spaced at 4-0-0 as been designer m chord in all are by 2-00-00 wide ny other member chanical connecti e capable of with t at joint 3 and 1 ⁻¹ Standard	osf (roof LL of (Lum DC at B; Fully e been cor octom chor oc. d for a 10. it with any ed for a 10 with any ed for a 10 with the will fit betw rs. ion (by oth standing § 11 lb uplift	L: Lum DOL= DL=1.15 Plate Exp.; Ce=0. Insidered for t d bearing. 0 psf bottom other live loa other live loa e load of 20. a rectangle veen the bott ers) of truss 52 lb uplift at at joint 4.	1.15 e 9; his ads. 0psf om to joint					
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp B; I	ed roof live loads have n. CE 7-16; Vult=130mph imph; TCDL=6.0psf; Br Enclosed; MWFRS (er	been considered for (3-second gust) CDL=6.0psf; h=25ft; C ivelope) exterior zone	cat.								A LAND	OR FESS	ROLIN

- and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 6-9-5, Exterior(2E) 6-9-5 to 9-9-5 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

SEAL 036322 MGINEER March 26,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH	
25050066	VLD5	Valley	1	1	Job Reference (optional)	172260092

3-1-0

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 07:55:12 ID:CgVkHRtdMZAuzhaXm9_U1OzRQqT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

7-4-3

Scale -	1.20.3

Loading (TCLL (roof) : Snow (Pf) : TCDL BCLL BCDL	(psf)Spacing20.0Plate Grip DOL20.0Lumber DOL10.0Rep Stress Incr0.0*Code	2-0-0 1.15 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.27 0.27 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wo 7-4-3 oc purli BOT CHORD Rigid ceiling of bracing. REACTIONS (size) 1= Max Uplift 1= Max Uplift 1= 4= Max Grav 1= 4= FORCES (lb) - Maximu Tension TOP CHORD 1-2=-92/236, BOT CHORD 1-4=-184/155 WEBS 2-4=-432/204	od sheathing directly applied ins. directly applied or 6-0-0 oc 7-4-3, 3=7-4-3, 4=7-4-3 68 (LC 11) -19 (LC 21), 3=-19 (LC 20), -76 (LC 14) 105 (LC 20), 3=105 (LC 21) 545 (LC 20) m Compression/Maximum 2-3=-92/236 5, 3-4=-184/155	 4) TCLL: ASCE Plate DOL=' DOL=1.15); Cs=1.00; Ct: 5) Unbalanced design. 6) Gable requir 7) Gable studs 8) This truss has chord live lois on the botton 3-06-00 tall li chord and an 10) Provide mec bearing plate 1, 19 lb uplifi LOAD CASE(S) 	7-16; Pr=20.0 psf 1.15); Pf=20.0 psf Is=1.0; Rough Car =1.10; Rough Car =1.10 snow loads have res continuous bot spaced at 4-0-0 o as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members shanical connection e capable of withst t at joint 3 and 76 Standard	If (roof LL (Lum DC t B; Fully been cor tom chor c. for a 10.0 with any d for a liv as where ill fit betw n (by oth tanding 1 lb uplift a	L: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 Insidered for the d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 9 lb uplift at j t joint 4.	1.15 ;; ds. opsf om oint					

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 4-4-8, Exterior(2E) 4-4-8 to 7-4-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

SEAL 036322 MGINEER March 26,2025

111111

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ERENCO A Mitek Affiliate

Job	Truss	Truss Type	Qty	Ply	1015 Serenity-Roof-B326 A CP GRH					
25050066	VLD6	Valley	1	1	Job Reference (optional)	172260093				

2-5-11

2-5-11

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Tue Mar 25 07:55:12 ID:CgVkHRtdMZAuzhaXm9_U1OzRQqT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-7-4

2 - 1 - 9

4-11-6

Page: 1

OTHERS

BRACING

TOP CHORD

BOT CHORD

FORCES

WEBS

NOTES 1)

2)

3)

4)

TOP CHORD

BOT CHORD

this design.

Cs=1.00; Ct=1.10

REACTIONS (size)

2x4 SP No.3

bracing.

Max Grav

Tension

2-4=-218/101

Lumber DOL=1.60 plate grip DOL=1.60

4-11-6 oc purlins.

Max Horiz 1=44 (LC 13)

(LC 21)

1-2=-82/108, 2-3=-82/108

Unbalanced roof live loads have been considered for

Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown;

1-4=-87/91, 3-4=-87/91

Structural wood sheathing directly applied or

1=4-11-6, 3=4-11-6, 4=4-11-6

1=89 (LC 20), 3=89 (LC 21), 4=303

Rigid ceiling directly applied or 6-0-0 oc

Max Uplift 3=-7 (LC 15), 4=-35 (LC 14)

(Ib) - Maximum Compression/Maximum

						4-11-6						
Scale = 1:26.2												
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0	-									Weight: 18 lb	FT = 20%
LUMBER			5) Unbalance	d snow loads hav	e been cor	sidered for t	his					
TOP CHORD	2x4 SP No.2		design.									
BOT CHORD	2x4 SP No 2		Gable requ	ires continuous b	ottom chor	d bearing.						

Gable studs spaced at 4-0-0 oc. 7)

- This truss has been designed for a 10.0 psf bottom 8)
- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 7 lb uplift at joint 3 and 35 lb uplift at joint 4.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second way the approximation of design and the property incorporate this design into the overall building design. Bracing indicated is to prevent building of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

