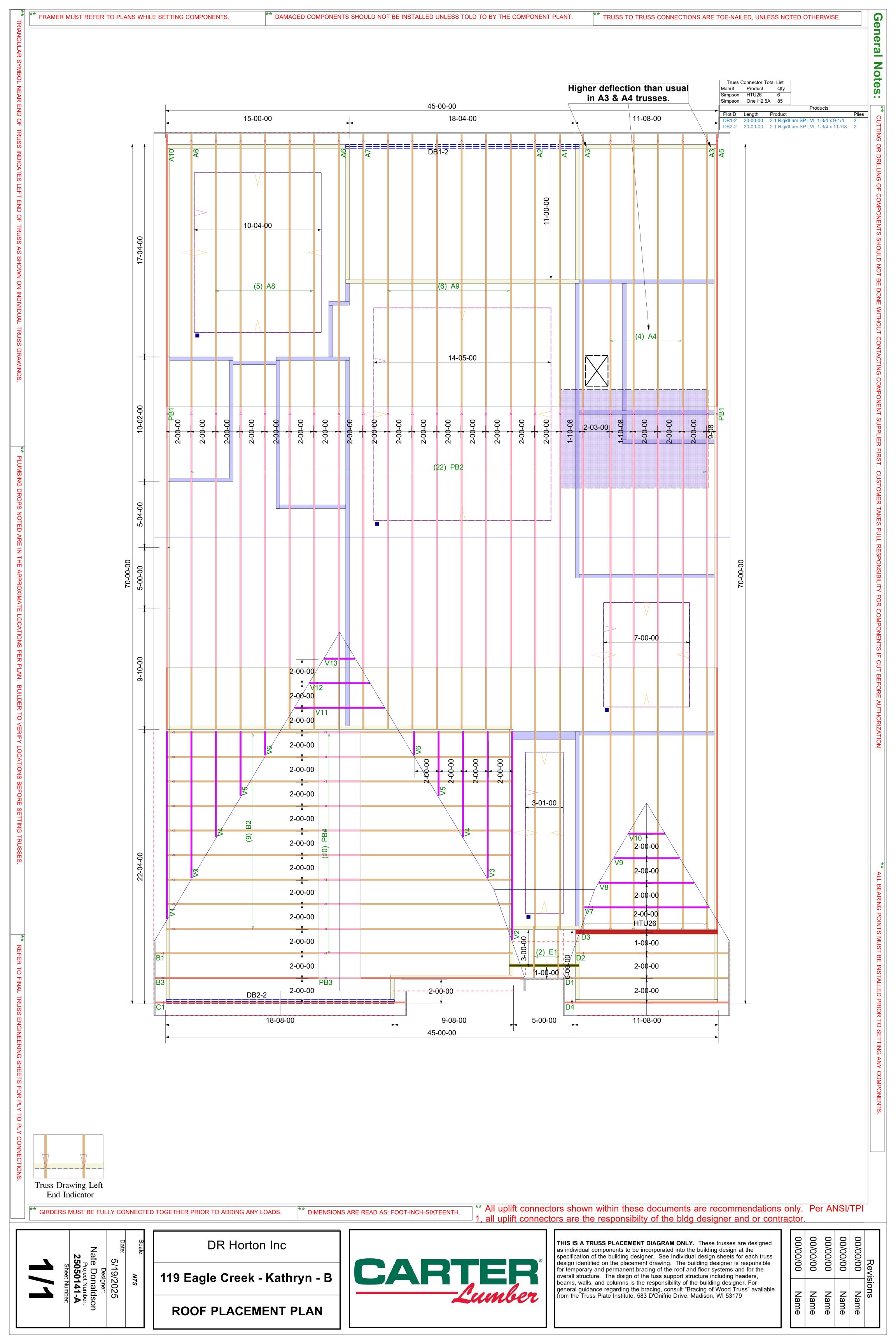


Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450


Builder: DR Horton Inc 119 Eagle Creek -Model: Kathryn - B

THE PLACEMENT PLAN NOTES:

- 1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.
- 2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.
- 3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.
- 4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.
- 5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.
- 6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.
- 7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.
- 8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.
- 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By:	Date:
--------------	-------

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 25050141-A

119 Eagle Creek-Kathryn B

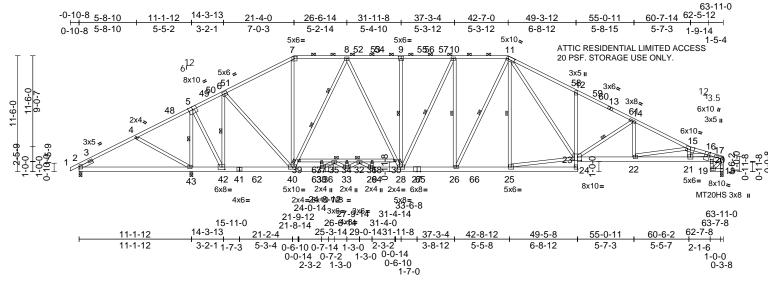
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I73603740 thru I73603775

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

May 21,2025


Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
25050141-A	A1	Piggyback Base	1	1	Job Reference (optional)	173603740

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:42:53 ID:gzvdENKJOgX2Ss?L5D9RdAzEz27-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:114.3

[7:0-3-8,0-2-4], [9:0-3-0,0-3-0], [11:0-7-12,0-2-12], [15:0-8-4,0-3-0], [16:0-5-9,0-3-12], [16:0-1-12,Edge], [17:0-2-10,0-2-8], [23:0-4-8,0-4-8], [24:Edge,0-3-8], Plate Offsets (X, Y): [36:0-3-10,Edge], [42:0-3-8,0-3-0]

		1	•	1	-						1		_
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.73	Vert(LL)	-0.29	12-23	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.93	Vert(CT)	-0.54	29-33	>999	180	MT20HS	187/143	
TCDL	10.0	Rep Stress Incr	YES	WB	0.96	Horz(CT)	0.25	18	n/a	n/a			
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH									
BCDI	10.0										Weight: 536 lb	FT = 20%	

LUMBER 2x4 SP 2400F 2.0E

TOP CHORD **BOT CHORD** 2x6 SP 2400F 2.0E *Except* 24-12,20-19:2x4

SP No.3, 19-18,39-30:2x4 SP No.2

WEBS 2x4 SP No.3 *Except*

40-7,8-40,8-28,9-28,25-11,25-23,23-11,10-26,

10-28,11-26,5-42:2x4 SP No.2

OTHERS 2x4 SP No 3

Left 2x4 SP No.2 -- 1-6-0 SLIDER

BRACING

TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals, and

2-0-0 oc purlins (4-4-5 max.): 7-11.

BOT CHORD Rigid ceiling directly applied or 4-8-15 oc

bracing.

WEBS 1 Row at midpt 6-42, 9-28, 11-25, 14-23

10-26, 10-28, 11-26, 5-43

WFBS 2 Rows at 1/3 pts 8-39 **JOINTS**

1 Brace at Jt(s): 39,

30, 35, 32

REACTIONS (size) 2=0-3-8, 18=0-3-8, 43=0-3-8

Max Horiz 2=182 (LC 18)

Max Uplift 2=-200 (LC 63), 18=-65 (LC 15) Max Grav 2=204 (LC 46), 18=2420 (LC 6),

43=3926 (LC 3)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=0/23, 2-4=-284/756, 4-6=-651/1079,

6-7=-2363/220, 7-8=-2080/253, 8-10=-3424/354, 10-11=-3450/456,

11-12=-4865/696, 12-14=-4816/545, 14-15=-5805/591, 15-16=-7123/730 16-17=-5254/544, 17-18=-2674/304

BOT CHORD 2-43=-628/176, 42-43=-892/264,

40-42=0/562, 38-40=0/2869, 33-38=0/3583, 29-33=0/3555, 28-29=0/2770,

26-28=-25/3372, 25-26=-57/3148,

24-25=-16/425, 23-24=0/123,

12-23=-694/252, 22-23=-382/5167

21-22=-612/6793, 20-21=-489/5286, 17-20=-474/5132, 19-20=-30/536,

18-19=-29/441, 37-39=-84/0, 35-37=-84/0,

34-35=-1477/0, 32-34=-1477/0,

31-32=-16/20, 30-31=-16/20

4-43=-481/233, 6-42=-2773/204,

6-40=0/2299, 7-40=0/706, 39-40=-1916/164,

8-39=-1804/201, 8-30=-32/1326,

28-30=-72/1250. 9-28=-346/127.

11-25=-186/97. 23-25=-40/2753.

11-23=-341/2043, 14-23=-1135/168, 14-22=0/712. 15-22=-1656/233.

15-21=-516/118, 16-21=-144/1637

17-19=-584/41, 33-34=-2/45, 37-38=0/65,

29-31=0/90, 16-20=-955/110,

10-26=-453/165, 10-28=-347/239

11-26=-170/605, 5-42=-236/2943,

5-43=-3527/353, 35-38=-1070/0,

33-35=0/646, 32-33=0/669, 29-32=-1130/0

NOTES

WFBS

Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 5-6-12, Interior (1) 5-6-12 to 14-11-5, Exterior(2R) 14-11-5 to 27-8-11, Interior (1) 27-8-11 to 36-2-5, Exterior(2R) 36-2-5 to 48-11-11, Interior (1) 48-11-11 to 60-7-14, Exterior(2E) 60-7-14 to 63-6-10 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

May 21,2025

ontinued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
25050141-A	A1	Piggyback Base	1	1	Job Reference (optional)	173603740

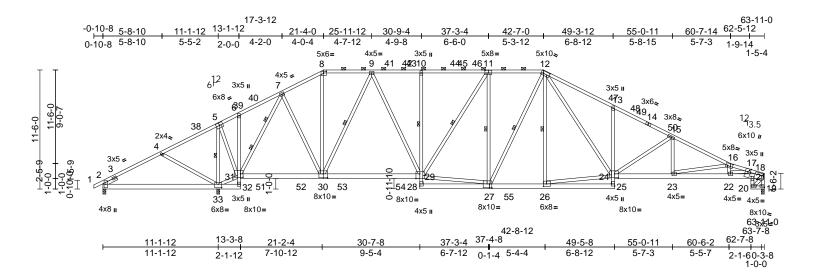
ID:gzvdENKJOgX2Ss?L5D9RdAzEz27-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:42:53

- 200 0lb AC unit load placed on the bottom chord 26-6-14 from left end, supported at two points, 5-0-0 apart.
- WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.
- 8) Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated.
- 10) All plates are 4x5 MT20 unless otherwise indicated.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 13) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 18. This connection is for uplift only and does not consider lateral forces.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Page: 2


May 21,2025

Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
25050141-A	A2	Piggyback Base	1	1	Job Reference (optional)	173603741

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:42:55 ID:PTHEBNAUAgVuptm?qWt6ZjzEwiZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:111.3

[2:0-4-9,0-1-5], [8:0-3-0,0-2-0], [11:0-4-0,0-3-0], [12:0-7-4,0-2-8], [16:0-6-0,0-2-12], [17:0-5-9,0-3-12], [17:0-1-12,Edge], [18:0-2-10,0-2-8], [19:Edge,0-1-8], Plate Offsets (X, Y): [24:0-4-4,0-4-8], [25:Edge,0-3-8], [26:0-3-8,0-2-12], [27:0-2-8,0-4-8], [29:0-4-8,Edge], [30:0-5-0,0-4-8], [31:0-3-0,0-4-0], [33:0-4-0,0-4-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.66	Vert(LL)	-0.26	23-24	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.85	Vert(CT)	-0.48	23-24	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.98	Horz(CT)	0.25	19	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 528 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP 2400F 2.0E BOT CHORD 2x6 SP 2400F 2.0E

2x6 SP 2400F 2.0E *Except* 32-6,25-13,21-20:2x4 SP No.3, 10-28,20-19:2x4 SP No.2

WEBS 2x4 SP No.3 *Except*

30-9,29-9,11-29,27-11,27-12,26-12,24-12:2x4

SP No.2

SLIDER Left 2x4 SP No.3 -- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied or 3-2-1 oc purlins, except end verticals, and

2-0-0 oc purlins (4-9-6 max.): 8-12.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing, Except:

6-0-0 oc bracing: 2-33,32-33.

1 Row at midpt 10-29

WEBS 1 Row at midpt 9-30, 11-29, 11-27, 12-27, 12-26, 5-33

WEBS 2 Rows at 1/3 pts 7-31

REACTIONS (size) 2=0-3-8, 19=0-3-8, 33=0-3-8

Max Horiz 2=182 (LC 18)

Max Uplift 2=-326 (LC 63), 19=-154 (LC 15),

33=-194 (LC 14)

Max Grav 2=89 (LC 10), 19=2179 (LC 6),

33=3643 (LC 3)

FORCES (lb) - Maximum Compression/Maximum

TOP CHORD 1-2=0/2:

1-2=0/23, 2-4=-360/1089, 4-6=-251/1448,

6-7=-17/546, 7-8=-1859/419, 8-9=-1648/405, 9-10=-2862/597, 10-12=-2880/637,

9-10=-2662/597, 10-12=-2680/637, 12-13=-4274/881, 13-15=-4223/731, 15-16=-5178/789, 16-17=-6424/949, 17-18=-4752/702, 18-19=-2422/383 BOT CHORD 2-33=-890/230, 32-33=-125/0, 31-32=-372/0,

6-31=-258/78, 29-31=-103/2264, 28-29=0/134, 10-29=-394/141, 26-28=-208/2678, 25-26=-34/411, 24-25=0/128, 13-24=-694/252,

23-24=-559/4606, 22-23=-820/6131, 21-22=-648/4780, 18-21=-628/4642, 20-21=-45/488, 19-20=-42/401

31-33=-1250/449, 7-31=-2893/466, 7-30=-108/1555, 8-30=-59/568, 9-30=-1650/306, 9-29=-148/1230,

27-29=-165/2609, 11-29=-332/118, 11-27=-521/218, 12-27=-296/381, 12-26=-154/98, 24-26=-174/2291, 12-24=-368/1935, 15-24=-1097/181.

15-23=0/678, 16-23=-1553/265, 16-22=-451/139, 17-21=-856/141, 17-22=-198/1466, 4-33=-497/233, 5-33=-2570/440, 5-31=-279/2089,

18-20=-530/58

NOTES

WEBS

 Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 5-6-12, Interior (1) 5-6-12 to 14-11-5, Exterior(2R) 14-11-5 to 27-8-11, Interior (1) 27-8-11 to 36-2-5, Exterior(2R) 36-2-5 to 48-11-11, Interior (1) 48-11-11 to 60-7-14, Exterior(2E) 60-7-14 to 63-6-10 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
25050141-A	A2	Piggyback Base	1	1	Job Reference (optional)	173603741

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:42:55 ID:PTHEBNAUAgVuptm?qWt6ZjzEwiZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

- WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

 10) One H2.5A Simpson Strong-Tie connectors
- recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 19, and 33. This connection is for uplift only and does not consider lateral forces.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
25050141-A	A3	Piggyback Base	2	1	Job Reference (optional)	173603742

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:42:56 ID:E7rVnEkJT57qN7il?w1GXqzEymp-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:108.4

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.34	Vert(LL)	-0.35	21-25	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.40	Vert(CT)	-0.67	21-25	>999	180	MT20HS	187/143
TCDL	10.0	Rep Stress Incr	YES	WB	0.60	Horz(CT)	0.17	14	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 582 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP 2400F 2.0E *Except* 6-8,8-10:2x4 SP

2400F 2.0E

BOT CHORD 2x8 SP 2400F 2.0E *Except* 30-22:2x4 SP No.2

WFBS 2x4 SP No.3 *Except*

31-6,7-31,20-7,18-10,20-8,20-9,9-19,19-10:2

x4 SP No.2

WEDGE Left: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

3-10-15 oc purlins, except

2-0-0 oc purlins (3-5-0 max.): 6-10. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing, Except:

6-0-0 oc bracing: 29-30,27-29 5-4-10 oc bracing: 26-27

5-4-11 oc bracing: 24-26.

WEBS 1 Row at midpt 7-30, 11-18, 8-20, 5-31, 9-19

JOINTS 1 Brace at Jt(s): 24,

27, 30, 22

REACTIONS (size) 2=0-3-8, 14= Mechanical

Max Horiz 2=185 (LC 18)

Max Uplift 2=-94 (LC 14), 14=-131 (LC 15)

Max Grav 2=3265 (LC 3), 14=3093 (LC 3)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/23, 2-3=-6702/177, 3-5=-6300/195,

5-6=-5718/171, 6-7=-4991/192, 7-9=-5563/213, 9-10=-5256/294

10-11=-5414/310, 11-13=-6046/308,

13-14=-6441/300

BOT CHORD 2-34=-185/5879, 33-34=-185/5879,

31-33=-38/5534, 28-31=0/5234,

25-28=0/5740, 21-25=0/5755, 19-21=0/5228, 18-19=0/4622, 16-18=-86/5308,

15-16=-185/5648, 14-15=-185/5648

29-30=-9/13, 27-29=-9/13, 26-27=-1170/0. 24-26=-1170/0, 23-24=-11/21, 22-23=-11/21

3-34=-29/127, 6-31=0/2234 30-31=-1026/162, 7-30=-984/186 7-22=-87/564, 20-22=-113/519,

10-18=-92/1093, 11-18=-1146/244 11-16=0/488, 13-16=-390/175, 28-29=-85/10, 25-26=-77/28, 24-25=0/584, 21-24=-812/0, 21-23=-58/9, 8-20=-352/128, 9-20=0/804, 27-28=-793/0, 25-27=0/596, 5-31=-1075/280

5-33=-40/416, 3-33=-395/169, 13-15=-37/142, 9-19=-1105/38,

10-19=-43/1346

NOTES

WFRS

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 5-6-3, Interior (1) 5-6-3 to 12-3-8, Exterior(2R) 12-3-8 to 30-4-8, Interior (1) 30-4-8 to 33-6-8, Exterior(2R) 33-6-8 to 51-7-8, Interior (1) 51-7-8 to 57-6-5, Exterior(2E) 57-6-5 to 63-11-0 zone; cantilever left and right exposed; end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this

- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 200.0lb AC unit load placed on the bottom chord, 26-6-14 from left end, supported at two points, 5-0-0 apart
- WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.
- Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated.
- 10) All plates are 4x5 MT20 unless otherwise indicated.

May 21,2025

ontinued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
25050141-A	A3	Piggyback Base	2	1	Job Reference (optional)	173603742

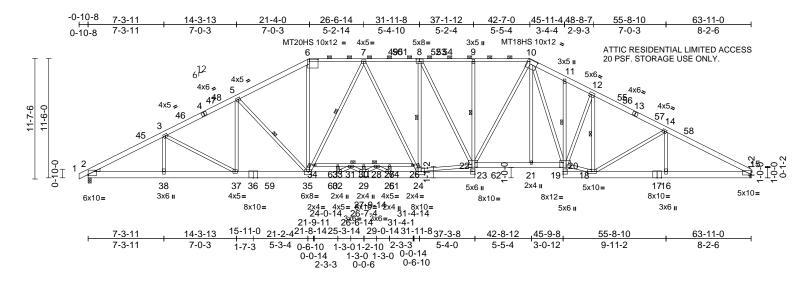
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:42:56 ID:E7rVnEkJT57qN7il?w1GXqzEymp-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 2

- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 13) Refer to girder(s) for truss to truss connections.
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 131 lb uplift at joint
- 15) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

May 21,2025



818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
25050141-A	A4	Piggyback Base	4	1	Job Reference (optional)	173603743

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:42:57 ID:keoq3EyPU0CWuA6V1RWfuizEyO?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:111.1

[2:Edge,0-1-1], [6:0-10-0,0-2-8], [8:0-4-0,0-3-0], [10:0-9-4,0-2-8], [15:Edge,0-0-9], [18:0-4-12,0-2-4], [20:0-3-12,0-5-4], [22:0-2-8,0-5-4], [23:Edge,0-3-8], Plate Offsets (X, Y): [24:0-4-0,0-3-12], [29:0-5-0,0-6-0], [35:0-4-0,0-3-12]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.39	Vert(LL)	-0.36	25-29	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.62	Vert(CT)	-0.70	25-29	>999	180	MT20HS	187/143
TCDL	10.0	Rep Stress Incr	YES	WB	0.74	Horz(CT)	0.23	15	n/a	n/a	MT18HS	244/190
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 610 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP 2400F 2.0E *Except* 6-8,8-10:2x4 SP

2400F 2.0E

BOT CHORD 2x8 SP 2400F 2.0E *Except* 23-9,34-26:2x4

SP No.2, 22-20:2x6 SP 2400F 2.0E, 18-12:2x4 SP No.3, 19-11:2x4 SP 2400F

2.0E

WEBS 2x4 SP No.3 *Except*

35-6 8-24 8-22 22-10 7-24 7-35:2x4 SP No 2

24-22,18-20:2x4 SP No.1

Left: 2x4 SP No.3 WEDGE

BRACING

TOP CHORD Structural wood sheathing directly applied or

3-11-3 oc purlins, except

2-0-0 oc purlins (3-4-0 max.): 6-10.

BOT CHORD Rigid ceiling directly applied or 5-6-10 oc bracing. Except:

1 Row at midpt 9-22, 11-20

5-7-0 oc bracing: 12-18

WFBS 1 Row at midpt 5-35, 8-24, 7-34

JOINTS 1 Brace at Jt(s): 34,

26, 31, 28

REACTIONS (size) 2=0-3-8, 15= Mechanical

Max Horiz 2=185 (LC 14)

Max Uplift 2=-95 (LC 14), 15=-131 (LC 15) Max Grav 2=3237 (LC 3), 15=3061 (LC 3)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=0/23, 2-3=-6645/179, 3-5=-6242/197,

5-6=-5654/174, 6-7=-4935/195, 7-9=-5619/285, 9-10=-5625/285 10-11=-6184/393, 11-12=-6182/341, 12-14=-5933/308, 14-15=-6371/304

BOT CHORD 2-38=-187/5829, 37-38=-187/5829,

35-37=-39/5482, 32-35=0/5181

25-32=0/5696, 24-25=0/5216, 23-24=-28/613, 22-23=-16/41, 9-22=-480/143, 21-22=0/4991,

20-21=0/4998, 18-19=-25/719, 16-18=-179/5580, 15-16=-179/5580

12-18=-1023/22, 33-34=-12/5, 31-33=-12/5,

30-31=-1110/0, 28-30=-1109/0, 27-28=-47/1,

26-27=-47/1, 19-20=-5/53, 11-20=-216/68

WEBS 3-38=-30/146, 3-37=-397/169, 5-37=-38/425,

5-35=-1080/279, 6-35=0/2205,

8-24=-654/303, 22-24=0/4841,

8-22=-245/494, 10-22=-36/1248, 10-21=0/506. 10-20=-239/1288.

12-20=-13/647, 14-18=-501/200,

7-26=-83/542, 24-26=-104/469,

34-35=-1014/159 7-34=-965/184

32-33=-66/14. 29-30=-68/25. 25-27=-56/10.

31-32=-781/0, 29-31=0/586, 28-29=0/562,

25-28=-780/0, 14-16=-24/163,

18-20=-44/4704

NOTES

Unbalanced roof live loads have been considered for this design

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 5-6-3, Interior (1) 5-6-3 to 12-3-8, Exterior(2R) 12-3-8 to 30-4-8, Interior (1) 30-4-8 to 33-6-8, Exterior(2R) 33-6-8 to 51-7-8, Interior (1) 51-7-8 to 57-6-5, Exterior(2E) 57-6-5 to 63-11-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 200.0lb AC unit load placed on the bottom chord, 26-6-14 from left end, supported at two points, 5-0-0 apart.

May 21,2025

ontinued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

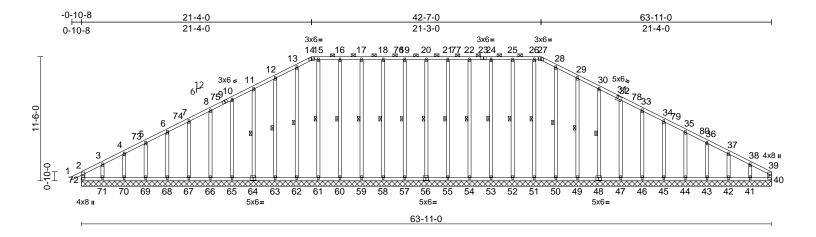
Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
25050141-A	A4	Piggyback Base	4	1	Job Reference (optional)	173603743

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:42:57 ID:keoq3EyPU0CWuA6V1RWfuizEyO?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

- WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.
- Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated. 10) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 12) Refer to girder(s) for truss to truss connections.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 131 lb uplift at joint
- 14) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard


May 21,2025

Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
25050141-A	A5	Piggyback Base Supported Gable	1	1	Job Reference (optional)	173603744

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:42:57 ID: Bi1XYEK8GMweADNDFv4rmFzEwfn-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?ff

Page: 1

Scale = 1:106.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.11	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.22	Horz(CT)	0.01	40	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 551 lb	FT = 20%

TCDL	10.0	Rep Stress Incr	YES	WB		0.22	Horz(CT)	0.01	40	n/a	n/a	
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-	-MR		1					
BCDL	10.0											Weight: 551 lb FT = 20%
LUMBER				Max Uplift	41=-117	(LC 15)), 42=-27 (L	C 15),	TOP CH	ORD	2-72=	-148/42, 1-2=0/27, 2-3=-223/85,
TOP CHORD	2x4 SP No.2			•	43=-48 ((LC 15),	44=-43 (LC	15),			3-4=-	160/80, 4-5=-127/93, 5-6=-97/111,
BOT CHORD					45=-44 (LC 15),	46=-44 (LC	15),				74/135, 7-8=-63/165, 8-10=-69/210,
WEBS	2x4 SP No.3				47=-43 (LC 15),	48=-42 (LC	15),			10-11	=-88/255, 11-12=-106/300,
OTHERS	2x4 SP No.3 *Exce	nt*			49=-55 (LC 15),	50=-1 (LC	15),			12-13	=-126/351, 13-14=-135/367,
		59-17,60-16,61-15,62-	13,		52=-34 ((LC 10),	53=-25 (LC	: 11),			14-15	=-126/354, 15-16=-126/354,
		52-25,51-26,50-28:2x4			54=-25 ((LC 10),	55=-25 (LC	: 11),			16-17	=-126/354, 17-18=-126/354,
	No.2	, ,					57=-26 (LC				18-19	=-126/354, 19-20=-126/354,
BRACING							59=-25 (LC					=-126/354, 21-22=-126/354,
TOP CHORD	Structural wood sh	eathing directly applied	or				62=-9 (LC					=-126/354, 24-25=-126/354,
		xcept end verticals, and					64=-42 (LC					=-126/354, 26-27=-126/354,
	2-0-0 oc purlins (6-		•				66=-43 (LC					=-135/367, 28-29=-127/351,
BOT CHORD		y applied or 10-0-0 oc					68=-42 (LC					=-106/300, 30-32=-90/256,
	bracing.	,					70=-22 (LC					=-71/211, 33-34=-57/166,
WEBS	1 Row at midpt	20-56, 19-57, 18-58,), 72=-39 (L					=-45/120, 35-36=-53/75, 36-37=-76/38,
		17-59, 16-60, 15-61,		Max Grav			, 41=166 (Lo				37-38	=-106/35, 38-39=-162/55, 39-40=-83/8
		13-62, 12-63, 11-64,					, 43=160 (Lo					
		21-55, 22-54, 24-53,					, 45=227 (L					
		25-52, 26-51, 28-50,					, 47=241 (L					
		29-49, 30-48					, 49=241 (L					
REACTIONS	(size) 40=63-1	1-0, 41=63-11-0,				,	, 51=187 (L	,,				
	` '	1-0, 43=63-11-0,					, 53=216 (L0					111111111111111111111111111111111111111
	44=63-1	1-0, 45=63-11-0,				,	, 55=189 (L0	,,				WY CARO
		1-0, 47=63-11-0,				,	, 57=188 (L0	,,			1	alling
	48=63-1	1-0, 49=63-11-0,					, 59=216 (Li				25.	O EESSHOOT V
	50=63-1	1-0, 51=63-11-0,					, 61=195 (Li					co production
	52=63-1	1-0, 53=63-11-0,					, 63=241 (L0					ion -
	54=63-1	1-0, 55=63-11-0,					, 65=238 (L0 , 67=221 (L0					
	56=63-1	1-0, 57=63-11-0,					, 67=221 (L) , 69=159 (L)					SEAL =
	58=63-1	1-0, 59=63-11-0,					, 09=159 (L) , 71=152 (L)					• -
	60=63-1	1-0, 61=63-11-0,			70=103			J 23),		-		036322 : =
	62=63-1	1-0, 63=63-11-0,	FOROES	/II-\ P.4		, ,						1
	64=63-1	1-0, 65=63-11-0,	FORCES		ximum Co	mpressi	on/Maximur	n			-	A A S
	66=63-1	1-0, 67=63-11-0,		Tension							3	WOINEER X

Continued on page 2

- Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

68=63-11-0, 69=63-11-0, 70=63-11-0, 71=63-11-0,

72=63-11-0 Max Horiz 72=166 (LC 14)

WARNING - Veniry design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MIT-473 rev. 17/2/2023 BEFORE USE.

Design valid for use only with MITE&® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see _ANS//TP1 Quality Criteria and DSB-22 _available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Thuman I

May 21,2025

818 Soundside Road Edenton, NC 27932

Job Truss Truss Type Qtv Ply 119 Eagle Creek-Kathryn B 173603744 25050141-A **A5** Piggyback Base Supported Gable Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332.

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:42:57 ID:Bi1XYEK8GMweADNDFv4rnFzEwfn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

13) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

14) * This truss has been designed for a live load of 20,0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

15) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 72, 25 lb uplift at joint 56, 26 lb uplift at joint 57, 25 lb uplift at joint 58, 25 lb uplift at joint 59, 36 lb uplift at joint 60, 9 lb uplift at joint 62, 52 lb uplift at joint 63, 42 lb uplift at joint 64, 45 lb uplift at joint 65, 43 lb uplift at joint 66, 44 lb uplift at joint 67, 42 lb uplift at joint 68, 49 lb uplift at joint 69, 22 lb uplift at joint 70, 138 lb uplift at joint 71, 25 lb uplift at joint 55, 25 lb uplift at joint 54, 25 lb uplift at joint 53, 34 lb uplift at joint 52, 1 lb uplift at joint 50, 55 lb uplift at joint 49, 42 lb uplift at joint 48, 43 lb uplift at joint 47, 44 lb uplift at joint 46, 44 lb uplift at joint 45, 43 lb uplift at joint 44, 48 lb uplift at joint 43, 27 lb uplift at joint 42 and 117 lb uplift at joint 41.

16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord

LOAD CASE(S) Standard

71-72=-38/160, 70-71=-38/160, BOT CHORD

69-70=-38/160, 68-69=-38/160, 67-68=-38/160, 66-67=-38/160, 65-66=-38/160, 63-65=-38/160, 62-63=-37/160, 61-62=-37/160, 60-61=-37/160, 59-60=-37/160, 58-59=-37/160, 57-58=-37/160, 55-57=-37/160, 54-55=-37/160, 53-54=-37/160, 52-53=-37/160, 51-52=-37/160. 50-51=-37/160. 49-50=-37/160, 47-49=-37/160, 46-47=-37/160, 45-46=-37/160, 44-45=-37/160, 43-44=-37/160,

42-43=-37/160, 41-42=-37/160, 40-41=-37/160 WEBS

20-56=-121/57, 19-57=-148/57, 18-58=-179/57, 17-59=-176/56, 16-60=-182/75, 15-61=-155/2, 13-62=-196/33, 12-63=-201/93, 11-64=-200/75, 10-65=-199/78,

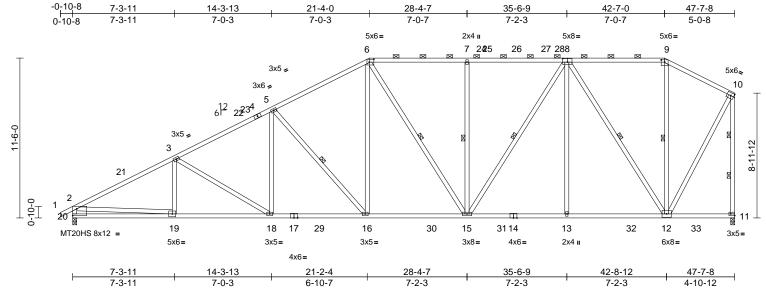
8-66=-203/77, 7-67=-181/78, 6-68=-127/75, 5-69=-126/91, 4-70=-126/118,

3-71=-128/144, 21-55=-148/57, 22-54=-179/57, 24-53=-176/56, 25-52=-182/75, 26-51=-147/0, 28-50=-196/25, 29-49=-202/92, 30-48=-200/75, 32-47=-200/77, 33-46=-203/77, 34-45=-187/77, 35-44=-127/76, 36-43=-127/113 37-42=-124/115, 38-41=-137/160

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 5-6-3, Exterior(2N) 5-6-3 to 14-11-5, Corner(3R) 14-11-5 to 27-11-8, Exterior(2N) 27-11-8 to 35-11-8, Corner(3R) 35-11-8 to 48-11-11, Exterior(2N) 48-11-11 to 57-4-9, Corner(3E) 57-4-9 to 63-9-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face). see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture. handling, erection, or bracing,
- Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated.
- 10) Gable requires continuous bottom chord bearing.
- 11) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 12) Gable studs spaced at 2-0-0 oc.

Page: 2


May 21,2025

Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
25050141-A	A6	Piggyback Base	2	1	Job Reference (optional)	173603745

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:42:58 ID:KZya6IWcATHkwHs2?UqqlwzEweF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:82.9

Plate Offsets (X, Y): [6:0-4-0,0-2-8], [8:0-4-0,0-3-0], [9:0-3-0,0-2-0], [11:Edge,0-1-8], [20:Edge,0-5-13]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.99	Vert(LL)	-0.20	15-16	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.41	Vert(CT)	-0.35	16-18	>999	180	MT20HS	187/143
TCDL	10.0	Rep Stress Incr	YES	WB	0.82	Horz(CT)	0.10	11	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 352 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP 2400F 2.0E 2x4 SP 2400F 2.0E BOT CHORD **WEBS** 2x4 SP No.2 *Except*

3-19,18-3,5-18,16-5,12-10:2x4 SP No.3, 15-6,15-8,12-8:2x4 SP 2400F 2.0E,

11-10:2x4 SP No.1

BRACING

BOT CHORD

TOP CHORD Structural wood sheathing directly applied or 3-11-6 oc purlins, except end verticals, and

2-0-0 oc purlins (4-8-9 max.): 6-9. Rigid ceiling directly applied or 10-0-0 oc

bracing.

WEBS 1 Row at midpt 5-16, 6-15, 7-15, 8-15, 8-12, 9-12

WEBS 2 Rows at 1/3 pts 10-11 REACTIONS (size) 11=0-3-8, 20=0-3-8

Max Horiz 20=363 (LC 11)

Max Uplift 11=-150 (LC 15), 20=-257 (LC 14)

Max Grav 11=2252 (LC 46), 20=2190 (LC 5)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/27, 2-3=-4009/414, 3-5=-3596/420,

5-6=-2966/401, 6-7=-2594/393, 7-9=-2594/393, 9-10=-1082/283, 2-20=-2258/294, 10-11=-2423/255

BOT CHORD 19-20=-374/1032, 18-19=-470/3737,

16-18=-346/3344, 15-16=-305/2715,

13-15=-267/2212, 12-13=-268/2211,

11-12=-110/154

3-19=-54/150, 3-18=-458/145, 5-18=0/516,

5-16=-1037/229, 6-16=-86/1083, 6-15=-352/174 7-15=-598/188

8-15=-191/995, 8-13=0/427, 8-12=-2053/214,

9-12=-88/226, 10-12=-181/2140,

2-19=-137/2718

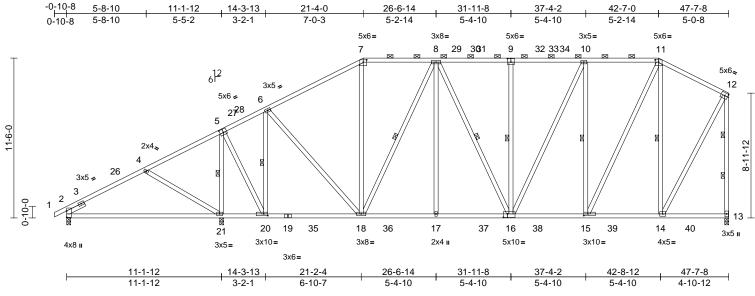
- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 3-10-10. Interior (1) 3-10-10 to 14-3-13, Exterior(2R) 14-3-13 to 28-4-7, Interior (1) 28-4-7 to 35-7-0, Exterior(2R) 35-7-0 to 42-7-0, Exterior(2E) 42-7-0 to 47-5-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 20 and 11. This connection is for uplift only and does not consider lateral forces
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

NOTES

WEBS

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
25050141-A	A7	Piggyback Base	1	1	Job Reference (optional)	173603746

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:42:58 ID:Dejw6dNGfgiHSQi1j3VoEUzEwVO-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:82.9

Plate Offsets (X, Y): [5:0-3-0,0-3-0], [7:0-3-0,0-2-0], [9:0-3-0,0-3-0], [11:0-3-0,0-2-0], [15:0-3-8,0-1-8], [16:0-3-8,0-3-0], [20:0-3-8,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.96	Vert(LL)	-0.19	21-24	>689	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.39	Vert(CT)	-0.39	21-24	>347	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.70	Horz(CT)	0.04	13	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 383 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP 2400F 2.0E BOT CHORD 2x4 SP 2400F 2.0E **WEBS** 2x4 SP No.2 *Except*

4-21,5-21,5-20,6-20,18-6,14-12:2x4 SP No.3 **SLIDER**

Left 2x4 SP No.3 -- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 7-11.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

WEBS 5-21, 6-20, 8-18, 8-16, 1 Row at midpt

9-16, 11-14, 10-15 WEBS 2 Rows at 1/3 pts 12-13

REACTIONS (size) 2=0-3-8, 13=0-3-8, 21=0-3-8

Max Horiz 2=357 (LC 13)

2=-11 (LC 14), 13=-134 (LC 15), Max Uplift

21=-319 (LC 14)

2=584 (LC 37), 13=1804 (LC 46),

21=2121 (LC 5)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/23, 2-4=-961/47, 4-6=-870/135, 6-7=-1524/255, 7-8=-1334/269,

8-10=-1649/296, 10-11=-1365/287, 11-12=-833/258, 12-13=-1902/204 2-21=-381/707, 20-21=-81/324,

BOT CHORD 18-20=-152/957, 17-18=-239/1796,

15-17=-239/1796, 14-15=-136/898,

13-14=-110/154

WEBS

4-21=-466/205, 5-21=-1803/315, 5-20=-174/1420, 6-20=-1149/193, 6-18=-86/827, 7-18=0/344, 8-18=-750/156, 8-17=0/291, 8-16=-110/85, 9-16=-353/129, 11-14=-1239/208, 12-14=-142/1664, 11-15=-163/1426, 10-15=-1049/208, 10-16=-98/657

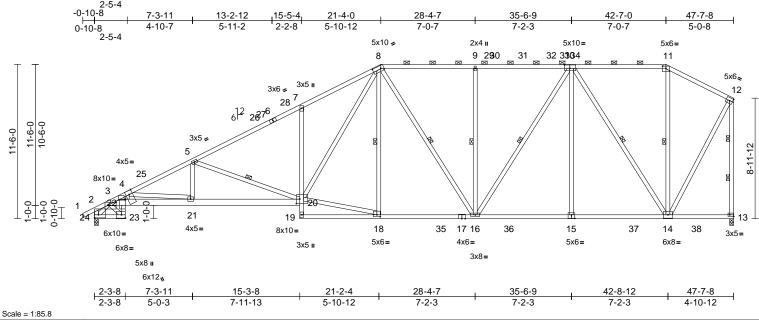
NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 3-10-10, Interior (1) 3-10-10 to 14-3-13, Exterior(2R) 14-3-13 to 28-0-13, Interior (1) 28-0-13 to 35-10-3, Exterior(2R) 35-10-3 to 42-7-0, Exterior(2E) 42-7-0 to 47-5-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- 9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 2, 21, and 13. This connection is for uplift only and does not consider lateral forces.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
25050141-A	A8	Piggyback Base	5	1	Job Reference (optional)	173603747

Run: 8,73 E Nov 16 2023 Print: 8,730 E Nov 16 2023 MiTek Industries, Inc. Tue May 20 17:43:31 ID:3ffugpgWeyhjl5JwXCqCAfzEwLz-QAZUN7_n9rm3d5sMu8NZz7sriPmiif7riek8zzzEi8i

Page: 1

[2:Edge,0-2-12], [3:0-7-8,0-2-11], [3:0-9-10,0-4-12], [8:0-7-4,0-2-8], [10:0-4-12,0-3-0], [11:0-3-0,0-2-0], [13:Edge,0-1-8], [15:0-3-0,0-3-4], [18:0-3-0,0-1-12], Plate Offsets (X, Y): [20:0-3-0,0-4-0], [22:0-0-12,Edge]

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.97	Vert(LL)	-0.26	20-21	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.89	Vert(CT)	-0.47	20-21	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.90	Horz(CT)	0.26	13	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 377 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP 2400F 2.0E

BOT CHORD 2x4 SP 2400F 2.0E *Except* 24-23,23-22:2x4

SP No.2, 3-20:2x6 SP 2400F 2.0E, 7-19:2x4

SP No.3

WEBS 2x4 SP No.3 *Except*

20-8,18-8,9-16,10-15,14-11,24-2:2x4 SP

No.2, 16-8,16-10,14-10:2x4 SP 2400F 2.0E,

13-12:2x4 SP No 1

BRACING

TOP CHORD Structural wood sheathing directly applied or

2-10-9 oc purlins, except end verticals, and 2-0-0 oc purlins (4-8-8 max.): 8-11.

BOT CHORD Rigid ceiling directly applied or 9-9-0 oc

bracing.

WEBS 1 Row at midpt 5-20, 8-18, 8-16, 9-16, 10-16, 10-14, 11-14

2 Rows at 1/3 pts WFBS 12-13

REACTIONS (size) 13=0-3-8, 24=0-3-8

> Max Horiz 24=363 (LC 11) Max Uplift 13=-150 (LC 15), 24=-258 (LC 14)

Max Grav 13=2235 (LC 46), 24=2164 (LC 5)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250

(lb) or less except when shown.

TOP CHORD 2-3=-597/79, 3-4=-7260/924

4-25=-5401/594, 5-25=-5379/612, 5-26=-3958/446, 26-27=-3846/452,

6-27=-3835/454, 6-28=-3796/464,

7-28=-3778/468, 7-8=-3967/610,

8-9=-2564/391, 9-29=-2564/391,

29-30=-2564/391, 30-31=-2564/391,

31-32=-2564/391, 32-33=-2564/391,

10-33=-2564/391, 10-34=-964/276,

11-34=-964/276, 11-12=-1074/282,

2-24=-705/120, 12-13=-2406/253

BOT CHORD 23-24=-370/2234, 22-23=-437/2697,

3-22=-911/6288, 21-22=-949/6511,

20-21=-644/5054, 7-20=-638/255, 18-35=-305/2672, 17-35=-305/2672,

16-17=-305/2672, 16-36=-270/2210,

15-36=-270/2210, 15-37=-269/2214,

14-37=-269/2214

WEBS 4-21=-1470/308, 5-21=0/732,

5-20=-1503/287, 18-20=-270/2514,

8-20=-359/2032, 8-16=-325/195,

9-16=-589/185, 10-16=-189/961,

10-15=0/426, 10-14=-2037/213,

12-14=-181/2126, 3-23=-3083/517,

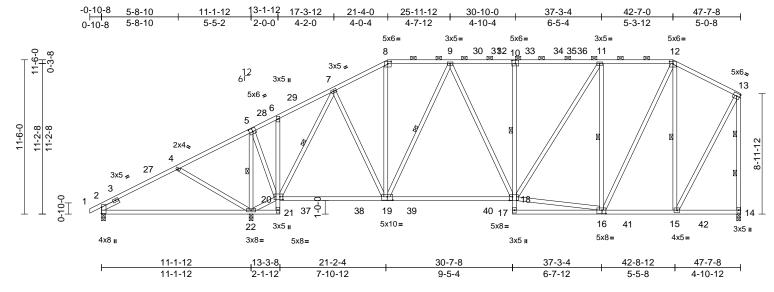
3-24=-2314/220, 4-22=-163/973

NOTES

- Unbalanced roof live loads have been considered for 1)
 - this design.
- Wind: ASCE 7-16: Vult=130mph (3-second gust) Vasd=103mph: TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 3-10-10, Interior (1) 3-10-10 to 14-7-3. Exterior(2R) 14-7-3 to 28-4-7. Interior (1) 28-4-7 to 35-10-3, Exterior(2R) 35-10-3 to 42-7-0, Exterior(2E) 42-7-0 to 47-5-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

- Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 150 lb uplift at joint 13 and 258 lb uplift at joint 24.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
25050141-A	A9	Piggyback Base	6	1	Job Reference (optional)	173603748

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:42:59 ID:7cl9A2HFFq7EvTt3v4RXXCzEwag-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:85.8

3-0], [20:0-2-12,0-2-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.90	Vert(LL)	-0.27	18-19	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.54	Vert(CT)	-0.46	18-19	>952	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.68	Horz(CT)	0.07	14	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 383 lb	FT = 20%

LUMBER

WEBS

TOP CHORD 2x4 SP 2400F 2 0F

2x4 SP 2400F 2.0E *Except* 21-6:2x4 SP **BOT CHORD**

No.3, 10-17:2x4 SP No.2 2x4 SP No.3 *Except*

19-9,18-9,11-18,16-11,16-12,15-12,14-13:2x4

SP No.2

SLIDER Left 2x4 SP No.2 -- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals, and

2-0-0 oc purlins (6-0-0 max.): 8-12. Rigid ceiling directly applied or 10-0-0 oc

BOT CHORD bracing, Except:

6-0-0 oc bracing: 21-22,16-17.

1 Row at midpt 10-18

WEBS 1 Row at midpt 5-22, 7-20, 9-19, 11-16,

12-15 13-14

WEBS 2 Rows at 1/3 pts REACTIONS 2=0-3-8, 14=0-3-8, 22=0-3-8 (size)

Max Horiz 2=357 (LC 13)

Max Uplift 14=-132 (LC 15), 22=-340 (LC 14) Max Grav

2=468 (LC 53), 14=1722 (LC 46),

22=2288 (LC 5)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=0/23, 2-4=-920/26, 4-6=-474/286,

6-7=-514/109, 7-8=-1537/244, 8-9=-1359/240, 9-11=-1738/283 11-12=-1293/283, 12-13=-790/257,

13-14=-1811/202

BOT CHORD 2-22=-416/444, 21-22=-135/0, 20-21=-198/0,

6-20=-226/69, 18-20=-257/1776, 17-18=0/121, 10-18=-396/141, 15-17=-134/858. 14-15=-110/154 WEBS

5-22=-1902/302, 20-22=-154/289, 5-20=-191/1489, 7-20=-1436/156,

7-19=-64/697, 8-19=-17/428, 9-19=-691/188, 9-18=-54/259, 16-18=-174/1471,

11-18=-102/818. 11-16=-1195/245 12-16=-157/1340, 12-15=-1171/200,

13-15=-138/1582, 4-22=-487/204

NOTES

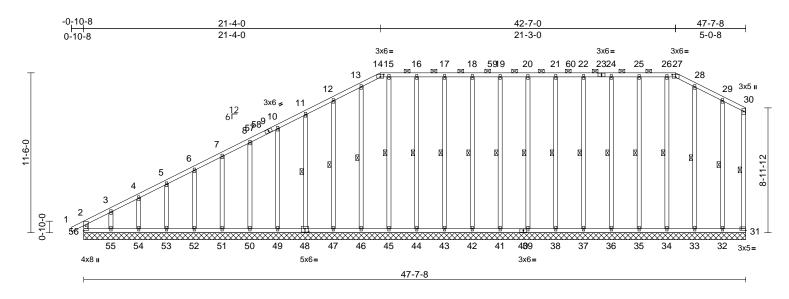
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 3-10-10, Interior (1) 3-10-10 to 14-7-3, Exterior(2R) 14-7-3 to 28-0-13, Interior (1) 28-0-13 to 35-10-3, Exterior(2R) 35-10-3 to 42-7-0, Exterior(2E) 42-7-0 to 47-5-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- All plates are 3x5 MT20 unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 22 and 14. This connection is for uplift only and does not consider lateral forces.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

TOP CHORD

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
25050141-A	A10	Piggyback Base Supported Gable	1	1	Job Reference (optional)	173603749

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:42:59 ID:ITEzaUUfmX1fludiheVr6nzEwIK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:82.9

Plate Offsets (X, Y):	[14:0-3-0,0-2-0]	, [27:0-3-0,0-2-0],	, [31:Edge,0-1-8]	, [48:0-3-0,0-3-0]
-----------------------	------------------	---------------------	-------------------	--------------------

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.62	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.29	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.20	Horz(CT)	0.01	31	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MR								
BCDL	10.0	1									Weight: 455 lb	FT = 20%

LOIV	DLI	
TOP	CHORD	

LIMPED

2x4 SP No 2 2x4 SP No.2 **BOT CHORD WEBS**

2x4 SP No.3 *Except* 30-31:2x4 SP No.2 **OTHERS** 2x4 SP No.2 *Except* 47-12,48-11,49-10,50-8,51-7,52-6,53-5,54-4,

55-3,32-29:2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 14-27.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

WEBS 1 Row at midpt 30-31, 20-39, 19-41,

18-42, 17-43, 16-44, 15-45, 13-46, 12-47, 11-48, 21-38, 22-37,

24-36, 25-35, 26-34, 28-33, 29-32

REACTIONS (size)

31=47-7-8, 32=47-7-8, 33=47-7-8, 34=47-7-8, 35=47-7-8, 36=47-7-8, 37=47-7-8, 38=47-7-8, 39=47-7-8, 41=47-7-8, 42=47-7-8, 43=47-7-8, 44=47-7-8, 45=47-7-8, 46=47-7-8, 47=47-7-8, 48=47-7-8, 49=47-7-8,

50=47-7-8, 51=47-7-8, 52=47-7-8, 53=47-7-8, 54=47-7-8, 55=47-7-8,

56=47-7-8 Max Horiz 56=363 (LC 11) Max Uplift 31=-35 (LC 10), 32=-31 (LC 15), 33=-44 (LC 15), 34=-28 (LC 11), 35=-33 (LC 10), 36=-25 (LC 11), 37=-25 (LC 11), 38=-25 (LC 10),

39=-25 (LC 11), 41=-25 (LC 10), 42=-25 (LC 11), 43=-25 (LC 11), 44=-35 (LC 10), 45=-38 (LC 11), 46=-20 (LC 14), 47=-50 (LC 14),

48=-43 (LC 14), 49=-45 (LC 14), 50=-43 (LC 14), 51=-44 (LC 14), 52=-42 (LC 14), 53=-51 (LC 14),

54=-14 (LC 14), 55=-172 (LC 14), 56=-29 (LC 10)

Max Grav 31=85 (LC 53), 32=227 (LC 45), 33=243 (LC 45), 34=190 (LC 40), 35=221 (LC 40), 36=216 (LC 40),

37=219 (LC 40), 38=188 (LC 40), 39=160 (LC 1), 41=188 (LC 40), 42=219 (LC 40), 43=216 (LC 40),

44=221 (LC 40), 45=191 (LC 40), 46=217 (LC 43), 47=221 (LC 43), 48=220 (LC 43), 49=221 (LC 43), 50=180 (LC 43), 51=160 (LC 58),

52=161 (LC 43), 53=159 (LC 58), 54=164 (LC 1), 55=155 (LC 51), 56=256 (LC 31)

(lb) - Maximum Compression/Maximum

TOP CHORD 2-56=-207/144, 1-2=0/27, 2-3=-332/311,

3-4=-273/262, 4-5=-254/254, 5-6=-228/236, 6-7=-214/221, 7-8=-201/205, 8-10=-188/189, 10-11=-174/225, 11-12=-161/270,

12-13=-150/320, 13-14=-128/338, 14-15=-110/326, 15-16=-110/326, 16-17=-110/326, 17-18=-110/326,

18-19=-110/326, 19-20=-110/326, 20-21=-110/326, 21-22=-110/326, 22-24=-110/326, 24-25=-110/326,

25-26=-110/326, 26-27=-110/326, 27-28=-124/335, 28-29=-130/291,

29-30=-159/278, 30-31=-134/238

May 21,2025

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

FORCES

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Qty Ply Job Truss Truss Type 119 Eagle Creek-Kathryn B 173603749 25050141-A A10 Piggyback Base Supported Gable Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:42:59 ID:ITEzaUUfmX1fludiheVr6nzEwlK-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

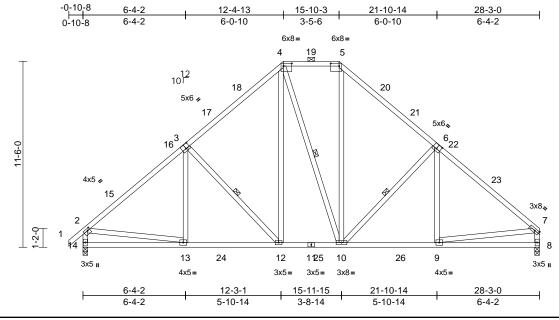
Page: 2

55-56=-113/185, 54-55=-113/185, BOT CHORD 53-54=-113/185, 52-53=-113/185, 51-52=-113/185. 50-51=-113/185. 49-50=-113/185, 47-49=-113/185, 46-47=-113/185, 45-46=-113/185, 44-45=-113/185, 43-44=-113/185, 42-43=-113/185, 41-42=-113/185, 39-41=-113/185, 38-39=-113/185, 37-38=-113/185, 36-37=-113/185, 35-36=-113/185, 34-35=-113/185, 33-34=-113/185, 32-33=-113/185, 31-32=-113/185 **WEBS** 20-39=-121/57, 19-41=-148/57, 18-42=-179/57, 17-43=-176/56, 16-44=-181/74, 15-45=-178/62, 13-46=-180/44, 12-47=-181/92, 11-48=-180/75, 10-49=-181/78, 8-50=-140/77, 7-51=-127/77, 6-52=-126/77, 5-53=-129/76, 4-54=-123/93, 3-55=-173/151, 21-38=-148/57, 22-37=-179/57, 24-36=-176/56, 25-35=-181/71, 26-34=-178/55, 28-33=-202/77, 29-32=-223/102

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 3-11-8, Exterior(2N) 3-11-8 to 16-6-14, Corner(3R) 16-6-14 to 25-11-8, Exterior(2N) 25-11-8 to 37-9-14, Corner(3R) 37-9-14 to 42-7-0, Corner(3E) 42-7-0 to 47-5-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 10) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 14) N/A
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard


May 21,2025

Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
25050141-A	B1	Piggyback Base	1	1	Job Reference (optional)	173603750

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:42:59 ID:aFloEPoPLjeLiUtS0JRAUZzEwGe-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:71.3

Plate Offsets (X, Y): [2:0-1-12,0-1-8], [3:0-3-0,0-3-4], [4:0-6-4,0-2-0], [5:0-6-4,0-2-0], [6:0-3-0,0-3-4]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.79	Vert(LL)	-0.08	12-13	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.54	Vert(CT)	-0.13	12-13	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.44	Horz(CT)	0.03	8	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 208 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3 *Except* 12-4,10-4,10-5:2x4 SP No.2

BRACING TOP CHORD

Structural wood sheathing directly applied or

2-2-0 oc purlins, except end verticals, and 2-0-0 oc purlins (5-6-12 max.): 4-5.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

WEBS 1 Row at midpt 3-12, 4-10, 6-10

REACTIONS 8=0-3-8, 14=0-3-8 (size)

Max Horiz 14=287 (LC 11)

Max Uplift 8=-87 (LC 15), 14=-107 (LC 14)

Max Grav 8=1383 (LC 53), 14=1444 (LC 51)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/39, 2-4=-1810/223, 4-5=-1040/232,

5-7=-1803/225, 2-14=-1478/142,

7-8=-1431/119

BOT CHORD 13-14=-295/412, 12-13=-138/1343,

10-12=-35/966, 9-10=-7/1321, 8-9=-59/188 3-13=-23/205, 3-12=-526/215, 4-12=-98/563,

WEBS 4-10=-169/174, 5-10=-86/554,

6-10=-532/217, 6-9=-29/201, 2-13=0/1093,

7-9=0/1157

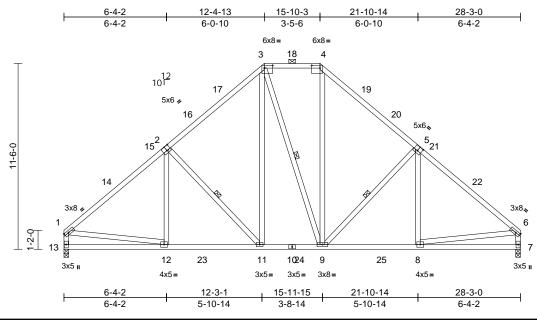
NOTES

Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 8-1-14, Exterior(2R) 8-1-14 to 20-1-2, Interior (1) 20-1-2 to 25-1-4, Exterior(2E) 25-1-4 to 28-1-4 zone; cantilever left and right exposed; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 14 and 8. This connection is for uplift only and does not consider lateral forces.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
25050141-A	B2	Piggyback Base	9	1	Job Reference (optional)	173603751

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Mon May 19 14:43:00 ID:il5Z5UMuG9ZgrjzUGhnBuTzEwFv-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:71.3

Plate Offsets (X, Y): [2:0-3-0,0-3-4], [3:0-6-4,0-2-0], [4:0-6-4,0-2-0], [5:0-3-0,0-3-4]

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.75	Vert(LL)	-0.08	11-12	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.54	Vert(CT)	-0.13	11-12	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.44	Horz(CT)	0.03	7	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 207 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3 *Except* 11-3,9-3,9-4:2x4 SP

No.2

BRACING TOP CHORD

WEBS

Structural wood sheathing directly applied or

3-2-10 oc purlins, except end verticals, and 2-0-0 oc purlins (5-6-12 max.): 3-4

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

1 Row at midpt 2-11, 3-9, 5-9

REACTIONS 7=0-3-8, 13=0-3-8 (size) Max Horiz 13=-273 (LC 10)

Max Uplift 7=-87 (LC 15), 13=-87 (LC 14)

Max Grav 7=1384 (LC 52), 13=1386 (LC 50)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-3=-1810/226, 3-4=-1041/233,

4-6=-1804/226, 1-13=-1433/120,

6-7=-1432/119

BOT CHORD 12-13=-270/363, 11-12=-140/1349,

9-11=-35/967, 8-9=-6/1322, 7-8=-59/188 2-12=-28/202, 2-11=-534/217, 3-11=-100/568,

WEBS 3-9=-169/174, 4-9=-85/553, 5-9=-532/217,

5-8=-30/201, 1-12=-9/1142, 6-8=0/1158

NOTES

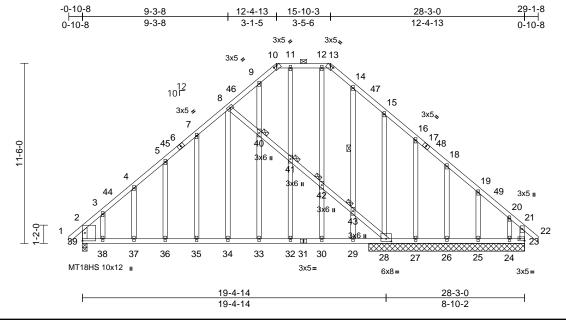
Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 8-1-14. Exterior(2R) 8-1-14 to 20-1-2. Interior (1) 20-1-2 to 25-1-4, Exterior(2E) 25-1-4 to 28-1-4 zone; cantilever left and right exposed; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 13 and 7. This connection is for uplift only and does not consider lateral forces.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord

LOAD CASE(S) Standard

May 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
25050141-A	B3	Piggyback Base Supported Gable	1	1	Job Reference (optional)	173603752

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Mon May 19 14:43:00 ID:y_0gJ?GMaowZmZi4IT0O8AzEw8I-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:73.6

Plate Offsets (X, Y)	[10:0-2-8,0-0-3]	, [13:0-2-8,0-0-3],	, [23:Edge,0-1-8],	[28:0-4-0,0-2-0]
----------------------	------------------	---------------------	--------------------	------------------

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.70	Vert(LL)	0.26	36-37	>868	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.36	Vert(CT)	-0.23	36-37	>999	180	MT18HS	244/190
TCDL	10.0	Rep Stress Incr	YES	WB	0.36	Horz(CT)	0.02	23	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 255 lb	FT = 20%

LUMBER TOP CHORD

2x4 SP 2400F 2 0F BOT CHORD 2x4 SP 2400F 2.0E **WEBS** 2x4 SP No.2 **OTHERS** 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 10-13.

Rigid ceiling directly applied or 10-0-0 oc

BOT CHORD bracing.

WEBS 1 Row at midpt

JOINTS 1 Brace at Jt(s): 40, 41, 42, 43

REACTIONS (size)

23=9-11-8, 24=9-11-8, 25=9-11-8,

26=9-11-8, 27=9-11-8, 28=9-11-8,

39=0-3-8

Max Horiz 39=-293 (LC 12)

Max Uplift 23=-90 (LC 13), 24=-506 (LC 15),

25=-53 (LC 15), 26=-72 (LC 15), 27=-117 (LC 15), 28=-123 (LC 14),

39=-17 (LC 14)

Max Grav 23=781 (LC 56), 24=186 (LC 13),

25=183 (LC 22), 26=208 (LC 53), 27=104 (LC 53), 28=941 (LC 41),

39=1005 (LC 41)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 2-39=-851/25, 1-2=0/39, 2-3=-1003/0,

3-4=-942/0, 4-5=-892/21, 5-7=-859/79 7-8=-817/129, 8-9=-454/68, 9-10=-353/74,

10-11=-289/71, 11-12=-289/71,

12-13=-289/71, 13-14=-397/66, 14-15=-463/39, 15-16=-381/29,

16-18=-420/20, 18-19=-415/33,

19-20=-441/62, 20-21=-612/99, 21-22=0/39,

21-23=-533/76

BOT CHORD 38-39=-116/693, 37-38=-116/693,

36-37=-116/693, 35-36=-116/693, 34-35=-116/693, 33-34=-116/693,

32-33=-116/693, 30-32=-116/693, 29-30=-116/693, 28-29=-116/693,

27-28=-88/377, 26-27=-88/377,

25-26=-88/377, 24-25=-88/377,

23-24=-88/377

WFBS 3-38=-16/65, 4-37=-73/67, 5-36=-85/71,

7-35=-72/56, 8-34=-133/374, 9-40=-15/74,

11-41=-38/50, 12-42=0/61, 14-43=-110/71,

15-28=-295/89, 16-27=-166/119,

18-26=-164/98, 19-25=-158/96,

20-24=-101/284, 8-40=-713/297

40-41=-671/270, 41-42=-690/279,

42-43=-695/274, 28-43=-743/303,

33-40=-70/72, 32-41=-1/62, 30-42=0/69,

29-43=-53/42

NOTES

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 9-3-8, Corner(3R) 9-3-8 to 18-10-3, Exterior(2N) 18-10-3 to 26-1-8, Corner(3E) 26-1-8 to 29-1-8 zone; cantilever left and right exposed; end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI =1 60

Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this desian.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated.
- All plates are 2x4 MT20 unless otherwise indicated.
- 10) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

May 21,2025

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

ſ	Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
	25050141-A	B3	Piggyback Base Supported Gable	1	1	Job Reference (optional)	173603752

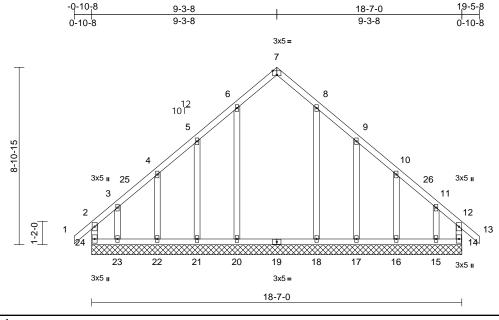
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:43:00 $ID: y_0gJ?GMaowZmZi4IT0O8AzEw8I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff$

Page: 2

14) N/A

15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard



818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
25050141-A	C1	Common Supported Gable	1	1	Job Reference (optional)	173603753

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:43:00 ID:jccPG?A1h8VnuEWhlQODDBzEw76-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:57.8

Plate Offsets	(X, `	Y):	[7:0-2-8,Edge	9]
---------------	-------	-----	---------------	----

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.36	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.22	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.24	Horz(CT)	0.01	14	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MR								
BCDL	10.0	1									Weight: 120 lb	FT = 20%

LUMBER

2x4 SP No 2 TOP CHORD BOT CHORD 2x4 SP No 2 **WEBS** 2x4 SP No.3 **OTHERS** 2x4 SP No.3

BRACING

BOT CHORD

TOP CHORD

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc

REACTIONS (size)

14=18-7-0, 15=18-7-0, 16=18-7-0, 17=18-7-0, 18=18-7-0, 20=18-7-0. 21=18-7-0, 22=18-7-0, 23=18-7-0, 24=18-7-0

Max Horiz 24=232 (LC 13)

Max Uplift 14=-89 (LC 13), 15=-272 (LC 15),

16=-45 (LC 15), 17=-118 (LC 15), 20=-1 (LC 14), 21=-116 (LC 14), 22=-45 (LC 14), 23=-275 (LC 14),

24=-101 (LC 12)

Max Grav 14=317 (LC 28), 15=193 (LC 13),

16=218 (LC 26), 17=176 (LC 22), 18=370 (LC 6), 20=370 (LC 5),

21=176 (LC 21), 22=218 (LC 25), 23=199 (LC 12), 24=321 (LC 27)

FORCES (lb) - Maximum Compression/Maximum

Tension

2-24=-234/77, 1-2=0/39, 2-3=-295/136, 3-4=-167/89, 4-5=-135/61, 5-6=-127/75

6-7=-158/104, 7-8=-158/104, 8-9=-127/75, 9-10=-130/53, 10-11=-163/81,

11-12=-291/126, 12-13=0/39, 12-14=-231/70

BOT CHORD 23-24=-108/281, 22-23=-108/281,

21-22=-108/281, 20-21=-108/281, 18-20=-108/281, 17-18=-108/281,

16-17=-108/281, 15-16=-108/281, 14-15=-108/281

WEBS

6-20=-260/44, 5-21=-151/155, 4-22=-154/99, 3-23=-138/195, 8-18=-260/40, 9-17=-151/155, 10-16=-156/97, 11-15=-121/212

NOTES

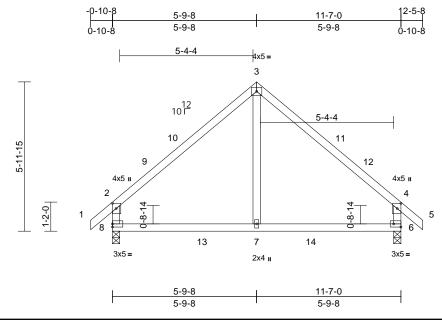
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 6-3-8. Corner(3R) 6-3-8 to 12-3-8. Exterior(2N) 12-3-8 to 16-5-8, Corner(3E) 16-5-8 to 19-5-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 101 lb uplift at joint 24, 89 lb uplift at joint 14, 1 lb uplift at joint 20, 116 lb uplift at joint 21, 45 lb uplift at joint 22, 275 lb uplift at joint 23, 118 lb uplift at joint 17, 45 lb uplift at joint 16 and 272 lb uplift at joint 15.

LOAD CASE(S) Standard

May 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
25050141-A	D1	Common	1	1	Job Reference (optional)	173603754

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Mon May 19 14:43:00 ID:khj6XF?hg1382himkic9zXzEw62-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:46.3

Plate Offsets (X, Y): [2:0-2-8,0-1-12], [4:0-2-8,0-1-12], [6:Edge,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.64	Vert(LL)	-0.04	7-8	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.36	Vert(CT)	-0.07	7-8	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.12	Horz(CT)	0.01	6	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 54 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.2 *Except* 7-3:2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 6=0-3-8, 8=0-3-8

Max Horiz 8=163 (LC 13)

Max Uplift 6=-49 (LC 15), 8=-49 (LC 14)

Max Grav 6=632 (LC 6), 8=632 (LC 5) (lb) - Maximum Compression/Maximum

FORCES Tension

1-2=0/39, 2-3=-572/141, 3-4=-573/140,

TOP CHORD 4-5=0/39, 2-8=-551/199, 4-6=-553/196

BOT CHORD 7-8=-2/347, 6-7=-2/347

WEBS 3-7=0/302

NOTES

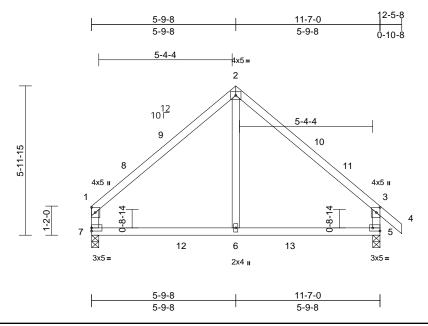
- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 2-9-8, Exterior(2R) 2-9-8 to 8-9-8, Interior (1) 8-9-8 to 9-5-8, Exterior(2E) 9-5-8 to 12-5-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 4) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 8 and 6. This connection is for uplift only and does not consider lateral forces.

LOAD CASE(S) Standard

May 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
25050141-A	D2	Common	1	1	Job Reference (optional)	173603755

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:43:01 ID:rB01Gh9rc1il6hCG?xLC?HzEw5r-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:46.3

Plate Offsets (X, Y): [3:0-2-8,0-1-12], [5:Edge,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.76	Vert(LL)	-0.05	5-6	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.42	Vert(CT)	-0.08	5-6	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.11	Horz(CT)	0.01	5	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 52 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.2 *Except* 6-2:2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-7-1 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 5=0-3-8, 7=0-3-8

Max Horiz 7=-156 (LC 10)

Max Uplift 5=-48 (LC 15), 7=-29 (LC 14)

Max Grav 5=633 (LC 6), 7=579 (LC 5)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-565/136, 2-3=-573/136, 3-4=0/39,

1-7=-502/146, 3-5=-552/194 **BOT CHORD** 6-7=-2/348, 5-6=-2/348

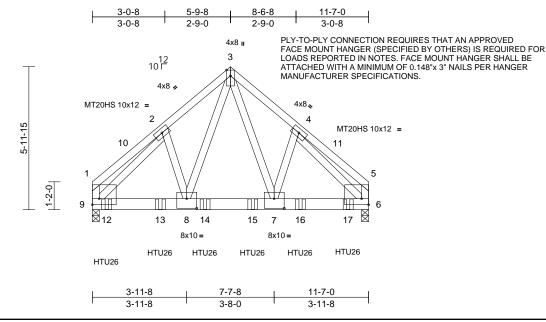
WEBS 2-6=0/295

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Exterior(2R) 3-1-12 to 8-9-8, Interior (1) 8-9-8 to 9-5-8, Exterior(2E) 9-5-8 to 12-5-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this

- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 7 and 5. This connection is for uplift only and does not consider lateral forces.

LOAD CASE(S) Standard



Job Truss Truss Type Qty Ply 119 Eagle Creek-Kathryn B 173603756 3 25050141-A D3 Common Girder Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:43:01 ID:5keisCuUTTGnlvooWYPHQwzEw4v-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:48.3

Plate Offsets (X, Y): [1:Edge,0-3-0], [5:Edge,0-3-0], [7:0-5-0,0-4-12], [8:0-5-0,0-4-12]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.73	Vert(LL)	-0.04	7-8	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.39	Vert(CT)	-0.07	7-8	>999	180	MT20HS	187/143
TCDL	10.0	Rep Stress Incr	NO	WB	0.72	Horz(CT)	0.01	6	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 266 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP 2400F 2.0E BOT CHORD 2x6 SP 2400F 2.0E

WEBS 2x4 SP No.3 *Except* 9-1,6-5:2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 6=0-3-8, 9=0-3-8 Max Horiz 9=-140 (LC 35)

Max Uplift 6=-452 (LC 13), 9=-460 (LC 12)

Max Grav 6=9519 (LC 6), 9=9725 (LC 5)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=-1830/136, 2-3=-7848/464, TOP CHORD 3-4=-7907/467, 4-5=-1953/142,

1-9=-1318/112. 5-6=-1398/116

BOT CHORD 8-9=-301/5640, 7-8=-208/4447,

6-7=-255/5689

WEBS 3-7=-317/5209, 4-7=-100/1308,

3-8=-310/5063, 2-8=-101/1318,

2-9=-6647/309, 4-6=-6578/305

NOTES

1) N/A

3-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc

Bottom chords connected as follows: 2x6 - 3 rows staggered at 0-4-0 oc.

Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

3) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

- 4) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- All plates are MT20 plates unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 9 and 6. This connection is for uplift only and does not consider lateral forces
- 12) Use Simpson Strong-Tie HTU26 (20-10d Girder, 20-10dx1 1/2 Truss) or equivalent spaced at 2-3-0 oc max. starting at 0-7-4 from the left end to 10-8-12 to connect truss(es) to back face of bottom chord.
- 13) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

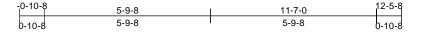
Uniform Loads (lb/ft)

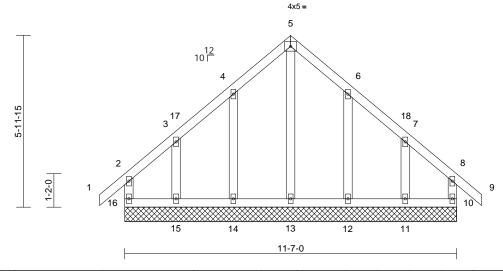
Vert: 1-3=-60, 3-5=-60, 6-9=-20

Concentrated Loads (lb)

Vert: 12=-2708 (B), 13=-2701 (B), 14=-2701 (B), 15=-2701 (B), 16=-2701 (B), 17=-2705 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
25050141-A	D4	Common Supported Gable	1	1	Job Reference (optional)	173603757

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:43:01 ID:?IFBeypHUpIRK5IIhMI1EzzEw17-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:40.2

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.17	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.17	Horz(CT)	0.00	10	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 71 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size)

10=11-7-0, 11=11-7-0, 12=11-7-0, 13=11-7-0, 14=11-7-0, 15=11-7-0, 16=11-7-0

Max Horiz 16=163 (LC 13)

Max Uplift 10=-61 (LC 11), 11=-110 (LC 15),

12=-71 (LC 15), 14=-70 (LC 14), 15=-112 (LC 14), 16=-74 (LC 10)

Max Grav 10=153 (LC 25), 11=191 (LC 26), 12=279 (LC 22), 13=191 (LC 28),

14=279 (LC 21), 15=197 (LC 25),

16=163 (LC 26)

FORCES (lb) - Maximum Compression/Maximum

Tension

2-16=-130/151, 1-2=0/39, 2-3=-98/99, TOP CHORD

3-4=-65/181, 4-5=-116/287, 5-6=-116/287,

6-7=-64/183, 7-8=-85/87, 8-9=0/39,

8-10=-122/140

BOT CHORD 15-16=-80/102, 14-15=-80/102, 13-14=-80/102, 12-13=-80/102,

11-12=-80/102, 10-11=-80/102

WEBS 5-13=-282/47, 4-14=-238/142,

3-15=-156/145, 6-12=-238/140,

7-11=-146/159

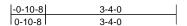
NOTES

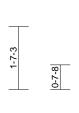
Unbalanced roof live loads have been considered for this design.

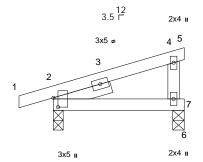
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 2-9-8, Corner(3R) 2-9-8 to 8-9-8, Exterior(2N) 8-9-8 to 9-5-8, Corner(3E) 9-5-8 to 12-5-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated
- Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 74 lb uplift at joint 16, 61 lb uplift at joint 10, 70 lb uplift at joint 14, 112 lb uplift at joint 15, 71 lb uplift at joint 12 and 110 lb uplift at joint 11.

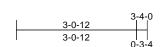
LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
25050141-A	E1	Monopitch	2	1	Job Reference (optional)	03758


Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:43:01

Page: 1

Scale = 1:29.3

Plate Offsets (X, Y): [2:0-2-14,0-1-6]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.14	Vert(LL)	0.01	7-10	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.13	Vert(CT)	-0.01	7-10	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 15 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD **WEBS** 2x4 SP No.3

SLIDER Left 2x4 SP No.3 -- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied or

3-4-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc

BOT CHORD

REACTIONS (size) 2=0-3-0, 7=0-3-8

Max Horiz 2=50 (LC 13)

Max Uplift 2=-51 (LC 10), 7=-25 (LC 14)

Max Grav 2=245 (LC 21), 7=180 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/21, 2-4=-93/36, 4-5=-6/0, 4-7=-127/75

BOT CHORD 2-7=-62/102, 6-7=0/0

NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 7 and 2. This connection is for uplift only and does not consider lateral forces.

LOAD CASE(S) Standard

May 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPII Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSB Building Component Safety Information, available from the Structural Building Component Safety Information and Safety Information, available from the Structural Building Component Safety Information and Safety In and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
25050141-A	PB1	Piggyback	2	1	Job Reference (optional)	173603759

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:43:01 ID:n7MOvDHFzRY3JmeeamW89dzEwfq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

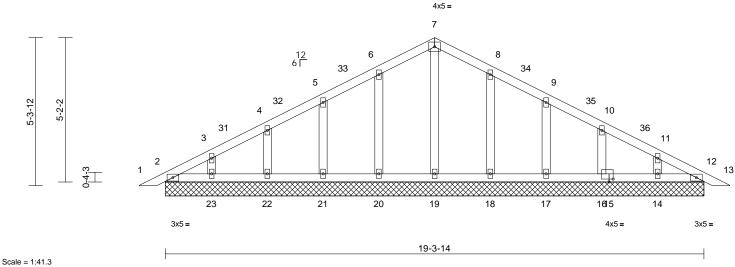


Plate Offsets (X, Y): [15:0-1-12,0-1-4]

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.07	Horz(CT)	0.00	12	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 96 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2 **OTHERS** 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins. **BOT CHORD**

Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=19-3-14, 12=19-3-14, 14=19-3-14, 16=19-3-14, 17=19-3-14, 18=19-3-14, 19=19-3-14, 20=19-3-14,

21=19-3-14, 22=19-3-14, 23=19-3-14

Max Horiz 2=81 (LC 18)

Max Uplift 2=-9 (LC 15), 14=-42 (LC 15), 16=-44 (LC 15), 17=-44 (LC 15),

18=-45 (LC 15), 20=-46 (LC 14), 21=-44 (LC 14), 22=-44 (LC 14),

23=-43 (LC 14)

Max Grav 2=103 (LC 21), 12=103 (LC 22), 14=152 (LC 37), 16=177 (LC 22),

17=228 (LC 22), 18=246 (LC 22), 19=146 (LC 28), 20=246 (LC 21), 21=228 (LC 21), 22=177 (LC 21),

23=152 (LC 36)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=0/17, 2-3=-93/40, 3-4=-70/51, 4-5=-50/70, 5-6=-56/94, 6-7=-68/132, 7-8=-68/132, 8-9=-56/84, 9-10=-47/43 10-11=-45/21, 11-12=-59/26, 12-13=0/17

BOT CHORD 2-23=-20/77, 22-23=-20/77, 21-22=-20/77, 20-21=-20/77, 19-20=-20/77, 18-19=-20/77,

17-18=-20/77, 16-17=-20/77, 14-16=-20/77, 12-14=-20/77

WEBS

1)

this design.

7-19=-106/0, 6-20=-206/83, 5-21=-187/67, 4-22=-137/69, 3-23=-117/61, 8-18=-206/83,

9-17=-187/68, 10-16=-137/69, 11-14=-117/61

NOTES Unbalanced roof live loads have been considered for

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-3 to 3-4-3, Interior (1) 3-4-3 to 7-7-8, Exterior(2R) 7-7-8 to 13-7-8, Interior (1) 13-7-8 to 17-10-13, Exterior(2E) 17-10-13 to 20-10-13 zone; cantilever left and right exposed; end vertical left and

right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10

Unbalanced snow loads have been considered for this design.

This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

All plates are 2x4 MT20 unless otherwise indicated.

Gable requires continuous bottom chord bearing.

Gable studs spaced at 2-0-0 oc.

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

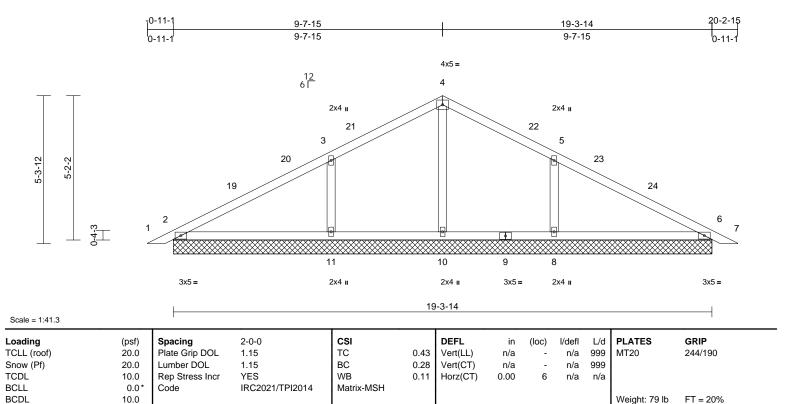
11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

12) N/A

13) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B
25050141-A	PB2	Piggyback	22	1	Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:43:01 ID:YTcjVxA9SguuOsWrq?QObRzEz2K-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=19-3-14, 6=19-3-14, 8=19-3-14,

10=19-3-14, 11=19-3-14 Max Horiz 2=81 (LC 18)

2=-17 (LC 14), 6=-32 (LC 15), Max Uplift

8=-135 (LC 15), 11=-136 (LC 14)

2=250 (LC 1), 6=250 (LC 1), 8=610 Max Grav (LC 22), 10=191 (LC 22), 11=610

(LC 21)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

1-2=0/17, 2-3=-112/69, 3-4=-161/135, 4-5=-161/135, 5-6=-103/47, 6-7=0/17

BOT CHORD 2-11=-21/81, 10-11=0/81, 8-10=0/81,

6-8=0/81

WEBS 4-10=-149/0, 3-11=-465/180, 5-8=-465/180

NOTES

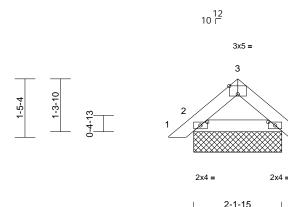
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-3 to 3-4-3, Interior (1) 3-4-3 to 7-7-8, Exterior(2R) 7-7-8 to 13-7-8, Interior (1) 13-7-8 to 17-10-13, Exterior(2E) 17-10-13 to 20-10-13 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) N/A
- 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

May 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
25050141-A	PB3	Piggyback	1	1	Job Reference (optional)	173603761

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:43:01 ID:3Dn9TeDsWZQ8HxOJ3dySzKzEw8M-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:28.3

Plate Offsets (X, Y): [2:0-2-1,0-1-0], [3:0-2-8,Edge], [4:0-2-1,0-1-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.02	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	9	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 10 lb	FT = 20%

LUMBER

2x4 SP No.2 TOP CHORD BOT CHORD 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

3-5-6 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 2=2-1-15, 4=2-1-15

Max Horiz 2=29 (LC 13)

Max Uplift 2=-7 (LC 14), 4=-14 (LC 15)

Max Grav 2=148 (LC 21), 4=137 (LC 22)

FORCES (lb) - Maximum Compression/Maximum

Tension 1-2=0/22, 2-3=-67/36, 3-4=-67/38, 4-5=0/22

TOP CHORD 2-4=-46/46

BOT CHORD

NOTES Unbalanced roof live loads have been considered for 1)

- this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) N/A
- 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

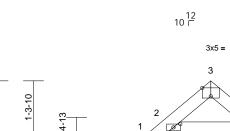
LOAD CASE(S) Standard

May 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
25050141-A	PB4	Piggyback	10	1	Job Reference (optional)	173603762

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:43:01 ID:ete2pkm9p6OdTBj4uuPiP8zEwGg-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

2-1-15

2x4 =

Scale = 1:28.3

Plate Offsets (X, Y): [2:0-2-1,0-1-0], [3:0-2-8,Edge], [4:0-2-1,0-1-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.02	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	10	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 10 lb	FT = 20%

LUMBER

2x4 SP No.2 TOP CHORD BOT CHORD 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

3-5-6 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=2-1-15, 4=2-1-15

Max Horiz 2=29 (LC 13)

Max Uplift 2=-14 (LC 14), 4=-11 (LC 15) Max Grav 2=136 (LC 21), 4=142 (LC 22)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/22, 2-3=-66/38, 3-4=-67/36, 4-5=0/22

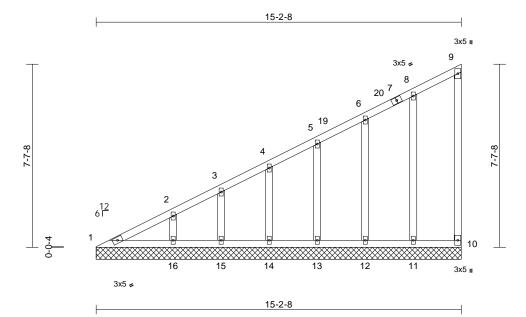
BOT CHORD 2-4=-3/46

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this desian.

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) N/A
- 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard



May 21,2025

Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
25050141-A	V1	Valley	1	1	Job Reference (optional)	173603763

Run: 8.73 E Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries, Inc. Tue May 20 17:43:53 ID:kr1X9FAX6EsYmJsqFumInazEw?N-jn?ZPKHqVDnfVni_IBpByBs1x471KifODNYPpazEi8K

Page: 1

Scale	=	1:48

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.70	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.20	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.16	Horiz(TL)	0.00	10	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 89 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS OTHERS 2x4 SP No.3

BRACING

BOT CHORD

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS All bearings 15-2-8.

(lb) - Max Horiz 1=274 (LC 11)

Max Uplift All uplift 100 (lb) or less at joint(s)

10, 11, 12, 13, 14, 15, 16

Max Grav All reactions 250 (lb) or less at joint (s) 1, 10, 11, 12, 13, 14, 15 except

16=260 (LC 1)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250

(lb) or less except when shown.

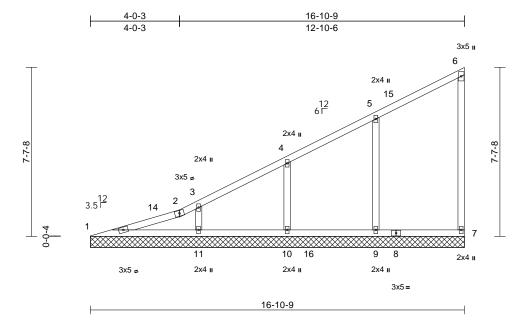
TOP CHORD 1-2=-246/263

NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 1) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-8 to 3-3-0, Exterior(2N) 3-3-0 to 12-1-4, Corner(3E) 12-1-4 to 15-1-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- Unbalanced snow loads have been considered for this
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 6)
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint (s) 10, 11, 12, 13, 14, 15, 16.

May 21,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B
25050141-A	V2	Valley	1	1	Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:43:02 ID:E6XBu8MGVsRpDZOIi_GyMGzEwFw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:52	:52	1	=	Scale	
--------------	-----	---	---	-------	--

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.61	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.33	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.16	Horiz(TL)	0.00	7	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 76 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

> 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc

bracing.

BOT CHORD REACTIONS (size)

1=16-10-9, 7=16-10-9, 9=16-10-9,

10=16-10-9, 11=16-10-9 Max Horiz 1=276 (LC 11)

Max Uplift

1=-25 (LC 10), 7=-35 (LC 11), 9=-93 (LC 14), 10=-92 (LC 14),

11=-49 (LC 14)

Max Grav 1=216 (LC 20), 7=168 (LC 24), 9=445 (LC 5), 10=334 (LC 24),

11=479 (LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=-471/208, 2-3=-210/224, 3-4=-194/197, 4-5=-161/169, 5-6=-133/117, 6-7=-121/52

BOT CHORD 1-11=-92/442, 10-11=-92/130, 9-10=-92/130,

7-9=-92/130

WFBS 5-9=-292/146, 4-10=-237/144, 3-11=-317/108

NOTES

TOP CHORD

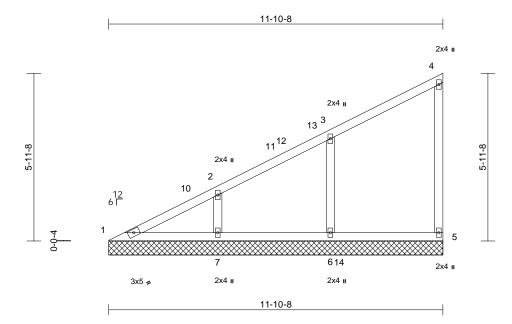
Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-14 to 3-0-14, Interior (1) 3-0-14 to 13-9-11, Exterior(2E) 13-9-11 to 16-9-11 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint 1, 35 lb uplift at joint 7, 93 lb uplift at joint 9, 92 lb uplift at joint 10 and 49 lb uplift at joint 11.

LOAD CASE(S) Standard

May 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
25050141-A	V3	Valley	2	1	I736(Job Reference (optional)	03765

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:43:02 ID:RmdJFglpll77zrclq_xeBhzEw?D-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scal	le	= 1	:4	0.9

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.36	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.16	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.12	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 52 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=11-10-8, 5=11-10-8, 6=11-10-8,

7=11-10-8

Max Horiz 1=212 (LC 11)

Max Uplift 5=-28 (LC 11), 6=-39 (LC 14), 7=-83 (LC 14)

1=153 (LC 25), 5=207 (LC 5), Max Grav

6=486 (LC 5), 7=362 (LC 3)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-267/196, 2-3=-140/158, 3-4=-120/102,

4-5=-153/42

1-7=-70/264, 6-7=-70/102, 5-6=-70/102

3-6=-388/166, 2-7=-267/126 WFBS

NOTES

BOT CHORD

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 7-6-5, Exterior(2R) 7-6-5 to 11-9-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

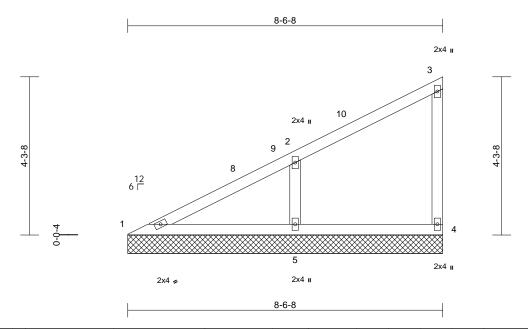
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this desian.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 5, 39 lb uplift at joint 6 and 83 lb uplift at joint 7.

LOAD CASE(S) Standard

May 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
25050141-A	V4	Valley	2	1	Job Reference (optional)	173603766

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:43:02 ID:RmdJFglpll77zrclq_xeBhzEw?D-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale	_	1.21	2

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.36	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.19	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.09	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 34 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

> 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc

bracing.

BOT CHORD REACTIONS (size)

1=8-6-8, 4=8-6-8, 5=8-6-8

Max Horiz 1=150 (LC 11)

Max Uplift 4=-21 (LC 11), 5=-94 (LC 14) Max Grav 1=143 (LC 1), 4=165 (LC 20),

5=555 (LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=-242/156, 2-3=-104/85, 3-4=-142/50

BOT CHORD 1-5=-50/268, 4-5=-50/73

WEBS 2-5=-428/241

NOTES

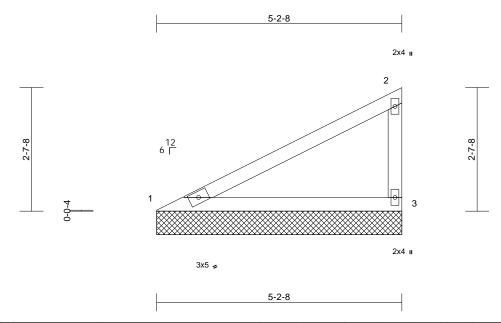
- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 4-2-5, Exterior(2R) 4-2-5 to 8-5-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint 4 and 94 lb uplift at joint 5.

LOAD CASE(S) Standard

May 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job)	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
250	050141-A	V5	Valley	2	1	Job Reference (optional)	173603767

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:43:02

Page: 1

Scale = 1:24.5

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.52	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.55	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.01	3	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0			1							Weight: 18 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-2-8 oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=5-2-8, 3=5-2-8

Max Horiz 1=87 (LC 11)

Max Uplift 1=-21 (LC 14), 3=-43 (LC 14) Max Grav 1=292 (LC 20), 3=292 (LC 20)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-504/134, 2-3=-199/104

BOT CHORD 1-3=-175/441

NOTES

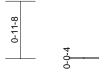
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.

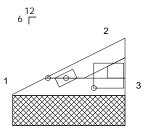
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 43 lb uplift at joint 3 and 21 lb uplift at joint 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
25050141-A	V6	Valley	2	1	Job Reference (optional)	173603768

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:43:02 ID:RmdJFglpll77zrclq_xeBhzEw?D-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

1-10-8

2x4 -

5x6 =

1-10-8

Scale = 1:19.2

Plate Offsets (X, Y): [3:0-9-3,0-2-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.03	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.04	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 5 lb	FT = 20%

LUMBER

2x4 SP No 2 TOP CHORD BOT CHORD 2x4 SP No 2 **WEBS** 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or 1-10-8 oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=1-10-8, 3=1-10-8

Max Horiz 1=25 (LC 11)

Max Uplift 1=-8 (LC 14), 3=-14 (LC 14) Max Grav 1=87 (LC 20), 3=87 (LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-98/28, 2-3=-44/20

BOT CHORD 1-3=-36/81

NOTES

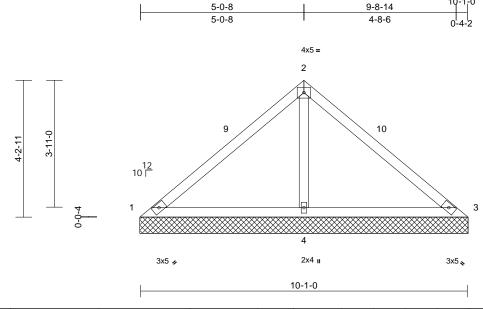
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For study exposed to wind (normal to the face). see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing
- Gable studs spaced at 4-0-0 oc.

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 14 lb uplift at joint 3 and 8 lb uplift at joint 1.

LOAD CASE(S) Standard

May 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
25050141-A	V7	Valley	1	1	Job Reference (optional)	173603769

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:43:02 ID:vURZoBueuARNAFfLgAPFeRzEyO5-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:35.6

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.50	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.46	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.22	Horiz(TL)	0.01	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 38 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

Structural wood sheathing directly applied or TOP CHORD

10-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=10-1-10, 3=10-1-10, 4=10-1-10

Max Horiz 1=95 (LC 13)

Max Unlift 1=-67 (LC 21), 3=-67 (LC 20),

4=-121 (LC 14)

1=86 (LC 20), 3=86 (LC 21), 4=846 Max Grav

(LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=-131/421, 2-3=-131/421

1-4=-278/187, 3-4=-278/187

BOT CHORD 2-4=-705/295

WFBS NOTES

TOP CHORD

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 7-1-10, Exterior(2É) 7-1-10 to 10-1-10 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

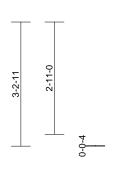
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 67 lb uplift at joint 1, 67 lb uplift at joint 3 and 121 lb uplift at joint 4.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 3.

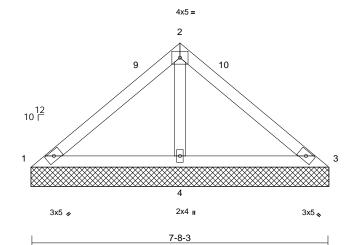
LOAD CASE(S) Standard

May 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
25050141-A	V8	Valley	1	1	Job Reference (optional)	173603770

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:43:02 ID:vURZoBueuARNAFfLgAPFeRzEyO5-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.9

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.30	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.30	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.11	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 29 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

7-8-3 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=7-8-13, 3=7-8-13, 4=7-8-13

Max Horiz 1=-71 (LC 10)

Max Uplift 1=-31 (LC 21), 3=-31 (LC 20),

4=-85 (LC 14)

Max Grav 1=102 (LC 20), 3=102 (LC 21),

4=597 (LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-106/268, 2-3=-106/268 **BOT CHORD** 1-4=-209/167, 3-4=-209/167

WEBS 2-4=-480/225

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 4-8-13, Exterior(2É) 4-8-13 to 7-8-13 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

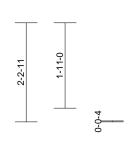
 * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 31 lb uplift at joint 1, 31 lb uplift at joint 3 and 85 lb uplift at joint 4.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 3.

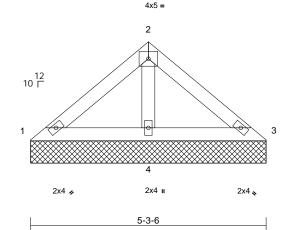
LOAD CASE(S) Standard

May 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
25050141-A	V9	Valley	1	1	Job Reference (optional)	

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:43:02 ID:s?bJz7nrbi73jWb3U9IAZ1zEw52-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:25.8

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.13	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0			1							Weight: 19 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

Structural wood sheathing directly applied or TOP CHORD

5-3-6 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=5-3-6, 3=5-3-6, 4=5-3-6

Max Horiz 1=-48 (LC 10)

Max Uplift 3=-6 (LC 15), 4=-39 (LC 14) Max Grav 1=93 (LC 20), 3=93 (LC 21), 4=333

(LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-84/122, 2-3=-84/122

BOT CHORD 1-4=-99/100, 3-4=-99/100

WEBS 2-4=-245/116

NOTES

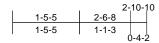
- Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

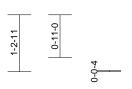
- 5) Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 6 lb uplift at joint 3 and 39 lb uplift at joint 4.

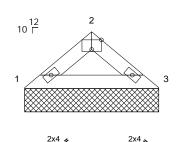
LOAD CASE(S) Standard

May 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


١	Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
	25050141-A	V10	Valley	1	1	Job Reference (optional)	173603772


Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:43:02 ID:s?bJz7nrbi73jWb3U9IAZ1zEw52-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x5 =

2-10-10

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf)	(psf) 20.0 20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC	0.06 0.06	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) -	l/defl n/a n/a		PLATES MT20	GRIP 244/190
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 9 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

2-10-10 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=2-10-10, 3=2-10-10

Max Horiz 1=24 (LC 13)

Max Uplift 1=-10 (LC 14), 3=-10 (LC 15) Max Grav 1=132 (LC 20), 3=132 (LC 21)

(lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-169/70, 2-3=-169/70

BOT CHORD 1-3=-39/121

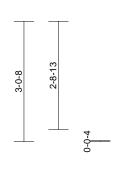
NOTES

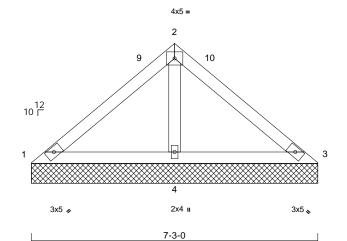
FORCES

- Unbalanced roof live loads have been considered for 1)
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.

- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 10 lb uplift at joint 1 and 10 lb uplift at joint 3.

LOAD CASE(S) Standard


May 21,2025


Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
25050141-A	V11	Valley	1	1	Job Reference (optional)	173603773

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:43:02 ID:p31oUbLOMIKiby_S1xy5cszEwVR-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.2

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.26	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.27	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.09	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 27 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

7-3-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=7-3-0, 3=7-3-0, 4=7-3-0

Max Horiz 1=-67 (LC 10)

Max Uplift 1=-17 (LC 21), 3=-17 (LC 20),

4=-74 (LC 14)

1=105 (LC 20), 3=105 (LC 21), Max Grav

4=534 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-89/230, 2-3=-89/230

1-4=-180/152, 3-4=-180/152 **BOT CHORD**

WEBS 2-4=-422/200

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 4-3-5, Exterior(2E) 4-3-5 to 7-3-5 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

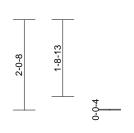
 * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 17 lb uplift at joint 1, 17 lb uplift at joint 3 and 74 lb uplift at joint 4.

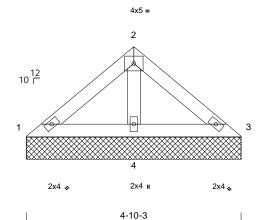
LOAD CASE(S) Standard

May 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
25050141-A	V12	Valley	1	1	Job Reference (optional)	173603774

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:43:03 ID:p31oUbLOMIKiby_S1xy5cszEwVR-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:26

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 17 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

4-10-3 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=4-10-3, 3=4-10-3, 4=4-10-3 Max Horiz 1=-43 (LC 10)

Max Uplift 3=-7 (LC 15), 4=-33 (LC 14)

Max Grav 1=88 (LC 20), 3=88 (LC 21), 4=295

(LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-81/103, 2-3=-81/103

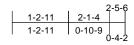
BOT CHORD 1-4=-84/88, 3-4=-84/88

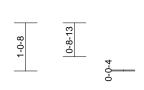
WEBS 2-4=-210/97

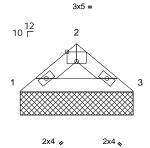
NOTES

- 1) Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 5) Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 7 lb uplift at joint 3 and 33 lb uplift at joint 4.


LOAD CASE(S) Standard


May 21,2025


Job	Truss	Truss Type	Qty	Ply	119 Eagle Creek-Kathryn B	
25050141-A	V13	Valley	1	1	Job Reference (optional)	173603775

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Mon May 19 14:43:03 ID:kFsOL3Y2YfoY1Yo9F8kPmDzEvuR-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

2-5-6

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.04	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.05	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 7 lb	FT = 20%

LUMBER

2x4 SP No.2 TOP CHORD BOT CHORD 2x4 SP No.2

BRACING

Structural wood sheathing directly applied or TOP CHORD

2-5-6 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=2-5-6, 3=2-5-6 Max Horiz 1=-20 (LC 10)

Max Uplift 1=-8 (LC 14), 3=-8 (LC 15)

Max Grav 1=110 (LC 20), 3=110 (LC 21)

(lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-139/60, 2-3=-139/60

BOT CHORD 1-3=-32/99

NOTES

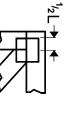
FORCES

- Unbalanced roof live loads have been considered for 1)
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this desian.
- Gable requires continuous bottom chord bearing.

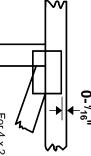
- 7) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 8 lb uplift at joint 1 and 8 lb uplift at joint 3.

LOAD CASE(S) Standard

May 21,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPII Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSB Building Component Safety Information, available from the Structural Building Component Safety Information and Safety Information, available from the Structural Building Component Safety Information and Safety In and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

For 4 x 2 orientation, locate plates 0- ¹/16" from outside edge of truss.

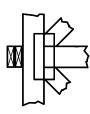
₹

This symbol indicates the required direction of slots in connector plates.

*Plate location details available in MiTek software or upon request.

PLATE SIZE

4 × 4

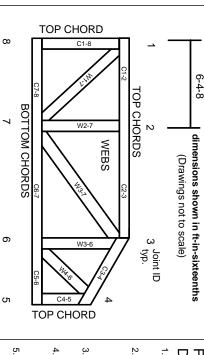

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur Min size shown is for crushing only.


Industry Standards: ANSI/TPI1: National I

National Design Specification for Metal Plate Connected Wood Truss Construction. Design Standard for Bracing.

Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

DSB-22:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

MITEK

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

▲ General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.

9

- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- The design does not take into account any dynamic or other loads other than those expressly stated.