

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DR Horton Inc Model: 114 Eagle Creek -Lawson - B

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

2

General Notes:

6-00-00

MBING DROPS NOTED ARE IN THE APPROXIMATE LOCATIONS PER PLAN. BUILDER . TO VERIFY LOCATIONS BEFORE SETTING

** GIRDERS MUST BE FULLY CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS.	** DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH.	 ** All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the bldg designer and or contractor.
_ 🖉 🕅 DR Horton Inc		THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed 0

		Date:	Scale:	DR Horton Inc		THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design speets for each truss	00/00	00/00	00/00	00/00	00/00
Sheet	Desic te Dol Project 25040	4/29/2	S I	114 Eagle Creek - Lawson - B	CARTER®	design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The disign of the tuss support structure including headers,	00/00)/00)/00)/00	Revis
	^{naldso} Number 130-B	2025	Š		Lumber	beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing of Wood Truss" available from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179	Na	Na	Na	Na	lions
	n			ROOF PLACEMENT PLAN			me	me	me	me	me

RE: 25040130

114 Eagle Creek - Lawson B - Roof

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:Customer: DR Horton IncProject Name:25040130Lot/Block: 114Model:Lawson BAddress:Subdivision:Eagle CreekCity:State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2021/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.7 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 53 individual, dated Truss Design Drawings and 0 Additional Drawings.

4 I73095648 A2T 4/30/2025 24 I73095668 D3 5 I73095649 A3 4/30/2025 25 I73095669 E1 6 I73095650 A3T 4/30/2025 26 I73095670 E2 7 I73095651 A4 4/30/2025 27 I73095671 E3 8 I73095652 A4T 4/30/2025 28 I73095672 E4 9 I73095653 A5 4/30/2025 29 I73095673 E5 10 I73095654 A5T 4/30/2025 30 I73095675 E7 12 I73095656 A6 4/30/2025 31 I73095675 E7 12 I73095656 A6T 4/30/2025 32 I73095676 E8 13 I73095657 A7 4/30/2025 33 I73095678 E10 15 I73095659 B1 4/30/2025 35 I73095679 E11 16 I73095661 B3 4/30/2025 36 I73095680 E12 17 I73	4/30/2025 4/30/2025 4/30/2025 4/30/2025 4/30/2025 4/30/2025 4/30/2025 4/30/2025 4/30/2025 4/30/2025 4/30/2025 4/30/2025 4/30/2025 4/30/2025
17 173095661 B3 4730/2025 37 175095661 E13 18 173095662 C1 4/30/2025 38 173095682 E14 19 173095663 C2 4/30/2025 39 173095683 E15 20 173095664 C3 4/30/2025 40 173095684 E16	4/30/2025 4/30/2025 4/30/2025 4/30/2025

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Galinski, John

My license renewal date for the state of North Carolina is December 31, 2025

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Galinski, John

RE: 25040130 - 114 Eagle Creek - Lawson B - Roof

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Project Customer: DR Horton Inc Project Name: 25040130 Lot/Block: 114 Address: City, County: State:

No.	Seal#	Truss Name	Date
41	173095685	V1	4/30/2025
42	173095686	V2	4/30/2025
43	173095687	V3	4/30/2025
44	173095688	V4	4/30/2025
45	173095689	V5	4/30/2025
46	173095690	V6	4/30/2025
47	173095691	V7	4/30/2025
48	173095692	V8	4/30/2025
49	173095693	V9	4/30/2025
50	173095694	V10	4/30/2025
51	173095695	V11	4/30/2025
52	173095696	V12	4/30/2025
53	173095697	V13	4/30/2025

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	A1	Common	3	1	Job Reference (optional)	173095645

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 08:53:06 ID:Mj_VJYhZJZndvETv2F0N5tzM7aY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	A1A	Common	1	1	Job Reference (optional)	173095646

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 08:53:07

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	A1T	Roof Special	2	1	Job Reference (optional)	173095647

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	A2T	Roof Special	1	1	Job Reference (optional)	173095648

18-19=-187/3524, 17-18=0/112,

8-18=-181/1535, 11-15=-459/95,

9-15=0/489. 3-21=-1707/127

1) Unbalanced roof live loads have been considered for

4-19=-1161/118, 5-19=0/509, 5-18=-1063/98,

11-14=0/200, 3-22=-1828/121, 4-20=-25/826, 8-16=-44/633, 9-16=-848/132, 16-18=0/1578,

7-18=-407/182, 16-17=-3/123, 14-16=-145/2578, 13-14=-145/2578

WEBS

NOTES

this design.

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 08:53:07 Page: 1 ID:fuZr9aWzXYXennNw_jaGsczM7MZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-82<u>-5-4</u> 6-5-3 8-9-9 12-9-12 18-8-8 23-10-3 30-11-13 37-5-0 0-10-8 2-5-4 3-11-15 5-10-12 2 - 4 - 64-0-3 5-1-11 7-1-11 6-5-3 5x8= 8 3x5. 2x4 II 29 30 31₉ 28 12 61 7 3x6 👟 3x6 🚽 10-2-4 9-2-4 6 10 10-2-4 3x5 ዾ 3x5、 5 11 3x5 🗸 32 4x5 👟 4²⁷ 8x10= 12 3 13 18 19 21 17 4x5= 16 33 15 14 5x10= 4x5 =5x10 II 5x8= 5x6= 2x4 II 2x4 II 4x5 II 3x6 u 23-11-0 6-5-3 12-8-0 18-8-8 23-10-3 30-11-13 37-5-0 2-3-8 2-3-8 6-2-13 6-0-8 7-0-13 4-1-11 5-1-11 0-0-13 6-5-3 Scale = 1:69.8 Plate Offsets (X, Y): [2:Edge,0-3-4], [3:0-6-4,0-2-11], [13:0-6-1,Edge], [15:0-3-0,0-3-0], [18:0-4-12,0-2-8], [20:0-0-8,0-1-12] Loading Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) (loc) TCLL (roof) 20.0 Plate Grip DOL 1.25 тс 0.53 Vert(LL) -0.20 18-19 >999 240 MT20 244/190 Snow (Pf/Pg) 13.9/20.0 Lumber DOL 1.25 BC 0.89 Vert(CT) -0.38 18-19 >999 180 TCDL Rep Stress Incr WB 10.0 YES 0.96 Horz(CT) 0.23 13 n/a n/a BCLL 0.0 IRC2021/TPI2014 Matrix-MSH Code BCDL 10.0 Weight: 239 lb FT = 20% LUMBER 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. TOP CHORD 2x4 SP 2400F 2.0E II; Exp B; Enclosed; MWFRS (envelope) and C-C 2x4 SP 2400F 2.0E *Except* 22-21:2x4 SP BOT CHORD Exterior(2E) -0-10-1 to 2-10-13, Interior (1) 2-10-13 to No.2, 21-20,7-17:2x4 SP No.3 WEBS 2x4 SP No.3 *Except* 18-8:2x4 SP No.2 18-8-8. Exterior(2R) 18-8-8 to 22-5-6. Interior (1) 22-5-6 to 37-5-0 zone; cantilever left and right exposed ; end SLIDER Right 2x6 SP 2400F 2.0E -- 2-0-0 vertical left and right exposed;C-C for members and BRACING forces & MWFRS for reactions shown: Lumber TOP CHORD Structural wood sheathing directly applied or DOL=1.60 plate grip DOL=1.33 3-5-2 oc purlins, except end verticals. 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc Plate DOL=1.25); Pg=20.0 psf; Pf=13.9 psf (Lum bracing. DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully WEBS 1 Row at midpt 9-16 Exp.; Ce=0.9; Cs=1.00; Ct=1.10 REACTIONS 13= Mechanical. 22=0-3-8 (size) Unbalanced snow loads have been considered for this 4) Max Horiz 22=110 (LC 12) design. Max Grav 13=1606 (LC 3), 22=1659 (LC 3) This truss has been designed for greater of min roof live 5) FORCES (lb) - Maximum Compression/Maximum load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on Tension overhangs non-concurrent with other live loads. TOP CHORD 1-2=0/33, 2-3=-392/49, 3-4=-5431/360, 6) * This truss has been designed for a live load of 20.0psf 4-5=-3967/276, 5-7=-2973/269, on the bottom chord in all areas where a rectangle 7-8=-2996/378.8-9=-2054/286 3-06-00 tall by 2-00-00 wide will fit between the bottom 9-11=-2556/261, 11-13=-2991/242, chord and any other members, with BCDL = 10.0psf. 2-22=-502/102 7) Bearings are assumed to be: Joint 22 SP No.2 BOT CHORD 21-22=-106/1466, 20-21=-90/1396, 8) Refer to girder(s) for truss to truss connections. 3-20=-286/4479, 19-20=-303/4666,

LOAD CASE(S) Standard

April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	A3	Нір	1	1	Job Reference (optional)	173095649

					P0		~~·	,	.,	111 Eugle	oroon	Lunioo			17000	-040
25040130		A3		Hip			1	1		Job Refer	ence (or	tional)			173095	6649
Carter Compone	ents (Sanford, NC	C), Sanfor	d, NC - 27332,			Run: 8.73 S	Feb 19 2025	Print: 8.730	S Feb 19	9 2025 MiTek	Industrie	s, Inc. Tu	ue Apr 29 08:	:53:08		Page: 1
		,,	-,,			ID:L_gMd3Y	nfM1AmBVzd	E3u?LzM7li	f-RfC?Psl	B70Hq3NSgl	PqnL8w3u	ITXbGK	WrCDoi7J4z	JC?f		- Liger -
		6-	5-3	13-6-	13	16-4-0	21-1-0	. 23	3-10-3	2	30-11-13			37-	5-0	
		6-	5-3	7-1-	10	2-9-3	4-9-0	- 2	2-9-3		7-1-11	•		6-5	-3	
						5x6	-	5x6=								
0-0-6 0-0-6 0-0-8 0-0-1-1-73	o 1 € 5x10: ↓	3x5 = 2 = 6- 6-	5x6 = 31 32 22 5-3 5-3	12 33 <u>13-6</u> 7-0-1	ененски страна ененски страна стран	5x6 35 35 4 5 35 4 5 5 5 5 5 5 5 5 5 5 5 5 5	= <u>2-2-8</u> <u>2</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u>	5x6= <u>2-8</u> 6 <u>10</u> <u>10</u> <u>10</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u>	36 44 42 1:0 23-1 23-1 23-1 23-1 23-1 23-4 1-10 0-0-9 0-5- 0-0-9	7 2 HHS 8x12 = 11-0 -3 11 -8 -13	37 38 30-11-13 7-0-13		5x6 x 8 11	39 40 <u>37-</u> 6-5	3x5 2 9 250 3	10 00000000000000000000000000000000000
Plate Offsets ((X, Y): [1:Edge	ə,0-2-13], [3:0-3-0,0-3-0], [8:0	-3-0,0-3-0	, [10:Edge,0-2	<u>2-1-10</u> 2-13], [10:0-0-	0,0-0-0], [12	:0-6-0,0-4	-12], [21	:0-6-0,0-4-	12]					
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	18.9,	(psf) 20.0 /20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MSH	0.46 0.58 0.62	DEFL Vert(LL) Vert(CT) Horz(CT	-0.: -0.:) -0.:	in (loc) 27 12-13 51 16 08 10	l/defl >999 >878 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 2	52 lb	GRIP 244/190 187/143 FT = 20'	%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER	2x4 SP 2400 2x6 SP 2400 2400F 2.0E 2x4 SP No.3 Left 2x4 SP I 2-6-0	0F 2.0E 0F 2.0E 9 No.3 2	*Except* 20-14:2x4 S 2-6-0, Right 2x4 SP N	2) P 0.3	Wind: ASCE Vasd=103mp II; Exp B; En Exterior(2E) Exterior(2E) 26-4-8, Interi and right exp C for mombo	7-16; Vult=13 oh; TCDL=6.0 closed; MWFF 0-0-0 to 3-8-1- 16-4-0 to 21-1 ior (1) 26-4-8 t vosed ; end ve	0mph (3-sec psf; BCDL=6 RS (envelope 4, Interior (1 -0, Exterior(0 37-5-0 zor rtical left and	cond gust) 5.0psf; h=2 e) and C-C) 3-8-14 to 2R) 21-1-(ne; cantilev d right exp	25ft; Cat.) 16-4-0,) to ver left osed;C-							
BRACING TOP CHORD	Structural wo 3-10-6 oc pu 2-0-0 oc pur	ood shea urlins, ex lins (4-1	athing directly appliec cept 1-4 max.): 5-6.	l or 3)	TCLL: ASCE	25); Pa=20.0	plate grip D psf (roof Ll	OL=1.33)L=1.25							
BOT CHORD	Rigid ceiling bracing	directly	applied or 10-0-0 oc		DOL=1.15 P	late DOL=1.15	5); Is=1.0; R	ough Cat E	B; Fully							
REACTIONS	(size) 1=	= Mecha	nical, 10=0-3-8	4)	Exp.; Ce=0.9 Unbalanced	9; Cs=1.00; Ct snow loads ha	=1.10, Lu=5 ave been cor	0-0-0 nsidered fo	or this							
	Max Grav 1=	=03 (LC =2079 (L	رے، C 49), 10=2079 (LC -	49) -	design.		al a a tha h - 44		40.0.0							
FORCES	(lb) - Maximu	um Com	pression/Maximum	ý 5)	from left end	, supported at	u on the both two points,	iom chord, 5-0-0 apar	, 18-8-8 t.							
TOP CHORD	Tension 1-4=-3923/0	, 4-5=-3	634/0, 5-6=-2776/14,	6) 7)	Provide adec All plates are	quate drainage MT20 plates	e to prevent unless other	water pono rwise indic	ding. ated.							
BOT CHORD	6-7=-3634/0 1-22=0/3445	, 7-10=-; 5, 19-22=	3923/0 =0/3446, 17-19=0/248	8) 82, 9)	All plates are * This truss h	e 2x4 MT20 un nas been desig	lless otherwi gned for a liv	ise indicate ve load of 2	ed. 20.0psf						1111	

on the bottom chord in all areas where a rectangle

or the orientation of the purlin along the top and/or

3-06-00 tall by 2-00-00 wide will fit between the bottom

BOT CHORD 1-22=0/3445, 19-22=0/3446, 17-19=0/2482, 13-17=0/2482, 11-13=0/3446, 10-11=-3/3445, 18-20=-2/209, 16-18=-2/209, 15-16=-2/209, 14-15=-2/209 chord and any other members, with BCDL = 10.0psf. 10) Bearings are assumed to be: , Joint 10 SP 2400F 2.0E . WEBS 20-21=0/1485, 5-20=0/1483, 6-14=0/1483, 12-14=0/1485, 3-22=-126/20, 3-21=-400/189, 11) Refer to girder(s) for truss to truss connections. 4-21=-462/176, 7-12=-462/176, 12) Graphical purlin representation does not depict the size

8-12=-400/189, 8-11=-126/21, 18-19=-122/0, 16-17=-93/0, 13-15=-122/0

NOTES

1) Unbalanced roof live loads have been considered for this design.

I DE CONTRACTOR NORTH SEAL 28677 L. GAL L. GAL

April 30,2025

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

bottom chord.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	A3T	Нір	1	1	Job Reference (optional)	173095650

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 29 08:53:08

Page: 1

Plate Offsets (X, Y): [2:Edge,0-3-0], [3:0-6-8,0-3-3], [8:0-2-0,0-0-12], [14:0-6-1,Edge], [18:0-3-8,0-1-8], [22:0-0-8,0-1-12]

Scale = 1:67.8

			-										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 18.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-MSH	0.68 0.63 0.87	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.27 -0.45 0.26	(loc) 15-17 15-17 14	l/defl >999 >985 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	0000										Weight: 244 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP 2400F 2.0E 2x4 SP 2400F 2.0E SP No.2, 7-19:2x4 S 2x4 SP No.3 Right 2x6 SP 2400F Structural wood shei 3-3-1 oc purlins, exi 2-0-0 oc purlins, exi 2-0-0 oc purlins (5-7 Rigid ceiling directly bracing. 1 Row at midpt (size) 14= Mech Max Gray, 14=1747 (LC	*Except* 24-23,23-22: P No.3 2.0E 2-0-0 athing directly applied cept end verticals, and -12 max.): 8-9. applied or 10-0-0 oc 8-18, 8-17 anical, 24=0-3-8 C 12) (1 C 50) 24=1788 (1 C	1) 2x4 2) or 1 3)	Unbalanced this design. Wind: ASCE Vasd=103mp II; Exp B; End Exterior(2E)) 16-4-0, Exter 21-1-0 to 26- cantilever lef right exposed for reactions DOL=1.33 TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9	roof live loads have 7-16; Vult=130mpf bh; TCDL=6.0psf; E closed; MWFRS (e -0-10-1 to 2-10-13, ior(2E) 16-4-0 to 2 5-3, Interior (1) 26- t and right exposed d;C-C for members shown; Lumber DC 7-16; Pr=20.0 psf; ate DOL=1.15); Is= ; Cs=1.00; Ct=1.10;	been (CDL=6 Nvelope Interiori 1-1-0, E 5-3 to 3 ; end v and for DL=1.6((roof LL Pf=18.9 =1.0; Rc), Lu=5(considered fc cond gust) .0psf; h=25ft and C-C (1) 2-10-13 Exterior(2R) 37-5-0 zone; rertical left ar ces & MWFF) plate grip .: Lum DOL= psf (Lum pugh Cat B; F)-0-0	r ; Cat. to d RS 1.25 Fully					
FORCES	(lb) - Maximum Com	pression/Maximum	4)	Unbalanced design.	snow loads have b	een cor	isidered for t	nis					
TOP CHORD	Tension 1-2=0/33, 2-3=-429/3 4-6=-4172/296, 6-7= 7-8=-3212/362, 8-9= 9-10=-2520/280, 10- 12-14=-3274/261, 2-	52, 3-4=-6004/378, 3265/291, 2179/280, -12=-3142/265, -24=-533/104	5) 6) 7)	This truss ha load of 12.0 p overhangs no Provide adeo * This truss h on the bottom	s been designed for osf or 2.00 times fla on-concurrent with juate drainage to p as been designed a chord in all areas	or great at roof lo other liv revent for a liv where	er of min roof bad of 13.9 p /e loads. water ponding e load of 20.0 a rectangle	f live sf on g. Opsf				TH CA	RO
BOT CHORD	23-24=-109/1581, 22 3-22=-303/4984, 21- 20-21=-189/3690, 19 7-20=-317/124, 18-1 17-18=-40/2068, 15- 14-15=-165/2817	2-23=-89/1504, 22=-329/5178, 9-20=0/59, 9=-16/125, 17=-116/2580,	8) 9) 10	3-06-00 tall b chord and an Bearings are Refer to girde) Graphical pu or the orienta	y 2-00-00 wide will y other members, y assumed to be: Jo er(s) for truss to tru rlin representation ition of the purlin al	fit betw with BC int 24 \$ ss conr does no ong the	veen the both iDL = 10.0psi SP No.2 . nections. of depict the set op and/or	om f. size		WITTEN.	N.V.	SEA	
WEBS NOTES	4-21=-1503/142, 6-2 18-20=-24/2019, 8-2 8-18=-425/53, 8-17= 10-17=-723/128, 10- 12-15=-153/106, 3-2 4-22=0/933, 3-23=-1	1=0/509, 6-20=-1059/ 10=-150/1685, -145/191, 9-17=-22/75 15=0/378, 14=-1963/123, 843/124	99, LC 95,	bottom chord	l. Standard					THE	annun a	2867	E.P. St.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

April 30,2025

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	A4	Нір	1	1	Job Reference (optional)	173095651

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 08:53:08 ID:9sP5fphXrmLRiiCne58LbxzLwUc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-11-12 13-8-0 18-8-8 23-9-0 30-5-4 37-5-0 6-11-12 6-8-4 5-0-8 5-0-8 6-8-4 6-11-12 5x10= 2x4 🛛 5x10= 0-1-13 1-13 ⊬ 7-8-0 4 27 5 28 6 6¹² 3x5 ≠ 29 ^{3x5} 26 7 3 30 25 7-8-0 7-6-3 7-6-3 24 31 4x5 🧔 4x5 👟 2²³ 328 9 1A 0-10-0 0-10-0 14 13 33 12 34 11 10 6x8 II 2x4 II 3x8= 2x4 II 5x6= 5x6= 6x8 II 6-11-12 13-6-4 18-8-8 23-10-12 30-5-4 37-5-0 6-11-12 6-6-8 5-2-4 5-2-4 6-6-8 6-11-12

Scale = 1:67.7

Plate Offsets (X, Y): [1:0-2-4,0-0-1],	[4:0-5-0,0-1-7], [6:0	-5-0,0-1-7]	, [9:0-4-13,0-0	-1], [11:0-2-12,0-3-	0], [13:0	-2-12,0-3-0]							
L oading TCLL (roof) Snow (Pf/Pg) TCDL 3CLL 3CDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC202 ⁻	1/TPI2014	CSI TC BC WB Matrix-MSH	0.68 0.95 0.66	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.20 -0.37 0.15	(loc) 10-11 10-11 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 215 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD WEBS NOTES 1) Unbalance this design	2x4 SP 2400F 2.0E - No.2 2x4 SP No.3 Left 2x6 SP 2400F 2 SP 2400F 2.0E 2-0 Structural wood sheir 3-5-2 oc purlins, exc 2-0-0 oc purlins (3-7 Rigid ceiling directly bracing. (size) 1= Mecha Max Horiz 1=69 (LC Max Grav 1=1704 (L (lb) - Maximum Com Tension 1-3=-3170/252, 3-4= 4-5=-2453/289, 5-6= 6-7=-2629/269, 7-9= 1-14=-161/2720, 12- 10-12=-156/2720, 9- 3-14=0/205, 3-13=-5 4-12=-54/393, 5-12= 6-11=0/582, 7-11=-5	*Except* 4-6:2x4 SP t* 13-11:2x4 SP No. 2:0E 2-0-0, Right 2 0-0 athing directly applie rept -9 max.): 4-6. applied or 2-2-0 oc unical, 9=0-3-8 12) .C 49), 9=1704 (LC - pression/Maximum -2629/269, -2453/289, -3170/252 -14=-161/2720, -10=-156/2720 i92/105, 4-13=0/582 -513/106, 6-12=-54/ j92/105, 7-10=0/205 been considered for	2) 2 x6 x6 x6 x6 x7 x9) 5) 6) x1 x9 x9 x3 x3 x x2 x5 x5 x5 x5 x5 x5 x5 x5 x5 x5 x5 x5 x5	Wind: ASCE Vasd=103mµ II; Exp B; En Exterior(2E) Exterior(2E) 23-9-0, Exteri to 37-5-0 zor vertical left a forces & MW DOL=1.60 pI TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.5 Unbalanced design. Provide aded * This truss h on the bottor 3-06-00 tall b chord and ar Bearings are Refer to gird Graphical pu or the orient bottom chorc DAD CASE(S)	7-16; Vult=130mp bh; TCDL=6.0ps; I closed; MWFRS (¢ 0-0-0 to 3-8-14, Ini 13-8-0 to 18-8-8, I rior(2R) 23-9-0 to 2 e; cantilever left a nd right exposed;C FRS for reactions ate grip DOL=1.33 7-16; Pr=20.0 psf .25); Pg=20.0 psf .25); Pg=20.0 psf .25); Pg=20.0 psf ite DOL=1.15); Is c Cs=1.00; Ct=1.1 snow loads have b quate drainage to p has been designed n chord in all areas by 2-00-00 wide will yo other members, assumed to be: , er(s) for truss to tru- rlin representation ation of the purlin at Standard	h (3-sec BCDL=6 BCDL=6 Provelope terior (1) Interior (29-0-8, I nd right C-C for n shown; (roof LL Pf=18.5 =1.0; Rc 0, Lu=50 for a liv s where Il fit betw Joint 9 S Iss conr does no long the	cond gust) cond gust) const; h=25ft and C-C 3-8-14 to 13 1) 18-8 to nterior (1) 29 exposed; er nembers and Lumbor : Lum DOL= psf (Lum bugh Cat B; F)-0-0 isidered for th water ponding e load of 20.1 a rectangle veen the bott DL = 10.0psi SP No.1. iections. ot depict the se top and/or	; Cat. 3-8-0, -0-8 hd 1.25 Fully his g. Dpsf om f.				SEA 2867	RO RO F 7 E.P. K	ANNOUTHING TO A STATE OF A STATE
												Apri	30 2025	

L. GA mmm April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	A4T	Нір	1	1	Job Reference (optional)	173095652

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 29 08:53:09 ID:2RDuCdM1ugGeo9vLN8dFKXzLwTI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:67.5

Plate Offsets ((X, Y): [2:Edge,0-3-0],	[3:0-6-8,0-2-15], [5:0	0-3-0,0-3-0)], [7:0-5-0,0-1	-7], [12:0-6-1,Edge	e], [14:0-	4-0,0-3-0], [1	5:0-2-3,0	0-2-4], [1	7:0-3-0,	0-3-0],	[19:0-0-8,0-1-12]		
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-MSH	0.63 0.99 0.83	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.20 -0.36 0.25	(loc) 17-18 17-18 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 240 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP 2400F 2.0E 2x4 SP 2400F 2.0E X4 SP 2400F 2.0E * No.2, 20-19,6-16:2x4 2x4 SP No.3 Right 2x6 SP 2400F Structural wood shea 3-3-11 oc purlins, ex 2-0-0 oc purlins (5-3- Rigid ceiling directly bracing. 1 Row at midpt (size) 12= Mech- Max Horiz 21=84 (LC Max Grav 12=1679 ((b) - Maximum Com	Except* 21-20:2x4 \$ P SP No.3 2.0E 2-0-0 athing directly applied (cept end verticals, athered and the second regeneration of the second and the second regeneration of the second and the second regeneration of the second and the second and the second regeneration of the second and	2) SP d or and 3) 4) C 50) 5)	Wind: ASCE Vasd=103m, II; Exp B; En Exterior(2E) 13.8-0, Exterior(2E) 23-9-0, Ex 29-0-8 to 37- end vertical I forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 Unbalanced design. This truss ha load of 12.0	7-16; Vult=130mp bh; TCDL=6.0psf; closed; MWFRS (i -0-10-1 to 2-10-13 rior(2R) 13-8-0 to tterior(2R) 23-9-0 ti 5-0 zone; cantilev eft and right expos (FRS for reactions ate grip DOL=1.33 ; 7-16; Pr=20.0 psf; late DOL=1.15); Is b; Cs=1.00; Ct=1.1 snow loads have to the speen designed fit psf or 2.00 times fit	h (3-sec BCDL=6 envelope , Interior 18-8-8, In o 29-0-8 er left ar sed;C-C shown; } f (roof LL Pf=18.5 =1.0; Rc 0, Lu=50 been cor or greate at roof lo	cond gust) .0psf; h=25ft and C-C · (1) 2-10-13 nterior (1) 18 b, Interior (1) 18 b, Interior (1) d right expos for members Lumbor .: Lum DOL= psf (Lum pugh Cat B; F)-0-0 isidered for the er of min roof pad of 13.9 p	; Cat. to -8-8 sed ; and 1.25 Fully his f live sf on						
TOP CHORD	1-2=0/33, 2-3=-420/5 4-6=-3941/301, 6-7= 7-8=-2401/286, 8-9= 9-10=-2578/268, 10- 2-21=-524/105	52, 3-4=-5835/383, -2814/332, -2225/273, 12=-3117/252,	6) 7)	overnangs n Provide adeo * This truss h on the bottor 3-06-00 tall b chord and ar	on-concurrent with quate drainage to p nas been designed n chord in all area by 2-00-00 wide wi ny other members.	other IN prevent v I for a liv s where Il fit betw with BC	ve loads. water ponding e load of 20.0 a rectangle veen the botto DL = 10.0ps	g. Opsf om f.			~	TH CA	Route	
BOT CHORD	20-21=-110/1529, 19 3-19=-307/4863, 18- 17-18=-195/3456, 16 6-17=-79/229, 15-16 13-15=-154/2677, 12	0-20=-91/1461, 19=-333/5046, 6-17=0/106, =-5/178, 2-13=-154/2677	8) 9) 10	Bearings are Refer to gird) Graphical pu or the orienta bottom chore	assumed to be: J er(s) for truss to tru- rlin representation ation of the purlin a	oint 21 S uss conr does no along the	SP No.2 . nections. of depict the set top and/or	size			A.V.	ON SEA	AN AN	
WEBS	4-18=-1596/141, 5-1 5-17=-1081/113, 15- 7-17=-110/1112, 7-1 8-14=-392/55, 9-14= 10-13=0/201, 3-20=- 3-21=-1897/123	8=0/524, 17=-77/2231, 5=-225/97, 8-15=-24 -9/750, 10-14=-595/ [,] 1789/127, 4-19=0/88	LC 18/99, 105, 37,	DAD CASE(S)	Standard					11111	and a state		7 ER.St.	WIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
1) Unbalance	ed roof live loads have	been considered for										L.G.	ALIMIN	

1) Unbalanced roof live loads have been considered for this design.

April 30,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	A5	Нір	1	1	Job Reference (optional)	173095653

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 08:53:09 ID:?G5UkdEFOloev_F8yCvb6DzLwRK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:67.5

Plate Offsets (X, Y): [1:0-3-8,Edge],	[4:0-5-0,0-1-7], [6:0-	5-0,0-1-7]	, [9:0-6-1,Edge	;]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 18.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.25 1.25 YES	1/TPI2014	CSI TC BC WB Matrix-MSH	0.83 0.89 0.54	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.22 -0.41 0.12	(loc) 11-13 11-13 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	oode	11(0202	1/11/2014								Weight: 205 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 *Except 2.0E 2x4 SP 2400F 2.0E * No.2 2x4 SP No.3 Left 2x6 SP 2400F 2. SP 2400F 2.0E 2-0 Structural wood shea 2-2-0 oc purlins, exce 2-0-0 oc purlins (4-2- Rigid ceiling directly a bracing. (size) 1= Mechar Max Horiz 1=55 (LC - Max Grav 1=1648 (Li	** 4-6:2x4 SP 2400F *Except* 14-12:2x4 S .0E 2-0-0, Right 2x .0-0 athing directly applied ept -5 max.): 4-6. applied or 10-0-0 oc nical, 9=0-3-8 12) C 49), 9=1648 (LC 4	2) SP k6 d or 3) 	Wind: ASCE Vasd=103mg II; Exp B; En Exterior(2E) Exterior(2R) 26-5-0, Exterior vertical left a forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced design. Provide adec * This truss f	7-16; Vult=130mp ph; TCDL=6.0psf; E closed; MWFRS (6 0-0-0 to 3-8-14, Int 11-0-0 to 16-3-8, In ior(2R) 26-5-0 to 3 he; cantilever left a nd right exposed;(C /FRS for reactions ate grip DOL=1.33 7-16; Pr=20.0 psf; late DOL=1.15); Is b; Cs=1.00; Ct=1.10 snow loads have b quate drainage to p has been designed	h (3-sec BCDL=6 envelope iserior (1) interior (1) interio	cond gust) .0psf; h=25ft;) and C-C 3-8-14 to 11 1) 16-3-8 to nterior (1) 31 exposed; er nembers and Lumber .: Lum DOL= 0 psf (Lum 0 psf (Lum 0 psf (Lum 0 psf (Lum 0 psf of the 0 psf (20) 10 psf (20)	; Cat. -0-0, -9-4 nd 1.25 Fully his g. Dosf					
FORCES	(lb) - Maximum Comp Tension 1-3=-2991/249, 3-4=- 4-5=-3180/304, 5-6=-	pression/Maximum -2801/262, -3180/304,	7)	on the bottor 3-06-00 tall b chord and ar Bearings are	n chord in all areas by 2-00-00 wide wil by other members, assumed to be:	where I fit betv with BC Joint 9 S	a rectangle veen the bott DL = 10.0ps P 2400F 2.0	om f. E.				mun	
BOT CHORD	6-7=-2801/262, 7-9=- 1-16=-168/2578, 15- 13-15=-97/2455, 11- 10-11=-163/2578, 9-	-2991/249 16=-168/2578, 13=-94/2455, 10=-163/2578	8) 9)	Refer to girde Graphical pu or the orienta	er(s) for truss to tru rlin representation ation of the purlin a	iss conr does no long the	ections. ot depict the s top and/or	size			and a	ORTH CA	ROUT
WEBS	3-16=-32/78, 3-15=-3 4-13=-56/840, 5-13=- 6-11=0/484, 7-11=-3	331/103, 4-15=0/484 -792/163, 6-13=-56/8 31/103, 7-10=-32/78	[,] , LC 840, LC	DAD CASE(S)	Standard					TITL.	7	SEA	L
NOTES											- 1	0007	- : =

 Unbalanced roof live loads have been considered for this design.

April 30,2025

TRENCO AMITEK Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	A5T	Нір	1	1	Job Reference (optional)	173095654

2-3-8

4-4-4

4-2-8

1-9-12

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 08:53:09 ID:7ayh9W0PJysZap9Rie3bijzLwQK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-0-4

5-2-8

Page: 1

12

5x10 u

4

5-7-12

-0-10-8 2-5-4 0-10-8 2-5-4 12-9-12 6-7-12 11-0-0 19-6-8 26-5-0 31-9-4 37-5-0 1-9-12 4-2-8 4-4-4 6-8-12 6-10-8 5-4-4 5-7-12 5x10 = 2x4 II 3x8= 5x6= 0-1-13 H-13 6-4-0 6 30 31 832 _____33 ⊠ 9 ۲ 6¹² 3x5 🚽 3x5 👟 5 29 10 6-2-3 5-2-3 6-4-0 3x5 🛩 34 4²⁸ 35 4x5≈ 8x10= 11 3 18 ģ 20 19 È 22 Ð 17 Π 3x5= 4x5= 36 13 16 15 14 3x6 II 4x5= 6x10= 5x6= 3x8= 2x4 II 4x6= 4x5 II 3x5 II 12-8-0 26-6-12 37-5-0 2-3-8 6-7-12 10-10-4 19-6-8 31-9-4 ł

6-10-8

Scale = 1:67.3

Plate Offsets ((X, Y): [2:Edge,0-3-4],	, [3:0-6-8,0-3-3], [6:0	-5-0,0-1-7	'], [12:0-6-1,Edg	ge], [18:0-4-4,0-2-1	2], [21:0	0-0-8,0-1-12]							
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC202	21/TPI2014	CSI TC BC WB Matrix-MSH	0.51 0.98 0.62	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.41 0.25	(loc) 16-17 16-17 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 233 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP 2400F 2.0E 2x4 SP No.3 *Excep 3-18:2x4 SP No.1, 1 2400F 2.0E 2x4 SP No.3 *Excep Right 2x6 SP 2400F Structural wood she 3-4-12 oc purlins, e 2-0-0 oc purlins, (4-5 Rigid ceiling directly bracing, Except: 2-2-0 oc bracing: 20 1 Row at midpt (size) 12= Mech Max Horiz 23=70 (LC Max Verzu, 12=1622)	ot* 23-22:2x4 SP No. 7-15,15-12:2x4 SP ot* 16-18:2x4 SP No. 2.0E 2-0-0 athing directly applie xcept end verticals, s -13 max.): 6-9. applied or 10-0-0 oc -21. 8-14 aanical, 23=0-3-8 C 12)	N 2, 2 2 2 2 2 2 2 3 3 3 3 3 3 3	 IOTES Unbalanced this design. Wind: ASCE Vasd=103mj II; Exp B; En Exterior(2E) 11-0-0, Exter to 26-5-0, Ex 31-9-4 to 37- end vertical forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL= 1DOL=1.15 P Exp.; Ce=0.5 Unbalanced 	roof live loads hav 7-16; Vult=130mp bh; TCDL=6.0psf; closed; MWFRS (e -0-10-1 to 2-10-13 rior(2R) 11-0-0 to tterior(2R) 26-5-0 t 5-0 zone; cantilev eft and right expos FRS for reactions ate grip DOL=1.35 ; 7-16; Pr=20.0 psf; late DOL=1.15); Is ; Cs=1.00; Ct=1.1 ; snow loads have t	e been h (3-sec BCDL=6 envelope , Interio 16-3-8, I o 31-9-4 er left ar sed;C-C shown; f (roof LL Pf=18.5 =1.0; RC 0, Lu=5 been con	considered for cond gust) .0psf; h=25ft e) and C-C (1) 2-10-13 nterior (1) 16 i, Interior (1) dright exposi- for members Lumber .: Lum DOL= p sf (Lum Dugh Cat B; F) -0-0 nsidered for t	or ; Cat. to -3-8 sed ; ; and 1.25 Fully his						
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=0/37, 2-3=-391/ 4-5=-3895/312, 5-6= 6-7=-3200/304, 7-8= 8-9=-2445/262, 9-10 10-12=-2951/247, 2	(LS 50), 20-1033 (L ppression/Maximum 51, 3-4=-5494/387, 3221/290, 3187/303, D=-2736/264, 32=-531/103	5 6 7	 design. This truss ha load of 12.0 overhangs n Provide aded * This truss h on the bottor 2.00 on the 	is been designed f psf or 2.00 times fl on-concurrent with quate drainage to has been designed n chord in all area:	or great at roof le other lip prevent l for a liv s where	er of min root bad of 13.9 p ve loads. water pondin e load of 20.1 a rectangle	f live sf on g. Opsf			and a	ORTH CA	ROJA	
BOT CHORD	22-23=-113/1472, 2 3-21=-302/4523, 20 19-20=-212/3455, 1: 17-18=0/121, 7-18= 14-16=-134/3037, 1: 12-13=-160/2538 5-19=-899/114, 6-19 16-18=-145/2783, 8 8-16=-219/113, 8-14 10-14=-340/87, 10-1 3-23=-1841/126, 3-2 4-21=-8/891, 5-20=0	-21-326/31399, -21-326/4707, 8-19=-117/2809, -511/118, 16-17=0/2 3-14=-160/2538, 9=-25/668, 6-18=-92/ -18=-27/259, 4=-850/53, 9-14=0/82 13=-14/107, 22=-1707/130, 0/467, 4-20=-1352/11	84, 1 ^{955,} L 29, 16	 objective fail for chord and ar Bearings are Refer to gird Graphical pu or the orienta bottom chord OAD CASE(S) 	y 2-00-00 wide Wi hy other members, assumed to be: J er(s) for truss to tru- rlin representation ation of the purlin a d. Standard	with BC oint 23 S uss conr does no along the	DL = 10.0ps PN 0.2. nections. of depict the s	size			State State	SEA 2867	7 7 4LINSt	and

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	A6	Нір	1	1	Job Reference (optional)	173095655

4-3-12

4-3-12

8-4-0

4-0-4

5x6=

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 08:53:10 ID:z4y4Gd6UtvKf?ocwXFBxuvzLwOv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:67.4

Plate Offsets (X, Y): [1:0-2-4,0-2-1], [[5:0-4-0,0-3-0], [7:0-5	5-0,0-1-7]	, [10:0-4-13,0-	0-1]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.54 0.39 0.59	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.22 -0.41 0.12	(loc) 13-14 13-14 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 200 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING	2x4 SP 2400F 2.0E 2x4 SP 2400F 2.0E 2x4 SP No.3 2x4 SP No.3 Left 2x6 SP 2400F 2.0E SP 2400F 2.0E 2-0	0E 2-0-0, Right 2xt -0	2)	Wind: ASCE Vasd=103m II; Exp B; En Exterior(2E) Exterior(2R) 29-1-0, Exte to 37-5-0 zor vertical left a force 2, MM	7-16; Vult=130mpl bh; TCDL=6.0psf; E closed; MWFRS (e 0-0-0 to 3-8-14, Int 8-4-0 to 13-7-8, Int rior(2R) 29-1-0 to 3 he; cantilever left an nd right exposed; C CPS for reactione	h (3-sed 3CDL=6 nvelope erior (1 erior (1 4-4-8, I nd right -C for r	cond gust) 6.0psf; h=25ft b) and C-C) 3-8-14 to 8-) 13-7-8 to nterior (1) 34 exposed ; er nembers and Lumber	;; Cat. 4-0, -4-8 nd					
TOP CHORD	Structural wood shear 4-2-11 oc purlins, exc 2-0-0 oc purlins (3-9-4 Rigid ceiling directly a bracing.	thing directly applied cept 5 max.): 4-7. applied or 10-0-0 oc	or 3)	DOL=1.60 pl TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.: Ce=0.9	late grip DOL=1.33 7-16; Pr=20.0 psf 1.25); Pg=20.0 psf; late DOL=1.15); ls= 0; Cs=1.00; Ct=1.10	(roof Ll Pf=18.9 =1.0; Ro). Lu=50	Lumber -: Lum DOL=) psf (Lum pugh Cat B; F)-0-0	1.25 Fully					
REACTIONS	(size) 1= Mechan Max Horiz 1=42 (LC 1 Max Grav 1=1497 (LC	nical, 10=0-3-8 2) C 2), 10=1497 (LC 2)	4) 5) 6)	Unbalanced design. Provide adeo * This truss h	snow loads have b quate drainage to p has been designed	een cor revent	water ponding	his g. 0psf					
FORCES	(Ib) - Maximum Comp Tension 1-3=-2507/261, 3-4=-	pression/Maximum 2605/249,	-,	on the bottor 3-06-00 tall t chord and ar	m chord in all areas by 2-00-00 wide wil by other members.	where I fit betw	a rectangle veen the bott	om					
BOT CHORD	4-6=-3534/321, 6-7=- 7-8=-2605/249, 8-10= 1-16=-181/2136, 14-1 13-14=-190/3532, 11- 10-11=-177/2138	3537/322, =-2508/261 I6=-191/3530, -13=-119/2356,	7) 8) 9)	Bearings are Refer to gird Graphical pu or the orienta bottom chord	e assumed to be: , c er(s) for truss to tru irlin representation ation of the purlin a d.	loint 10 iss conr does no long the	SP 2400F 2. nections. ot depict the s top and/or	.0E . size			and and	ORTH CA	ROUN
WEBS	3-16=-126/261, 4-16= 5-14=0/145, 5-13=-96 7-13=-90/1420, 7-11=	=0/758, 5-16=-1432/9 6/101, 6-13=-648/140 =-25/200, 8-11=-127/	93, LC), 259	OAD CASE(S)	Standard					THE PARTY		SEA	L

1) Unbalanced roof live loads have been considered for this design.

April 30,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	A6T	Нір	1	1	Job Reference (optional)	173095656

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 08:53:10 ID:pg3Bd_1DRmM5aEGUL8YDqRzLwMQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:67

Plate Offsets ((X, Y): [2:Edge,0-3-4], [[3:0-6-8,0-3-3], [5:0-5-0	,0-1-7],	[7:0-3-0,0-3-0], [12:0-4-13,0-0-1], [16:0-	3-0,0-1-12],	[18:0-3-0	,0-3-0],	[20:0-0-8	3,0-1-1	2]	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing2-Plate Grip DOL1.Lumber DOL1.Rep Stress IncrYCodeIF	·0-0 25 25 ES 8C2021	/TPI2014	CSI TC BC WB Matrix-MSH	0.52 0.88 0.98	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.27 -0.48 0.25	(loc) 16 16-17 12	l/defl >999 >924 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 218 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP 2400F 2.0E 2x4 SP 2400F 2.0E *1 No.2, 21-20,6-17:2x4 2x4 SP No.3 *Except' Right 2x6 SP 2400F 2 Structural wood shea 3-7-10 oc purlins, ex 2-0-0 oc purlins (3-10 Rigid ceiling directly a bracing. 1 Row at midpt & 8 (size) 12= Mecha Max Horiz 22=57 (LC Max Grav 12=1490 (I	Except* 22-21:2x4 SP SP No.3 * 16-18:2x4 SP No.2 2.0E 2-0-0 thing directly applied or cept end verticals, and b-11 max.): 5-9. applied or 10-0-0 oc 3-13 anical, 22=0-3-8 12) LC 2), 22=1548 (LC 2)	1) 2) 3) 4)	Unbalanced this design. Wind: ASCE Vasd=103mp II; Exp B; Enn Exterior(2E) . 8-4-0, Exterio 29-1-0, Exteri to 37-5-0 zon vertical left ai forces & MW DOL=1.60 pl. TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced	roof live loads have 7-16; Vult=130mp h; TCDL=6.0psf; E closed; MWFRS (e -0-10-1 to 2-10-13, or(2R) 8-4-0 to 13- ior(2R) 29-1-0 to 3 ie; cantilever left an nd right exposed;C FRS for reactions ate grip DOL=1.33 7-16; Pr=20.0 psf; ate DOL=1.15; Is ; Cs=1.00; Ct=1.10; snow loads have b	e been of h (3-sec 3CDL=6 nvelope l Interior 7-8, Interior 7-8, Interior 6-C for n shown; (roof LL Pf=18.5 =1.0; Rc 0, Lu=50 een cor	considered for ond gust) .0psf; h=25ft) and C-C (1) 2-10-13 rior (1) 13-7- nterior (1) 34 exposed ; er hembers and Lumber : Lum DOL= psf (Lum ugh Cat B; F I-O-0 sidered for t	or ;; Cat. to -8 to -4-8 nd 1 -1.25 Fully his					
FORCES	(lb) - Maximum Comp Tension 1-2=0/37, 2-3=-339/5 4-5=-3332/280, 5-6=- 6-8=-4021/347, 8-9=- 9-10=-2583/249, 10-1 2-22=-473/108	oression/Maximum 6, 3-4=-4684/411, 4054/349, 2308/244, 12=-2496/263,	5) 6) 7)	design. This truss ha load of 12.0 p overhangs no Provide adeo * This truss h on the bottom	s been designed for osf or 2.00 times fla on-concurrent with juate drainage to p as been designed o chord in all areas	or greate at roof lo other liv revent v for a liv	er of min roo bad of 13.9 p re loads. vater pondin e load of 20.	f live isf on g. 0psf				WITH CA	Rock
BOT CHORD	21-22=-108/1218, 20 3-20=-359/3917, 19-2 18-19=-157/2965, 17 6-18=-478/106, 16-17 15-16=-189/3334, 13 12-13=-176/2129 4-19=-1497/240, 5-19 7-16=-741/115, 8-13= 10-13=-132/240, 3-22 3-21=-1429/119, 4-22 8-16=-20/348, 16-18=	-21=-85/1158, 20=-394/4071, -18=0/65, 7=-9/275, -15=-189/3334, 0=0/394, 5-18=-96/1396 1332/94, 9-13=-11/81 2=-1510/119, 0=0/683, 8-15=0/118, =-184/3382,	8) 9) 10) 5, ^{4,} LO	3-06-00 tall b chord and an Bearings are Refer to girde Graphical pu or the orienta bottom chord AD CASE(S)	y 2-00-00 wide wil y other members. assumed to be: Jo er(s) for truss to tru- rlin representation tion of the purlin a Standard	l fit betw bint 22 \$ iss conr does no long the	P No.2 . ections. t depict the stop and/or	om size			in the second second	SEAI 2867	T B
NOTES	7-18=-44/502										11	N L.GI	LINGUIN

April 30,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	A7	Flat Girder	1	1	Job Reference (optional)	173095657

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 08:53:11 ID:M4by9K7YmddWG7?1DaLd?EzLwXw-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

L	5-5-6	10-9-1	16-0-11	21-4-5	26-7-15	31-11-10	37-5-0
	5-5-6	5-3-10	5-3-10	5-3-10	5-3-10	5-3-10	5-5-6

NAILED NA 5x8= 8x10= 2x4 II 4x8= 6x8= 2x4 II 5x10= 2x4 II 23 3 24 21 529 67 8 1 2Q 2 22 25 264 28 30 31 33 34 _35 9 ШĬ Ш ш 3-6-3 3-8-0 пп пп пп пп пп Ind пп пп nn пп пп пп пп пп 10 19 ²п п nn ₿ 36 37 18 38 39 17 40 16 4**1**5 42 43 1444 45 12 46 47 11 48 49 13 2x4 II 4x6 =6x10= 2x4 u 6x8= 4x8= 2x4 MT20HS 8x12 = 5x10 = 2x4 u NAILED NA <u>16-0-11</u> <u>31-11-1</u>0 5-5-6 10-9-1 21-4-5 26-7-15 37-5-0 5-5-6 5-3-10 5-3-10 5-3-10 5-3-10 5-3-10 5-5-6

Scale = 1:63.4

Plate Offsets (X, Y): [3:0-4-8,0-4-8], [7:0-4-0,0-4-4]

Loading FCLL (roof) Snow (Pf/Pg) FCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 NO IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.52 0.38 0.81	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.29 -0.59 0.11	(loc) 14-15 14-15 10	l/defl >999 >749 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 265 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER FOP CHORD 30T CHORD WEBS BRACING FOP CHORD 30T CHORD WEBS	2x6 SP 2400F 2.0E 2x6 SP 2400F 2.0E 2x4 SP No.3 *Except 18-1,18-3,15-3,15-5, No.2 2-0-0 oc purlins (4-0- end verticals. Rigid ceiling directly bracing. 1 Row at midpt	t* 12-5,12-8,10-8:2x4 \$ -10 max.): 1-9, exce applied or 10-0-0 oc 3-18, 8-10	1) SP 2) opt 3) 4) 5)	Wind: ASCE Vasd=103mp II; Exp B; End and right exp Lumber DOL TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced design. Provide adec All plates are	7-16; Vult=130mpl h; TCDL=6.0ps; E closed; MWFRS (e osed ; end vertical =1.60 plate grip D0 7-16; Pr=20.0 psf; ate DOL=1.15); Iss; ; Cs=1.00; Ct=1.10; snow loads have b uate drainage to p MT20 plates unles	h (3-sec BCDL=6 envelope I left and OL=1.33 (roof LL Pf=18.9 =1.0; Rc 0, Lu=50 been cor brevent v ss other	cond gust) .0psf; h=25ft .0; cantilever d right exposed .: Lum DOL= 0 psf (Lum .0ugh Cat B; F 0-0-0 nsidered for the water ponding wise indicate	; Cat. left ad; 1.25 fully nis g. d.	Co	Vert: 1-{ oncentra Vert: 9= 11=-22 (F), 22= 26=-23 30=-23 34=-23 38=-22 42=-22 46=-22	9=-58, ted Lo -12 (F) (F), 8= -23 (F) (F), 27 (F), 31 (F), 35 (F), 39 (F), 43 (F), 47	10-19=-20 ads (lb)), 16=-22 (F), 18= -23 (F), 13=-22 (l)), 23=-23 (F), 24= =-23 (F), 28=-23 =-23 (F), 36=-22 =-22 (F), 40=-22 =-22 (F), 44=-22 =-22 (F), 48=-22	-22 (F), 2=-23 F), 20=-23 (F), -23 (F), 25=-23 (F), 29=-23 (F) (F), 33=-23 (F) (F), 37=-22 (F) (F), 41=-22 (F) (F), 49=-22 (F)	(F), 21=-23 3 (F), ', ', ', ', ', ', ', ',
FORCES	(size) 10=0-3-8, Max Horiz 19=-83 (L(Max Uplift 10=-240 (I) Max Grav 10=2083 ((lb) - Maximum Com Tension 1-19=-1974/260, 1-2 2-4=-6205/703, 4-5= 5-7=-5180/591, 7-8= 9-10=-204/68 18-19=-63/86, 17-18	19= Mechanical C 9) LC 8), 19=-231 (LC 7 LC 2), 19=2062 (LC pression/Maximum =-3140/370, -6205/703, -5180/591, 8-9=-60/2 =-629/5185,	2) 7) 2) 7) 8) 9) 28, 10	 This truss h on the botton 3-06-00 tall b chord and an Bearings are Refer to girde Provide meci bearing plate 19 and 240 lt Graphical pu or the orienta 	as been designed a chord in all areas y 2-00-00 wide wil y other members. assumed to be: , , er(s) for truss to tru- nanical connection capable of withsta o uplift at joint 10. rlin representation tion of the purlin a	for a liv s where I fit betw Joint 10 uss conr (by oth anding 2 does no long the	sP 2400F 2. ections. ers) of truss t 31 lb uplift at ot depict the s e top and/or	opsf om 0E . joint size				TH CA	ROLI	
WEBS	15-17=-629/5185, 14 12-14=-734/6209, 11 10-11=-377/3148 1-18=-406/3580, 2-1 3-18=-2360/275, 3-1 3-15=-136/1178, 4-1 5-15=-10/12, 5-14=0 7-12=-408/150, 8-12 8-10=-3592/411	I-15=-734/6209, I-12=-377/3148, 8=-450/174, 7=0/179, 5=-418/157, /173, 5-12=-1188/14 =-267/2345, 8-11=0/	11 12 5, (180, 13	bottom chord) "NAILED" inc (0.148"x3.25) Hanger(s) or provided suff down and 19 selection of s responsibility) In the LOAD	licates 3-10d (0.14 ') toe-nails per ND other connection of icient to support of Ib up at 37-3-4 or uch connection de of others. CASE(S) section,	8"x3") c S guidlin device(s oncentra n top chr evice(s) loads ap	or 3-12d nes.) shall be ated load(s) 3 ord. The des is the oplied to the f	7 lb ign/		Contraction of the second	N. N. N.	0 SEA 2867	L 7	and and a start of the start of

NOTES

 In the LOAD CASE(S) section, loads applied to th of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (lb/ft)

818 Soundside Road Edenton, NC 27932

April 30,2025

L. GAL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	A8	Half Hip Girder	1	2	Job Reference (optional)	173095658

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 29 08:53:13 ID:v2F_VUmEz6eNztp_eQGI_izLwVp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:68.7

Plate Offsets (X, Y): [2:Edge,0-3-4],	[3:0-5-8,0-2-11], [3:0)-7-7,0-3-8	8], [5:0-5-0,0-1	-7], [19:0-3-8,0-2-0], [21:0-	6-4,0-6-12]							
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 NO IRC2021	I/TPI2014	CSI TC BC WB Matrix-MSH	0.33 0.94 0.72	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.29 -0.58 0.19	(loc) 20 20 14	l/defl >999 >770 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 487	GRIP 244/19 lb FT = 2 ⁱ	0
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP 2400F 2.0E 2x6 SP 2400F 2.0E * SP No.2, 25-24:2x4 S 2x4 SP No.3 *Except Structural wood shea 6-0-0 oc purlins, exc 2-0-0 oc purlins, (5-6-	Except* 26-25,7-20: SP No.3 * 19-21:2x4 SP No.2 athing directly applieuept end verticals, an 6 max.): 5-13.	WE 2x4 2 d or id	EBS	4-23=-534/83, 5-23 5-22=-332/2470, 6- 7-22=-2745/339, 19 8-21=-495/3227, 8- 8-18=-434/76, 10-1 11-18=-176/1281, 7 11-15=-2388/304, 7 13-15=-410/3468, 3 3-25=-2889/486	=-135/9 22=-46 9-21=-7 19=-14 8=-374 11-16=0 12-15=- 3-26=-2	951, 4/95, 71/5750, 10/301, /143, 0/200, 488/161, 062/236,		8) Pro 9) * Th 3-0 cho 10) Bea 11) Ref 12) Pro bea	wide ade nis truss the botto 6-00 tall ord and a arings ar fer to gird wide me aring plat	equate has be m cho by 2-0 iny oth e assu der(s) f chanic chanic re capa	drainage to pr een designed f rd in all areas 00-00 wide will er members. imed to be: Joi for truss to trus al connection (able of withstar	event water or a live loa where a rec lit between nt 26 SP No s connectic by others) o nding 248 lt	ponding. d of 20.0psf tangle the bottom c.2. ons. of truss to puplift at joint
BOT CHORD	Rigid ceiling directly a bracing. (size) 14= Mecha Max Horiz 26=99 (LC Max Uplift 14=-248 (L Max Grav 14=2150 (I	applied or 10-0-0 oc anical, 26=0-3-8 · 8) ·C 8), 26=-248 (LC 8 LC 32), 26=2195 (LC	NC 1) 3) C 2)	2-ply truss to (0.131"x3") Top chords oc. Bottom chor	o be connected togo nails as follows: connected as follow rds connected as fo	ether wi vs: 2x4 llows: 2	th 10d - 1 row at 0-9- x4 - 1 row at	0	14 ; 13) Gra or t bott 14) "NA (0.1	and 248 aphical p he orient tom chor AILED" ir 148"x3.2	Ib uplit urlin re tation o d. dicate 5") toe	ft at joint 26. epresentation of of the purlin alo as 3-10d (0.148 -nails per NDS	oes not dep ing the top "x3") or 3-1 guidlines.	bict the size and/or 2d
FORCES	(lb) - Maximum Comp Tension 1-2=0/37, 2-3=-571/8 4-5=-5569/809, 5-6=- 6-7=-7056/986, 7-8=- 8-10=-6014/743, 10- 11-12=-2972/365, 12 13-14=-2058/273, 2-5	bression/Maximum 18, 3-4=-5906/843, -7059/987, -9304/1266, 11=-6014/743, -13=-2972/365, 0=-732/97	2)	0-9-0 oc, 2x Web connect All loads are except if not CASE(S) se provided to unless other Unbalanced	6 - 2 rows staggere cted as follows: 2x4 e considered equally ted as front (F) or bi- ction. Ply to ply cor distribute only loads rwise indicated.	d at 0-9 - 1 row / applie ack (B) inection s noted e been	I-0 oc. at 0-9-0 oc. d to all plies, face in the LO s have been as (F) or (B), considered for	AD	IS) Har pro Ib d des res LOAD (vided su lown anc sign/sele ponsibilit	fficient fficient 83 lb ction o ty of ot Sta	t to support coi up at 5-8-0 or f such connect hers. ndard	icentrated li bottom cho ion device(oad(s) 292 ord. The s) is the
BOT CHORD	25-26=-295/1771, 24 3-24=-844/5448, 23-2 22-23=-764/4964, 21 20-21=0/143, 7-21=-6 18-19=-842/6313, 16 15-16=-629/4943, 14	-25401/2466, 24837/5400, -221315/9443, 69/1124, 19-2097/ -18629/4943, -1526/47	4) 7771, 5) 6) 7)	this design. Wind: ASCE Vasd=103m II; Exp B; Er and right ex Lumber DO TCLL: ASCI Plate DOL= DOL=1.15 F Exp.; Ce=0. Unbalanced design. This truss h load of 12.0	E 7-16; Vult=130mp ph; TCDL=6.0psf; E hclosed; MWFRS (e posed; end vertical L=1.60 plate grip DC E 7-16; Pr=20.0 psf; Plate DOL=1.15); Is: 9; Cs=1.00; Ct=1.10; I snow loads have b as been designed fo psf or 2.00 times fit	h (3-see 3CDL=6 nvelopp left and DL=1.3: (roof Ll Pf=18.9 =1.0; Re 0, Lu=5 een col or great at roof l other li	cond gust) 0.0psf; h=25ft; c); cantilever lo d right exposed : Lum DOL=1 D psf (Lum Dugh Cat B; Fi 0-0-0 nsidered for th er of min roof pad of 13.9 ps ve loads	Cat. eft .25 ully is live f on			in V State	SE 286 SKAGI	AL 577	A Providence of the second sec

load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

April 30,2025

Page: 1

818 Soundside Road Edenton, NC 27932

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 1/2/2023 BEFORE USE. WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	A8	Half Hip Girder	1	2	Job Reference (optional)	173095658

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 29 08:53:13 ID:v2F_VUmEz6eNztp_eQGI_izLwVp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (lb/ft)

Vert: 1-2=-48, 2-5=-48, 5-13=-58, 25-26=-20, 21-24=-20, 14-20=-20

Concentrated Loads (lb)

- Vert: 5=-19 (B), 9=-23 (B), 17=-22 (B), 23=-292 (B),
- 19=-22 (B), 8=-23 (B), 27=-17 (B), 28=-17 (B), 29=-17 (B), 31=-23 (B), 32=-23 (B), 33=-23 (B),

- 23-71 (B), 31-22 (B), 32-22 (B), 30-22 (B), 34-23 (B), 35-23 (B), 36-23 (B), 37-23 (B), 38-23 (B), 39-23 (B), 40-23 (B), 41-30 (B), 42-30 (B), 43-30 (B), 44-22 (B), 45-22 (B), 46-22 (B), 47-22 (B), 48-22 (B), 49-22 (B), 50-22 (B), 51-22 (B), 52-22 (B), 53-22 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	B1	Common Supported Gable	1	1	Job Reference (optional)	173095659

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 08:53:13 ID:2EmluiutBNNph4LtO18ahbzLw8P-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:40.4 Plate Offsets (X, Y): [6:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MR	0.18 0.14 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 80 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 12=15-1-0 15=15-1-0 18=15-1-0 Max Horiz 19=126 (L Max Uplift 12=-9 (LC 18=-79 (L Max Grav 12=196 (L 14=156 (L 18=-172 (L)	athing directly applied cept end verticals. applied or 10-0-0 oc), 13=15-1-0, 14=15-1), 16=15-1-0, 17=15-1), 19=15-1-0 .C 12) :10), 13=-78 (LC 14), C 14), 17=-35 (LC 13 C 13), 19=-15 (LC 3) .C 29), 13=169 (LC 3) .C 29), 17=154 (LC 2) .C 29), 17=154 (LC 3) .C 29), 19=201 (LC 3)	2) d or 3) 1-0, 4) , , , , , , , , , , , , , , , , , ,	Wind: ASCE Vasd=103mp II; Exp B; End (3E) -0-10-0 t (3R) 7-6-8 to zone; cantilev and right exp MWFRS for r grip DOL=1.3 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 This truss ha load of 12.0 p overhangs no All plates are	7-16; Vult=130mpl h; TCDL=6.0psf; E closed; MWFRS (e to 2-2-0, Exterior(21 10-6-8, Exterior(21 ver left and right e osed;C-C for mem eactions shown; L 33 ed for wind loads in ds exposed to wind I Industry Gable Er alified building des 7-16; Pr=20.0 psf; .25); Pg=20.0 psf; .25); Pg=20.0 psf; .25); Pg=20.0 psf; .25); rg=2.00; ct=1.10; s ben designed for sof or 2.00 times fit on-concurrent with 2x4 MT20 unless	h (3-sec BCDL=6 envelope N) 10-6- kposed bers an umber [n the pla d (norm nd Deta signer as (roof LL PF=13.2 =1.0; Rc 0 or greate at roof k other lin otherwi	ond gust) .0psf; h=25ft .0 and C-C C .0 to 7-6-8, Cr 8 to 15-11-0 end vertical d forces & DOL=1.60 pla ane of the true al to the face Is as applica .5 per ANSI/TI .: Lum DOL= psf (Lum bugh Cat B; F er of min roof pad of 13.9 p ve loads. se indicated.	; Cat. orner orner left ate ss ble, PI 1. 1.25 Fully f live sf on					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	8)	Truss to be fu	ally sheathed from	one fac	e or securely					"TH CA	RO
TOP CHORD	2-19=-164/14, 1-2=0 3-4=-104/29, 4-5=-10 6-7=-132/100, 7-8=-9 9-10=-126/43, 10-11	//41, 2-3=-131/50, 00/53, 5-6=-132/100, 97/53, 8-9=-106/24, =0/41_10-12=-164/10	9) 10) D	Gable studs s * This truss h on the bottom	spaced at 2-0-0 oc as been designed n chord in all areas	for a liv s where	e load of 20.0 a rectangle	Opsf			A.C.	of the se	A STATE
BOT CHORD	18-19=-50/159, 17-1 16-17=-50/159, 15-1 14-15=-50/159, 13-1 12-13=-50/159	8=-50/159, 6=-50/159, 4=-50/159,	11) 12)	3-06-00 tall b chord and an All bearings a Provide mech	y 2-00-00 wide will y other members, are assumed to be nanical connection	with BC SP No. (by oth	veen the both DL = 10.0ps 2 . ers) of truss t 5 lb unlift at i	om f. to				SEA 2867	L 7
WEBS	5-16=-163/59, 4-17= 3-18=-121/134, 7-15 8-14=-147/124, 9-13	148/125, 5=-163/58, 5=-121/134		19, 9 lb uplift at joint 18, 36 13.	at joint 12, 35 lb u b uplift at joint 14	plift at jo 1 and 78	bint 17, 79 lb bint uplift at jo	uplift pint				OL SNGIN	ERIST
NOTES			LO	AD CASE(S)	Standard						1	NI C	ALIMIN
 Unbalance this design 	ed roof live loads have n.	been considered for		.,								111. L. G.	111111

this design.

April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	B2	Common	1	1	Job Reference (optional)	173095660

Scale = 1:44.5

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 08:53:13 ID:Ti8QVQNPSskWKqfKXfKBeKzLw6V-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2021/	/TPI2014	CSI TC BC WB Matrix-MSH	0.64 0.62 0.16	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.15 0.05	(loc) 8-15 8-15 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 68 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x6 SP 2400F 2 SP 2400F 2.0E 1-1 Structural wood she 5-0-9 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 6 Max Horiz 2=105 (LC	.0E 1-6-0, Right 2 6-0 athing directly appli applied or 10-0-0 o 5=0-3-8 5 12)	4) 5) 2x6 ed or 6) LO, c	This truss h load of 12.0 overhangs r * This truss on the botto 3-06-00 tall chord and a All bearings AD CASE(S)	as been designed f psf or 2.00 times f ion-concurrent with has been designed m chord in all area by 2-00-00 wide wi ny other members, are assumed to be Standard	for great lat roof lin o ther lin of ther lin of the lin s where ill fit betw with BC e SP No.	er of min roo bad of 13.9 p //e loads. e load of 20. a rectangle //een the bott iDL = 10.0ps 2.	f live Opsf on Opsf tom					
FORCES	Max Grav 2=752 (LC (lb) - Maximum Com Tension 1-2=0/35, 2-4=-858/3	C 29), 6=752 (LC 30 pression/Maximum 307, 4-6=-858/307,))										
BOT CHORD WEBS	6-7=0/35 2-8=-128/601, 6-8=- 4-8=0/413	132/601											
NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=100 II; Exp B; Exterior(2 Exterior(2 Exterior(2 I5-11-0 z vertical le forces & N DOL=1.6(3) TCLL: AS Plate DOI DOL=1.15 Exp.; Ce=	ed roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Bf Enclosed; MWFRS (er E) -0-10-0 to 2-2-0, Int (R) 7-6-8 to 10-6-8, Inte one; cantilever left and ft and right exposed;C- WWFRS for reactions si D plate grip DOL=1.33 CE 7-16; Pr=20.0 psf; E 1-25); Pg=20.0 psf; IF 5 Plate DOL=1.15); Is= =0.9; Cs=1.00; Ct=1.10	been considered fo (3-second gust) CDL=6.0psf; h=25ft; velope) and C-C erior (1) 2-2-0 to 7-6 rior (1) 10-6-8 to right exposed; end C for members and hown; Lumber roof LL: Lum DOL= Y=13.9 psf (Lum 1.0; Rough Cat B; F	r Cat. 5-8, 1.25 ully								ANN STREET	SEA 2867	EER. St.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

April 30,2025

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	B3	Common Girder	1	2	Job Reference (optional)	173095661

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 08:53:14 ID:Y8bxnAy8wvvZiMvIvRig7fzLw5k-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:46.9

Plate Offsets (X, Y): [1:0-5-8,Edge], [7:0-7-13,Edge], [9:0-5-0,0-4-8]

 LUMBER TOP CHORD 2x4 SP No.2 "Except" 4-8:2x4 SP No.1 307 CHORD 2x4 SP 2400F 2.0E 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BcDL=6.0psf; B=261; Cat. II; Exp B; Enclosed; MWRS (envelope); catiliser left and right exposed; 1:ed vertical left and right exposed; Lumber DOL=1.05 plate DOL=1.05 reactions. ST CHORD Structural wood sheathing directly applied or 3-65 oc putitins. ST CHUR M; Ia-3-83, Te0-3-8 Max Horiz 1=-101 (LC 7) Max Grav 1=6171 (LC 3), 7=4632 (LC 2) Max Grav 1=6171 (LC 3), 7=4632 (LC 2) Mice Simpos Stron, 7=HT U226 (2) -00 did Grider, 14-104 x1 1/2 Truss) or equivalent at 10-11-8 from the left end to 2-0-04 co max. starting at 1-2-214 from the left end to 2-0-04 co max. starting at 1-2-214 from the left end to 2-0-04 co max. starting at 1-2-214 from the left end to 2-0-04 co max. starting at 1-2-14 from the left end to 2-0-04 co max. starting at 1-2-14 from the left end to 2-0-04 co max. starting at 1-2-14 from the left end to connect truss(es) to back face of botom chord. Hi ad all holes where hanger is in contact with lumber. LODA CASE(S) Standard Dead to 5-0 oc. Web connected as follows: 2x4 - 1 row at 0-	L oading TCLL (roof) Snow (Pf/Pg) TCDL 3CLL 3CDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 NO IRC2021	1/TPI2014	CSI TC BC WB Matrix-MSH	0.85 0.52 0.90	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.19 0.04	(loc) 9-10 9-10 7	l/defl >999 >959 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 195 lb	GRIP 244/190 FT = 20%	
 Unbalanced roof live loads have been considered for this design. 	LUMBER TOP CHORE BOT CHORE WEBS SLIDER BRACING TOP CHORE BOT CHORE REACTIONS FORCES TOP CHORE BOT CHORE BOT CHORE WEBS NOTES 1) 2-ply trus (0.131*x: Top chor oc. BOTT CHORE (0.131*x: Top chor oc. BOTT CHORE (0.131*x: Top chor oc. BOTT CHORE (0.131*x: Top chor oc. BOTT CHORE (0.131*x: Top chor oc. BOTT CHORE (0.131*x: Top chor oc. BOTT CHORE (0.131*x: Top chor (0.131*x: Top chor (0.131*x: (0.131*x: Top chor (0.131*x: (0.131*x	 2x4 SP No.2 *Excep 2x6 SP 2400F 2.0E 2x4 SP No.3 Left 2x6 SP 2400F 2.0E Structural wood sheat 3-6-5 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-8, 7 Max Horiz 1=-101 (L Max Grav 1=6171 (L (lb) - Maximum Com Tension 1-3=-6777/0, 3-4=-61 5-7=-6419/0, 7-8=0/3 3-10=-15/178 sto be connected toget 3'10=-15/178 sto be connected as follows: dat 0-5-0 oc. nected as follows: 2x4 - are considered equally noted as front (F) or bar section. Ply to ply comr section. Ply to ply comr section. Ply to ply control distribute only loads herwise indicated. and roof live loads have gn. 	t* 4-8:2x4 SP No.1 .0E 1-6-0, Right 2x 6-0 athing directly applied applied or 10-0-0 oc '=0-3-8 C 7) .C 3), 7=4632 (LC 2) pression/Maximum 691/0, 4-5=-6295/0, 35 0/3930, 7-9=0/5164 11, 4-10=0/4367, ther with 10d :: 2x4 - 1 row at 0-9-0 cows: 2x6 - 2 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO/ lections have been noted as (F) or (B), been considered for	4) 4) 4) 4) 4) 5) 4) 7) 7) 8) 9) 10) 10) 11) AD	Wind: ASCE Vasd=103mp II; Exp B; End and right exp Lumber DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 This truss ha load of 12.0 p overhangs nd * This truss h on the botton 3-06-00 tall b chord and ar All bearings a Use Simpsor 14-10dx1 1/2 max. starting connect truss) Use Simpsor 14-10d Truss to connect trus) Eve Simpsor 14-10d Truss to connect trus) Dead + Snc Increase=11. Uniform Loa Vert: 1-4: Concentrate Vert: 10= 21=-1493	7-16; Vult=130mpl bh; TCDL=6.0psf; E closed; HWFRS (e osed; end vertical =1.60 plate grip DC 7-16; Pr=20.0 psf; ate DOL=1.15); Is= ; Cs=1.00; Ct=1.10 s been designed fc osef or 2.00 times fit con-concurrent with has been designed in chord in all areas by 2-00-00 wide will y other members. Are assumed to be n Strong-Tie HTU20 P. Truss) or equivale at 1-2-14 from the s(es) to back face of n Strong-Tie HTU20 s) or equivalent at 1 uss(es) to back face les where hanger i Standard ww (balanced): Lum 15 adds (lb/ft) =-48, 4-8=-48, 11-1 ed Loads (lb) -1573 (B), 19=-122 8 (B), 22=-1459 (B)	A construction of the second second construction of the second se	ond gust) .0psf; h=25ft .0psf; h=25ft .0psf; h=25ft .0psf; h=25ft .0psf (Lum bugh Cat B; F er of min roo' and of 13.9 p re loads. e load of 20. a rectangle reen the bott 0F 2.0E . d Girder, from the left to 9-0-4 to n chord. 10d Girder, from the left tact with lurr rease=1.15, .0=-1625 (B) 130 (B)	; Cat. left ed; -1.25 Fully f live sf on 0psf om oc end ober. Plate				SEA 2867	RO RO 7 E.P. Stuning	

April 30,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	C1	Hip Girder	1	2	Job Reference (optional)	173095662

Scale = 1:42.7

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 08:53:14 ID:vS1zgy2bjZFnVBn2ALJnmezLw4K-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	(,,, ,). [0:0 0 0,0 2 0],		o,=ago	.], [· · · · · · · · · · · ·	. 0],[:2:0 0 0,0 :	.1								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 NO IRC2021	I/TPI2014	CSI TC BC WB Matrix-MSH	0.84 0.50 0.62	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.13 0.03	(loc) 12-13 12-13 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 217 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x6 SP 2400F 2.0E 2x4 SP No.3 Left 2x6 SP 2400F 2 SP 2400F 2.0E 1-6 Structural wood shea 3-4-7 oc purlins, exo 2-0-0 oc purlins (5-7 Rigid ceiling directly bracing. (size) 2=0-3-8, 9 Max Horiz 2=85 (LC Max Carva 2-4500 (.0E 1-6-0, Right 2x -0 athing directly appliec ept -11 max.): 5-6. applied or 10-0-0 oc =0-3-8 32) 0 - 92 0 - 9226 (1 C 2)	3) 4) 6 d or 5) 6) 6) 7)	Unbalanced this design. Wind: ASCE Vasd=103mp II; Exp B; End and right exp Lumber DOL TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 This truss ha load of 12.0 g overhangs no Provide adeo	7-16; Vult=130mp ph; TCDL=6.0psf; E closed; MWFRS (e osed ; end vertical =1.60 plate grip Dr 7-16; Pr=20.0 psf; 25); Pg=20.0 psf; (ate DOL=1.15); Is: b; Cs=1.00; Ct=1.11 s been designed for psf or 2.00 times fil- on-concurrent with quate drainage to p	e been h (3-sec BCDL=6 envelope l left and OL=1.3: (roof LL Pf=18.5 =1.0; Rc 0, Lu=5 or great at roof le other lip	considered fo considered fo cond gust) .0psf; h=25ft; opsf; h=25ft; ight expose tright	r Cat. left d; 1.25 fully live sf on g.	С	oncentra Vert: 12 24=-158	ted Lo =-1465 30 (F),	ads (lb) 5 (F), 22=-1846 (F 25=-1828 (F), 26), 23=-1500 (F), 1440 (F)	
	(lb) - Maximum Com Tension 1-2=0/35 2-4=-6104	(LC 3) 9=6836 (LC 3) pression/Maximum	8)	* This truss h on the botton 3-06-00 tall b	has been designed in chord in all areas by 2-00-00 wide wil	for a liv where I fit betv	e load of 20.0 a rectangle veen the botto)psf om						
BOT CHORD WEBS	5-6=-4937/0, 6-7=-55 2-13=0/4904, 12-13= 10-11=0/5948, 9-10= 4-13=-345/525, 4-12 5-11=-96/654, 6-11= 7-10-0/1980	074/0, 7-9=-7317/0 =0/4904, 11-12=0/478 =0/5948 =-294/417, 5-12=0/27 0/3009, 7-11=-1320/0	9) 35, 10 713, 0, 11	 cnora and any other members. 9) All bearings are assumed to be SP 2400F 2.0E. 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 11) Use Simpson Strong-Tie HTU26 (20-10d Girder, 									ROLU	
	7-10=0/1889			14-10dx1 1/2	2 Truss, Single Ply	Girder)	or equivalent				5.	0`.:. F8S	Bill 1	
 2-ply truss (0.131*x3 Top chorc oc. Bottom ch staggered Web conr All loads a except if r CASE(S) provided t unless oth 	s to be connected toget ") nails as follows: ds connected as follows nords connected as follows at 0-5-0 oc. hected as follows: 2x4 - are considered equally a noted as front (F) or bac section. Ply to ply conno to distribute only loads in herwise indicated.	her with 10d : 2x4 - 1 row at 0-9-0 ows: 2x6 - 2 rows 1 row at 0-9-0 oc. applied to all plies, k (B) face in the LOA ections have been hoted as (F) or (B),	12 13 LC AD 1)	spaced at 8-1 end to 13-10 bottom chorc) Use Simpsor 14-10dx1 1/2 max. starting connect truss) Fill all nail ho DAD CASE(S) Dead + Snc Increase=1. Uniform Loa Vert: 1-5:	2-0 cc max. startin -2 to connect truss i. h Strong-Tie HTU2 2 Truss) or equivale (at 6-0-12 from the s(es) to front face o les where hanger Standard w (balanced): Lun .15 ads (lb/ft) =-48, 5-6=-58, 6-9=	g at 4-0 (es) to 1 ent space e left end of bottor is in cor nber Inc =-48, 14	A contract of the form the for	c o ber. Plate			Survey State	SEA 2867 WGINI L. G	7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	C2	Нір	1	1	Job Reference (optional)	173095663

Scale = 1:39.2

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 08:53:14 ID:_h4mf8GJAHrbVZRG1L6EqkzLw2m-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [2:0-7-13,Edge], [4:0-3-0,0-2-3], [5:0-4-0,0-1-9], [7:0-6-1,0-0-4]

	(, .). [=	[,	-], [
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.35 0.28 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.04 0.02	(loc) 8-12 8-12 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 78 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x6 SP 2400F 2.0 SP 2400F 2.0E 1-6 Structural wood shea 6-0-0 oc purlins, exce	0E 1-6-0, Right 2) -0 thing directly applie opt 0 max): 4-5	3) (6 4) (1 or 5) (6 6)	TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 This truss ha load of 12.0 overhangs n Provide adeo * This truss h on the bottor	7-16; Pr=20.0 psf (.25); Pg=20.0 psf; I late DQL=1.15); Is= 0; Cs=1.00; Ct=1.10 s been designed for psf or 2.00 times fla on-concurrent with quate drainage to pr las been designed in a chord in all areas	(roof LL Pf=18. 1.0; Ro), Lu=50 or great at roof lo other lin revent for a liv where	L: Lum DOL= b) psf (Lum b) psf (Cat B; F D-0-0 er of min rool poad of 13.9 p ve loads. water pondin. e load of 20.1 a rectangle	1.25 Fully f live sf on g. 0psf					
BOT CHORD	Rigid ceiling directly a bracing. (size) 2=0-3-8, 7= Max Horiz 2=80 (LC 1	=0-3-8 2)	7) 8)	3-06-00 tall t chord and ar All bearings Graphical pu	by 2-00-00 wide will by other members. are assumed to be rlin representation of the pure of the pure of	fit betw SP No. does no	veen the bott 2. ot depict the s	om size					
FORCES	Max Grav 2=648 (LC (lb) - Maximum Comp	2), 7=595 (LC 2) pression/Maximum	L	bottom choro DAD CASE(S)	I. Standard	ong the	top and/or						
TOP CHORD	1-2=0/35, 2-4=-679/1 5-7=-680/132	59, 4-5=-523/140,											
BOT CHORD WEBS	2-9=-120/485, 8-9=-3 4-9=0/109, 4-8=-90/9	0/482, 7-8=-99/487 6, 5-8=0/136											um.
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp B;	ed roof live loads have b n. CE 7-16; Vult=130mph (3mph; TCDL=6.0psf; BC Enclosed; MWFRS (env	been considered for 3-second gust) DL=6.0psf; h=25ft; relope) and C-C	Cat.								And	ORTH CA	ROUNA

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-10-0 to 2-2-0, Interior (1) 2-2-0 to 5-11-8, Exterior(2E) 5-11-8 to 8-11-8, Exterior(2R) 8-11-8 to 13-2-7, Interior (1) 13-2-7 to 14-11-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 SEAL 28677 April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	C3	Нір	1	1	Job Reference (optional)	173095664

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 08:53:14 ID:htC_KNbFpaFmEi?S7W5ZQQzLw2L-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [2:0-7-13,Edge], [4:0-3-0,0-2-3], [5:0-4-0,0-1-9], [7:0-7-13,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.59 0.38 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.11 0.03	(loc) 9-10 9-10 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 78 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x6 SP 2400F 2 SP 2400F 2.0E 1- Structural wood she 6-0-0 oc purlins, exc 2-0-0 oc purlins (6-C Rigid ceiling directly bracing. (size) 2=0-3-8, Max Horiz 2=65 (LC Max Grav 2=647 (LC	2.0E 1-6-0, Right 2 6-0 athing directly applic cept -0 max.): 4-5. • applied or 10-0-0 o 7=0-3-8 12) C 2), 7=647 (LC 2)	3) 2x6 4) ed or 5) 6) c 7) 8)	TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.5 This truss ha load of 12.0 overhangs n Provide adee * This truss h on the bottor 3-06-00 tall th chord and ar All bearings Graphical pu or the orientt	7-16; Pr=20.0 ps (.25); Pg=20.0 ps (.25); Pg=	sf (roof LI f; Pf=18.5 s=1.0; Rd 10, Lu=50 for great flat roof li h other li prevent d for a liv as where vill fit betv s. e SP No. n does no along the	L: Lum DOL= Ø psf (Lum Ough Cat B; I)-0-0 er of min roo pad of 13.9 p ve loads. water pondin e load of 20. a rectangle veen the bott 2. bt depict the b op and/or	=1.25 Fully of live sof on opsf tom size				Wegna To D	11200
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=0/35, 2-4=-729/ 5-7=-729/110, 7-8=(2-10=-52/548, 9-10=	npression/Maximum 111, 4-5=-574/134,)/35 =-17/545, 7-9=-49/54	L0 48	DAD CASE(S)	Standard								
WEBS NOTES 1) Unbalanc this desig 2) Wind: ASI Vasd=100 II; Exp B; Exterior(2 Exterior(2 Exterior(2 Exterior(2 T5-90 zo vertical le forces & N DOL=1.60	4-10=0/114, 4-9=-6' ed roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed; MWFRS (er E) -0-10-0 to 2-2-0, Int (R) 4-5-8 to 8-8-6, Inter (R) 10-5-8 to 14-11-0, I ne; cantilever left and 1 ft and right exposed;C- WWFRS for reactions s 0 plate grip DOL=1.33	I/62, 5-9=0/120 been considered fo (3-second gust) CDL=6.0psf; h=25ft; vvelope) and C-C erior (1) 2-2-0 to 4-5 ior (1) 8-8-6 to 10-5- nterior (1) 14-11-0 to 'ight exposed ; end C for members and hown; Lumber	or ; Cat. 5-8, -8, o								Sunda S	SEA 286	ROUX & ALING

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

GA mm April 30,2025

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	C4	Hip Girder	1	1	Job Reference (optional)	173095665

Carter Components (Sanford, NC), Sanford, NC - 27332,

-0-10-8

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 29 08:53:14 ID:EfSIM_rw0khNYIDC0aRByezLw?R-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

15-9-8

		-0-10	⁷ 2	-11-8	7-5-8		1	11-11-8	1	1	4-11-0	12-9-8	
		0-10	-8 2	-11-8	4-6-0			4-6-0		2	2-11-8	0-10-8	
							NAILED						
				12 NAII	LED NAILED	NA	ILED	NAILED	NAILED	C			
				81	_								
	<u> </u>		4x5	5≉ ⁴ >	(8=		3x8 =	24	4x8	=			
	ŢŢŢ				n K					> ∖			
			2				T			\bigtriangledown	4x5 🔪		
	11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1											0	
	5 5 b	् ग 1		> [\leq			° 7 9	
		-1-						0.0					
			Ř	12	25	:	26 11 27	28	10)	é	ž	
			5x8 u	3>	(5 =		2x4 II		3x5	=	5	x8 II	
			"	Spe	cial NAILED	NA	ILED	NAILED	Specia	al	-		
							NAILED						
			2-	9-12	7-5-8			12-1-4		1	4-11-0	-	
Scale = 1:40.7			' 2-	9-12	4-7-12			4-7-12	1		2-9-12	1	
Plate Offsets ((X, Y): [4:0-4-0,0-1-9],	, [6:0-4-0,0-1-9]											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in (loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof) Snow (Pf/Pg)	20.0 18.9/20.0	Plate Grip DOL Lumber DOL	1.25 1.25		TC BC	0.51 0.23	Vert(LL) Vert(CT)	-0.04 11 -0.07 10-11	>999 >999	240 180	MT20	244/1	90
TCDL	10.0	Rep Stress Incr	NO		WB	0.46	Horz(CT)	0.02 8	n/a	n/a			
BCLL BCDL	0.0* 10.0	Code	IRC2021	I/TPI2014	Matrix-MSH						Weight: 93	3 lb FT = 2	20%
		•	4)	This truss h	as been designed	for areat	er of min roo	flive			<u>v</u>		
TOP CHORD	2x4 SP No.2		.,	load of 12.0	psf or 2.00 times f	lat roof l	oad of 13.9 p	sf on					
BOT CHORD WEBS	2x6 SP 2400F 2.0E 2x4 SP No.3		5)	Provide ade	non-concurrent with equate drainage to	n other li prevent	ve loads. water pondin	g.					
SLIDER	Left 2x6 SP 2400F 2	2.0E 1-6-0, Right 2:	x6 6)	* This truss	has been designed	d for a liv	e load of 20.	0psf					
BRACING	SP 2400F 2.0E 1-	6-0		3-06-00 tall	by 2-00-00 wide w	ill fit betv	veen the bott	om					
TOP CHORD	Structural wood she	athing directly applie	d or 7)	chord and a All bearings	any other members are assumed to be	e SP 240	0F 2.0E .						
	2-0-0 oc purlins (5-1	I-15 max.): 4-6.	8)	Provide me	chanical connection	n (by oth	ers) of truss	to					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	;	2 and 62 lb	uplift at joint 8.	anung e	oz ib uplilt at	Joint					
REACTIONS	(size) 2=0-3-8, 8	8=0-3-8	9)	Graphical p or the orien	urlin representatior tation of the purlin	n does no along the	ot depict the : e top and/or	size					
	Max Horiz 2=46 (LC Max Uplift 2=-62 (LC	8) C 9), 8=-62 (LC 10)	10	bottom cho	rd.	40"\\2"\	ar 2 10d						
	Max Grav 2=1094 (I	LC 1), 8=1094 (LC 1)	10	(0.148"x3.2	5") toe-nails per NI	48 x3) 0 DS guidli	nes.						
FORCES	(lb) - Maximum Corr Tension	npression/Maximum	11) Hanger(s) c provided su	or other connection	device(s oncentra	s) shall be ated load(s) 1	95					
TOP CHORD	1-2=0/35, 2-4=-1319	9/90, 4-5=-1056/88,		lb down and	19 lb up at 2-11-8	B, and 19	95 lb down ar	nd 19					
BOT CHORD	2-12=-79/1080, 11-1	12=-117/1834,		of such con	nection device(s) is	s the res	ponsibility of	CIION			min	in in	
WEBS	10-11=-117/1834, 8- 4-12=0/446, 5-12=-8	-10=-48/1080 383/78, 5-11=0/247,	12	others.) In the LOAI	D CASE(S) section	loads a	pplied to the	face			"ATH	CARO	in a
NOTES	5-10=-883/77, 6-10=	=0/446		of the truss	are noted as front	(F) or ba	ck (B).			S.	OF	bs///	NE
1) Unbalance	ed roof live loads have	been considered for	· LC	Dead + Sr) Standard now (balanced): Lui	nber Inc	rease=1.15,	Plate	1		Th.	m	1. 2
this design	n. CE 7-16: \/ult=130mph	(3-second qust)		Increase=	1.15 Dade (Ib/ft)				Ξ			FAL	1 E
Vasd=103	Smph; TCDL=6.0psf; B	CDL=6.0psf; h=25ft;	Cat.	Vert: 1-	4=-48, 4-6=-58, 6-9	=-48, 13	8-17=-20		Ξ		2	8677	1 1
II; Exp B; and right e	Enclosed; MWFRS (er exposed ; end vertical	nvelope); cantilever le left and right exposed	eft d;	Concentra Vert: 4=	ted Loads (lb)	12=-195	(B) 10=-19	5 (B)				5077	1 3
Lumber D	OL=1.60 plate grip DC)L=1.33	25	21=-81	(B), 22=-81 (B), 23	=-81 (B)	, 24=-81 (B),	, (D),		2.0	. En	FR.	123
Plate DOL	_=1.25); Pg=20.0 psf; F	Pf=18.9 psf (Lum	.20	25=-31	(B), 26=-31 (B), 27	=-31 (B)	, ∠8=-31 (B)			14	OLYN C	INEE	Still
DOL=1.15 Exp.: Ce=	5 Plate DOL=1.15); ls= 0.9; Cs=1.00; Ct=1.10	:1.0; Rough Cat B; Ft , Lu=50-0-0	ully								Min L	GAL	111
, ,	· · · · · · · · · · · ·										111		
												April 30,2	025
F													

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Marcine. Description, Component dependent description, Uww.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	D1	Common Supported Gable	1	1	Job Reference (optional)	173095666

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 29 08:53:14 ID:zCDetHBAe8oU_Vnja6RSVGzLvzh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:30.3

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 13.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MR	0.13 0.04 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0											Weight: 30 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 5-10-12 oc purlins, Rigid ceiling directly	athing directly applie except end verticals. applied or 10-0-0 oc	3) 4) d or 5)	Truss desigr only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.2 This truss ha load of 12.0	hed for wind loa uds exposed to d Industry Gabl- ualified building 7-16; Pr=20.0 1.25); Pg=20.0 glate DOL=1.15) g; Cs=1.00; Ct= as been design psf or 2.00 time psf or 2.00 time	ds in the pl wind (norm e End Deta designer a: psf (roof Ll psf; Pf=13.9 ; Is=1.0; Ro 1.10 d for great s flat roof li	ane of the tru hal to the face ills as applica s per ANSI/T L: Lum DOL= 9 psf (Lum bugh Cat B; I er of min roo	iss e), ble, PI 1. 1.25 Fully f live sf on					
REACTIONS	(size) 6=5-10-12 9=5-10-12 Max Horiz 9=81 (LC Max Uplift 6=-14 (LC 9=-31 (LC Max Grav 6=88 (LC (LC 29) 5	2, 7=5-10-12, 8=5-10 2 10) 2 14), 8=-49 (LC 10), 30), 7=164 (LC 2), 8 =143 (LC 30)	-12, 6) 7) 8) =163	overhangs n Gable requir Truss to be f braced agair Gable studs * This truss h on the bottor	on-concurrent w es continuous b fully sheathed fr inst lateral move spaced at 2-0-0 nas been desigr m chord in all ar	vith other li pottom chor om one fac ment (i.e. c) oc. ned for a liv eas where	ve loads. rd bearing. ce or securely diagonal web ve load of 20. a rectangle	/). Opsf					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 2-9=-143/149, 1-2=(3-4=-83/140, 4-5=-8 8-9=-35/44, 7-8=-35)/41, 2-3=-76/59, 1/126, 5-6=-103/132 /44, 6-7=-35/44	10 11	3-06-00 tall t chord and ar) All bearings) Provide mec bearing plate	by 2-00-00 wide by other member are assumed to chanical connect capable of with that joint 6 and 6	will fit betw ers. be SP No. tion (by oth nstanding 3	veen the bott 2. lers) of truss 31 lb uplift at	om to joint					
WEBS NOTES 1) Unbalance this design	4-7=-136/44, 3-8=-1 ed roof live loads have n.	68/161 been considered for	LC)AD CASE(S)	Standard	o up upint a	at joint 0.				and a	ORTH CA	ROJIN

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) -0-10-0 to 2-2-0, Exterior(2N) 2-2-0 to 3-7-12, Corner(3E) 3-7-12 to 5-9-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	D2	Common	2	1	Job Reference (optional)	173095667

3-7-12

-0-10-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 29 08:53:15 ID:h8NIP7V?eOiGk0eOSukAdmzMCIJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-10-12

Page: 1

Scale = 1:32

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2021/TPI201	4 CSI TC BC WB Matrix-MP	0.22 0.08 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 6 6-7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 39 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 5-10-12 oc purlins, of Rigid ceiling directly bracing. (size) 5= Mecha Max Horiz 7=81 (LC	athing directly applie except end verticals. applied or 10-0-0 oc nical, 7=0-3-0 10)	5) * This on the 3-06-0 chord : 6) Bearin d or 7) Refer t 8) Provid bearing	russ has been design bottom chord in all are 0 tall by 2-00-00 wide and any other member gs are assumed to be o girder(s) for truss to o e mechanical connect g plate capable of with GE(S) Standard	ed for a liv eas where will fit betw rs. : Joint 7 SI truss conr ion (by oth istanding 2	e load of 20.0 a rectangle veen the botto P No.2 . nections. ers) of truss t P b uplift at joi	Opsf om o int 7.					
FORCES TOP CHORD BOT CHORD WEBS	Max Grav 5=-2 LC Max Grav 5=-219 (LC (lb) - Maximum Com Tension 1-2=0/41, 2-3=-93/14 2-7=-228/221, 4-5=- 6-7=-57/141, 5-6=-5 3-6=0/72, 3-5=-218/6	13) 2 2), 7=288 (LC 2) pression/Maximum 48, 3-4=-69/90, 102/93 7/141 65, 3-7=-154/0										
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103r II; Exp B; E Exterior(2E right expos for membe Lumber DC 3) TCLL: ASC Plate DOL= DOL=1.15 Exp.; Ce=C 4) This truss I load of 12. overhangs	the droof live loads have E 7-16; Vult=130mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (en E) -0-10-0 to 2-2-0, Intk E) 3-7-12 to 5-9-0 zone sed; end vertical left a trs and forces & MWFF DL=1.60 plate grip DO CE 7-16; Pr=20.0 psf; F Plate DOL=1.15); Is=' .9; Cs=1.00; Ct=1.10 has been designed for 0 psf or 2.00 times flat non-concurrent with o	been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) and C-C erior (1) 2-2-0 to 3-7- e; cantilever left and nd right exposed;C-C- RS for reactions show L=1.33 roof LL: Lum DOL=1 rf=13.9 psf (Lum 1.0; Rough Cat B; Fu r greater of min roof I t roof load of 13.9 psi other live loads.	Cat. 12, C wn; .25 Illy ive f on							Super States	SEA 2867	ROLL 7

818 Soundside Road Edenton, NC 27932

mm April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	D3	Common	3	1	Job Reference (optional)	173095668

3-7-12

3-7-12

8 F

-0-10-8

0-10-8

2x4 🛛

P

3x6 =

2

8 X

3-4-5

0-11-3

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 08:53:15 ID:ggtG6JjnHfLEGG8B9LEmHYzLvz?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4x6 = 4 ¥

<u>5-10-</u>8

2-2-12

6x8 = 3

7

2x4 II

Scale = 1:38

Loading TCLL (roof) Snow (Pf/Pg) TCDI	(psf) 20.0 13.9/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.25 1.25 YES		CSI TC BC WB	0.22 0.08 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 7 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL	0.0*	Code	IRC2021	I/TPI2014	Matrix-MP	0.00		0.00					
BCDL	10.0											Weight: 41 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp B; E Exterior(21 right expos for membe Lumber DC 3) TCLL: ASC Plate DOL DOL=1.15 Exp; Ce= 4) This truss load of 12. overhangs	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she 5-10-8 oc purlins, e Rigid ceiling directly bracing. (size) 6=0-1-8, { Max Horiz 8=80 (LC Max Uplift 8=-2 (LC Max Grav 6=213 (LC (lb) - Maximum Com Tension 1-2=0/41, 2-3=-93/1 2-8=-228/221, 4-6=- 7-8=-53/123, 6-7=-5 3-7=0/68, 3-6=-195/ ed roof live loads have h. CE 7-16; Vult=130mph imph; TCDL=6.0psf; B Enclosed; MWFRS (er E) -0-10-0 to 2-2-0, Int E) 3-7-12 to 5-5-4 zons sed ; end vertical left a ers and forces & MWFI OL=1.60 plate grip DC CE 7-16; Pr=20.0 psf; F 5 Plate DOL=1.15); Is= 0.9; CS=1.00; Ct=1.10 has been designed fo 0. psf or 2.00 times flat s non-concurrent with C	athing directly applie xcept end verticals. applied or 10-0-0 oc 3=0-3-0 10) 13) C 2), 8=275 (LC 2) pression/Maximum 48, 3-4=-62/80, 88/81 7/126, 5-6=0/4 64, 3-8=-138/0 been considered for (3-second gust) CDL=6.0psf; h=25ft; toelope) and C-C erior (1) 2-2-0 to 3-7- e; cantilever left and ind right exposed;C-C RS for reactions sho DL=1.33 roof LL: Lum DOL=1 Pf=13.9 psf (Lum 1.0; Rough Cat B; Fu r greater of min roof I t roof load of 13.9 ps other live loads.	5) ed or 7) 5 8) 9) LC Cat. -12, Cwn; .25 ully live f on	* This truss h on the bottom 3-06-00 tall b chord and an Bearings are SP No.3 . Bearing at jo using ANSI/T designer sho Provide mecl bearing plate Provide mecl bearing plate DAD CASE(S)	as been designed n chord in all areas y 2-00-00 wide wil y other members. assumed to be: Jo int(s) 6 considers p PI 1 angle to grain uld verify capacity nanical connection at joint(s) 6. nanical connection capable of withsta Standard	for a liv where I fit betw bint 8 SF parallel t of beari (by oth (by oth anding 2	e load of 20.0 a rectangle veen the bottu P No.2 , Joint o grain value a. Building ng surface. ers) of truss t lb uplift at jo	Dpsf om o o int 8.			A STATE STAT	SEA 2867	EER. Kum
												Apri	1 30,2025

NGINEERING 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	E1	Monopitch Girder	1	1	Job Reference (optional)	173095669

3-0-6

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 08:53:15 ID:qLSfgAFN3h0Ea?8DbGVqZpy7GRU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-0-8

Page: 1

Scale = 1:34.6

Plate Offsets (X, Y): [4:0-2-8,0-1-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 NO IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.14 0.30 0.16	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 4-5 4-5 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 31 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=103 II; Exp B; I and right e Lumber DD 2) TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce= 3) Unbalance design. 4) * This trus on the bot 3-06-00 ta chord and 5) Bearings a SP No.3.	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 1=0-3-0,1 Max Horiz 1=37 (LC Max Grav 1=435 (LC (lb) - Maximum Com Tension 1-2=-789/1, 2-3=-86, 1-5=0/751, 4-5=0/75 2-5=0/251, 2-4=-725 CE 7-16; Vult=130mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (en exposed ; end vertical I OL=1.60 plate grip DO CE 7-16; Pr=20.0 psf (r =1.25); Pg=20.0 psf; F Plate DOL=1.15); Is= D-9; Cs=1.00; Ct=1.10 ed snow loads have be s has been designed fn tom chord in all areas of ll by 2-00-00 wide will any other members. are assumed to be: Joi	athing directly applied cept end verticals. applied or 10-0-0 oc 11=0-1-8 32) 2 2), 11=423 (LC 2) pression/Maximum /0, 3-4=0/362 1 //0, 3-11=-428/0 (3-second gust) CDL=6.0psf; h=25ft; C ivelope); cantilever lei eft and right exposed L=1.33 roof LL: Lum DOL=1. Pf=13.9 psf (Lum 1.0; Rough Cat B; Ful ven considered for this or a live load of 20.0p where a rectangle fit between the bottom nt 1 SP No.2 , Joint 1	 6) Bearing a using AN designer 7) Provide a bearing a bearing a distribution of the second of th	t joint(s) 11 consider SI/TPI 1 angle to grai should verify capacity echanical connectio late at joint(s) 11. son Strong-Tie HTU: 1/2 Truss) or equiva nnect truss(es) to baa .0 deg.to the left, slo son Strong-Tie LUS; gle Ply Girder) or eq o connect truss(es) to swed 0.0 deg.to the I holes where hanger AD CASE(S) section as are noted as front (S) Standard Snow (balanced): Lu I=1.15 Loads (Ib/ft) 1-3=-48, 4-6=-20 rated Loads (Ib) 12=-166 (B), 13=-166	s parallel in formula y of bearin n (by oth 26 (10-16 ilent at 2- ck face o ping 0.0 26 (4-10c juivalent b back fac left, slopin r is in corn, loads ag (F) or ba mber Inc 6 (B)	to grain valu a. Building ng surface. ers) of truss ad Girder, 4-12 from the f bottom cho deg. down. I Girder, 3-1(Girder, 3-1(Girder, 3-10) tact with lum yg 0.0 deg. c tact with lum yplied to the ck (B). rease=1.15,	ue to e left rd, Dd m the down. hber. face Plate			A A A A A A A A A A A A A A A A A A A	SEA 2867	EEP. SKIIII ALIMSKIIIII 130,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	E2	Monopitch	1	1	Job Reference (optional)	173095670

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 08:53:15 ID:qLSfgAFN3h0Ea?8DbGVqZpy7GRU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:28.6

Plate Offsets (X, Y): [1:Edge,0-1-0], [1:0-2-9,Edge]

	, , E . 3	1												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC202 ² 4)	1/TPI2014 * This truss h	CSI TC BC WB Matrix-MR	0.38 0.29 0.00 d for a liv	DEFL Vert(LL) Vert(CT) Horz(CT) e load of 20.0	in 0.02 -0.03 0.00 0psf	(loc) 4-10 4-10 1	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%	
TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	athing directly applie cept end verticals. applied or 10-0-0 oc	5) 6) d or 7) 8)	on the bottor 3-06-00 tall b chord and ar Bearings are SP No.3. Bearing at jo using ANSI/I designer sho Provide mec bearing plate Provide mec	n chord in all area y 2-00-00 wide w yo other members assumed to be: . int(s) 11 consider TPI 1 angle to grai uld verify capacity hanical connectio a t joint(s) 11.	as where iill fit betw Joint 1 SF s parallel in formula y of beari n (by oth n (by oth	a rectangle veen the both No.2, Joint to grain valu a. Building ng surface. ers) of truss t ers) of truss t	om t 11 ue to						
REACTIONS FORCES TOP CHORD BOT CHORD	(size) 1=0-3-0, 1 Max Horiz 1=31 (LC Max Uplift 11=-6 (LC Max Grav 1=278 (LC (lb) - Maximum Com Tension 1-2=-231/83, 4-5=0/1 1-4=-131/219, 3-4=0 2-11=-114/14	11=0-1-8 15) 2 22), 11=222 (LC 22 pression/Maximum 93, 2-5=-50/114 //0	2) LC	bearing plate 11. DAD CASE(S)	capable of withs	tanding 6	lb uplift at jo	int						
 NOTES 1) Wind: ASC Vasd=103 II; Exp B; I Exterior(21 zone; cant and right e MWFRS fr grip DOL= 2) TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce= 3) Unbalance design. 	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B(Enclosed; MWFRS (en E) 0-0-0 to 3-0-0, Interi illever left and right exp exposed; C-C for memb or reactions shown; Lu :1.33 CE 7-16; Pr=20.0 psf (:=1.25); Pg=20.0 psf; F Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 ed snow loads have be	(3-second gust) CDL=6.0psf; h=25ft; ivelope) and C-C ior (1) 3-0-0 to 5-7-4 bosed ; end vertical lu- pers and forces & mber DOL=1.60 plat roof LL: Lum DOL=1 Pf=13.9 psf (Lum 1.0; Rough Cat B; Fu- ten considered for thi	Cat. e .25 s								Survey States	SEA 2867	ER. St.	MANULUL

April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	E3	Monopitch	6	1	Job Reference (optional)	173095671

6-0-8

-0-10-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 08:53:15 ID:qLSfgAFN3h0Ea?8DbGVqZpy7GRU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

JC?f

Scale = 1:31.4

Plate Offsets (X, Y): [2:Edge,0-1-0], [2:0-2-9,Edge]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25		тс	0.35	Vert(LL)	0.02	5-11	>999	240	MT20	244/190	
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.25		BC	0.24	Vert(CT)	-0.03	5-11	>999	180			
TCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	2	n/a	n/a			
BCLL	0.0*	Code	IRC2021	I/TPI2014	Matrix-MR									
BCDL	10.0											Weight: 25 lb	FT = 20%	
BCLL BCLL BCLL BCLL LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=103 II; Exp B; E Exterior(2E zone; canti and right e MWFRS fo Grip DOL= 2) TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce=C 3) Unbalance design.	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-3-0, ' Max Horiz 2=38 (LC Max Uplift 2=-23 (LC Max Grav 2=341 (LC (Ib) - Maximum Com Tension 1-2=0/15, 2-3=-219// 3-6=-51/116 2-5=-111/213, 4-5=0 3-12=-109/9 CE 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er E) -0-9-13 to 2-2-3, Int ilever left and right exp exposed; C-C for memb or reactions shown; Lu 1.33 CE 7-16; Pr=20.0 psf (=1.25); Pg=20.0 psf; SP Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 dd snow loads have be	athing directly applie code code code copt end verticals. applied or 10-0-0 oc 12=0-1-8 11) c 11), 12=-5 (LC 15) c 22), 12=215 (LC 22 pression/Maximum 89, 5-6=0/90, 0/0 cDL=6.0psf; h=25ft; velope) and C-C erior (1) 2-2-3 to 5-7- posed ; end vertical lo- pers and forces & imber DOL=1.60 plat roof LL: Lum DOL=1 2f=13.9 psf (Lum 1.0; Rough Cat B; Fu sen considered for thi	(RC2021 4) 5) d or 6) 7) 8) 9) LC Cat. 4 e e .25 illy s	This truss ha load of 12.0 overhangs n * This truss f on the bottor 3-06-00 tall b chord and ar Bearings are SP No.3 . Bearing at jo using ANSI/ designer sho Provide mec bearing plate 2 and 5 lb up DAD CASE(S)	Matrix-MR as been designed por-concurrent with has been designed in concurrent with has been designed in chord in all area by 2-00-00 wide yo other members - assumed to be: int(s) 12 consider PPI 1 angle to gra uid verify capacit hanical connectio e at joint(s) 12. hanical connection e at joint(s) 12. hanical connection e at joint(s) 12. Standard	for great flat roof lo h other lind d for a liv as where vill fit betv s Joint 2 SF s parallel in formula y of bear n (by oth tanding 2	er of min rool bad of 13.9 p ve loads. e load of 20. a rectangle veen the bott P No.2 , Joint to grain valu a. Building ng surface. ers) of truss i 3 lb uplift at j	f live sf on 0psf om t 12 Je to to joint		1// 4		Weight: 25 lb OR H CA SEA 2867 O, VGINI	FT = 20%	
												Apri	30,2025	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	E4	Half Hip Supported Gable	1	1	Job Reference (optional)	173095672

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 08:53:15 ID:eDIVMP6UfJeomJp6SSpEdVy7GRf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ffinal and a strength of the second str

3x5 =

Page: 1

5-7-0

Scale = 1:26.2

Plate Offsets (X, Y): [2:Edge,0-1-0], [2:0-2-9,Edge], [3:0-2-8,0-2-14], [4:Edge,0-1-8]

			,	. U										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MR	0.51 0.24 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.02 0.00	(loc) 5-10 5-10 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: AS Vasd=10(II; Exp B; (3E) -0-9- (2N) 4-8-(exposed ; members Lumber D (2N) 4-8-(exposed ; members conly. For see Stand or consult 3) TCLL: AS Plate DOI	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 5-11-0 oc purlins; e 2-0-0 oc purlins; 3-4 Rigid ceiling directly bracing. (size) 2=0-3-0, § Max Horiz 2=20 (LC Max Uplift 2=-28 (LC Max Grav 2=301 (LC (lb) - Maximum Com Tension 1-2=0/15, 2-3=-388/ 4-5=-192/200 2-5=-265/381 CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; Bf Enclosed; MWFRS (er 13 to 1-8-0, Corner(3R end vertical left and rig and forces & MWFRS (er 13 to 1-8-0, Corner(3R SUDL=1.60 plate grip DO usigned for wind loads in studs exposed to wind fard Industry Gable En- c qualified building desig CE 7-16; Pr=20.0 psf; C =1.25): Pg=20.0 psf; C	athing directly applic xcept end verticals, i applied or 10-0-0 oc 5=0-3-8 14) : 11), 5=-4 (LC 12) 2), 5=244 (LC 40) pression/Maximum 329, 3-4=-365/294, (3-second gust) CDL=6.0psf; h=25ft; velope) and C-C Cc) 1-8-0 to 4-8-0, Exter er left and right ght exposed;C-C for for reactions shown; L=1.33 the plane of the trus (normal to the face) d Details as applicat gner as per ANSI/TF roof LL: Lum DOL=1 ?f=18.9 psf (Lum	4) 5) ed or 7) and 8) 5 9) 1(2 12 Cat. rmer erior ss , ble, 11. .25	 Unbalanced design. This truss ha load of 12.0 overhangs n Provide adee Gable studs * This truss I on the bottor 3-06-00 tall It chord and ar All bearings Provide mec bearing plate and 28 lb up Graphical pu or the orienta bottom chord DAD CASE(S) 	snow loads have as been designed psf or 2.00 times f on-concurrent witt quate drainage to spaced at 2-0-0 o has been designed m chord in all area by 2-00-00 wide w ny other members are assumed to be hanical connectio e capable of withsi lift at joint 2. urlin representation ation of the purlin d. Standard	been cor for great flat roof li h other li prevent v c. d for a liv as where vill fit betv e SP No. n (by oth tanding 4 n does no along the	hsidered for t er of min roo bad of 13.9 p ve loads. water pondin re load of 20. a rectangle veen the bott 2. ers) of truss H b uplift at jo bt depict the a top and/or	this f live ssf on g. Opsf tom to bint 5 size				SEA 2867	ROUL ROUL L T7 EER.SC	
DOL=1.1: Exp.; Ce=	o Plate DOL=1.15); IS= =0.9; Cs=1.00; Ct=1.10.	1.0; Rough Cat B; Fi , Lu=50-0-0	ully									111111	in in it.	

Plate DOL=1.25); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org)

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

April 30,2025

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	E5	Monopitch Structural Gable	1	1	Job Reference (optional)	173095673

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 29 08:53:15 ID:Py6vvh1iqwMG7opEUxWx5By7Fgi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:37.6

Plate Offsets (X, Y): [2:0-2-0,0-5-9], [6:Edge,0-2-3], [8:0-3-8,Edge], [12:0-2-8,0-3-8]

			, 01,											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MR	0.70 0.33 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.16 -0.21 0.02	(loc) 10-11 10-11 2	l/defl >692 >510 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 46 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS	2x4 SP 2400F 2.0E 2x4 SP 2400F 2.0E 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 2=0-3-0, 1 Max Horiz 2=-79 (LC Max Grav 2=411 (LC (lb) - Maximum Com Tension 1-2=0/20, 2-3=-298// 4-5=-257/105, 5-6=-2 6-12=-103/170 2-11=-244/265, 10-1 9-10=-190/265, 8-9= 5-9=-21/61, 4-10=-62 6-16=-355/247	athing directly applied cept end verticals. applied or 10-0-0 oc 16=0-1-8 11), 16=-16 (LC 15) 2 2), 16=367 (LC 22) pression/Maximum 90, 3-4=-278/68, 215/130, 8-12=-112/ 1=-190/265, -190/265, 7-8=0/0 2/90, 3-11=-50/88,	3) 4) 5) d or 6) 7) 8) 9) 10) 194, 11) 12)	TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced design. This truss ha load of 12.0 p overhangs no All plates are Gable studs * This truss h on the botton 3-06-00 tall b chord and ar Bearings are Joint 16 SP N Bearing at jo using ANSI/T designer sho Provide meci bearing plate 2 and 16 lbu	7-16; Pr=20.0 ps .25); Pg=20.0 ps late DOL=1.15); ls ; Cs=1.00; Ct=1.1 snow loads have s been designed psf or 2.00 times f on-concurrent with MT20 plates unlk spaced at 2-0-0 o nas been designed n chord in all area by 2-00-00 wide w y other members assumed to be: 1 vo.3. int(s) 16 consider: TPI 1 angle to grai uld verify capacity hanical connection a capable of withst plift at joint 16.	f (roof LL ; Pf=13.5 s=1.0; Ro 10 been cor for great ilat roof k n other lin ess other c. d for a liv is where ill fit betv Joint 2 SI s parallel in formula y of bear n (by oth tanding 1	:: Lum DOL= psf (Lum bugh Cat B; F asidered for tl er of min roof pad of 13.9 p ve loads. wise indicate e load of 20.0 a rectangle veen the bottl 2 2400F 2.0E to grain valu a. Building ng surface. ers) of truss t 6 lb uplift at j	1.25 Fully his f live sof on ed. Opsf om E, Je to to to joint				ORTH CA	ROUNT	
NOTES 1) Wind: AS(Vasd=103 II; Exp B; (3E) -0-10 zone; can and right e MWFRS f grip DOL=	CE 7-16; Vult=130mph imph; TCDL=6.0psf; B0 Enclosed; MWFRS (en I-3 to 2-1-13, Exterior(2 tilever left and right exp exposed;C-C for memb or reactions shown; Lu ±1.33	(3-second gust) CDL=6.0psf; h=25ft; ivelope) and C-C Coi 2N) 2-1-13 to 8-6-12 posed ; end vertical levers and forces & mber DOL=1.60 plat	LO Cat. rner eft e	AD CASE(S)	Standard					COLUMN ST		SEA 2867	United and a second sec	Manuning.

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

11111111 April 30,2025

L. GA

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	E6	Monopitch	12	1	Job Reference (optional)	173095674

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 08:53:16 ID:Mcl5uBGdMmlZvjmu5QMONBy7FgP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:37.6

Plate Offsets (X, Y): [2:Edge,0-1-12]], [2:0-2-0,0-5-9]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-MSH	0.33 0.44 0.20	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.14 0.01	(loc) 6-10 6-10 11	l/defl >999 >755 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 45 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: AS(Vasd=103 II; Exp B; I Exterior(2I 8-6-12 zor vertical lef forces & M DOL=1.60 2) TCLL: ASI Plate DOL DOL=1.15 Exp.; Ce= 3) Unbalance design.	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 2=0-3-0,1 Max Horiz 2=79 (LC Max Uplift 2=-16 (LC Max Grav 2=411 (LC (Ib) - Maximum Com Tension 1-2=0/20, 2-3=-544/' 6-7=-58/258, 4-7=-58 2-6=-290/532, 5-6=0 3-6=-499/263, 4-11= CE 7-16; Vult=130mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (en E) -0-10-3 to 2-1-13, In te; cantilever left and right exposed; C-1 WFRS for reactions sl plate grip DOL=1.35 (E=1-26); Pg=20.0 psf; F Plate DOL=1.15); Is== 0.9; Cs=1.00; Ct=1.10 ad snow loads have be	athing directly applied cept end verticals. applied or 10-0-0 oc 11=0-1-8 11) 11) 11], 11=-16 (LC 15) 2), 11=368 (LC 22) pression/Maximum 190, 3-4=-123/7, 8/258 /0 -373/159 (3-second gust) CDL=6.0psf; h=25ft; C- ivelope) and C-C terior (1) 2-1-13 to ight exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1.2 Y=13.9 psf (Lum 1.0; Rough Cat B; Fully	4) 5) or 6) 7) 8) 9) LO at.	This truss ha load of 12.0 p overhangs m * This truss h on the botton 3-06-00 tall b chord and an Bearings are SP No.3 . Bearing at jo using ANSI/T designer sho Provide mecl bearing plate 2 and 16 lb u DAD CASE(S)	s been designed for post or 2.00 times fla on-concurrent with has been designed in chord in all areas by 2-00-00 wide will by other members. assumed to be: Jo int(s) 11 considers TPI 1 angle to grain uld verify capacity hanical connection a tat joint(s) 11. hanical connection capable of withsta plift at joint 11. Standard	or greate at roof lo other lin for a liv s where I fit betwe bint 2 SF parallel formula of beari (by othe anding 1	er of min roof pad of 13.9 p: re loads. e load of 20.0 a rectangle veen the botto P No.2 , Joint to grain valu a. Building ng surface. ers) of truss t 6 lb uplift at j	live sf on Opsf om t 11 to to to to to			A MARINE AND AN	SEA 2867	RO ER Star 30,2025	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	E7	Diagonal Hip Girder	1	1	Job Reference (optional)	173095675

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 08:53:16 ID:v2F_VUmEz6eNztp_eQGI_izLwVp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

NAILED

NAILED

Scale = 1:39.5

		-											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 NO IRC20	21/TPI2014	CSI TC BC WB Matrix-MSH	0.45 0.58 0.19	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.01	(loc) 6 7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 39 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 5= Mecha	t* 7-3:2x4 SP No.3 athing directly applie cept end verticals. applied or 10-0-0 o nical, 8=0-4-13	ed or to the second sec	 * This truss I on the bottor 3-06-00 tall II Bearings are Provide mec bearing plate 8 and 44 lb ("NAILED" in NDS guidling 	has been designer m chord in all area by 2-00-00 wide w ny other members a assumed to be: ler(s) for truss to tu chanical connectio e capable of withs uplift at joint 5. dicates 2-12d (0.1 es.	d for a liv as where vill fit betv Joint 8 SI russ conr n (by oth tanding 3 48"x3.25	e load of 20. a rectangle veen the bott P No.2 . ections. ers) of truss 5 lb uplift at j ") toe-nails p	Opsf om to joint er					
FORCES	Max Horiz 8=93 (LC Max Uplift 5=-44 (LC Max Grav 5=295 (LC (lb) - Maximum Com	8) 2 8), 8=-35 (LC 7) 2 18), 8=363 (LC 2) pression/Maximum	· I	0) In the LOAD of the truss a OAD CASE(S) Dead + Sno	CASE(S) section are noted as front Standard ow (balanced): Lu	, loads a _l (F) or ba mber Inc	oplied to the ck (B). rease=1.15,	face Plate					
TOP CHORD BOT CHORD	Tension 2-8=-332/59, 1-2=0/- 3-4=-456/84, 4-5=-2 7-8=-3/151, 6-7=0/2	44, 2-3=-308/43, 43/43 9, 3-6=-212/55,		Increase=1 Uniform Lo Vert: 1-2 Concentrat	.15 ads (lb/ft) :=-48, 2-4=-48, 7-8 ed Loads (lb)	8=-20, 5-	6=-20						
WEBS NOTES	5-6=-18/25 4-6=-86/467, 6-8=-8	5/82		Vert: 7=-	·3 (F), 3=-12 (F), 1	1=-19 (B)						
 Wind: AS Vasd=100 II; Exp B; and right Lumber D TCLL: AS Plate DOI 	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B(Enclosed; MWFRS (er exposed ; end vertical I IOL=1.60 plate grip DO ICE 7-16; Pr=20.0 psf (=1 25): Pg=20.0 psf.	(3-second gust) CDL=6.0psf; h=25ft; ivelope); cantilever l eft and right expose vL=1.33 roof LL: Lum DOL= ² f=13.9 psf () um	; Cat. left ed; 1.25								N. N. N.	OR FESS	ROLLAN

- 2 DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on 4) overhangs non-concurrent with other live loads.

April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	E8	Diagonal Hip Girder	2	1	Job Reference (optional)	173095676

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 08:53:16 ID:IHKXxlpgU6RfJ_3pu9OjtDzLw?T-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

NAILED

NAILED

4-9-9

Scale = 1:36.2

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 NO IRC2021/7	TPI2014	CSI TC BC WB Matrix-MR	0.30 0.13 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.02 0.00	(loc) 4-5 4-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x6 SP No.2 *Excep Structural wood shee 5-3-0 oc purlins, exc Rigid ceiling directly bracing. (size) 4= Mecha Max Horiz 5=84 (LC Max Uplift 4=-16 (LC	t* 3-4:2x4 SP No.3 athing directly applied sept end verticals. applied or 10-0-0 oc nical, 5=0-3-8 8), 5=-35 (LC 7)	7) 8) 9) ' 10r (10) COA 1)	Refer to girde Provide mech bearing plate 5 and 16 lb u "NAILED" inci (0.148"x3.25" In the LOAD of the truss a D CASE(S) Dead + Sno Increase=1. Uniform Loz Vert: 1-2=	er(s) for truss to tru nanical connection capable of withsta plift at joint 4. icates 3-10d (0.14 ') toe-nails per ND: CASE(S) section, I CASE(S) section, I CASE(S) section, I standard w (balanced): Lum 15 uds (Ib/ft) 48, 2-3=-48, 4-5=	ss conr (by oth Inding 3 8"x3") c S guidlil loads al -) or ba -) or ba 20	nections. ers) of truss i 5 lb uplift at j por 2-12d nes. oplied to the i ck (B). rease=1.15, i	to joint face Plate					
FORCES	(lb) - Maximum Com	pression/Maximum		Concentrate Vert: 9=1	ed Loads (lb) (B), 10=2 (F)								
TOP CHORD	2-5=-287/58, 1-2=0/4	46, 2-3=-108/21,											
BOT CHORD	4-5=-21/35												
NOTES													
 Wind: ASC Vasd=103 II; Exp B; I and right e Lumber Di TCLL: ASC Plate DOL DOL=1.15 Exp. Ce= 	CE 7-16; Vult=130mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (en vsposed ; end vertical I OL=1.60 plate grip DO CE 7-16; Pr=20.0 psf; F i Plate DOL=1.15; Is= 0.9; Cs=1.00; Ct=1.10	(3-second gust) DDL=6.0psf; h=25ft; (velope); cantilever le eft and right exposed L=1.33 roof LL: Lum DOL=1. /f=13.9 psf (Lum 1.0; Rough Cat B; Fu	Cat. ft ; 25 Ily								and the second sec	ORTH CA	ROUNT
 Unbalance design 	ed snow loads have be	en considered for this	6									SEA	L ÌÌ
 4) This truss load of 12. 	has been designed for 0 psf or 2.00 times flat	greater of min roof li roof load of 13.9 psf	ve on									2867	7
5) * This trus on the bott 3-06-00 ta chord and	s has been designed for tom chord in all areas v Il by 2-00-00 wide will f any other members.	or a live load of 20.0p where a rectangle fit between the bottor	n							1		SANGINE	E.P.SK III
6) Bearings a	are assumed to be: , Jo	oint 5 SP No.2 .										in the second se	1111.

- chord and any other members.
- 6) Bearings are assumed to be: , Joint 5 SP No.2 .

April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	E9	Jack-Open	6	1	Job Reference (optional)	173095677

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 08:53:16 ID:IHKXxlpgU6RfJ_3pu9OjtDzLw?T-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-3-5

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MR	0.33 0.21 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.03 -0.02	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-3-5 oc purlins, ex Rigid ceiling directly bracing. (size) 3= Mecha 5=0-3-8 Max Horiz 5=58 (LC Max Uplift 3=-37 (LC Max Grav 3=139 (LC	eathing directly appli cept end verticals. ⁷ applied or 10-0-0 o anical, 4= Mechanic 15) C 15) C 22), 4=51 (LC 22)	6) ied or 7) oc al, LC	* This truss on the botto 3-06-00 tall chord and a Bearings ar Refer to girc Provide mer bearing plat 3. DAD CASE(S)	has been designe m chord in all area by 2-00-00 wide v ny other members e assumed to be: der(s) for truss to t chanical connectic e capable of withs) Standard	ed for a liv as where vill fit betw s. , Joint 5 S rruss conr on (by oth standing 3	e load of 20.1 a rectangle veen the bott SP No.2 . nections. ers) of truss i 7 lb uplift at j	Opsf om to joint					
FORCES	5=267 (L((lb) - Maximum Com	C 22) npression/Maximum											
TOP CHORD BOT CHORD	Tension 2-5=-236/142, 1-2=0 4-5=0/0	0/33, 2-3=-80/53											
NOTES 1) Wind: AS Vasd=100 II; Exp B; Exterior(2 4-2-9 zon vertical le forces & I DOL=1.60 2) TCLL: AS Plate DOI DOL=1.11 Exp.; Cee 3) Unbalance design. 4) This truss load of 12 outperformed	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed; MWFRS (er E) -0-10 to 2-1-15, Ir e; cantilever left and right ft and right exposed; C- WWFRS for reactions s Op late grip DOL=1.33 CE 7-16; Pr=20.0 psf (I L=1.25); Pg=20.0 psf (I L=1.25); Pg=20.0 psf (I S Plate DOL=1.15); Is= 60.9; Cs=1.00; Ct=1.10 ed snow loads have be has been designed fo 2.0 psf or 2.00 times fila s pop-concurrent with a	a (3-second gust) CDL=6.0psf; h=25ft hvelope) and C-C therior (1) 2-1-15 to ght exposed ; end C for members and hown; Lumber (roof LL: Lum DOL= Pf=13.9 psf (Lum 1.0; Rough Cat B; F een considered for th r greater of min roof t roof load of 13.9 p other live loads	;; Cat. I :1.25 Fully his f live sf on								and summer	SEA 286	ROUXE

- Plate DOL=1.25); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 3) design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

818 Soundside Road Edenton, NC 27932

minin April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	E10	Jack-Open	30	1	Job Reference (optional)	173095678

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 29 08:53:16 ID:f9_A3v?H7ZNx4bE6eT9Hb7zLwY4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4-0-0

Scale	=	1.27 7	•

00010 - 1.27.7														
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	13.9	(psf) 20.0 9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-MR	0.34 0.23 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.02 -0.02	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural w 4-0-0 oc pur Rigid ceiling bracing.	2 2 3 vood shea rlins, exc g directly	athing directly applie sept end verticals. applied or 10-0-0 or	4) 5) ed or 6) 7) c	* This truss I on the botto 3-06-00 tall I chord and a Bearings are Refer to gird Provide med bearing plate 3.	has been designe m chord in all are by 2-00-00 wide v hy other members assumed to be: er(s) for truss to t hanical connections capable of withs	ed for a liv eas where will fit betw s. , Joint 5 s truss conr on (by oth standing 4	e load of 20. a rectangle veen the bott SP No.2 . nections. ers) of truss 6 lb uplift at	0psf tom to joint					
REACTIONS	(size) 3 5 Max Horiz 5 Max Uplift 3 Max Grav 3 (Ib) Maxim	= Mecha =0-3-8 =73 (LC =-46 (LC =108 (LC =218 (LC	nical, 4= Mechanica 13) 23), 4=47 (LC 29), 29), 4=47 (LC 29),	_{il,} LC	OAD CASE(S)	Standard								
FURCES	(ID) - Maxim Tension	um Com	pression/iviaximum											
TOP CHORD	2-5=-191/98 4-5=0/0	8, 1-2=0/4	41, 2-3=-91/66											
NOTES 1) Wind: ASI Vasd=103 II; Exp B; Exterior(2 zone; can and right of MWFRS f grip DOL 2) TCLL: AS Plate DOI DOL=1.15 Exp.; Ce= 3) This truss load of 12 overhang:	CE 7-16; Vult= 3mph; TCDL=6 Enclosed; MW E) -0-10-0 to 2 titlever left and exposed;C-C fi for reactions sh =1.33 :CE 7-16; Pr=2 L=1.25); Pg=22 5 Plate DOL=1 =0.9; Cs=1.00; i has been des 2.0 psf or 2.00 ti s non-concurre	130mph .0psf; BC (FRS (en -2-0, Inter right exp or memb hown; Lun 0.0 psf; P .15); Is=' Ct=1.10 igned for times flat ent with o	(3-second gust) CDL=6.0psf; h=25ft; velope) and C-C erior (1) 2-2-0 to 3-1 lossed; end vertical I ers and forces & mber DOL=1.60 pla roof LL: Lum DOL=1 f=13.9 psf (Lum 1.0; Rough Cat B; Fi greater of min roof roof load of 13.9 ps ther live loads.	Cat. 1-4 left 1.25 ully live sf on								and States	SEA 286	EEP. Chin

- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- This truss has been designed for greater of min roof live 3) load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

818 Soundside Road Edenton, NC 27932

L. GA mmm April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	E11	Monopitch Supported Gable	1	1	Job Reference (optional)	173095679

3-8-0

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 29 08:53:16 ID:XwEhvH3nAntNYCXttJEDmzzLwY0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-0-10-8 4-0-0 0-10-8 4-0-0 3x5 II 12 8 Г 4 5 2x4 II 2 3 3x5 🛛 194 ø 3-8-0 189 112 1-0-0 Ψ 6 3x5 II 2x4 II 2x4 II

4-0-0

Scale = 1:31.2

		·											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2021/TF	PI2014	CSI TC BC WB Matrix-MR	0.75 0.34 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 5-6 6-7 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea 4-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 4= Mecha 7=4-0-0 Max Horiz 7=-80 (LC Max Uplift 4=-11 (LC (LC 10) Max Grav 4=146 (LC 6=396 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc nical, 5=4-0-0, 6=4-0 : 12) : 9), 5=-38 (LC 9), 7= C 24), 5=150 (LC 12) C 11, 7=33 (LC 11)	3) T(Pl D E: 4) Ti lo dor 5) Ti 6) G G G (1)-0, 7) ↔ 3- 21 8) B (1) Pl (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	CLL: ASCE late DOL=1 IDL=1.15 Pl. ixp.; Ce=0.9 his truss ha: bad of 12.0 p verhangs no russ to be fi raced again able studs s This truss h n the bottom -06-00 tall b hord and an earings are terfer to girde rovide mech	7-16; Pr=20.0 psf 25); Pg=20.0 psf; ate DOL=1.15); Is- ; Cs=1.00; Ct=1.10; s been designed fc psf or 2.00 times fla- on-concurrent with any sheathed from st lateral movement spaced at 2-0-0 oc as been designed n chord in all areas y 2-00-00 wide will y other members. assumed to be: , , er(s) for truss to tru- nancial connection	(roof LL Pf=13.5 =1.0; Rd or great at roof li other li one fac nt (i.e. c : for a liv s where l fit betw Joint 6 S uss conri (by oth	:: Lum DOL= psf (Lum pugh Cat B; F er of min roof pad of 13.9 p; re loads. e or securely iagonal web) e load of 20.0 a rectangle reen the both SP No.2. nections. ers) of truss t	1.25 iully live sf on					
FORCES TOP CHORD	(lb) - Maximum Com Tension 2-7=-215/67, 1-2=-36	pression/Maximum 6/0, 2-3=-74/227,	7, 11) G di	, 11 lb uplift ap between iagonal or v	at joint 4 and 38 lb inside of top chor ertical web shall no	o uplift a d bearin ot excee	t joint 5. ng and first ed 0.500in.						
BOT CHORD WEBS NOTES 1) Wind: ASC	3-4=-70/121, 4-5=-1(6-7=-110/104, 5-6=- 3-6=-358/0 CE 7-16; Vult=130mph	04/51 194/186 (3-second gust)		D CASE(S)	Standard							OR TH CA	ROUT
 vasid=103 II; Exp B; I (3E) -0-10 cantilever right exporior for reaction DOL=1.33 2) Truss desion only. For see Stand or consult 	Inipin, ICDL=6.0051; Be Enclosed; MWFRS (en I-o to 2-0-0, Exterior(2N left and right exposed sed;C-C for members a ns shown; Lumber DO a igned for wind loads in studs exposed to wind lard Industry Gable Enc qualified building desig	velope) and C-C Co velope) and forces & MWFR L=1.60 plate grip the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP	cat. rner he; j S S s , le, l 1.								No. States	SEA 2867	EER. ALING

- right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face),
- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GA mm April 30,2025

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	E12	Jack-Open	4	1	Job Reference (optional)	173095680

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 08:53:16 ID:RshcH8lcCoWWLjEn4jl3RUzLwVq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Fay

Scale = 1:33.3

00010 - 1.00.0															
Loading TCLL (roof)	(ps 20.) Spacing Plate Grip	DOL	2-0-0 1.25		CSI TC	0.14	DEFL Vert(LL)	in 0.02	(loc) 7	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190	
Snow (Pf/Pg)	13.9/20.) Lumber D	OL	1.25		BC	0.19	Vert(CT)	-0.02	7	>999	180			
TCDL	10.) Rep Stres	s Incr	YES		WB	0.00	Horz(CT)	-0.01	5	n/a	n/a			
BCLL	0.)* Code		IRC2021	/TPI2014	Matrix-MR									
BCDL	10.)											Weight: 19 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 *E> 2x4 SP No.3 Structural wood 4-0-0 oc purlins, Rigid ceiling dire bracing.	cept* 7-3:2x4 \$ sheathing direct except end ve ctly applied or	SP No.3 tly applied rticals. 10-0-0 oc	4) or 6) 7)	* This truss h on the bottor 3-06-00 tall b chord and ar Bearings are Refer to gird Provide mec bearing plate 4 and 7 lb up	has been designed in chord in all area by 2-00-00 wide wi by other members. assumed to be: , er(s) for truss to tr hanical connection capable of withst blift at joint 5.	d for a liv s where ill fit betw Joint 8 S uss conr n (by oth anding 3	e load of 20. a rectangle veen the both SP No.2 . nections. ers) of truss t 0 lb uplift at j	0psf om to joint						
REACTIONS	(size) 4= Me 8=0-3 Max Horiz 8=73 Max Uplift 4=-30 Max Grav 4=93 (LC 2	chanical, 5= M 8 LC 13) (LC 13), 5=-7 (LC 29), 5=62 (echanical, LC 13) LC 29), 8=	218	OAD CASE(S)	Standard									
FORCES	(lb) - Maximum (Tension	Compression/M	aximum												
TOP CHORD	2-8=-198/85, 1-2 3-4=-61/59	=0/41, 2-3=-11	5/0,												
BOT CHORD	7-8=-88/83, 6-7=	-18/31, 3-6=-2	1/52, 5-6=0	0/0											
NOTES															
 Wind: AS Vasd=103 II; Exp B; Exterior(2 3-11-4 zo vertical le forces & M DOL=1.60 	CE 7-16; Vult=1300 3mph; TCDL=6.0ps Enclosed; MWFRS 2E) -0-10-0 to 2-0-1 ne; cantilever left a ft and right expose WWFRS for reactio 0 plate grip DOL=1	high (3-second ; BCDL=6.0ps (envelope) and 2, Interior (1) 2- and right expose I;C-C for member as shown; Lum 33	gust) i; h=25ft; C d C-C -0-12 to d ; end bers and ber	at.								And and	OR H CA	ROUNT	

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

SEAL 28677 VGINEER GALMSHIII April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	E13	Jack-Open	1	1	Job Reference (optional)	173095681

2-10-12

2-10-12

12 6 Г

6

-0-10-8

0-10-8

2

Carter Components (Sanford, NC), Sanford, NC - 27332,

2-3-6

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 29 08:53:17 ID:RshcH8lcCoWWLjEn4jl3RUzLwVq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3

GRIP

244/190

FT = 20%

2-3-6

SEAL

28677

			0-10-0	1	5			4				
						2-1	0-12					
Scale = 1:24.3 Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	3 (psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MR	0.17 0.10 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 -0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 11 lb
LUMBER TOP CHORE BOT CHORE WEBS BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 2-10-12 oc purlins, Rigid ceiling directly bracing. (size) 3= Mecha 5=0-3-8 Max Horiz 5=41 (LC Max Uplift 3=-26 (LC 	eathing directly applie except end verticals. / applied or 10-0-0 oc anical, 4= Mechanica : 12) C 15)	5) ed or 7) 8) c	* This truss h on the botton 3-06-00 tall b chord and an Bearings are Refer to girde Provide mecl bearing plate 3. AD CASE(S)	as been design n chord in all are y 2-00-00 wide y other member assumed to be er(s) for truss to hanical connecti capable of with Standard	ed for a liv eas where will fit betw rs. : , Joint 5 S truss conr ion (by oth standing 2	e load of 20. a rectangle veen the bot SP No.2 . hections. ers) of truss 26 lb uplift at	Opsf tom to joint				
FORCES	(Ib) - Maximum Con Tension	npression/Maximum	=209									
 BOT CHORE BOT CHORE NOTES Wind: AS Vasd=10 II; Exp B Exterior(2-10-0 zr vertical le forces & DOL=1.6 TCLL: A's Plate DC DOL=1.1 Exp.; Ce Unbalani design. This trus load of 1 	A 2-33-104/117, 1-2= A 4-5=0/0 A 4-5=0/0	n (3-second gust) iCDL=6.0psf; h=25ft; nvelope) and C-C nterior (1) 2-1-15 to right exposed ; end -C for members and shown; Lumber (roof LL: Lum DOL=1 Pf=13.9 psf (Lum =1.0; Rough Cat B; Fu) een considered for th or greater of min roof tt roof load of 13.9 ps	Cat. .25 ully is live f on								ALL AND ALL AN	SE 286

- Unbalanced snow loads have been considered for this 3) design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GA

mm April 30,2025 THURSDAY TO THE TANK

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	E14	Jack-Open	1	1	Job Reference (optional)	173095682

-0-10-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 29 08:53:17 ID:RshcH8lcCoWWLjEn4jl3RUzLwVq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-9-9

Page: 1

Scale = 1:32.3

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2021/TPI	2014	CSI TC BC WB Matrix-MR	0.14 0.10 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 -0.01	(loc) 7 7 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.3 Structural wood shea 2-9-9 oc purlins, exc Rigid ceiling directly bracing. (size) 4= Mecha 8=0-3-8 Max Horiz 8=52 (LC Max Uplift 4=-5 (LC - Max Grav 4=41 (LC	t* 7-3:2x4 SP No.3 athing directly applie sept end verticals. applied or 10-0-0 oc nical, 5= Mechanical 13) 13), 5=-25 (LC 13) 2), 5=63 (LC 29), 8=	4) * Ti on : 3-0 chc 5) Bea 6) Ref 7) Pro bea anc , LOAD (his truss h the bottom 6-00 tall b ord and an arings are er to girde vide mect rring plate 1 25 lb upl CASE(S)	as been designed a chord in all areas y 2-00-00 wide wil y other members. assumed to be: , , er(s) for trus to tru nanical connection capable of withsta ff at joint 5. Standard	for a liv s where Il fit betv Joint 8 S uss conr (by oth anding 5	e load of 20.0 a rectangle veen the botto SP No.2 . nections. ers) of truss t i lb uplift at joi	opsf om o nt 4					
FORCES TOP CHORD BOT CHORD	(LC 2) (lb) - Maximum Com Tension 2-8=-156/83, 1-2=0/4 7-8=-51/42, 6-7=-13/	pression/Maximum 41, 2-3=-68/3, 3-4=-1 ′30, 3-6=-52/81, 5-6=	7/25 0/0										
NOTES 1) Wind: ASC Vasd=103 II; Exp B; F Exterior(2E 2-8-13 zor vertical lef forces & M DOL=1.60 2) TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce=I 3) This truss load of 12. overhangs	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B(Enclosed; MWFRS (en E) -0-10-0 to 2-0-12, In he; cantilever left and ri t and right exposed;C-1 WFRS for reactions sl plate grip DOL=1.33 CE 7-16; Pr=20.0 psf (r =1.25); Pg=20.0 psf; P i Plate DOL=1.15); Is= 0.9; CS=1.00; Ct=1.10 has been designed for .0 psf or 2.00 times flat s non-concurrent with o	(3-second gust) CDL=6.0psf; h=25ft; v velope) and C-C terior (1) 2-0-12 to ght exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1: f=13.9 psf (Lum 1.0; Rough Cat B; Fu greater of min roof I roof load of 13.9 psf ther live loads.	Cat. 25 Ily ive							THURSE STREET	and a state of the	SEA 2867	ROULT ER OF THE

- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- This truss has been designed for greater of min roof live 3) load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

. GA mmm April 30,2025

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	E15	Jack-Open	2	1	Job Reference (optional)	173095683

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 08:53:17 ID:IHKXxlpgU6RfJ_3pu9OjtDzLw?T-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1-6-6

Scale = 1:22.9

-

-														
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1	(psf) 20.0 3.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC20	21/TPI2014	CSI TC BC WB Matrix-MR	0.10 0.04 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 7 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N 2x4 SP N Structura 1-6-6 oc Rigid ceil bracing.	o.2 o.2 o.3 I wood shea purlins, exa ing directly	athing directly applie cept end verticals. applied or 10-0-0 oc	d or	 * This truss h on the botton 3-06-00 tall b chord and an Bearings are Refer to girde Provide meci bearing plate 3. CAD CASE(S) 	as been designed n chord in all areas y 2-00-00 wide will y other members. assumed to be: , J er(s) for truss to tru nanical connection capable of withsta Standard	for a liv where fit betv loint 5 \$ ss conr (by oth inding 1	e load of 20.0 a rectangle veen the botto SP No.2 . hections. ers) of truss to 4 lb uplift at jo	ipsf om o pint					
FORCES	(size) Max Horiz Max Uplift Max Grav (lb) - Max	3= Mecha 5=0-3-8 5=29 (LC 3=-14 (LC 3=28 (LC (LC 22)	nical, 4= Mechanica 12) 15) 22), 4=14 (LC 13), 5 pression/Maximum	i, i=151	-072 0702(0)	Clandara								
TOP CHORD BOT CHORD	Tension 2-5=-132 4-5=0/0	/93, 1-2=0/3	33, 2-3=-29/16											
 NoTES Wind: ASC Vasd=103 II; Exp B; I Exterior(2l vertical lef forces & M DOL=1.60 TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce= Unbalance design. This truss load of 12 overhangs 	CE 7-16; Vu Bmph; TCDL Enclosed; N E) zone; ca if and right e WWFRS for 0 plate grip I CE 7-16; Pr =1.25); Pg= 5 Plate DOL 0.9; Cs=1.0 ed snow loa has been d .0 psf or 2.0 s non-concu	IIt=130mph =6.0psf; B0 IWFRS (en ntilever left exposed;C-1 reactions sl DOL=1.33 =20.0 psf; F =20.0 psf; F =1.15); Is=' 0; Ct=1.10 ds have be lesigned for 10 times flat irrent with o	(3-second gust) CDL=6.0psf; h=25ft; velope) and C-C and right exposed; C for members and hown; Lumber roof LL: Lum DOL=1 f=13.9 psf (Lum 1.0; Rough Cat B; Fu en considered for th r greater of min roof roof load of 13.9 ps ther live loads.	Cat. end .25 ully is live f on							CONTRACTOR STATE	and succession of the	ORTH CA ORTH CA SEA 2867	EER.St.

munn April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	E16	Jack-Open	2	1	Job Reference (optional)	173095684

-0-10-8

0-10-8

1

1-11-1

9 9 1-4-9

1-4-9

12 8 Г

2x4

3

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 08:53:17 ID:IHKXxlpgU6RfJ_3pu9OjtDzLw?T-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-11-1

Page: 1

Scale = 1:26.7

Loading

TCDL

BCLL

BCDL

TCLL (roof)

Snow (Pf/Pg)

LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP N 2x4 SP N 2x4 SP N	0.2 0.2 0.3
BRACING		
TOP CHORD	Structural 1-4-9 oc p	wood sheathing directly applied or burlins, except end verticals.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(size)	3= Mechanical, 4= Mechanical, 5=0-3-8
	Max Horiz	5=35 (LC 10)
	Max Uplift	3=-18 (LC 13), 4=-3 (LC 10)
	Max Grav	3=25 (LC 29), 4=17 (LC 11), 5=131 (LC 2)
FORCES	(lb) - Max Tension	imum Compression/Maximum

(psf)

20.0

10.0

0.0

10.0

13 9/20 0

Spacing

Code

Plate Grip DOL

Rep Stress Incr

Lumber DOL

TOP CHORD 2-5=-122/85, 1-2=0/41, 2-3=-35/25 BOT CHORD 4-5=0/0

NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

April 30,2025

GRIP

244/190

FT = 20%

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	V1	Valley	1	1	Job Reference (optional)	173095685

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 08:53:17 ID:C_SuRYBTI3ufHWs3NT8nDdzM7Qs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:41

Plate Offsets (X, Y): [3:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDI	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-SH	0.13 0.14 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 6=10-7-6, 9=10-7-6, Max Horiz 10=-114 (I Max Uplift 7=-53 (LC (LC 19) Max Grav 6=137 (LC 8=320 (LC 10=15 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc 7=10-7-6, 8=10-7-6, 10=10-7-6 LC 9) 2 14), 8=-1 (LC 9), 10 2 28), 7=239 (LC 29) 2 29), 9=309 (LC 28) 2 2)	3) d or 5) 6) 7) 9)=-43 9) 10	Truss design only. For stu- see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.2 All plates are Gable requir Gable studs * This truss F on the bottor 3-06-00 tall b chord and ar All bearings a) Provide meci bearing plate	led for wind loads in ds exposed to wind d Industry Gable Er alified building des 7-16; Pr=20.0 psf; late DOL=1.15); Is- b; Cs=1.00; Ct=1.10 e 2x4 MT20 unless es continuous botto spaced at 2-0-0 oc has been designed in chord in all areas by 2-00-00 wide will by other members, are assumed to be hanical connection	n the pla d (norm nd Deta igner as (roof LL Pf=13.9 =1.0; Rc) otherwi otherwi otherwi otherwi for a liv where I fit betw with BC SP No. (by oth unding 4	ane of the true al to the face ils as applical s per ANSI/TF c Lum DOL=' psf (Lum ough Cat B; F se indicated. d bearing. e load of 20.0 a rectangle veen the botto DL = 10.0psf 2. ers) of truss t 3 lb uplift at j	ss), ole, Pl 1. 1.25 ully opsf om o o				weight. So ib	11 - 2078	
FORCES	(lb) - Maximum Com Tension	pression/Maximum	LC	DAD CASE(S)	Standard	upint a	t joint 7.							
TOP CHORD	1-10=-56/83, 1-2=-66 3-4=-121/125, 4-5=-9	6/91, 2-3=-122/123, 94/82, 5-6=-119/102											11111	
BOT CHORD	9-10=-94/140, 8-9=-9 6-7=-94/140	94/140, 7-8=-94/140	,								an'	RTHCA	ROLIN.	
NEBS	2-9=-235/146, 4-8=-2	226/118, 5-7=-206/2	17								Ĩ		Chi. 7	
 Unbalance this design Wind: AS(Vasd=103) II; Exp B; (3E) 0-1-1 (2N) 6-2-0 exposed; members Lumber D 	ed roof live loads have n. CE 7-16; Vult=130mph Imph; TCDL=6.0psf; BC Enclosed; MWFRS (en 2 to 32-20, Corner(3R) 0 to 10-1-10 zone; canti end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO	been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) and C-C Co 3-20 to 6-2-0, Exter ilever left and right ght exposed;C-C for for reactions shown; iL=1.33	Cat. rner rior							CONTRACT.	Junin 1	SEA 2867	ER.ST	With Hard Street

April 30,2025

Page: 1

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	V2	Valley	1	1	Job Reference (optional)	173095686

3-2-0

3-2-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

3-11-9

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 08:53:17 ID:OcYcCNWX7InSXuLaWp1QwwzM7Ih-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-7-13

5-5-13

4x5 = 2 8 Г 2x4 II 8 3-11-9 3-8-1 1 2x4 II ø 3 1-10-4 ø 0-3-8 -e-7 6 5 2x4 🛛 2x4 🔊 2x4 🛛 2x4 🛛 9-1-0 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES in (loc) Plate Grip DOL 1.25 TC 0.18 Vert(LL) n/a n/a 999 MT20 BC Lumber DOL 1 25 0.07 Vert(TL) n/a n/a 999 Rep Stress Incr YES WB 0.09 Horiz(TL) 0.00 4 n/a n/a Code IRC2021/TPI2014 Matrix-SH Weight: 37 lb TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 4) Plate DOL=1.25); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 4-0-0 oc. 6) * This truss has been designed for a live load of 20.0psf 7) d or on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 8) All bearings are assumed to be SP No.2 . -1-6 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint 7, 44 lb uplift at joint 4 and 54 lb uplift at joint 5. LOAD CASE(S) Standard -263

April 30,2025

GRIP

244/190

FT = 20%

TRENGINEERING BY A MITEK Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Scale = 1:32.8

TCLL (roof)

BCDL

LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x4 SP N	0.3
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural 6-0-0 oc p	l wood sheathing directly applied o ourlins, except end verticals.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(size)	4=9-1-6, 5=9-1-6, 6=9-1-6, 7=9-1
	Max Horiz	7=-85 (LC 9)
	Max Uplift	4=-44 (LC 12), 5=-54 (LC 14),
	Max Grav	4=56 (LC 9), 5=306 (LC 29), 6=20 (LC 2), 7=132 (LC 28)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-7=-137/	(124, 1-2=-109/129, 2-3=-127/120,
	67 66/7	

(psf)

20.0

10.0

0.0

10.0

13 9/20 0

BOT CHORD 6-7=-55/79, 5-6=-55/79, 4-5=-55/79 WEBS 2-6=-219/83, 3-5=-306/300

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) 0-1-12 to 3-2-0, Corner(3R) 3-2-0 to 6-2-0, Exterior (2N) 6-2-0 to 8-7-10 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

A MiTek / 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	V3	Valley	1	1	Job Reference (optional)	173095687

3-2-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 29 08:53:17 ID:XwEhvH3nAntNYCXttJEDmzzLwY0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-2-0 3-11-13 4x5 = 2 6

7-1-13

7-7-0

Scal	ρ	- 1	.28	7

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC202	21/TPI2014	CSI TC BC WB Matrix-P	0.32 0.09 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 3=7-7-6, 4 Max Horiz 5=-56 (LC Max Uplift 3=-10 (LC Max Grav 3=151 (LC 5=117 (LC	athing directly applie cept end verticals. applied or 10-0-0 or 4=7-7-6, 5=7-7-6 2 9) 14), 5=-24 (LC 13) 2 35), 4=298 (LC 2), 2 28)	4) 5) ed or 7) 5 8 9) 9)	 TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.5 Gable requir Gable studs * This truss h on the bottor 3-06-00 tall h chord and ar All bearings Provide mec bearing plate 5 and 10 lb u OAD CASE(S) 	7-16; Pr=20.0 .25); Pg=20.0 p late DOL=1.15) ; Cs=1.00; Ct= es continuous b spaced at 4-0-(nas been design n chord in all ar by 2-00-00 wide my other member are assumed to hanical connec e capable of witi uplift at joint 3. Standard	psf (roof LL psf; Pf=13.9 ; Is=1.0; Ro 1.10 pottom chor pottom cho	:: Lum DOL= 9 psf (Lum ough Cat B; F d bearing. e load of 20.1 a rectangle veen the bott 2 . ers) of truss : 4 lb uplift at j	1.25 Fully Opsf om to joint					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	(lb) - Maximum Com Tension 1-5=-127/130, 1-2=- 4-5=-47/53, 3-4=-47, 2-4=-236/98 ed roof live loads have	pression/Maximum 69/95, 2-3=-80/80 /53 been considered fo	r										1100

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) 0-1-12 to 3-2-0, Corner(3R) 3-2-0 to 6-2-0, Exterior (2N) 6-2-0 to 7-1-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	V4	Valley	1	1	Job Reference (optional)	173095688

1-7-14

0-0-4

1-11-9

Run: 8.73 E Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries, Inc. Wed Apr 30 16:11:07 ID:DTHLE8gHJ95kTO2OXg6tWWzLwUe-zRFs_dAx9s779SZTBYpxNkUHQjnkaw55hZJwylzLUoY Page: 1

5-10-0

Scale - 1.24.8

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2021/TPI	2014	CSI TC BC WB Matrix-MP	0.08 0.11 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-10-0 oc purlins. Rigid ceiling directly bracing. (lb/size) 1=43/5-11 4=308/5-' Max Horiz 1=34 (LC Max Uplift 3=-2 (LC Max Grav 1=67 (LC (LC 2)	eathing directly applie 9 applied or 6-0-0 oc 0-0, 3=43/5-10-0, 10-0 10) 14) 34), 3=67 (LC 35), 4	5) Gal 6) Gal 7) * Th on t 3-0 ed or cho 8) All I cap 9) Pro bea LOAD (ble requires ble studs s his truss ha the bottom 6-00 tall by rod and any bearings an bacity of 56 wide mech- aring plate of CASE(S)	s continuous bot paced at 4-0-0 o as been designed chord in all area / 2-00-00 wide w / other members re assumed to be 5 psi. anical connection capable of withst Standard	tom chornor. c. d for a livias where iill fit betw e SP No n (by oth tanding 2	d bearing. e load of 20.0 a rectangle reen the botto 2 crushing ers) of truss t Ib uplift at jo	Opsf om o int 3.						
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-73/146, 2-3=-7 1-4=-130/145, 3-4=- 2-4=-280/191	npression/Maximum /3/146 ·130/145												
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp B; I (3E) zone; left and rig MWFRS If grip DOL= 3) Truss desi only. For see Stand or consult 4) TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce=0	ed roof live loads have CE 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er cantilever left and rigi pht exposed; C-C for m or reactions shown; Lu .1.33 igned for wind loads in studs exposed to wind ard Industry Gable En qualified building desi CE 7-16; Pr=20.0 psf; f .e.1.25); Pg=20.0 psf; F .e.125); Pg=20.0 psf; F .e.125); Sg=20.0; Ct=1.10	been considered for (3-second gust) CDL=6.0psf; h=25ft; rovelope) and C-C CC ht exposed ; end ver embers and forces 8 imber DOL=1.60 pla the plane of the trus (normal to the face) d Details as applicat gner as per ANSI/TF (roof LL: Lum DOL=1 Pf=13.9 psf (Lum 1.0; Rough Cat B; Fi	r Cat. orner tical k te ss , ole, 211. 1.25 ully							1111111.	and a state of the	SEA 2867	EER.SK	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	V5	Valley	1	1	Job Reference (optional)	173095689

0-11-9

0-0-4

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 E Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries, Inc. Wed Apr 30 16:11:18 ID: 3tzkJxD?sgYxfg6lqnt71ozLwRM-9YP0IOJrZEVaz8vaLMWWK3RAA9ZDfuhiDmT?r9zLUoN

2-10-0 1-5-0 2-4-13 1 1-5-0 0-11-13 0 0-5-3

Page: 1

3x5 = 12 8 Г 2 3 2x4 🧀 2x4 🔊 2-10-0

Scale = 1:24.7

Plate Offsets (X, Y): [2:0-2-8,Edge]

,														
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2021/TF	912014	CSI TC BC WB Matrix-MP	0.05 0.06 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103r II; Exp B; E (3E) zone; left and rigi MWFRS fc grip DOL= 3) Truss desig only. For s see Stands or consult d TCLL: ASC Plate DOL= DOL=1.15 Exp.; Ce=(0 5) Gable requ 6) Gable stud	2x4 SP No.2 2x4 SP No.2 Structural wood shea 2-10-0 oc purlins. Rigid ceiling directly bracing. (lb/size) 1=96/2-10 Max Horiz 1=15 (LC Max Grav 1=113 (LC (lb) - Maximum Com Tension 1-2=-182/117, 2-3=- 1-3=-80/143 ed roof live loads have b CE 7-16; Vult=130mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (en or reactions shown; Lu 1.33 gned for wind loads in studs exposed to wind ard Industry Gable Enc qualified building desig CE 7-16; Pr=20.0 psf; IF Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 uires continuous bottor is spaced at 4-0-0 oc.	athing directly applie applied or 10-0-0 oc 12) C 2), 3=96/2-10-0 12) D 2 2), 3=113 (LC 2) pression/Maximum 122/89 been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) and C-C Co t exposed ; end vert embers and forces & mber DOL=1.60 plat the plane of the trus (normal to the face) d Details as applicab gner as per ANS/TP roof LL: Lum DOL=1 7=13.9 psf (Lum 1.0; Rough Cat B; Fu m chord bearing.	7) * - or 3- ch 8) Al ca LOAD	This truss h in the bottom 06-00 tall b iord and an I bearings a pacity of 56 CASE(S)	as been designed in chord in all areas y 2-00-00 wide will y other members. tre assumed to be 55 psi. Standard	for a liv where fit betw SP No.	e load of 20.0 a rectangle veen the botto 2 crushing	Opsf				SEA 286 OHN L. G	EEP OF	AMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
	ING - Verify design parameter	ers and READ NOTES ON		DED MITEK RE	FERENCE PAGE MII-74	473 rev. 1	/2/2023 BEFORE	USE.				ENGINEE	RING BY	

818 Soundside Road Edenton, NC 27932

Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	V6	Valley	1	1	Job Reference (optional)	173095690

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 08:53:17 ID:jWS5kuVj?xHwXTEXsIYonBzM7Mb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psi 20. 13.9/20. 10. 0. 10.	 Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code 	2-0-0 1.25 1.25 YES IRC202 ²	1/TPI2014	CSI TC BC WB Matrix-MSH	0.17 0.07 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 40 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood 6-0-0 oc purlins, Rigid ceiling dire bracing. (size) 1=9-7 7=9-7 Max Horiz 1=95 Max Uplift 1=-19 (LC 1: Max Grav 1=84 6=270	sheathing directly appli except end verticals. ctly applied or 10-0-0 c -12, 5=9-7-12, 6=9-7-1 -12 LC 10) (LC 9), 5=-22 (LC 14), 3) LC 29), 5=140 (LC 29) (LC 28), 7=314 (LC 28)	4) 5) 6) 00 2, 8) 9) 7=-48 LC 8)	TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Gable requirr Gable studs : * This truss h on the botton 3-06-00 tall b chord and an All bearings a Provide mecl bearing plate 5, 19 lb uplift DAD CASE(S)	7-16; Pr=20.0 psi .25); Pg=20.0 psi; ate DOL=1.15); Is ; Cs=1.00; Ct=1.1 es continuous bott spaced at 4-0-0 or as been designed n chord in all area by 2-00-00 wide wi y other members. are assumed to be hanical connectior c capable of withst at joint 1 and 48 I Standard	f (roof LL Pf=13.9 =1.0; Rc 0 om chor c. If for a liv s where Il fit betw e SP No. h (by oth anding 2 b uplift a	:: Lum DOL= 9 psf (Lum ough Cat B; F d bearing. e load of 20.1 a rectangle veen the bott 2. ers) of truss t 2 lb uplift at j t joint 7.	1.25 Fully Opsf om to joint						
FORCES TOP CHORD	(lb) - Maximum (Tension 1-2=-111/96, 2-3 4-5=-143/157	Compression/Maximum =-131/160, 3-4=-114/1	1 54,											
BOT CHORD WEBS	1-7=-62/87, 6-7= 3-6=-228/86, 2-7	-37/48, 5-6=-37/48 =-307/273										N'IL CA	Della	
NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=103 II; Exp B; (2) 0.00	ed roof live loads h n. CE 7-16; Vult=130r 3mph; TCDL=6.0ps Enclosed; MWFRS	ave been considered fo nph (3-second gust) f; BCDL=6.0psf; h=25ff (envelope) and C-C C	or t; Cat. forner								New York	ORTHO	L NATION	

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) 0-0-6 to 3-0-6, Exterior(2N) 3-0-6 to 6-4-10, Corner (3E) 6-4-10 to 9-6-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
Truss designed for wind loads in the plane of the truss

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. SEAL 28677

April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	V7	Valley	1	1	Job Reference (optional)	173095691

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 29 08:53:18 ID:JJPHz?_zs24qnp?LqpDzHczLweZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

8-1-12

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.27 0.32 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 31 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=8-1-12, Max Horiz 1=66 (LC Max Grav 1=177 (LC 5=364 (LC	athing directly applied cept end verticals. applied or 10-0-0 oc 4=8-1-12, 5=8-1-12 10) 13), 4=-23 (LC 14) C 34), 4=112 (LC 29), C 2)	 4) TCLL: ASC Plate DOL= DOL=1.15 F Exp.; Ce=0. 5) Gable requi 6) Gable studs on the botto 3-06-00 tall chord and a 8) All bearings 9) Provide met bearing plat 4 and 5 lb u 	E 7-16; Pr=20.0 p 1.25); Pg=20.0 p Plate DOL=1.15); 9; Cs=1.00; Ct=1 res continuous bo spaced at 4-0-0 has been design m chord in all are by 2-00-00 wide ny other member are assumed to chanical connecti e capable of with plift at joint 1. Standard	osf (roof LL sf; Pf=13.S Is=1.0; Rc .10 ottom chor oc. ed for a liv eas where will fit betw rs. be SP No. on (by oth standing 2	:: Lum DOL= psf (Lum bugh Cat B; F d bearing. e load of 20.0 a rectangle veen the botto 2. ers) of truss t 3 lb uplift at j	1.25 Fully Opsf om oint					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasci 4103	(lb) - Maximum Com Tension 1-2=-294/194, 2-3=- 1-5=-165/263, 4-5=- 2-5=-237/84 ed roof live loads have b. CE 7-16; Vult=130mph TCDI =6 0nsf; Bi	pression/Maximum 74/118, 3-4=-133/149 15/19 been considered for (3-second gust) CDI =6 0nsf: h=25ft: C	at								WITH CA	ROLIN

- II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) 0-0-6 to 3-0-6, Exterior(2N) 3-0-6 to 4-10-10, Corner(3E) 4-10-10 to 8-0-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	V8	Valley	1	1	Job Reference (optional)	173095692

Run: 8.73 E Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries, Inc. Wed Apr 30 16:11:33 ID:dsYmZbK9blu3xiAmh04YivzLwTo-DRphSWUF1rORGRZTj0H2RDZjICeJfgQvgccltnzLUo8

Page: 1

0-0-4

6-8-8

Scale = 1:26				I								1	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2021/	/TPI2014	CSI TC BC WB Matrix-MP	0.12 0.15 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-8-8 oc purlins. Rigid ceiling directly bracing. (Ib/size) 1=41/6-8- 4=373/6-8 Max Horiz 1=-39 (LC Max Uplift 3=-4 (LC S Max Grav 1=69 (LC (LC 2)	athing directly applie applied or 6-0-0 oc 8, 3=41/6-8-8, 3-8 ; 11) 9) 34), 3=69 (LC 35), 4	4) 5) 6) 7) 8) 9) 9)	TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Gable requird Gable studs * This truss h on the botton 3-06-00 tall b chord and ar All bearings a Capacity of 5 Provide mecl bearing plate	7-16; Pr=20.0 psi ,25); Pg=20.0 psf; ate DOL=1.15); Is ; Cs=1.00; Ct=1.1 es continuous bott spaced at 4-0-0 or las been designed in chord in all area by 2-00-00 wide wi yo other members. are assumed to be 65 psi. hanical connection capable of withst	f (roof LL ; Pf=13.9 s=1.0; Rc 0 tom chor c. d for a liv s where ill fit betv e SP No. h (by oth anding 4	: Lum DOL=) psf (Lum) ugh Cat B; F d bearing. e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss t Ib uplift at joi	1.25 fully Opsf om o int 3.				<u>.</u>	
FORCES TOP CHORD BOT CHORD WEBS NOTES	(lb) - Maximum Com Tension 1-9=-102/169, 2-9=-1 3-10=-92/169 1-4=-170/167, 3-4=- 2-4=-355/213	pression/Maximum 88/195, 2-10=-78/19 170/167	5,	AD CASE(S)	Stanuaru								
 c) c) and a construction of the set of the	n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed; MWFRS (en 5 to 3-0-6, Exterior(2N) 10 to 6-4-10, Exterior(2) titlever left and right exp exposed;C-C for memb for reactions shown; Lu =1.33 signed for wind loads in studs exposed to wind lard Industry Gable Em evanified building depice	(3-second gust) CDL=6.0psf; h=25ft; ivelope) and C-C Co 3-0-6 to 3-4-10, Cor N) 6-4-10 to 6-8-14 bosed ; end vertical I pers and forces & mber DOL=1.60 plat the plane of the trus (normal to the face) d Details as applicat more on end ANE/IT	Cat. rner ner eft te ss , ,							. AND DAMAGE.	Super States	SEA 2867	L ST ST

grip DOL=1.33 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

GA mm April 30,2025

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	V9	Valley	1	1	Job Reference (optional)	173095693

Run: 8.73 E Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries, Inc. Wed Apr 30 16:11:43 ID:j?HYXUzW01U_jMQs0WVu45zLwQN-wMQTYxcXgwf1T_JOI6SOqK_RBE4h?CtOz91qDCzLUo_

3-8-8

Page: 1

Scale = 1:23

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.09 0.08 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%	
BCDL LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD I) Unbalancee this design 2) Wind: ASC Vasd=103r II; Exp B; E (3E) zone; left and rigit MWFRS for grip DOL=1 3) Truss desig only. Fors see Standa or consult of 1) TCLL: ASC	10.0 2x4 SP No.2 2x4 SP No.2 Structural wood shea 3-8-8 oc purlins. Rigid ceiling directly bracing. (lb/size) 1=126/3-8 Max Horiz 1=20 (LC Max Grav 1=148 (LC (lb) - Maximum Com Tension 1-2=-253/154, 2-3=- 1-3=-110/200 d roof live loads have E 7-16; Vult=130mph mph; TCDL=6.0psf; BC inclosed; MWFRS (en cantilever left and righther exposed; C-C for me cantilever left and righther exposed; C-C for me the exposed; C-C for me the exposed; C-C for me the exposed to wind loads in tuds exposed to wind loads in tuds exposed to wind udstry Gable Enc qualified building desig 2E 7-16; PT=20.0 psf (athing directly applie applied or 10-0-0 oc 8-8, 3=126/3-8-8 10) 2 2), 3=148 (LC 2) pression/Maximum 153/107 been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) and C-C Co it exposed ; end veri embers and forces & mber DOL=1.60 plai the plane of the trus (normal to the face) d Details as applicab gner as per ANSI/TP roof LL: Lum DOL=1	7) * This truss on the botto 3-06-00 tall chord and a 8) All bearings capacity of LOAD CASE(S Cat. rner tical is ss , ble, 11.	has been designed m chord in all areas by 2-00-00 wide wil ny other members. are assumed to be 565 psi.) Standard	for a liv s where Il fit betv s SP No.	e load of 20.0 a rectangle veen the botto 2 crushing)psf om				Weight: 11 lb	FT = 20%	annanna)
DOL=1.15 DOL=1.15 Exp.; Ce=0 5) Gable requ 6) Gable stud	=1.29); Pg=20.0 ps; P Plate DOL=1.15); Is=).9; Cs=1.00; Ct=1.10 ires continuous bottor is spaced at 4-0-0 oc.	r≕13.9 psr (Lum 1.0; Rough Cat B; Fι n chord bearing.	ully							A MARTINE A	April	EEP. 54	line.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	V10	Valley	1	1	Job Reference (optional)	173095694

3-4-0

3-4-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 29 08:53:18 ID:OcYcCNWX7InSXuLaWp1QwwzM7Ih-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-0-15

9-6-2

Page: 1

9-6-2

Scale = 1:33.5

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC202 ⁻	1/TPI2014	CSI TC BC WB Matrix-SH	0.16 0.08 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 39 lb	GRIP 244/190 FT = 20%	
JUMBER FOP CHORD 30T CHORD WEBS DTHERS BRACING FOP CHORD 30T CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) 4=9-6-2, 5 Max Horiz 7=-89 (LC Max Uplift 4=-33 (LC 7=-23 (LC Max Grav 4=62 (LC 6=268 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc 5=9-6-2, 6=9-6-2, 7= 3 (20), 5=-54 (LC 14), 3 (11), 5=-54 (LC 24), 5 (2), 7=141 (LC 28)	4) 5) 6) 6) 7) 5 9-6-2 9) LC	TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Gable requir Gable studs * This truss h on the bottor 3-06-00 tall b chord and ar All bearings a Provide mec bearing plate 7, 33 lb uplift	7-16; Pr=20.0 psf .25); Pg=20.0 psf; late DOL=1.15); Is cs=1.00; Ct=1.1 es continuous bott spaced at 4-0-0 oc nas been designed n chord in all areas by 2-00-00 wide wil y other members. are assumed to be hanical connection e capable of withsts at joint 4 and 54 II Standard	(roof LL Pf=13.S =1.0; Rc o om chor c for a liv s where ll fit betv SP No. (by oth anding 2 b uplift a	:: Lum DOL=) psf (Lum) ugh Cat B; F d bearing. e load of 20.0 a rectangle veen the botto 2. ers) of truss t 3 lb uplift at j t joint 5.	1.25 Fully Opsf om to oint						
F ORCES TOP CHORD	(lb) - Maximum Com Tension 1-7=-145/130, 1-2=-	pression/Maximum 116/136, 2-3=-132/12	29,											
BOT CHORD WEBS	3-4=-101/88 6-7=-57/83, 5-6=-57/ 2-6=-221/78, 3-5=-29	/83, 4-5=-57/83 98/283												
NOTES													1111	
 Unbalanc this desig Wind: AS Vasd=100 II; Exp B; (3E) 0-1-7 (2N) 6-4-(exposed ; members 	ed roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B0 Enclosed; MWFRS (en 12 to 3-4-0, Corner(3R) 0 to 9-0-12 zone; cantilé end vertical left and riç and forces & MWFRS	been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) and C-C Co 3-4-0 to 6-4-0, Exter ever left and right ght exposed;C-C for for reactions shown;	Cat. rner rior							. antimas	Vinne	ORTH CA SEA 2867	ROJU N L Z7	A MARINA MARINA

Lumber DOL=1.60 plate grip DOL=1.33 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. JOHN SOHN L. GA mmm April 30,2025

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	V11	Valley	1	1	Job Reference (optional)	173095695

3-1-11 2-10-3

3-1-11

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 29 08:53:18 ID:OcYcCNWX7InSXuLaWp1QwwzM7Ih-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

8-0-2

Scale - 1.29.4

00010 - 11201	•												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-P	0.36 0.10 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 30 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 3=8-0-2, - Max Horiz 5=-60 (LC Max Uplift 3=-10 (LC Max Grav 3=160 (LC (LC 28) 	eathing directly applie cept end verticals. r applied or 10-0-0 or 4=8-0-2, 5=8-0-2 2 11) 2 14), 5=-26 (LC 13) C 2), 4=317 (LC 2), 5	4) 5) 6) 7) c 8) 9) 5=124 LC	TCLL: ASCE Plate DOL=' DOL=1.15 P Exp.; Ce=0.9 Gable requir Gable studs * This truss I on the bottor 3-06-00 tall I chord and an All bearings Provide mec bearing plate 5 and 10 lb to DAD CASE(S)	7-16; Pr=20.0 (.25); Pg=20.0 p late DOL=1.15); b; Cs=1.00; Ct=1 es continuous b spaced at 4-0-0 nas been design n chord in all arr by 2-00-00 wide y other membe are assumed to hanical connect e capable of with uplift at joint 3. Standard	psf (roof LL stf; Pf=13.9 ; Is=1.0; Rc 1.10 ottom chor o.c. eed for a liv- eas where will fit betw rs. be SP No.: ion (by oth tstanding 2	: Lum DOL= psf (Lum rugh Cat B; F d bearing. e load of 20.0 a rectangle reen the bott 2. ers) of truss t 6 lb uplift at j	1.25 Fully Opsf om ro oint					
FORCES	(lb) - Maximum Corr Tension 1-5=-134/133, 1-2=- 0 4-5=-50/56, 3-4=-50	npression/Maximum 73/100, 2-3=-85/81 //56											
 WEBS NOTES 1) Unbalance this desig 2) Wind: AS Vasd=10 II; Exp B; (3E) 0-1- (2N) 6-4- exposed 	2-4=-250/103 ceed roof live loads have gn. GE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed; MWFRS (er 12 to 3-4-0, Corner(3R) 0 to 7-6-12 zone; cantil end vertical left and ri	been considered fo (3-second gust) CDL=6.0psf; h=25ft; nvelope) and C-C Cc) 3-4-0 to 6-4-0, Exte ever left and right ght exposed;C-C for	r Cat. orner erior								and a second	OR SEA	ROJ

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	V12	Valley	1	1	Job Reference (optional)	173095696

1-9-15

2-1-11

Run: 8.73 E Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries, Inc. Wed Apr 30 16:11:58 ID:DTHLE8gHJ95kTO2OXg6tWWzLwUe-_Fq8h3ox8XYumHzGhmEvxV6?EHAM0zabQ?97ErzLUnI

Page: 1

6-4-4

Scale = 1:25.5

	i											
(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2021/	TPI2014	CSI TC BC WB Matrix-MP	0.11 0.13 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-4-4 oc purlins. Rigid ceiling directly bracing. (lb/size) 1=42/6-4- 4=346/6-4 Max Horiz 1=37 (LC Max Uplift 3=-3 (LC 9 Max Grav 1=69 (LC (LC 2))	athing directly applie applied or 6-0-0 oc 4, 3=42/6-4-4, 1-4 10) 9) 34), 3=69 (LC 35), 4	5) 6) 7) d or 8) 9) LOA	Gable require Gable studs a * This truss h on the bottom 3-06-00 tall b chord and an All bearings a capacity of 50 Provide mech bearing plate	es continuous bott spaced at 4-0-0 oc as been designed o chord in all areas y 2-00-00 wide wil y other members. are assumed to be 55 psi. nanical connection capable of withsta Standard	om chor 2. for a liv s where Il fit betw SP No. C(by oth anding 3	d bearing. e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss t Ib uplift at joi	Opsf om o int 3.					
(lb) - Maximum Com Tension 1-2=-91/174, 2-3=-9 1-4=-153/165, 3-4=- 2-4=-324/220 ed roof live loads have CE 7-16; Vult=130mph imph; TCDL=6.0psf; BC Enclosed; MWFRS (en ; cantilever left and righ the xposed; C-C for me or reactions shown; Lu :1.33 igned for wind loads in studs exposed to wind ard Industry Gable Enc qualified building desig CE 7-16; Pr=20.0 psf (=1.25); Pg=20.0 psf; F is Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10	pression/Maximum 1/174 153/165 been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) and C-C Con the exposed; end vert embers and forces & mber DOL=1.60 plat the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP roof LL: Lum DOL=1 rf=13.9 psf (Lum 1.0; Rough Cat B; Fu	Cat. rner ical e s le, l 1. .25 ılly									SEA 2867	EER. China
	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0 0.0* 10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she: 6-4-4 oc purlins. Rigid ceiling directly bracing. (lb/size) 1=42/6-4- 4=346/6-4 Max Horiz 1=37 (LC Max Uplift 3=-3 (LC 9) (lb) - Maximum Com Tension 1-2=-91/174, 2-3=-9 1-4=-153/165, 3-4=- 2-4=-324/220 ed roof live loads have h. CE 7-16; Vult=130mph imph; TCDL=6.0psf; Be Enclosed; MWFRS (er ; cantilever left and right texposed;C-C for mo or reactions shown; Lu 1.33 igned for wind loads in studs exposed to wind lard Industry Gable End qualified building desig CE 7-16; Pr=20.0 psf; Fi 5 Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c } \hline (psf) \\ 20.0 \\ 13.9/20.0 \\ 13.9/20.0 \\ 13.9/20.0 \\ 10.0 \\ 0.0^* \\ 10.0 \\ \hline \end{array} \begin{array}{ c c c c } \hline \\ Plate Grip DOL \\ 1.25 \\ Lumber DOL \\ 1.25 \\ Rep Stress Incr \\ YES \\ Code \\ \hline \end{array} \begin{array}{ c c c c } \hline \\ RC2021/TPI2014 \\ \hline \end{array} \begin{array}{ c c c } \hline \\ Structural wood sheathing directly applied or \\ 6.4.4 \ oc purlins. \\ A \ add (elling directly applied or 6.0-0 \ oc \\ bracing. \\ \hline \end{array} \begin{array}{ c c } \hline \\ Structural wood sheathing directly applied or \\ 6.4.4 \ oc purlins. \\ 4.3346/6-4.4 \\ Max Horiz 1=37 (LC 10) \\ Max Uplift 3=-3 (LC 9) \\ Max Grav 1=69 (LC 34), 3=69 (LC 35), 4=409 \\ (LC 2) \\ \hline \end{array} \begin{array}{ c } \hline \\ (lb) - Maximum Compression/Maximum \\ Tension \\ 1-2=-91/174, 2-3=-91/174 \\ 1-4=-153/165, 3-4=-153/165 \\ 2-4=-324/220 \\ \hline \end{array} \begin{array}{ c } 2-4=-324/220 \\ \hline \end{array} \begin{array}{ c } 2-4=-324/220 \\ \hline \end{array} \begin{array}{ c } 2-16; Vult=130mph (3-second gust) \\ mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. \\ Enclosed; MWFRS (envelope) and C-C Corner \\ ; cantilever left and right exposed ; end vertical \\ pht exposed; C- C for members and forces & \\ or reactions shown; Lumber DOL=1.60 plate \\ 1.33 \\ igned for wind loads in the plane of the truss \\ studs exposed to wind (normal to the face), \\ atard Industry Gable End Details as applicable, \\ qualified building designer as per ANSI/TPI 1. \\ CE 7-16; Pr=20.0 psf; (rof LL: Lum DOL=1.25 \\ =.1.25); Pg=20.0 psf; Pf=13.9 psf (Lum & \\ Study Cl = 1.0; Cl=1.10 \\ \hline \end{array}$	$ \begin{array}{ c c c c c } \hline (pst) \\ 20.0 \\ 13.9/20.0 \\ 13.9/20.0 \\ 10.0 \\ 0.0^* \\ 10.0 \\ \hline \\ $	$ \begin{array}{ c c c c } \hline (psf)\\ 20.0\\ 13.9/20.0\\ 13.9/20.0\\ 1$			$ \begin{array}{c} (psf) \\ 20.0 \\ 13.9/20.0 \\ 10.0 \\ 10.0 \\ 0.0^{+} \\ 10.0 \\ \end{array} \begin{array}{c} \text{Plate Grip DOL} \\ 1.25 \\ \text{Lumber DOL} \\ 1.25 \\ \text{Code} \\ \end{array} \begin{array}{c} 25 \\ \text{Code} \\ \text{IRC2021/TP12014} \\ \end{array} \begin{array}{c} \text{CSt} \\ \text{TC} \\ 0.11 \\ \text{BC} \\ 0.13 \\ \text{Vert(L)} \\ Ve$	$ \begin{array}{ c c c c c } \hline (psi) \\ 20.0 \\ 13.9/20.0 \\ 10.0$	$ \begin{array}{ c c c c } \hline (ps) \\ 20.0 \\ 13.9/20.0 \\ 10.0 \\ $	(psf) Spacing 2-0-0 CSI DEFL in (loc) I/deft Ld 13.3/2/0.1 Lumber DOL 1.25 TC 0.11 Vert(LL) n/a - n/a 999 10.0 Lumber DOL 1.25 WB 0.07 Vert(LL) n/a - n/a 999 20.0 Plate Grip DOL 1.25 WB 0.07 Vert(LL) n/a - n/a 999 10.0 Code IRC2021/TPI2014 Matrix-MP WB 0.07 Vert(LL) n/a n/a n/a 999 2x4 SP No.2 6 Gable requires continuous bottom chord bearing. 6 Gable requires continuous bottom chord bearing. 6 Gable requires continuous bottom chord bearing. 6 Gable add of 20.0psf 0

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	114 Eagle Creek - Lawson B - Roof	
25040130	V13	Valley	1	1	Job Reference (optional)	173095697

Run: 8.73 E Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries, Inc. Wed Apr 30 16:12:10 ID: 3tzkJxD?sgYxfg6lqnt71ozLwRM-dYYgDAxTJD3BD7uaOHRjQ1b2f7IAqPZMAs3mf8zLUnZ

2-11-1

1-2-15

Page: 1

1-8-2 1-8-2

2x4 💊

3-4-4

Scale = 1:22.6

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.08 0.07 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 9 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 Structural wood shea 3-4-4 oc purlins. Rigid ceiling directly bracing.	athing directly appliec applied or 10-0-0 oc	7) * This truss on the bott 3-06-00 tal chord and a al or 8) All bearing capacity of LOAD CASE(S	has been designed om chord in all area: by 2-00-00 wide wi any other members. s are assumed to be 565 psi.) Standard	I for a liv s where III fit betw SP No.	e load of 20.0 a rectangle /een the botto 2 crushing)psf om					
REACTIONS	EACTIONS (lb/size) 1=114/3-4-4, 3=114/3-4-4 Max Horiz 1=-18 (LC 9) Max Grav. 1=134 (LC 2) 3=134 (LC 2)											
FORCES TOP CHORD BOT CHORD	ORCES (Ib) - Maximum Compression/Maximum Tension 'OP CHORD 1-2=-224/139, 2-3=-140/100 IOT CHORD 1-3=-98/177											
NOTES 1) Unbalancet this design 2) Wind: ASC Vasd=103r II; Exp B; E (3E) zone; left and rigl MWFRS fo grip DOL=1 3) Truss desig only. For s see Standa or consult (4) TCLL: ASC Plate DOL= DOL=1.15 Exp.; Ce=0 5) Gable requ 6) Gable stud	d roof live loads have	been considered for (3-second gust) DDL=6.0psf; h=25ft; C velope) and C-C Cont texposed ; end verti embers and forces & mber DOL=1.60 plate the plane of the truss (normal to the face), d Details as applicable great per ANSI/TPI roof LL: Lum DOL=1.: f=13.9 psf (Lum 1.0; Rough Cat B; Full n chord bearing.	Cat. ner cal e s e, 1. 25 Ily								SEA 286	EEP. China and C

April 30,2025

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

