

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: HH Hunt Homes Raleigh

Model: 17 Magnolia Acres Greyson FA

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death. 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

ANT

Ċ

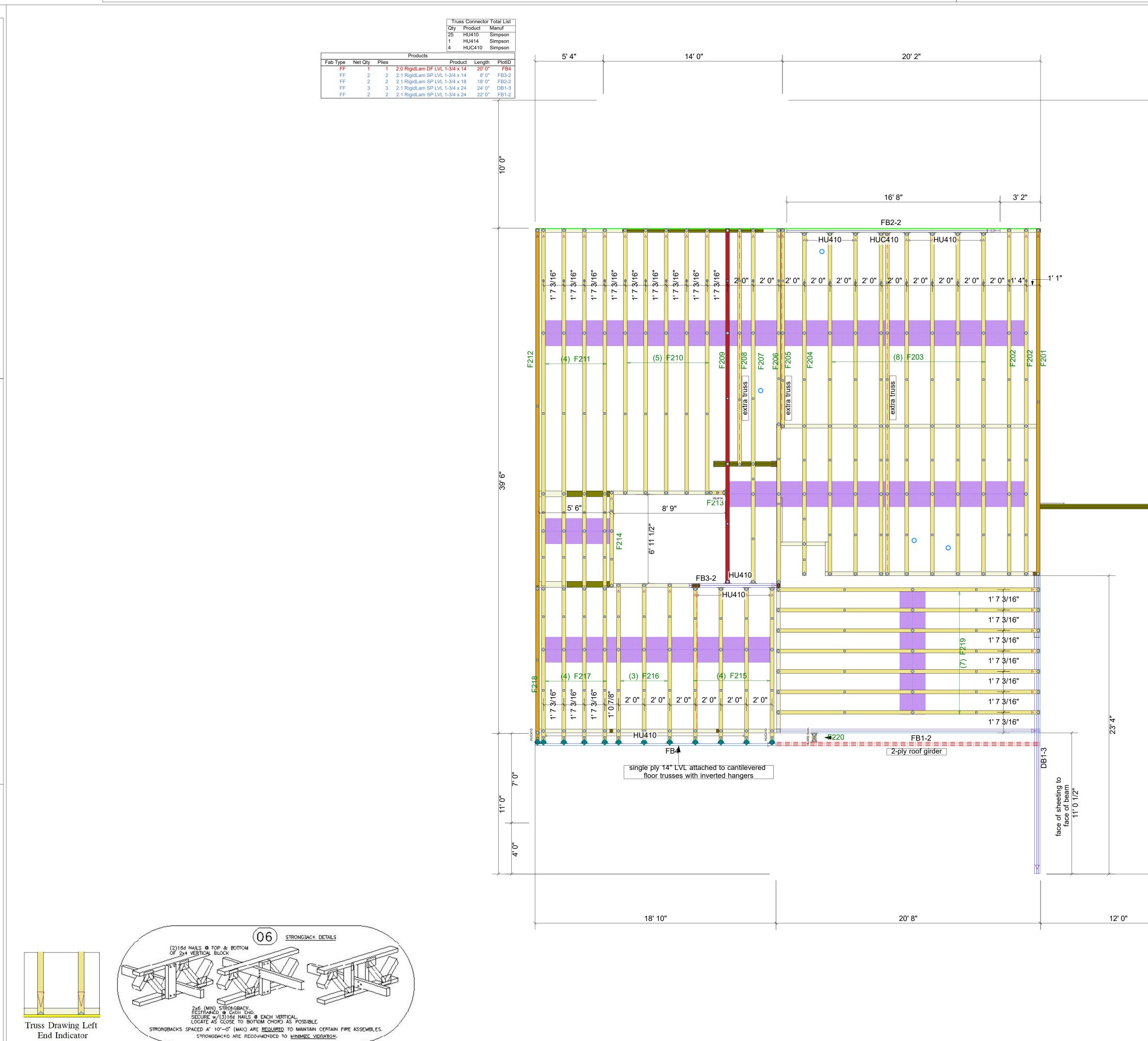
TOLD TO BY

SHOULD NOT BE INSTALLED

ONENTS

COMP

DAMAGED


*

COMPONENTS.

TO PLANS WHILE SETTING

FRAMER MUST REFER

*

D TO BEARING FROM UNDER SIDE OF SHEATHING.		00/00 00/00 00/00	/00 N /00 N /00 N	ame ame ame ame
22.0"	TRUSS TO TRUSS CONNECTIONS ARE TOE-NAILED, UNLESS NOTED OTHERWISE.	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for	each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The disign of the tuss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing	of Wood Truss" available from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179
	DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH.			
	TOGETHER PRIOR TO ADDING ANY LOADS.	HH Hunt Homes Raleigh Durham	17 Magnolia Acres Greyson FA	FLOOR PLACEMENT PLAN
D FINAL TRUSS ENGINEERING SHEETS FOR PLY TO PLY CON	GIRDERS MUST BE FULLY CONNECTED	Nat 25	NTS 5/5/2025 Designer: e Donald Project Num 04019 Sheet Numb	son ber: 5-A ber:

Trenco 818 Soundside Rd Edenton, NC 27932

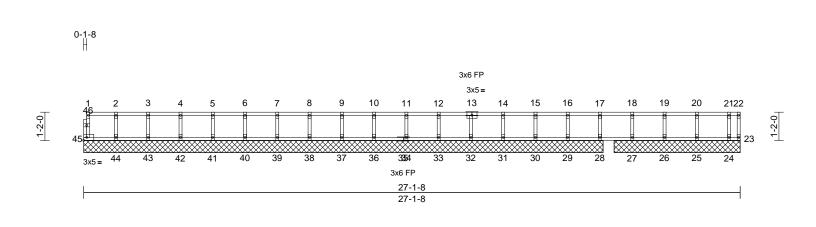
Re: 25040195-A Install 17 Magnolia Acres-2nd Floor-Greyson FA 3FL SP 3CG SL GRH

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I73186448 thru I73186467

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844


May 5,2025

Gilbert, Eric

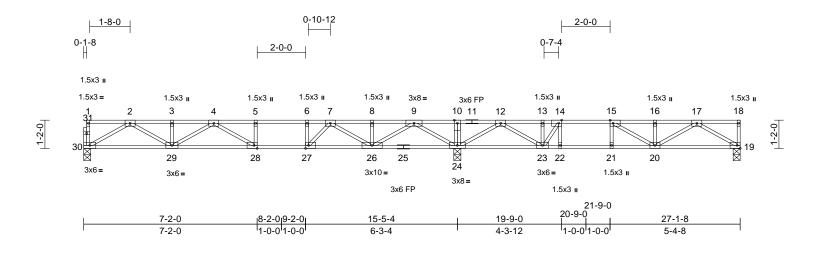
IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-2nd Floor-Greyson FA 3FL SP
25040195-A	F201	Floor Supported Gable	1	1	I73186448 Job Reference (optional)

Page: 1

Scale = 1:47.6

Loading TCLL TCLL CDL BCL (ps) 4000 Spacing PLA Grip DCL Lumber DOL Lumber DOL Lumber DOL Code 2-0- TC TC TC BC CSI BC 0.00 BCL FFL in (luc) (luc) V/d Verti(L1) 0.00 0.00 Variation (luc) PLATES 244/190 GRIP MT20 BCLL 0.00 Part Sission FOR Code TC TC 0.00 PLATES GRIP MT20 Verti(L1) 0.00 444-45 >999 360 BCLL 0.00 244 SP No.2(flat) Sold BOT CHORD 244 SP No.2(flat) Weight: 112 lb FT = 20%F, 11%E BTO CHORD 244 SP No.2(flat) Sold BOT CHORD 8 244 SP No.2(flat) Sold	Ocale = 1.47.0						. <u> </u>						
TCLL 4.0.0 Piate Grip DOL 1.00 TC 0.08 Vert(L1) 0.00 44-45 >999 360 MT20 244/190 TCDL 0.0 Rep Stress Incr VES Vert(CT) 0.00 44-45 >999 360 MT20 244/190 BCDL 5.0 Code IRC2021/TPI2014 Matrix-MR Vert(CT) 0.00 44-45 >999 360 Weight: 112 lb FT = 20%F, 11%E LUMBER Code IRC2021/TPI2014 Matrix-MR 44-45-003, 43-44-003, 42-43-013, 41-42-013, 39-40-03, 38-39-013, 37-38-013, 39-40-03, 38-39-013, 37-38-013, 39-40-03, 38-39-013, 37-38-013, 39-40-013, 33-34-010, 33-34-013, 33-34-010, 33-34-010, 33-34-013, 33-34-010, 33-34-013, 33-34-010, 33-34-013, 33-34-010, 33-3	Loading	(nsf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	l /d	PLATES	GRIP
TCDL 10.0 Lumber DOL 1.00 BC 0.02 Veri(CT) 0.00 44.45 >999 360 BCLL 5.0 Code IRC2021/TPI2014 WB 0.03 Veri(CT) 0.00 23 n/a n	•	u ,				0.08			. ,			-	
BCLL 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 23 n/a n/a BCDL 5.0 Code IRC2001/TPI2014 Matrix-MR 0.03 Horz(CT) 0.00 23 n/a n/a Meight: 112 lb FT = 20%F, 11%E LUMBER TOP CHORD 2x4 SP No.2(flat) BOT CHORD 44.45=0/3, 43.44=0/3, 43.44=0/3, 43.93=0/3, 42.43=0/3, 41.42=0/3, 40.41=0/2, 39.94=0/3, 33.93=0/3, 40.41=0/2, 39.94=0/3, 33.93=0/3, 32.93=0		10.0	1 '				· · ·					-	
BCDL 5.0 Code IRC2021/TPI2014 Matrix-MR Matrix-MR Weight: 112 lb FT = 20%F, 11%E LUMBER TOP CHORD 2x4 SP No.2(flat) BOT CHORD 44.45=0/3, 43-44=0/3, 42-43=0/3, 41-42=0/3, 40-41=0/3, 32-4=0/3, 37-38=0/3, 37-38=0/3, 30-32=0/8, 30-31=0/3, 37-38=0/3, 37-38=0/3, 30-32=0/8, 30-31=0/8, 30-33=0/3, 37-38=0/3, 30-32=0/8, 30-31=0/8, 30-31=0/8, 30-33=0/3, 30-32=0/8, 30-31=0/8, 30-31=0/8, 20-30=0/8, 20-29=0/8, 27-29=0/8, 25-29=0/8, 22-29=0/8, 27-29=0/8, 25-29, 21-29, 20-25=139/0, 21-24=13/0, 15-32=0, 20-25=139/0, 21-24=107/0 WEBS Values Values/20/8, 20-20/8, 20-20/8, 20-20/8, 20-20/8, 20-20/8, 20-20/8,							· · ·						
LUMBER TOP CHORD 2x4 SP No.2(flat) BOT CHORD 2x4 SP No.2(flat) WEBS 2x4 SP No.3(flat) BOT CHORD 3x4 SP No.3(flat) CTHER 2x4 SP No.3(flat) CTHER 2x4 SP No.3(flat) CTHER 2x4 SP No.3(flat) BOT CHORD 3x4 SP No.3(flat) BOT CHORD 3x4 SP No.3(flat) BOT CHORD 3x4 SP No.3(flat) BOT CHORD 3x4 SP No.3(flat) CTHER 2x4 SP No.3(flat) BOT CHORD 3x4 SP No.3(flat)					1=	0.00	11012(01)	0.00	20	1.0 C		Weight: 112 lb	FT = 20%F. 11%E
44=152 (LC 1), 45=49 (LC 3) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-45=-47/0, 22-23=-10/5, 1-2=-3/0, 3-4=-3/0, 4-5=-3/0, 5-6=-3/0, 6-7=-3/0, 7-8=-3/0, 8-9=-3/0, 12-14=-8/0, 14-15=-8/0, 15-16=-8/0, 16-17=-8/0, 17-18=-8/0, 15-16=-8/0, 16-17=-8/0, 17-18=-8/0, 18-19=-8/0, 19-20=-8/0, 20-21=-8/0, 21-22=-8/0 May 5,2025	BCLL BCDL LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS	0.0 5.0 2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 23=5-2-8. 29=21-5-i 32=21-5-i 32=21-5-i 32=21-5-i 32=21-5-i 32=21-5-i 32=21-5-i 32=21-5-i 32=21-5-i 32=21-5-i 32=21-5-i 32=21-5-i 32=21-5-i 32=21-5-i 33=21-5-i 32=21-5-i 33=21-5-i 33=21-5-i 33=21-5-i 32=21-5-i 33=21-5-i 33=21-5-i 33=21-5-i 33=21-5-i 33=21-5-i 32=21-5-i 33=21-5-i 32=21-5-i 33=21-5-i 32=21-5-i 33=21-5-i 32=21-5-i 33=21-5-i 32=21-5-i 3	Rep Stress Incr Code athing directly applied cept end verticals. applied or 10-0-0 oc 24=5-2-8, 25=5-2-8, 30=21-5-8, 31=21- 8, 30=21-5-8, 31=21- 8, 33=21-5-8, 34=21- 8, 33=21-5-8, 34=21- 8, 40=21-5-8, 41=21- 8, 33=21-45 (LC 1), LC 1), 26=145 (LC 1), LC 3), 32=146 (LC 1), LC 3), 32=146 (LC 1), LC 3), 32=147 (LC 1), LC 3), 33=147 (LC 3), Difference and the state and	YES IRC2021/TPI2014 BOT CHOR d or WEBS 3. 5-8, NOTES 5-8, 1) Unbalar 5-8, 1) Unbalar 5-8, 2) All plate 3) Truss to braced 1 4) Gable s 5) All bear 6) N/A 7) Recomm 10-00-0 (0.131" at their at 8) CAUTIO LOAD CAS 3/0,	WB Matrix-MR D 44-45=0/3, 43-44: 40-41=0/3, 39-40: 36-37=0/3, 34-36: 31-32=0/8, 30-31: 27-28=0/8, 26-27: 23-24=0/8 2-44=-135/0, 3-43: 5-41=-133/0, 6-40: 8-38=-133/0, 9-37: 11-34=-132/0, 12: 14-31=-131/0, 15: 17-28=-133/0, 18: 20-25=-139/0, 21: nced floor live loads hat ign. is are 1.5x3 MT20 unlow be fully sheathed from against lateral movem tuds spaced at 1-4-0 of ings are assumed to be nend 2x6 strongbacks 0 oc and fastened to ex X 3") nails. Strongbacks 0 outer ends or restraine DN, Do not erect truss	0.03 =0/3, 42= =0/3, 38= =0/8, 25= =-133/0, =-133/0, =-133/0, =-133/0, =-133/0, =-133/0, =-133/0, =-133/0, =-134/0, =-133/0, =-134/0, =-13	Horz(CT) 43=0/3, 41-42 33=0/3, 37-36 34=0/3, 32-32 30=0/8, 28-22 26=0/8, 24-22 4-42=-133/0 7-39=-133/0 10-36=-134// (0, 13-32=-13 /0, 16-29=-14 /0, 19-26=-13 /0 considered for wise indicate the or securely tiagonal web) 2. a, spaced at s with 3-10d attached to w or means.	0.00 2=0/3, 3=0/3, 3=0/3, 3=0/8, 5=0/8, 5=0/8, 0, 13/0, 10/0, 12/0, 10/0, 12/0, 00/0, 12/0, 10/0,	23	n/a	n/a	SEA ORTHESS SEA O363	



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:19:51 ID:VVvouNmtYBP?4YsmA3PPKrzSA2h-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-2nd Floor-Greyson FA 3FL SP
25040195-A	F202	Floor	2	1	I73186449 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:19:51 ID:_iTB5jnVJVXsihRzjmwet2zSA2g-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:47.6

19-20=0/823

5-28=-129/22, 6-27=-453/0, 2-30=-1348/0,

2-29=0/928, 3-29=-150/0, 4-29=-523/0, 4-28=-188/294, 10-24=-200/0, 9-24=-1616/0,

9-26=0/1268, 8-26=-202/0, 7-26=-890/0, 7-27=0/803, 12-24=-1273/0, 12-23=0/878, 13-23=-7/219, 14-23=-949/0, 17-19=-960/0, 17-20=0/601, 16-20=-249/0, 15-20=-59/281,

14-22=0/333, 15-21=-174/0

WEBS

NOTES

Scale = 1:47.6													
Plate Offsets (2	X, Y): [14:0-1-8,Edge], [15:0-1-8,Edge], [2	7:0-1-8,E	dge], [28:0-1-8	3,Edge]								
Loading TCLL TCDL	(psf) 40.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.00 1.00		CSI TC BC	0.82 0.80	DEFL Vert(LL) Vert(CT)	in -0.21 -0.28	(loc) 28-29 28-29	l/defl >891 >648	L/d 480 360	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0 5.0	Rep Stress Incr Code	YES	21/TPI2014	WB Matrix-MSH	0.60	Horz(CT)	0.04	19	>040 n/a	n/a	Weight: 135 lb	FT = 20%F, 11%E
	Max Grav 19=580 (L 30=760 (L	athing directly applie cept end verticals. applied or 6-0-0 oc 24=0-3-8, 30=0-3-8 C 4), 24=1702 (LC 1 .C 3)	2 3 4 d or 5 L	 this design. All plates ar All bearings Recommend 10-00-00 oc (0.131" X 3" at their oute 	I floor live loads h e 3x5 MT20 unle are assumed to d 2x6 strongback : and fastened to) nails. Strongba r ends or restrain Do not erect trus:) Standard	ess otherwi be SP No. ss, on edge each truss acks to be ned by othe	se indicated. 1. e, spaced at s with 3-10d attached to v er means.						
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-30=-70/0, 18-19=- 2-3=-1964/0, 3-4=-19 5-6=-2470/0, 6-7=-2- 8-9=-1347/0, 9-10=0 12-13=-1037/374, 12 14-15=-1388/119, 12 16-17=-1338/0, 17-1	964/0, 4-5=-2470/0, 470/0, 7-8=-1347/0, 1/1415, 10-12=0/141 3-14=-1037/374, 5-16=-1338/0,	5,									mmm	um.
BOT CHORD	29-30=0/1169, 28-29 26-27=0/2065, 24-26 23-24=-693/389, 22- 21-22=-119/1388, 20	9=0/2412, 27-28=0/2 6=-243/305, •23=-119/1388,	470,							L	I. T	ORTH CA	ROLINI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A Mi Tek Affili 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-2nd Floor-Greyson FA 3FL SP
25040195-A	F203	Floor	8	1	I73186450 Job Reference (optional)

0-10-12

Carter Components (Sanford, NC), Sanford, NC - 27332,

2x4 SP No.3(flat)

bracing.

Max Grav

Tension

19-20=0/824

Structural wood sheathing directly applied or

19=0-3-8, 24=0-3-8, 30=

19=580 (LC 4), 24=1688 (LC 1),

6-0-0 oc purlins, except end verticals.

Mechanical

30=748 (LC 3)

1-30=-59/0, 18-19=-73/0, 1-2=0/0, 2-3=-1799/0, 3-4=-1799/0, 4-5=-2367/0, 5-6=-2367/0, 6-7=-2367/0, 7-8=-1298/0, 8-9=-1298/0, 9-10=0/1412, 10-12=0/1412,

12-13=-1042/375, 13-14=-1042/375, 14-15=-1392/121, 15-16=-1339/0,

29-30=0/977, 28-29=0/2272, 27-28=0/2367, 26-27=0/1986, 24-26=-243/279, 23-24=-695/394, 22-23=-121/1392 21-22=-121/1392, 20-21=-121/1392,

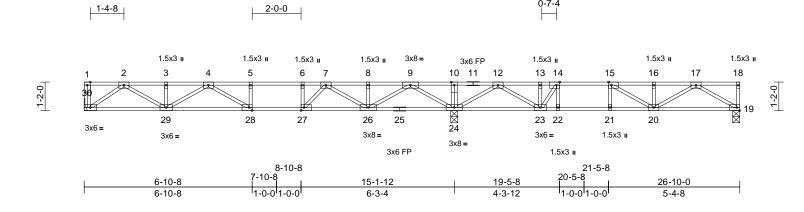
5-28=-134/21, 6-27=-446/0, 14-22=0/333, 15-21=-174/0, 9-24=-1590/0, 9-26=0/1242,

8-26=-202/0, 7-26=-853/0, 7-27=0/772, 4-28=-147/312, 4-29=-552/0, 3-29=-156/0, 2-29=0/960, 2-30=-1190/0, 17-19=-962/0. 17-20=0/602, 16-20=-249/0, 15-20=-61/281, 12-24=-1273/0, 12-23=0/878, 13-23=-8/219,

14-23=-950/0, 10-24=-200/0

16-17=-1339/0, 17-18=0/0

(lb) - Maximum Compression/Maximum


Rigid ceiling directly applied or 2-2-0 oc

1-8-0

Run; 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:19:52 ID:_iTB5jnVJVXsihRzjmwet2zSA2g-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-0-0

Page: 1

Scale = 1:47.2

WEBS

BRACING

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

REACTIONS (size)

Plate Offsets (X, Y): [14:0-1-8,Edge], [15:0-1-8,Edge], [27	':0-1-8,Edge], [28:0-1-8	3,Edge]								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.80	Vert(LL)	-0.20	28-29	>912	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.95	Vert(CT)	-0.27	28-29	>662	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.59	Horz(CT)	0.04	19	n/a	n/a		
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-MSH							Weight: 135 lb	FT = 20%F, 11%E
LUMBER TOP CHORD	2x4 SP No.1(flat) *E No.2(flat)	xcept* 11-18:2x4 SP	 Unbalanced floor live loads have been considered for this design. All plates are 3x5 MT20 unless otherwise indicated. 									
BOT CHORD	2x4 SP No.2(flat) *E No.1(flat)	xcept* 25-19:2x4 SP	 Bearings are assumed to be: , Joint 24 SP No.1 , Joint 19 SP No.1 . 									

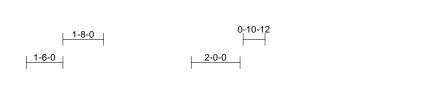
	19 SP NO.1.
4)	Pofor to girdor(c) for truce to truce connecti

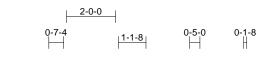
- Refer to girder(s) for truss to truss connections. 5)
- Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 6) CAUTION, Do not erect truss backwards. LOAD CASE(S) Standard

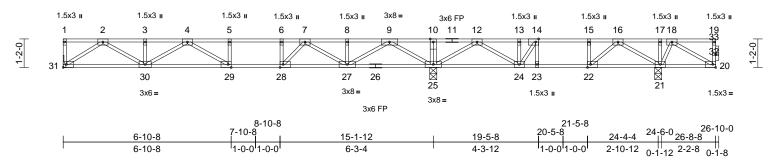
NOTES

WEBS

818 Soundside Road


Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-2nd Floor-Greyson FA 3FL SP
25040195-A	F204	Floor	1	1	I73186451 Job Reference (optional)


Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:19:52 ID:Su1ZJ3n74pfjJr09HURtQGzSA2f-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:47.2

Plate Offsets (X, Y)	Plate Offsets (X, Y): [14:0-1-8,Edge], [22:0-1-8,Edge], [28:0-1-8,Edge], [29:0-1-8,Edge]											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	тс	0.79	Vert(LL)	-0.19	29-30	>944	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.71	Vert(CT)	-0.26	29-30	>687	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.59	Horz(CT)	0.03	21	n/a	n/a		
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-MSH							Weight: 135 lb	FT = 20%F, 11%E
											- 5	,

LUMBER	
TOP CHORD	

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

WEBS

REACTIONS (size)

WEBS

OTHERS BRACING No.2(flat)

No.2(flat)

bracing.

Max Grav

Tension

20-21=-130/0

18-21=-287/0

2x4 SP No.3(flat)

2x4 SP No.3(flat)

2x4 SP No.1(flat) *Except* 11-19:2x4 SP

2x4 SP No.1(flat) *Except* 26-20:2x4 SP

Structural wood sheathing directly applied or

21=0-3-8, 25=0-3-8, 31=

21=700 (LC 4), 25=1580 (LC 3),

6-0-0 oc purlins, except end verticals.

Mechanical

31=756 (LC 14)

1-31=-61/0, 19-20=-71/0, 1-2=0/0, 2-3=-1845/0, 3-4=-1845/0, 4-5=-2415/0, 5-6=-2415/0, 6-7=-2415/0, 7-8=-1346/0, 8-9=-1346/0, 9-10=0/1403, 10-12=0/1403,

12-13=-622/472, 13-14=-622/472,

14-15=-743/301, 15-16=-743/301, 16-17=0/242, 17-18=0/242, 18-19=0/0

27-28=0/2038, 25-27=-315/328, 24-25=-724/150, 23-24=-301/743,

22-23=-301/743, 21-22=-224/511,

14-23=-16/153, 15-22=-197/50, 4-29=-158/314, 4-30=-551/0, 3-30=-155/0, 2-30=0/959, 2-31=-1231/0, 10-25=-199/0, 9-25=-1596/0, 9-27=0/1247, 8-27=-200/0, 7-27=-863/0, 7-28=0/776, 12-25=-1063/0, 12-24=0/685, 13-24=-105/142, 14-24=-600/0,

30-31=0/1024, 29-30=0/2318, 28-29=0/2415,

5-29=-135/25, 6-28=-439/0, 17-21=-144/26,

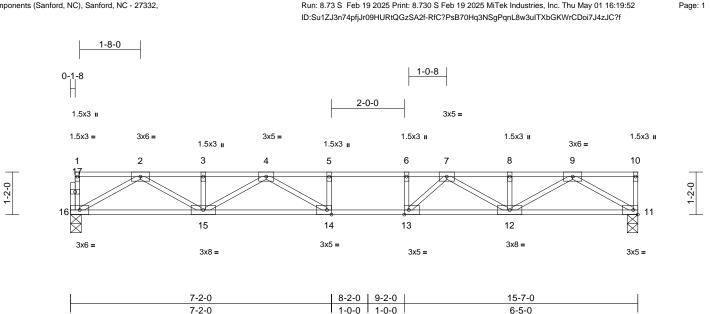
16-21=-674/0, 16-22=-102/353, 18-20=0/152,

(lb) - Maximum Compression/Maximum

Rigid ceiling directly applied or 6-0-0 oc

NOTES

- 1) Unbalanced floor live loads have been considered for
- this design.
- 2) All plates are 3x5 MT20 unless otherwise indicated.
- 3) Bearings are assumed to be: , Joint 25 SP No.2 , Joint
 - 21 SP No.2 .
- 4) Refer to girder(s) for truss to truss connections.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls
- at their outer ends or restrained by other means.
- 6) CAUTION, Do not erect truss backwards.
- LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-2nd Floor-Greyson FA 3FL SP
25040195-A	F205	Floor	1	1	I73186452 Job Reference (optional)

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:19:52

Carter Components (Sanford, NC), Sanford, NC - 27332,

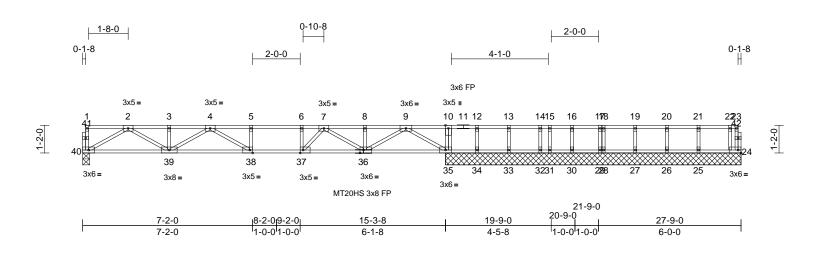
Scale = 1:31.6

Plate Offsets (X, Y): [13:0-1-8,Edge], [14:0-1-8,Edge]

	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.77	Vert(LL)	-0.23	14-15	>799	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.99	Vert(CT)	-0.31	14-15	>587	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.52	Horz(CT)	0.05	11	n/a	n/a		
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-MSH							Weight: 77 lb	FT = 20%F, 11%E
LUMBER												
TOP CHORD												
BOT CHORD	()											
WEBS	2x4 SP No.3(flat)											
OTHERS	2x4 SP No.3(flat)											
BRACING	.											
TOP CHORD	Structural wood she											
BOT CHORD	5-11-7 oc purlins, e											
BUICHURD	Rigid ceiling directly bracing.	applied of 2-2-0 oc										
REACTIONS	•	16=0-3-8										
	Max Grav $11=847$ (LC 1), 16=841 (LC 1)											
FORCES	(lb) - Maximum Corr	pression/Maximum										
	Tension											
TOP CHORD	1-16=-71/0, 10-11=-											
	2-3=-2232/0, 3-4=-2											
	5-6=-3084/0, 6-7=-3		,									
	8-9=-2201/0, 9-10=0		2004									
BOT CHORD	15-16=0/1303, 14-1 12-13=0/2796, 11-1		3084,									
WEBS	5-14=-231/0, 6-13=-											
TILDO	4-15=-681/0, 3-15=-											
	2-16=-1503/0, 9-11=											1111 m
	8-12=-180/0, 7-12=-	695/0, 7-13=0/642									IN TH CA	Roille
NOTES										N	A SECO	JAN'S
	ed floor live loads have	e been considered fo	or							52	A CERT	THAT
this desigr									-	\mathcal{D}	12/ 1	4. 4.
2) All bearings are assumed to be SP No.2.												
	3) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d											
	oc and fastened to eac 3") nails. Strongbacks		alle						=	:	0363	• –
	ter ends or restrained		rano						-		0303	22 : :
									-		•	1 - E
,	at their outer ends or restrained by other means. CAUTION, Do not erect truss backwards. CAUTION, Standard											

LOAD CASE(S) Standard

Unuminitien (May 5,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

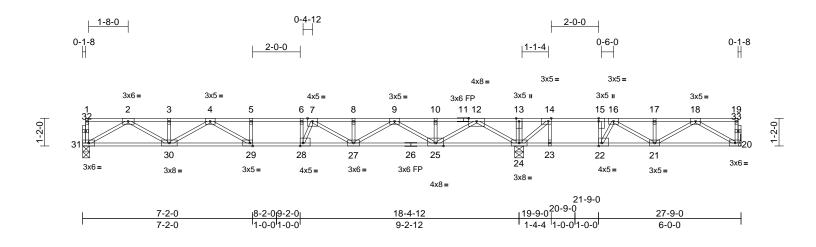
Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-2nd Floor-Greyson FA 3FL SP
25040195-A	F206	Floor	1	1	I73186453 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:19:52 ID:w4bxWPolr6nZx?bLrBz6yTzSA2e-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:48.6

Plate Offsets (X, Y): [36:0-1-12,Edge], [37:0-1-8,Edge], [38:0-1-8,Edge]


	(,, ,). [001		c], [07.0 1 0,⊏uge],		,Edgo]									
Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL		40.0	Plate Grip DOL	1.00		TC	0.51	Vert(LL)	-0.21	. ,	>865	480	MT20	244/190
TCDL		10.0	Lumber DOL	1.00		BC	0.92	Vert(CT)	-0.29	38-39	>623	360	MT20HS	187/143
BCLL		0.0	Rep Stress Incr	YES		WB	0.53	Horz(CT)	0.05	35	n/a	n/a		
BCDL		5.0	Code	IRC20	21/TPI2014	Matrix-MSH							Weight: 132 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structural 6-0-0 oc p Rigid ceili bracing. (size) Max Uplift Max Grav	o.2(flat) o.2(flat) o.3(flat) o.3(flat) I wood she purlins, exi ing directly 24=12-5-8 30=12-5-8 30=12-5-8 40=0-3-8 24=-46 (L 24=75 (LC 26=135 (L 28=87 (LC 30=125 (L 30=125 (L 30=125 (L 30=126 (L) 30=126 (L) 30=127 (L) 3	athing directly applie cept end verticals. applied or 2-2-0 oc 3, 25=12-5-8, 26=12 3, 28=12-5-8, 32=12 3, 34=12-5-8, 35=12 C 3), 34=-87 (LC 3) C 4), 25=249 (LC 1), C 4), 27=158 (LC 1), C 4), 31=53 (LC 1), C 4), 33=182 (LC 1). C 4), 33=182 (LC 1) C 4), 35=1013 (LC C 4), C 4)	ed or 1-5-8, 2 -5-8, 2 -5-8, 3 -5-8, 4 -5-8, 4 (6), 7), 8	VEBS IOTES) Unbalanced this design.) All plates are) All plates are) Truss to be f braced agair) Gable studs) All bearings) Provide mec bearing plate 24 and 87 lb) Recommend 10-00-00 oc (0.131" X 3")	5-38=-140/0, 6-37 15-31=-45/0, 17-2 9-36=0/1119, 8-30 7-37=0/420, 2-40; 3-39=-160/0, 4-39 12-34=-115/50, 11 16-30=-113/0, 18- 20-26=-123/2, 21- floor live loads ha e MT20 plates unl e 1.5x3 MT20 unla ully sheathed from st lateral movernist lateral movernist spaced at 1-4-0 c are assumed to b hanical connectio e capable of withs uplift at joint 34. 1 2x6 strongbacks and fastened to e in ails. Strongbacks	29=-61/0, 6=-197/0 =-1471/0 =-648/0, 3-33=-15 -28=-79/0 -25=-233 ave been ess other n one face est (i.e. c pc. e SP No. n (by oth tanding 4 , on edge ach truss ks to be	9-35=-1400/ 7-36=-685/C 2-39=0/1055 6/0, 14-32=-5 0, 19-27=-144 /0, 22-24=-15 considered fr wise indicate wise indicate wise indicate the or securely liagonal web) 2. ers) of truss i 6 lb uplift at j e, spaced at s with 3-10d attached to w	0,), 2,)99/0, 1/0, 9/309 or ed. d. / to joint					
FORCES	(lb) - Max Tension	imum Com	pression/Maximum) CAUTION, D	o not erect truss						All	RTHUA	ROUTE
TOP CHORD	2-3=-217 5-6=-295 8-9=-211 12-13=0/7 15-16=0/7 18-19=0/7 39-40=0/ 35-37=0/2 32-33=-7 29-30=-7	7/0, 3-4=-2 9/0, 6-7=-2 2/0, 9-10=0 75, 13-14=(75, 16-17=(75, 19-20=(75, 22-23=(1276, 38-33 2680, 34-33 5/0, 31-32= 5/0, 28-29=	253/0, 1-2=-4/0, 1777/0, 4-5=-2959/0, 959/0, 7-8=-2100/0, 1775, 10-12=0/75, 0/75, 14-15=0/75, 0/75, 20-21=0/75, 0/75, 20-21=0/75, 0/18 9=0/2733, 37-38=0/2 5=-75/0, 33-34=-75/0, -75/0, 20-21=-75/0, -75/0, 24-25=-75/0	2959,	OAD CASE(S)	Standard					10 · · · · · · · · · · · · · · · · · · ·		SEA 0363	22 EREALITY

A MITEK Affiliate

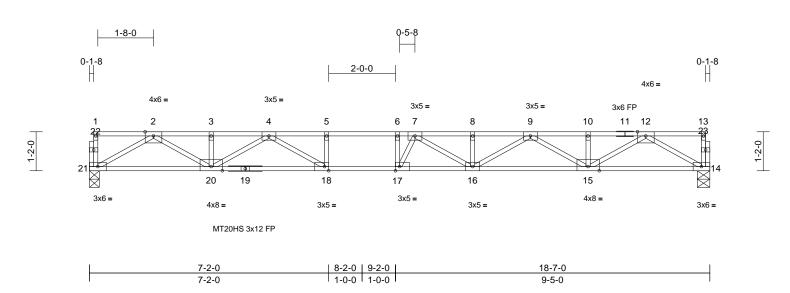
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-2nd Floor-Greyson FA 3FL SP
25040195-A	F207	Floor	1	1	I73186454 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:19:52 ID:OH9JklpNcQvQZ9AYPvULVhzSA2d-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:48.6

Plate Offsets	(X, Y): [14:0-1-8,Edge	ej, [15:0-1-8,Edge], [2	2:0-1-8,Ec	age], [28:0-1-	8,⊨age], [29:0-1-8	3,Edge]							
Loading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.00 YES		CSI TC BC WB	1.00 0.96 0.77	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.29 -0.39 0.06	(loc) 28 28 24	l/defl >768 >561 n/a	L/d 480 360 n/a	PLATES MT20	GRIP 244/190
BCDL	5.0	Code	IRC202	1/TPI2014	Matrix-MSH							Weight: 140 lb	FT = 20%F, 11%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2400F 2.0E(flat) 2x4 SP No.1(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she except end verticals Rigid ceiling directly bracing. (size) 20= Mect 31=0-3-8 Max Uplift 20=-96 (I	y applied or 2-2-0 oc hanical, 24=0-4-8, _C 3) LC 4), 24=1822 (LC 1	d, N(1) 2) 3)	this design. All plates a Bearings a SP No.1 .	5-29=-271/0, 6-2 15-22=0/785, 2 3-30=-168/0, 4-5 13-24=0/202, 12 10-25=-161/0, 9 8-27=-176/0, 7-2 14-24=-1685/0, 18-21=-313/380 16-22=-1159/0 d floor live loads h re 1.5x3 MT20 ur re assumed to be der(s) for truss to	31=-1611/4 30=-795/0, -24=-2078 -25=-1219, 27=-535/0, 18-20=-78, 17-21=-1 have been here been less other : Joint 31 \$), 2-30=0/11 4-29=0/720, /0, 12-25=0/ 0, 9-27=0/87 7-28=-241/5 2/231, 54/0, 16-21= considered f wise indicate P No.1, Joi	91, 1611, 78, 56, 0/521, or d.					
FORCES TOP CHORD	(lb) - Maximum Con Tension 1-31=-71/0, 19-20= 2-3=-2418/0, 3-4=-2 5-6=-3513/0, 6-7=-3 8-9=-3071/0, 9-10= 12-13=0/2067, 13-1 14-15=-630/1312, 1 16-17=-1006/468, 1	npression/Maximum -70/0, 1-2=-4/0, 2418/0, 4-5=-3513/0, 3513/0, 7-8=-3071/0, -1327/0, 10-12=-1327 4=0/2067, 5-16=-630/1312,	7)	bearing pla 20. Recommen 10-00-00 or (0.131" X 3 at their oute	chanical connect te capable of with d 2x6 strongback c and fastened to ") nails. Strongba er ends or restrain Do not erect trus:) Standard	istanding S as, on edge each truss acks to be ned by othe	6 lb uplift at s, spaced at with 3-10d attached to v er means.	joint				WTH CA	ROLA
BOT CHORD	18-19=-4/0 30-31=0/1397, 29-3 27-28=0/3457, 25-2 24-25=-276/199, 23 22-23=-1312/630, 2 20-21=-199/680	3-24=-1312/630,	513,							American	K MARTINE CONTRACTOR	SEA 0363	22 EERER IIII


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com) May 5,2025

A. GILD

818 Soundside Road Edenton, NC 27932 Page: 1

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-2nd Floor-Greyson FA 3FL SP
25040195-A	F208	Floor	1	1	I73186455 Job Reference (optional)

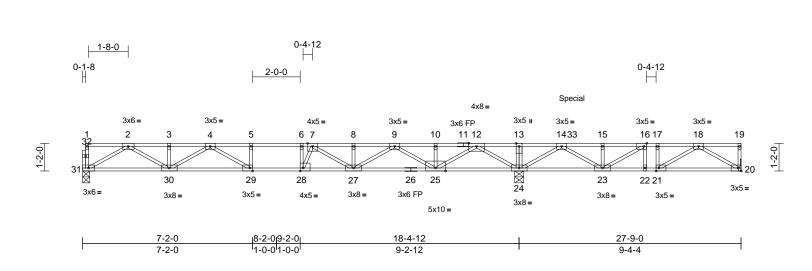
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:19:52 ID:OH9JklpNcQvQZ9AYPvULVhzSA2d-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:34.5

Plate Offsets (X, Y): [17:0-1-8,Edge], [18:0-1-8,Edge]

Plate Offsets (X, Y): [17:0-1-8,Edge	j, [18:0-1-8,Edge]											
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC2021/TF	912014	CSI TC BC WB Matrix-MSH	0.62 0.95 0.67	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.33 -0.45 0.07	(loc) 16-17 16-17 14	l/defl >676 >492 n/a	L/d 480 360 n/a	PLATES MT20HS MT20 Weight: 94 lb	GRIP 187/143 244/190 FT = 20%F, 11%E
	0.0	0000		-								troigini o tib	20/01 ; 11/02
LUMBER TOP CHORD BOT CHORD WEBS OTHERS	2x4 SP 2400F 2.0E(SP No.2(flat) 2x4 SP No.2(flat) *E 2400F 2.0E(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat)		2x4 10 (0 9 at	0-00-00 oc .131" X 3")	2x6 strongbacks, and fastened to ea nails. Strongback ends or restrained Standard	ach truss s to be	with 3-10d attached to w	/alls					
BRACING TOP CHORD	Structural wood she		ed or										
BOT CHORD	6-0-0 oc purlins, ex Rigid ceiling directly bracing, Except: 2-2-0 oc bracing: 18	applied or 10-0-0 or	•										
REACTIONS	(size) 14=0-4-8,	21=0-3-8											
FORCES	Max Grav 14=1002 (lb) - Maximum Com		. 1)										
TOP CHORD	Tension 1-21=-74/0, 13-14=-71/0, 1-2=-4/0, 2-3=-2772/0, 3-4=-2772/0, 4-5=-4309/0, 5-6=-4309/0, 6-7=-4309/0, 7-8=-4201/0,												
BOT CHORD	20-21=0/1570, 18-20 16-17=0/4391, 15-10											OR EESS	ROUL
WEBS	5-18=-381/0, 6-17=- 2-20=0/1404, 3-20=- 4-18=0/1008, 12-14: 10-15=-163/0, 9-15= 8-16=-169/0, 7-16=-	310/346, 2-21=-181 -189/0, 4-20=-992/0, =-1819/0, 12-15=0/1 1008/0, 9-16=0/66	1/0, 391, 5,							4	i	#1/	Mal
this design2) All plates a3) All plates a4) The Fabric	are MT20 plates unlest are 1.5x3 MT20 unlest cation Tolerance at joir are assumed to be: Joi	s otherwise indicated s otherwise indicated nt 19 = 11%	d. I.							HTTMAN,			22

May 5,2025


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

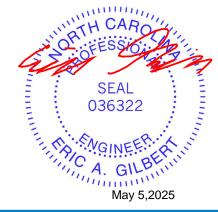
Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-2nd Floor-Greyson FA 3FL SP
25040195-A	F209	Floor Girder	1	1	I73186456 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:19:52 ID:IEyCnStWQyYjfw2VBS3WCkzSA2Y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:48.6

Plate Offsets (X, Y): [16:0-1-8,Edge], [21:0-1-8,Edge], [28:0-1-8,Edge]													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00		тс	0.96	Vert(LL)	-0.24	28-29	>907	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00		BC	0.78	Vert(CT)	-0.33	29	>664	360		
BCLL	0.0	Rep Stress Incr	NO		WB	0.82	Horz(CT)	0.04	24	n/a	n/a		
BCDL	5.0	Code	IRC2)21/TPI2014	Matrix-MSH							Weight: 141 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING	(flat)	2x4 SP No.1(flat) *Except* 26-20:2x4 SP2)All plates are 1.5x3 MT20 unless otherwise indicated.No.2(flat)3)Bearings are assumed to be: Joint 31 SP No.1, Joint 242x4 SP No.3(flat)SP No.2.											
TOP CHORD BOT CHORD	Structural wood she 5-2-11 oc purlins, e Rigid ceiling directly	e capable of withs d 2x6 strongbacks and fastened to e	s, on edge	, spaced at	t joint								

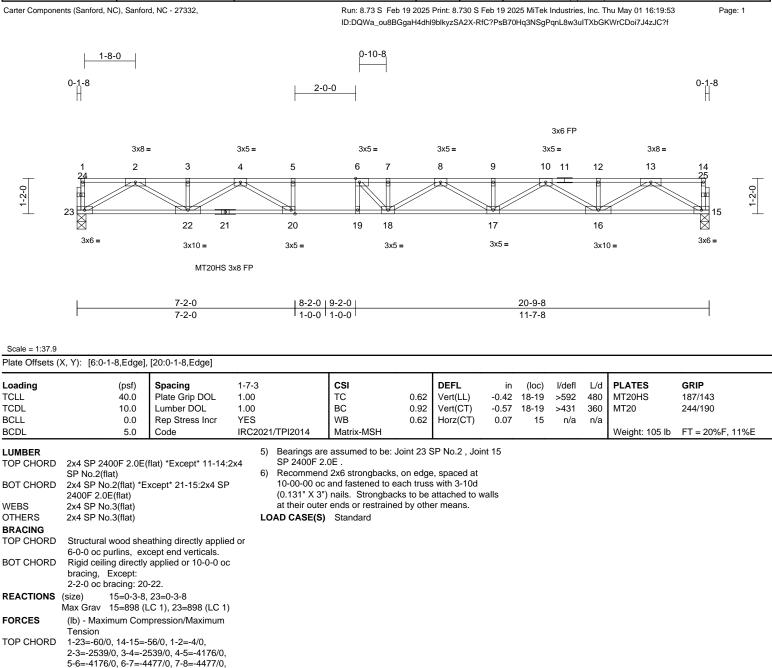
	h no olin a	
	bracing.	
REACTIONS	(size)	20= Mechanical, 24=0-4-8,
		31=0-3-8
	Max Uplift	20=-165 (LC 3)
	Max Grav	20=397 (LC 4), 24=2033 (LC 1),
		31=843 (LC 3)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-31=-70	/0, 19-20=-68/0, 1-2=-4/0,
	2-3=-223	9/0, 3-4=-2239/0, 4-5=-3104/0,
	5-6=-310	4/0, 6-7=-3104/0, 7-8=-2488/0,
	8-9=-248	8/0, 9-10=-564/90, 10-12=-564/90,
	12-13=0/2	2911, 13-14=0/2911,
	14-15=-4	67/1393, 15-16=-467/1393,
	16-17=-7	00/770, 17-18=-700/770, 18-19=0/0
BOT CHORD	30-31=0/	1308, 29-30=0/2828, 28-29=0/3104,
	27-28=0/2	2978, 25-27=0/1669, 24-25=-1105/0,
	23-24=-1	996/0, 22-23=-770/700,
	21-22=-7	70/700, 20-21=-317/521
WEBS	5-29=-20	6/0, 6-28=-546/0, 13-24=-202/0,
	2-31=-15	08/0, 2-30=0/1087, 3-30=-161/0,
	4-30=-68	8/0, 4-29=-41/528, 12-24=-2089/0,
	10.05.0/	


12-25=0/1716, 10-25=-173/0, 9-25=-1316/0, 9-27=0/983, 8-27=-181/0, 7-27=-654/0, 7-28=-33/727, 14-24=-1463/0, 18-20=-608/370, 14-23=0/1066, 18-21=-529/208, 15-23=-183/10, 17, 21=-70/204, 16, 22=-08/20, 16, 22=-6/150,

17-21=-70/201, 16-23=-898/0, 16-22=-6/159

- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- CAUTION, Do not erect truss backwards.
 Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 50 lb down at 20-7-12 on top chord. The design/selection of such connection device(s) is the responsibility of others.
- In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard


- Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (lb/ft)
 - Vert: 20-31=-10, 1-19=-100 Concentrated Loads (lb) Vert: 33=-17 (B)

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-2nd Floor-Greyson FA 3FL SP
25040195-A	F210	Floor	5	1	I73186457 Job Reference (optional)

All plates are MT20 plates unless otherwise indicated. 2)

Unbalanced floor live loads have been considered for

8-9=-3998/0, 9-10=-3998/0, 10-12=-2541/0,

22-23=0/1416, 20-22=0/3384, 19-20=0/4176,

18-19=0/4176, 17-18=0/4344, 16-17=0/3388,

5-20=-369/0, 6-19=-284/17, 2-23=-1634/0. 2-22=0/1311, 3-22=-164/0, 4-22=-987/0,

4-20=0/1057, 13-15=-1648/0, 13-16=0/1299, 12-16=-130/0, 10-16=-989/0, 10-17=0/712,

9-17=-139/0, 8-17=-404/0, 8-18=0/283, 7-18=-312/16, 6-18=-204/689

12-13=-2541/0, 13-14=-3/0

BOT CHORD

WEBS

NOTES 1)

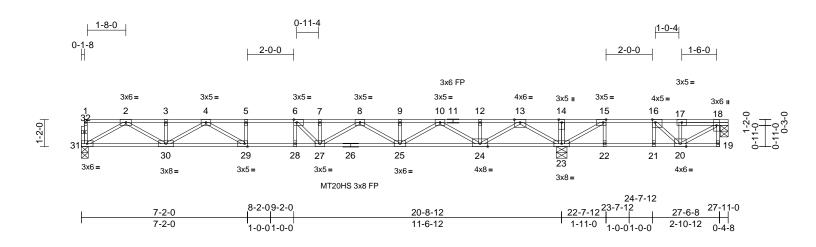
this design.

All plates are 1.5x3 MT20 unless otherwise indicated. 3)

The Fabrication Tolerance at joint 21 = 11% 4)

15-16=0/1428

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-2nd Floor-Greyson FA 3FL SP
25040195-A	F211	Floor	4	1	I73186458 Job Reference (optional)

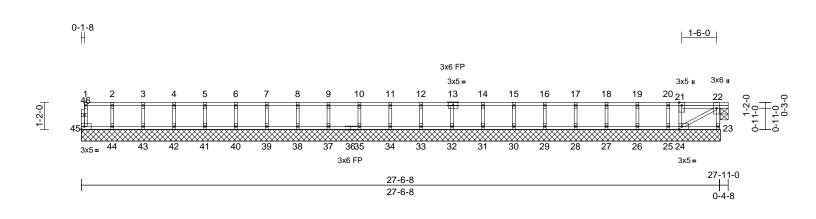
Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:19:53 ID:sTjhx4q?Nk1HAJlkyc?a1uzSA2c-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:49.7

Scale = 1:49.7	-											
Plate Offsets ((X, Y): [6:0-1-8,Edge],	, [15:0-1-8,Edge], [16	6:0-1-8,Ed	ge], [29:0-1-8,6	Edge]							
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.89 0.81 0.72	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.38 -0.51 0.05	l/defl >656 >481 n/a	L/d 480 360 n/a	PLATES MT20HS MT20 Weight: 142 lb	GRIP 187/143 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2-2-0 oc purlins, ex Rigid ceiling directly bracing.	(flat) *Except* 26-19: eathing directly applie cept end verticals. applied or 6-0-0 oc , 23=0-5-8, 31=0-3-8 (LC 3) LC 4), 23=1589 (LC	2) 2x4 3) 4) 5) ed or 6)	this design. All plates are All plates are Bearings are Joint 23 SP Provide mee bearing plate 18. Recommend 10-00-00 oc (0.131" X 3" at their oute Gap betwee diagonal or	floor live loads have e MT20 plates unle e 1.5x3 MT20 unle e assumed to be: J No.1, Joint 18 SP chanical connectior e capable of withsta d 2x6 strongbacks, and fastened to ea) nails. Strongback r ends or restrained n inside of top choo vertical web shall n Do not erect truss b	ess other ss other oint 31 \$ No.2 . a (by oth anding 2 on edge ach truss ss to be d by othe rd bearin ot excee	wise indicate wise indicate SP 2400F 2.0 ers) of truss (15 lb uplift a a, spaced at a with 3-10d attached to v er means. ng and first ad 0.500in.	ed. ed. DE , to at joint				
FORCES TOP CHORD	12-13=-1059/0, 13-1 15-16=-171/988, 16	14/0, 1-2=-3/0, 234/0, 4-5=-3504/0, 597/0, 7-8=-3597/0, 2823/0, 10-12=-1059 14=0/1986, 14-15=0/	9/0,	OAD CASE(S)	Standard						WTH CA	ROM -
BOT CHORD	23-24=-362/0, 22-23	7=0/3328, 24-25=0/2	2059,						4	i	OFFESS	The
WEBS	17-20=-395/0, 18-20 6-28=-228/71, 2-31= 3-30=-142/0, 4-30=- 14-23=-40/68, 13-22 12-24=-129/0, 10-24 9-25=-137/0, 8-25=- 7-27=-211/43, 6-27=	0=-316/321, 5-29=-25 =-1465/0, 2-30=0/112 831/0, 4-29=0/799, 3=-1887/0, 13-24=0/1 4=-1183/0, 10-25=0/5	58/0, 26, 1502, 908, 250,						111111		SEA 0363	22 EPR A

NOTES


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component development properties and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

May 5,2025

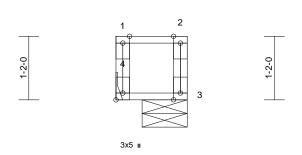
Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-2nd Floor-Greyson FA 3FL SP
25040195-A	F212	Floor Supported Gable	1	1	I73186459 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:19:53 ID:sTjhx4q?Nk1HAJlkyc?a1uzSA2c-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:49.7

Plate Offsets (X, Y): [24:0-1-8,Edge]

	(X, Y): [24:0-1-8,Edge	1										
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.06 0.01 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a 0.00 0.00	(loc) - 23-24 22	l/defl n/a >999 n/a	L/d 999 360 n/a	PLATES MT20 Weight: 119 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 22=0-4-0, 25=27-7-(34=27-7-(34=27-7-(34=27-7-(41=27-7-(41=27-7-(41=27-7-(41=27-7-(41=27-7-(41=27-7-(41=27-7-(33=127-7-(33=127-7-(33=127-7-(33=127-7-(33=127-7-(33=127-7-(133=127-7-(133=127-7-(133=127-7-(33=127-7-(133=1	applied or 10-0-0 oc 23=27-7-0, 24=27-7- 0, 26=27-7-0, 30=27-7 0, 32=27-7-0, 33=27-7 0, 35=27-7-0, 33=27-7 0, 35=27-7-0, 40=27-7 0, 42=27-7-0, 43=27-7 0, 45=27-7-0	0, 7-0, 7-0, 7-0, 1) All plates 7-0, 2) Truss to b 5) Faced ag 3) Gable stu 4) All bearin LC 5) Recomme 1), 10-00-00 (0.131" X at their ou 6) Gap betw diagonal (7) CAUTION LOAD CASE(44-45=0/2, 43-44 40-41=0/2, 39-40 35-37=0/2, 34-35 31-32=0/6, 30-31 27-28=0/6, 26-27 23-24=0/0 21-24=-94/0, 22-2 3-43=-106/0, 4-42 6-40=-107/0, 7-39 9-37=-107/0, 10-3 12-33=-109/0, 13- 15-30=-107/0, 16- 18-27=-105/0, 19- are 1.5x3 MT20 unle fully sheathed from ainst lateral movemed spaced at 1-4-0 or gs are assumed to b spaced	=0/2, 38- =0/2, 38- =0/6, 29- =0/6, 25- :4=0/7, 2 :=-107/0, :5=-10	39=0/2, 37-38= 34=0/2, 32-33= 30=0/6, 28-29= 26=0/6, 24-25= -44=-110/0, 5-41=-107/0, 0, 14-31=-104/ /0, 14-31=-104/ /0, 17-28=-107/ (0, 20-25=-68/u wise indicated. ce or securely diagonal web). .2. e, spaced at s with 3-10d attached to wa er means. ng and first ed 0.500in.	=0/2, =0/2, =0/6, =0/6, =0/6, 0, /0, 0			2	HTH CA	N. N.
FORCES TOP CHORD	3-4=-2/0, 4-5=-2/0, 5	5-6=-2/0, 2-3=-2/0, 5-6=-2/0, 6-7=-2/0, 9-10=-2/0, 10-11=-2/0 6/0, 14-15=-6/0, 6/0, 17-18=-6/0,	,								SEA 0363 NGINI A. G Ma	L 22 ILBERTIN V 5,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-2nd Floor-Greyson FA 3FL SP
25040195-A	F213	Floor	1	1	I73186460 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:19:53 ID:sTjhx4q?Nk1HAJlkyc?a1uzSA2c-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x5 ш

Зх5 ш

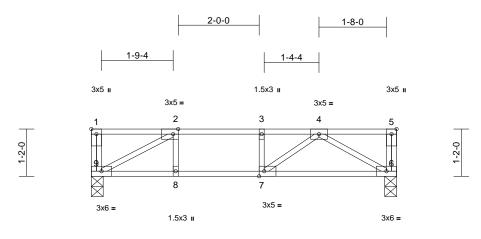
Scale = 1:21.1

Plate Offsets (X, Y): [4:Edge,0-1-8]

	(x, i): [::::::::::::::::::::::::::::::::::											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.04	Vert(LL)	0.00	4	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.01	Vert(CT)	0.00	4	>999	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-MR							Weight: 9 lb	FT = 20%F, 11%E
LUMBER												
TOP CHORD	2x4 SP No.2(flat)											
BOT CHORD	()											
WEBS	2x4 SP No.3(flat)											
BRACING	· · ·											
TOP CHORD	Structural wood she	athing directly appli	ed or									
	1-3-11 oc purlins, e											
BOT CHORD												
	bracing.											
REACTIONS	(size) 3=0-9-15	, 4= Mechanical										
	Max Grav 3=58 (LC	: 1), 4=58 (LC 1)										
FORCES	(lb) - Maximum Con	npression/Maximum										
	Tension											
TOP CHORD	1-4=-53/0, 2-3=-53/	0, 1-2=-9/0										
BOT CHORD	3-4=0/9											
NOTES												
1) Unbalance	ed floor live loads have	e been considered fo	or									
this desig												
2) Bearings	are assumed to be: , J	oint 3 SP No.2 .										
3) Refer to g	jirder(s) for truss to tru:	ss connections.										
4) Recomme	end 2x6 strongbacks, c	on edge, spaced at										

 Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard



Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-2nd Floor-Greyson FA 3FL SP
25040195-A	F214	Floor	1	1	I73186461 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:19:53 ID:sTjhx4q?Nk1HAJlkyc?a1uzSA2c-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

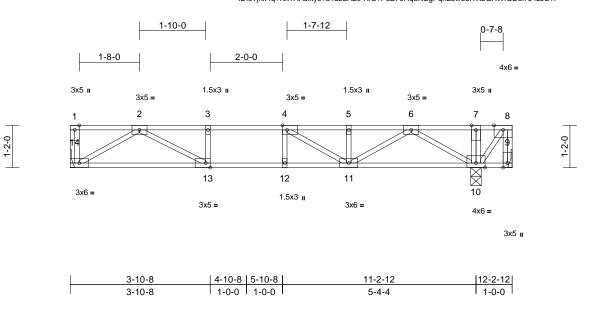
2-1-12	3-1-12	4-1-12	7-6-8
2-1-12	1-0-0	1-0-0	3-4-12

Scale = 1:28.5

Plate Offsets (X, Y): [1:Edge,0-1-8], [2:0-1-8,Edge], [7:0-1-8,Edge]

											-	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.48	Vert(LL)	-0.07	6-7	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.46	Vert(CT)	-0.09	6-7	>943	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.18	Horz(CT)	0.01	6	n/a	n/a		
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-MSH							Weight: 39 lb	FT = 20%F, 11%E
LUMBER												
TOP CHORD	2x4 SP No.2(flat)											
BOT CHORD	2x4 SP No.2(flat)											
WEBS	2x4 SP No.3(flat)											
BRACING												
TOP CHORD	Structural wood she	athing directly applie	ed or									
	6-0-0 oc purlins, ex											
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	C									
	bracing.											
	(size) 6=0-3-8, 9											
	Max Grav 6=401 (LC	C 1), 9=401 (LC 1)										
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension											
TOP CHORD	1-9=-74/20, 5-6=-70		6/0,									
BOT CHORD	3-4=-656/0, 4-5=0/0 8-9=0/656, 7-8=0/65											
WEBS	2-8=0/82, 3-7=-117/	,										
WEBS	4-6=-614/0. 4-7=0/2											
NOTES	+ 0= 01+/0, + 7=0/2											
	ed floor live loads have	been considered fo	nr.									
this design			Л									
	is are assumed to be S	SP No.2 .										111
	nd 2x6 strongbacks, o										11'''L CA	DIL
	oc and fastened to eac										TH UA	HOIL
(0.131" X 3	3") nails. Strongbacks	to be attached to w	alls							5	ONSECR	D. Inil
at their out	ter ends or restrained	by other means.							1	52	ORTH CA	Nin

LOAD CASE(S) Standard


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-2nd Floor-Greyson FA 3FL SP
25040195-A	F215	Floor	4	1	I73186462 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:19:53 ID:sTjhx4q?Nk1HAJlkyc?a1uzSA2c-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:31.9

Plate Offsets (X, Y): [4:0-1-8,Edge], [13:0-1-8,Edge]

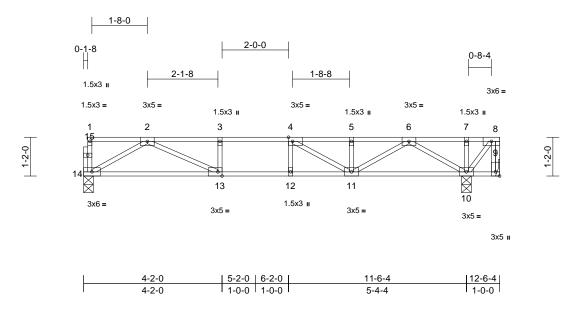
	(X, I). [10 I 0,Eugo],	[.e.e . e,Eugo]											
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 NO IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.49 0.45 0.38	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.08 0.01	(loc) 13-14 13-14 9	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 65 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 10	cept end verticals. applied or 10-0-0 o -11. inical, 10=0-3-8, 14=	c L 1)	 Hanger(s) or provided suffilb down at 1 such connect In the LOAD of the truss a OAD CASE(S) Dead + Flo Plate Increas Uniform Lo 	or Live (balanced): ase=1.00	device(s oncentra l. The d e respoi loads a F) or ba	i) shall be ated load(s) 5 lesign/selectionsibility of oth pplied to the ck (B).	on of ners. face					
	Max Uplift 9=-946 (L Max Grav 9=250 (LC 14=524 (L	C 3) C 4), 10=1977 (LC 8	3),	Concentrat Vert: 8=-	ed Loads (lb) 500 (F)								
FORCES	(lb) - Maximum Com Tension	,											
TOP CHORD		172/0, 4-5=-803/0,											
BOT CHORD	13-14=0/750, 12-13=	=0/1172, 11-12=0/1	172,										
WEBS	10-11=-77/212, 9-10 3-13=-197/0, 4-12=- 7-10=-180/0, 6-10=- 5-11=-185/9, 4-11=- 2-13=0/481	20/48, 8-10=-1576/0 1158/0, 6-11=0/791	,								- A	ORTH CA	ROUT
this desig2) Bearings3) Refer to g4) Provide m	ed floor live loads have	pint 10 SP No.2 . ss connections. (by others) of truss t	0							0.000	a	SEA 0363	• -

bearing plate capable of withstanding 946 lb uplift at joint
 9.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)


Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-2nd Floor-Greyson FA 3FL SP
25040195-A	F216	Floor	3	1	I73186463 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:19:53 ID:sTjhx4q?Nk1HAJIkyc?a1uzSA2c-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

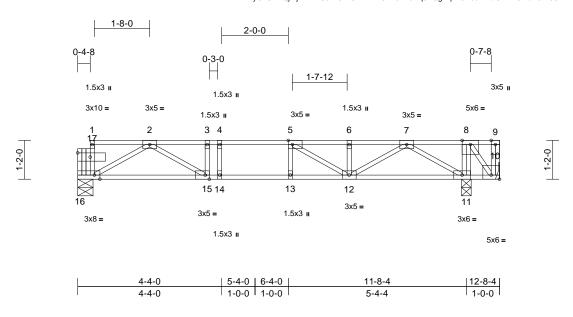
Page: 1

May 5,2025

818 Soundside Road Edenton, NC 27932

Scale = 1:34.7

Plate Offsets (X, Y): [4:0-1-8,Edge], [9:Edge,0-1-8], [13:0-1-8,Edge]


	(X, T). [4.0-1-0,Euge],	[0:=ago;0 : 0]; [:0:		0]	r								
Loading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	1-7-3 1.00 1.00 NO		CSI TC BC WB	0.39 0.43 0.31	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.09 0.01	(loc) 13-14 13-14 9	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20	GRIP 244/190
BCDL	5.0	Code	IRC202	1/TPI2014	Matrix-MSH							Weight: 64 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, eximiting directly bracing, Except: 6-0-0 oc bracing: 10 (size) 9= Mecha Max Uplift 9=-569 (L Max Grav 9=788 (LC 14=431 (L (lb) - Maximum Com Tension 1-14=-51/0, 8-9=-79 2-3=-1017/0, 3-4=-1 5-6=-675/0, 6-7=0/83 	cept end verticals. applied or 10-0-0 od -11. nical, 10=0-3-8, 14= C 3) 2 4), 10=1607 (LC 8, C 3) pression/Maximum 5/555, 1-2=-3/0, 017/0, 4-5=-675/0, 28, 7-8=0/828 =0/1017, 11-12=0/10 =0/0	6) 7) ed or c 8) = ⁰⁻³⁻⁸ L(), 1)	10-00-00 oc (0.131" X 3") at their outer CAUTION, L Hanger(s) or provided suf Ib down at 1 of such conr others. In the LOAD of the truss a DAD CASE(S) Dead + Filo Plate Increa Uniform Lo Vert: 9-1	or Live (balanced): ase=1.00 ads (lb/ft) 4=-8, 1-8=-80 ed Loads (lb)	ach truss s to be d by othe aackward device(s oncentra rd. The the resp loads a F) or ba	with 3-10d attached to w er means. ds.) shall be ated load(s) 1 design/selec consibility of opplied to the ck (B).	000 tion face					10 <i>0</i> .
WEBS	3-13=-160/0, 4-12=- 2-14=-725/0, 2-13=0 6-10=-926/0, 6-11=0 4-11=-408/0	/428, 8-10=-1288/0,	,								- AL	ORTH CA	ROIN
NOTES										4			and the
	ed floor live loads have	been considered fo	or									:2	1 N N E
SP No.2. 3) Refer to g 4) Provide m	, are assumed to be: Joi	s connections. by others) of truss to	0									SEA 0363	22 EER ALIU

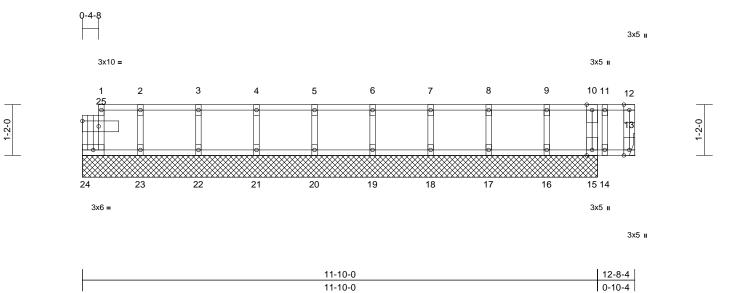
Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-2nd Floor-Greyson FA 3FL SP
25040195-A	F217	Floor	4	1	I73186464 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:19:53 ID:IEyCnStWQyYjfw2VBS3WCkzSA2Y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:34.7

Plate Offsets ((X, Y): [5:0-1-8,Edge]	, [10:Edge,0-1-8], [15	5:0-1-8,Ed	ge], [16:0-2-0,E	Edge], [17:0-4-8,0-	-1-8]							
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 NO IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.42 0.38 0.67	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 12-13 12-13 11	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 69 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 10= Mect 16=0-5-8 Max Uplift 10=-816 (Max Grav 10=296 (I 16=604 (I (lb) - Maximum Com Tension 1-16=-251/194, 9-10 2-3=-1001/0, 3-4=-1	cept end verticals. applied or 6-0-0 oc hanical, 11=0-3-8, (LC 13) LC 4), 11=1709 (LC LC 1) hpression/Maximum 0=-525/0, 1-2=-45/34	L(1) 7),	10-00-00 oc (0.131" X 3") at their outer CAUTION, E Hanger(s) or provided suff Ib down and design/selec responsibility DAD CASE(S) Dead + Flo Plate Increa: Uniform Lo Vert: 10- Concentrat	Standard or Live (balanced) ase=1.00	ach truss ks to be d by othe backward device(s concentra 4 on top ection de	s with 3-10d attached to w er means. ds. s) shall be ated load(s) 1 chord. The vice(s) is the	91					
BOT CHORD	4-14=-69/0, 5-13=-5 2-16=-735/0, 2-15=0 7-11=-965/0, 7-12=0	2=-130/88, 10-11=-9 //27, 8-11=-1221/0, 0/390, 3-15=-111/0, 0/666, 6-12=-148/0,									AL.	WITH CA	ROUT
 this design 2) Bearings a SP No.2. 3) Refer to g 4) Provide m 	5-12=-397/0, 8-10=(ed floor live loads have n. are assumed to be: Jo irder(s) for truss to trus techanical connection ate capable of withstal	e been considered fo int 16 SP No.2 , Join ss connections. (by others) of truss to	ot 11							A CONTRACTOR OF	TA	SEA 0363	• –


bearing plate capable of withstanding 816 lb uplift at joint 10.

TRENCO A MITEK Affiliate

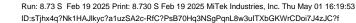
A. GILB

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

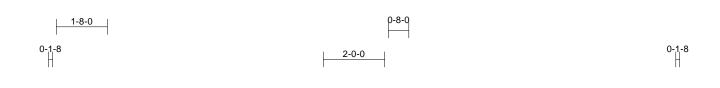
Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-2nd Floor-Greyson	
25040195-A	F218	Floor Supported Gable	1	1	Job Reference (optional)	173186465
Carter Components (Sanford, NC	C), Sanford, NC - 27332,				9 2025 MiTek Industries, Inc. Thu May 01 16:19:53 sB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

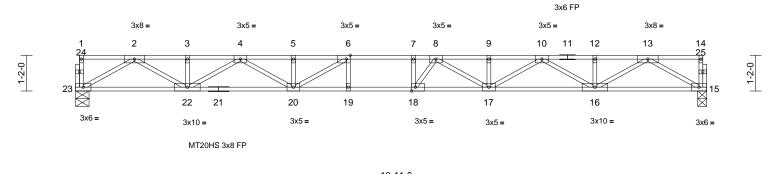
Scale = 1:26.5

(V V), [25:0 4 9 0 4 9]


Plate Offsets	(X, Y): [25:0-4-8,0-1-8]]											
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 NO IRC2021/T	PI2014	CSI TC BC WB Matrix-MR	0.07 0.03 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 23-24 23-24 13	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 60 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood shea 6-0-0 oc purlins, exa Rigid ceiling directly bracing. (size) 13= Mech 16=11-10 20=11-10 22=11-10 24=11-10 Max Grav 13=539 (L 16=111 (L 20=117 (L 22=119 (L	cept end verticals. applied or 10-0-0 oc anical, 15=11-10-0, -0, 17=11-10-0, -0, 21=11-10-0, -0, 21=11-10-0, -0, 21=11-10-0, -0 .C 1), 15=78 (LC 1), .C 3), 17=120 (LC 1), .C 3), 19=117 (LC 1), .C 1), 21=117 (LC 3), .C 1), 23=115 (LC 3),	3) T b 4) C 5) E 6) F dor 7) F 1 (((((8) C 9) F 8) C 9) F 10) II C 10) II C 10) II C	Truss to be financed again Gable studs : Bearings are Refer to girdd Recommend (0-00-00 oc (0.131" X 3") at their outer CAUTION, D Hanger(s) or provided suff b down at 1 of such conn others. In the LOAD of the truss a D CASE(S)	or Live (balanced): se=1.00	one fac int (i.e. d int 16 S ss conr on edge ch truss s to be by othe ackward levice(s ncentra d. The the resp oads a F) or ba	e or securely iagonal web). SP No.2 . ections. , spaced at s with 3-10d attached to wa er means. Is.) shall be ated load(s) 50 design/selecti ponsibility of opplied to the fa ck (B).	alls 00 on ace					
FORCES	24=50 (LC (Ib) - Maximum Com Tension	,		Vert: 13-2	24=-8, 1-12=-80 ed Loads (lb)							WHY CA	Della
TOP CHORD		5-6=-7/0, 6-7=-7/0,	-7/0,		25, 12=-500 (F)					4	IT I	ORIFERS	RAM
BOT CHORD		7, 17-18=0/7, 16-17=										SEA	
WEBS NOTES 1) Unbalance	10-15=-60/0, 2-23=- 4-21=-106/0, 5-20=- 7-18=-106/0, 8-17=- 11-14=-28/2 ed floor live loads have	107/0, 6-19=-107/0, 109/0, 9-16=-100/0,								1111			EER
this design												in a. C	

May 5,2025




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-2nd Floor-Greyson FA 3FL SP
25040195-A	F219	Floor	7	1	I73186466 Job Reference (optional)

Page: 1

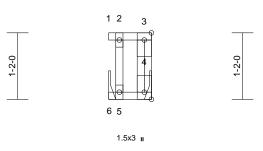
L	8-11-8	9-11-8	10-11-8	20-7-0
Γ	8-11-8	1-0-0	1-0-0	9-7-8

Scale = 1:37.6

Plate Offsets (X, Y): [6:0-1-8,Edge], [18:0-1-8,Edge]

	, 1). [0.0-1-0,∟uge],	[10.0-1-0,Euge]										
Loading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	1-7-3 1.00 1.00 YES	CSI TC BC WB	0.41 0.51 0.61	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.33 -0.46 0.07	(loc) 18 18 15	l/defl >733 >532 n/a	L/d 480 360 n/a	PLATES MT20HS MT20	GRIP 187/143 244/190
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-MSH							Weight: 104 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP 2400F 2.0E(2x4 SP 2400F 2.0E(2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly	flat) athing directly applie cept end verticals.		Standard								
	bracing.											
REACTIONS	(size) 15=0-3-8, Max Grav 15=889 (L)									
FORCES	(lb) - Maximum Com											
TOP CHORD	Tension 1-23=-57/0, 14-15=- 2-3=-2512/0, 3-4=-2 5-6=-3930/0, 6-7=-4 8-9=-3941/0, 9-10=- 12-13=-2512/0, 13-1 22-23=0/1412, 20-2; 18-19=0/4314, 17-18 15-16=0/1411	512/0, 4-5=-3930/0, 314/0, 7-8=-4314/0, 3941/0, 10-12=-2512 4=-3/0 2=0/3342, 19-20=0/4	1314,								244111	
WEBS	13-15=-1628/0, 13-1 10-16=-969/0, 10-17 8-17=-483/0, 8-18=- 2-22=0/1285, 3-22=- 4-20=0/687, 5-20=-1 6-19=-69/123, 7-18=	7=0/699, 9-17=-141/0 239/479, 2-23=-1629 -136/0, 4-22=-968/0, 87/61, 6-20=-754/25), 9/0,						4		OP FESS	ROLIN
NOTES	,										SEA	1 E
 this design 2) All plates a 3) All plates a 4) All bearing 5) Recommendation 10-00-00 cm (0.131" X 3000 cm (0.1	ed floor live loads have h. are MT20 plates unless are 1.5x3 MT20 unless s are assumed to be 5 nd 2x6 strongbacks, o bc and fastened to eac 3") nails. Strongbacks ter ends or restrained l	s otherwise indicated s otherwise indicated SP 2400F 2.0E . n edge, spaced at h truss with 3-10d to be attached to wa	d. I.						111111	A A A A A A A A A A A A A A A A A A A		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut beformation, available from the Structure Review Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


May 5,2025

Job	Truss	Truss Type	Qty	Ply	Install 17 Magnolia Acres-2nd Floor-Greyson FA 3FL SP
25040195-A	F220	Floor	1	1	I73186467 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:19:54 ID:sTjhx4q?Nk1HAJlkyc?a1uzSA2c-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x5 ш

3x5 ш

0-9-0 0-9-0

Scale = 1:20.2

Plate Offsets (X, Y): [4:Edge,0-1-8]

	X, 1). [4.Luge,0-1-0]											
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	тс	0.01	Vert(LL)	0.00	5	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.03	Vert(CT)	0.00	5	>999	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.01	Horz(CT)	0.00	4	n/a	n/a		
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-MSH							Weight: 6 lb	FT = 20%F, 11%E
LUMBER												
TOP CHORD	2x4 SP No.2(flat)											
BOT CHORD	2x4 SP No.2(flat)											
WEBS	2x4 SP No.3(flat)											
BRACING												
TOP CHORD	Structural wood she		ed or									
	0-9-0 oc purlins, ex											
BOT CHORD	Rigid ceiling directly	/ applied or 10-0-0 o	C									
	bracing.											
REACTIONS	· /	anical, 6= Mechanic	al									
	Max Grav 4=34 (LC	,, , ,										
FORCES	(lb) - Maximum Con	npression/Maximum										
	Tension											
TOP CHORD	3-4=-21/0, 1-2=0/0,	2-3=0/0										
BOT CHORD												
WEBS	2-5=-45/0											
NOTES												
,	ed floor live loads have	e been considered fo	or									
this design												
	irder(s) for truss to trus											
	nd 2x6 strongbacks, on the strong and fastened to each											nav.
	3") nails. Strongbacks		alle									1111
	ter ends or restrained		rano								IN TH U	ROUL
	, Do not erect truss ba									N	ORTH CA	D. Inte
LOAD CASE(,								/	~~	FES	PN. Si

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

