

Trenco 818 Soundside Rd Edenton, NC 27932

Re: P02608-25469 A669 Kipling A

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Lumber 2383 (Dunn, NC).

Pages or sheets covered by this seal: I73370332 thru I73370374

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

May 12,2025

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	A1	Common	5	1	Job Reference (optional)	173370332

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 09 08:46:04 ID:sXat?sTsb8kAJP?abcF3bxzIIWL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

		L	9-0)-0		19-0-0				28-0-0			
Scale = 1:74.3		I	9-0)-0	I	10-0-0		I		9-0-0		I	
Plate Offsets	(X, Y): [2:0-3-13,0-0-1], [10:0-3-13,0-0-1]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 20.0 7.7/10.0 7.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.25 1.25 YES		CSI TC BC WB	0.59 0.75 0.19	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.38 -0.59 0.06	(loc) 12-14 12-14 10	l/defl >891 >568 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC2018	8/TPI2014	Matrix-MS							Weight: 135 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 *Excep Left 2x4 SP No.3 1 1-6-0 Structural wood she 3-6-10 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, 1 Max Horiz 2=94 (LC Max Uplift 2=-165 (L Max Grav 2=1194 (L (lb) - Maximum Com Tension 1-2=0/29, 2-4=-1858 6-8=-1743/283, 8-10 2-14=-233/1609, 12- 10-12=-161/1609 6-12=-132/747, 8-12 6-14=-132/747, 4-14	t* 12-8,14-4:2x4 SP 1-6-0, Right 2x4 SP 1 athing directly applie applied or 10-0-0 oc 10=0-5-8 16) C 16), 10=-165 (LC C 3), 10=1194 (LC 3 pression/Maximum 3/256, 4-6=-1743/283)=-1858/256, 10-11= 14=-78/1088, 2=-344/182, 1=-344/182	3) No.3 4) 5) d or 6) 7) 17) 8) 3, 9) 0/29 10]	TCLL: ASCI Plate DOL= 1.15 Plate DL Exp.; Ce=1. Unbalanced design. This truss h load of 12.0 overhangs r Building De: verifying Ra requirement This truss h chord live lo * This truss s on the botto 3-06-00 tall chord and a Provide met bearing plat 2 and 165 lt This truss is Internationa R802.10.2 a	E 7-16; Pr=20.0 ps 1.25); Pg=10.0 ps 1.25); Pg=10.0 ps 10C = 1.15); Is=1.0 0; Cs=1.00; Ct=1. snow loads have as been designed psf or 1.00 times ton-concurrent wit signer/Project eng in Load = 5.0 (psf) is specific to the us as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members chanical connectio e capable of withs o uplift at joint 10. designed in accord I Residential Code and referenced sta	sf (roof LL f; Pf=7.7 ; Rough 10 been cor for great flat roof ld h other livi ineer ress of covers r se of this for a 10.1 with any d for a liva as where vill fit betv s, with BC on (by oth tandang 1 rdance w s sections n dard AN	L: Lum DOL= psf (Lum DC Cat B; Partia asidered for t er of min roo bad of 7.7 ps ve loads. bonsible for ain loading truss compc D psf bottom other live loa e load of 20. psf bottom other live loa e load of 20. psf bottom other live loa e load of 20. D psf bottom other load	=1.25 DL = ally this of live of live sf on onent. ads. .0psf to to to to ti to it joint			(1)	H CA	ROLINI
1) Unbalanc	ed roof live loads have	been considered for			Otanuaru					4	i	al I	
Vinis design Wind: AS Vasd=91r II; Exp B; and C-C E 14-0-0, E: to 29-2-8 for reactic DOL=1.60	The second secon	(3-second gust) DL=3.0psf; h=25ft; C ivelope) exterior zon -9-8, Interior (1) 1-9- '-0-0, Interior (1) 17-1 - and forces & MWFF L=1.60 plate grip	Cat. e 8 to C-O RS							VIIIIIIIIVV		SEAI 03632	22 E.R. KIL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GI 1111111 May 12,2025

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	A1E	Common Supported Gable	1	1	Job Reference (optional)	173370333

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 09 08:46:05 ID:Oozefu2vqOK7c1qr2m7rgZzIIWu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:66.3

28-0-0

Plate Offsets (X, Y): [1:0-	0-0,Edge],	[1:0-3-8,Edge], [13:	:0-0-0,Edg	ge], [13:0-3-8,E	dge], [18:0-3-0,0-	3-0]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL		(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MS	0.12 0.14 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 13	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 156 I	GRIP 244/190 b FT = 20 ⁴	%
LUMBER TOP CHORD BOT CHORD OTHERS WEDGE BRACING TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N 2x4 SP N Left: 2x4 S Right: 2x4 Structural 6-0-0 oc p Rigid ceil	o.2 o.3 *Excep SP No.3 I SP No.3 I wood shea purlins. ing directly	t* 19-7:2x4 SP No.2 athing directly applie applied or 10-0-0 o	2 V ed or N c 1	OT CHORD VEBS IOTES) Unbalanced	1-24=-36/88, 23- 21-22=-36/88, 20 17-19=-36/88, 16 14-15=-36/88, 13 7-19=-106/23, 6- 4-22=-116/67, 3- 8-18=-116/60, 9- 11-15=-76/49, 12	24=-36/88 -21=-36/8 -17=-36/8 -14=-36/1 20=-116/6 23=-76/49 17=-106/6 -14=-188, ave been (8, 22-23=-36/ 8, 19-20=-36 8, 15-16=-36 22 10, 5-21=-105 1, 2-24=-189/ 14, 10-16=-11 119 considered fc	88, 5/88, 5/64, 120, 16/67, 0r	11) * Th on t 3-06 choi 12) Prov bea 20, - uplit 18, - uplit	is truss he botto 5-00 tall rd and a vide mee ring plat 43 lb up ft at joint 43 lb up ft at joint	has be m cho by 2-0 ny oth chanic e capa lift at jo : 23, 89 lift at jo : 15, 88	een designed for rd in all areas v 0-00 wide will f er members. al connection (able of withstan bint 21, 48 lb up 9 lb uplift at joir bint 17, 47 lb up 8 lb uplift at joir	r a live load vhere a recta it between th by others) of ding 44 lb up blift at joint 2 tt 24, 42 lb u blift at joint 1 tt 14, 13 lb u	of 20.0psf angle he bottom truss to plift at joint 2, 24 lb plift at joint 6, 24 lb plift at joint
REACTIONS	bracing. (size) Max Horiz Max Uplift	1=28-0-0, 15=28-0-0 18=28-0-0 21=28-0-0 24=28-0-0 1=-88 (LC 1=-13 (LC 15=-24 (L1 17=-43 (L1 20=-44 (L1	13=28-0-0, 14=28- , 16=28-0-0, 17=28 , 19=28-0-0, 20=28 , 22=28-0-0, 23=28 , 22=28-0-0, 23=28 , 17) 17), 14=-88 (LC 17 C 17), 16=-47 (LC 1 C 17), 16=-47 (LC 1 C 17), 18=-42 (LC 1	0-0, 2 3-0-0, 3-0-0, 3-0-0, 7), 17), 3 17), 3 16),	 this design. Wind: ASCE Vasd=91mp II; Exp B; Ei and C-C Cc 14-0-0, Corr to 28-0-0 zc for reactions DOL=1.60 Truss designed Truss designed 	E 7-16; Vult=115m bh; TCDL=4.2psf; nclosed; MWFRS orner(3E) 0-0-0 to ner(3R) 14-0-0 to one;C-C for memb s shown; Lumber ned for wind loads uds exposed to w	nph (3-sec BCDL=3. (envelope 3-0-0, Ext 17-0-0, E ers and fc DOL=1.60 s in the pla ind (norm	cond gust) Dpsf; h=25ft; e) exterior zon erior(2N) 3-0 xterior(2N) 11 orces & MWF) plate grip ane of the tru al to the face	Cat. ne)-0 to 7-0-0 :RS uss e),	1 ar 13) Bev surf 14) This Inte R80 LOAD C	ad 13 lb eled pla ace with truss is rnationa 2.10.2 a CASE(S)	uplift a te or s desig l Resid nd ref Stai	It joint 1. him required to chord at joint(s ned in accorda dential Code se erenced standa ndard	provide full) 1. ncc with the ctions R502 ard ANSI/TP	bearing 2018 .11.1 and I 1.
FORCES TOP CHORD	(lb) - Max Tension 1-2=-93/6 4-5=-47/9 7-8=-83/1 10-11=-34	22=-48 (L/ 24=-89 (L/ 1=127 (LC 14=299 (L 16=164 (L 18=157 (L 20=156 (L 22=164 (L 24=300 (L imum Com 0, 2-3=-71/ 3, 5-6=-65/ 60, 8-9=-66 4/52, 11-12	C 16), 23=-24 (LC 1 C 16) 2), 13=127 (LC 2), C 36), 15=84 (LC 2 C 36), 19=143 (LC C 36), 19=146 (LC C 35), 21=143 (LC C 35), 23=84 (LC 2 C 35) pression/Maximum (58, 3-4=-47/75, 126, 6-7=-83/160, 5/126, 9-10=-47/90, =-49/26, 12-13=-14	16), 4 , 2), 2), 32), 5 2), 5 2), 6 7 8 9 9 9/9/41 1	see Standa or consult q) TCLL: ASC Plate DOL= 1.15 Plate D Exp.; Ce=1.) Unbalanced design.) Building De verifying Ra verifying Ra requiremen) All plates ar) Gable requi) Gable stude 0) This truss h chord live lo	rd Industry Gable ualified building d E 7-16; Pr=20.0 p 1.25); Pg=10.0 ps DOL = 1.15); Is=1. 0; Cs=1.00; Ct=1. d snow loads have signer/Project eng in Load = 5.0 (psl ts specific to the u res continuous bo s spaced at 2-0-0 as been designed bad nonconcurrent	End Deta esigner a: sf (roof LL sf; Pf=7.7 0; Rough 10 been cor jineer res i) covers r ise of this inless oth- thottom chor oc. I for a 10.0 t with any	IIS as applica is per ANSI/TI :: Lum DOL= psf (Lum DO Cat B; Partia asidered for th ponsible for ain loading truss compo erwise indica d bearing.	lble, PI 1. 1.25 L = ally his nent. ted.		With the second		SE 036	AROU AL 322 GILBER	

May 12,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	A1M	Common	4	1	Job Reference (optional)	173370334

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 09 08:46:05 ID:Bn6VMRTMRSya03usQToMP8zIIYw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-1-2-8	7-1-12	12-0-0	14-0-016-0-0	20-10-4	28-0-0	29-2-8
120	7-1-12	4-10-4	2-0-0 2-0-0	4-10-4	7-1-12	120
1-2-0 —			28-0-0			

Scale = 1:83.7

Plate Offsets (X, Y): [2:0-3-9,0-0-1], [7:0-3-0,Edge], [12:0-3-9,0-0-1], [12:Edge,0-0-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MS	0.64 0.92 0.56	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.34 0.09	(loc) 14-29 15-20 12	l/defl >999 >990 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 159 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Left 2x4 SP No.3 1-6-0 Structural wood she 2-11-1 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, - (size) 2=0-5-8, - Max Horiz 2=94 (LC Max Uplift 2=-137 (L Max Grav 2=1402 (I	ot* 14-8,22-6:2x4 SP 1-6-0, Right 2x4 SP I eathing directly applie v applied or 2-2-0 oc 12=0-5-8 16) .C 16), 12=-137 (LC LC 3), 12=1402 (LC 3	2) No.2 No.3 ed or 3) 4) 17) 5)	Wind: ASCE Vasd=91mph II; Exp B; End and C-C Exte 14-0-0, Exter to 29-2-8 zor for reactions DOL=1.60 TCLL: ASCE Plate DOL=1 1.15 Plate D0 Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 p	7-16; Vult=115mp ; TCDL=4.2psf; Bi closed; MWFRS (e prior(2E) -1-2-8 to ior(2E) 14-0-0 to 1 te;C-C for member shown; Lumber DO 7-16; Pr=20.0 psf; 25); Pg=10.0 psf; DL = 1.15); Is=1.0; t; Cs=1.00; Ct=1.10; snow loads have b s been designed for psf or 1.00 times fit	h (3-sec CDL=3. nvelope 1-9-8, Ir 7-0-0, I 1-9-8, Ir 7-0-0, I s and fo DL=1.60 (roof LL Pf=7.7 Rough) een cor or great at roof lo	ond gust) ppsf; h=25ft;) exterior zon terior (1) 1-9 terior (1) 17 plate grip : Lum DOL= psf (Lum DO Cat B; Partia isidered for the prof min roof pad of 7.7 psi	Cat. ne -8 to -0-0 RS 1.25 L = Illy f live f on					
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=0/29, 2-4=-2237 6-7=-88/35, 7-8=-88	npression/Maximum 7/199, 4-6=-2118/216 5/35, 8-10=-2118/216	6) 6,	overhangs no Building Des verifying Rain	on-concurrent with igner/Project engin n Load = 5.0 (psf) (specific to the use	other liv eer responses covers r	ve loads. consible for ain loading truss compo	nent					
BOT CHORD	10-12=-2237/199, 1: 2-22=-182/1941, 20 15-20=0/2430, 14-1: 12-14=-109/1941, 1: 17_19=_1102/0_16	2-13=0/29 -22=0/2430, 5=0/2430, 9-21=-167/86, 17166/96	7) 8)	This truss ha chord live loa * This truss h on the bottom	s been designed for ad nonconcurrent w has been designed n chord in all areas	or a 10.0 vith any for a liv where) psf bottom other live loa e load of 20.0 a rectangle	ids. Opsf				TH CA	ROUT
WEBS	8-16=-74/837, 14-16 10-14=-332/176, 21 6-21=-74/837, 4-22= 6-8=-1468/201, 19-2 15-17=0/121, 14-17	5=-57/740, -22=-57/740, =-332/176, 20=0/121, 19-22=-10 =-1088/0	9) 88/0, 10]	chord and an Provide mech bearing plate 2 and 137 lb) This truss is	by 2-00-00 wide will by other members, hanical connection capable of withsta uplift at joint 12. designed in accord	with BC (by oth anding 1 lance w	th the 2018	f. to t joint		Contraction of the second seco	in	O FÉSE SEA	
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for	11) LO	International R802.10.2 ar ATTIC SPAC UNINHABITA DAD CASE(S)	Residential Code s ad referenced stan E SHOWN IS DES ABLE. Standard	sections dard AN SIGNED	R502.11.1 a SI/TPI 1. AS	Ind		HILE.			

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

May 12,2025

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	A1MA	Common	1	1	Job Reference (optional)	173370335

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 09 08:46:06 ID:6kUQgpfe?2w?Prrr4FaynIzIIbH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:83.7

Plate Offsets (X, Y): [2:0-3-9,0-0-1], [7:0-3-0,Edge], [12:0-3-9,0-0-1], [12:Edge,0-0-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MS	0.64 0.92 0.56	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.34 0.09	(loc) 13-28 14-19 12	l/defl >999 >994 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 157 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Left 2x4 SP No.3 1 1-6-0 Structural wood shea 2-11-1 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, 1 Max Horiz 2=102 (LC Max Uplift 2=-137 (L) Max Crave, 2=1402 (L)	t* 13-8,21-6:2x4 SP I 1-6-0, Right 2x4 SP N athing directly applied applied or 2-2-0 oc 12=0-5-8 C 16), 12=-117 (LC 1 C 3), 12=-117 (LC 1 C 3), 12=-147 (LC 2)	2) No.2 Io.3 d or 3) 4) 7) 5)	Wind: ASCE Vasd=91mph II; Exp B; Enn and C-C Exte 14-0-0, Exter to 28-0-0 zor for reactions DOL=1.60 TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced design. This truss ha	7-16; Vult=115mph ; TCDL=4.2psf; BC closed; MWFRS (er prior(2E) -1-2-8 to 1 ior(2R) 14-0-0 to 1 e;C-C for members shown; Lumber DC 7-16; Pr=20.0 psf (.25); Pg=10.0 psf; I DL = 1.15); Is=1.0; ; Cs=1.00; Ct=1.10 show loads have be s been designed fo	n (3-sec CDL=3.0 n-velope I-9-8, Iri 7-0-0, Ii 7-0-0, Ii s and fo DL=1.60 (roof LL Pf=7.7 Rough) een cor	ond gust) Opsf; h=25ft; e) exterior zo terior (1) 1-5 brces & MWF) plate grip .: Lum DOL= osf (Lum DC Cat B; Partia ssidered for t	Cat. ne 2-8 to 7-0-0 7-RS =1.25 DL = ally this f live					
FORCES TOP CHORD	Max Grav 2=1403 (L (lb) - Maximum Com Tension 1-2=0/29, 2-4=-2239 6-7=-90/36, 7-8=-88/ 10-12=-2244/208	-C 3), 12=1347 (LC 3 pression/Maximum)/199, 4-6=-2120/217 /35, 8-10=-2125/225,	;) , , 7)	load of 12.0 p overhangs no Building Desi verifying Rair requirements This truss ba	osf or 1.00 times fla on-concurrent with gner/Project engine h Load = 5.0 (psf) c specific to the use	at roof lo other liv eer resp covers r of this	bad of 7.7 ps ve loads. bonsible for ain loading truss compo	f on ment.					
BOT CHORD	2-21=-188/1943, 19- 14-19=0/2430, 13-14 12-13=-142/1949, 18 16-18=-1101/0, 15-1 8-15=-76/843, 13-15 10-13=-337/178, 20- 6-20=-74/836, 4-21=	-21=0/2430, 4=0/2430, 8-20=-166/87, 6=-169/85 5=-59/746, -21=-57/739, 332/176	8) 9)	 chord live loa This truss h on the botton 3-06-00 tall b chord and an Provide mech 	d nonconcurrent w as been designed to n chord in all areas y 2-00-00 wide will y other members, y nanical connection	for a liv where fit betw with BC (by oth	other live load e load of 20. a rectangle veen the both DL = 10.0ps ers) of truss	ads. Opsf tom if. to		4		ORTH CA	ROLIN
NOTES 1) Unbalance this design	6-8=-1470/203, 18-1 14-16=0/121, 13-16= ed roof live loads have n.	9=0/121, 18-21=-108 =-1087/0 been considered for	38/0, 10 11 LC	2 and 117 lb) This truss is (International R802.10.2 ar) ATTIC SPAC UNINHABITA DAD CASE(S)	uplift at joint 12. Jesigned in accord. Residential Code s Id referenced stand E SHOWN IS DES VBLE. Standard	ance w sections dard AN SIGNED	ith the 2018 R502.11.1 : ISI/TPI 1. AS	and		111111111		SEA 0363	L 22 EEREKTUU

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

May 12,2025

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	A2	Common	1	1	Job Reference (optional)	173370336

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 09 08:46:06 ID:66KsGxQf1j4TAA2E6ql1eozIIct-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

		L	ç	9-0-0		19-0	-0			28-0-	0		
Scale = 1:74.3		I	ç	9-0-0	I	10-0	-0	,		9-0-)	I	
Plate Offsets	(X, Y): [2:0-3-13,0-0-1], [10:0-3-13,0-0-1]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MS	0.59 0.75 0.19	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.38 -0.59 0.05	(loc) 11-13 11-13 10	l/defl >891 >570 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 133 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) LINEARD	2x4 SP No.2 2x4 SP No.1 2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 *Excep Left 2x4 SP No.3 7 1-6-0 Structural wood she 3-6-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, 1 Max Horiz 2=102 (LC Max Uplift 2=-165 (L Max Grav 2=1195 (L (lb) - Maximum Com Tension 1-2=0/29, 2-4=-1860 6-8=-1749/291, 8-10 2-13=-240/1611, 11- 10-11=-177/1616 6-11=-134/754, 8-11 6-13=-132/747, 4-13	L t* 11-8,13-4:2x4 SP 1 1-6-0, Right 2x4 SP 1 athing directly applie applied or 10-0-0 oc 10= Mechanical 2 20) C 16), 10=-145 (LC C 3), 10=-145 (LC C 3), 10=-145 (LC C 3), 10=-145 (LC 3), 10=-145 (LC 3), 10=-145 (LC 4), 10=-145 (LC	3) No.3 No.3 4) 5) d or (17) (17) (17) (17) (17) (17) (17) (17)	TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 overhangs n Building Des verifying Raii requirements This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar Refer to gird Provide mec bearing plate 2 and 145 lb) This truss is International R802.10.2 a	7-16; Pr=20.0 psf .25); Pg=10.0 psf; .25); Pg=10.0 psf; OL = 1.15); Is=1.0; .; Cs=1.00; Ct=1.11 snow loads have b ss been designed for psf or 1.00 times file on-concurrent with igner/Project engin n Load = 5.0 (psf) of s specific to the use s been designed for ad nonconcurrent v has been designed for ad nonconcurrent with igner/Project engin n Load = 5.0 (psf) of s specific to the use s been designed for ad nonconcurrent v has been designed for ad nonconcurrent v igner/Project engin n Load = 5.0 (psf) of s specific to the use s been designed for a specific to the use s been designed for a specific to the use ad nonconcurrent v igner/Project engin has been designed for a specific to the use ad nonconcurrent v igner/Project engin based of the specific to the use ad nonconcurrent v as been designed for a specific to the use ad nonconcurrent v as been designed for a specific to the use ad nonconcurrent v as been designed for a specific to the use ad nonconcurrent v as been designed for a specific to the use ad nonconcurrent v as been designed for a specific to the use a specific to the use ad nonconcurrent v as been designed for a specific to the use ad nonconcurrent v as been designed for a specific to the use as been designed for as been designed for a specific to the use as been designed for as bee	(roof LI Pf=7.7 Rough o or great at roof le other li heer res covers r e of this or a 10.1 vith any for a livs s where l fit betw with BC uss conr (by oth anding 1 dance w sections dard AN	L: Lum DOL= psf (Lum DO Cat B; Partia nsidered for t er of min roo oad of 7.7 ps ve loads. ponsible for ain loading truss compo opsf bottom other live loa e load of 20. a rectangle veen the bott DL = 10.0ps nections. ers) of truss 65 lb uplift a ith the 2018 s R502.11.1 a ISI/TPI 1.	=1.25 DL = ally this if live sf on onent. ads. .0psf tom if. to to to and				TH CA	NU1111
 Onbalantic this desig Wind: AS Vasd=91r II; Exp B; and C-C I 14-0-0, E: to 28-0-0 for reactic DOL=1.60 	n. CE 7-16; Vult=115mph mph; TCDL=4.2psf; BC Enclosed; MWFRS (er Exterior(2E) -1-2-8 to 1: xterior(2R) 14-0-0 to 17 zone;C-C for members ons shown; Lumber DO 0	(3-second gust) DL=3.0psf; h=25ft; C welope) exterior zon -9-8, Interior (1) 1-9- '-0-0, Interior (1) 17- and forces & MWFF L=1.60 plate grip	Cat. e 8 to 0-0 RS	AD (A3E(3)	Sianuaru					N. T.		SEAI 03632	ER REPUT

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G minim May 12,2025

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	A2M	Common	2	1	Job Reference (optional)	173370337

-1-2-8

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 09 08:46:07 ID:wu_Z0jK5IGgSGP0BRSKEWdzIIrB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:83.7

Plate Offsets (X, Y): [2:0-3-9,0-0-1], [7:0-3-0,Edge], [11:0-3-9,0-0-1]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MS	0.64 0.92 0.56	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.34 0.09	(loc) 12-23 13-18 11	l/defl >999 >994 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 157 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Left 2x4 SP No.3 - 1 1-6-0 Structural wood shea 2-11-1 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, 1 Max Horiz 2=102 (LC Max Uplift 2=-137 (L Max Grav 2=1403 (L	t* 12-8,20-6:2x4 SP I-6-0, Right 2x4 SP N athing directly applie applied or 2-2-0 oc I1= Mechanical C 16), C 16), 11=-117 (LC 4 .C 3), 11=-1347 (LC 3	2) No.2 Io.3 d or 3) 4) (7) 5)	Wind: ASCE Vasd=91mph II; Exp B; Enc and C-C Exte 14-0-0, Exter to 28-0-0 zon for reactions DOL=1.60 TCLL: ASCE Plate DOL= Plate DOL= TL: ASCE Plate DOL= Exp.; Ce=1.0 Unbalanced s design. This truss ha load of 12.0 p	7-16; Vult=115mpl ; TCDL=4.2psf; BC closed; MWFRS (e erior(2E) -1-2-8 to $^{-1}$ ior(2R) 14-0-0 to 1 e;C-C for member shown; Lumber DC 7-16; Pr=20.0 psf; 2.25; Pg=10.0 psf; DL = 1.15; Is=1.0; ; Cs=1.00; Ct=1.11 snow loads have b s been designed fo ssf or 1.00 times fit	h (3-sec CDL=3.(nvelope 1-9-8, In 7-0-0, In 7-0-0, In 5 and fo DL=1.60 (roof LL Pf=7.7 Rough) een cor or greate at roof lo	ond gust) opps; h=25ft;) exterior zo terior (1) 1-9 nterior (1) 17 yrces & MWF) plate grip :: Lum DOL= ssf (Lum DO Cat B; Partia isidered for t er of min rool aad of 7.7 ps	Cat. ne -8 to -0-0 RS 1.25 L = Illy his f live f on						
FORCES	(lb) - Maximum Com Tension 1-2=0/29, 2-4=-2239	pression/Maximum)/199, 4-6=-2120/217	, 6)	overhangs no Building Desi verifying Rair	on-concurrent with gner/Project engin n Load = 5.0 (psf) d	other liv eer resp covers r	ve loads. oonsible for ain loading							
BOT CHORD	6-7=-90/36, 7-8=-88/ 9-11=-2244/208 2-20=-188/1943, 18- 13-18=0/2430, 12-13 11-12=-142/1949, 17	/35, 8-9=-2125/225, 20=0/2430, 3=0/2430, 7-19=-166/87, 5 160/95	7) 8)	requirements This truss has chord live loa * This truss h on the bottom	specific to the use s been designed for d nonconcurrent w as been designed n chord in all areas	e of this or a 10.0 vith any for a liv s where	truss compo) psf bottom other live loa e load of 20. a rectangle	nent. ads. Opsf				TH CA	Routin	
WEBS	13-17=-1101/0, 14-1 8-14=-76/843, 12-14 9-12=-337/178, 19-2 6-19=-74/836, 4-20= 6-8=-1470/203, 17-1 13-15=0/121, 12-15=	5=-109/85 =-59/746, 10=-57/739, 332/176, 8=0/121, 17-20=-108 =-1087/0	9) 10) 38/0,	3-06-00 tall b chord and an Refer to girde Provide mech bearing plate 11 and 137 lk	y 2-00-00 wide will y other members, er(s) for truss to tru- nanical connection capable of withsta o uplift at joint 2.	with BC iss conr (by othe anding 1	DL = 10.0ps bections. ers) of truss 17 lb uplift at	om f. to t joint		6		O FESS SEA	Marie -	Mann
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for	11) 12) LO) This truss is (International R802.10.2 ar) ATTIC SPAC UNINHABITA AD CASE(S)	designed in accord Residential Code s Id referenced stan E SHOWN IS DES IBLE. Standard	lance wi sections dard AN SIGNED	th the 2018 R502.11.1 a ISI/TPI 1. AS	and		HINK.		0363	ER.K.	unnun.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

May 12,2025

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	A3	Roof Special	2	1	Job Reference (optional)	173370338

Scale = 1:74.3

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 09 08:46:07 ID:YDvPHuDJyVdHnW8ZhChBwjzIItw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-5-8	4-8-0	8-0-4	14-0-0	16-6-8	22-1-8	28-0-0
2-5-8	2-2-8	3-4-4	5-11-12	2-6-8	5-7-0	5-10-8

Plate Offsets (X, Y): [2:0-3-4,0-0-1], [3:0-6-9,0-2-5], [11:0-4-1,Edge], [14:0-5-12,0-4-0], [19:0-3-8,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2018	5/TPI2014	CSI TC BC WB Matrix-MS	0.83 0.92 0.58	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.31 0.21	(loc) 17-18 15-16 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 M18AHS Weight: 166 lb	GRIP 244/190 186/179 FT = 20%		
LUMBER TOP CHORD BOT CHORD WEBS SLIDER	2x4 SP No.2 2x4 SP No.2 *Excep 8-13:2x4 SP No.3 2x4 SP No.3 *Excep Left 2x4 SP No.3 2 No.3 1-6-0	t* 3-14:2x4 SP DSS, t* 15-7,15-5:2x4 SP N 2-0-15, Right 2x4 SP	2) 0.2	Wind: ASCE Vasd=91mph II; Exp B; End and C-C Exte 1-10-13 to 14 (1) 17-0-0 to MWFRS for r	7-16; Vult=115mpł ;; TCDL=4.2psf; BC closed; MWFRS (e erior(2E) -1-2-8 to 1 I-0-0, Exterior(2R) 28-00 zone;C-C fc eactions shown; Lt	n (3-sec CDL=3.0 nvelope -10-13 14-0-0 pr mem umber [cond gust) Opsf; h=25ft; e) exterior zon Interior (1) to 17-0-0, Inte opers and forc DOL=1.60 pla	Cat. ne erior ces & ate							
BRACING TOP CHORD BOT CHORD	Structural wood shea 2-5-14 oc purlins. Rigid ceiling directly	athing directly applied applied or 10-0-0 oc	or 3)	TCLL: ASCE Plate DOL=1 1.15 Plate DOL=1 Exp : Ce=1 0	7-16; Pr=20.0 psf .25); Pg=10.0 psf; DL = 1.15); Is=1.0; : Cs=1 00: Ct=1 10	(roof LL Pf=7.7 Rough	.: Lum DOL= psf (Lum DO Cat B; Partia	:1.25 L = ally							
REACTIONS	CTIONS (size) 2=0-5-8, 11= Mechanical Exp.; Ce=' Max Horiz 2=102 (LC 16) 4) Unbalance Max Uplift 2=-165 (LC 16), 11=-145 (LC 17) 5) This truss i Max Grav 2=1103 (LC 2), 11=1035 (LC 2) 0verhaorse 0verhaorse					een cor or greate at roof lo	nsidered for the er of min roof bad of 7.7 ps	his f live f on							
FORCES	(lb) - Maximum Com Tension	pression/Maximum	6)	overhangs no Building Desi	on-concurrent with gner/Project engin	other IIN eer resj	e loads. consible for								
TOP CHORD	1-2=0/29, 2-3=-1028 4-5=-2034/303, 5-7= 7-8=-1331/261, 8-9= 9-11=-1724/260	/149, 3-4=-2835/425, -1376/244, -1678/277,	7) 8)	requirements All plates are This truss ha	specific to the use MT20 plates unles s been designed fo	of this s other or a 10.0	truss compo wise indicate psf bottom	nent. ed.				mmm	1111.		
BOT CHORD	2-19=-145/573, 18-1 3-18=-305/1926, 17- 16-17=-425/2499, 15 14-15=-130/1441, 13 8-14=-58/437, 12-13 11-12=-181/1485	9=-34/195, 18=-425/2499, 5-16=-265/1790, 3-14=0/107, =-2/112,	9) 10) 11)	* This truss h on the botton 3-06-00 tall b chord and an Refer to girde	as been designed or chord in all areas y 2-00-00 wide will y other members. er(s) for truss to tru panical connection	for a liv where fit betw ss conr	e load of 20.0 a rectangle veen the botto nections.	opsf om		4	A	OR THESE	Roma		
WEBS NOTES	8-15=-588/155, 12-1 9-14=-132/107, 9-12 4-16=-794/179, 5-16 7-15=-144/937, 5-15	4=-184/1405, =-221/73, 4-17=-68/4 =-33/424, =-721/199	35, 12)	bearing plate 11 and 165 lt This truss is International R802.10.2 ar	capable of withsta o uplift at joint 2. designed in accord Residential Code s ad referenced stand	ance w ections	45 lb uplift at ith the 2018 R502.11.1 a ISI/TPI 1.	t joint		THUR AND A		0363	L 22		
 Unbalance this design 	ed roof live loads have n.	been considered for	LO	AD CASE(S)	Standard							A. G.	LBERIN		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

May 12,2025

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	A4	Нір	1	1	Job Reference (optional)	173370339

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 09 08:46:07 ID:ZVLqnBuSUJ59vPCuefmxqxzIIyC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

May 12,2025

818 Soundside Road Edenton, NC 27932

Scale = 1:83.5

Plate Offsets ((X, Y): [2:0-3-4,0-0-1],	[3:0-8-4,0-1-8], [8:0-	3-0,0-0-8]	[12:0-4-1,Edg	ie], [15:0-6-0,0-4-0], [21:0-	3-8,Edge]							
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 12.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MS	0.87 0.95 0.57	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.17 -0.31 0.21	(loc) 19-20 19-20 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 M18AHS Weight: 182 lb	GRIP 244/190 186/179 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING	2x4 SP No.2 2x4 SP No.2 *Excep 9-14:2x4 SP No.3 2x4 SP No.3 *Excep Left 2x4 SP No.3 2 No.3 1-6-0	t* 3-15:2x4 SP DSS, t* 17-5:2x4 SP No.2 2-0-15, Right 2x4 SP	2)	Wind: ASCE Vasd=91mph II; Exp B; En and C-C Exte 1-10-13 to 13 (2R) 14-5-0 t zone;C-C for reactions sho	7-16; Vult=115mp ;; TCDL=4.2psf; Bi closed; MWFRS (e erior(2E) -1-2-8 to 3-7-0, Exterior(2E) o 18-7-15, Interior members and for own; Lumber DOL=	h (3-sec CDL=3.0 envelope 1-10-13 13-7-0 f (1) 18-7 ces & M [*] =1.60 pla	cond gust) Dpsf; h=25ft; (exterior zor , Interior (1) to 14-5-0, Ext '-15 to 28-0-0 WFRS for ate grip	Cat. ne erior	14) Gra or ti bott	phical po ne orient om chor CASE(S)	urlin re ation o d. Sta	epresentation doe of the purlin along ndard	s not depict th the top and/c	ie size)r
TOP CHORD	Structural wood shea 2-4-4 oc purlins, exc 2-0-0 oc purlins (5-1 Bigid exiling directly	athing directly applie ept -15 max.): 7-8.	d or 3)	DOL=1.60 TCLL: ASCE Plate DOL=1 1.15 Plate D0	7-16; Pr=20.0 psf .25); Pg=10.0 psf; DL = 1.15); Is=1.0;	(roof LL Pf=12.7 Rough	.: Lum DOL=1 7 psf (Lum DC Cat B; Partia	1.25 DL = Ily						
REACTIONS	kigld ceimig directly bracing. (size) 2=0-5-8, 1 Max Horiz 2=98 (LC Max Uplift 2=-163 (LI Max Gray 2=1103 (J	2= Mechanical 16) C 16), 12=-143 (LC ⁻ C 2), 12=1035 (LC -	4) 5)	Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 p); Cs=1.00; Ct=1.1 snow loads have b s been designed for osf or 1.00 times fil	0, Lu=50 been cor or greate at roof lo	0-0-0 nsidered for the er of min roof bad of 7.7 psf	nis live on						
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=0/29, 2-3=-1029 4-5=-2023/294 5-7=	pression/Maximum /137, 3-4=-2810/412	-/ 6)	overnangs no Building Des verifying Rain requirements Provide adec	igner/Project engir n Load = 5.0 (psf) s specific to the use	other in heer resp covers r e of this	/e loads. consible for ain loading truss compor	nent.						
BOT CHORD	7-8=-1217/232, 8-9= 9-10=-1679/252, 10- 2-21=-141/574, 20-2 3-20=-290/1897, 19- 18-19=-408/2471, 17 16-17=-86/1194, 15- 14-15=0/107, 9-15=-	-1373/247, 12=-1723/239 1=-33/195, 20=-408/2471, 7-18=-253/1775, 16=-113/1446, 54/466, 13-14=-4/11	7) 8) 9) 10 7,	All plates are This truss ha chord live loa) * This truss h on the bottom 3-06-00 tall b chord and and	MT20 plates unle s been designed fr ad nonconcurrent v las been designed n chord in all areas y 2-00-00 wide will y other members.	ss other or a 10.0 vith any for a liv s where Il fit betw	wise indicate) psf bottom other live load e load of 20.0 a rectangle veen the botto	d. ds.)psf		V.	Z	OPTH CA	ROLL	200
WEBS	12-13=-162/1484 5-18=-40/414, 5-17= 8-17=-82/256, 8-16= 9-16=-624/150, 13-1 10-15=-126/108 10-	-655/181, 7-17=-32/3 -132/489, 5=-162/1400, 13226/70	11 356, 12) Refer to girde) Provide mech bearing plate 12 and 163 ll	er(s) for truss to tru hanical connection capable of withsta o uplift at joint 2.	uss conr (by oth anding 1	nections. ers) of truss to 43 lb uplift at	o joint		1111 March		0363	22	
NOTES 1) Unbalance this design	4-18=-795/178, 4-19 ed roof live loads have n.	=-65/436 been considered for	13	I nis truss is International R802.10.2 ar	designed in accord Residential Code and referenced stan	ance w sections dard AN	itn the 2018 R502.11.1 a ISI/TPI 1.	nd				AC A. G	EER. K	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	A5	Нір	1	1	Job Reference (optional)	173370340

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 09 08:46:08 ID:USjI5Z3k2w4alC9tIRZXC5zIJ_Z-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

			17-	10-12	
2-5-8	6-3-15	10-1-4	16-6-8	22-8-12	28-0-0
2-5-8	3-10-7	3-9-5	6-5-4	4-10-0	5-3-4
			1	-4-4	

Scale = 1:68.3

H

-13,0-2-15], [5:0-3-0	,0-0-8], [7:0-3-0	0-0-8], [10:0-4-1,Ed	ge], [14:0	-4-12,0-2-8],	[18:0-3-	8,Edge]					
cing 2-0- e Grip DOL 1.25 ber DOL 1.25 Stress Incr YES e IRC:	0 5 5 2018/TPI2014	CSI TC BC WB Matrix-MS	0.92 0.97 0.60	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.25 -0.48 0.28	(loc) 16-17 16-17 10	l/defl >999 >698 n/a	L/d 240 180 n/a	PLATES MT20 M18AHS Weight: 160 lb	GRIP 244/190 186/179 FT = 20%	
2:2x4 SP DSS, 5:2x4 SP No.2 Right 2x4 SP directly applied or ax.): 5-7. d or 10-0-0 oc	 Wind: ASG Vasd=91n II; Exp B; and C-C E 1-10-13 tc Interior (1) 21-11-15, members Lumber D TCLL: AS Plate DOL 1.15 Plate Exp.; Ce= Unbalance 	2E 7-16; Vult=115m pph; TCDL=4.2psf; E Enclosed; MWFRS (xterior(2E) -1-2-8 to 10-3-0, Exterior(2R 14-5-15 to 17-9-0, 1 Interior (1) 21-11-15 and forces & MWFR DL=1.60 plate grip E CE 7-16; Pr=20.0 psf =1.25); Pg=10.0 psf DOL = 1.15); Is=1.0 1.0; Cs=1.00; Ct=1.1 d snow loads have	bh (3-sec 3CDL=3.0 envelope 1-10-13,) 10-3-0 1 Exterior(2 to 28-0-1 S for rea OOL=1.60 f (roof LL ; Pf=12.7); Rough 0, Lu=50 been cor	ond gust) Opsf; h=25ft; () exterior zor Interior (1) to 14-5-15, 2R) 17-9-0 to 0 zone;C-C fc ctions shown .: Lum DOL=: psf (Lum DC Cat B; Partia)-0-0 sidered for tf	Cat. ne pr ; 1.25 DL = Ily nis	14) Gra or tł bott LOAD (phical p ne orient om chor CASE(S)	urlin re ation d d. Sta	epresentation doe of the purlin along ndard	is not depict the si	ze
echanical 10=-124 (LC 17) 10=1035 (LC 2)	 design. 5) This truss load of 12 overhangs 6) Building D 	has been designed 0 psf or 1.00 times f non-concurrent with	for greate lat roof lo n other liv	er of min roof bad of 7.7 psf ve loads.	live on						
on/Maximum 3-4=-2523/342, /284, /244,	 verifying F requireme Provide ac All plates This truss 	ain Load = 5.0 (psf) nts specific to the us lequate drainage to are MT20 plates unlo has been designed	covers r se of this prevent v ess other for a 10.0	ain loading truss compor vater ponding wise indicate) psf bottom	nent. g. d.			1	TH CA	ROUT	
/193, 65/2172, 145/1541, 51, 12-13=-26/75, 181/1490 52, 79/1378, 22, 8-11=0/152, 376 considered for	 * This trus on the bot 3-06-00 ta chord and 11) Refer to g 12) Provide m bearing pl 10 and 14 13) This truss Internation R802.10.2 	s has been designed tom chord in all area II by 2-00-00 wide w any other members rder(s) for truss to tr echanical connectio ate capable of withsi 4 lb uplift at joint 2. is designed in accor all Residential Code and referenced stat	d for a liv s where ill fit betw uss conr h (by oth anding 1 dance w sections ndard AN	e load of 20.6 a rectangle veen the botto nections. ers) of truss t 24 lb uplift at ith the 2018 R502.11.1 a ISI/TPI 1.	on Dpsf co ; joint		Weinner		SEA 0363	L 22 EERER IIII	Name in the
	ing 2-0- ing 2-0- ing 2-0- ing 1.25 ber DOL 1.25 Stress Incr YES :2x4 SP DSS, :2x4 SP No.2 Right 2x4 SP directly applied or ix.): 5-7. dor 10-0-0 oc wchanical 10=-124 (LC 17) 100-1035 (LC 2) pn/Maximum 3-4=-2523/342, 284, 244, 244, 35/2172, 145/1541, 1, 12-13=-26/75, 181/1490 2, 79/1378, 22, 8-11=0/152, 76 considered for xonsidered for	13,0-2-13, [3,0-3-0,0-0-5], [7,0-3-0,0 ing 2-0-0 Grip DOL 1.25 Stress Incr YES a IRC2018/TPI2014 2) Wind: ASC vasd=91rr :2x4 SP DSS, II: Exp B; I and C-C E :2x4 SP No.2 1-10-13 to Right 2x4 SP Interior (1) 20 Unber DO xx.): 5-7. Plate DOL dor 10-0-0 oc 1.15 Plate echanical 5) 10=-124 (LC 17) overhangs 10=-124 (LC 17) overhangs 10=-124 (LC 17) overhangs 10=-124 (LC 17) building D verifying R requireme 3-4=-2523/342, 7) Provide ac Schord ilve 193, 55/2172, 10)* This truss chord and 11) Refer to gi 10) and 14 12) Provide m bearing pla 22, 8-11=0/152, 10 and 14 76 13) This truss sonsidered for R802.10.2	InstructionCSIing2-0-0CSIing1.25BCber DOL1.25BCStress IncrYESWBaIRC2018/TPI2014Matrix-MS2)Wind: ASCE 7-16; Vult=115m; Vasd=91mph; TCDL=4.2psf; E:2x4 SP DSS,I: Exp B; Enclosed; MWFRS (and C-C Exterior(2E) -1-2-8 to 1-10-13 to 10-3-0, Exterior(2R) 1-11-15, Interior (1) 14-5-15 to 17-9-0, I 2-11-15, Interior (1) 21-11-15 members and forces & MWFR Lumber DOL=1.60 plate grip D 3-15 Plate DOL=1.25); Pg=10.0 psf Plate DOL=1.25); Pg=10.0 psf 1.15 Plate DOL=1.25); Pg=10.0 psf 0.15 Plate DOL=1.25); Pg=10.0 psf 0.15 Plate DOL=1.25); Pg=10.0 psf 1.15 Plate DOL=1.25); Pg=10.0 psf 0.15 Plate DOL=1.25); Pg=10.0 psf 0.10 times f 0.22 (S-1.00; CC=1.1 4)10=-124 (LC 17) 10=1035 (LC 2) 0.07/Maximum5)10=-124 (LC 17) 10=1035 (LC 2) 0.07/Maximum5)10=-124 (LC 17) 10=1035 (LC 2) 0.07/Maximum5)10=-124 (LC 17) 10=1035 (LC 2) 0.07/Maximum6)10=-124 (LC 17) 10=1035 (LC 2) 0.07/Maximum7)10=-124 (LC 17) 10=1035 (LC 2) 0.07/Maximum7)10=-125 (Psf	InstructionConsidered forConsidered forStress IncrYESTC0.92Stress IncrYESTC0.92Stress IncrYESBC0.97WB0.60Matrix-MS2)Wind: ASCE 7-16; Vult=115mph (3-sec Vasd=91mp; TCDL=4.2ps; BCDL=3.0, Use Stress Incr2)22:4 SP DSS, (11; Exp B; Enclosed; MWFRS (envelope and C-C Exterior(2E) -1-2-8 to 1-10-13, 11-13 to 10-3-0, Exterior(2R) 10-3-0 t Interior (1) 14-5-15 to 17-9-0, Exterior(2R) 21-11-15, Interior (1) 21-11-15 to 28-0- members and forces & MWFRS for real Lumber DOL=1.60 plate grip DOL=1.603: TCLL: ASCE 7-16; Pr=20.0 psf (roof LL Plate DOL=1.25); Pg=10.0 psf; Pf=12.7 1.15 Plate DOL=1.25); Pg=20.0 psf (roof LL Plate DOL=1.25); Pg=20.0 psf (roof LL Plate DOL=1.25); Pg=20.0 psf (roof LL Plate DOL=1.25); Pg=10.0 psf; Pf=12.7 1.15 Plate DOL=1.25); Pg=0.0 psf; Pf=12.7 1.15 P	13,02-13), [3,0-3-0,0-0-3], [7,0-3-0,0-0-3], [7,0-3-0,0-0-3], [7,0-3-0,0-0-3], [7,0-3-0,0-4-1,2,0-2-3],sing2-0-0CSIDEFL0 Grip DOL1.25DC0.97Stress IncrYESBC0.979 Matrix-MSMatrix-MSDEFL2.2 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; II; Exp B; Enclosed; MWFRS (envelope) exterior zor and C-C Exterior(2E) -1-2-8 to 1-0-13, Interior (1) 1-10-13 to 10-3-0, Exterior(2R) 10-3-0 to 14-5-15, Interior (1) 21-11-15 to 28-0-0 zone; C-C f members and forces & MWFRS for reactions shown Lumber DOL=1.60310-10-0 oc310-10-0 ocachanical310-10-0 oc10-124 (LC 17) 10-1035 (LC 2)310-120 psf (r110, Lu=50-0-0)10-124 (LC 17) 10-1035 (LC 2)310-120 psf or 1.00 times flat roof load of 7.7 psl overhangs non-concurrent with other live loads.34-2523/342, 224,313, 30, 35/2172, 103, 51/2172, 127, 7634-2523/342, 767633, 22, 8-11=0/152,7634-2252, 74 22, 8-11=0/152,7635/2172, 10, 767636/2172, 22, 8-11=0/152,76376763767637776378 22, 8-11=0/152,763767637676376763767637676376763767637776376763767637676376763777	InstructureCSIDEFLinGrip DOL1.25TC0.92Vert(LL)-0.25Stress IncrYESTC0.97Vert(CT)-0.48Stress IncrYESWB0.60Horz(CT)0.282)Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCL=3.0psf; h=25f; Cat. I; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-2-8 to 1-10-13, Interior (1)1.10-13 to 10-3-0, Exterior(2R) 10-3-0 to 14-5-15, Interior (1) 14-5-15 to 17-9-0, Exterior(2R) 17-9-0 to 21-11-15, Interior (1) 21-11-15 to 28-0-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60directly applied or nx.): 5-7. d or 10-0-0 ocTCLL: ASCE 7-16; PT=20.0 psf (roof LL: Lum DOL=1.25) Plate DOL=1.25); Pg=10.0 psf; Pf=12.7 psf (Lum DOL= 1.15 Plate DOL=1.25); Pg=10.0 psf; Pf=12.7 psf (Lum DOL= 1.15 Plate DOL=1.15); Is=-1.0; Rough Cat B; Partially Exp; Ce=1.0; Cs=-1.00; Cs=-1.00, Cl=-1.00, Cl=-1.00, Cl=-1.0040=-123 (LC 17) 10=1035 (LC 2) on/Maximum5)This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overfangs non-concurrent with other live loads.445)All plates are MT20 plates unless otherwise indicated.193, 55/2172, 181/1490 2, 76All plates are MT20 plates unless otherwise indicated.193, 55/2172, 193, 55/2172, 193, 55/2172, 193, 193, 55/2172, 193, <td>InterventionCSIDEFLin(loc)Grip DOL1.25TC0.92Vert(LL)-0.2516-17Stress IncrYESBC0.60Vert(LC)-0.2516-17Stress IncrYESWB0.60Vert(LC)-0.28102)Wind: ASCE 7-16; Vult=115mph (3-second gust)14) Grara:2x4 SP DSS,II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2R) 10-3-0 to 14-5-15, Interior (1) 14-5-15 to 17-9-0, Exterior(2R) 17-9-0 to 21-11-15, Interior (1) 21-11-15 to 28-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.6010 ADD (2):2x4 SP No.2Interior (1) 14-5-15 to 17-9-0, Exterior(2R) 17-9-0 to 21-11-15, Interior (1) 21-11-15 to 28-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60; Cs=1.00; Cs=1.10, Rough Cat B; Partially Exp; Cs=1-10; Cs=1-00; Cs=1.10, Lu: Lum DOL=1.25Microlum3)TCLL: ASCE 7-16; Pr=20.0 psf; (rod LL: Lum DOL=1.25Plate DOL=1.25); Pg=10.0 psf; Pf=12.7 psf (Lum DOL = 1.15 Plate DOL=1.05; Cs=1.00; Ct=1.10, Lu=50-0-010=-124 (LC 17) 10=1035 (LC 2)6)Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this fruss component. Provide adequate drainage to prevent water ponding.0-44.3)0-44.4)0-45.All plates are MT20 plates unless otherwise indicated.193. (2), 22, 8-11=0/152,7)7610193. (2), 22, 8-11=0/152,761010.11</br></td> <td>13,0-2-13, [20-3-0,0-0-3], [7,0-3-0,0-0-3], [10,0-4-1,E0ge], [14,0-4-12,0-25, [16,0-3-6,E0ge] ing 2-0-0 Grip DOL 1.25 ber DOL 1.25 Stress Incr YES seri IRC2018/TPI2014 TC 0.92 WB 0.60 Matrix-MS Vert(LL) -0.25 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) 14) Graphical protection (20, 1-2.3, 0ps; h=25ft; Cat. 11; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 1-2.3 to 110-13, 1.nterior (1) 14.10-13 to 10-3-0, Exterior(2R) 17-9-0 to 21-11-15 to 28-0-0 zone; C-C for members and forces & MWFRS for reactions shown; 11: dumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.15); IS=1:0; Rough Cat B; Partially Exp; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0 4: x): 5-7, 140 or 10-0.0 ct 1.15 Plate DOL=1.15); IS=1:0; Rough Cat B; Partially Exp; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0 4: x): 5-7, 115 truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads. 6: Building Designer/Project engineer responsible for overhangs non-concurrent with any other live loads. 10=-122 (LC 17) 0-60 tall by 2-00-0 wide will fit between the bottom chord in all areas where a rectangle 36-0-0 outher live loads.</td> <td>Hard C2-Fig. [50-5-00-00-65], [7.0-5-0,0-0-65], [10.0-4-1, Edge], [14:0-4-12,0-25], [10.0-56], Edge]ing2-0-0CSIDEFLin(loc)//deftL/dGrip DOL1.25BC0.97Vert(CT)-0.4816-17>999240ber DOL1.25BC0.97Vert(CT)-0.4816-17>999240Stress IncrYESWB0.60DEFLin(loc)//deftL/d2Wind ASCE 7-16; Vult=115mph (3-second gust)Vasd=91mph; TCDL=4.2ps; BCDL=3.0ps; h=25f; Cat.11(Faphical purifin re or the orientation in bottom chord.14) Graphical purifin re or the orientation in bottom chord.:2x4 SP DSS,IIII; Exp B; Enclosed; MWFRS for reactions shown; Lumber ODL=1.5014) Graphical purifin re or the orientation in bottom chord.:2x4 SP No.2III:1-15, Interior (1) 21:11-15 to 28-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.6014) Graphical purifin re or the orientation in bottom chord.directly applied or to 10-0 ocOT 41:15 Plate DOL = 1.15; Plate DOL = 1.10; Lum DOL=1.2517:10-130 for 1.00 graph; ff=12.7 psf (Lum DOL = 1.2510=-124 (LC 17) to 10=1035 (LC 2)61:10 Dug signer/Project engineer responsible for verfning Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.10=-124 (LC 17) to 113 full pates are MT20 plates unless otherwise indicated.11) Finis truss has been designed for a 10.0 psf bottom chord and any other members.110=-124 (LC 17) to 133 full pates are MT20 plates unless otherwi</td> <td>13:022-15), [5:03-04/045], [10:03-1,Edge], [10:03-1,Edge], [10:03-5,Edge] ing 2-0-0 Grip DOL 1.25 ber DOL 1.25 <t< td=""><td> 13.02-216); (DC-30.0406); (10.04-7); Edge); (14.04-71, Ed</td></t<></td>	InterventionCSIDEFLin(loc)Grip DOL1.25TC0.92Vert(LL)-0.2516-17Stress IncrYESBC0.60Vert(LC)-0.2516-17Stress IncrYESWB0.60Vert(LC)-0.28102)Wind: ASCE 7-16; Vult=115mph (3-second gust)14) Grara:2x4 SP DSS,II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2R) 10-3-0 to 14-5-15, 	13,0-2-13, [20-3-0,0-0-3], [7,0-3-0,0-0-3], [10,0-4-1,E0ge], [14,0-4-12,0-25, [16,0-3-6,E0ge] ing 2-0-0 Grip DOL 1.25 ber DOL 1.25 Stress Incr YES seri IRC2018/TPI2014 TC 0.92 WB 0.60 Matrix-MS Vert(LL) -0.25 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) 14) Graphical protection (20, 1-2.3, 0ps; h=25ft; Cat. 11; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 1-2.3 to 110-13, 1.nterior (1) 14.10-13 to 10-3-0, Exterior(2R) 17-9-0 to 21-11-15 to 28-0-0 zone; C-C for members and forces & MWFRS for reactions shown; 11: dumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.15); IS=1:0; Rough Cat B; Partially Exp; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0 4: x): 5-7, 140 or 10-0.0 ct 1.15 Plate DOL=1.15); IS=1:0; Rough Cat B; Partially Exp; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0 4: x): 5-7, 115 truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads. 6: Building Designer/Project engineer responsible for overhangs non-concurrent with any other live loads. 10=-122 (LC 17) 0-60 tall by 2-00-0 wide will fit between the bottom chord in all areas where a rectangle 36-0-0 outher live loads.	Hard C2-Fig. [50-5-00-00-65], [7.0-5-0,0-0-65], [10.0-4-1, Edge], [14:0-4-12,0-25], [10.0-56], Edge]ing2-0-0CSIDEFLin(loc)//deftL/dGrip DOL1.25BC0.97Vert(CT)-0.4816-17>999240ber DOL1.25BC0.97Vert(CT)-0.4816-17>999240Stress IncrYESWB0.60DEFLin(loc)//deftL/d2Wind ASCE 7-16; Vult=115mph (3-second gust)Vasd=91mph; TCDL=4.2ps; BCDL=3.0ps; h=25f; Cat.11(Faphical purifin re or the orientation in bottom chord.14) Graphical purifin re or the orientation in bottom chord.:2x4 SP DSS,IIII; Exp B; Enclosed; MWFRS for reactions shown; Lumber ODL=1.5014) Graphical purifin re or the orientation in bottom chord.:2x4 SP No.2III:1-15, Interior (1) 21:11-15 to 28-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.6014) Graphical purifin re or the orientation in bottom chord.directly applied or to 10-0 ocOT 41:15 Plate DOL = 1.15; Plate DOL = 1.10; Lum DOL=1.2517:10-130 for 1.00 graph; ff=12.7 psf (Lum DOL = 1.2510=-124 (LC 17) to 10=1035 (LC 2)61:10 Dug signer/Project engineer responsible for verfning Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.10=-124 (LC 17) to 113 full pates are MT20 plates unless otherwise indicated.11) Finis truss has been designed for a 10.0 psf bottom chord and any other members.110=-124 (LC 17) to 133 full pates are MT20 plates unless otherwi	13:022-15), [5:03-04/045], [10:03-1,Edge], [10:03-1,Edge], [10:03-5,Edge] ing 2-0-0 Grip DOL 1.25 ber DOL 1.25 <t< td=""><td> 13.02-216); (DC-30.0406); (10.04-7); Edge); (14.04-71, Ed</td></t<>	 13.02-216); (DC-30.0406); (10.04-7); Edge); (14.04-71, Ed

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

May 12,2025

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	A6G	Half Hip Girder	1	2	Job Reference (optional)	173370341

11-0-11

4-9-12

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334.

<u>-1-10-9</u>1

1-10-9

6-2-15

6-2-15

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 09 08:46:09 ID:uBqBQSt8xQEs1vkjVhvE7qzIJ7r-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

16-0-3

4-11-8

28-0-0

Page: 1 19-6-9 23-4-6 27-3-15 3-6-5 3-11-9 3-9-13 NAILED NAILED NAILED NAILED NAILED 2x4 II

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org)

818 Soundside Road

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com) Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	A6G	Half Hip Girder	1	2	Job Reference (optional)	173370341

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries. Inc. Fri May 09 08:46:09 ID:uBqBQSt8xQEs1vkjVhvE7qzIJ7r-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Uniform Loads (lb/ft)

Vert: 1-5=-29, 2-3=-56, 5-11=-39, 2-19=-20,

4-16=-20, 12-15=-20 Concentrated Loads (lb)

- Vert: 14=-19 (B), 8=-12 (B), 10=-12 (B), 13=-19 (B),
- 21=-14 (B), 22=-14 (B), 23=-14 (B), 24=-14 (B),
- 25=-14 (B), 26=-12 (B), 27=-12 (B), 28=-12 (B),
- 29=-86 (B), 30=-113 (B), 31=-121 (B), 32=-24 (B),

ain In

- 33=-24 (B), 34=-24 (B), 35=-24 (B), 36=-24 (B), 37=-19 (B), 38=-19 (B), 39=-19 (B)

A. GILB A. GILUN

May 12,2025

The opening the second second

NORTH CARO mining

> SEAL 036322

A Company and Company

PIC.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	B1	Common	4	1	Job Reference (optional)	173370342

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 09 08:46:10 ID:HsqL4nTNFmdJ65tQiKp1QNzIJ9f-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

	9-11-0	19-10-0	
Scale = 1:80.3	9-11-0	9-11-0	
Plate Offsets (X, V): [2:0-4-15 Edge] [8:0-4-15 Edge] [10:0-4-0.0-3	-01		

Plate Olisets ((X, Y): [2:0-4-15,Edge]	j, [8:0-4-15,Edgej, [10:0-4-0,	0-3-0]									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MS	0.27 0.77 0.19	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.25 0.02	(loc) 10-17 10-17 2	l/defl >999 >934 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 113 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Left 2x6 SP No.2 2 2-0-0 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, 8 Max Horiz 2=165 (LC Max Uplift 2=-102 (LI Max Grav 2=781 (LC	2-0-0, Right 2x6 SP athing directly applie applied or 10-0-0 or 3=0-5-8 C 13) C 14), 8=-102 (LC 1 C 2), 8=781 (LC 2)	No.2 ed or oc 15)	 TCLL: ASC Plate DOL= 1.15 Plate I Exp.; Ce=1 This truss h load of 12.0 overhangs Building De verifying Ra requiremen This truss h chord live k * This truss on the botto 3-06-00 tall chord and a 	E 7-16; Pr=20.0 ps 1.25); Pg=10.0 ps DOL = 1.15); Is=1. 0; Cs=1.00; Ct=1. as been designed 9 ps for 1.00 times non-concurrent wit signer/Project eng in Load = 5.0 (psf ts specific to the u as been designed bad nonconcurrent has been designed bad nonconcurrent has been designed by 2-00-00 wide w any other members	sf (roof Ll f; Pf=7.7 0; Rough 10 for great flat roof li th other li ineer res) covers r se of this for a 10. with any d for a liv as where vill fit betw s.	L: Lum DOL= psf (Lum DO Cat B; Partia er of min roo bad of 7.7 ps ve loads. ponsible for ain loading truss compo 0 psf bottom other live loa e load of 20. a rectangle veen the bott	=1.25 DL = ally of live sf on onent. ads. .0psf tom					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=0/30, 2-4=-797/' 5-6=-665/156, 6-8=-7 2-8=-162/623 5-10=-104/528, 6-10 4-10=-239/165	pression/Maximum 143, 4-5=-665/156, 797/143, 8-9=0/30 1=-240/165,		 Provide me bearing plating platin	chanical connectic te capable of withs o uplift at joint 8. s designed in acco al Residential Code and referenced sta) Standard	on (by oth standing 1 rdance w e sections indard AN	ers) of truss 02 lb uplift a ith the 2018 R502.11.1 a ISI/TPI 1.	to at joint and					11111.
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91n U: Exp. Built	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=4.2psf; BCI	been considered fo (3-second gust) DL=3.0psf; h=25ft; (or Cat.							4	i	ORTH CA	RONN

Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 9-11-0, Exterior(2R) 9-11-0 to 12-11-0, Interior (1) 12-11-0 to 20-8-8 zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Affiliat 818 Soundside Road Edenton, NC 27932

SEAL 036322 MGINEEPHHILIN May 12,2025

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	B1G	Common Girder	1	2	Job Reference (optional)	173370343

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 09 08:46:10 ID:tLA9iI5rap9xxFPN4qg09hzIIVY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

	5-0-14	9-11-0	14-9-2	19-10-0	J
Scale = 1:80.3	5-0-14	4-10-2	4-10-2	5-0-14	1

Scale = 1.80.	3													
Plate Offsets	(X, Y): [2:Edge,0-3-7],	[6:Edge,0-3-7], [7:0-	6-0,0-1-8]	, [9:0-6-0,0-6-0)], [10:0-6-0,0-1-8]									
Loading TCLL (roof) Snow (Pf/Pg TCDL BCLL BCDL	(psf) 20.0) 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-MS	0.36 0.29 0.63	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.15 0.02	(loc) 9-10 9-10 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 294 II	GRIP 244/190 b FT = 20%	
LUMBER 3) FOP CHORD 2x4 SP No.2 30 T CHORD 2x8 SP DSS 30 T CHORD 2x8 SP DSS WEBS 2x4 SP No.2 WEDGE Left: 2x6 SP No.2 Right: 2x6 SP No.2 S BRACING 5) FOP CHORD Structural wood sheathing directly applied or 4-9-2 oc purlins. 30T CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 6) Reactions (Size) 2=0-5-8, 6=0-5-8 Max Horiz Max Horiz 2=161 (LC 9) Max Grav 2=4734 (LC 2), 6=5534 (LC 3) FORCES (Ib) - Maximum Compression/Maximum				 4) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; Lumber DOL=1.60 plate grip DOL=1.60 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 16) 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads. 7) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component. 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 							on Stro onnect on Stro quivale ss(es) f on Stro quivale n the le of bot oles w) Stat ow (ba 1.15 bads (ll	ng-Tie LUS26 (Girder) or equiv t truss(es) to fro ng-Tie LUS26 (nt at 14-0-12 fr to front face of ng-Tie LUS28 (nt spaced at 2- eft end to 17-11 tom chord. 'here hanger is ndard alanced): Lumb b/ft)	4-10d Girder, alent at 8-0-1 int face of bot 4-10d Girder, om the left en pottom chord. 6-10d Girder, 0-0 oc max. s -4 to connect in contact wit er Increase=1	4-10d 2 from the tom 4-10d d to 4-10d tarting at : truss(es) h lumber.
TOP CHORE BOT CHORE WEBS	DRCES (lb) - Maximum Compression/Maximum Tension DP CHORD $1-2=0/30, 2-3=-6326/1258, 3-4=-4635/843, 4-5=-4638/843, 5-6=-6562/1014$ OT CHORD $2-10=-991/4779, 9-10=-991/4779, 7-9=-731/4968, 6-7=-731/4968$ (EBS $4-9=-982/5557, 5-9=-2276/369, 5-7=-270/2740, 3-9=-1764/622, 0-002/07410, 3-9=-1764/0740, 0-002/07410, 3-9=-1764/0740, 0-002/07410, 3-9=-1764/0740, 0-002/07410, 3-9=-1764/0740, 0-002/07410, 3-9=-1764/0740, 0-002/07410, 3-9=-1764/0740, 0-002/07410, 3-9=-1764/0740, 3-9=-1764/07$				 b) This truss has been designed for a live loads. chord live load nonconcurrent with any other live loads. f) This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. f) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 797 lb uplift at joint 6 and 974 lb uplift at joint 2 						=-20 17=-1246 (F), 21=-769 (F),	18=-905 22=-769		
NOTES	a to be connected to act	than with 10d	11) This truss is	designed in accord	dance w	ith the 2018 R502 11 1 a	nd		4	in	100 S		sing
 (0.131"x (0.131"x Top choi oc. Bottom c staggere Web cor All loads except if CASE(S provided unless o 	3") nails as follows: rds connected as follows: shords connected as follows shords connected as follows and considered equally noted as front (F) or bar) section. Ply to ply conn to distribute only loads therwise indicated.) 12 13 AD	 R802.10.2 ar Use Simpsor Truss) or equ connect truss Use Simpsor Truss) or equ 6-0-12 from t to front face of 	nd referenced star a Strong-Tie HUS2 uivalent at 4-1-10 t s(es) to front face a Strong-Tie LUS2 uivalent spaced at the left end to 12-0 of bottom chord.	adard AN 28-2 (6-1 irom the of bottorn 6 (4-10c 4-0-0 oc)-12 to c	ISI/TPI 1. Od Girder, 6- left end to n chord. I Girder, 3-10 e max. startin onnect truss(10d d g at es)				SE 036 NGIN	AL 322 SILBER ay 12,202	WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	

TRENCO A MITEK Atfiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	B1SE	Common Structural Gable	1	1	Job Reference (optional)	173370344

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 09 08:46:10 ID:zdCidiyKw3IC?jECKsZUKozIJBd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	10-10-4	14-3-0	19-10-0
Scale = 1:78.7	10-10-4	3-4-12	5-7-0

						-								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2018	;/TPI2014	CSI TC BC WB Matrix-MS	0.49 0.60 0.48	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.25 -0.34 -0.03	(loc) 21-22 21-22 15	l/defl >527 >388 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 140 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 *Excep Right 2x6 SP No.2 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Brace at Jt(s): 9 (size) $1=0-5-8, 1$ 19=0-3-8 Max Horiz $1=-156$ (LI Max Uplift $1=-39$ (LC 17=-405 (I) Max Grav $1=428$ (LC 17=1108 (I) (lb) - Maximum Com Tension	t* 6-7,20-5:2x4 SP N 2-0-0 athing directly applied applied or 6-0-0 oc 5=9-1-8, 17=9-1-8, C 12) 15), 15=-252 (LC 33) LC 14), 19=-34 (LC 2 2), 15=214 (LC 34) [LC 2), 19=66 (LC 14 pression/Maximum	2) lo.2 d or 3) 4) 3), 5) (1) 6)	Wind: ASCE Vasd=91mpl II; Exp B; En and C-C Ext to 9-11-0, Ex 12-11-0 to 20 MWFRS for grip DOL=1.1 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 This truss ha load of 12.0 overhangs n Building Dess verifying Rai requirements	7-16; Vult=115mp h; TCDL=4.2psf; E closed; MWFRS (erior(2E) 0-2-12 tc tterior(2R) 9-11-0 0-8-8 zone;C-C fo reactions shown; I 60 eed for wind loads uds exposed to wind d Industry Gable E alified building de 7-16; Pr=20.0 psf .25); Pg=10.0 psf OL = 1.15); Is=1.0 0; Cs=1.00; Ct=1.1 sis been designed psf or 1.00 times f on-concurrent witt igner/Project engi n Load = 5.0 (psf) s specific to the us	bh (3-see 3CDL=3. envelope 9.3-2-12, to 12-11 in the pl mode (nor full signer a: f (roof Ll ; Pf=7.7 b; Rough 10 for great lat roof la nother li ne res covers r se of this	cond gust) Dpsf; h=25ft; 4 e) exterior zor Interior (1) 3- e0, Interior (1) 3- e0, Interior (1) rs and forces DOL=1.60 pla ane of the tru al to the face ils as applical s per ANSI/TF .: Lum DOL= psf (Lum DOL Cat B; Partia er of min roof bad of 7.7 psf <i>ve</i> loads. consible for ain loading truss comport	Cat. ne -2-12 (; & ate ss), bble, -1 1. 1.25 L = Illy live f on	13) Gra or t bott	aphical p he orient tom chor CASE(S)	urlin ret tation ('d.) Star	presentation doe of the purlin along ndard	; not depict the top and	the size /or
TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	13-15=-256/521, 15- 6-9=-271/659, 9-11= 11-13=-267/661, 1-2 3-4=-277/70, 4-5=-24 7-8=-181/95, 8-10=- 12-13=-281/84 1-23=-64/223, 22-23 20-21=-7/223, 19-20 07-19=-381/246, 15- 13-17=-953/401, 6-7 5-20=-195/113, 4-21 2-23=-47/48, 11-12= ed roof live loads have h.	16=0/30, 6-20=-297/ -246/620, =-358/49, 2-3=-322/ 52/103, 5-7=-288/138 172/94, 10-12=-263/ =-7/223, 21-22=-7/2; =-381/246, 17=-373/242 =-68/99, 9-10=-44/7; =-82/68, 3-22=-39/4; -93/60 been considered for	701, 7) 53, 9) 5, 119, 10) 23, 2, 11) 2, 11) 2, 11) 2, 12)	All plates are Gable studs This truss ha chord live loc * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 1, 252 lb upli uplift at joint This truss h International R802.10.2 ar	s pecific to the us a 2x4 () MT20 ur spaced at 2-0-0 o us been designed ad nonconcurrent has been designed in chord in all area by 2-00-00 wide w by other members hanical connection a capable of withs iff at joint 15, 405 19 and 252 lb upli designed in accor Residential Code nd referenced star	In this section a section and and and and and and and and and an	Def bottom other live loa e load of 20.0 a rectangle ween the botto ers) of truss t 19 lb uplift at j t joint 17, 34 15. ith the 2018 R FS02.11.1 a ISI/TPI 1.	ds. Dpsf om oint Ib		A WITTEN IN		SEA OBC SEA OBC A. G	ROLL 22 ERER ILBER	A State of the second second

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Aft 818 Soundside Road Edenton, NC 27932

May 12,2025

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	B2E	Common Supported Gable	1	1	Job Reference (optional)	173370345

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 09 08:46:11 ID:poUzpFVZ2VrelwyQ7WxfGizIJG4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

L	11-2-0	
Scale = 1:44.7		
Plate Offsets (X_Y): [1:0-5-12 0-0-5] [5:0-3-0 Edge] [9:0-2-14 0-2-1]		

	(,,, ,). []; [e:e e e;⊒age]; [e:		.1										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MS	0.04 0.04 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 62 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=11-2-0, 11=11-2-0 14=11-2-0 Max Horiz 1=-87 (LC Max Uplift 1=-14 (LC 10=-76 (LI 13=-6 (LC 15=-77 (LI Max Grav 1=82 (LC 10=160 (L 12=80 (LC 14=128 (LC	athing directly applie applied or 10-0-0 oc 9=11-2-0, 10=11-2- 0, 12=11-2-0, 13=11- 0, 15=11-2-0 10) 9=-3 (LC 11), C 15), 11=-66 (LC 14) C 14) 27), 9=76 (LC 28), C 26), 11=131 (LC 2 C 26), 11=131 (LC 2 C 25), 15=161 (LC 25)	2) d or : 3) 0, .2-0, 4) 5), (, 5) 26), 6) 225) 8)	Wind: ASCE Vasd=91mpl II; Exp B; En and C-C Cor 5-7-0, Corne 11-2-0 zone; reactions shu DOL=1.60 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Building Des verifying Raii requirements All plates are Gable reguts	7-16; Vult=115m r; TCDL=4.2psf; closed; MWFRS ner(3E) 0-0-0 to r(3R) 5-7-0 to 8- C-C for member: pwn; Lumber DO red for wind load: ds exposed to w d Industry Gable alified building d : 7-16; Pr=20.0 p .25); Pg=10.0 ps OL = 1.15; Is=1.); Cs=1.00; Ct=1 igner/Project enc n Load = 5.0 (psi s specific to the u 2x4 () MT20 u es nared at 2-0-0	nph (3-sec BCDL=3. (envelope 3-0-0, Exter s and forc L=1.60 pl s in the pl ind (norm End Deta esigner a: sf (roof LL sf; Pf=7.7 .0; Rough .10 jineer rest) covers r use of this inless oth	ond gust) opsf; h=25ft; () exterior zon erior(2N) 3-0- or(2N) 8-7-0; es & MWFRS ate grip ane of the trus ate grip ane of the trus ate grip ane of the trus by per ANS/TF : Lum DOL=1 psf (Lum DOL Cat B; Partial consible for ain loading truss compor erwise indicat d bearing.	Cat. ae 0 to 5 for ss , ble, 1.25 -= lly ment. ed.						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	9)	This truss ha	is been designed	for a 10.0) psf bottom	do				""TH CA	Bally	
TOP CHORD	1-2=-133/64, 2-3=-74 4-5=-40/60, 5-6=-39/ 7-8=-65/26, 8-9=-129	4/41, 3-4=-56/58, /60, 6-7=-47/60, 9/56	10) * This truss h on the bottor	nas been designe nas been designe n chord in all are	ed for a liv as where	e load of 20.0 a rectangle	us.)psf		6	JAN Y	OR	No R	in
BOT CHORD	1-15=-50/128, 14-15 13-14=-49/128, 12-1 11-12=-49/128, 10-1	i=-49/128, 3=-49/128, 1=-49/128, 9-10=-49)/128 ¹¹	chord and ar) Provide med	hanical connection	s. on (by oth	ers) of truss to	0 Dint				SEA	L	Contra la
WEBS	4-13=-59/13, 6-12=-5 2-15=-112/138, 7-11 8-10=-111/137	54/0, 3-14=-97/120, =-100/121,		1, 3 lb uplift a joint 14, 77 lb lb uplift at joi	at joint 9, 6 lb upl o uplift at joint 15 nt 10 and 14 lb u	lift at joint , 66 lb up plift at joir	13, 64 lb uplif ift at joint 11, it 1.	t at 76		THE PARTY		0363	22	unu,
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for	12 LC	 P) This truss is International R802.10.2 ar PAD CASE(S) 	designed in acco Residential Cod nd referenced sta Standard	ordance w e sections andard AN	ith the 2018 R502.11.1 a ISI/TPI 1.	nd			in the second se	ALC A. C	EER.K	

May 12,2025

818 Soundside Road Edenton, NC 27932

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	BV1	Valley	1	1	Job Reference (optional)	173370346

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 09 08:46:11 ID:SlaMVIdnE3e?2itOLh8XpJzIJHD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

12-10-2

Scale = 1:58.3

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.25		TC	0.24	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	7	7.7/10.0	Lumber DOL	1.25		BC	0.18	Vert(TL)	n/a	-	n/a	999		
TCDL		7.0	Rep Stress Incr	YES		WB	0.16	Horiz(TL)	0.00	4	n/a	n/a		
BCLL		0.0*	Code	IRC201	8/TPI2014	Matrix-S							Waisht CE lb	FT 200
BCDL		10.0					_						vveight: 65 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p Rigid ceili bracing	0.2 0.3 0.2 *Excep wood shea ourlins, exc ng directly	t* 5-3:2x4 SP No.3 athing directly applie cept end verticals. applied or 10-0-0 or	4) 5) ed or 6) 5 7) 8)	TCLL: ASCE Plate DOL=' 1.15 Plate D Exp.; Ce=1.0 Building Des verifying Rai requirement: Gable requir Gable studs This truss ha	7-16; Pr=20. 1.25); Pg=10.(OL = 1.15); Is 0; Cs=1.00; Ci signer/Project In Load = 5.00 s specific to th res continuous spaced at 4-C as been design	0 psf (roof LL) psf; Pf=7.7 =1.0; Rough =1.10 engineer resp (psf) covers r ie use of this bottom chor -0 oc. ned for a 10.0	L: Lum DOL= psf (Lum DO Cat B; Partia ponsible for ain loading truss compo d bearing. D psf bottom	1.25 L = Illy nent.					
REACTIONS	(size) Max Horiz Max Uplift Max Grav (Ib) - Maxi	4=12-10-2 7=12-10-2 7=-153 (L) 4=-25 (LC 7=-69 (LC 4=184 (LC 6=379 (LC	2, 5=12-10-2, 6=12-1 2 C 15) 11), 5=-180 (LC 15 14) C 25), 5=495 (LC 26 26), 7=196 (LC 25 pression/Maximum	10-2, 9)), 10), 10), 11	chord live loa * This truss I on the botton 3-06-00 tall I chord and ar I) Provide mec bearing plate 7, 25 lb uplif) This truss is	ad nonconcur has been desi m chord in all by 2-00-00 wid ny other memi chanical conne e capable of w t at joint 4 and designed in a	rent with any gned for a liv areas where de will fit betw bers, with BC ection (by oth ithstanding 6 i 180 lb uplift ccordance w	other live loa e load of 20. a rectangle veen the bott CDL = 10.0ps ers) of truss is b uplift at j at joint 5. ith the 2018	ads. Opsf om f. to joint					
TOP CHORD BOT CHORD	Tension 1-7=-116/ 3-4=-146/ 6-7=-97/1	85, 1-2=-8 144 51, 5-6=-9	3/79, 2-3=-122/100, 7/151, 4-5=-97/151	LC	International R802.10.2 a	Residential C nd referenced Standard	standard AN	s R502.11.1 a NSI/TPI 1.	and					
WEBS NOTES 1) Unbalance	2-6=-180/2 ed roof live lo	21, 3-5=-29 oads have	90/205 been considered for	r								an an	WITH CA	ROUN

this design.
Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 3-11-0, Exterior(2R) 3-11-0 to 6-11-0, Interior (1) 6-11-0 to 12-5-10 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	BV2	Valley	1	1	Job Reference (optional)	173370347

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 09 08:46:11 ID:_HUZj8PUTXNYuxVxlvpJ4WzIJHV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

the second

Page: 1

GRIP 244/190

FT = 20%

11-7-12 11-3-10 3-11-0 ++3-11-0 7-4-10 0-4-2 11-7-12 4x6= 2 12 10 2x4 II 8 9 2x4 II 6-1-14 6-2-9 6-2-9 3 3-2-6 0-3-11 0-3-11 Т 7 10 6 11 5 12 2x4 🛛 2x4 II 2x4 🛛 3x6、

11-7-12

Scale = 1:54.2

TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	,	(psi) 20.0 7.7/10.0 7.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC20	018/TPI2014	TC BC WB Matrix-S	0.17 0.18 0.13	Vert(LL) Vert(TL) Horiz(TL)	n/a n/a 0.00	(ioc) - - 4	n/a n/a n/a	999 999 n/a	MT20 Weight: 56 lb
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structural 6-0-0 oc p Rigid ceill bracing. (size)	0.2 0.2 0.3 0.3 I wood sheat ourlins, exc ing directly 4=11-7-12 7, 14 7, 12	athing directly applied cept end verticals. applied or 10-0-0 oc 2, 5=11-7-12, 6=11-7-	1 or 12,	 4) TCLL: ASCE Plate DOL=' 1.15 Plate D Exp.; Ce=1. 5) Building Des verifying Rai requirement: 6) Gable requir 7) Gable studs 8) This truss ha chord live lo: 9) * This truss I 	: 7-16; Pr=20.0 ; l.25); Pg=10.0 p OL = 1.15); Is=1); Cs=1.00; Ct=1 igner/Project en n Load = 5.0 (ps s specific to the es continuous b spaced at 4-0-0 s been designe ad nonconcurrer nas been design	esf (roof LL sf; Pf=7.7 1.0; Rough 1.10 gineer res sf) covers r use of this ottom chor oc. d for a 10.0 t with any eed for a liv	.: Lum DOL= psf (Lum DO Cat B; Partia ponsible for ain loading truss compoid bearing. 0 psf bottom other live loa e load of 20.0	1.25 L = IIIy nent. Ids. Dpsf				
FORCES TOP CHORD BOT CHORD	Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-7=-119, 3-4=-126, 6-7=-85/1	7=11-7-12 7=-125 (L 4=-34 (LC 7=-71 (LC 4=144 (LC 6=387 (LC imum Com /93, 1-2=-8: /119 22, 5-6=-8:	2 (2 (15) (11), 5=-153 (LC 15), (14) (25), 5=404 (LC 26), (26), 7=186 (LC 25) pression/Maximum 9/86, 2-3=-124/101, 5/122, 4-5=-85/122		on the botton 3-06-00 tall li chord and an 10) Provide mec bearing plate 7, 34 lb uplif 11) This truss is International R802.10.2 a LOAD CASE(S)	n chord in all and by 2-00-00 wide by other membe hanical connect e capable of with t at joint 4 and 1 designed in acc Residential Coor nd referenced st Standard	eas where will fit betw rs, with BC ion (by oth standing 7 53 lb uplift ordance w de sections tandard AN	a rectangle veen the bott DL = $10.0psi$ ers) of truss i '1 lb uplift at j at joint 5. ith the 2018 is R502.11.1 <i>a</i> ISI/TPI 1.	om f. to oint				
NOTES	2-6=-182/	26, 3-5=-2	47/191										TH CA

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 3-11-0, Exterior(2R) 3-11-0 to 6-11-0, Interior (1) 6-11-0 to 11-3-3 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G

mmm May 12,2025

SEAL

036322

VIIIIIIIIII

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	BV3	Valley	1	1	Job Reference (optional)	173370348

1 Job Reference (optional) Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 09 08:46:11

ID:5WF2tmMzQJt6PKBA33kNwgzIJHZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

GRIP 244/190

FT = 20%

10-5-6

0		4 50	
Scale	=	1:50.	1

Loading		(psf)	Spacing	2-0-0)	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES
TCLL (roof)		20.0	Plate Grip DOL	1.25		тс	0.15	Vert(LL)	n/a	-	n/a	999	MT20
Snow (Pf/Pg)		7.7/10.0	Lumber DOL	1.25		BC	0.13	Vert(TL)	n/a	-	n/a	999	
TCDL		7.0	Rep Stress Incr	YES		WB	0.09	Horiz(TL)	0.00	4	n/a	n/a	
BCLL		0.0*	Code	IRC2	018/TPI2014	Matrix-S							
BCDL		10.0											Weight: 48 lb
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc p Rigid ceil bracing.	o.2 o.3 o.3 I wood she purlins, ex ing directly	athing directly applie cept end verticals. applied or 10-0-0 or	d or	 4) TCLL: ASCE Plate DOL=' 1.15 Plate D Exp.; Ce=1. 5) Building Des verifying Rai requirement 6) Gable requir 7) Gable studs 8) This truss ha chord live lo 	E 7-16; Pr=20.C 1.25); Pg=10.0 OL = 1.15); Is= 0; Cs=1.00; Ct= igner/Project e n Load = 5.0 (p s specific to the es continuous spaced at 4-0- as been design ad nonconcurr	 psf (roof Ll psf; Pf=7.7 =1.0; Rough =1.10 engineer resposf) covers r a use of this bottom choir 0 oc. ed for a 10 ent with any 	L: Lum DOL= psf (Lum DO Cat B; Partia ponsible for ain loading truss compo d bearing. 0 psf bottom other live loa	1.25 L = Illy nent.				
REACTIONS	(size) Max Horiz Max Uplift Max Grav	4=10-5-10 7=10-5-10 7=-96 (LC 4=-47 (LC 6=-3 (LC 4=95 (LC 6=262 (LC	0, 5=10-5-10, 6=10-5 0 2 15) 2 11), 5=-135 (LC 15 10), 7=-73 (LC 14) 2 25), 5=288 (LC 26), C 26), 7=157 (LC 25)),	 9) * This truss I on the botton 3-06-00 tall I chord and ai 10) Provide meet bearing plate 7, 47 Ib up if it 	has been desig m chord in all a by 2-00-00 wid hy other memb thanical connece capable of wit	ined for a liv ireas where e will fit betw ers. ction (by oth thstanding 7	re load of 20.0 a rectangle veen the both ers) of truss t 73 lb uplift at j	Opsf om to joint				
FORCES	(lb) - Max Tension	imum Com	pression/Maximum		7, 47 ID UPIIF uplift at joint 11) This truss is	5. 5. 5.	uplift at join	it 6 and 135 li	D				
TOP CHORD	1-7=-124/ 3-4=-116/	/105, 1-2=- /106	96/98, 2-3=-129/108	,	International R802.10.2 a	Residential Conductor	ode sections	s R502.11.1 a	and				
BOT CHORD WEBS	6-7=-73/9 2-6=-177/	94, 5-6=-73 /29, 3-5=-2	/94, 4-5=-73/94 20/188		LOAD CASE(S)	Standard							minin
NOTES			hann ann àidean d'fai										"TH CA
this design	eu root IIVê I n.	ioads navē	been considered for									A	OFFESS

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 3-11-0, Exterior(2R) 3-11-0 to 6-11-0, Interior (1) 6-11-0 to 10-0-13 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	BV4	Valley	1	1	Job Reference (optional)	173370349

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries. Inc. Fri May 09 08:46:11

ID:DI?X1PITM4MhwiuPqDgRmqzIJHd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

4-5-9

9-2-15 3-11-0 8-10-13 ++3-11-0 4-11-13 0-4-2 9-3-4 4x6 = 2 10 L 4-1-14 4-5-9 2x4 II 6 1 P 1-2-6 0-3-11 3 0-3-11 5 0-0-4 4 2x4 II 2x4 💊 2x4 II 9-2-15

Scale = 1:38.7

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.30 0.20 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 38 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 3=9-3-4, 4 Max Horiz 5=-74 (LC Max Uplift 3=-60 (LC 5=75 (LC Max Grav 3=188 (LC 5=164 (LC	athing directly applie cept end verticals. applied or 10-0-0 or l=9-3-4, 5=9-3-4 :10) :14), 4=-30 (LC 15). :14) :2), 4=330 (LC 26), :31)	4 5 c 6 7 8 9 9	 TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Building Dess verifying Rai requirements Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar Provide med bearing plate 	i 7-16; Pr=20.0 ps .25); Pg=10.0 psf OL = 1.15); Is=1.0); Cs=1.00; Ct=1.1 igner/Project engin n Load = 5.0 (psf) s specific to the us es continuous bott spaced at 4-0-0 of sbeen designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide will y other members.	f (roof LI ; Pf=7.7 ; Rough 0 neer res covers r te of this tom chor c. for a 10.1 with any d for a liv s where ill fit betv n n (by oth anding 7	.: Lum DOL= posf (Lum DOI Cat B; Partia ponsible for ain loading truss compor d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 5 b uplift at i	1.25 L = Ily nent. ds. Opsf om o					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: AS((lb) - Maximum Com Tension 1-5=-138/114, 1-2=- 4-5=-65/86, 3-4=-65/ 2-4=-209/52 ed roof live loads have n. EF 7-16: Vult=115mph	pression/Maximum 120/111, 2-3=-146/1 /86 been considered fo (3-second gust)	05 ¹ L	5, 60 lb upliff 1) This truss is International R802.10.2 a OAD CASE(S)	at joint 3 and 30 l designed in accor Residential Code nd referenced star Standard	lb uplift a dance w sections ndard AN	it joint 4. ith the 2018 is R502.11.1 a ISI/TPI 1.	ind				WITH CA	ROL

- 2) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 3-11-0, Exterior(2R) 3-11-0 to 6-11-0, Interior (1) 6-11-0 to 8-10-7 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G mmm May 12,2025

SEAL

036322

on north and

WILLIAM DATE

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	BV5	Valley	1	1	Job Reference (optional)	173370350

3-5-9

Scale = 1:34.5

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	7.	(psf) 20.0 .7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MP	0.19 0.17 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 31 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES	2x4 SP No 2x4 SP No 2x4 SP No 8-0-14 oc p Rigid ceilin bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Maxir Tension 1-2=-58/23 1-4=-157/1 2-4=-409/1	.2 .2 .3 wood shea purlins. Ig directly 1=8-0-14, 1=60 (LC (LC 15) 1=-89 (LC (LC 2) num Com 13, 2-3=-2 ⁻ 15, 3-4=- ⁻ 50	athing directly appli applied or 6-0-0 oc 3=8-0-14, 4=8-0-1- 11) 32), 3=-1 (LC 15), 31), 3=3 (LC 26), 4 pression/Maximum 12/256 157/115	ed or 4 4=-66 =555	 4) TCLL: ASCE Plate DOL=' 1.15 Plate D Exp.; Ce=1.0 5) Building Desverifying Rai requirement: 6) Gable requir 7) Gable studs 8) This truss has chord live loc 3) This truss loop on the botton 3-06-00 tall 11 chord and and 10) Provide mec bearing plate 1, 1 lb uplift at joint 3. 11) This truss is International R802.10.2 a 	E 7-16; $Pr=20.0 \text{ ps}$ 1.25); $Pg=10.0 \text{ ps}$ 1.25); $Pg=10.0 \text{ ps}$ OL = 1.15); $Is=1.0$ C; $Cs=1.00$; $Ct=1.2$ igner/Project engin n Load = 5.0 (psf) s specific to the us es continuous bot spaced at 4-0-0 o s been designed ad nonconcurrent nas been designed ad nonconcurrent nas been designed model in all area by 2-00-00 wide w ny other members shanical connectio e capable of withsis at joint 3, 66 lb up designed in accord Residential Code nd referenced stai	if (roof LL ; Pf=7.7 ; Rough 10 ineer resp covers r se of this tom chor ic. for a 10.0 with any d for a liv as where ill fit betv n (by oth tanding 6 lift at join rdance w sections ndard AN	L: Lum DOL= porsible for ain loading truss compor d bearing. D psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss t 19 lb uplift at ji t 4 and 1 lb uj ith the 2018 s R502.11.1 a JSI/TPI 1.	1.25 _ = Ily hent. ds.)psf om oint plift						
1) Unbalance this design	ed roof live lo 1.	ads have	been considered fo	or	LOAD CASE(S)	Standard								in the	

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 3-11-0, Exterior(2R) 3-11-0 to 6-11-0, Interior (1) 6-11-0 to 7-8-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Page: 1

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	BV6	Valley	1	1	Job Reference (optional)	173370351

Scale = 1:31.4

Plate Offsets (X, Y):	[2:0-4-8,0-2-4],	[4:0-3-0,0-0-4]
-----------------------	------------------	-----------------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 12.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2018/TI	PI2014	CSI TC BC WB Matrix-MP	0.09 0.19 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD DTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: ASI Vasd=91r II; Exp B; and C-C C & MWFRS grip DOL= 3) Truss des only. For see Stanc or consult	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 5-10-5 oc purlins; ex 2-0-0 oc purlins; 2-4. Rigid ceiling directly bracing. (size) 1=5-10-5, Max Horiz 1=-37 (LC 6=-72 (LC Max Uplift 1=-19 (LC 6=-72 (LC (lb) - Maximum Com Tension 1-2=-89/101, 2-3=-21 4-5=-126/97 1-6=-62/88, 5-6=-62/ 3-6=-212/144 ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=4.2psf; BC Enclosed; MWFRS (en corner(3E) zone;C- C fo 5 for reactions shown; I =1.60 igned for wind loads in studs exposed to wind lard Industry Gable Enc qualified building desig	athing directly applie ccept - applied or 6-0-0 oc 5=5-10-5, 6=5-10-5 : 12) : 15), 5=-30 (LC 10), : 14) 26), 5=112 (LC 32), 2) pression/Maximum 8/62, 3-4=-28/62, /98 been considered for (3-second gust) DL=3.0psf; h=25ft; C velope) exterior zon r members and forc Lumber DOL=1.60 p the plane of the trus (normal to the face) d Details as applicab gner as per ANSI/TP	4) T P 1. E 5) B d or ver 6) P 7) G 8) G 8) G 8) G 10) * 01 10) * 10) * 10) * 11) P b 11) P b 12) T 11) P b 12) T 11) P b 13) G 00 13) G 13) G 00 13) C 14) C ALCAL CAL CAL CAL CAL CAL CAL CAL CAL	CLL: ASCE Plate DOL=1 .15 Plate DO ixp.; Ce=1.0 suilding Desi eerifying Rair equirements trovide adec Bable require able studs : his truss ha hord live loa This truss ha hord live loa This truss ha hord ol live loa This truss ha hord live loa This truss ha hord and an trovide mecl earing plate his truss is a his truss is a his truss is a his truss is a hord and an trovide mecl earing plate his truss is a his truss is a his truss is a his truss is a his trust on a his trus	7-16; Pr=20.0 ps .25); Pg=10.0 ps DL = 1.15); Is=1.1 ; Cs=1.00; Ct=10 in Load = 5.0 (psf is specific to the u upate drainage to as continuous bo spaced at 4-0-0 of s been designed an onconcurrent ias been designed in chord in all area y 2-00-00 wide w y other members hanical connection capable of withs at joint 5 and 72 designed in acco Residential Code in referenced stat rlin representatio ition of the purlin I. Standard	sf (roof LL f; Pf=12.7 0; Rough 10, Lu=50 jineer resp) covers r se of this prevent t ttom chor oc. for a 10.0 with any d for a liv as where vill fit betw s. on (by oth standing 1 lb uplift a redance w a sections andard AN n does no along the	: Lum DOL= ' psf (Lum DC Cat B; Partia)-0-0 bonsible for ain loading truss compor vater ponding d bearing.) psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 9 lb uplift at ju t joint 6. ith the 2018 r Sto2.11.1 a ISI/TPI 1. ot depict the s e top and/or	1.25 DL = Ily nent. J. ds. Jpsf om obint nd nize				SEA 0363	L ROLU L 22 REF.R.R.	Manuality

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

GI minim May 12,2025

Page: 1

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	C1	Common	5	1	Job Reference (optional)	173370352

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 09 08:46:12 ID:jotV1eHxkIYJp8jGRZry0xzIHo6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:65.5 9-10-0 9-10-0		9-10-0	19-8-0
	Scale = 1:65.5	9-10-0	9-10-0

	Plate Offsets (X, Y):	[2:Edge,0-1-0], [6:Edge,0-1-0], [7:0-4-0,0-3-0]
--	-----------------------	---

												-		
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MS	0.26 0.86 0.20	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.14 -0.29 0.03	(loc) 7-10 7-10 6	l/defl >999 >803 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 89 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: ASI Vasd=91r II; Exp B; and C-C E 9-10-0, E: 9-10-0, E: 9-10-0, E: 12-10-0 tc MWFRS f grip DOL= 3) TCLL: AS Plate DOL 1.15 Plate	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shea 5-3-4 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, 6 Max Horiz 2=76 (LC Max Uplift 2=-122 (LI Max Grav 2=795 (LC (lb) - Maximum Com Tension 1-2=0/29, 2-3=-1175 4-5=-887/205, 5-6=- 2-6=-195/1011 4-7=-69/528, 5-7=-33 ed roof live loads have n. CE 7-16; Vult=115mph mph; TCDL=4.2psf; BCI Enclosed; MWFRS (en Exterior(2R) 9-10-0 to 12 0-19-8-0 zone; C-C for n for reactions shown; Lu =1.60 CE 7-16; Pr=20.0 psf; [P = DOL = 1.15); Is=1.0; F	athing directly applie applied or 10-0-0 oc 3=0-5-8 20) C 16), 6=-102 (LC 1) C 2), 6=726 (LC 2) pression/Maximum 5/263, 3-4=-887/201, 1181/268 30/153, 3-7=-321/15 been considered for (3-second gust) DL=3.0psf; h=25ft; C ivelope) exterior zon -9-8, Interior (1) 1-9-1 2-10-0, Interior (1) 1-9-1 2-10-0, Interior (1) 1-9-1 embers and forces mber DOL=1.60 plat roof LL: Lum DOL=1 2f=7.7 psf (Lum DOL Rough Cat B; Partial	4) 5) 6) d or 7) 8) 7) 9) 10 7) 9) 10 Co Cat. e 8 to & to & 25 = y	Unbalanced design. This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar Provide mec bearing plate 6 and 122 lb) This truss is International R802.10.2 a DAD CASE(S)	snow loads have as been designed psf or 1.00 times t on-concurrent witt igner/Project engin n Load = 5.0 (psf) s specific to the us is been designed ad nonconcurrent has been designed or chord in all area by 2-00-00 wide w by other members hanical connectio e capable of withs' uplift at joint 2. designed in accor Residential Code nd referenced star Standard	been cor for great flat roof le h other li ineer res covers r se of this for a 10.1 with any d for a liv is where ill fit betv n (by oth tanding 1 rdance w s sections ndard AN	hisidered for t er of min roo bad of 7.7 ps ve loads. ponsible for ain loading truss compo 0 psf bottom other live load e load of 20. a rectangle veen the bott ers) of truss 02 lb uplift a ith the 2018 5 R502.11.1 a JSI/TPI 1.	his f live f on nent. ads. Opsf om to t joint and				SEA 0363	L 22 EER-FL	N

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 3) Plate DOL=1.25); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GI

1111111 May 12,2025

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	C1E	Common Supported Gable	1	1	Job Reference (optional)	173370353

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 09 08:46:12 ID:yFOULvBwdrXSrw5kzti4hFzIHoE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 9-10-0 19-8-0 9-10-0 9-10-0 19-8-0 3x6 = 6 5 7 A 8 4 12 6 Г 25 26 3 9

19-8-0

Scale = 1.44.3

Plate Offsets (X, Y): [6:0-	-3-0,Edge],	[13:0-3-0,0-3-0]														
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	-	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MS	0.12 0.12 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 97 lb	GRIP 244/190 FT = 20%			
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	D 2x4 SP No.2 D 2x4 SP No.2 2x4 SP No.3 D Structural wood sheathing directly applied or 6-0-0 oc purlins. D Rigid ceiling directly applied or $6-0-0$ oc bracing. S (size) 1=19-8-0, 11=19-8-0, 12=19-8-0, 13=19-8-0, 14=19-8-0, 12=19-8-0, 16=19-8-0, 17=19-8-0, 18=19-8-0, 19=19-8-0 Max Horiz 1=-61 (LC 17), Max Uplift 1=-7 (LC 17), 12=-80 (LC 17), 13=-30 (LC 17), 14=-49 (LC 17), 17=-47 (LC 16), 18=-28 (LC 16), 19=-82 (LC 16) Max Grav 1=109 (LC 35), 11=108 (LC 36), 12=287 (LC 36), 13=95 (LC 2), 14=138 (LC 36), 15=105 (LC 2), 16=106 (LC 2), 17=137 (LC 35) (lb) - Maximum Compression/Maximum Tension D 12=29(52, 3, 4= 16/68)				 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-0 to 3-0-0, Exterior(2N) 3-0-0 to 9-10-0, Corner(3E) 9-10-0 to 12-10-0, Exterior(2N) 12-10-0 to 19-8-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=-1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component. All plates are 2x4 ([]) MT20 unless otherwise indicated. 						 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 						
FORCES	(lb) - Max Tension	imum Com	pression/Maximum	8	 Gable require Gable stude: 	es continuous bott	om chor	d bearing.				AN.	ORIEESS	1			
TOP CHORD	Tension 1-2=-127/74, 2-3=-28/53, 3-4=-16/68, 4-5=-33/83, 5-6=-35/81, 6-7=-35/81, 7-8=-33/83, 8-9=-16/52, 9-10=-15/38, 10-11=-128/72				 10) This truss ha chord live load 11) * This truss has an the better 	s been designed f ad nonconcurrent v as been designed	or a 10.0 with any for a liv) psf bottom other live load e load of 20.0	ds. Ipsf			V	SEA	L	1 million		
BOT CHORD	1-19=-44/ 16-17=-44 12-14=-4	/114, 18-19 4/92, 15-16 5/93, 11-12	=-44/92, 17-18=-44/9 =-44/92, 14-15=-44/9 =-45/101	92, 92,	3-06-00 tall b chord and an	by 2-00-00 wide wi by other members.	Il fit betw	veen the botto	om C		THUN A		0363	22	mm,		
WEBS	12-14=-45/93, 11-12=-45/101 5-16=-82/1, 7-15=-82/0, 4-17=-95/70, 3-18=-82/56, 2-19=-184/122, 8-14=-95/71,			1,	bearing plate 47 lb uplift at	bearing plate capable of withstanding 7 lb uplift at joint 17, 28 lb uplift at joint 17, 28 lb uplift at joint 18, 82 lb uplift at							S. ENGIN	EERA	in the second se		
NOTES	5-1503/	, oo, 10-12=	100/121		joint 19, 49 lk 80 lb uplift at	o uplift at joint 14, joint 12.	30 lb upl	itt at joint 13 a	and				A. C	ILBE III	2		

May 12,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	C2	Common	2	1	Job Reference (optional)	173370354

9-10-0

4-9-15

-1-2-8

 \vdash

5-0-1

5-0-1

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 09 08:46:13 ID:QdNarpaYOTEYrEH71NoMfizIHp0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

14-7-15

4-9-15

19-2-0

4-6-1

Page: 1

	9-10-0	19-2-0	
Scolo - 1:65 5	9-10-0	9-4-0	
$\frac{1}{2} \int \frac{1}{2} \int \frac{1}$			

	(X, I). [I.0 0 0,Eugo],	[0.0 1 0,0 0 0]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MS	0.28 0.81 0.20	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.32 0.03	(loc) 8-15 8-15 7	l/defl >999 >720 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 89 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: AS' Vasd=91r II; Exp B; and C-C E 9-10-0, E: 12-10-0 tt MWFRS 1 grip DOL: 3) TCLL: AS Plate DOL	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right 2x4 SP No.3 Structural wood she 5-4-2 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, 7 Max Horiz 2=80 (LC Max Uplift 2=-121 (L Max Grav 2=776 (LC (lb) - Maximum Com Tension 1-2=0/29, 2-3=-1133 4-5=-839/201, 5-7=- 2-7=-200/967 4-8=-61/489, 5-8=-21 ed roof live loads have n. CE 7-16; Vult=115mph mph; TCDL=4.2psf; BC Enclosed; MWFRS (er Exterior(2E) -1-2-8 to 1 xterior(2E) 9-10-0 to 12 o 19-2-0 zone;C-C for n for reactions shown; Lu =1.60 SCE 7-16; Pr=20.0 psf (L=1.25); Pg=10.0 psf; (- 1-6-0 athing directly applie applied or 10-0-0 or 7= Mechanical 16) C 16), 7=-97 (LC 17 C 2), 7=707 (LC 2) pression/Maximum 3/261, 3-4=-843/198, 1051/252 61/136, 3-8=-324/14 been considered for (3-second gust) DL=3.0psf; h=25f; C welope) exterior zom 9-8, Interior (1) 1-9- 2-10-0, Interior (1) 1-9- 2-	4) 5) 6) ed or 7) 5 8) 9) 9) 10 11 9 LC Cat. 8 to & te .25	Unbalanced design. This truss ha load of 12.0 [overhangs n Building Des verifying Raii requirements This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird) Provide mec bearing plate 7 and 121 lb) This truss is International R802.10.2 ar DAD CASE(S)	snow loads have s been designed of or 1.00 times i giner/Project engin in Load = 5.0 (psf) s specific to the us s been designed in chord in all area y 2-00-00 wide w wy other members gr(s) for truss to tr hanical connectio capable of withs uplift at joint 2. designed in accor Residential Code and referenced star Standard	been cor for great flat roof lu h other lin ineer res covers r se of this for a 10.0 with any d for a liv with any d for a liv truss conr n (by oth tanding S rdance w s sections ndard AN	nsidered for the er of min roof oad of 7.7 psi ve loads. ponsible for ain loading truss compo 0 psf bottom other live load re load of 20.1 a rectangle veen the both nections. ers) of truss to 77 lb uplift at j ith the 2018 s R502.11.1 a NSI/TPI 1.	his f live f on nent. ds. 0psf om to joint				SEA 0363	L EEER-H	

- 9-10-0, Exterior(2R) 9-10-0 to 12-10-0, Interior (1) 12-10-0 to 19-2-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 3) Plate DOL=1.25); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G

100000 May 12,2025

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	C3	Half Hip	1	1	Job Reference (optional)	173370355

11-3-8

-1-2-8

H

5-8-13

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 09 08:46:13 ID:QMr8H?NuPF5yJdUsXJ?MT6zIHpH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

19-2-0

	5-8-13	<u>11-1-12</u>	19-2-0	
	5-8-13	5-4-15	8-0-4	
Scale = 1:68.5				
Plate Offsets (X, Y): [2:Edge,0-0-12], [4:0-3-0,0-2-0]				

	(,,, ,), [=:=age	,	, [o o o,o = o]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	12.7/	(psf) 20.0 (10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MS	0.90 0.66 0.44	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.26 0.03	(loc) 6-7 6-7 6	l/defl >999 >868 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 106 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Left: 2x4 SP I Structural wo 5-2-12 oc puri	*Except (flat) No.3 pod shea rlins, ep ins (4-6-	t* 6-4:2x4 SP No.2 athing directly applie ccept end verticals, a 8 max): 4-5	ed or and a	 Wind: ASCE Vasd=91mpl II; Exp B; En and C-C Ext 11-3-8, Exter to 19-0-4 zor for reactions DOL=1.60 TCLL: ASCE Plate DOL=1 	7-16; Vult=115m n; TCDL=4.2psf; E closed; MWFRS (erior(2E) -1-2-8 to rior(2R) 11-3-8 to ne;C-C for membe shown; Lumber D ; 7-16; Pr=20.0 psf .25); Pg=10.0 psf	ph (3-sec 3CDL=3. envelope 1-9-8, Ir 15-6-7, I ers and fo OOL=1.60 f (roof LL	cond gust) Opsf; h=25ft; e) exterior zo tterior (1) 1-9 nterior (1) 15 orces & MWF D plate grip L: Lum DOL= 7 psf (Lum D0	Cat. ne 8 to 6-7 -RS 	14) Wa trus alw LOAD (rning: Ao s syster ays requ CASE(S	ddition n (not j lired.) Sta	al permanent and part of this comp ndard	I stability bracing for onent design) is	
BOT CHORD	Rigid ceiling	directly	applied or 10-0-0 oc	;	1.15 Plate D Exp.; Ce=1.0	OL = 1.15);); Rough 10, Lu=5	Cat B; Partia 0-0-0	ally						
WEBS	T-Brace: Fasten (2X) web with 10d 3in minimum Brace must	T and I I (0.131 end dis cover 9	2x4 SP No.3 - 4-6 braces to narrow ed "x3") nails, 6in o.c.,w ttance. 10% of web length.	4 Ige of vith	 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads. 										
REACTIONS	(size) 2= Max Horiz 2= Max Uplift 2= Max Grav 2=	:0-5-8, 6 :177 (LC :-111 (L(:820 (LC	5= Mechanical 5 16) C 16), 6=-114 (LC 13 C 3), 6=777 (LC 3)	3) 7	 Building Des verifying Rai requirements Provide adeo This truss has 	igner/Project engi n Load = 5.0 (psf) s specific to the us quate drainage to is been designed	covers res covers r se of this prevent for a 10	ponsible for ain loading truss compo water pondin 0 psf bottom	nent. g.				Satur		
	(lb) - Maximu Tension	Im Com	pression/Maximum	ç	chord live loa) * This truss h	ad nonconcurrent	with any d for a liv	other live load of 20.	ads. Opsf				TH CA	ROUN	
BOT CHORD WEBS NOTES 1) Unbalance this design	4-5=-31/6, 5- 2-9=-237/103 3-9=0/185, 3- 4-6=-793/149 ed roof live load n.	6=-222/ 39, 7-9= -7=-469 9 ds have	78 -237/1039, 6-7=-123 /154, 4-7=-29/546, been considered for	3/660 1 1	 of the boliof 3-06-00 tall to chord and ar 0) Refer to gird 1) Provide mec bearing plate 2 and 114 lb 2) This truss is International 	y 2-00-00 wide w y other members er(s) for truss to tr hanical connectio capable of withst uplift at joint 6. designed in accor Residential Code	rill fit betw , with BC russ conr n (by oth tanding 1 rdance w sections	veen the bott DL = 10.0ps nections. ers) of truss 111 lb uplift a ith the 2018 \$ R502 11 1 a	tom .f. to t joint		A	AND	SEA 0363	L 22	7
				1	R802.10.2 arGraphical pu or the orienta bottom chore	nd referenced star rlin representation ation of the purlin d.	ndard AN n does no along the	VSI/TPI 1. ot depict the set op and/or	size		3	in the second se	A. C.	EER. K. I.I.	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	C4	Half Hip	1	1	Job Reference (optional)	173370356

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 09 08:46:13 ID:ApDThUfFXpXT6PuK1iwI2TzIHqD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x6=

Page: 1

			L	6-4-13	3	12-5-12		19	-2-0				
Scale – 1:71.4			Г	6-4-13	3	6-0-15	1	6-	8-4	1			
Plate Offsets	(X, Y): [2:Edge,0-0-12], [4:0-3-0,0-2-0]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 12.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MS	0.61 0.56 0.46	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.13 0.03	(loc) 6-7 6-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 109 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.3(flat) Left: 2x4 SP No.3 Structural wood she 5-3-4 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing.	t* 3-9:2x4 SP No.3 athing directly applied cept end verticals, and -0 max.): 4-5. applied or 10-0-0 oc 2x4 SP No.2 -4.6	2) or 3) j 4)	Wind: ASCE Vasd=91mph II; Exp B; En- and C-C Exte 12-7-8, Exter 16-10-7 to 19 MWFRS for ri grip DOL=1.6 TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced	7-16; Vult=1150 n; TCDL=4.2psf closed; MWFRS erior(2E) -1-2-8 rior(2R) 12-7-8 t 9-0-4 zone;C-C reactions showr 60 : 7-16; Pr=20.0 .25); Pg=10.0 p OL = 1.15); Is=1); Cs=1.00; Ct=' snow loads hav	mph (3-sec BCDL=3.: 6 (envelope to 1-9-8, Ir o 16-10-7, for membe a; Lumber I posf (roof LI sf; Pf=12.7 .0; Rough I.10, Lu=50 e been cor	cond gust) Dpsf; h=25ft;) exterior zc terior (1) 1-9 Interior (1) rs and force DOL=1.60 pl .: Lum DOL= / psf (Lum D Cat B; Partii -0-0 sidered for	Cat. one 9-8 to s & late =1.25 OL = ally this	14) Wa trus alw LOAD (rning: A s syster ays requ CASE(S	ddition n (not uired.) Sta	al permanent and part of this compo ndard	stability bracing for nent design) is
REACTIONS	Fasten (2X) T and I web with 10d (0.131 3in minimum end dis Brace must cover 9 (size) 2=0-5-8, 6 Max Horiz 2=197 (LC Max Uplift 2=-111 (L Max Grav 2=817 (LC (lb) - Maximum Com	2x4 SP N0.3 - 4-6 braces to narrow edg "x3") nails, 6in o.c.,wii stance. 20% of web length. 6= Mechanical C 16) C 16), 6=-109 (LC 13) C 3), 6=779 (LC 3) pression/Maximum	(e of 5) (h 6) () 7) 8)	design. This truss ha load of 12.0 p overhangs n Building Desi verifying Raii requirements Provide adeo This truss ha chord live loa	is been designe psf or 1.00 time: on-concurrent w igner/Project en n Load = 5.0 (ps s specific to the quate drainage t is been designe ad nonconcurrer	d for great s flat roof le rith other lir gineer res sf) covers r use of this o prevent d for a 10. nt with any	er of min roc bad of 7.7 ps ve loads. bonsible for ain loading truss compo water pondir 0 psf bottom other live loa	of live sf on onent. ng. ads.				and CA	
TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig	Tension 1-2=0/29, 2-3=-1196 4-5=-18/4, 5-6=-182 2-9=-248/1017, 7-9= 3-9=0/239, 3-7=-555 4-6=-750/148 ed roof live loads have n.	i/135, 3-4=-684/82, /64 248/1017, 6-7=-106/ /174, 4-7=-42/554, been considered for	9) 541 10 11 12 13	* This truss h on the bottom 3-06-00 tall b chord and ar) Refer to girdd) Provide mecl bearing plate 6 and 111 lb) This truss is International R802.10.2 ar i) Graphical pu or the orienta bottom chord	has been design in chord in all arroy 2-00-00 wide by other membe er(s) for truss to hanical connect e capable of with uplift at joint 2. designed in acc Residential Con nd referenced si rlin representati ation of the purli b.	ed for a liv eas where will fit betv rs, with BC truss conn ion (by oth standing 1 ordance w de sections andard AN on does n n along the	e load of 20 a rectangle veen the bot DL = 10.0ps ections. ers) of truss 09 lb uplift a ith the 2018 R502.11.1 ISI/TPI 1. of depict the e top and/or	.0psf tom sf. to at joint and size			AL AND	SEA 0363	L22 LBE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY A MITEK Attilate

818 Soundside Road Edenton, NC 27932

May 12,2025

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	C5	Half Hip	1	1	Job Reference (optional)	173370357

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 09 08:46:13 ID:Pkhbt78vQvER4yhFZuASLczIHqt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	7-0-13	13-9-12	19-2-0	
Scale = 1:74.2	7-0-13	6-8-15	5-4-4	
Plate Offsets (X, Y): [2:Edge,0-0-8], [5:0-3-0,0-2-0]				

	(, .). [[]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 12.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MS	0.55 0.50 0.65	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.11 0.03	(loc) 10-13 10-13 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 112 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.3(flat) Left: 2x4 SP No.3 Structural wood she 5-2-13 oc purlins, e	t* 3-10:2x4 SP No.3 athing directly appliec xcept end verticals, a	2) I or nd 3)	Wind: ASCE Vasd=91mph II; Exp B; En and C-C Extr 13-11-8, Extr 18-2-7 to 19- MWFRS for grip DOL=1.6 TCLL: ASCE Ploto DOL=1	7-16; Vult=115mp ; TCDL=4.2psf; Bi closed; MWFRS (e erior(2E) -1-2-8 to erior(2R) 13-11-8 tr 0-4 zone;C-C for n reactions shown; L 60 7-16; Pr=20.0 psf -25): Pe=10.0 psf	h (3-sec CDL=3.0 nvelope 1-9-8, Ir o 18-2-7 nember umber I (roof LL	cond gust) Opsf; h=25ft; (e) exterior zon terior (1) 1-9- 7, Interior (1) s and forces & DOL=1.60 pla .: Lum DOL=1	Cat. ne -8 to & te 1.25	14) Wa trus alw LOAD (rning: Ad s systen ays requ CASE(S)	dditiona n (not j iired.) Star	al permanent and part of this compo	I stability bracing for onent design) is
BOT CHORD	2-0-0 oc purlins (6-0 Rigid ceiling directly bracing.	-0 max.): 5-6. applied or 10-0-0 oc	4)	1.15 Plate DOL=1 1.15 Plate DOL=1 Exp.; Ce=1.0 Unbalanced	.25); Pg=10.0 psr; OL = 1.15); Is=1.0;); Cs=1.00; Ct=1.10 snow loads have b	Rough Rough 0, Lu=50 Deen cor	Cat B; Partial 0-0-0 psidered for th	DL = Ily nis					
WEBS REACTIONS	I-Brace: Fasten (2X) T and I web with 10d (0.131 3in minimum end dis Brace must cover 9 (size) 2=0-5-8, 7 Max Horiz 2=216 (LC Max Uplift 2=-109 (L Max Grav 2=814 (LC	2x4 SP No.3 - 5-7 braces to narrow edg "x3") nails, 6in o.c.,wi stance. 90% of web length. = Mechanical C 16) C 16), 7=-120 (LC 16 C 3), 7=778 (LC 3)) (h) (h) (h) (h) (h) (h) (h) (h) (h) (h	design. This truss ha load of 12.0 j overhangs n Building Des verifying Raii requirements Provide adec This truss ha	s been designed for psf or 1.00 times fit on-concurrent with igner/Project engin n Load = 5.0 (psf) of s specific to the use uate drainage to p is been designed for	or great at roof lo other liv eer res covers r e of this prevent	er of min roof bad of 7.7 psf ve loads. boonsible for ain loading truss compor water ponding 0 nsf bottom	live on nent.					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	o) 9)	chord live loa	ad nonconcurrent w	vith any	other live load	ds. Insf				"TH CA	RO
TOP CHORD	1-2=0/29, 2-3=-1168 5-6=-8/2, 6-7=-142/5	9/126, 3-5=-566/59, 51	3)	on the bottor 3-06-00 tall b	n chord in all areas	where I fit betv	a rectangle	om			- AN	ORESS	in this
BOT CHORD WEBS	2-10=-254/989, 8-10 3-10=0/284, 3-8=-63 5-7=-730/152)=-254/989, 7-8=-88/4 33/194, 5-8=-53/563,	26 10 11	chord and ar) Refer to gird) Provide mec	by other members, er(s) for truss to tru hanical connection	with BC iss conr (by oth	DL = 10.0psf nections. ers) of truss to					SFA	
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for	12	bearing plate 7 and 109 lb 7) This truss is International R802.10.2 ar	e capable of withsta uplift at joint 2. designed in accord Residential Code s nd referenced stan	anding 1 lance w sections dard AN	20 lb uplift at ith the 2018 R502.11.1 a ISI/TPI 1.	joint nd		HILL .		0363	22

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

GILB Unuminit

May 12,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	CV1	Valley	1	1	Job Reference (optional)	173370358

13-3-12

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries. Inc. Fri May 09 08:46:14 ID:xkYxzLWIgxhpqyiFWzEFEezIHrh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

13-3-12

DEFL

in (loc) l/defl

L/d

999

999 n/a PLATES

Weight: 51 lb

MT20

GRIP

244/190

FT = 20%

CSI

Scale	= 1:43.9
ocale	- 1.40.0

Loading

TCLL (roof) Snow (Pf/Pg)	20.0 7.7/10.0	Plate Grip DOL Lumber DOL	1.25 1.25			TC BC	0.22	Vert(LL) Vert(TL)	n/a n/a	-	n/a n/a
BCLL BCDL	7.0 0.0* 10.0	Code	IRC20	018/	TPI2014	Matrix-MS	0.05	Horiz(TL)	0.00	5	n/a
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=13-3-12 7=13-3-12	athing directly appli cept end verticals. applied or 10-0-0 c 2, 5=13-3-12, 6=13- 2	ed or ic 3-12,	4) 5) 6) 7) 8) 9)	TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design. Building Des verifying Raia requirements Gable requir Gable studs This truss ha	7-16; $Pr=20.0 \mu$.25); $Pg=10.0 \mu$ DL = 1.15); $Is=1; Cs=1.00; Ct=1snow loads havigner/Project enn Load = 5.0 (psis specific to thees continuous bspaced at 4-0-0is been designe$	osf (roof LL sf; Pf=7.7 .0; Rough 1.10 e been cor gineer res sf) covers r use of this ottom chor oc. d for a 10.0	:: Lum DOL= psf (Lum DOI Cat B; Partia nsidered for th ponsible for ain loading truss compor d bearing. D psf bottom	1.25 L = Illy nis nent.		
FORCES	Max Horiz 1=122 (LC Max Uplift 1=-1 (LC (LC 12), 7 Max Grav 1=163 (LC (LC 2), 7= (lb) - Maximum Com Tension 1-2=-346/64, 2-3=-7	C 12) 12), 5=-29 (LC 12), 7=-91 (LC 12) C 2), 5=124 (LC 2), e405 (LC 2) apression/Maximum 3/35, 3-4=-44/22.	6=-68 6=282	10) 11)	* This truss I on the bottor 3-06-00 tall b chord and ar Provide med bearing plate 5, 1 lb uplift a t ising 7	a nonconcurrent has been design in chord in all are by 2-00-00 wide by other membe hanical connect capable of with at joint 1, 68 lb u	it with any led for a liv eas where will fit betv rs. ion (by oth istanding 2 uplift at join	e load of 20.0 a rectangle veen the botto ers) of truss t 29 lb uplift at j t 6 and 91 lb	om om oint uplift		
BOT CHORD WEBS	4-5=-88/55 1-7=-129/322, 6-7=- 3-6=-216/118, 2-7=-	3/6, 5-6=-3/6 265/113		12)	This truss is International R802.10.2 ar	designed in acc Residential Coo nd referenced st	ordance w de sections tandard AN	ith the 2018 8 R502.11.1 a NSI/TPI 1.	ind		

2-0-0

NOTES

1) Unbalanced roof live loads have been considered for this design.

(psf)

Spacing

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-12 to 3-0-12, Interior (1) 3-0-12 to 13-2-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	CV2	Valley	1	1	Job Reference (optional)	173370359

10-3-12

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334.

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries. Inc. Fri May 09 08:46:14 ID:2zIQ7_TnciBNMLPUH79J4ozIHrl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3000 = 1.40	Sca	le =	1:40	
-------------	-----	------	------	--

Loading

OT

TCLL (roof)

Snow (Pf/Pg)

TCDL BCLL BCDL		7.0 0.0* 10.0	Rep Stress Incr Code	YES IRC20 ⁷	18/TPI2014
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structural 6-0-0 oc p	o.2 o.2 o.3 o.3 wood shea	athing directly applied	4 5 d or 6) TCLL: A Plate DO 1.15 Pla Exp.; Ce) Unbalan design.) Building verifying
BOT CHORD	Rigid ceili bracing.	ng directly	applied or 6-0-0 oc	7	requiren
REACTIONS	(size) Max Horiz Max Uplift Max Grav	1=10-3-12 1=93 (LC 1=-15 (LC 5=-113 (LC 1=189 (LC	2, 4=10-3-12, 5=10-3- 12) 12), 4=-18 (LC 12), C 12) 2), 4=-77 (LC 22), 5-	-12 8 9 1 -494) Gable st) This trus chord liv 0) * This tru on the b
FORCES	(lb) - Max	(LC 2) imum Com	pression/Maximum	- 10 1	3-06-00 chord ar 1) Provide
TOP CHORD	Tension 1-2=-421/	62, 2-3=-4	3/16, 3-4=-62/69		bearing 4, 15 lb
WEBS	1-5=-164/ 2-5=-324/	394, 4-5= 198	3/1	1	2) This trus Internati
NUIES	مط ممم السما	aada hawa	heen encidered for		

Spacing

Plate Grip DOL

Lumber DOL

(psf)

20.0

7.7/10.0

2-0-0

1.25

1.25

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-12 to 3-0-12, Interior (1) 3-0-12 to 10-2-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face). see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

10-3-12

0.33

0.35

0.06

DEFL

Vert(LL)

Vert(TL)

Horiz(TL)

in

n/a

n/a

0.01

(loc)

5

l/defl

n/a 999

n/a

n/a n/a

L/d

999

PLATES

Weight: 37 lb

MT20

GRIP

244/190

FT = 20%

- Unbalanced snow loads have been considered for this desian. Building Designer/Project engineer responsible for
- verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.

CSI

тс

BC

WB

Matrix-MS

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 0) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
-) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 4, 15 lb uplift at joint 1 and 113 lb uplift at joint 5.
- 2) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job Truss		Truss Type	Qt	у	Ply	A669 Kipli	ng A			
P02608-25469 CV3		Valley	1		1	Job Refer	ence (or	otional)		173370360
84 Lumber-2383 (Dunn, NC), Dunn, NC	28334,		Run: 8.83 S Apr 24 2025	Print: 8.8 NzIHrn-F	30 S Apr 24	2025 MiTek a3NSaPant	Industries	s, Inc. Fr	ri May 09 08:46:14 CDoi7J4zJC?f	Page: 1
						1 9. dive				
			/-3-12				+			
			7-3-12				+			
						2)	(4 n			
	—					2	1	-		
				_	\square		ţ			
	2-5-8	12 4 Г	6 7					c L	α 	
						F	1			
	-0-0-0-4			****		<u>ا</u> " *******	[‡] 3 ∑	-		
		376	-			2	8			
			7 0 10			27				
Scale = 1:29.9			7-3-12				1			
Loading (psf)	Spacing	2-0-0		DEFL) r	in (loc)	l/defl	L/d	PLATES	GRIP
Snow (Pf/Pg) 7.7/10.0	Lumber DOL	1.25 VES	BC 0.62	Vert(1	L) r L) r	1/a -	n/a n/a	999 999	101120	244/190
BCLL 0.0*	Code	IRC2018/TPI2014	Matrix-MP		(12) 0.	02 5	11/d	n/a	Weight [,] 24 lb	FT – 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 BRACING TOP CHORD Structural wood sh 6-0-0 oc purlins, e BOT CHORD Rigid ceiling directl bracing. REACTIONS (size) 1=7-3-12 Max Horiz 1=65 (LC Max Uplift 1=-41 (L Max Grav 1=265 (L (b) - Maximum Cor Tension TOP CHORD 1-2=-646/196, 2-3= BOT CHORD 1-3=-285/606 NOTES 1) Unbalanced roof live loads hav this design. 2) Wind: ASCE 7-16; Vult=115mp Vasd=91mph; TCDL=4.2psf; Br II; Exp B; Enclosed; MWFRS (c and C-C Exterior(2E) 0-0-12 to to 7-2-12 zone; C-C for member for reactions shown; Lumber DD DOL=1.60 3) Truss designed for wind loads i only. For studs exposed to win see Standard Industry Gable E or consult qualified building des 4) TCLL: ASCE 7-16; Pr=20.0 psf Plate DOL=1.25); Pg=10.0 psf Plate DOL=1.25); Pg=1	eathing directly applied accept end verticals. y applied or 10-0-0 oc 2, 3=7-3-12 (12) C 12), 3=-61 (LC 12) C 2), 3=-65 (LC 2) mpression/Maximum -166/134 e been considered for h (3-second gust) CDL=3.0psf; h=25ft; Ca nvelope) exterior zone 3-0-12, Interior (1) 3-0- S and forces & MWFRS DL=1.60 plate grip n the plane of the truss d (normal to the face), nd Details as applicable igner as per ANSI/TPI (roof LL: Lum DOL=1.2 Pf=7.7 psf (Lum DOL= Rough Cat B; Partially een considered for this	 6) Building Desiverifying Raimequirements 7) Gable require 8) Gable studs s 9) This truss has chord live loa 10) * This truss has on the bottom 3-06-00 tall be chord and an 11) Provide mech bearing plate 3 and 41 lb u 12) This truss is on International R802.10.2 an LOAD CASE(S) 	gner/Project engineer res 1 Load = 5.0 (psf) covers i specific to the use of this is continuous bottom choi spaced at 4-0-0 oc. is been designed for a 10. d nonconcurrent with any as been designed for a live n chord in all areas where y 2-00-00 wide will fit betw y other members. nanical connection (by oth capable of withstanding 6 plift at joint 1. designed in accordance w Residential Code sections and referenced standard AN Standard	ponsible rain load truss c rd beari 0 psf bc other li re load o a recta ween the ers) of f 51 lb up rith the 2 s R502. VSI/TPI	e for ding omponent. ng. ttom ve loads. of 20.0psf ngle e bottom truss to lift at joint 2018 11.1 and 1.				SEA 0363	EER. HUM

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

RENGINE BY

CO

Prodebal (2) C(4) Value Add 13 (4) Add 14 (4)	Job	Truss		Truss Type		Qty	Ply	A669 Kipli	ng A			170070001
Aluebe 283 (0, n, VC), Dan, NC. 2834, But Ball and Albor State	P02608-25469	CV4		Valley		1	1	Job Refer	ence (op	tional)		173370361
1912 Control Contro	84 Lumber-2383 (Dunn	n, NC), Dunn, NC - 2	28334,		Run: 8.83 S Apr 24 2	025 Print: 8.8	330 S Apr 24	2025 MiTek	Industries	, Inc. Fr	i May 09 08:46:14	Page: 1
1 432 1					ID.II?VX4GFeIIAT5F8	avvAUazoink		SDIOHASINO	JEduroma		KWICD017J42JC?I	
<complex-block> Image: space of the space of the</complex-block>				ł	4-3-	-12		-				
<complex-block> Image: space of the space of the</complex-block>								1				
<text></text>												
I and a set of the												
A set of the set of				Ļ	4-3-	-12		4				
The second seco							2	x4 u				
 y = y = y = y = y = y = y = y = y = y =												
The state of the state					12 4 Г	7	2	1				
I and the set of t			8					2	80 10			
			÷	- 1	6				4			
24.2 24.1						*****		⊔ 3 ⊗		_		
Part - 24 # State - 12:1				È				8				
Harden State St					2x4 =		2	x4 u				
Soute - 128.1 Loading (pn) Spacing 2-0-0 CSI 0.17 Vert(L) Na - Na 999 All All All South (Pipp) 7.100 TC 0.00 Vert(L) Na - Na 999 All All All South (Pipp) 7.100 TC Code Vert(L) Na - Na 999 All Al				ł	4-3-	-12		_				
Laading (pf) 20.0 Vertical voor belanding 20.0 Vertical prince (processing 20.0 Vertical prince) (processing 20.0 V	Scale = 1:26.1				- I			I				;
Snow (er/Fg) 7.70.0.0 Lumber DOL 1.25 EC 0.20 Verif(TL) 0.00 3 n/a 998 BCLL 0.00 Rep Stress incr YES Weight: 13.16 FT = 20% LUMBER TOP CHORD 22.45 SP No.2 Structural wood sheathing directly applied or 100-0 cot 1.25 Weight: 13.16 FT = 20% 05 CHORD 22.44 SP No.3 Structural wood sheathing directly applied or 100-0 cot 1.62 1.00 SP fortom 9 Priority in trass component. 1.32 Co purification of 100-0 cot 1.60 SP fortom 9 Priority in trass component. 1.32 Co purification of 100-0 cot 1.32 Cot Cot <t< td=""><td>Loading TCLL (roof)</td><td>(psf) 20.0</td><td>Spacing Plate Grip DOL</td><td>2-0-0 1.25</td><td>CSI TC 0</td><td>.17 Vert(I</td><td>- _L) r</td><td>in (loc) n/a -</td><td>l/defl n/a</td><td>L/d 999</td><td>PLATES MT20</td><td>GRIP 244/190</td></t<>	L oading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.25	CSI TC 0	.17 Vert(I	- _L) r	in (loc) n/a -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
BCLL 0.0 Code IRC2018/TP12014 Matrix-MP Out Note Weight: 13 lb FT = 20% BCDL 10.0 Code IRC2018/TP12014 Matrix-MP Out Note Weight: 13 lb FT = 20% BCDL 10.0 Code IRC2018/TP12014 Matrix-MP Out Note Weight: 13 lb FT = 20% BCDL 10.0 Code Status Status <td< td=""><td>Snow (Pf/Pg)</td><td>7.7/10.0</td><td>Lumber DOL Rep Stress Incr</td><td>1.25 YES</td><td>BC 0</td><td>.20 Vert</td><td>ΓL) r (TL) 0</td><td>n/a - 00 3</td><td>n/a n/a</td><td>999 n/a</td><td></td><td></td></td<>	Snow (Pf/Pg)	7.7/10.0	Lumber DOL Rep Stress Incr	1.25 YES	BC 0	.20 Vert	ΓL) r (TL) 0	n/a - 00 3	n/a n/a	999 n/a		
 LUMBER TOP CHORD 2:45 PN 0.2 BOT CHORD 2:45 PN 0.2 BOT CHORD 2:45 PN 0.2 BEACING TOP CHORD 5:24 SP No.2 BEACING TOP CHORD 5:300 CHORD 5:000 C	BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP		(12) 0.		n/u	n/a	Woight: 12 lb	ET - 20%
 Construction 224 SP No.2 Construction 224 SP No.3 Construction 224 SP No.4 <		10.0		6) Building De	signer/Project engineer	responsibl	e for				weight. 13 lb	FT = 20%
 Ball ChOND 24 SP No.3 BRACING TOP CHORD 5 Structural wood sheathing directly applied or top 0.0 cm 10 set used of the 10 set of t	TOP CHORD 2x4	SP No.2		verifying R	ain Load = 5.0 (psf) cove	ers rain loa	ding					
 BRACING TOP CHORD Structural wood sheathing directly applied to 4-3-12 co purifies, except end verticals. Bracentoms (size) 14-3-12, 3-4-3-12 Max Horz 14-36 (LC 12) 14-3-12, 3-4-3-12 Max Grav 14-154 (LC 2), 3-4-154 (LC 2) Max Grav 14-156 (LC 2) FORCES (I) (I) - Maximum compression/Maximum Tension TOP CHORD 1-3-2-302/157, 2-3-9-2/81 BOT CHORD 1-3-2-10/298 NOTES Unbalanced rool live loads have been considered for this Gesgin. Unbalanced for live loads have been considered for this Gesgin for wind loads in the plane of the truss or consult qualified bruiding designer as applicable. 15 Forket End MWFRS (envelopment (1) 3-4-12 Part DDL -1.50) Pati (root) - Roop (root) - Live DDL -1.50 pit (root) - Live DDL -1.50 Pati (root) - Roop (root) - Live DDL -1.50 pit (root) - Live DDL -1.50 Pati (root) - Roop (root) - Live DDL -1.50 pit (root) - Live DDL -1.50 Pati (root) - Roop (root) - Live DDL -1.50 pit (root) - Live DDL -1.50 Pati (root) - Roop (root) - Live DDL -1.50 pit (root) - Live DDL -1.50 Pati (root) - Roop (root) - Live DDL -1.50 Phane DDL -1.50; Pati (root) - Roop (root) - Live DDL -1.50 Pati (root) - Roop (root) - Live DDL -1.50 Pati (root) - Roop (root) - Live DDL -1.50 Pati (root) - Roop (root) - R	WEBS 2x4	SP No.3		7) Gable requirement	ires continuous bottom	chord beari	ng.					
 4-3-12 oc purlins, except end verticals. BOT CHORD Rigid celling directly applied to 10-0-0 oc bracing. REACTONS (size) 1-4-3-12, 3-4-3-12 Max Horiz 1-36 (LC 12) Max Korz 1=54 (LC 2), 3-a-53 (LC 12) Max Grav 1=154 (LC 2), 3-a-154 (LC 2) FORCES (b) - Maximum Compression/Maximum TOP CHORD 12-2-320(157, 2-3-92/18) BOT CHORD 12-2-320(157, 2-3-92/18) BOT CHORD 12-3-20(157, 2-3-92/18) BOT CHORD 13-3-210/298 NOTES 1 Unbalanced roof live loads have been considered for this design. Consult qualified building designer as per ANS/TP1 1. LOAD CASE(S) Standard 	BRACING TOP CHORD Stru	ctural wood she	athing directly applied	l or 9) This truss h	as been designed for a	10.0 psf bo	ottom					
 Bracing. REACTIONS (size) 1 = 4-3-12, 3=4-3-12 Max Horiz 1 = 36 (LC 12) Max Grav 1 = 154 (LC 2), 3=-35 (LC 12) Max Grav 1 = 154 (LC 2), 3=-35 (LC 12) Max Grav 1 = 154 (LC 2), 3=-35 (LC 12) Max Grav 1 = 154 (LC 2), 3=-35 (LC 12) Max Grav 1 = 154 (LC 2), 3=-35 (LC 12) Max Grav 1 = 154 (LC 2), 3=-35 (LC 12) Max Grav 1 = 154 (LC 2), 3=-35 (LC 12) Max Grav 1 = 154 (LC 2), 3=-35 (LC 12) Max Grav 1 = 154 (LC 2), 3=-35 (LC 12) Max Grav 1 = 154 (LC 2), 3=-35 (LC 12) Max Grav 1 = 154 (LC 2), 3=-35 (LC 12) Max Grav 1 = 154 (LC 2), 3=-35 (LC 12) Max Grav 1 = 154 (LC 2), 3=-35 (LC 12) Max Grav 1 = 154 (LC 2), 3=-35 (LC 12) Max Grav 1 = 154 (LC 2), 3=-35 (LC 12) Max Grav 1 = 154 (LC 2), 3=-35 (LC 12) Max Grav 1 = 154 (LC 2), 3=-51 (LC 12) Max Grav 1 = 154 (LC 2), 3=-51 (LC 12) Max Grav 1 = 154 (LC 2), 3=-51 (LC 12) Max Grav 1 = 154 (LC 2), 3=-51 (LC 12) Max Grav 1 = 154 (LC 2), 3=-51 (LC 12) Max Grav 1 = 154 (LC 2), 3=-51 (LC 12) Max Grav 1 = 154 (LC 2), 3=-51 (LC 12) Max Grav 1 = 156 (LC 12) (L	4-3- BOT CHORD Rigi	 12 oc purlins, e id ceiling directly 	xcept end verticals. applied or 10-0-0 oc	10) * This truss	s has been designed for	a live load	of 20.0psf					
Max Horiz 1=36 (LC 12) Max Uplift 1=24 (LC 12), 3=-35 (LC 12) Max Grav 1=154 (LC 2), 3=-35 (LC 2) Max Grav 1=154 (LC 2), 3=-35 (LC 2) (b) - Maximum Compression/Maximum Tension TOP CHORD 1=2-320/157, 2-3=92/81 BOT CHORD 1=3=-210/298 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vull=115mph (3-second gust) Vaad=d+mph; TCDL=4-2p; BCDL=30 (ps); h=25; T. Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(ZE) O-Ap; Her-7, Pt Letroir (11): 30-12 to 4-2-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind normal to the face), see Standard Industry Cable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. 5) Unbalanced snow loads have been considered for this design.	brac (size) REACTIONS	cing.) 1=4-3-12,	3=4-3-12	3-06-00 tal	by 2-00-00 wide will fit	between th	e bottom					
Max Grav 1=154 (LC 2), 3=154 (LC 2) FORCES (b) - Maximum Compression/Maximum Thersion TOP CHORD 1-2=-320/157, 2-3=92/81 BOT CHORD 1-3=-210/258 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vull=115mph (3-second gust) Vasd=9-1mph; TCDL=4,25; BCDL=3,0psf; h=251; Cat. II: Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(ZE) 0-0-12 to 3-0-12, Interior (1) 3-0-12 to 4-2-12 zone; C-C for members and forces & MWFRS for reactions show; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard industry Gable End Details as applicable, or consult qualified building designer as per ANSITP1 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (forc) L-12; bg =0-10, psf (Lm TDOL = 1.15 Plate DOL = 1.15); Is=-10, Rough Cat B; Partially Exp; Cic=10; Cis=-100; Cis-1.00; Disf; Pi-77; B (Lum DOL = 1.15 Plate DOL = 1.15); Is=-10; Rough Cat B; Partially Exp; Cic=10; Cis=-100; Cis-1.00; Disf; Pi-77; B (Lum DOL = 1.15 Plate DOL = 0; Cis-1.00; Disf; Pi-77; B (Lum DOL = 1.15 Plate DOL = 0; Cis-1.00; Disf; Pi-77; B (Lum DOL = 1.15 Plate DOL = 0; Cis-1.00; Disf; Pi-77; B (Lum DOL = 1.15 Plate DOL = 0; Cis-1.00; Disf; Pi-77; B (Lum DOL = 1.15 Plate DOL = 0; Cis-1.00; Disf; Pi-77; B (Lum DOL = 1.15 Plate DOL = 0; Cis-1.00; Disf; Pi-77; B (Lum DOL = 1.15 Plate DOL = 0; Cis-1.00; Cis-1.00; Disf; Pi-77; B (Lum DOL = 1.15 Plate DOL = 0; Cis-1.00; Disf; Pi-77; B (Lum DOL = 2.25 WMRING- Very design parameters and READ NOTES ON THIS AND NOLLIDED MITEX REFERENCE PACE MI-773 asv. 12/2023 BEFORE USE Design valid for use only with Mitted connectors. This design is based only upon parameters shown, and is for an individual building compropent, net a trus asystem. Before use, the building designer as the parameter of an ordival and parameters and properivincorrors. His design in based only upon parameters and properivincorrors. This design in babeed on properimeters. Th	Max I Max I	Horiz 1=36 (LC Uplift 1=-24 (LC	12) ; 12), 3=-35 (LC 12)	11) Provide me	chanical connection (by	others) of	truss to					
 L2) This truss is designed in accordance with the 2013 L2) This truss is designed in accordance with the 2013 L3: L2: L2: L2: L2: L2: L2: L2: L2: L2: L2	Max (Grav 1=154 (LC	C 2), 3=154 (LC 2)	3 and 24 lb	uplift at joint 1.	ng 35 ib up	oint at joint					
IOP CHORD 1:3=-210/28 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vaace=31mph; TCDL=4.2psf; BCDL=3.0psf; h=25f; Cat. I; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-12 to 3-0-12, Interior (1) 3-0-12 to 4-2-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DDL=1.60 plate grip DDL=1.60 3) Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (nomal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. 4) TCLL: ASCE 7-16; PC=20.0 psf (root LL: Lum DOL=1.25) Plate DOL=-1.60 SEAL 3) Truss designed to wind loads in the plane of the truss and c-E Exterior; CS=100; pc (root LL: Lum DOL=1.25) Plate DOL=-1.60 SEAL 03 (Truss designed to wind cads have been considered for this design. 04 Unbalanced snow loads have been considered for this design. 04 Unbalanced snow loads have been considered on this design is based only upon parameters show, and is for an individual building component, not an truss system. Before use, the building designer must effek the applicability of design parameters and oncyclose is an oncyclose is an individual building component, not an truss system. Before use, the building designer must effek the applicability of design p		sion		12) This truss I Internation	al Residential Code sec	tions R502.	11.1 and					
NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2pst; BCDL=3.0pst; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-12 to 3-0-12, Interior (1) 3-0-12 to 4-2:12 zone; C-C for members and forces & WWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (root LL: Lum DOL=1.25) Plate DOL=1.25); Pg=10.0 psf (root LL: Lum DOL=1.25 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been considered for this design. WANNO- Verly design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIH7473 rev, 1/2/2023 BEFORE USE. Design valid for use noty with MTER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer art and the same design must be assed only upon parameters and property incorporate this design in the reveral	BOT CHORD 1-2=	=-320/137, 2-3=- =-210/298	92/01	R802.10.2 LOAD CASE(S	and referenced standar	d ANSI/TPI	1.					
this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-12 to 3-0-12, Interior (1) 3-0-12 to 4-2-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (root LL: lum DOL=1.25) Plate DOL=1.25); Pg=7.7 psf (Lum DOL= 1.15 Plate DOL=1.10; Is=1.0; Rough Cat B; Partially Exp; Ce=1.0; Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been considered for this design. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MI-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTek® connectors. This design is based only upon parameters and property incorporter his design in the overall	NOTES 1) Unbalanced root	f live loads have	been considered for									
Vasd=91mph; TCDL=4.2ps; BCDL=3.0ps; h=25f; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-12 to 3-0-12, Interior (1) 3-0-12 to 4-2-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=10.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.10; CI=1.10 5) Unbalanced snow loads have been considered for this design. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-773 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTexR0 connectors. This design is based only upon parameters shown, and is for an individual building corponent, not a truss system. Before use, the building designer mark verify the applicability of design parameters and preperf biocporporet this design parameters and properf biocporporet this design parameters and properf biocporporet this design parameters and properf biocporporet biocporporet biocporporet biocporporet bio design for the overall	this design. 2) Wind: ASCE 7-1	6; Vult=115mph	(3-second gust)									
and C-C Exterior(2E) 0-0-12 to 3-0-12, Interior (1) 3-0-12 to 4-2-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pl=7.7 psf (Lum DOL = 1.15 Plate DOL=1.25); Pl=7.0, psf (Pi-7.7, psf (Lum DOL = 1.15 Plate DOL=1.25); Pl=7.0, psf (Pi-7.7, psf (Lum DOL = 1.15 Plate DOL=1.25); Pl=7.0, psf (Lum DOL = 1.15 Plate DOL=1.25); Se=1.00; Ct=1.10 5) Unbalanced snow loads have been considered for this design. WARNING - Verity design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an Individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and propertvincorprate this design into the overall	Vasd=91mph; T II; Exp B; Enclos	CDL=4.2psf; BC sed; MWFRS (en	DL=3.0psf; h=25ft; Ca velope) exterior zone	at.								11111
for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=10.0 psf; Pf=7.7 psf (Lum DOL= 1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been considered for this design. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building design parameters and mugnet with	and C-C Exterior to 4-2-12 zone;C	r(2E) 0-0-12 to 3 C-C for members	-0-12, Interior (1) 3-0 and forces & MWFR	-12 S						Nº.	RTHUA	ROLI
 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANS/ITPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been considered for this design. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTek@ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and proper vincorporate this design in the verail 	for reactions sho DOL=1.60	own; Lumber DO	L=1.60 plate grip							53	C. FESS	Mari
see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL=1.15); IS=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been considered for this design. 5) WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall	 Truss designed and only. For stude 	for wind loads in exposed to wind	the plane of the truss (normal to the face).	3						n		
 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25) Plate DOL=1.25); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been considered for this design. 6) WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall 	see Standard In or consult qualifi	dustry Gable En	d Details as applicable	e, 1.					=		SEA 0362	
1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design in the overall	4) TCLL: ASCE 7-1 Plate DOI =1 25	16; Pr=20.0 psf (): Pg=10.0 psf F	roof LL: Lum DOL=1.	25 =							0303	- <u> </u>
Supp. Sour roo, Sterring St	1.15 Plate DOL	= 1.15); ls=1.0; l	Rough Cat B; Partially	1							NO. ENGINI	ERIX
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall	5) Unbalanced sno	bw loads have be	en considered for this	3						14	AC A	BELIN
May 12,2025 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters and roperty incorporate this design into the overall TERFNG PAGE	ແຮວເຊເາ.										1111 A. G	in in it.
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properfy incorporate this design in the overall											May	12,2025
Design valid for use only with MTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall						rov. 1/9/2000 5						INC BY
	Design valid for a truss system.	use only with MiTek® Before use, the build	© connectors. This design is ing designer must verify the	s based only upon paramete applicability of design para	rs shown, and is for an individu meters and properly incorporat	ual building co te this design i	mponent, not nto the overal	I_			TRE	NCO

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSE-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	D1	Common	1	1	Job Reference (optional)	173370362

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries. Inc. Fri May 09 08:46:14

Page: 1

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

Scale = 1:39.2					<u>5-8-4</u> 5-8-4		+	<u>1</u> ′ 5	1-4-8 -8-4					
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2018/	TPI2014	CSI TC BC WB Matrix-MS	0.31 0.37 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.04 -0.07 0.01	(loc) 6-9 6-9 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 41 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea	athing directly applied	5) 6) or 7)	This truss ha load of 12.0 overhangs r Building Des verifying Ra requirement This truss b	as been designe psf or 1.00 times on-concurrent w signer/Project en in Load = 5.0 (ps s specific to the	d for greate s flat roof lo vith other liv gineer resp sf) covers r use of this d for o 10.0	er of min root bad of 7.7 ps re loads. bonsible for ain loading truss compo	f live f on nent.						

	6-0-0 oc p	ourlins.
BOT CHORD	Rigid ceil	ing directly applied or 8-11-9 oc
	bracing.	
REACTIONS	(size)	2=0-4-8, 4=0-4-8
	Max Horiz	2=29 (LC 16)
	Max Uplift	2=-182 (LC 12), 4=-182 (LC 13)
	Max Grav	2=486 (LC 2), 4=486 (LC 2)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	-
TOP CHORD	1-2-0/21	2-3767/490 3-4767/490

- 4-5=0/21 BOT CHORD 2-6=-400/699, 4-6=-400/699 WEBS 3-6=-122/253 NOTES
- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-2-8 to 1-9-8, Interior (1) 1-9-8 to 5-8-4, Exterior(2R) 5-8-4 to 8-8-4, Interior (1) 8-8-4 to 12-7-0 zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 182 lb uplift at joint 2 and 182 lb uplift at joint 4.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	D2	Нір	1	1	Job Reference (optional)	173370363

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries. Inc. Fri May 09 08:46:15

Page: 1

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

Scale = 1:39.1				<u>5-8-4</u> 5-8-4			<u>1</u> 5	<u>1-4-8</u> -8-4			{	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.31	Vert(LL)	0.05	6-9	>999	240	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.25	BC	0.37	Vert(CT)	-0.07	6-12	>999	180		
TCDL	7.0	Rep Stress Incr	YES	WB	0.10	Horz(CT)	0.01	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0					ļ					Weight: 41 lb	FT = 20%
LUMBER	2x4 SP No.2	•	5) This truss h load of 12.0	has been designed psf or 1.00 times	d for great s flat roof l	er of min root oad of 7.7 ps	f live f on					

2x4 SP N	0.2
2x4 SP No	0.3
Structural 6-0-0 oc p	wood sheathing directly applied opurlins.
Rigid ceili bracing.	ng directly applied or 9-0-8 oc
(size)	2=0-4-8, 4=0-4-8
Max Horiz	2=-28 (LC 17)
Max Uplift	2=-182 (LC 12), 4=-182 (LC 13)
Max Grav	2=486 (LC 2), 4=486 (LC 2)
(lb) - Max Tension	imum Compression/Maximum
1-2=0/21,	2-3=-770/477, 3-4=-770/477,
4-5=0/21	
2-6=-389/	702, 4-6=-389/702
3-6=-124/	253
	2x4 SP N 2x4 SP N Structural 6-0-0 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-2=0/21, 4-5=0/21 2-6=-389/ 3-6=-124/

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-2-8 to 1-9-8, Interior (1) 1-9-8 to 5-8-4, Exterior(2R) 5-8-4 to 9-11-3, Interior (1) 9-11-3 to 12-7-0 zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 3) Plate DOL=1.25); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.: Ce=1.0: Cs=1.00: Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

- overhangs non-concurrent with other live loads.
- 6) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom 7) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all $\bar{\mbox{areas}}$ where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 182 lb uplift at joint 2 and 182 lb uplift at joint 4.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

 \cap annow. SEAL 036322 G mmm May 12,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	D3G	Hip Girder	1	1	Job Reference (optional)	173370364

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 09 08:46:15

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

3-5-12 4-5-0 3-5-12		3-5-12	7-10-12	11-4-8
	Scale - 1:36 3	3-5-12	4-5-0	3-5-12

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25		TC	0.60	Vert(LL)	0.11	7-8	>999	240	MT20	244/190	
Snow (Pf/Pg)	12.7/10.0	Lumber DOL	1.25		BC	0.76	Vert(CT)	-0.18	7-8	>746	180			
TCDL	7.0	Rep Stress Incr	NO		WB	0.12	Horz(CT)	0.04	5	n/a	n/a			
BCLL	0.0*	Code	IRC2018	3/TPI2014	Matrix-MS									
BCDL	10.0											Weight: 57 lb	FT = 20%	
LUMBER			5)	This truss ha	s been designed fo	or great	er of min roof	live	Co	oncentra	ted Loa	ads (lb)		
TOP CHORD	2x4 SP No.2		,	load of 12.0	psf or 1.00 times fla	at roof l	oad of 7.7 psf	on		Vert: 4=	-398 (F	F), 8=-134 (F), 7=	-134 (F), 3=-3	98 (F),
BOT CHORD	2x6 SP No.2			overhangs n	on-concurrent with	other li	ve loads.			14=-28	(F), 16	=-22 (F)		
WEBS	2x4 SP No.3		6)	Building Des	igner/Project engine	eer res	ponsible for							
BRACING				verifying Rai	n Load = 5.0 (psf) c	covers r	ain loading							
TOP CHORD	Structural wood shea	athing directly applie	d or	requirements	s specific to the use	of this	truss compor	nent.						
	3-1-14 oc purlins, ex	cept	7)	Provide adec	uate drainage to pi	revent	water ponding	g.						
	2-0-0 oc purlins (2-1	1-13 max.): 3-4.	8)	i nis truss ha	is been designed to	or a 10.	u pst bottom	do						
BOT CHORD	Rigid ceiling directly	applied or 6-10-3 oc	0)	* This truce h		for a liv		us. Inef						
	bracing.		9)	on the hottor	n chord in all areas	where	a rectangle	Jhai						
REACTIONS	(size) 2=0-4-8, 5	5=0-4-8		3-06-00 tall h	v 2-00-00 wide will	fit bety	veen the bott	om						
	Max Horiz 2=20 (LC	56)		chord and ar	y other members.									
	Max Uplift 2=-476 (L	C 8), 5=-476 (LC 9)	10) Provide mec	hanical connection	(by oth	ers) of truss t	0						
	Max Grav 2=1211 (L	.C 2), 5=1210 (LC 2)		bearing plate	capable of withsta	nding 4	176 lb uplift at	joint						
FORCES	(lb) - Maximum Com	pression/Maximum		2 and 476 lb	uplift at joint 5.									
		4004 0 4 0054/44	11)) This truss is	designed in accord	ance w	ith the 2018							
IOP CHORD	1-2=0/21, 2-3=-3217	/1231, 3-4=-2954/11	46,	International	Residential Code s	ections	s R502.11.1 a	ind						
	4-5=-5109/1210, 5-0	- 1124/2009	10	R802.10.2 ai	nd referenced stand	dard An	NSI/TPI1.							
	5-7=-1123/2988	-1134/2330,	12,	or the orients	tion of the purlin al	ong the	or depict the s	size						
WEBS	3-8=-111/327. 3-7=-8	81/33, 4-7=-100/310		bottom chore	alion of the putilitial	ong ine	e top anu/or							
NOTES	,	,	13) Hanger(s) or	other connection d	levice(s	s) shall be					11111 0 4	-111, ····	
1) Unbalance	ed roof live loads have	been considered for	- /	provided suff	icient to support co	ncentra	ated load(s) 5	71				TH UA	HOIL	
this design	n.			lb down and	236 lb up at 3-7-8,	and 49	Ib down and	36			N	M. JEGO	a. In.	1
2) Wind: AS	CE 7-16; Vult=115mph	(3-second gust)		lb up at 5-7-	8, and 571 lb down	and 23	36 lb up at 7-	9-0			22	OFF	PN: 2	11
Vasd=91n	nph; TCDL=4.2psf; BC	DL=3.0psf; h=25ft; C	at.	on top chord	, and 175 lb down a	and 98	lb up at 3-7-8	3,		2	V		120	1
II; Exp B;	Enclosed; MWFRS (en	velope) exterior zone	e;	and 28 lb do	wn and 22 lb up at	5-7-8,	and 175 lb do	own		-	() j			-
porch left	and right exposed; Lun	nber DOL=1.60 plate	•	and 98 lb up	at 7-7-8 on bottom	n chord	. The design/			=	1	SEA	L È	1
grip DOL=	1.60			selection of s	such connection dev	vice(s)	is the				:	0262	22 :	-
3) TULL: AS	LE 7-16; Pr=20.0 pst (I	root LL: LUM DOL=1	.25) In the I OAD	CASE(S) section	e shen	nnlied to the f	ace		1		0303	~~ :	-
1 15 Plate	_= 1.20); Pg= 10.0 pst; P	n=12.7 psi (Lum DOI		of the truss a	ire noted as front (F	=) or ha	ck (B)	400			- °			3
Fxn · Ce-	$1 0 \cdot C_{s=1} 0 \cdot C_{t=1} 10$, 10	AD CASE(S)	Standard	, 0. 50	(=).			5	1 .	·	air	2
4) Unbalance	ed snow loads have be	en considered for thi	s 1)	Dead + Snr	w (balanced). I um	ber Inc	rease=1.15	Plate			25	GIN	EFICA	S
design.			- ')	Increase=1	.15						11	10	BEN	
				Uniform Loa	ads (lb/ft)							11. A. G	IL UN	

1) Increase=1.15 Uniform Loads (lb/ft)

Vert: 1-3=-29, 3-4=-39, 4-6=-29, 2-5=-20

mmm May 12,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	J1	Jack-Open	5	1	Job Reference (optional)	173370365

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 09 08:46:15 ID:vbVcsZc40F3vzoSFQ2dqPbzIJIX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:33.7

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2018/TI	PI2014	CSI TC BC WB Matrix-MR	0.34 0.23 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.02 -0.02	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD NOTES 1) Unbalance this design Wind: ASC Vasd=91n II; Exp B; and C-C E to 3-11-4 : members Lumber D 3) TCLL: AS Plate DOL 1.15 Plate Exp.; Ce= 4) This truss load of 12 overhangs	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sheat 4-0-0 oc purlins, exa Rigid ceiling directly bracing. (size) $3=$ Mecha 5=0-5-8 Max Horiz $5=106$ (LC Max Uplift $3=-71$ (LC Max Uplift $3=-71$ (LC Max Grav $3=98$ (LC (LC 2) (lb) - Maximum Com Tension 2-5=-170/79, 1-2=0/3 4-5=0/0 ed roof live loads have 2-5=-170/79, 1-2=0/3 4-5=0/0 ed roof live loads have 1-5=-170/79, 1-2=0/3 (b) - Maximum Com Tension 2-5=-170/79, 1-2=0/3 (b) - Maximum Com Tension 2-5=-170/79, 1-2=0/3 (b) - Maximum Com Tension 2-5=-170/79, 1-2=0/3 (b) - Maximum Com Tension 2-5=-170/79, 1-2=0/3 (b) - 100-2000 (c) -12-10/9, 1-2=0/3 (c) -10-10, c) -10-10, c) (c) -1.5); Pg=10.0 psf (c) -1.25); Pg=10.0 psf (c) -1.0; Cs=1.00; Ct=1.10 has been designed for .0 psf or 1.00 times flat s non-concurrent with c	athing directly applie cept end verticals. applied or 10-0-0 oc inical, 4= Mechanical C 14) 14), 4=-6 (LC 14) 26), 4=71 (LC 5), 5= pression/Maximum 35, 2-3=-111/53 been considered for (3-second gust) DL=3.0psf; h=25ft; C ivelope) exterior zone 2-1-8, Interior (1) 2-1 exposed; C-C for for reactions shown; IL=1.60 roof LL: Lum DOL=1 2f=7.7 psf (Lum DOL Rough Cat B; Partiall r greater of min roof I t roof load of 7.7 psf other live loads.	5) B vv (re 6) T cl (d or 7) * 8) R 3 203 10) T hr 203 10) T hr LOAD cat. e -8 -8 -8 -25 = y ive on	suilding Desi erifying Rair equirements his truss have hord live loa This truss have n the bottom -06-00 tall b hord and an effer to girde earing plate and 6 lb up his truss is o ternational 2802.10.2 ar D CASE(S)	gner/Project engin Load = 5.0 (psf) c specific to the use s been designed fo d nonconcurrent w as been designed in chord in all areas y 2-00-00 wide will y other members. er(s) for truss to tru- nanical connection capable of withsta lift at joint 4. designed in accord Residential Code s d referenced stand Standard	eer resp overs r of this r a 10.0 ith any for a liv where fit betw uss conn (by oth- nding 7 ance wi sections dard AN	bonsible for ain loading truss compo) psf bottom other live load e load of 20. a rectangle veen the bott nections. ers) of truss 1 lb uplift at ith the 2018 .R502.11.1 a ISI/TPI 1.	nent. ads. Opsf om to joint and		Manana and and and and and and and and an		SEA 0363	ROLL 22 ILBERT	and an

GI 11111111 May 12,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	J2	Jack-Open	5	1	Job Reference (optional)	173370366

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 09 08:46:15 ID:nHeQRhqx5b??IzZygbUqp5zIJJX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:35.1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC201	18/TPI2014	CSI TC BC WB Matrix-MR	0.12 0.18 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.02 -0.01	(loc) 7 7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.3 Structural wood she 4-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 4= Mecha 8=0-5-8 Max Horiz 8=106 (LC Max Uplift 4=-49 (LC Max Grav 4=80 (LC (LC 2)	t* 7-3:2x4 SP No.3 athing directly applie cept end verticals. applied or 10-0-0 oc unical, 5= Mechanica C 14) C 14), 5=-28 (LC 14) 26), 5=64 (LC 26), 8	5 6 ed or 7 c 8 9 3=203	 Building Des verifying Rain requirements This truss hat chord live loa * This truss hat chord live loa * This truss hat on the bottom 3-06-00 tall b chord and ar Refer to girdd Provide mech bearing plate 4 and 28 lb u This truss is International 	igner/Project engir n Load = 5.0 (psf) a specific to the use s been designed f id nonconcurrent v has been designed n chord in all areas by 2-00-00 wide wi by other members. er(s) for truss to tr hanical connectior capable of withsta plift at joint 5. designed in accord Residential Code ad reforement to the second to the second second second to the second second second second second to the second second second second to the second s	neer resp covers r e of this or a 10.0 with any for a liv s where Il fit betw uss con a (by oth anding 4 dance w sections	consible for ain loading truss compoid of psf bottom other live load e load of 20.1 a rectangle veen the bottin nections. ers) of truss t 9 lb uplift at j ith the 2018 R502.11.1 a	nent. Ids. Dpsf om to oint					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	L	OAD CASE(S)	Standard								
TOP CHORD	2-8=-179/71, 1-2=0/ 3-4=-72/47	35, 2-3=-114/0,											
BOT CHORD	7-8=-86/62, 6-7=-21	/43, 3-6=-17/57, 5-6	=0/0										
NOTES													
 Unbalance this design Wind: ASC Vasd=91n Exp B⁻¹ 	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=4.2psf; BC Enclosed: MWFRS (er	(3-second gust) DL=3.0psf; h=25ft; C	r Cat.								A	ORTH CA	ROJA

- Vasd=91mph; 1CDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-2-10, Interior (1) 2-2-10 to 3-11-4 zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25
- Plate DOL=1.25); Pg=10.0 psf; Pf=7.7 psf (Lum DOL= 1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affil 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	J2A	Half Hip	1	1	Job Reference (optional)	173370367

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries. Inc. Fri May 09 08:46:15

Page: 1

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

Scale = 1:41.1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 12.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MP	0.10 0.33 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 0.01	(loc) 9 9 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.3 Left 2x6 SP No.2 Structural wood she 4-0-0 oc purlins, ex 2-0-0 oc purlins; 5-6 Rigid ceiling directly bracing. (size) 2=0-5-8, T Max Horiz 2=102 (L Max Uplift 2=-1 (LC Max Grav 2=229 (LC	t* 9-4:2x4 SP No.3 1-6-0 athing directly applie cept end verticals, ar applied or 10-0-0 oc 7= Mechanical C 16) 16), 7=-63 (LC 16) C 38), 7=141 (LC 38)	4) 5) 6) d or 30 7) 8) 9)	Unbalanced design. This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements Provide adee This truss ha chord live loa * This truss f on the bottor 3-06-00 tall t chord and ar	snow loads have b s been designed f paf or 1.00 times fl on-concurrent with igner/Project engin is pecific to the use uate drainage to p is been designed f ad nonconcurrent v has been designed in chord in all areas by 2-00-00 wide wi by other members.	opeen cor for greate lat roof lo o other lin heer res covers r e of this prevent v for a 10.0 with any l for a liv s where II fit betw russ con	er of min roof aad of 7.7 psf ve loads. oonsible for ain loading truss compor vater ponding 0 psf bottom other live load e load of 20.0 a rectangle veen the botto nections.	nis live on nent. J. ds.)psf					
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=0/37, 2-4=-102/ 6-713/8	pression/Maximum 31, 4-5=-52/4, 5-6=0	/0,) Provide mec bearing plate 7 and 1 lb up	hanical connection capable of withsta lift at joint 2.	n (by oth anding 6	ers) of truss to 3 lb uplift at jo	o oint					
BOT CHORD WEBS NOTES	2-9=-113/79, 8-9=-4 7-8=-154/137 4-7=-184/207	/32, 4-8=0/63,	12) This truss is International R802.10.2 at) Graphical pu or the orienta bottom chore 	Residential Code nd referenced stan rlin representation ation of the purlin a	sections adard AN does no along the	ISI/TPI 1. bt depict the set top and/or	nd iize				TH CA	ROLI

- this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-3-12, Interior (1) 2-3-12 to 3-5-6, Exterior(2E) 3-5-6 to 3-10-4 zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 3) Plate DOL=1.25); Pg=10.0 psf; Pf=12.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	J2B	Half Hip	1	1	Job Reference (optional)	173370368

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 09 08:46:16

Page: 1

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

Scale = 1:31.1

Plate Offsets (X, Y): [2:0-3-7,0-0-3], [4:0-4-0,0-2-4]

Loading (psf) Spacing 2-0-0 TCLL (roof) 20.0 Plate Grip DOL 1.25 Snow (Pf/Pg) 12.7/10.0 Lumber DOL 1.25 TCDL 7.0 Rep Stress Incr YES BCLL 0.0* Code IRC2018	CSI TC 0.0 BC 0.2 WB 0.0 Matrix-MP	DEFL in 06 Vert(LL) 0.00 11 Vert(CT) 0.00 13 Horz(CT) 0.01	(loc) 8-11 8-11 6	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 Weight: 26 lb	GRIP 244/190 FT = 20%
LUMBER5)TOP CHORD $2x4$ SP No.2BOT CHORD $2x4$ SP No.2 *Except* 8-4:2x4 SP No.3WEBS $2x4$ SP No.2 *Except* 8-4:2x4 SP No.3WEBS $2x4$ SP No.2 - 1-6-0BRACINGStructural wood sheathing directly applied or 4 -0-0 oc purlins; except end verticals, and 2 -0-0 oc purlins: 4-5.BOT CHORDRigid ceiling directly applied or 10-0-0 oc bracing.REACTIONS(size)2=0-5-8, 6= Mechanical Max Horiz2=73 (LC 16) Max GravMax Grav2=214 (LC 38), 6=137 (LC 2)FORCES(lb) - Maximum Compression/Maximum TensionTOP CHORD1-2=0/37, 2-4=-71/32, 4-5=0/0, 5-6=-53/31 BOT CHORDBOT CHORD2-8=-101/67, 7-8=-16/36, 4-7=-13/68, $6-7=-85/92$ MEBS4-6=-121/112NOTES11)Unbalanced roof live loads have been considered for this design.2)Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; end vertical left exposed; C- C for members and forces & MWFRS for reactions shown; Lumber DOL=1.603)TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=10.0 psf. (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=10.0 psf. (roof LL: Lum DOL=1.25 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-04)Unbalanced snow loads have been considered for this	This truss has been designed for gr load of 12.0 psf or 1.00 times flat ro overhangs non-concurrent with othe Building Designer/Project engineer of verifying Rain Load = 5.0 (psf) cove requirements specific to the use of t Provide adequate drainage to preve This truss has been designed for a on the bottom chord in all areas whe 3-06-00 tall by 2-00-00 wide will fit b chord and any other members.) Refer to girder(s) for truss to truss of 3-06-00 tall by 2-00-00 wide will fit b chord and any other members.) Provide mechanical connection (by bearing plate capable of withstandin 6 and 19 lb uplift at joint 2.) This truss is designed in accordance International Residential Code secti R802.10.2 and referenced standard O Graphical purlin representation does or the orientation of the purlin along bottom chord. DAD CASE(S) Standard	eater of min roof live of load of 7.7 psf on r live loads. responsible for rs rain loading nis truss component. nt water ponding. 10.0 psf bottom ny other live loads. live load of 20.0psf ere a rectangle etween the bottom connections. others) of truss to g 31 lb uplift at joint e with the 2018 ons R502.11.1 and ANSI/TPI 1. s not depict the size the top and/or			ORTH CA ORTHESS SEA 0363	L BERNING

- 3) Plate DOL=1.25); Pg=10.0 psf; Pf=12.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- 4) Unbalanced snow loads have been considered for this design.

G

11111111 May 12,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	J2C	Half Hip	1	1	Job Reference (optional)	173370369

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries. Inc. Fri May 09 08:46:16

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

ID:pwjzm3YObWBp6wcd6PbVfEzIJMU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 1-0-10 -0-10-8 4-0-0 2-11-6 0-10-8 1-0-10 4-0-0 NAILED 10 -10 -2x4 II 4x6 = 3 7 🖂 **A**₁ Ш 1-11-13 1-8-0 9 8 0-9-8 ΠΓ ₩5 8 3x8 II 3x6 =

Scale = 1:39.5 Plate Offsets (X, Y): [3:0-4-4.0-2-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 12.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MS	0.09 0.11 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01 0.00	(loc) 5-6 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shee 4-0-0 oc purlins, exi 2-0-0 oc purlins: 3-4 Rigid ceiling directly bracing. (size) 5= Mecha Max Horiz 6=38 (LC Max Grav 5=132 (LC Max Grav 5=132 (LC	athing directly applie equation of the second secon	5; 6; 7; ed or nd 8; 5; 9; 11	 Building Desverifying Rairequirement Provide ade This truss hachord live loo * This truss on the bottoo 3-06-00 tall lichord and an Refer to gird Provide medebaring plate 6 and 32 lb o The trues is 	igner/Project eng in Load = 5.0 (psf s specific to the u quate drainage to as been designed ad nonconcurrent nas been designe n chord in all area oy 2-00-00 wide w ny other members er(s) for truss to hanical connectic e capable of withs uplift at joint 5.	ineer resp) covers r se of this prevent i for a 10.0 with any d for a liv as where will fit betw s. truss con on (by oth tanding 3	consible for ain loading truss compo water pondin 0 psf bottom other live load e load of 20. a rectangle veen the bott nections. ers) of truss i3 lb uplift at	nent. g. ads. 0psf om to joint					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=0/35, 2-3=-111/6 4-5=-79/55, 2-6=-16 5-6=-53/58	pression/Maximum 60, 3-4=-22/8, 1/121	1:	International R802.10.2 a 2) Graphical pu or the orient bottom chore	Residential Code nd referenced sta irlin representatio ation of the purlin d.	e sections indard AN n does no along the	R502.11.1 a ISI/TPI 1. ot depict the top and/or	and size					
 WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91rr 11; Exp B; 1 and C-C E vertical lef MWFRS for grip DOL= 3) TCLL: ASC Plate DOL 1.15 Plate Exp.; Ce= 	3-5=-40/50 ed roof live loads have CE 7-16; Vult=115mph nph; TCDL=4.2psf; BC Enclosed; MWFRS (en :xterior(2E) -0-10-8 to 3 :xterior(2E) -0-10-8 to 3 :xterior(2E); Pg=10.0 psf; F DOL = 1.15); Is=1.0; F 1.0; Cs=1.00; Ct=1.10,	been considered for (3-second gust) DL=3.0psf; h=25ft; C velope) exterior zon 3-10-4 zone; end nbers and forces & mber DOL=1.60 plat roof LL: Lum DOL=1 Pf=12.7 psf (Lum DO Rough Cat B; Partial , Lu=50-0-0	1: Line Cat. 1, e te .25 L = ly 	 3) "NAILED" in (0.148"x3.25 4) In the LOAD of the truss a OAD CASE(S) Dead + Sni Increase=1 Uniform Lo Vert: 1-2 Concentrat Vert: 8=- 	dicates 3-10d (0.1 ") toe-nails per N CASE(S) section are noted as front Standard ow (balanced): Lu .15 ads (lb/ft) =-29, 2-3=-29, 3- ed Loads (lb) 3 (F)	(48"x3") c DS guidlii n, loads a (F) or ba Imber Inc 4=-39, 5-0	or 3-12d nes. oplied to the ck (B). rease=1.15, 6=-20	face Plate		Manna and		SEA 0363	

- grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 3) Plate DOL=1.25); Pg=10.0 psf; Pf=12.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially
- Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.

May 12,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G mmm

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	J3	Jack-Open	1	1	Job Reference (optional)	173370370

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 09 08:46:16 ID:Imns279J8h9LH?AUEh0?MUzIJN_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

2-0-0

S(a e = 1.27.5)	Scale	= 1:27.	5
-----------------	-------	---------	---

Plate Offsets (X, Y): [2:0-3-8,Edge]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25		TC	0.08	Vert(LL)	0.00	5-8	>999	240	MT20	244/190	
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.25		BC	0.02	Vert(CT)	0.00	5-8	>999	180			
TCDL	7.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	2	n/a	n/a			
BCLL	0.0*	Code	IRC2018	3/TPI2014	Matrix-MP									
BCDL	10.0											Weight: 11 lb	FT = 20%	
L UMBER FOP CHORD BOT CHORD SLIDER	2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2 1	-6-0	5) 6)	Building Des verifying Rain requirements This truss ha	igner/Project enginent n Load = 5.0 (psf) s specific to the us s been designed f	neer resp covers r e of this or a 10.0	consible for ain loading truss compor) psf bottom	nent.						
	Structural wood abov	othing directly opplie	d or 7)	* This truss h	as been designed	for a liv	e load of 20.0	us.)psf						
IOP CHORD	2-0-0 oc purlins.	aming directly applie	a or 🧳	on the botton	n chord in all area	s where	a rectangle							
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc		3-06-00 tall b chord and an	y 2-00-00 wide wi y other members.	ll fit betv	veen the botto	om						
REACTIONS	(size) 2=0-5-8, 4 Mechanica	l= Mechanical, 5=	8) 9)	Refer to girde Provide mec	er(s) for truss to ti hanical connectior	uss con 1 (by oth	nections. ers) of truss t	0						
	Max Horiz 2=43 (I C	16)		bearing plate	capable of withst	anding 2	7 lb uplift at j	oint						
	Max Uplift 2=-27 (I C	(16) 4=-20 (I C 16)		2 and 20 lb u	plift at joint 4.									
	Max Grav 2=159 (LC	C 2), 4=36 (LC 2), 5=	31 10) This truss is	designed in accord	dance w	ith the 2018	ام م						
	(LC 7)	,,,,,,,,,,,,,,,,,,,,,,,,,,,		R802 10 2 ar	d referenced star	dard AN	ISI/TPI 1	na						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	LC	AD CASE(S)	Standard									
TOP CHORD	1-2=0/29, 2-4=-47/16	6												
BOT CHORD	2-5=-22/28													
NOTES														
 Wind: AS(Vasd=91n II; Exp B; and C-C E & MWFRS grip DOL= TCLL: AS Plate DOL 	CE 7-16; Vult=115mph nph; TCDL=4.2psf; BCI Enclosed; MWFRS (en Exterior(2E) zone; C-C f S for reactions shown; I =1.60 CE 7-16; Pr=20.0 psf (i =1.25); Pg=10.0 psf (i	(3-second gust) DL=3.0psf; h=25ft; C velope) exterior zon or members and forc umber DOL=1.60 p roof LL: Lum DOL=1	cat. e ces late .25							4		H CA	ROLIN	2
1.15 Plate Exp.; Ce=	p = 1.20; $r = 1.15$); $r = 1.0$; $F = 1.0$; $r = 1.10$	Rough Cat B; Partial	y									0363	22	1111
3) Unbalance	ed snow loads have be	en considered for th	is											Ξ
design.											-	1. A.		5
()											-		A • •	

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A. GIL

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	J4	Jack-Partial	2	1	Job Reference (optional)	173370371

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 09 08:46:16 ID:sDziPL5vD_yPIzGm9udp_zzIHtW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -1-8-8 5-0-0 1-8-8 5-0-0 5-0-0 12 2.83 ┌ 9

0-0-6

Scale = 1:26.1

Plate Offsets (X, Y): [2:0-3-0,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 7.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 NO IRC2018	8/TPI2014	CSI TC BC WB Matrix-MP	0.61 0.58 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.18 -0.17 0.00	(loc) 4-7 4-7 2	l/defl >331 >348 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD NOTES 1) Wind: AS Vasd=91r II; Exp 8; and C-C 4-11-4 zo forces & M DOL=1.6(2) TCLL: AS Plate DOI 1.15 Plate Exp.; Ce= 3) Unbalanc design. 4) This truss load of 12 overhang	2x4 SP DSS 2x4 SP DSS Structural wood s 5-0-0 oc purlins. Rigid ceiling direc bracing. (size) 2=0-5- Mechan Max Horiz 2=49 (I Max Uplift 2=-349 4=-68 (Max Grav 2=883 (LC 2)) (lb) - Maximum Cr Tension 1-2=0/21, 2-3=-58 2-4=-514/542 CE 7-16; Vult=115m mph; TCDL=4.2psf; B Enclosed; MWFRS Corner (3) -1-8-8 to 2 nee; porch left expose; UWFRS for reactions 0 plate grip DOL=1.6 (CE 7-16; Pr=20.0 ps 1=1.25); Pg=10.0 ps 2 DOL = 1.15); Is=1. (-1.0; Cs=1.00; Ct=1. ed snow loads have thas been designed 2.0 psf or 1.00 times s non-concurrent wit	heathing directly applied ty applied or 10-0-0 c 0, 3= Mechanical, 4= ical C 12) (LC 12), 3=-220 (LC - _C 12) LC 2), 3=578 (LC 2), ompression/Maximum 8/521 bh (3-second gust) 3CDL=3.0psf; h=25ft; envelope) exterior zo -6-6, Exterior(2R) 2-6 d;C-C for members a shown; Lumber 0 f (roof LL: Lum DOL= ; Pf=7.7 psf (Lum DOL= ;	5) ied or 7) bc 12), 10 12), 11 4=181 10 10	Building Desverifying Ra requirement This truss ha chord live lo * This truss is on the botto 3-06-00 tall chord and a Refer to girc Provide meet bearing platt 3, 349 lb up) This truss is Internationa R802.10.2 a) In the LOAD of the truss is DAD CASE(S) Dead + Sn Increase=1 Uniform Lo Vert: 1-2	signer/Project eng in Load = 5.0 (psf) s specific to the u as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members ler(s) for truss to chanical connectio e capable of withs ift at joint 2 and 6 designed in acco I Residential Code nd referenced sta 0 CASE(S) section are noted as front Standard ow (balanced): Lu .15 2=-29, 2-3=-189 (F	ineer res) covers r se of this for a 10.0 with any d for a liv as where vill fit betv s. truss con on (by oth standing 2 8 lb uplift rdance w a sections undard AN h, loads al (F) or ba	consible for ain loading truss compo 0 psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss :20 lb uplift a at joint 4. ith the 2018 : R502.11.1 a ISI/TPI 1. oplied to the ck (B). rease=1.15, -80), 4-5=-20	nnent. ads. Opsf to t joint and face Plate				SEA 0363	EER. AL

- Exp.; Ce=1.0; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 3) design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust structure Bucking Component Advancement and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

mmm May 12,2025

Page: 1

-9-1

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	J5	Jack-Open	3	1	Job Reference (optional)	173370372

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 09 08:46:17

Page: 1

3-7-8

5

BOT CHORD

NOTES

2)

3)

4)

design.

Scale = 1:25.5													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.12	Vert(LL)	0.01	4-7	>999	240	MT20	244/190	
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.25	BC	0.11	Vert(CT)	-0.01	4-7	>999	180			
TCDL	7.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a			
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP									
BCDL	10.0				-						Weight: 13 lb	FT = 20%	
LUMBER			5) Building De	signer/Project en	gineer res	ponsible for							
TOP CHORD	2x4 SP No.2		verifying R	ain Load = 5.0 (ps	sf) covers r	ain loading							
BOT CHORD	2x4 SP No.2		requiremer	ts specific to the	use of this	truss compo	nent.						
BRACING			6) This truss f	ias been designe	d for a 10.	U pst bottom							

2x4 =

BRACING		
TOP CHORD	Structura	l wood sheathing directly applied or
	3-7-8 oc p	ourlins.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(size)	2=0-3-0, 3= Mechanical, 4=
		Mechanical
	Max Horiz	2=49 (LC 12)
	Max Uplift	2=-87 (LC 12), 3=-33 (LC 12),
		4=-16 (LC 12)
	Max Grav	2=208 (LC 2), 3=78 (LC 2), 4=61
		(LC 7)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/21.	2-3=-47/24

2-4=-51/44

DOL=1.60 plate grip DOL=1.60

Exp.; Ce=1.0; Cs=1.00; Ct=1.10

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-2-8 to 1-9-8, Interior (1) 1-9-8 to

3-6-12 zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25

Plate DOL=1.25); Pg=10.0 psf; Pf=7.7 psf (Lum DOL =

1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially

Unbalanced snow loads have been considered for this

This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.

1-11-0

0-3-15

- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 8)
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 33 lb uplift at joint 3, 87 lb uplift at joint 2 and 16 lb uplift at joint 4.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

C The state of the s VIIIIIIIIIIII SEAL 036322 G mmm May 12,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	M1	Monopitch	4	1	Job Reference (optional)	173370373

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 09 08:46:17

Page: 1

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

ID:BI1ILkJ34WIPYEyKVp_6?IzIHvq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -1-2-8 6-4-6 11-8-8 6-4-6 5-4-2 1-2-8 11-8-8 2x4 II 4¹² 4 2x4 🕿 10 9 3 3-9-4 4-7-6 Ì 0-3-15 H 0-5-8 □ 5 6x8 = 3x6=

Scale = 1:49.6

Plate Offsets (X, Y): [2:0-8-14,0-1-1]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MS	0.58 0.56 0.35	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.33 0.01	(loc) 5-7 5-7 5	l/defl >865 >414 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 61 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 2=0-3-0, 5 Max Horiz 2=127 (LC Max Uplift 2=-184 (LC Max Grav 2=499 (LC (lb) - Maximum Com	athing directly applie ept end verticals. applied or 10-0-0 oc =0-1-8 : 12) C 12), 5=-176 (LC 12 : 2), 5=-176 (LC 2) pression/Maximum	ed or c 2)	 This truss ha load of 12.0 overhangs n Building Des verifying Ra requirement This truss ha chord live lo * This truss on the botto 3-06-00 tall chord and a Bearing at ju using ANSL 	as been designed f psf or 1.00 times f ion-concurrent with signer/Project engin in Load = 5.0 (psf) s specific to the us as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide wi hy other members. bint(s) 5 considers TPI 1 angle to grai puld verify canacity	for great lat roof I n other lin neer res covers i te of this for a 10. with any d for a liv s where ill fit betv parallel n formul v of bear	er of min rool pad of 7.7 ps ve loads. ponsible for ain loading truss compo 0 psf bottom other live loa e load of 20. a rectangle veen the bott to grain value a. Building ing surface	f live f on nent. ads. 0psf com					
TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: AS(Vasd=91n	Tension 1-2=0/23, 2-3=-600/2 4-5=-108/69 2-5=-355/557 3-5=-558/312 ed roof live loads have l n. CE 7-16; Vult=115mph nph; TCDL=4.2psf; BCI	261, 3-4=-90/20, been considered for (3-second gust) DL=3.0psf; h=25ft; C	Cat.	 10) Provide mec bearing plate 11) Provide mec bearing plate 2 and 176 lb 12) This truss is Internationa R802.10.2 a 	chanical connection e at joint(s) 5. chanical connection e capable of withst uplift at joint 5. designed in accord Residential Code nd referenced star Standard	n (by oth anding dance w sections ndard AN	ers) of truss ers) of truss 84 lb uplift a ith the 2018 s R502.11.1 a ISI/TPI 1.	to to t joint and			- AN	ORTH CA	ROUT

- Vasd=9 miph, TCDL=4.2ps; BCDL=3.0ps; h=25it; Cat.
 II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-2-8 to 1-9-8, Interior (1) 1-9-8 to 11-6-12 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 3) TCLL: ASCE 7-16; PT=20.0 psf (roof LL: Lum DOL=1.25 plate DOL = 0.00 psf (for a 2 set 6 function).
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25) Plate DOL=1.25); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

ENGINEERING BY RENCO A MITGK ATHILIATE

May 12,2025

SEAL 036322 WWWWWWWW

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	A669 Kipling A	
P02608-25469	M1E	Monopitch	1	1	Job Reference (optional)	173370374

10-8-8

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Fri May 09 08:46:17 ID:8yknTsyJbo_uPNVW5RQXexzIHv?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

GRIP 244/190

FT = 20%

10-8-8

Scale =	1:40.5
---------	--------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	7.5	(psf) 20.0 7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2	D 2018/T	FPI2014	CSI TC BC WB Matrix-MS	0.09 0.12 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 51 lb
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No. 2x6 SP No. 2x4 SP No. 2x4 SP No. 2x4 SP No. Structural w 6-0-0 oc pu Rigid ceiling bracing. (size) 1 8 Max Horiz 1 Max Uplift 1 (1 Max Grav 1 (1)	2 2 3 3 vood shea g directly =10-8-8, =97 (LC =-4 (LC ⁻¹ LC 12), 8 2) =143 (LC LC 2), 8=	athing directly applie pept end verticals. applied or 6-0-0 oc 6=10-8-8, 7=10-8-8, 9=10-8-8 12) 12), 6=-13 (LC 12), 7 =-16 (LC 12), 9=-77 2), 6=50 (LC 2), 7= 60 (LC 22), 9=355 (LC 2), 7= 60 (LC 2), 9=355 (LC 2), 9=355 (LC 2), 7= 60 (LC 2), 9=355	d or =-40 (LC 183 _C 2)	4) T F 5) U 6) E 7) C 8) C 9) T C 10) * C 11) F	TCLL: ASCE Plate DOL=1 1.15 Plate DOL Exp.; Ce=1.0 Jnbalanced design. Building Des verifying Rain requirements Gable requirm. Gable studs This truss ha chord live loa this trus ha this trus ha	7-16; Pr=20.0 ps .25); Pg=10.0 ps OL = 1.15); Is=1.0; ; Cs=1.00; Ct=1. snow loads have igner/Project eng n Load = 5.0 (psf) s specific to the us es continuous bot spaced at 2-0-0 c s been designed ad nonconcurrent nas been designed ad nonconcurrent in chord in all area y 2-00-00 wide w by other members hanical connection	sf (roof LL f; Pf=7.7); Rough 10 been con ineer res 0 covers r se of this tom chor cc. for a 10.1 with any d for a liv as where iil fit betw i. n (by oth	L: Lum DOL= psf (Lum DO Cat B; Partia nsidered for th ponsible for ain loading truss compoind bearing. 0 psf bottom other live loa te load of 20.1 a rectangle ween the bott ers) of truss i th up the tit of the	1.25 L = Illy nis nent. ds. Dpsf om				
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: AS(Vasd=91r	(lb) - Maxim Tension 5-6=-39/39, 3-4=-57/20, 1-9=-154/18 4-7=-120/1 ⁻ ed roof live loa n. CE 7-16; Vult= nph; TCDL=4.	num Com , 1-2=-207 , 4-5=-19/ 85, 8-9=- ⁻ 11, 3-8=-{ ads have =115mph .2psf; BCl	pression/Maximum 7/47, 2-3=-90/28, 9 1/0, 7-8=-1/0, 6-7=-1 35/89, 2-9=-161/138 been considered for (3-second gust) DL=3.0psf; h=25ft; C	/0 Fat.	1 j 12) 1 I F LOA	13 lb uplift at oint 8 and 7 This truss is nternational R802.10.2 at D CASE(S)	joint 6, 40 lb upli 7 lb uplift at joint 9 designed in accoo Residential Code nd referenced sta Standard	ft at joint ance w sections ndard AN	7, 16 lb uplift ith the 2018 \$ R502.11.1 a ISI/TPI 1.	at		4		ORTH C
II; Exp B; and C-C C 10-6-12 z; for reactio DOL=1.6C 3) Truss des only. For	Enclosed; MW Corner(3E) 0-0 one;C-C for m ons shown; Lui) igned for wind studs exposed	VFRS (en 0-0 to 3-0- nembers a mber DO d loads in d to wind	velope) exterior zon. -0, Exterior(2N) 3-0- and forces & MWFRS L=1.60 plate grip the plane of the trus (normal to the face),	e D to S								1111111		SE 036

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G

mmm May 12,2025

SEAL

036322

WILLIAM PARTY

