

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: HH Hunt Homes Raleigh

Model: 17 Magnolia Acres Greyson FA

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death. 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

IER

	F	Revisic	ons
or.	00/00/	00	Name
ract	00/00/	00	Name
- cont	00/00/	00	Name
	00/00/	00	Name
r and			
igne	esign s for	igner Icture	sracing ive:
des	ss are ding d sheet	ng des d floor ort stru of the	isult "E frio Dr
bldg	trusse ne buil design	buildii oof an suppo sibility	lg, cor D'Oni
the	These into th	. The f the ro e tuss espons	bracin e, 583
y of	orated e Indiv	rawing cing o in of th s the r	ng the nstitut
sibilt	AM OI incorp er. Se	nent d ent bra e disig umns is	egardi Plate I
bons	IAGR to be designe	placer ermane e. Th d colu	ance r Truss
res	ENT D onents ilding o	on the and pe structur alls, ar	al guid m the
e the	ACEM compo he bui	tified o orary a erall s ms, wa	genera ole fror
s are	S PL/ vidual on of t	n iden r temp the ov s, bea	. For (availat 79
ctors	TRUS is indivicatio	ible for aderse	esigner russ" a MI 531
	S IS A gned a e spec	n truss sponsi ems ar iding h	ling de /ood T ison, V
	THIS desiç at the	each is re syste inclu	builc of W Mad
upli	e		
1, all			5
Ì	1		3
NSI/			3
_ ₽	- i		
<u> </u>			
			Ÿ.
H-SIXTEENTH			
T-INCH-SIXTEENTH			
: FOOT-INCH-SIXTEENTH			
AD AS: FOOT-INCH-SIXTEENTH			
re read as: foot-inch-sixteenth			
DNS ARE READ AS: FOOT-INCH-SIXTEENTH			
IENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH	nar		
" DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH)urham		
NDS DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH	h Durham		out
Y LOADS DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH	eigh Durham		ayout
G ANY LOADS DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH	Saleigh Durham	lia Acres	s Layout
Adding any Loads.	es Raleigh Durham	inolia Acres	uss Layout
R TO ADDING ANY LOADS.	mes Raleigh Durham	Agnolia Acres	F Truss Layout
Prior to adding any loads.	Homes Raleigh Durham	7 Magnolia Acres Grevson FA	oof Truss Layout
Ther prior to adding any loads. ["" dimensions are read as: foot-inch-sixteenth	unt Homes Raleigh Durham	17 Magnolia Acres Grevson FA	Roof Truss Layout
OGETHER PRIOR TO ADDING ANY LOADS DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH	Hunt Homes Raleigh Durham	17 Magnolia Acres Grevson FA	Roof Truss Layout
Ted together prior to adding any loads. The dimensions are read as: foot-inch-sixteenth	HH Hunt Homes Raleigh Durham	17 Magnolia Acres Grevson FA	Roof Truss Layout
NNECTED TOGETHER PRIOR TO ADDING ANY LOADS.	HH Hunt Homes Raleigh Durham	17 Magnolia Acres Grevson FA	Roof Truss Layout
LY CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH	HH Hunt Homes Raleigh Durham	17 Magnolia Acres	Roof Truss Layout
e fully connected together prior to adding any loads. "" Dimensions are read as: foot-inch-sixteenth	Hut Homes Raleigh Durham	17 Magnolia Acres	Roof Truss Layout
ust be fully connected together prior to adding any loads. The dimensions are read as: foot-inch-sixteenth	Hunt Homes Raleigh Durham	11 Magnolia Acres	Soot Lrass Layout
rs must be fully connected together prior to adding any loads. The dimensions are read as: foot-inch-sixteenth	Mate Scale: Date: Nate 25	11 Magnolia Acres Design Factors Sheet Nu Sheet Nu	Solution Roof Trass Law 25 er: aldson umber: 5-01 umber:
Sirders must be fully connected together prior to adding any loads. "" Dimensions are read as: foot-inch-sixteenth	Mate Scale: Date: Nate 25	11 Magnolia Acres Design Project Nu Sheet Nu A	Soot Luss Layout Umber: 5-01 Imber:
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Mate Scale: Date:	12 Magnolia Acres Design Project Ni 04019 Sheet Nu 14	Solution Sol

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 25040195-01 Install 17 Magnolia Acres-Roof-Greyson FA 3FL SP 3CG SL GRH

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I73186513 thru I73186540

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

May 5,2025

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-Roof-Greyson FA 3FL SP 3CG
25040195-01	A1	Attic	6	1	I73186513 Job Reference (optional)

Run; 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:22:19 ID:akxuQ4r2_j7cCheHxtTaeszQAyc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MSH	0.29 0.49 0.69	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in -0.30 -0.51 0.04 -0.23	(loc) 13-16 13-16 10 13-16	l/defl >999 >932 n/a >839	L/d 240 180 n/a 360	PLATES MT20 Weight: 384 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x6 SP 2400F 2.0E 2x10 SP 2400F 2.0E 2x4 SP No.3 *Excep 4-16,8-13,21-18,21-2 Structural wood she 5-5-4 oc purlins, exc	t* 22:2x4 SP No.2 athing directly applied rept	2) I or	Wind: ASCE Vasd=103mp II; Exp B; End and C-C Exte 3-0-13 to 6-7 (1) 17-8-14 to Interior (1) 32 40-3-8 zone; vertical left a	7-16; Vult=130mpl bh; TCDL=6.0psf; E closed; MWFRS (e erior(2E) -0-10-8 to -2, Exterior(2R) 6- 2 21-8-2, Exterior(2R) 2-9-14 to 36-4-3, E cantilever left and pd right exposed C	n (3-sec SCDL=6 nvelope 3-0-13 7-2 to 1 R) 21-8 kterior(2 right ex	ond gust) .0psf; h=25ft;) exterior zon Interior (1) 7-8-14, Interior -2 to 32-9-14 2E) 36-4-3 to posed ; end	Cat. ne or	13) Gra or th bott 14) Attio LOAD C	phical p ne orien om choi c room c CASE(S	urlin re tation o d. heckeo) Star	presentation doe of the purlin along d for L/360 deflec ndard	s not depict the size) the top and/or :tion.
BOT CHORD WEBS JOINTS REACTIONS	2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt 1 Brace at Jt(s): 19, 20, 21 (size) 2=0-3-8, 1	-0 max.): 5-7. applied or 10-0-0 oc 6-19, 6-20 10=0-3-8	3)	forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct=	FRS for reactions s ate grip DOL=1.60 7-16; Pr=20.0 psf .15); Pf=20.0 psf (I s=1.0; Rough Cat I -1.10	(roof LL um DC B; Fully	Lumber Lumber Lum DOL=1 L=1.15 Plate Exp.; Ce=0.9	I.15);					
EORCES	Max Horiz 2=-257 (L Max Grav 2=2288 (L (b) Maximum Com	C 12) .C 48), 10=2288 (LC	4) ⁴⁸⁾ 5)	4) Unbalanced show loads have been considered for this design.5) This truss has been designed for greater of min roof live									
TODOLODD				overhangs no	on-concurrent with	other liv	e loads.	ston					
TOP CHORD	1-2=0/34, 2-4=-3480 5-6=-2488/0, 6-7=-2 8-10=-3480/0, 10-11	//0, 4-5=-2640/0, 488/0, 7-8=-2640/0, =0/34	6) 7)	200.0lb AC u from left end, Provide adeo	nit load placed on , supported at two p wate drainage to p	the bott points, { revent y	om chord, 19- 5-0-0 apart. vater ponding	-8-8 1				WH CA	Rout
BOT CHORD	2-17=0/2558, 16-17= 12-13=0/2536, 10-12	=0/2536, 13-16=0/252 2=0/2558	9, 8)	This truss ha	s been designed fo	or a 10.0) psf bottom	,. do			X	ORIEESS	ON'
WEBS	16-22=0/1541, 4-22 8-18=0/1157, 19-22= 19-20=-442/1419, 18 5-19=-9/737, 7-20=- 6-19=-1563/479, 6-2 3-17=-583/39, 9-12= 9-13=-539/414	=0/1157, 13-18=0/154 =-114/39, 3-20=-114/39, 9/737, 6-21=-27/62, :0=-1563/479, 583/39, 3-16=-539/4	1, 9) 12, ¹⁰⁾	 chord live load nonconcurrent with any other live loads. 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 10) Ceiling dead load (5.0 psf) on member(s). 19-22, 19-21, 20-21, 18-20; Wall dead load (5.0psf) on member (s).16-22, 13-18 							A.	SEA 0363	L 22
NOTES			11)	Bottom chord	live load (40.0 pst) and a	dditional botto	om		5		N.ENG	-cRith S
 Unbalance this design 	d roof live loads have	been considered for	12)	chord dead lo All bearings a	bad (5.0 psf) applie are assumed to be	d only t SP 240	o room. 13-16 0F 2.0E .	ö			11	GIN	F.F. ER III

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-Roof-Greyson FA 3FL SP 3CG
25040195-01	A2	Attic Supported Gable	1	1	Job Reference (optional)

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Thu May 01 16:22:20

Page: 1

FORCES

TCDL

BCLL

BCDL

Continued on page 2

Tension

30=1508 (LC 57), 31=-111 (LC 10), 32=475 (LC 52), 33=207 (LC 44), 34=220 (LC 26), 35=190 (LC 52)

(Ib) - Maximum Compression/Maximum

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

GI minin

May 5,2025

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-Roof-Greyson FA	3FL SP 3CG
25040195-01	A2	Attic Supported Gable	1	1	Job Reference (optional)	1/3186514
Carter Components (Sanford, NC), Sanford, NC - 27332		Run: 8 73 S Eeb 19 2	025 Print: 8	730 S Eeb 19	9 2025 MiTek Industries, Inc. Thu May 01 16:22:20	Page: 2

ID:_Jd136txHeVB38Msc?1HGUzQAyZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Carter Components (Sanford, NC), Sanford, NC - 27332,

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding. 7)
- All plates are 2x4 MT20 unless otherwise indicated. 8)
- 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 12) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf. 13) Ceiling dead load (5.0 psf) on member(s). 37-39, 38-39, 38-40, 36-40; Wall dead load (5.0psf) on member (s).30-37, 27-36
- 14) All bearings are assumed to be SP 2400F 2.0E .
- 15) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 161 lb uplift at joint 20, 190 lb uplift at joint 2, 995 lb uplift at joint 31, 29 lb uplift at joint 32, 91 lb uplift at joint 33, 71 lb uplift at joint 34, 80 lb uplift at joint 35, 995 lb uplift at joint 26, 30 lb uplift at joint 25, 91 lb uplift at joint 24, 72 lb uplift at joint 23 and 79 lb uplift at joint 22.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 17) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Page: 2

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-Roof-Greyson FA 3FL SP 3CG
25040195-01	A3	Attic	8	1	I73186515 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:22:20

ID:99Gmo3oAiol2LDviFlwt0DzQAyf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 0-10-8 12-2-0 27-10-12 6-2-7 27-3-0 33-2-9 11-6-4 19-8-8 39-5-0 5-3-13 0-7-12 6-2-7 0-7-12 7-6-8 7-6-8 5-3-13 6-2-7 3x6 II $8 \times 10 =$ 3x6 II 5x8= 8x10= 5 2**2**930 6 31 323 7 8 16 1-0 12 10 20 19 821 8x10 🍫 8x10 2x4= 5x6 II 5x6 35^{36³} 37 38 5x6 II 9₃₉ 10-10-1 11-5-9 8-1-14 40 41 34 10 0-6-0 Ιł ł 16 15 14 13 12 11 8x10= 3x6 II 8x10= 8x10= 8x10= 3x6 II 5x8= 5x8= 11-6-4 27-10-12 33-2-9 39-5-0 6-2-7 6-2-7 5-3-13 16-4-8 5-3-13 6-2-7 Scale = 1:75.6 [2:0-3-9,0-2-8], [3:0-5-0,0-4-8], [4:0-0-9,0-0-12], [5:0-8-0,0-3-12], [7:0-8-0,0-3-12], [8:0-0-9,0-0-12], [9:0-5-0,0-4-8], [10:0-3-9,0-2-8], [12:0-3-8,0-6-8], [15:0-3-8,0-6-8], [10:0-3-9,0-2-8], [10:0-3-9,0-2-8], [10:0-3-9,0-2-8], [10:0-3-9,0-2-8], [10:0-3-9,0-2-8], [10:0-3-9,0-2-8], [10:0-3-9,0-2-8], [10:0-3-8,0-6-8], [10:0-3-9,0-2-8], [10:0-3-9,0-2-8], [10:0-3-9,0-2-8], [10:0-3-9,0-2-8], [10:0-3-9,0-2-8], [10:0-3-8,0-6-8], [10:0-3-8,0-6-8], [10:0-3-9,0-2-8], [10:0-3-9,0-2-8], [10:0-3-8,0-6-8,0-6-8], [10:0-3-8,0-6-8,0-6-8,0-6-8,0-6-8,0-6-8,0-6-8], [10:0-3-8,0-6-8,0-6-8,0-6-8,0-6-8,0-6-8,0-6-8,0-6-8, Plate Offsets (X, Y): [19:0-3-0,0-1-12], [21:0-3-0,0-1-12] DEFL 2-0-0 CSI PLATES GRIP Loading (psf) Spacing in (loc) l/defl I/d TCLL (roof) 20.0 Plate Grip DOL тс Vert(LL) -0.30 12-15 244/190 1.15 0.26 >999 240 MT20 20.0 Lumber DOL 1.15 BC 0.43 Vert(CT) -0.45 >999 180 Snow (Pf) 12-15 TCDI Rep Stress Incr YES WB 10.0 0.64 Horz(CT) 0.04 10 n/a n/a BCLL 0.0 Code IRC2021/TPI2014 Matrix-MSH Attic -0.23 12-15 >839 360 BCDL 10.0 Weight: 381 lb FT = 20% LUMBER 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) 14) Attic room checked for L/360 deflection. 2x6 SP 2400F 2.0E Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. TOP CHORD LOAD CASE(S) Standard II; Exp B; Enclosed; MWFRS (envelope) exterior zone BOT CHORD 2x10 SP 2400F 2.0E and C-C Exterior(2E) -0-10-8 to 3-0-7, Interior (1) 3-0-7 2x4 SP No.3 *Except* WEBS to 6-7-10, Exterior(2R) 6-7-10 to 17-8-6, Interior (1) 20-17,20-18,4-15,8-12:2x4 SP No.2 17-8-6 to 21-8-10, Exterior(2R) 21-8-10 to 32-9-6, Interior (1) 32-9-6 to 35-6-1, Exterior(2E) 35-6-1 to Structural wood sheathing directly applied or 39-5-0 zone; cantilever left and right exposed ; end 5-7-9 oc purlins, except

BRACING TOP CHORD vertical left and right exposed;C-C for members and 2-0-0 oc purlins (6-0-0 max.): 5-7. forces & MWFRS for reactions shown; Lumber BOT CHORD Rigid ceiling directly applied or 10-0-0 oc DOL=1.60 plate grip DOL=1.60 bracing. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) WEBS 1 Row at midpt 6-19.6-21 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 1 Brace at Jt(s): 19, JOINTS DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 20, 21 Cs=1.00: Ct=1.10 REACTIONS (size) 2=0-3-8, 10=0-3-8 Unbalanced snow loads have been considered for this 4) Max Horiz 2=251 (LC 11) design. Max Grav 2=2188 (LC 48), 10=2144 (LC 48) 5) This truss has been designed for greater of min roof live FORCES (Ib) - Maximum Compression/Maximum load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on Tension overhangs non-concurrent with other live loads. TOP CHORD 5-6=-2349/52, 6-7=-2349/53, 1-2=0/34, Provide adequate drainage to prevent water ponding. 6) 2-4=-3284/0, 4-5=-2523/86, 7-8=-2523/86, 7) All plates are 8x10 MT20 unless otherwise indicated. 8-10=-3285/0 This truss has been designed for a 10.0 psf bottom 8) BOT CHORD 2-16=-38/2446, 15-16=-45/2428, chord live load nonconcurrent with any other live loads. 12-15=0/2379, 11-12=0/2431, 10-11=0/2449 * This truss has been designed for a live load of 20.0psf 9) WEBS 18-21=-110/44, 19-21=-408/1453. on the bottom chord in all areas where a rectangle 17-19=-109/43, 15-18=0/1409, 4-18=0/1047. 3-06-00 tall by 2-00-00 wide will fit between the bottom 12-17=0/1410. 8-17=0/1047. 7-19=-26/719. chord and any other members. 6-20=-23/66, 5-21=-27/719, 6-19=-1591/451, 10) Ceiling dead load (5.0 psf) on member(s). 18-21, 20-21, 6-21=-1591/451, 3-16=-500/119, 19-20, 17-19; Wall dead load (5.0psf) on member 9-11=-494/128, 3-15=-585/356, (s).15-18, 12-17 9-12=-600/361 11) Bottom chord live load (40.0 psf) and additional bottom NOTES chord dead load (5.0 psf) applied only to room, 12-15 12) All bearings are assumed to be SP 2400F 2.0E Unbalanced roof live loads have been considered for 1) this design.

12) An beamings are assumed to be SF 2400F 2.0E. 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-Roof-Greyson FA 3FL SP 3CG
25040195-01	A4	Attic Girder	2	2	Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:22:21 ID:99Gmo3oAiol2LDviFlwt0DzQAyf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:86.4		0.1.11	0010		
Plate Offsets (X, Y): [6:0-8-0,0-5-4], [7:0-3-0,0-2-12]	, [9:0-3-0,0-2-1	12], [10:0-8-0,0-5-4]	, [17:0-7-12,Edge], [20:0-7-12,0-2-8],	[24:0-3-8,0-2-8], [25:0-3-8,0-2-8]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2021	/TPI2014	CSI TC BC WB Matrix-MSH	0.18 0.31 0.76	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in -0.17 -0.29 0.04 -0.11	(loc) 17-20 17-20 14 17-20	l/defl >999 >999 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 857 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x6 SP 2400F 2.0E 2x10 SP 2400F 2.0E 2x4 SP No.3 *Excep 2400F 2.0E Structural wood she 6-0-0 oc purlins, exc	t* 6-23,23-10:2x6 Si athing directly applic	WE P ed or	BS	3-22=-348/103, 3-2 5-21=-534/161, 6-2 5-20=-232/3412, 10 10-16=-879/72, 11- 13-16=-155/322, 13 5-24=-2980/378, 24 10-25=-3793/543, 8 7-24=-199/1670, 9-2 3-25=-2014/351, 8-2 5-25=-2014/351,	1=-131/ 1=-364/ -17=-4 16=-11/ -15=-3 -25=-2 -23=-1/ 25=-32 24=-14	340, 1068, 74/3906, 3/231, 31/135, 157/258, 3/126, 4/2277, 7//335		 This load ove 8) Pro 9) This cho 10) * Thomas and a second sec	s truss h d of 12.0 rhangs r vide ade s truss h ord live lo his truss the botto 6-00 tall	as bee psf or non-col quate as bee ad nor has be m cho by 2-0	n designed for g 1.00 times flat r ncurrent with oth drainage to prev in designed for a nconcurrent with een designed for rd in all areas wi 0-00 wide will fit	reater of min pof load of 20 ier live loads. 'ent water poi i 10.0 psf botti any other live a live load of here a rectan between the	roof live 1.0 psf on hding. tom e loads. ² 20.0psf gle bottom
BOT CHORD JOINTS REACTIONS FORCES	2-0-0 oc purlins (6-0) Rigid ceiling directly bracing. 1 Brace at Jt(s): 23 (size) 2=0-3-8, Max Horiz 2=251 (LC Max Uplift 2=-574 (L 17=-2469 Max Grav 2=4664 (I 17=755 (I (b) - Maximum Com	-U max.): 7-9. applied or 10-0-0 or [4=0-3-8, 17=0-3-8 C 58) C 12), 14=-504 (LC (LC 40) C 46), 14=4272 (LC C 9) ppression/Maximum	c NO 1) 12), 246), 2)	TES 2-ply truss to (0.131"x3") n Top chords of staggered at Bottom chord staggered at Web connect All loads are except if note CASE(5) sec	be connected toge ails as follows: connected as follow 0-9-0 oc. 3s connected as foll 0-9-0 oc. ted as follows: 2x4 considered equally ed as front (F) or ba stion. Plv to plv con	ther wi s: 2x6 - ows: 2: - 1 row applied ck (B) f	th 10d 2 rows x10 - 2 rows at 0-8-0 oc. d to all plies, face in the LC s have been	DAD	11) Cei 23- (s). 12) Bot cho 13) All 14) Pro bea 2, 2	ord and a ling dead 25, 10-29 6-20, 10- tom choi ord dead bearings vide med aring plat 2469 lb u	ny oth d load 5; Wal -17 rd live l load (5 are as chanica e capa plift at	(5.0 psf) on men ll dead load (5.0 load (40.0 psf) a 5.0 psf) applied (ssumed to be SF al connection (b) ible of withstand joint 17 and 504	between the betropy of the second se	23-24, ber bottom 17-20 uss to lift at joint int 14.
TOP CHORD BOT CHORD	 (lb) - Maximum Compression/Maximum Tension RD 1-2=0/34, 2-3=-6667/823, 3-5=-6741/890, 5-6=-6935/1016, 6-7=-3522/500, 7-8=-3111/433, 8-9=-2579/357, 9-10=-3456/454, 10-11=-6132/922, 11-13=-6279/876, 13-14=-6208/785 RD 2-22=-709/5227, 21-22=-709/5227, 20-21=-596/5089, 17-20=-601/5180, 16-17=-589/5075, 15-16=-549/4735, 14-15=-549/4735 			 provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 						SEAL				
	5) TC Pla DC Cs 6) Un de				7-16; Pr=20.0 psf (.15); Pf=20.0 psf (L s=1.0; Rough Cat F =1.10 snow loads have be	(roof LL .um DC 3; Fully een cor	:: Lum DOL= ⁻ DL=1.15 Plate Exp.; Ce=0.9 nsidered for th	1.15); nis	O36322					

G 1111111 May 5,2025

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 1/2/2023 BEFORE USE Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-Roof-Greyson FA 3FL SP 3CG
25040195-01	A4	Attic Girder	2	2	I73186516 Job Reference (optional)

- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 16) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.
- 17) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 2759 Ib down and 557 lb up at 11-6-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

18) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15

Uniform Loads (lb/ft)

- Vert: 1-7=-60, 7-9=-60, 9-14=-60, 20-26=-20, 17-20=-30, 17-29=-20, 6-24=-10, 23-24=-10,
- Drag: 6-20=-10, 10-17=-10

23-25=-10, 10-25=-10

- Concentrated Loads (lb)
- Vert: 20=-2759 (F)

Run; 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:22:21 ID:99Gmo3oAiol2LDviFlwt0DzQAyf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust structure Bucking Component Advancement and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-Roof-Greyson FA 3FL SP 3CG
25040195-01	A5	Attic Supported Gable	1	1	Job Reference (optional)

19-8-8

7-6-8

12-2-0

8x10=

Carter Components (Sanford, NC), Sanford, NC - 27332,

-0-10-8

0-10-8

11-6-4

11-6-4

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:22:21

Page: 1 ID:6YOWDkqQEQ?maX34N9yL5ezQAyd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 27-10-12 27-3-0 39-5-0 0-7-12 7-6-8 11-6-4 0-2-8 H 5x8= 8x10= 12 13 ħ t 14

Scale = 1:80.5

Plate Offsets (X, Y): [10:0-8-0,0-3-12], [12:0-8-0,0-3-12], [38:0-3-0,0-1-12], [39:0-3-0,0-1-12]

Loading		(psf)	Spacing	1-11-4		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.20	Vert(LL)	n/a	-	n/a	999	MT20	244/190)
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.16	Vert(CT)	n/a	-	n/a	999			
TCDL		10.0	Rep Stress Incr	YES		WB	0.54	Horz(CT)	0.01	20	n/a	n/a			
BCU		0.0*	Code	IRC202	1/TPI2014	Matrix-MSH		(01)							
BCDI		10.0	0000	1110202									Weight: 410 II	6 FT - 20	%
BODL		10.0											Weight. 410 h	<u> </u>	70
LUMBER				Т	OP CHORD	10-11=-595/246, 1	1-12=-5	95/246, 1-2=0	0/33,	3) Tru	ss desig	ned fo	r wind loads in	the plane of	the truss
TOP CHORD	2x6 SP 24	400F 2.0E				2-3=-805/303, 3-4=	=-816/30	00, 4-5=-817/2	294,	onl	/. ⊢orsi	uds ex	kposed to wind	(normal to the	he face),
BOT CHORD	2x10 SP 2	2400F 2.0E				5-7=-823/290, 7-8=	-806/28	32, 8-9=-708/2	268,	see	Standa	rd Indi	ustry Gable End	Details as	applicable,
WEBS	2x4 SP N	o.3 *Excep	t* 35-37,37-36:2x4 S	P		9-10=-943/316, 12-	-13=-94	3/316,				ualifie	a building desig	ner as per A	ANSI/TPT1.
	No.2					13-14=-708/268, 14	4-15=-8	06/241,		4) IC	LL: ASC		; Pr=20.0 psr (r	DOT LL: LUM	1 DOL=1.15
OTHERS	2x4 SP N	0.3				15-17=-823/250, 1	7-18=-8	17/204,		Pia		1.15);	PI=20.0 psr (Lu	m DOL=1.1	15 Plate
BRACING				Б		10 - 19 = -810/200, 1300/040, 200/000, 200/000, 200/0000, 200/000, 200/000, 200/0000, 200/0	9-20=-8	04/203		00	L=1.15)	IS=1.0	J; Rough Cat B;	Fully Exp.;	Ce=0.9;
TOP CHORD	Structura	l wood shea	athing directly applied	dor ^B	UT CHURD	2-34=-200/612, 33-	-34=-20	0/612,			=1.00; C	l=1.10	laada haya hay		ad far thia
	6-0-0 oc p	ourlins, exc	ept			32-33=-200/012, 3	1-32=-20	00/612,		5) UII	Jalanced	1 SHOW	loaus nave bee	en considere	
	2-0-0 oc p	ourlins (6-0	-0 max.): 10-12.			26 20- 200/614 2	5 26- 1	00/012,		G) Thi	nyn. Etruce b	ac ha	on designed for	greater of n	nin roof livo
BOT CHORD	Rigid ceil	ing directly	applied or 10-0-0 oc			20-29=-200/014, 20	3-20=-1	99/012,			d of 12 (as Det	1 00 times flat	roof load of	20.0 pef on
	bracing.					27-23-100/612,2	1-221	99/612			rhange		ncurrent with of	ther live loa	de 20.0 p31 011
WEBS	1 Row at	midpt	29-35, 26-36, 11-38,			20-21-199/612	1 22- 1	55/012,		7) Pro	vide ade		drainage to pre	went water	nondina
			11-39	M	/FBS	29-35=-412/123 9-	35-44	1/134		8) All	nlates a	- 2x4	MT20 unless of	herwise ind	licated
JOINTS	1 Brace a	at Jt(s): 37,		•	200	26-36=-412/92 13-	36=-44	1/108		9) Gal	nle requi	res co	ntinuous botton	a chord bea	rina
	38, 39					35-38=-17/7 38-39)=-405/1	465 36-39=-	17/7	10) Ga	nle stude	snac	ed at 2-0-0 oc	i onora boa	inig.
REACTIONS	(size)	2=39-5-0,	20=39-5-0, 21=39-5	-0,		5-32=-180/97.4-33	3=-149/1	00. 3-34=-11	8/79.	11) Thi	s truss h	as her	en designed for	a 10.0 nsf h	oottom
		22=39-5-0	, 23=39-5-0, 24=39-	5-0,		14-25=-161/147. 1	5-24=-1	97/102.	-, ,	chc	rd live lo	ad no	nconcurrent wit	h any other	live loads
		25=39-5-0	, 26=39-5-0, 29=39-	5-0,		17-23=-184/97. 18-	-22=-14	9/99.		0.110				in any outor	
		30=39-5-0	0, 31=39-5-0, 32=39-	5-0,		19-21=-119/80, 8-3	80=-158	/145,							
	Marcal Landar	33=39-5-0	0, 34=39-5-0			7-31=-197/101, 11-	-37=-19	7,						1111	
	Max Horiz	2=243 (LC	, 11) 0.40) 00 457 (10.4			10-38=-105/358, 12	2-39=-1	04/358,					111110	10'11	
	Max Uplift	2=-183 (L	C 10), 20=-157 (LC 1	1), -\		11-38=-1545/427, ⁻	11-39=-	1545/428				-	N'TH U	ARO	11,
		21=-88 (L	C 15), 22=-67 (LC 15	o), -, N	OTES							S	A STE	ci:	1.1.
		23=-89 (L	LC 15), 24=-29 (LC 15), ···	Unbalanced	roof live loads have	e been (considered fo	or			22	1000	SIGN	No.
		23=-904 (C 1 4) 22- 99 (LC 14	ZI), ''	this design.						Z	7)		1º	11-
		31=-20 (L	C 14), 32=-00 (LC 14 C 14) 24- 79 (LC 14	+), 1) 2	Wind: ASCE	7-16: Vult=130mp	h (3-sec	cond aust)			-		:4		· -
	Max Gray	33=-09 (L	(14), 34 = 70 (10 14)	+) ·	Vasd=103m	oh; TCDL=6.0psf; E	BCDL=6	.0psf; h=25ft;	; Cat.		-		SE	ΔΙ	: =
	wax Grav	2=003 (LC	(10, 20=370) (10 41)), (2)	II; Exp B; En	closed; MWFRS (e	envelope	e) exterior zor	ne		=		UL/		
		23=202 (L	(200, 22 = 210)	(<u>4</u>)	and C-C Cor	ner(3E) -0-10-8 to	3-0-7, E	xterior(2N) 3	-0-7		=		036.	322	÷ =
		25=-104 ((C 11) 26=1460 (I C)	37)	to 8-3-1, Co	ner(3R) 8-3-1 to 16	6-0-15, I	Exterior(2N)				(•		÷ 3
		29=1460 (LC 39), 30=-108 (LC	: 10).	16-0-15 to 2	3-4-1, Corner(3R) 2	23-4-1 to	o 31-1-15,				1	1. A.		1 E -
		31=460 (L	C 52), 32=196 (LC 4	4).	Exterior(2N)	31-1-15 to 35-6-1,	Corner	(3E) 35-6-1 to)			11	A.SNO.	IFFR.	んご
		33=213 (L	C 26), 34=184 (LC 5	j2)	39-5-0 zone	cantilever left and	right ex	posed ; end				1	P. GIN	VE	13
FORCES	(lb) - Max	imum Com	pression/Maximum	,	vertical left a	nd right exposed;C	C-C for n	nembers and				1	ICA.	CILBE	11
0.1020	Tension		p. ccolor, maximum		forces & MW	FRS for reactions	shown;	Lumber					11, 4. (JILIN	
	. 0100011				DOL=1.60 p	late grip DOL=1.60	1							IIIII.	

May 5,2025

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-Roof-Greyson FA 3FL SP 3CG
25040195-01	A5	Attic Supported Gable	1	1	I73186517 Job Reference (optional)

- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Ceiling dead load (5.0 psf) on member(s). 35-38, 37-38, 37-39, 36-39; Wall dead load (5.0psf) on member (s).29-35, 26-36
- 14) All bearings are assumed to be SP 2400F 2.0E .
- 15) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 157 lb uplift at joint 20, 183 lb uplift at joint 2, 88 lb uplift at joint 32, 69 lb uplift at joint 33, 78 lb uplift at joint 34, 964 lb uplift at joint 25, 29 lb uplift at joint 24, 89 lb uplift at joint 23, 67 lb uplift at joint 22, 88 lb uplift at joint 21, 964 lb uplift at joint 30 and 28 lb uplift at joint 31.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 17) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:22:21 ID:6YOWDkqQEQ?maX34N9yL5ezQAyd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-Roof-Greyson FA 3FL SP 3CG
25040195-01	C1	Common Supported Gable	1	1	I73186518 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:22:21 ID:pT_IJ9yitUGLn3q?yG8hVlzQAyT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11 16:22:21 Page: 1 4zJC?f

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-Roof-Greyson FA 3FL SP 3CG
25040195-01	C2	Common	6	1	I73186519 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:22:22 ID:pT_IJ9yitUGLn3q?yG8hVlzQAyT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:43.5

Plate Offsets (X, Y); [2:Edge.0-0-11], [6:Edge.0-0-11]

	s (; (; ;): [<u>=:=ag</u> e;e e ::]; [0:20g0;0 0 : :]												
L oading TCLL (roof) Snow (Pf) TCDL 3CLL 3CDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-MSH	0.71 0.75 0.26	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.25 0.05	(loc) 8-10 8-10 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 93 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHOR 30T CHOR WEBS 3RACING TOP CHOR 30T CHOR REACTION FORCES TOP CHOR 30T CHOR MEBS	 D 2x4 SP No.2 D 2x4 SP No.2 2x4 SP No.3 D Structural wood she 2-11-6 oc purlins. D Rigid ceiling directly bracing. S (size) 2=0-3-8, (Max Horiz 2=-63 (LC Max Uplift 2=-136 (L Max Grav 2=976 (LC (Ib) - Maximum Com Tension D 1-2=0/17, 2-3=-2105 4-5=-1809/361, 5-6= D 2-10=-312/1947, 8-1 6-8=-312/1947 4-8=-50/621, 5-8=-4 3-10=-451/169 	athing directly applie applied or 10-0-0 or 5=0-4-8 : 15) C 10), 6=-136 (LC 1 C 21), 6=976 (LC 22 pression/Maximum 5/407, 3-4=-1809/36 :-2105/407, 6-7=0/1 0=-178/1246, 51/169, 4-10=-50/62	3) ed or 5) 5 1) 7) 1, 9) 7 21, LC	TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar All bearings One H2.5A S recommende UPLIFT at jt(and does no PAD CASE(S)	5 7-16; Pr=20.0 psf .15); Pf=20.0 psf (1s=1.0; Rough Cat =1.10 snow loads have b is been designed fa psf or 1.00 times flion-concurrent with is been designed fa d nonconcurrent with is been designed fa d nonconcurrent with as been designed fa ad nonconcurrent with is been designed for a chord in all areas by 2-00-00 wide will by other members. are assumed to be simpson Strong-Tie ed to connect truss (s) 2 and 6. This cot t consider lateral for Standard	(roof Ll Lum DC B; Fully eeen cor or great at roof le other li or a 10. vith any for a li's s where I fit betw SP No. conne to bear nnectio prces.	:: Lum DOL= DL=1.15 Plate Exp.; Ce=0.1 asidered for t er of min rool bad of 20.0 p ve loads. 0 psf bottom other live load e load of 20.0 a rectangle veen the bott 2. ctors ing walls due n is for uplift	1.15 9; his f live sf on ads. Opsf om e to only						
NOTES 1) Unbalar this desi	iced roof live loads have gn.	been considered for	r								and a	HTH CA	ROLIN	

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 7-11-8, Exterior(2R) 7-11-8 to 13-11-8, Interior (1) 13-11-8 to 19-9-8, Exterior(2E) 19-9-8 to 22-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 SEAL 036322

May 5,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-Roof-Greyson FA 3FL SP 3CG
25040195-01	D1	Common Supported Gable	1	1	Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:22:22 ID:INDNI7sxfmKHKbpFYUuj1uzQBP_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

20-7-0

Scale = 1:68.7

Plate Offsets (X, Y): [8:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	0-11-4 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MR	0.19 0.13 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 148 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shi 6-0-0 oc purlins, e: Rigid ceiling directl bracing. 1 Row at midpt (size) 16=20-7: 19=20-7: 23=20-7: 26=20-7: Max Horiz 26=-136 Max Uplift 16=35 (18=-19 (20=-2 (L 23=-7.1 (eathing directly applied kcept end verticals. y applied or 10-0-0 oc 7-22, 9-20 0, 20=20-7-0, 18=20-7 0, 24=20-7-0, 25=20-7 0 (LC 12) LC 13), 17=-133 (LC 1 LC 15), 19=-72 (LC 15 C 15), 22=-4 (LC 14), LC 14), 24=-19 (LC 14)	BO WE f or 7-0, 2) 7-0, 5),),	T CHORD 2 2 2 2 2 2 2 2 2 2 2 1 1 5 BS 7 3 3 1 TES Unbalanced r this design. Wind: ASCE Vasd=103mp II; Exp B; Enc and C-C Corr to 7-3-8, Corr to 7-3-8, Corr to 18-3-8, Co left and right exposed;C-C reactions sho	(174, (174,	4, //85, rr ; Cat. ne -3-8 3-3-8 ver	 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 13) All bearings are assumed to be SP No.2. 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 26, 35 lb uplift at joint 16, 4 lb uplift at joint 22, 71 lb uplift at joint 24, 133 lb uplift at joint 25, 2 lb uplift at joint 20, 72 lb uplift at joint 19, 19 lb uplift at joint 18 and 133 lb uplift at joint 17. LOAD CASE(S) Standard 							
FORCES TOP CHORD	Max Grav 16=165 (18=96 (L 20=172 (23=88 (L 25=125 ((lb) - Maximum Cor Tension 2-26=-130/42, 1-2= 3-4=-107/53, 4-6=- 7-8=-80/43, 8-9=-81 10-12=-76/35, 12-1 13-14=-187/83, 14-	(LC 28), 17=124 (LC 2) (LC 28), 19=88 (LC 22), (LC 26), 19=88 (LC 22), (LC 6), 22=172 (LC 5), (C 21), 24=96 (LC 30), (LC 25), 26=167 (LC 2) npression/Maximum 0/20, 2-3=-190/86, 78/39, 6-7=-68/35, 0/43, 9-10=-68/32, 3=-105/49, 15=0/20, 14-16=-129/4	2) 3) 7) 4) 5) 6) 41 7) 8) 9)	Truss design only. For stu- see Standard or consult qua TCLL: ASCE Plate DOL=1 DOL=1.15); I: Cs=1.00; Ct= Unbalanced design. This truss have load of 12.0 p overhangs no All plates are Gable require Truss to be fu	ed for wind loads in ds exposed to wind Industry Gable En alified building desi 7-16; Pr=20.0 psf (L s=1.0; Rough Cat E 1.10 snow loads have be s been designed fo bef or 1.00 times fla on-concurrent with 2x4 MT20 unless of se continuous botto ully sheathed from o st lateral movemen	a the plat I (norm d Deta gner as (roof LL um DC 3; Fully een cor r greate t roof k other lin otherwi m chor one fac t (i.e. d	ane of the tru al to the face ills as applical is per ANSI/TF s; Lum DOL=: DL=1.15 Plate Exp.; Ce=0.5 asidered for the er of min roof bad of 20.0 pi re loads. se indicated. d bearing. e or securely iagonal web)	ss), ble, Pl 1. 1.15 9; his live sf on		A contraction		SEA 0363	L L L L L B L B L B L H L L L L L L L L	

- Gable requires continuous bottom chord bearing. 8)
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

May 5,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-Roof-Greyson FA 3FL SP 3CG
25040195-01	D2	Common	2	1	I73186521 Job Reference (optional)

Run; 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:22:22 ID:a0TK?u2j_yGCkIRYQxHaqRzQAyL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale =	1.70.5
	1.70.0

Loading TCLL (roof) Snow (Pf)	(psf) 20.0 20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC	0.82 0.50	DEFL Vert(LL) Vert(CT)	in -0.08 -0.11	(loc) 11-13 11-13	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 244/190
BCLL BCDL	10.0 0.0* 10.0	Code	IRC2021/TPI2014	WB Matrix-MSH	0.70	Horz(CT)	0.02	10	n/a	n/a	Weight: 149 lb	FT = 20%

LUMBER	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3 *Except* 11-5,13-5:2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
REACTIONS	(size) 10=0-3-8, 14=0-5-4
	Max Horiz 14=290 (LC 13)
	Max Uplift 10=-62 (LC 15), 14=-62 (LC 14)
	Max Grav 10=976 (LC 6), 14=976 (LC 5)
FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=0/43, 2-3=-377/131, 3-5=-1091/242,
	5-7=-1090/244, 7-8=-356/131, 8-9=0/43,
	2-14=-381/137, 8-10=-366/137
BOT CHORD	13-14=-114/783, 11-13=-11/529, 10-114/723
WEBS	5-11170/538 7-11260/274
WEBO	5-13-170/541 3-13-262/274
	3-14=-798/32 7-10=-804/31
	o

NOTES

Unbalanced roof live loads have been considered for 1) this design.

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 7-3-8, Exterior(2R) 7-3-8 to 13-3-8, Interior (1) 13-3-8 to 18-5-8, Exterior(2E) 18-5-8 to 21-5-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this desian.
- This truss has been designed for greater of min roof live 5) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 8) All bearings are assumed to be SP No.2.
- One H2.5A Simpson Strong-Tie connectors 9) recommended to connect truss to bearing walls due to UPLIFT at jt(s) 14 and 10. This connection is for uplift only and does not consider lateral forces.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-Roof-Greyson FA 3FL SP 3CG
25040195-01	D3	Common	3	1	Job Reference (optional)

Run; 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:22:22 ID:2C1iCE3LIFO3MS0k_fopMezQAyK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:70.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.82	Vert(LL)	-0.08	9-11	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.50	Vert(CT)	-0.11	9-11	>999	180			
TCDL	10.0	Rep Stress Incr	YES	WB	0.72	Horz(CT)	0.02	8	n/a	n/a			
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH									
BCDL	10.0										Weight: 147 lb	FT = 20%	
() Underson answinger answinger for this													

LUWIDER	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3 *Except* 9-5,11-5:2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	2-2-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(size) 8=0-3-8, 12=0-5-4
	Max Horiz 12=282 (LC 11)
	Max Uplift 8=-54 (LC 14), 12=-62 (LC 14)
	Max Grav 8=924 (LC 6), 12=977 (LC 5)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/43, 2-3=-377/131, 3-5=-1092/242,
	5-6=-1094/245, 6-7=-323/98, 2-12=-381/137,
	7-8=-297/92
BOT CHORD	11-12=-130/772, 9-11=-21/518, 8-9=-20/717
WEBS	5-9=-171/544, 6-9=-266/276, 5-11=-170/541,
	3-11=-262/274, 3-12=-799/32, 6-8=-840/54
NOTES	

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 7-3-8, Exterior(2R) 7-3-8 to 13-3-8, Interior (1) 13-3-8 to 17-5-4, Exterior(2E) 17-5-4 to 20-5-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 8)
- All bearings are assumed to be SP No.2 .
- One H2.5A Simpson Strong-Tie connectors 9) recommended to connect truss to bearing walls due to UPLIFT at jt(s) 12 and 8. This connection is for uplift only and does not consider lateral forces. LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Statu Information** available from the Structural Building Component Advection and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-Roof-Greyson FA 3FL SP 3CG
25040195-01	D4-2	Common Girder	1	2	I73186523 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:22:22 ID:WOb4Qa3zWZWw_bbwYMJ2vszQAyJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:70.1

Plate Offsets (X, Y):	[7:0-3-8,Edge],	[10:0-4-0,0-3-0]
-----------------------	-----------------	------------------

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.86	DEFL Vert(LL)	in -0.01	(loc) 9-10	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190	
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.17	Vert(CT)	-0.03	9-10	>999	180			
TCDL	10.0	Rep Stress Incr	NO		WB	0.20	Horz(CT)	0.01	8	n/a	n/a			
BCLL	0.0*	Code	IRC202	/TPI2014	Matrix-MSH									
BCDL	10.0											Weight: 296 lb	FT = 20%	
LUMBER			3)	Unbalanced	roof live loads have	e been	considered fo	r	Со	oncentra	ted Loa	ads (lb)		
TOP CHORE	2x4 SP No.2 *Except	t* 5-7:2x4 SP No.1		this design.						Vert: 16	=-3 (B)	1		
BOT CHORE	2x4 SP No.2		4)	Wind: ASCE	7-16; Vult=130mp	h (3-seo	cond gust)							
WEBS	2x4 SP No.3 *Excep	t* 10-5:2x4 SP No.2		Vasd=103mp	ph; TCDL=6.0psf; E	BCDL=6	0.0psf; h=25ft;	Cat.						
BRACING				II; Exp B; En	closed; MWFRS (e	nvelope	e) exterior zor	ne;						
TOP CHORE	O Structural wood sheat 5-9-13 oc purlins. ex	athing directly applie xcept end verticals.	d or	right expose	cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60									
BOT CHORE	 Rigid ceiling directly bracing. 	applied or 10-0-0 oc	5)	TCLL: ASCE	7-16; Pr=20.0 psf	(roof Ll	L: Lum DOL=1	1.15						
REACTIONS	s (size) 8=0-3-8, 1	2=0-5-4		Plate DOL=1	I.15); PI=20.0 pSI (I Ic=1.0: Rough Cat		Evp : Co-0 0) .						
	Max Horiz 12=282 (L	-C 9)		Cs=1.00 Ct=	=1.10, Rough Cat	B, Fully	Exp., Ce=0.8	,						
	Max Uplift 8=-213 (Le	C 12), 12=-82 (LC 12	²⁾ 6)	6) Unhalanced snow loads have been considered for this										
	Max Grav 8=1987 (L	.C 20), 12=1058 (LC	19)),	design.										
FORCES	(lb) - Maximum Com	pression/Maximum	7)	This truss has been designed for greater of min roof live										
	Tension		,	load of 12.0	psf or 1.00 times fla	at roof l	oad of 20.0 ps							
TOP CHORE	0 1-2=0/43, 2-3=-1113	6/142, 3-5=-917/234,		overhangs n	on-concurrent with	other liv	ve loads.							
	5-6=-969/241, 6-7=-2	2041/225,	8)	This truss ha	as been designed fo	or a 10.	0 psf bottom							
	2-12=-1008/110, 7-8	=-1933/240		chord live loa	ad nonconcurrent w	vith any	other live loa	ds.						
BOT CHORE	2 11-12=-288/363, 9-1 8-9=-127/564	1=-112/1026,	9)	* This truss h on the bottor	nas been designed m chord in all areas	for a liv where	e load of 20.0 a rectangle)psf						
WEBS	5-10=-213/812, 6-10 3-10=-315/214 3-11	=-786/283, 6-9=0/16 =0/152 2-11=0/617	5,	3-06-00 tall t	by 2-00-00 wide wil	l fit betv	veen the botto	om				minin	1111	
	7-9=0/468	,,	10) All bearings	are assumed to be	SP No	2					N'TH CA	Roille	
NOTES			11) Provide mec	hanical connection	(by oth	ers) of truss to	0			- N	R	· · · ·	1
1) 2-ply true	s to be connected toget	ther with 10d		bearing plate	e capable of withsta	andina 2	13 lb uplift at	ioint			1	FESS	S. V	11
(0 131"x	3") nails as follows:			8 and 82 lb u	plift at joint 12.	5				2		10 12	22	4
Top cho	ds connected as follows	: 2x4 - 1 row at 0-9-0) 12) Hanger(s) or	other connection of	device(s) shall be			-		ie.	× •	-
OC.				provided suff	ficient to support co	oncentra	ated load(s) 2	7 lb				CEA	i i	-
Bottom o	hords connected as follo	ows: 2x4 - 1 row at		down at 17-	7-12 on bottom cho	ord. Th	e design/seleo	ction		=	:	SEA	- :	1
0-9-0 oc				of such connection device(s) is the responsibility of $= 0.36322$										2
Web cor	nected as follows: 2x4 -	1 row at 0-9-0 oc.		others.					-	i (*				
2) All loads	are considered equally	applied to all plies,	LC	AD CASE(S)	Standard						1		5	
except if	noted as front (F) or bac	ck (B) face in the LO	AD 1)	Dead + Sno	ow (balanced): Lum	nber Inc	rease=1.15, F	Plate			21	N.ENO.	ERIX	3
CASE(S) section. Ply to ply conn	ections have been		Increase=1	.15						1	S, GIN	A. A.	N.
provided	to distribute only loads	noted as (F) or (B),		Uniform Lo	ads (lb/ft)						1	C A	BEN	
unless o	therwise indicated.			Vert: 1-2	=-60, 2-5=-60, 5-15	5=-60, 7	-15=-310,					11, A. G	ILLIN	
				8-12=-20)							in min	1111.	

May 5,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-Roof-Greyson FA 3FL SP 3CG
25040195-01	E1	Common Supported Gable	1	1	Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:22:22 ID:h1sZHd5sBbjb6Wmv9zkBJvzQBOh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scal	ما	_	1.1	71	1
JUCI		_		/ 1	

Plate Offsets (X, Y): [9:0-2-8,Edge], [15:0-5-0,0-1-4]

Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(lo	c)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.37	Vert(LL)	n/a		-	n/a	999	MT20	244/190
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.28	Vert(CT)	n/a		-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES		WB	0.19	Horz(CT)	0.01		17	n/a	n/a		
BCLL		0.0*	Code	IRC20	21/TPI2014	Matrix-MR									
BCDL		10.0												Weight: 162 lb	FT = 20%
LUMBER				T	OP CHORD	2-28=-426/190. 1-2:	=0/43.	2-3=-539/245.		5)	Unba	lanced	snow	loads have been	considered for this
TOP CHORD	2x4 SP N	0.2				3-4=-358/164, 4-5=-	256/12	27, 5-7=-174/8	9.	- /	desig	n.			
BOT CHORD	2x4 SP N	0.2			-	7-8=-150/72, 8-9=-1	73/83,	9-10=-174/83	,	6)	This t	russ h	as bee	en designed for g	reater of min roof live
WEBS	2x4 SP N	0.3				10-11=-151/49, 11- ⁻	13=-16	6/67,		,	load o	of 12.0	psf or	1.00 times flat ro	oof load of 20.0 psf on
OTHERS	2x4 SP N	0.3				13-14=-219/90, 14- ⁻	15=-40	9/192, 15-16=	0/43,		overh	angs r	ion-co	ncurrent with oth	er live loads.
BRACING						15-17=-281/82				7)	All pla	ates ar	e 2x4	MT20 unless oth	erwise indicated.
TOP CHORD	Structura	l wood she	athing directly applied	dor E	BOT CHORD	27-28=-138/387, 26	-27=-1	38/387,		8)	Gable	e requi	res co	ntinuous bottom	chord bearing.
	6-0-0 00	nurlins ex	cent end verticals		:	25-26=-138/387, 24	-25=-1	38/387,		9)	Truss	to be	fully sl	heathed from one	face or securely
BOT CHORD	Rigid ceil	ing directly	applied or 10-0-0 oc		:	23-24=-138/387, 21	-23=-1	38/387,			brace	d agai	nst lat	eral movement (i	.e. diagonal web).
	bracing.				:	20-21=-138/387, 19	-20=-1	38/387,		10)	Gable	e studs	space	ed at 2-0-0 oc.	
WEBS	1 Row at	midpt	8-23, 10-21			18-19=-138/387, 17	-18=-1	38/387		11)	This t	russ h	as bee	en designed for a	10.0 psf bottom
REACTIONS	(size)	17=21-11	-0 18=21-11-0	V	VEBS	8-23=-254/68, 7-24=	=-170/1	64,			chord	live lo	ad noi	nconcurrent with	any other live loads.
	(0.20)	19=21-11	-0. 20=21-11-0.			5-25=-157/118, 4-20	5=-164	/127,		12)	* This	truss	has be	en designed for	a live load of 20.0psf
		21=21-11	-0. 23=21-11-0.			3-27=-170/245, 10-2	21=-25	2/50,			on the	e botto	m cho	rd in all areas wh	ere a rectangle
		24=21-11	-0, 25=21-11-0,			11-20=-174/172, 13	-19=-1	36/78,			3-06-	uu tali	by 2-0	0-00 wide will fit	between the bottom
		26=21-11	-0, 27=21-11-0,			14-18=-230/247				40)	cnoro	and a	ny otn	er members, witr	BCDL = 10.0pst.
		28=21-11	-0	N	IOTES					13)	All be	anngs	are as	ssumed to be SP	N0.2 .
	Max Horiz	28=-302 (LC 12)	1) Unbalanced	roof live loads have	been	considered for							
	Max Uplift	17=-41 (L	C 13), 18=-281 (LC 1	15),	this design.	7 40 14 400 1	(0								
		19=-27 (L	C 15), 20=-154 (LC 1	15), ²	 Wind: ASCE Via al ASCE 	7-16; Vult=130mpr	1 (3-sec	cond gust)	0-1						
		21=-7 (LC	15), 23=-27 (LC 14)	,	Vasd=103m	on; TCDL=6.0pst; B		0.0pst; n=25tt;	Cat.						11.
		24=-131 (LC 14), 25=-96 (LC 1	14),	ii, Exp B, Eii	closed, IVIVERS (el		ytorior(2NI) 2	10						
		26=-81 (L	C 14), 27=-402 (LC 1	14),	to 7-11-8 C	rner(3P) - 7-11-8 to	13-11-0, L	B Exterior(2N))					IN TH UA	ROUL
		28=-215 (LC 12)		13-11-8 to 1	9-9-8 Corner(3E) 1	0_0_8 t/	22-9-8 zone					N	A	D. LAN
	Max Grav	17=356 (L	.C 28), 18=314 (LC 2	26),	cantilever lef	t and right exposed	· end v	ertical left and	, d			/	22	Y OFESO	PN. Si
		19=183 (L	.C 26), 20=193 (LC 2	22),	right expose	d C-C for members	and for	rces & MWFR	S			4	0		any
		21=361 (L	.C 6), 23=363 (LC 5)	,	for reactions	shown: Lumber DC)L=1.6) plate grip	•			-	10	- Q-	N
		24=191 (L	.C 21), 25=220 (LC 2	(5),	DOL=1.60			- France 3. F						SEA	1 1 =
		20=210 (L	C 25), 27=230 (LC 1	^{2),} 3	 Truss design 	ed for wind loads in	the pl	ane of the trus	s			=	:	JLA	5. : E
500050	(11-)	20=095 (L	.0 14)		only. For stu	uds exposed to wind	l (norm	al to the face)	,					0363	22 : =
FORCES	(ID) - Max	amum Com	pression/iviaximum		see Standar	d Industry Gable En	d Deta	ils as applicat	ole,			=	3		
	Tension				or consult qu	alified building desi	gner a	s per ANSI/TP	YI 1.			-	-	A	
				4) TCLL: ASCE	7-16; Pr=20.0 psf	(roof Ll	.: Lum DOL=1	.15				10	N. SNOW	-FR. A S
					Plate DOL=1	1.15); Pf=20.0 psf (L	um DC	DL=1.15 Plate					1	A. GIN	St. AN
					DOL=1.15);	Is=1.0; Rough Cat E	3; Fully	Exp.; Ce=0.9	;				1	CA O	II BEIN
					Cs=1.00; Ct=	=1.10								11, A. G	11- IIII
															(friest)

May 5,2025

Page: 1

818 Soundside Road Edenton, NC 27932

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeR% connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the SCH trust in the prevent collapse in the providence from the Structure Building Company the prevent prevents on the prevent of the prevent of the prevent for the Structure Building Company to the prevent on the prevent of the structure Building Company to the prevent of and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-Roof-Greyson FA 3FL SP 3CG
25040195-01	E1	Common Supported Gable	1	1	I73186524 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:22:22 ID:h1sZHd5sBbjb6Wmv9zkBJvzQBOh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 215 lb uplift at joint 28, 41 lb uplift at joint 17, 27 lb uplift at joint 23, 131 lb uplift at joint 24, 96 lb uplift at joint 25, 81 lb uplift at joint 26, 402 lb uplift at joint 27, 7 lb uplift at joint 21, 154 lb uplift at joint 20, 27 lb uplift at joint 19 and 281 lb uplift at joint 18.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-Roof-Greyson FA 3FL SP 3CG
25040195-01	G1	Roof Special Supported Gable	1	1	Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:22:22 ID:wjwtwWel8MGilBfNc3vE1XzQCNF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:35.1

Plate Offsets (X, Y): [2:0-0-13,0-0-13], [10:0-1-13,0-0-13]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MSH	0.09 0.07 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 55 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 Left 2x4 SP No.2 No.3 1-6-13 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=13-11-(12=13-11 14=13-11 16=13-11 18=13-11 Max Horiz 2=30 (LC Max Uplift 2=-44 (LC 12=-43 (L 18=-46 (L 18=-46 (L Max Grav 2=223 (LC 12=275 (L 14=47 (LC (LC 7), 17 (LC 21)	1-6-13, Right 2x4 SP athing directly applied applied or 10-0-0 oc 0, 10=13-11-0, -0, 13=13-11-0, -0, 15=13-11-0, -0, 17=13-11-0, -0 14) C 10), 10=-52 (LC 11), C 10), 17=-29 (LC 10) C 14) C 21), 10=223 (LC 22) C 22), 13=187 (LC 2) C 7), 15=87 (LC 1), 16 '=187 (LC 21), 18=275	1) 2) l or 3) 4)), 5)), 6) 5=47 5 7)	Unbalanced I this design. Wind: ASCE Vasd=103mp II; Exp B; End and C-C Corr to 3-11-8, Co 9-11-8 to 11- cantilever left right exposed for reactions DOL=1.60 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced s design. This truss has load of 12.0 p overhangs no All plates are	roof live loads have 7-16; Vult=130mpt h; TCDL=6.0psf; B closed; MWFRS (en- er(3E) -0-10-8 to 2 mer(3R) 3-11-8 to 9-8, Corner(3E) 11 and right exposed (;C-C for members shown; Lumber DC ed for wind loads in ds exposed to wind loads exposed to wind loads exposed to wind 1 ndustry Gable En- alified building desi 7-16; Pr=20.0 psf (L se-1.0; Rough Cat E 1.10 snow loads have be s been designed for soft or 1.00 times fla on-concurrent with 2x4 MT20 unless of a continuous botto	a been of (3-sec (CDL=6 nvelope 2-1-8, E 9-11-8, -9-8 to ; end v and for DL=1.60 a the platic (norm DC 3; Fully een corr or greated to rook lock of the troof lock of the other live other live other live other live other live	considered fo ond gust) .0psf; h=25ft; .0 exterior zor xterior(2N) 2: Exterior(2N) 4 Exterior(2N) 4 .0 plate grip ane of the true al to the face; .0 plate grip ane of the true al to the face; .0 plate grip ane of the true al to the face; .1 separation .1 sepa	r ; Cat. ne -1-8 d SS), ble, PI 1. 1.15 2; his f live sf on	13) Prov bear 2, 5; at jo 43 lt at jo 14) Bev surfa 12. LOAD C	vide mee ring plat 2 Ib uplit int 17, 2 o uplift a int 10. eled pla ace with ASE(S)	chanicc e capa t at joi 6 lb u t joint te or s truss Star	al connection (by able of withstandii nt 10, 10 lb uplift olift at joint 18, 30 12, 44 lb uplift at him required to p chord at joint(s) 1 ndard	others) of truss to ng 44 lb uplift at joint at joint 15, 29 lb uplift I b uplift at joint 13, joint 2 and 52 lb uplift rovide full bearing I6, 14, 15, 17, 18, 13,	
FORCES	(lb) - Maximum Com Tension 1-2=0/17, 2-4=-86/3 5-6=-79/104, 6-7=-7 9 10 - 96/29 10 11-	pression/Maximum 8, 4-5=-74/70, 9/104, 7-8=-74/70,	9) 10) 11)	Gable studs s This truss has chord live loa * This truss h	spaced at 2-0-0 oc. s been designed fo d nonconcurrent w as been designed	ith any for a liv) psf bottom other live load e load of 20.0	ids. Opsf		111111		SEA 0363	L 22	
BOT CHORD	2-18=-4/56, 17-18=- 15-16=-2/49, 14-15= 12-13=-4/51, 10-12= 6-15=-86/52, 5-17=- 7-13=-166/118, 9-12	// 17 3/51, 16-17=-4/52, 2/49, 13-14=-3/52, 3/56 166/118, 4-18=-198/1 2198/111	12 <u>)</u> 11,	on the botton 3-06-00 tall b chord and an All bearings a	n chord in all areas y 2-00-00 wide will y other members. are assumed to be	where fit betw SP No.	a rectangle veen the botto 2 .	om				A C A GIN	EERAK	
NOTES	7-13=-100/110, 0-12	.=-1-30/111										A. G		

May 5,2025

Page: 1

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-Roof-Greyson FA 3FL SP 3CG
25040195-01	G2	Roof Special	5	1	I73186526 Job Reference (optional)

0-6-0

Page: 1

1-0-5

Run; 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:22:22 ID:koBRvJuPkJSVJfwSz1ohWTzQCOD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 0-10-8 14-9-8 6-11-8 13-11-0 6-11-8 6-11-8 0-10-8 0-10-8 4x5 = 12 3 Г 4 T 3x5 **≈** 3x5 = 20 21 22 ₅ 3 19 φ. ۴ I 6 10 7 10 9 8 3x5 = Ř _| 2 12 3x6 🛛 3x5 = 5x8 II 5x8 II 7-5-10 13-11-0 0-3-8 6-11-8 6-5-6 13-7-8 0-3-8 6-1-14 6-1-14 0-6 0-6-2

Scale = 1:35.6

2-5-14

Plate Offsets (X, Y): [2:0-3-10,0-2-1], [6:0-3-10,0-2-1]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.75 0.74 0.26	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.14 -0.26 0.12	(loc) 10-13 8-17 6	l/defl >999 >634 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 53 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 30T CHORD WEBS SLIDER BRACING TOP CHORD 30T CHORD REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.1 *Excep 2x4 SP No.3 Left 2x4 SP No.3 2 2-0-0 Structural wood shee 2-8-10 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 6 Max Horiz 2=31 (LC Max Uplift 2=-96 (LC Max Grav 2=715 (LC (lb) - Maximum Com Tension 1-2=0/18, 2-4=-1879 6-7=0/18 2-10=-578/1797, 9-1 8-9=-565/1772, 6-8= 4.0=-10/(627	t* 10-8:2x4 SP No.2 2-0-0, Right 2x4 SP N athing directly applied applied or 7-9-15 oc 5=0-3-8 14) 10), 6=-96 (LC 11) 2 21), 6=715 (LC 22) pression/Maximum /670, 4-6=-1879/670 0=-565/1772, -578/1797	3) No.3 4) 5) d or 6) 7) 8) 9) 9)	TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss ha the bottor 3-06-00 tall th chord and ar All bearings Bearing at jo using ANSI/ designer sho 0) One H2.5A S recommende UPLIFT at jtt	57-16; Pr=20.0 psf 1.15); Pf=20.0 psf (L 1.5); Pf=20.0 psf (L); P	(roof LL .um DC 3; Fully een cor r greatu t roof lo other lin r a 10.0 ith any for a liv where fit betw SP No. s paralle formula of bearin connee to bearin	L: Lum DOL= UL=1.15 Plate Exp.; Ce=0.9 asidered for the er of min roof pad of 20.0 pse re loads. D psf bottom other live load e load of 20.0 a rectangle reen the botton 1. el to grain vala a. Building ng surface. stors ng walls due n is for uplift of store store	1.15 a) b); his f live sf on ds. Opsf om lue to only						
NOTES 1) Unbalance this desigr 2) Wind: ASC	ed roof live loads have CE 7-16; Vult=130mph	been considered for (3-second gust)	L	and does no DAD CASE(S)	Standard	ces.				4	AL AND	ORTH CA	ROLL	7

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 3-11-8, Exterior(2E) 3-11-8 to 9-11-8, Interior (1) 9-11-8 to 11-9-8, Exterior(2E) 11-9-8 to 14-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-Roof-Greyson FA 3FL SP 3CG
25040195-01	H1	Monopitch	4	1	I73186527 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:22:23 ID:ZHIL71hiKmUf9UsX4SW6vIzKqp8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [5:0-2-12,0-2-0], [7:0-2-0,0-1-

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.60 0.31 0.56	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.04 -0.05 0.02	(loc) 6-10 6-10 1	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 87 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASG Vasd=103 II; Exp B; and C-C E 8-2-12, E> left and rig exposed; reactions : DOL=1.60 (2) TCLL: AS Plate DOL DOL=1.15 CS=1.00; (3) Unbalanco (cs; 1.00; 1.15) CS=1.00; (3) NUNBALANCO (cs; 1.15) CS=1.00; (3) NUNB	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. 1 Row at midpt (size) 1=0-3-8, 5 Max Horiz 1=346 (LC Max Uplift 5=-150 (LI Max Grav 1=492 (LC (lb) - Maximum Com Tension 1-3=-378/105, 3-4=-2 1-6=-276/483, 5-6=- 3-6=0/255, 3-5=-521 CE 7-16; Vult=130mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (en Exterior(2E) 0-0-10 3-6 terior(2E) 0-0-10 3-6 terior(2E) 0-0-10 3-6 terior(2E) 0-0-10 3-6 (terior(2E) 0-0	1-6-0 athing directly applied cept end verticals. applied or 10-0-0 oc 4-5 5=0-3-8 C 13) C 14) C 20), 5=599 (LC 20) pression/Maximum 242/214, 4-5=-235/10 132/478 //230 (3-second gust) CDL=6.0psf; h=25ft; 0 velope) exterior zone 0-0, Interior (1) 3-0-0 -2-12 zone; cantileve cal left and right orces & MWFRS for 1.60 plate grip roof LL: Lum DOL=1. um DOL=1.15 Plate b; Fully Exp.; Ce=0.9; een considered for this otherwise indicated.	5) This truss chord live 6) * This trus on the bot 3-06-00 ta chord and d or 7) All bearing 8) One H2.5/ recommer UPLIFT at does not c LOAD CASE() 03 Cat. et to er	has been designed load nonconcurrent is has been designee com chord in all area ll by 2-00-00 wide w any other members is are assumed to bu A Simpson Strong-Ti ded to connect truss jt(s) 5. This connect onsider lateral force 5) Standard	for a 10. with any d for a liv is where ill fit betv e SP No. ie conne s to bear tion is for s.	D psf bottom other live loz e load of 20. a rectangle veen the bott 2 . ctors ing walls due r uplift only a	ads. Opsf om e to nd		A sector s		SEA 0363	L 22 EER HL BER HU BER HU BER HU H BER HU H S 2025	Nava and Andrews

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-Roof-Greyson FA 3FL SP 3CG				
25040195-01	H2	Jack-Closed	4	1	I73186528 Job Reference (optional)				

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:22:23 ID:43D5zr6SLviwC83?b1pUTmzKqQ3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:62.2

Plate Offsets (X, Y): [8:Edge,0-6-6]

Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MSH	0.67 0.31 0.50	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.06 0.01	(loc) 6-7 6-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0											Weight: 82 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Except Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly a bracing. 1 Row at midpt 4 (size) 6= Mechar Max Horiz 8=364 (LC Max Uplift 6=-137 (LC Max Grav 6=596 (LC	* 5-6:2x4 SP No.2 athing directly applie cept end verticals. applied or 9-11-3 oc 5-6 nical, 8=0-3-8 ; 11) C 11), 8=-12 (LC 14) ; 21), 8=544 (LC 21)	4) 5) d or 6) 5 7) 8) 9)	This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss f on the bottor 3-06-00 tall b chord and ar Bearings are Refer to gird Provide mec bearing plate 6.) One H2.5A S	s been designed for ops or 1.00 times fla on-concurrent with s been designed for ad nonconcurrent w has been designed n chord in all areas by 2-00-00 wide wil by other members. assumed to be: Jo er(s) for truss to tru- hanical connection e capable of withsta Simpson Strong-Tie	or greate at roof le other liv or a 10.0 vith any for a liv s where l fit betw bint 8 SF uss conre (by oth anding 1	er of min rooi pad of 20.0 p (e loads.) psf bottom other live loa e load of 20. a rectangle veen the bott P No.2 . nections. ers) of truss 37 lb uplift a ctors	f live lisf on ads. 0psf om to t joint						
FORCES	(lb) - Maximum Comp	pression/Maximum	10,	recommende	ed to connect truss	to bear	ng walls due	e to						
TOP CHORD BOT CHORD WEBS	2-8=-495/130, 1-2=0/ 3-5=-239/202, 5-6=-2 7-8=-346/558, 6-7=-1 2-7=-169/241, 3-7=0/	/39, 2-3=-533/78, 243/100 129/434 /252, 3-6=-461/212	LO	does not con	s) 8. This connecti sider lateral forces Standard	on is tor								
NOTES													11.	
1) Wind: AS(Vasd=103 II; Exp B; and C-C E to 7-0-5, E and right 6	CE 7-16; Vult=130mph imph; TCDL=6.0psf; BC Enclosed; MWFRS (env Exterior(2E) -0-10-8 to 2 Exterior(2R) 7-0-5 to 11- exposed : end vertical le							4	int	ORTH CA	ROLIN	7		

 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

C for members and forces & MWFRS for reactions

shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Unbalanced snow loads have been considered for this design.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-Roof-Greyson FA 3FL SP 3CG
25040195-01	J1	Monopitch	1	1	I73186529 Job Reference (optional)

-0-10-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:22:23 ID:2C1iCE3LIFO3MS0k_fopMezQAyK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:36.6

Loading TCLL (roof)		(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.09	DEFL Vert(LL)	in 0.00	(loc) 8-13	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.07	Vert(CT)	0.00	8-13	>999	180		
TCDL		10.0	Rep Stress Incr	YES		WB	0.05	Horz(CT)	0.00	6	n/a	n/a		
BCLL		0.0*	Code	IRC202	1/TPI2014	Matrix-MP								
BCDL		10.0											Weight: 26 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p Rigid ceilir bracing. (size) Max Horiz Max Uplift	.2 .2 .3 wood shea urlins. og directly 2=5-4-8, 6 2=85 (LC 2=-48 (LC (LC 10), 8	athing directly applie applied or 10-0-0 oc =5-4-8, 7=5-4-8, 8= 13) 10), 6=-7 (LC 11), 7 =-44 (LC 14)	3) d or 5) 5-4-8 6) 7) 2=-27 8)	TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 j overhangs n Gable studs This truss ha chord live loa * This truss ha on the bottor	7-16; Pr=20.0 psf .15); Pf=20.0 psf (I s=1.0; Rough Cat I .10 snow loads have b s been designed for soft or 1.00 times fla on-concurrent with spaced at 2-0-0 oc. s been designed for d nonconcurrent w as been designed no chord in all areas	(roof LL Lum DC B; Fully een cor or great at roof k other liv. or a 10.0 vith any for a liv. where	:: Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9 asidered for the er of min roof pad of 20.0 ps re loads. 0 psf bottom other live loac e load of 20.0 a rectanole	.15 ; live live of on ds. psf					
	Max Grav	2=263 (LC 7=161 (LC	21), 6=23 (LC 21), 21), 8=268 (LC 21)		3-06-00 tall b	y 2-00-00 wide will	fit betv	veen the botto	m					
FORCES	(lb) - Maxir Tension	num Com	pression/Maximum	9)	All bearings a	are assumed to be	SP No.	2.						
TOP CHORD	1-2=0/25, 2 4-5=-32/35	2-3=-108/1 5, 5-6=-23/	31, 3-4=-45/47, 8											
BOT CHORD	2-8=-133/1	45, 7-8=-2	25/37, 6-7=-25/37											
WEBS	3-8=-210/1	61, 4-7=-1	135/120	10		Standard								
NOTES					DAD CASE(S)	Stanuaru								
 Wind: ASC Vasd=103 II; Exp B; and C-C E to 2-10-4, left and rig exposed; reactions DOL=1.6C Truss des only. For see Stand or consult 	CE 7-16; Vult Bmph; TCDL= Enclosed; MI Exterior(2E) Exterior(2E) ght exposed; C-C for memt shown; Lumb) igned for win studs expose lard Industry qualified buil	=130mph 6.0psf; BC WFRS (en 0-10-8 to 2 2-10-4 to : end vertic bers and fo ber DOL=1 d loads in d to wind Gable Enc lding desig	(3-second gust) CDL=6.0psf; h=25ft; velope) exterior zono 2-1-8, Interior (1) 2-1 5-10-4 zone; cantilev al left and right proces & MWFRS for .60 plate grip the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP	Cat. e -8 ver s , le, I 1.							1	2 Martin Contraction of the second se	SEA 0363	L 22 BER LI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva 818 Soundside Road Edenton, NC 27932 and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GI minim May 5,2025

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-Roof-Greyson FA 3FL SP 3CG
25040195-01	J2	Monopitch	9	1	I73186530 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:22:23 ID:2C1iCE3LIFO3MS0k_fopMezQAyK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:35.1

Plate Offsets (X, Y): [4:0-2-8,0-1-0]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI201	CSI TC BC WB Matrix-MP	0.61 0.40 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.10 0.00	(loc) 4-9 4-9 2	l/defl >999 >676 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS DTHERS BRACING TOP CHORD BOT CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 2=0-3-0, 4 Max Horiz 2=83 (LC Max Uplift 2=-70 (LC Max Grav 2=419 (LC	athing directly applie sept end verticals. applied or 10-0-0 or l=0-1-8 13) - 10), 4=-38 (LC 14) - 21), 4=-281 (LC 21	5) This tru chord li 6) * This t on the l 3-06-00 chord a d or 7) Bearing SP No. 8) Bearing using A designe 9) Provide bearing 10) One H2	ss has been designed ve load nonconcurrent uss has been designe bottom chord in all are tall by 2-00-00 wide v tall by 2-00-00 wide v tall by 2-00-00 wide v tall by 2-00-00 wide v tall by 2-00-00 wide tall by 2-00-00 wi	I for a 10.0 t with any ad for a liv as where will fit betw s. Joint 2 SF s parallel t ain formula ty of beari on (by oth	 psf bottom other live loa other live load of 20.0 a rectangle veen the botti No.2, Joint o grain value a. Building ng surface. ers) of truss in 	ads. Opsf om t 4 to	sf				
FORCES	(lb) - Maximum Com Tension 1-2=0/25, 2-3=-120/ ² 2-4=-129/143	pression/Maximum	UPLIFT and do LOAD CAS	at jt(s) 2 and 4. This is not consider lateral E(S) Standard	connection forces.	n is for uplift	only					
NOTES I) Wind: AS(Vasd=103 II; Exp B; I and C-C E to 2-8-8, E	CE 7-16; Vult=130mph imph; TCDL=6.0psf; B(Enclosed; MWFRS (en ixterior(2E) -0-10-8 to 2 ixterior(2E) 2-8-8 to 5-6	(3-second gust) CDL=6.0psf; h=25ft; velope) exterior zon 2-1-8, Interior (1) 2-1 3-8 zone; cantilever	Cat. e I-8 left							- All	ORTH CA	ROLUI

and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate

- Plate DOL=1.15); PI=20.0 pst (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

SEAL 036322 A. GILBER May 5,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-Roof-Greyson FA 3FL SP 3CG
25040195-01	K1	Common	4	1	I73186531 Job Reference (optional)

Run; 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:22:23 ID:RfEQRnUjqIVKHVjqqK8CV0zKqix-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

16-7-8

8-4-0

8-3-8

8-3-8

Loading	(psf)	Spacing	2-0-0 1 15		CSI	0.35	DEFL	in -0.09	(loc)	l/defl	L/d	PLATES	GRIP
Spow (Bf)	20.0		1.15			0.33	Vert(LL)	-0.09	6.9	>999	100	11120	244/190
	20.0	Ron Stross Incr	VES			0.03		-0.10	6-0	>999	n/o		
BCU	0.0*	Code	IRC2021	/TPI2014	Matrix-MSH	0.40	1012(01)	0.01	0	n/a	11/a		
BCDL	10.0	Code	11(02021	/11/2014	Matrix-Mort							Weight: 105 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 6=0-3-8, 9 Max Horiz 9=-198 (L1 Max Uplift 6=-43 (LC Max Grav 6=-717 (LC (lb) - Maximum Com Tension	athing directly appli cept end verticals. applied or 10-0-0 o 0=0-3-0 C 10) 15), 9=-43 (LC 14) C 21), 9=715 (LC 20 pression/Maximum	4) 5) ed or ^{(C} 7) 8) 9)	Unbalanced design. This truss ha chord live loc * This truss f on the botton 3-06-00 tall i chord and ai All bearings Provide mec Dearing plate One H2.5A S recommender UPLIFT at jt and does no	snow loads have as been designed ad nonconcurrent nas been designed n chord in all are yo 2-00-00 wide v yo other members are assumed to to thanical connection at joint(s) 9. Simpson Strong- ad to connect trus (s) 9 and 6. This is t consider lateral Standard	e been con t for a 10.0 t with any ed for a livinas where will fit betw s. pe SP No on (by other Tie connection forces.	usidered for t opsf bottom other live loa e load of 20. a rectangle veen the bott 2. ers) of truss ctors ng walls due h is for uplift	his ads. Opsf to to e to only					
TOP CHORD	1-2=-227/70, 2-3=-64 4-5=-204/84, 1-9=-22	43/153, 3-4=-645/1 24/74, 5-6=-207/74	52,		etandalu								
BOT CHORD	8-9=-85/515, 6-8=-13	3/520											
WEBS	2-8=-204/180, 3-8=-8 2-9=-651/86 4-6=-65	88/453, 4-8=-208/18 52/55	81,										
NOTES	2 0 00 100, 10-00												
1) Unbalance	ed roof live loads have	been considered fo	or										1

- 1 this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 5-3-8, Exterior(2R) 5-3-8 to 11-3-8, Interior (1) 11-3-8 to 13-5-12, Exterior(2E) 13-5-12 to 16-5-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

CAR OR annunun. SEAL 036322 G minim

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-Roof-Greyson FA 3FL SP 3CG
25040195-01	L1	Flat Girder	1	2	I73186532 Job Reference (optional)

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:22:23 ID:yqTcpC9zP8CMhmNmqttQdbzKqQ?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:59.1

Loading TCLL (roof) Snow (Pf)	(psf) 20.0 20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15 NO		CSI TC BC	0.81 0.15	DEFL Vert(LL) Vert(CT)	in -0.02 -0.04	(loc) 5-6 5-6	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC2021	/TPI2014	Matrix-MP	0.56	1012(01)	0.00	4	n/a	n/a	Weight: 188 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	 2x4 SP No.1 2x6 SP 2400F 2.0E 2x4 SP No.3 2-0-0 oc purlins (6-0 end verticals. Rigid ceiling directly bracing. 1 Pow at midpt 	-0 max.): 1-3, excep applied or 10-0-0 oc 1-6-3-4	3) t 4)	Wind: ASCE Vasd=103mp II; Exp B; Encantilever lefright exposed TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct=	7-16; Vult=130mpl h; TCDL=6.0psf; E closed; MWFRS (e t and right exposed t; Lumber DOL=1.6 7-16; Pr=20.0 psf (15); Pf=20.0 psf (l s=1.0; Rough Cat 1.10	h (3-sec 3CDL=6 envelope d ; end v 60 plate (roof LL Lum DC B; Fully	cond gust) .0psf; h=25ft exterior zor rertical left an grip DOL=1. :: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9	; Cat. he; id 60 1.15 ;	Ur Cc	hiform Lo Vert: 1-3 oncentra Vert: 7= (B), 14=	bads (II 3=-60, ted Loa -658, 9 -576 (I	o/ft) 4-6=-20 ads (lb) 9=-655, 10=-655, 3), 15=-576 (B), 7	12=-658, 13=-577 16=-577 (B)
REACTIONS	(size) 4= Mecha Max Horiz 6=-294 (L Max Uplift 4=-545 (L Max Grav 4=2779 (L	nical, 6= Mechanical C 8) C 9), 6=-544 (LC 8) -C 1), 6=2779 (LC 1)	5) 6) 7)	Unbalanced design. Provide adec This truss ha chord live los	snow loads have b juate drainage to p s been designed fo id ponconcurrent w	peen cor prevent v pr a 10.0 with any	nsidered for th water ponding) psf bottom other live loa	nis g. ds					
FORCES	(lb) - Maximum Com Tension 1-6=-2233/439, 1-2=	pression/Maximum -745/113, 2-3=-745/ [/]	8) 113,	 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom 									
BOT CHORD WEBS	3-4=-2233/440 5-6=-256/230, 4-5=- 1-5=-426/1823, 2-5= 3-5=-426/1823	109/83 1899/161,	9) 10)	 chord and any other members. 9) Refer to girder(s) for truss to truss connections. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 544 lb uplift at joint 									
NOTES 1) 2-ply trus (0.131*x; Top chorn oc. Bottom cl staggere: Web com 2) All loads except if CASE(S) provided unless ot	s to be connected toget s") nails as follows: ds connected as follows hords connected as follows hords connected as follows: 2x4 - are considered equally noted as front (F) or bar section. Ply to ply conr to distribute only loads herwise indicated.	11)) 12) AD LO 1)	6 and 545 lb) Graphical pu or the orienta bottom chord) Hanger(s) or provided suff lb down and at 3-0-8, and 696 lb down lb down and up at 3-0-8, and 611 lb dd chord. The c (s) is the resp AD CASE(S) Dead + Snd	uplift at joint 4. rlin representation tion of the purlin a other connection of icient to support co 29 lb up at 1-0-8, i 695 lb down and and 30 lb up at 7-0-8, and 30 lb up at 7-0-8, and 610 lb down a bwn and 148 lb up lesign/selection of consibility of others Standard w (colaanced): Lum	does no long the device (s oncentra 695 lb d 29 lb up 0-8 on t , 610 lb nd 149 at 7-0-i such co s.	t depict the s top and/or) shall be ted load(s) 6 own and 29 at 5-0-8, an op chord, and down and 14 b up at 5-0-1 8 on bottom nnection dev	96 b up d d 611 9 lb 3, ice Plate		Contraction of the second seco		SEA 0363	L L L L B H B H I I I I I I I I I I I I I I I I	

- 2 except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- (s) is the responsibility of others.
- LOAD CASE(S) Standard
- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GI 1111111

May 5,2025

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-Roof-Greyson FA 3FL SP 3CG
25040195-01	PB1	Piggyback	2	1	I73186533 Job Reference (optional)

6-10-13

6-10-13

1<u>2</u> 10 ∟

26

4

5

Carter Components (Sanford, NC), Sanford, NC - 27332,

Plate Offsets (X, Y): [2:0-3-1,0-1-8], [10:0-3-1,0-1-8]

2x4 SP 2400F 2.0E

2x4 SP 2400F 2.0E

2x4 SP No.3

6-0-0 oc purlins.

Max Horiz 2=-138 (LC 12)

bracing.

Tension

10-11=0/15

(psf)

20.0

20.0

10.0

0.0

10.0

Scale = 1:43.8

Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

REACTIONS (size)

TCDL

BCLL

BCDL

6-1-13 6-3-7

0-4-13

Spacing

Code

Plate Grip DOL

Rep Stress Incr

Lumber DOL

16=261 (LC 21), 17=204 (LC 21),

18=140 (LC 30)

(lb) - Maximum Compression/Maximum

1-2=0/15, 2-3=-162/104, 3-4=-114/85,

7-8=-98/39, 8-9=-95/49, 9-10=-137/69,

2-18=-50/122, 17-18=-50/122,

16-17=-50/122, 15-16=-50/122,

14-15=-50/122, 13-14=-50/122,

12-13=-50/122, 10-12=-50/122

3-18=-124/82, 7-14=-222/105,

8-13=-164/102, 9-12=-124/81

4-5=-99/65, 5-6=-109/114, 6-7=-109/114,

6-15=-94/15, 5-16=-222/105, 4-17=-164/101,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:22:23 ID:L0vVY?kP6y?udISYvUpTmyzQAyl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7

13-9-9

6-10-13

27

8

Page: 1

3 9 10 11 17 16 15 14 13 12 18 3x5 = 3x5 = 13-9-9 1-11-4 CSI DEFL l/defl L/d PLATES in (loc) 1.15 TC 0.04 Vert(LL) 999 MT20 n/a n/a 1.15 BC 0.01 Vert(CT) n/a n/a 999 WB Horz(CT) 10 YES 0.08 0.00 n/a n/a IRC2021/TPI2014 Matrix-MSH Weight: 78 lb 1) Unbalanced roof live loads have been considered for 13) N/A this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II: Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-2-14 to 3-2-14, Interior (1) 3-2-14 14) See Standard Industry Piggyback Truss Connection Structural wood sheathing directly applied or to 4-6-8, Exterior(2R) 4-6-8 to 10-6-8, Interior (1) 10-6-8 Detail for Connection to base truss as applicable, or to 11-10-2. Exterior(2E) 11-10-2 to 14-10-2 zone: consult qualified building designer. Rigid ceiling directly applied or 10-0-0 oc cantilever left and right exposed ; end vertical left and LOAD CASE(S) Standard right exposed;C-C for members and forces & MWFRS 2=13-9-9, 10=13-9-9, 12=13-9-9, for reactions shown; Lumber DOL=1.60 plate grip 13=13-9-9, 14=13-9-9, 15=13-9-9, DOL=1.60 16=13-9-9, 17=13-9-9, 18=13-9-9 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), Max Uplift 2=-45 (LC 12), 10=-19 (LC 13), see Standard Industry Gable End Details as applicable, 12=-68 (LC 15), 13=-77 (LC 15), or consult qualified building designer as per ANSI/TPI 1. 14=-74 (LC 15), 16=-75 (LC 14), TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 17=-77 (LC 14), 18=-69 (LC 14) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate Max Grav 2=103 (LC 27), 10=90 (LC 28), DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 12=138 (LC 26), 13=204 (LC 22) Cs=1.00; Ct=1.10 14=261 (LC 22), 15=133 (LC 28),

4x5 = 6

- Unbalanced snow loads have been considered for this 5) design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc. 9)
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) All bearings are assumed to be SP 2400F 2.0E .
- OR Contraction of the SEAL 036322 G mm May 5,2025

GRIP

244/190

FT = 20%

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-Roof-Greyson FA 3FL SP 3CG
25040195-01	PB2	Piggyback	16	1	Job Reference (optional)

6-10-13

6-10-13

Carter Components (Sanford, NC), Sanford, NC - 27332,

6-3-7

(psf)

20.0

20.0

10.0

0.0

10.0

8=435 (LC 22), 9=332 (LC 5),

10=435 (LC 21)

(lb) - Maximum Compression/Maximum

1-2=0/15, 2-3=-143/96, 3-4=-227/117,

4-5=-227/117, 5-6=-118/59, 6-7=0/15

2-10=-40/110, 9-10=-40/110, 8-9=-40/110,

2x4 SP 2400F 2.0E

2x4 SP 2400F 2.0E

2x4 SP No.3

6-0-0 oc purlins.

bracing.

Max Grav

Tension

6-8=-40/110

Wind: ASCE 7-16; Vult=130mph (3-second gust)

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.

II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-2-14 to 3-2-14, Interior (1) 3-2-14 to 4-6-8, Exterior(2R) 4-6-8 to 10-6-8, Interior (1) 10-6-8 to 11-10-2, Exterior(2E) 11-10-2 to 14-10-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

Scale = 1:43.8

Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

this design.

DOL=1.60

WEBS

1)

2)

NOTES

REACTIONS (size)

TCDL

BCLL

BCDL

Run; 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:22:23 ID:L0vVY?kP6y?udISYvUpTmyzQAyl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

13-9-9

6-10-13

Page: 1

4 1<u>2</u> 10Г 2x4 🛛 2x4 II 18 19 6-1-13 3 5 2 6 0-4-13 20 9 21 10 8 3x5 = 2x4 II 2x4 II 2x4 II 3x5 = 13-9-9 Plate Offsets (X, Y): [2:0-3-1,0-1-8], [6:0-3-1,0-1-8] 2-0-0 CSI DEFL l/defl L/d PLATES GRIP Spacing in (loc) Plate Grip DOL 1.15 тс 0.14 Vert(LL) 999 MT20 244/190 n/a n/a Lumber DOL 1.15 BC 0.08 Vert(CT) n/a n/a 999 Rep Stress Incr WB Horz(CT) 6 YES 0.11 0.00 n/a n/a IRC2021/TPI2014 Matrix-MSH Code Weight: 65 lb FT = 20% 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate Structural wood sheathing directly applied or DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1 00. Ct=1 10 Rigid ceiling directly applied or 10-0-0 oc 5) Unbalanced snow loads have been considered for this design. 2=13-9-9, 6=13-9-9, 8=13-9-9, 6) This truss has been designed for greater of min roof live 9=13-9-9, 10=13-9-9 load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on Max Horiz 2=-143 (LC 12) overhangs non-concurrent with other live loads. Max Uplift 2=-18 (LC 10), 8=-164 (LC 15), Gable requires continuous bottom chord bearing. 10=-165 (LC 14) Gable studs spaced at 4-0-0 oc. 8) 2=178 (LC 26), 6=160 (LC 25),

4x5 =

- This truss has been designed for a 10.0 psf bottom 9) chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 11) All bearings are assumed to be SP 2400F 2.0E .
- 12) N/A
- 4-9=-161/0, 3-10=-365/200, 5-8=-365/199 Unbalanced roof live loads have been considered for
 - 13) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
 - LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-Roof-Greyson FA 3FL SP 3CG
25040195-01	V1	Valley	1	1	Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:22:23 ID:L0vVY?kP6y?udISYvUpTmyzQAyI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

20-4-0

Scale = 1:63.9

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing2-Plate Grip DOL1.Lumber DOL1.Rep Stress IncrYCodeIF	-0-0 .15 .15 ES RC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.33 0.17 0.26	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 107 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 1=20-4-0 10=20-4-1 13=20-4-1 Max Horiz 1=234 (L0 Max Uplift 1=-88 (L0 8=-126 (L 12=-225 (Max Grav 1=177 (L1 8=340 (L0 11=397 (L1 13=350 (L1))	athing directly applied or applied or 10-0-0 oc 4-11 ,7=20-4-0, 8=20-4-0, 0, 11=20-4-0, 12=20-4-0, 0 C 11) C 12), 7=-45 (LC 13), C 15), 10=-225 (LC 14), C 15), 10=-225 (LC 15), (LC 14), 13=-135 (LC 14), C 14), 7=148 (LC 15), C 25), 10=486 (LC 6), C 27), 12=486 (LC 5), C 24)	 Wind: ASCE Vasd=103m II; Exp B; Er and C-C Ext 7-2-4, Exteri r 17-0-4, Exter c for memb shown; Lum Truss design only. For st see Standar or consult qi Hate DOL= DOL=1.0; Cs=1.00; Ct Unbalanced design. All plates ar Cola cola readition 	7-16; Vult=130mp ph; TCDL=6.0psf; closed; MWFRS (erior(2E) 0-0-4 to or(2R) 7-2-4 to 13 rior(2E) 17-0-4 to bosed ; end vertica ers and forces & M ber DOL=1.60 pla hed for wind loads uds exposed to wind lndustry Gable E alified building de 7-16; Pr=20.0 psf ls=1.0; Rough Ca =1.10 snow loads have a 2x4 MT20 unless oc continuous bad	ph (3-see BCDL=6 envelopp 3-0-4, Ini -2-4, Inti -2-4, Inti -2-4, Inte -20-0-4 z 20-0-4 z 20-0-4 z 20-0-4 z 20-0-4 z 20-0-4 z te grip D in the plan d (norm End Deta signer a: f (roof LL (Lum DC t B; Fully been cor s otherwin	cond gust) .0psf; h=25ft; s) exterior zon- terior (1) 3-0-4- one; cantileve d right expose or reactions OL=1.60 ane of the trus al to the face) ils as applicat s per ANSI/TF .: Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9 ansidered for th se indicated.	Cat. le 4 to 7 left d;C- ss ble, 911. 1.15 ;					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	 B) Gable require 8) Gable studs 9) This trues by 	spaced at 4-0-0 o	ion choi ic. for a 10 i	a bearing.						1111.
TOP CHORD	1-2=-292/197, 2-3=- 4-5=-235/164, 5-6=-	207/148, 3-4=-235/192, 163/89, 6-7=-250/135	chord live lo	ad nonconcurrent	with any	other live load	ds. Insf				"TH CA	RO
BOT CHORD	1-13=-95/193, 12-13 11-12=-88/193, 10-1 7-8=-88/193	3=-88/193, 11=-88/193, 8-10=-88/19	on the botto 3, 3-06-00 tall chord and a	m chord in all area by 2-00-00 wide w	as where fill fit betv	a rectangle veen the botto DI = 10.000	om		4		O FESS	Bar,
WEBS	4-11=-190/33, 3-12= 2-13=-267/192, 5-10	=-388/272,)=-388/272, 6-8=-266/18	11) All bearings 12) Provide med	are assumed to be hanical connectio	e SP No. n (by oth	2. ers) of truss to	D		1111		SEA	
NOTES			bearing plate	e capable of withs	tanding 8	8 lb uplift at id	oint		=	:	0262	22 : =
1) Unbalance	ed roof live loads have	been considered for	1, 45 lb uplif	t at joint 7, 225 lb	uplift at i	pint 12, 135 lb)		1		0303	<< ; :
, this design	۱.		uplift at joint	13, 225 lb uplift at	t joint 10	and 126 lb up	olift		-			1 S

at joint 8.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-Roof-Greyson FA 3FL SP 3CG
25040195-01	V2	Valley	1	1	I73186536 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:22:24 ID:pCTtlL1tG7IES0kTBKIJAzQAyk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

17-0-0

Scale = 1:57.2

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.40 0.19 0.66	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 83 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural w 6-0-0 oc pur Rigid ceiling bracing. (size) 1 8 Max Horiz 1 Max Upift 1 6	2 2 3 3 =17-0-0, =17-0-0, =195 (LC =-103 (L0	athing directly applied applied or 6-0-0 oc 5=17-0-0, 6=17-0-0, 9=17-0-0 2 11) 2 10), 5=-1 (LC 15), 2 15) 9=-215 (JC 12)	3) 4) d or 5) 6) 7) 8)	Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requir Gable studs This truss ha chord live loa	Led for wind loads ids exposed to wi lalified building de : 7-16; Pr=20.0 ps 1.15); Pf=20.0 ps Is=1.0; Rough Ca =1.10 snow loads have es continuous bot spaced at 4-0-0 c is been designed ad nonconcurrent	in the pland (norm End Deta ssigner as if (roof LL (Lum DC t B; Fully been cor tom chor c. for a 10.0 with any	ane of the tru al to the face ils as applica s per ANS//TI s Lum DOL= 0L=1.15 Plate Exp.; Ce=0.5 asidered for the d bearing. D psf bottom other live loa	ss), ble, Pl 1. 1.15 9; his ds.				Weight. Oo ib	
FORCES TOP CHORD BOT CHORD	6 Max Grav 1 (l 2 (lb) - Maxim Tension 1-2=-158/40 4-5=-201/30 1-9=-181/84 5-6=-181/84 2-9=-181/84	i=-237 (L(=122 (LC LC 25), 8 4) num Com 09, 2-3=-{ 02 4, 8-9=-18 4 2 0 - 406	C 15), 9=-245 (LC 14 C 13), 5=1 (LC 25), 6 =710 (LC 27), 9=542 pression/Maximum 55/341, 3-4=-35/328, 31/84, 6-8=-181/84, 5/274, 4, 6=-406/271	4) 9) =540 9) 2 (LC 10 11	 * This truss f on the bottor 3-06-00 tall b chord and ar)) All bearings)) Provide mec bearing plate 1, 1 lb uplift at joint 6 and DAD CASE(S) 	as been designe n chord in all area by 2-00-00 wide w by other members are assumed to b hanical connectio e capable of withs at joint 5, 245 lb u 1 lb uplift at joint Standard	d for a liv as where ill fit betw , with BC e SP No. n (by oth tanding 1 plift at joi 5.	e load of 20.0 a rectangle veen the botto DL = 10.0psf 2 . ers) of truss t 03 lb uplift at nt 9, 237 lb u	Dpsf om : : joint plift					
WEBS NOTES	3-8=-518/0,	2-9=-405	5/274, 4-6=-406/271		(-)								"ATH CA	ROG

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 3-0-4, Interior (1) 3-0-4 to 5-6-4, Exterior(2R) 5-6-4 to 11-6-4, Interior (1) 11-6-4 to 14-0-4, Exterior(2E) 14-0-4 to 17-0-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-Roof-Greyson FA 3FL SP 3CG
25040195-01	V3	Valley	1	1	Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:22:24 ID:pCTtlL11tG7IES0kTBKiJAzQAyk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:47

Tension

4-5=-139/96

5-6=-62/121

1-2=-161/142, 2-3=-227/132, 3-4=-227/132,

1-8=-62/123, 7-8=-62/121, 6-7=-62/121,

3-7=-189/0, 2-8=-386/239, 4-6=-386/239

Unbalanced roof live loads have been considered for

II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 2-10-4, Interior (1) 2-10-4

to 3-10-4, Exterior(2R) 3-10-4 to 9-10-4, Interior (1) 9-10-4 to 10-8-4, Exterior(2E) 10-8-4 to 13-8-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

Wind: AŠCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.

TOP CHORD

BOT CHORD

this design.

DOL=1.60

WEBS

NOTES

1)

2)

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	21/TPI2014	CSI TC BC WB Matrix-MSH	0.35 0.17 0.15	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 64 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP Nc 2x4 SP Nc 2x4 SP Nc Structural 6-0-0 oc p Rigid ceilin bracing. (size) Max Horiz Max Uplift Max Grav	0.2).2).3 wood she urlins. ng directly 1=13-8-0, 7=13-8-0, 1=-156 (L 1=-41 (LC 6=-187 (L 1=140 (LC 6=455 (LC 8=455 (LC	athing directly applie applied or 10-0-0 oc 5=13-8-0, 6=13-8-0 8=13-8-0 C 12) t 10), 5=-5 (LC 11), C 15), 8=-191 (LC 1 25), 5=113 (LC 24) C 25), 7=374 (LC 24) C 20)	3 dor ; 5 ; 6 ; 7 ; 8 ; ; 8 ;	 Truss design only. For stu see Standar or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. Gable requir Gable studs This truss ha chord live lo * This truss lo on the bottoo 3-06-00 tall 1 	hed for wind loads ads exposed to wi d Industry Gable jalified building de 7-16; Pr=20.0 psf Is=1.0; Rough Ca =1.10 snow loads have es continuous bo spaced at 4-0-0 da been designed ad nonconcurrent has been designed m chord in all are: by 2-00-00 wide	in the pl ind (norm End Deta esigner as of (roof LL (Lum DC (Lum DC to the signer as of for a 10.1 with any d for a liv as where vill fit betv s with 20	ane of the tru al to the face ils as applica s per ANSI/T .: Lum DOL= oL=1.15 Plate Exp.; Ce=0.1 asidered for t d bearing. 0 psf bottom other live loz e load of 20.1 a rectangle ween the bott DL = 10 0ps	uss a), bble, PI 1. 1.15 9; his ads. Opsf com f						
FORCES	(lb) - Maxi	mum Com	pression/Maximum		0) All boorings	ore encurred to b	o SD No	2							

All bearings are assumed to be SP No.2.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 41 lb uplift at joint 1, 5 lb uplift at joint 5, 191 lb uplift at joint 8 and 187 lb uplift at joint 6.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-Roof-Greyson FA 3FL SP 3CG
25040195-01	V4	Valley	1	1	I73186538 Job Reference (optional)

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:22:24 ID:pCTtlLI1tG7IES0kTBKiJAzQAyk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

10-4-0

Scale	- 1	.30 7	
Sugar			

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TP	12014	CSI TC BC WB Matrix-MSH	0.54 0.49 0.32	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 43 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=10-4-0, Max Horiz 1=-117 (L Max Uplift 1=-55 (LC 4=-165 (LC Max Grav 1=86 (LC (LC 20) (lb) - Maximum Com Tension 1-2=-173/399, 2-3=- 1-4=-249/218, 3-4=- 2-4=-719/359	athing directly applied applied or 6-0-0 oc 3=10-4-0, 4=10-4-0 C 10) c 21), 3=-55 (LC 20), C 14) 20), 3=86 (LC 21), 4 pression/Maximum 173/399 249/218	4) TC Pla DC Cs 5) Un de 6) Ga 7) Ga 8) Th ch 9) * T on 3-(ch 10) All 11) Pra be 1, LOAD	CLL: ASCE ate DOL=1. DL=1.15); I: =1.00; Ct= abalanced s sign. able required able studs s is truss hat ord live loa rhis truss h the bottom D6-00 tall b ord and an bearings a ovide mech aring plate 55 lb uplift CASE(S)	7-16; Pr=20.0 ps 15); Pf=20.0 ps s=1.0; Rough Ca 1.10 snow loads have as continuous bot spaced at 4-0-0 co s been designed d nonconcurrent as been designed hord in all area y 2-00-00 wide w y other members are assumed to b nanical connectio capable of withs at joint 3 and 16! Standard	If (roof LL (Lum DC t B; Fully been cor tom chor ic. for a 10.0 with any d for a liv d for a liv ill fit betw e SP No. n (by oth tanding 5 b uplift	: Lum DOL= L=1.15 Plate Exp.; Ce=0.9 asidered for the d bearing. D psf bottom other live loa e load of 20.0 a rectangle ween the botto 2. ers) of truss t 5 lb uplift at j at joint 4.	1.15); ds.)psf om oint					
1) Unbalance	ed roof live loads have	been considered for										SOUTH	11.5

this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 3-0-4, Exterior(2R) 3-0-4 to 7-4-4, Exterior(2E) 7-4-4 to 10-4-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

CAR 0 SEAL 036322 G minin May 5,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-Roof-Greyson FA 3FL SP 3CG
25040195-01	V5	Valley	1	1	I73186539 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:22:24 ID:pCTtlL1tG7IES0kTBKiJAzQAyk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:31.1

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.25 0.26 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sheat 7-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=7-0-0, 3 Max Horiz 1=-78 (LC Max Uplift 1=-12 (LC Max Grav 1=98 (LC (LC 20) (lb) - Maximum Com Tension 1-2=-73/205, 2-3=-73 1-4=-168/109, 3-4=- 2-4=-422/123	athing directly applied applied or 6-0-0 oc 3=7-0-0, 4=7-0-0 ; 12) ; 21), 3=-12 (LC 20), ; 14) 20), 3=98 (LC 21), 4= upression/Maximum 3/205 168/109	 4) TCLL: ASCE Plate DOL= DOL=1.15); Cs=1.00; Ct 5) Unbalanced design. 6) Gable requii 7) Gable studs 8) This truss h chord live lo 9) * This truss h chord live lo 9) * This truss on the botto 3-06-00 tall chord and a 10) All bearings 11) Provide meet bearing platt 1, 12 lb uplifi LOAD CASE(S) 	7-16; Pr=20.0 ps 1.15); Pf=20.0 ps Is=1.0; Rough Ca =1.10 snow loads have res continuous bot spaced at 4-0-0 ca as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members are assumed to b shanical connectio e capable of withs t at joint 3 and 92 Standard	of (roof LL (Lum DC t B; Fully been con tom chor oc. for a 10. with any d for a liv as where e SP No. n (by oth tanding 1 lb uplift a	:: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 nsidered for the d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle veen the botth 2. ers) of truss i l2 lb uplift at j at joint 4.	1.15 e); his ds. Opsf om					
1) Unbalance	ed roof live loads have	been considered for										(I).

- this design.
 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 3-0-4, Exterior(2R) 3-0-4 to 4-0-4, Exterior(2E) 4-0-4 to 7-0-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-Roof-Greyson FA 3FL SP 3CG
25040195-01	V6	Valley	1	1	I73186540 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:22:24 ID:HO0FyhlfeaFcscbx0vrxsNzQAyj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-8-0

Page: 1

Scale = 1:25.4

Plate Offsets (X, Y): [2:0-2-8,Edge]

Load TCLI Snow TCD BCLI BCD	ling _ (roof) v (Pf) L _ L		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MP	0.10 0.09 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%
BCD LUM TOP BOT BOT REA FOR TOP BOT 1) (t 1) (t 2) \ 1 2) \ 1 2 2) \ 1 2 2) \ 1 2 2 2 2) \ 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	L BER CHORD CHORD CHORD CHORD CHORD CTIONS CES CHORD C	2x4 SP No.: 2x4 SP No.: 2x4 SP No.: Structural w 3-8-0 oc pu Rigid ceiling bracing. (size) 1 Max Horiz 1 Max Uplift 1 Max Grav 1 (lb) - Maxim Tension 1-2=-211/28 1-3=-23/14 ⁻¹ d roof live loa - E 7-16; Vult= mph; TCDL=6 Enclosed; MW xterior(2E) zc end vertical le and forces & 1 DL=1.60 plate gned for winc studs exposed ard Industry C qualified build E 7-16; Pr=20 ; Is=1.0; Rou	10.0 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	athing directly applie applied or 10-0-0 or 12) 14), 3=-10 (LC 15) 20), 3=176 (LC 21) pression/Maximum 11/28 been considered for (3-second gust) CDL=6.0psf; h=25ft; velope) exterior zon lever left and right ht exposed;C-C for for reactions shown; L=1.60 the plane of the trus (normal to the face) d Details as applicat gner as per ANSI/TF roof LL: Lum DOL=1 Jm DOL=1.15 Plate ; Fully Exp.: Ce=0.9	7) 8) 9) d or 11; 11; LO Cat. e s, ile, 11. .15	Gable studs a This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an All bearings a Provide mect bearing plate 1 and 10 lb AD CASE(S)	spaced at 4-0-0 oc s been designed fo d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide wil y other members. are assumed to be nanical connection capable of withsta plift at joint 3. Standard	vith any for a liv where I fit betw SP No. (by oth unding 1) psf bottom other live loa e load of 20.0 a rectangle reen the botto 2. ers) of truss t 0 lb uplift at j	ds.)psf om oint				Weight: 12 lb WHTH CA OFFESS SEA 0363	FT = 20%
5) l 6) (DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. Gable requires continuous bottom chord bearing.													Ay 5,2025	

TRENCO A MITEK ATIBILITE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

