

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DR Horton Inc

Model: 11 Eagle Creek -Lawson - C

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

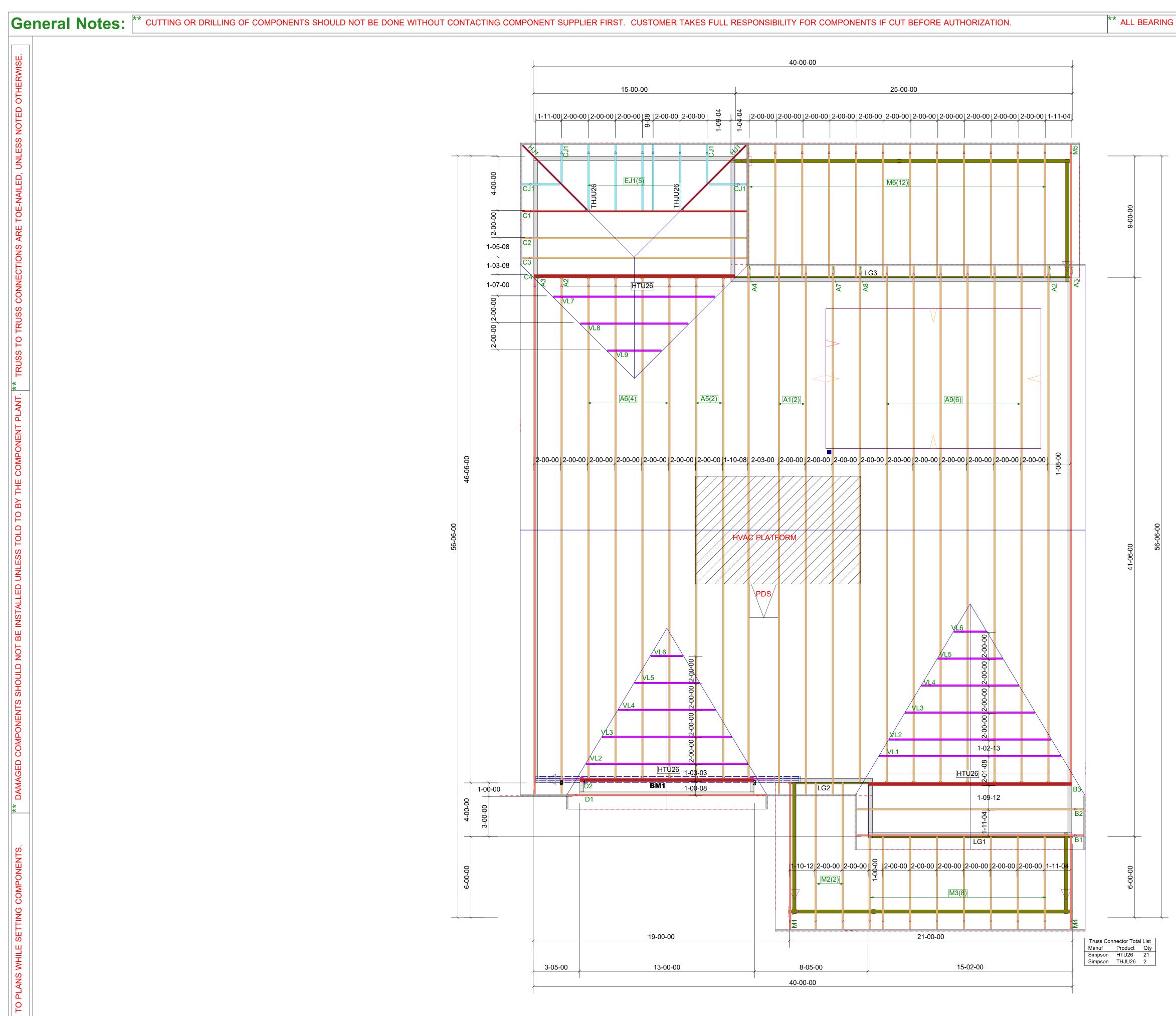
2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

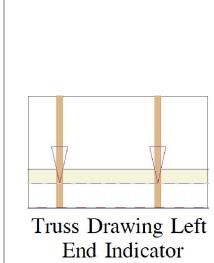
3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.


7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.


8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

REFER

MUST

ER

*

		DR Horton Inc.	ANSI/TPI 1, all uplift connectors are the responsibility of the bldg designer and or contractor. THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are	00 outractor. 00 00,000
te: 4/24/ Des Nate Do Projec 25040			designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor	Revi /00/00 /00/00 /00/00 /00/00
2025 signer: onaldso t Number 105-B t Number		Lunber	systems and for the overall structure. The disign of the tuss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing of Wood Truss" available from the Truss Plate Institute, 583 D'Onifrio Drive:	sions Na Na Na Na
r:	Roof Truss Layout		Madison, WI 53179	me me me

ROOF PLACEMENT PLAN

RE: 25040105

11 Eagle Creek - Lawson C - Roof

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:Customer: DR Horton IncProject Name: 25040105Lot/Block: 11Model: Lawson CAddress:Subdivision: Eagle CreekCity:State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2021/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.7 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 36 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	172966390	A1	4/23/2025	21	172966410	HJ1	4/23/2025
2	172966391	A2	4/23/2025	22	172966411	M1	4/23/2025
3	172966392	A3	4/23/2025	23	172966412	M2	4/23/2025
4	172966393	A4	4/23/2025	24	172966413	M3	4/23/2025
5	172966394	A5	4/23/2025	25	172966414	M4	4/23/2025
6	172966395	A6	4/23/2025	26	172966415	M5	4/23/2025
7	172966396	A7	4/23/2025	27	172966416	M6	4/23/2025
8	172966397	A8	4/23/2025	28	172966417	VL1	4/23/2025
9	172966398	A9	4/23/2025	29	172966418	VL2	4/23/2025
10	172966399	B1	4/23/2025	30	172966419	VL3	4/23/2025
11	172966400	B2	4/23/2025	31	172966420	VL4	4/23/2025
12	172966401	B3	4/23/2025	32	172966421	VL5	4/23/2025
13	172966402	C1	4/23/2025	33	172966422	VL6	4/23/2025
14	172966403	C2	4/23/2025	34	172966423	VL7	4/23/2025
15	172966404	C3	4/23/2025	35	172966424	VL8	4/23/2025
16	172966405	C4	4/23/2025	36	172966425	VL9	4/23/2025
17	172966406	CJ1	4/23/2025				
18	172966407	D1	4/23/2025				
19	172966408	D2	4/23/2025				
20	172966409	EJ1	4/23/2025				

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Galinski, John

My license renewal date for the state of North Carolina is December 31, 2025

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Galinski, John

Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	
25040105	A1	Common	2	1	Job Reference (optional)	172966390

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 23 10:22:32 ID: dt ULuPuUMCrLTXvpVp5HPgzNtOu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff

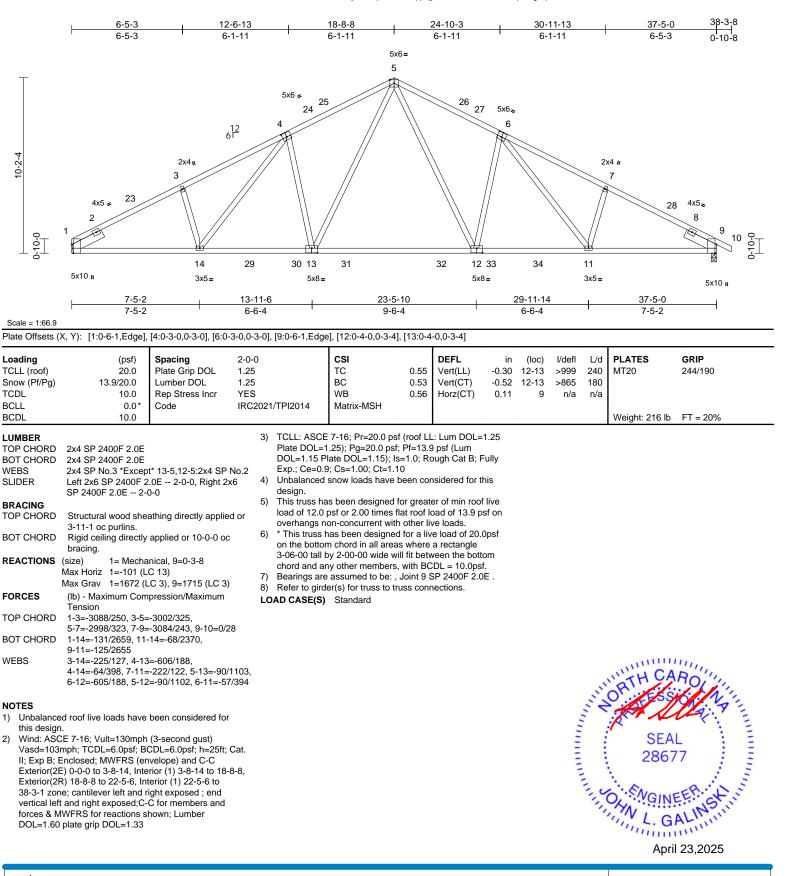
Page: 1

	-0-10-8	6-5-3	12-6-13	18-8-8	24-10-3	30-11-13	37-5-0 38-3-8
	0-10-8	6-5-3	6-1-11	6-1-11	6-1-11	6-1-11	6-5-3 0-10-8
					5x6=		
					6		
Т				/	A		
				^{5x6} = 34	35	5-0	
				33	33 36	5x6 👟	
			61 2	5		HT I	
_							
10-2-4							
10		4		/ \\ //			8
	33	x5 =	# //		\\ //		3x5 ≈
	3	32			\\ //		37 9
	2 /2	35			\\ //		
	1						10 11
⊤ <u>2</u> ⊤							
	-		23 38		18 14 13 40		-
	6x8 II		4x5=	^{8x10} ff6-2-8	23-10-05 23-5-10	4x5=	6x8 II
				14-6-15 14-6-1 1-0 13-11-6 18-8-8	23-5-10 22-10-15		
	L	7-5-2	13-1			29-11-14	37-5-0
		7-5-2	6-5-		0-0-14	6-5-14	7-5-2
le = 1:71.7				0-6-11 0-0-14	0-6-11		
Offsets (X, Y)	: [5:0-3-0,0-3-	0], [7:0-3-0,0-3-0]	, [13:0-5-0,0-4-8],	22:0-5-0,0-4-8]	0-0-0		
ding	(nof)	Specing	2-0-0	CSI	DEFL	in (loc) l/defl L/d	PLATES GRIP
ang L (roof)	(psf)	Spacing					PLATES GRIP

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.25 1.25 YES IRC202 ⁻	1/TPI2014	CSI TC BC WB Matrix-MSH	0.84 0.41 0.47	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.24 -0.48 0.07	(loc) 17 17 10	l/defl >999 >937 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 260 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD	2400F 2.0E 2x4 SP No.3 *Excep Left 2x4 SP No.3 2 2-6-0 Structural wood she	*Except* 21-15:2x4 SP t* 22-6,13-6:2x4 SP No 2-6-0, Right 2x4 SP No athing directly applied.	o.2	Vasd=103m II; Exp B; En Exterior(2E) 18-8-8, Exter to 38-3-1 zor vertical left a forces & MW DOL=1.60 pl	7-16; Vult=130mp bh; TCDL=6.0psf; E closed; MWFRS (e -0-10-1 to 2-10-13, rior(2R) 18-8-8 to 2 he; cantilever left a nd right exposed;C (FRS for reactions ate grip DOL=1.33 ; 7-16; Pr=20.0 psf	BCDL=6 envelope , Interio 22-5-6, I nd right C-C for r shown;	Desf; h=25ft and C-C (1) 2-10-13 nterior (1) 22 exposed ; er nembers and Lumber	to 2-5-6 nd					
	Rigid ceiling directly bracing. (size) 2=0-3-8, ² Max Horiz 2=100 (LC Max Grav 2=1997 (L	C 14)	4)	Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 Unbalanced	.25); Pg=20.0 psf; late DOL=1.15); Is 9; Cs=1.00; Ct=1.10 snow loads have b	₽f=13.9 =1.0; Ro 0	9 psf (Lum ough Cat B; F	Fully					
FORCES	(lb) - Maximum Com Tension 1-2=0/28, 2-4=-3641	pression/Maximum	5)	load of 12.0	is been designed for psf or 2.00 times flat on-concurrent with	at roof l	oad of 13.9 p						
BOT CHORD	6-8=-3590/17, 8-10= 2-23=0/3182, 20-23= 14-18=0/2133, 12-14	3641/0, 10-11=0/28 =0/2948, 18-20=0/2133 4=0/2948, 10-12=0/318)=-12/81, 16-17=-12/81	3, 7)	200.0lb AC u from left end All plates are * This truss h	init load placed on , supported at two 2 2x4 MT20 unless has been designed	the both points, s otherwi for a liv	om chord, 18 5-0-0 apart. se indicated. e load of 20.						inne.
WEBS NOTES	4-23=-257/130, 5-23 5-22=-530/221, 21-2	22=0/1398, 6-21=0/142 =0/1398, 7-13=-530/22 2=-257/130,	1, 9)	3-06-00 tall to chord and ar	n chord in all areas by 2-00-00 wide wil by other members, are assumed to be Standard	ll fit betw with BC	veen the bott DL = 10.0ps				and and	ORTH CA	

1) Unbalanced roof live loads have been considered for this design.

April 23,2025

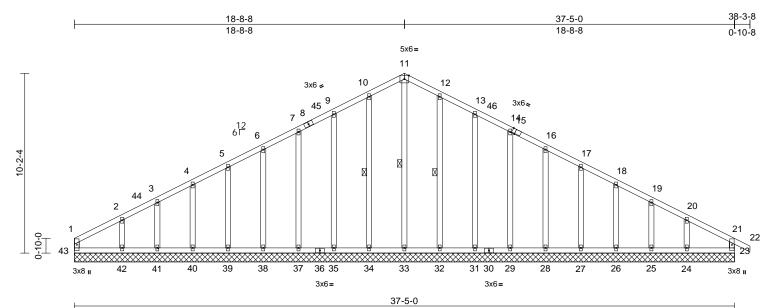


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	
25040105	A2	Common	2	1	Job Reference (optional)	172966391

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 23 10:22:33 ID:y7z5FdprXYkARFqqtKjy0BzNt6w-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

B Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	
25040105	A3	Common Supported Gable	2	1	Job Reference (optional)	72966392

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 23 10:22:33 ID:GMajiiLtsFcIYdS2Fo_V7lzNt4y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:65.3

Plate Offsets (X, Y): [15:0-2-3,Edge]

Flate Olisets (x, i). [15.0-2-	S,Euge													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	13.9/	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2		CSI TC BC WB Matrix-MR	0.11 0.06 0.17	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00		oc) l/defl - n/a - n/a 23 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 257 lb	GRIP 244/190 FT = 20%	
	6-0-0 oc purli Rigid ceiling of bracing. 1 Row at mid (size) 23 26 29 33 37 40 43 Max Horiz 43 Max Uplift 23 25 29 32 35 40 43 Max Uplift 23 25 29 32 35 29 32 35 29 32 35 29 32 35 38 40 42 40 43 43 43 43 44 43 43 44 43 43	ins, exc directly pt =37-5-0 =37-5-0 =37-5-0 =37-5-0 =37-5-0 =37-5-0 =37-5-0 =-37-5-0 =-37-5-0 =-37-5-0 =-37-5-0 =-37-5-0 =-117 (I =-137-5-0 =-117 (I =-15 (LI =-15 (LI =-16 (LI =-16 (LI =160 (L =160 (L =169 (L =159 (L	LC 11) 12), 24=-49 (LC 16) 16), 26=-18 (LC 16) C 16), 28=-16 (LC 16) C 16), 34=-19 (LC 11) C 16), 34=-19 (LC 11) C 15), 37=-15 (LC 12) C 15), 43=-13 (LC 15) C 15), 43=-13 (LC 15) C 15), 43=-13 (LC 17) C 2), 24=191 (LC 40) C 2), 24=191 (LC 40) C 2), 24=190 (LC 20) C 2), 31=180 (LC 20) C 2), 33=158 (LC 20) C 2), 38=160 (LC 30) C 2), 40=164 (LC 30) C 2), 42=210 (LC 30) C 2), 42=210 (LC 30)	5-0, 5-0, 5-5-	this design 2) Wind: ASC Vasd=103r II; Exp B; Et (3E) 0-1-12 Corner(3R) 38-3-1 zon vertical left forces & M	(lb) - Maximum Co Tension 1-43=-87/21, 1-2=: 3-4=-74/82, 4-5=-7 6-7=-95/219, 7-9=: 10-11=-144/351, 1 12-13=-127/312, 1 14-16=-95/219, 16 17-18=-71/128, 18 20-21=-87/39, 21-2 42-43=-35/89, 34-2 35-37=-35/89, 34-2 35-37=-35/89, 34-2 35-37=-35/89, 34-2 32-33=-35/89, 24-2 11-33=-239/64, 10 9-35=-140/84, 7-3 5-39=-126/77, 4-44 2-42=-168/169, 12 13-31=-140/84, 14 16-28=-127/78, 17 18-26=-128/81, 19 20-24=-155/140 d roof live loads have. E 7-16; Vult=130mp mph; TCDL=6.0psf; inclosed; MWFRS (i 2 to 3-10-10, Exterio 0 18-8-8 to 22-8-8, Ec e; cantilever left and and right exposed; WFRS for reactions plate grip DOL=1.33		2-3=-82/58, i-6=-83/173, y =-10=-127/3 44/351, 108/263, 1/173, 1/82, 19-20=-6 2/1-23=-149/ 19, 40-41=-35 19, 37-38=-35 19, 28-27=-35 19, 28-27=-35 19, 23-24=-35 5/64, 6/76, 6/77, 9/68, considered for considered for considered for considered for 10, 10, 18-8 EN) 22-8-8 to 10, 20, 21, 12, 12, 12, 12, 12, 12, 12, 12, 12	6/43, 86 /89, /89, /89, /89, /89, /89 /78, /68, /68, r CCat. priner -8,	4) 5) 6) 7) 8) 9) 10) 11)	only. For s see Standa or consult of TCLL: ASC Plate DOL= DOL=1.15 Exp.; Ce=0 Unbalance design. This truss f load of 12.0 overhangs All plates a Gable requ Truss to be braced aga Gable stud * This truss on the botto 3-06-00 tall chord and a	tuds e: rrd Indu µalifie E 7-16 1.25); Plate I .9; Cs: d snow as beid) psf o non-cc re 2x4 tires cc fully s inst lat s spac has b by 2-(any oth	or wind loads in the xposed to wind (r ustry Gable End I d building design S; Pr=20.0 psf; Pf= DOL=1.15); Is=1.6 =1.00; Ct=1.10 / loads have beer en designed for g r 2.00 times flar morcurrent with oth MT20 unless oth oncurrent with oth oncurrent	ormal to the fa Details as appl er as per ANS of LL: Lum DO 13.9 psf (Lum D; Rough Cat E a considered for reater of min r pof load of 13.9, er live loads. erwise indicate chord bearing. e face or secur .e. diagonal we a live load of 2 here a rectangl between the b	ace), licable, l/TPI 1. 0L=1.25 3; Fully or this roof live 9 psf on ed. rely eb). 20.0psf le

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **AMSUTP11 Quility Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

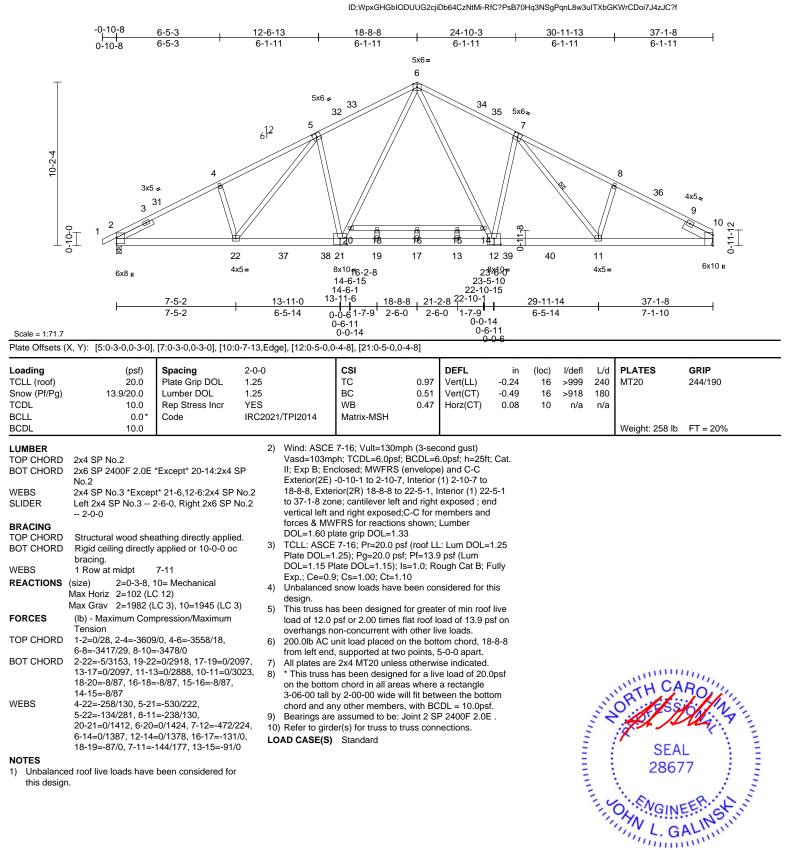
Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	
25040105	A3	Common Supported Gable	2	1	Job Reference (optional)	172966392
Carter Components (Sanford, NC	C), Sanford, NC - 27332,	Run: 8.73 S Feb 19 2	2025 Print: 8.	730 S Feb 1	9 2025 MiTek Industries, Inc. Wed Apr 23 10:22:33	Page: 2

12) All bearings are assumed to be SP No.2.

13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 13 lb uplift at joint 43, 8 lb uplift at joint 23, 10 lb uplift at joint 34, 19 lb uplift at joint 35, 15 lb uplift at joint 37, 16 lb uplift at joint 38, 15 lb uplift at joint 39, 19 lb uplift at joint 40, 3 lb uplift at joint 41, 54 lb uplift at joint 42, 10 lb uplift at joint 32, 19 Ib uplift at joint 31, 15 lb uplift at joint 29, 16 lb uplift at joint 28, 15 lb uplift at joint 27, 18 lb uplift at joint 26, 5 lb uplift at joint 25 and 49 lb uplift at joint 24.

LOAD CASE(S) Standard

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 23 10:22:33 ID:GMajiiLtsFcIYdS2Fo_V7IzNt4y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

[Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	
	25040105	A4	Common	1	1	Job Reference (optional)	172966393

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 23 10:22:34

Page: 1

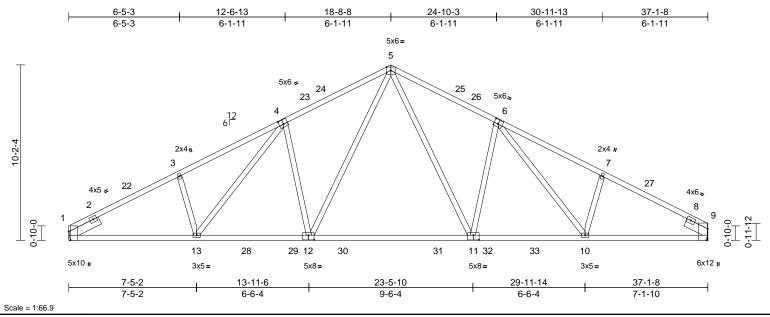
April 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	
25040105	A5	Common	2	1	Job Reference (optional)	172966394

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 23 10:22:34 ID:QTtm5K4SQ0_1WxWMPYJyZ8zNtKn-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

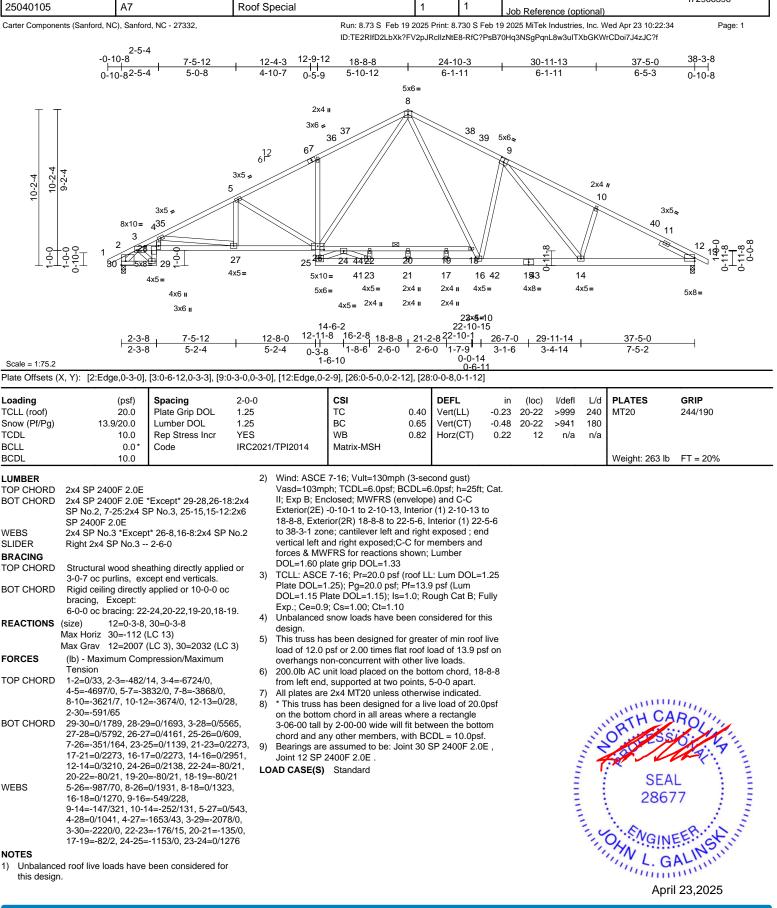
Page: 1


		_1WxWMPYJyZ8zNtKn-RfC?PsI		010000000000000000000000000000000000000
12-6-13 6-1-11		24-10-3 6-1-11 =	30-11-13 6-1-11	<u>37-1-8</u> 6-1-11
-2 6-5-14	5x6 = 32 31 4 4 3 4 4 3 7 9 9 7 9 7 9 7 7 8 37 20 18 16 8x1046-2-8 14-6-15 14-6-15 14-6-15 14-6-15 14-6-15 14-6-15 14-6-15 14-6-15 14-6-1 0-0-61-7-9 2-6-0 0-6-11 0-0-14	2-6-0 1-7-9 0-0-14 0-0-14 0-6-11 0-0-6		35 4x5 8 9 0 1 1 6x10 II 37-1-8 7-1-10
[4:0-3-0,0-3-0], [6:0-3-0,0-3-0]	, [9:0-7-13,Edge], [11:0-5-0,0-4-	8], [20:0-5-0,0-4-8]		
Spacing2-0-0Plate Grip DOL1.25Lumber DOL1.25Rep Stress IncrYESCodeIRC2021/	CSI TC BC WB Matrix-MSH	0.98 Vert(LL) -0.24 0.51 Vert(CT) -0.49	15 >999 240 15 >918 180	PLATES GRIP MT20 244/190 Weight: 257 lb FT = 20%
Except* 19-13:2x4 SP * 20-5,11-5:2x4 SP No.2 6-0, Right 2x6 SP No.2 thing directly applied. applied or 10-0-0 oc 3) 3-10 12) C 3), 9=1945 (LC 3) bression/Maximum 62/27, 5-7=-3418/29, 7) 1=0/2920, 16-18=0/2098, =0/2889, 9-10=0/3024, 8/87, 14-15=-8/87, 8)	Vasd=103mph; TCDL=6.0psf; I II; Exp B; Enclosed; MWFRS (e Exterior(2E) 0-0-0 to 3-8-9, Inte Exterior(2R) 18-8-8 to 22-5-1, I 37-1-8 zone; cantilever left and vertical left and right exposed;C forces & MWFRS for reactions DOL=1.60 plate grip DOL=1.33 TCLL: ASCE 7-16; Pr=20.0 psf; DOL=1.15 Plate DOL=1.15); Is Exp.; Ce=0.9; Cs=1.00; Ct=1.1 Unbalanced snow loads have b design. 200.0lb AC unit load placed on from left end, supported at two All plates are 2x4 MT20 unless * This truss has been designed on the bottom chord in all areas 3-06-00 tall by 2-00-00 wide wi chord and any other members, Refer to girder(s) for truss to tru	3CDL=6.0psf; h=25ft; Cat. nvelope) and C-C riror (1) 3-8-9 to 18-8-8, nterior (1) 22-5-1 to right exposed ; end C-C for members and shown; Lumber (roof LL: Lum DOL=1.25 Pf=13.9 psf (Lum =1.0; Rough Cat B; Fully been considered for this the bottom chord, 18-8-8 points, 5-0-0 apart. otherwise indicated. for a live load of 20.0psf s where a rectangle I fit between the bottom with BCDL = 10.0psf.		SEAL 28677 April 23,2025
	$\begin{array}{c} 6-1-11 \\ & 6^{12} \\ & 6^{12} \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $	6-1-11 6-1-11 $5x6 =$ 32 61^2 3 61^2 4 61^2 4 61^2 4 61^2 4 61^2 4 61^2 4 $4x5 =$ $8x1046-2-8$ $4x5 =$ $8x1046-2-8$ $4x5 =$ $8x1046-2-8$ $4x6 = 1$ $18-8-8$ $4x5 =$ $8x1046-2-8$ $4x5 =$ $8x1046-15$ $4x5 =$ $8x1046-17$ $4x5 =$ $8x1046-2-8$ $4x5 =$ $8x102-26-0$ $4x5 $	$\begin{array}{c} 6.1-11 & f & 6-1-11 & f & 5x6 \\ \hline 5x6 + 32 & f & 5x6 + 1 & 5x6$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	
25040105	A6	Common	4	1	Job Reference (optional)	172966395

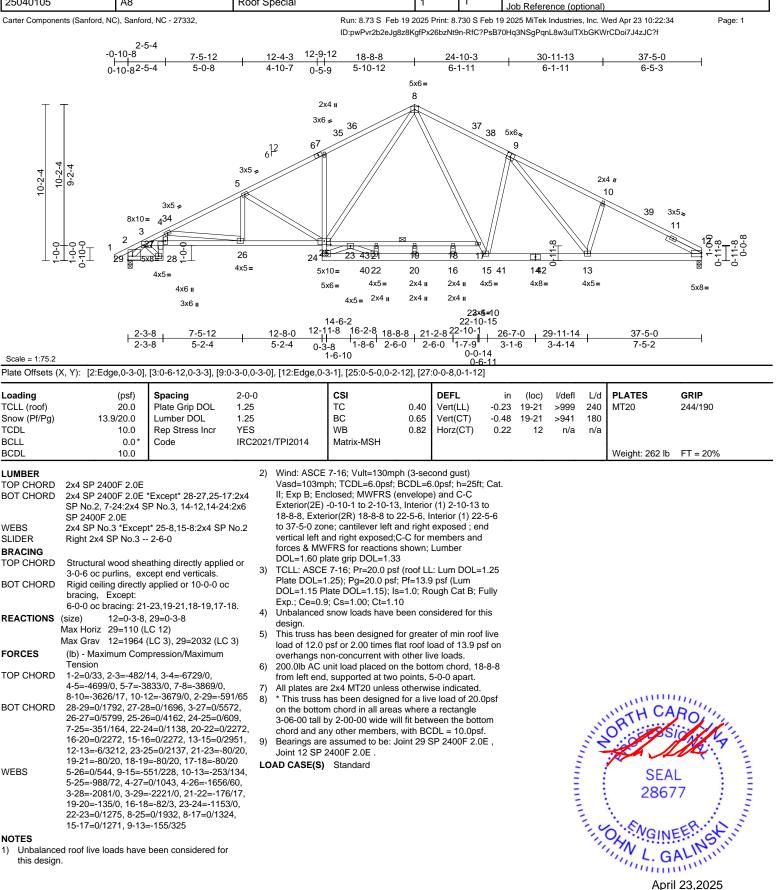
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 23 10:22:34 ID:gp1sNwKxc8eib5XQy1uMMrzNt_V-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1


	A, T). [1.0-6-1,Euge],	[4.0-3-0,0-3-0], [0.0	-3-0,0-3-0], [9.0-7-13,Eu	jej, [11.0-4-0,0-3-4	4], [12.0-	4-0,0-3-4]						
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.80 0.69 0.56	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.31 -0.54 0.14	(loc) 11-12 11-12 9	l/defl >999 >825 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 212 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP 2400F 2.0E 2x4 SP 2400F 2.0E 2x4 SP No.3 *Excep Left 2x6 SP 2400F 2 SP 2400F 2.0E 1-I Structural wood she 2-8-1 oc purlins. Rigid ceiling directly bracing. (size) 1= Mecha Max Horiz 1=97 (LC Max Grav 1=1659 (L	2.0E 2-0-0, Right 2 6-0 athing directly applie applied or 10-0-0 or inical, 9= Mechanica 12)	2x6 4) 5) ed or C 6) al L	Plate DOL= DOL=1.15 P Exp.; Ce=0.9 Unbalanced design. * This truss I on the botto 3-06-00 tall I chord and a	57-16; Pr=20.0 ps .25); Pg=20.0 ps late DOL=1.15); ls 3; Cs=1.00; Ct=1.1 snow loads have has been designed n chord in all area by 2-00-00 wide w by other members er(s) for truss to tr Standard	; Pf=13. s=1.0; Ro l0 been cor d for a liv is where ill fit betv , with BC	9 psf (Lum bugh Cat B; F nsidered for t e load of 20. a rectangle veen the bott DL = 10.0ps	Fully his Opsf					
FORCES	(lb) - Maximum Com	<i>,.</i> , , , , , , , , , , , , , , , , , ,	7										
TOP CHORD	Tension 1-3=-3061/248, 3-5=	-2975/323,											
BOT CHORD	5-7=-2846/322, 7-9= 1-13=-149/2635, 10- 9-10=-143/2508												
WEBS	3-13=-226/127, 4-12 4-13=-64/402, 7-10= 5-12=-90/1102, 6-11 5-11=-88/1070, 6-10	-182/123, =-560/185,										HTH CA	ROUNIN
NOTES		h	_								2 R		Phi. The
this design 2) Wind: ASC Vasd=103 II; Exp B; E Exterior(2F 37-1-8 zor vertical left forces & M	ed roof live loads have CE 7-16; Vult=130mph mph; TCDL=6.0psf; Bt Enclosed; MWFRS (er E) 0-0-0 to 3-8-9, Interi R) 18-8-8 to 22-5-1, Ini re; cantilever left and r is; cantilever left and r tand right exposed;C- tWFRS for reactions s plate grip DOL=1.33	(3-second gust) CDL=6.0psf; h=25ft; ivelope) and C-C ior (1) 3-8-9 to 18-8- terior (1) 22-5-1 to ight exposed ; end C for members and	Cat.							. ATTURNA.	Summer.	SEA 2867	EER. K

April 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	
25040105	A7	Roof Special	1	1	Job Reference (optional)	172966396



818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	
25040105	A8	Roof Special	1	1	Job Reference (optional)	172966397

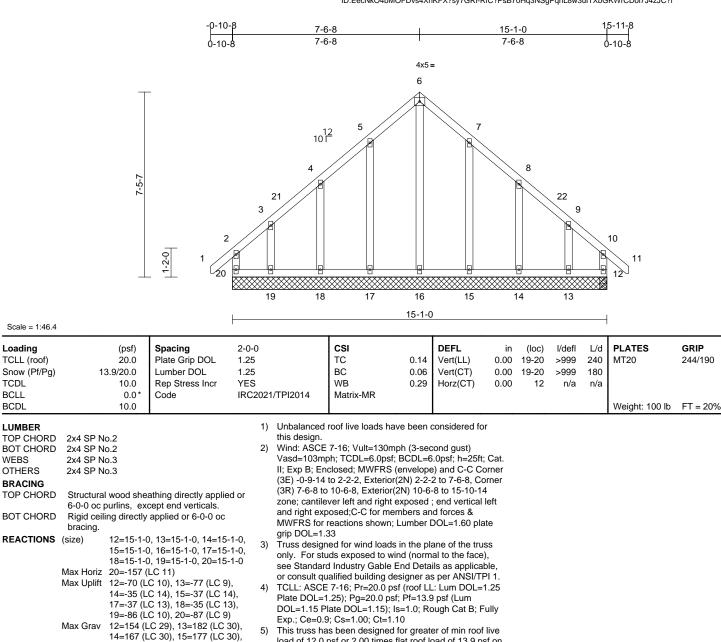
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	
25040105	A9	Roof Special	6	1	Job Reference (optional)	172966398

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 23 10:22:35 ID:0zGTjCn4R0rD400bFN3ZV8zNt?D-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	-0-10-82-5- 0-10-8 2-5-	4 7-5-12 4 5-0-8		2.0	9-12 -5-9	<u>18-8-8</u> 5-10-12		24-10 6-1-1			<u>30-1</u> 6-1			37-5-0 6-5-3	
10-2-4 1-0-0 9-2-4 9-2-4	8x10= 3 - 1 - 22 - 22 - 5xt - 2-3-	3x5 = 427 4x7 = 21 + 4x5 = 4x5 = 3x6	6 3x5 = 5 19 4x5=			29 18-8-8 6-0-8	5x 8 1€ 4x5	33	30 31 15 3 3x5=	9 34 25	1435 4x6= 0-11-14 6-6-4		2x4 // 10 13 3x5=	32 37-5-0 7-5-2	4x5 • 11 12 5x10 II
Scale = 1:69.8 Plate Offsets (X, Y):	[2:Edge,0-3-4]	, [3:0-6-4,0-2-11], [9:	:0-3-0,0-3-0]	, [12:0-6-1,E	dge], [1	8:0-2-12,0-2	-12], [2	0:0-0-8,0-1-12	2]						
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2021/	/TPI2014	CSI TC BC WB Matri	x-MSH	0.54 0.88 0.73	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.20 -0.37 0.23	(loc) 13-15 13-15 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 24	GRIP 244/19 43 lb FT = 2	
BOT CHORD 2x4 SP WEBS 2x4 SLIDER 8 BRACING 7 TOP CHORD 8 BOT CHORD 8 WEBS 1 R REACTIONS (size Max Max FORCES (b) TOP CHORD 1-2 4-5 7-8 10 BOT CHORD 1-2 4-5 7-8 10 BOT CHORD 21- 3-2 8-1 13 WEBS 5-1 4-1 3-2 8-1 9-1 9-1 9-1 9-1 9-1 9-1 9-1 9-1 9-1 9	No.3 SP No.3 *Excep ht 2x6 SP 2400F uctural wood she -12 oc purlins, e id ceiling directly cing. tow at midpt) 12= Mech Horiz 22=110 (I Grav 12=1634 - Maximum Con asion =0/33, 2-3=-406, =-3811/270, 5-7= =-3018/374, 8-11 12=-3026/247, 2 22=-106/1486, 2 0=-290/4637, 19 19=-168/3362, 1 8=-352/164, 16 15=-82/2278, 12 9=0/502, 5-18=- 9=-1470/150, 3-2 2=-1841/120, 8- 6=-117/73, 16-1 5=-124/972, 9-11 3=-51/456, 10-13	eathing directly applie except end verticals. <i>v</i> applied or 10-0-0 o 8-16 hanical, 22=0-3-8 LC 12) (LC 3), 22=1677 (LC hpression/Maximum /50, 3-4=-5587/353, -2991/273, 0=-2940/331, -22=-511/103 0=-2940/331, -22=-511/103 0=-2940/331, -22=-511/103 0=-21-86/1417, -13=-146/2601 931/87, 4-20=0/877, 21=-1734/121, 18=-176/1516, 8=-3/1586, 5=-631/182,	7:2x4 No.2 ed or c 3) 4) C 3) 5) 6) 716, LOA	II; Exp B; Er Exterior(2E) 18-8-8, Exter to 37-5-0 zo vertical left af forces & MV DOL=1.60 p TCLL: ASCf Plate DOL= DOL=1.15 F Exp.; Ce=0. Unbalanced design. This truss hi load of 12.0 overhangs r * This truss on the botto 3-06-00 tall chord and a	ph; TC hclosed - 0-10- rior(2R ne; car and righ VFRS fo blate gri = 7-16; 1.25); F Plate DC 9; Cs=1 s now I as beer psf or 2 bon-con has beer m chorr by 2-00 ny othe e assumed er(s) fo	DL=6.0psf; E ; MWFRS (e 1 to 2-10-13, 1 to 2-10-13, 1 to 2-10-13, 1 texposed;C pr reactions s p DOL=1.33 Pr=20.0 psf; DL=1.15); Is= 0.00; Ct=1.10 0.00; Ct=1.10 0.00; Ct=1.10 0.00; dt=0.00; Ct=0.10 0.00; dt=0.00; dt=0.00; 0.00; dt=0.00; dt=0.00; dt=0.00; dt=0.00; 0.00; dt=0.00; dt=0.00	CDL=6 nvelope Interior 2-5-6, In dright -C for n shown; (roof LL Pf=13.9 =1.0; Rc een cor or greate tat roof k other liv for a liv where fit betw with BC int 22 S	.0psf; h=25ft;) and C-C (1) 2-10-13 th therior (1) 22- exposed ; enu- nembers and Lumber : Lum DOL=1 psf (Lum ugh Cat B; Fi sidered for th er of min roof rad of 13.9 ps re loads. e load of 20.0 a rectangle reen the bottc DL = 10.0psf. P 2400F 2.0F	o 5-6 d I.25 ully live sf on lpsf				ORTH 20 DKW L	CARO SEAL 8677	54 July 225



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	
25040105	B1	Common Structural Gable	1	1	Job Reference (optional)	172966399

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 23 10:22:35 ID:EecNkO4bMOFDvs4XnKFX?sy7GRi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

NOTES

WEBS

FORCES

TOP CHORD

BOT CHORD

20=168 (LC 30)

Tension

(Ib) - Maximum Compression/Maximum

1-2=0/47. 2-3=-106/102. 3-4=-75/108.

13-14=-78/85, 12-13=-78/85

6-16=-304/82, 5-17=-157/117

4-18=-160/135, 3-19=-140/129,

7-15=-157/116, 8-14=-160/135,

9-13=-139/130

4-5=-95/210, 5-6=-141/299, 6-7=-141/299,

10-11=0/47, 2-20=-134/83, 10-12=-123/81

19-20=-78/85, 18-19=-78/85, 17-18=-78/85,

16-17=-78/85, 15-16=-78/85, 14-15=-78/85,

7-8=-95/209, 8-9=-64/109, 9-10=-89/86,

Loading

TCDL

BCLL

BCDL

LUMBER

WFBS

OTHERS

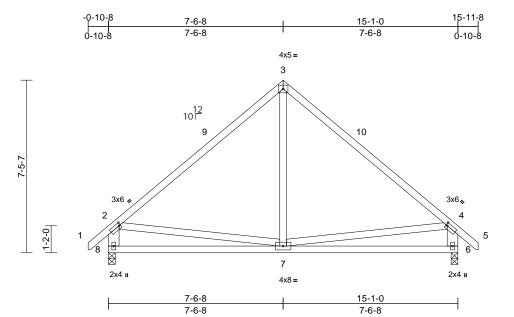
BRACING

TCLL (roof)

- This truss has been designed for greater of min roof live 5) load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on 16=179 (LC 32), 17=178 (LC 29), overhangs non-concurrent with other live loads. 18=165 (LC 29), 19=189 (LC 29), All plates are 2x4 MT20 unless otherwise indicated. 6) Truss to be fully sheathed from one face or securely 7) braced against lateral movement (i.e. diagonal web). Gable studs spaced at 2-0-0 oc. 8) * This truss has been designed for a live load of 20.0psf 9)
 - on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 10) All bearings are assumed to be SP No.2 .
 - 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 87 lb uplift at joint 20, 70 lb uplift at joint 12, 37 lb uplift at joint 17, 35 lb uplift at joint 18, 86 lb uplift at joint 19, 37 lb uplift at joint 15, 35 lb uplift at joint 14 and 77 lb uplift at joint 13.

LOAD CASE(S) Standard

Solution and Solution ORTH THURSDAY TO THE TANK SEAL 28677 "OHN . GA


April 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	
25040105	B2	Common	1	1	Job Reference (optional)	172966400

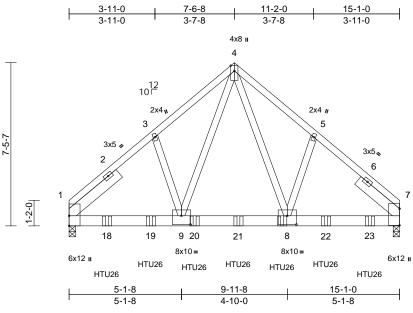
Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 23 10:22:35 ID:irAlxk5D7hO4W0fjK1mmY4y7GRh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [2:0-0-12,0-1-8], [4:0-0-12,0-1-8]

	x, i). [2.0-0-12,0-1-0	j, [4 .0-0-12,0-1-0]										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.67 0.34 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.06 0.01	(loc) 7 6-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 91 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 6=0-3-8, 8 Max Horiz 8=-159 (L Max Grav 6=648 (LC (Ib) - Maximum Com	athing directly applicept end verticals. applied or 10-0-0 o 3=0-3-8 C 11) C 2), 8=648 (LC 2)	on the bo 3-06-00 tr 0.2 chord and 6) All bearin ed or LOAD CASE	ss has been designer ttom chord in all area all by 2-00-00 wide w d any other members gs are assumed to b (S) Standard	is where ill fit betv	a rectangle veen the bott	•				Wegnt. 3 Hb	11-20/8
this design 2) Wind: ASC	Tension 1-2=0/51, 2-3=-614/ 4-5=0/51, 2-8=-632/ 7-8=-218/456, 6-7=- 3-7=0/195, 2-7=-135 ed roof live loads have b E 7-16; Vult=130mph mph; TCDL=6.0psf; B ^I	155, 4-6=-632/155 163/404 5/273, 4-7=-139/275 been considered fo (3-second gust)	r								OR TH CA	RO
II; Exp B; E Exterior(2E Exterior(2R 15-10-14 z vertical left forces & M DOL=1.60 3) TCLL: ASC Plate DOL= DOL=1.15 Exp.; Ce=C 4) This truss f load of 12.0	Enclosed; MWFRS (er Enclosed; MWFRS (er E) -0-9-14 to 2-2-2, Int R) 7-6-8 to 10-6-8, Inte cone; cantilever left an t and right exposed;C- WFRS for reactions s plate grip DOL=1.33 CE 7-16; Pr=20.0 psf (=1.25); Pg=20.0 psf; F Plate DOL=1.15); Is= 0.9; CS=1.00; Ct=1.10 has been designed for 0 psf or 2.00 times fla non-concurrent with c	Invelope) and C-C erior (1) 2-2-2 to 7-6 erior (1) 10-6-8 to d right exposed; en C for members and hown; Lumber roof LL: Lum DOL= Pf=13.9 psf (Lum 1.0; Rough Cat B; F r greater of min roof t roof load of 13.9 p:	5-8, id 1.25 fully filive							A A A A A A A A A A A A A A A A A A A	SEA 286	EER G

April 23,2025

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	
25040105	В3	Common Girder	1	2	Job Reference (optional)	172966401

Run: 8.73 E May 9 2024 Print: 8.730 E May 9 2024 MiTek Industries, Inc. Wed Apr 23 16:17:46 ID:tyLvFUD7Y4mWLi?qUrTMUOy7GRW-jaqiCDSKjHixpEVMwf2LaK_6ac949eBPfXBeULzNoMK

Page: 1

Scale = 1:52.6		
Plate Offsets (X, Y):	[8:0-5-0.0-4-12].	[9:0-5-0.0-4-1]

	X, Y): [8:0-5-0,0-4-12], [9:0-5-0,0-4-12]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 NO IRC2021	I/TPI2014	CSI TC BC WB Matrix-MSH	0.79 0.48 0.75	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.15 0.03	(loc) 8-9 8-9 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 221 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) 2-ply truss (0.131"x3") Top chords oc. Bottom cho staggered Web conne 2) All loads an except if no CASE(S) s provided to unless othe	2x4 SP No.2 2x6 SP 2400F 2.0E 2x4 SP No.3 Left 2x6 SP 2400F 2 SP 2400F 2.0E 2-1 Structural wood she: 3-7-13 oc purlins. Rigid ceiling directly bracing. (lb/size) 1=4769/0. Max Horiz 1=-118 (L Max Grav 1=6084 (L (lb) - Maximum Com Tension 1-3=-6229/0, 3-4=-6 5-7=-6248/0 1-9=0/4651, 8-9=0/3 4-8=0/3980, 5-8=0/2 3-9=0/324 to be connected toget) nails as follows: s connected as follows: s connected as follows: ords connected as follows: ords connected as follows: prods conne	6-0 athing directly applie applied or 10-0-0 o -3-8, 7=4987/0-3-8 C 5) _C 3), 7=6352 (LC 3 pression/Maximum 078/0, 4-5=-6102/0, 4430, 7-8=0/4634 ?79, 4-9=0/3927, ther with 10d s: 2x4 - 1 row at 0-9- ows: 2x6 - 2 rows -1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LC nections have been noted as (F) or (B),	5) ed or c 6) .) 7) .) 8) LC 1) -0	Vasd=103m; II; Exp B; En and right exp Lumber DOL TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.3 * This truss I on the bottor 3-06-00 tall b chord and ar Use Simpsou 11-10dx1 1/2 spaced at 2- end to 13-8- bottom chorce Fill all nail he Fill all nail he Fill all nail he CAD CASE(S) Dead + Snc Increase=1 Uniform Lo: Vert: 1-4 Concentrati Vert: 8=-	les where hanger Standard ow (balanced): Lur 15	BCDL=6 envelope al left anc OOL=1.33 f (roof LL); pf=13.9 =1.0; Rc 0 d for a liv s where ill fit betw 26 (20-10 Girder) ng at 1-8- s(es) to f is in com mber Incc 14=-20 7 (F), 19	.0psf; h=25ft); cantilever I right expose : Lum DOL= 0 psf (Lum)ugh Cat B; F e load of 20. a rectangle veen the bott 10 Girder, or equivalen -12 from the ront face of ttact with lum rease=1.15, =-1241 (F),	left ed; 1.25 Fully Opsf om t left Nber. Plate			And	SEA 2867	RO 7 E.P. St. 111 23,2025

April 23,2025

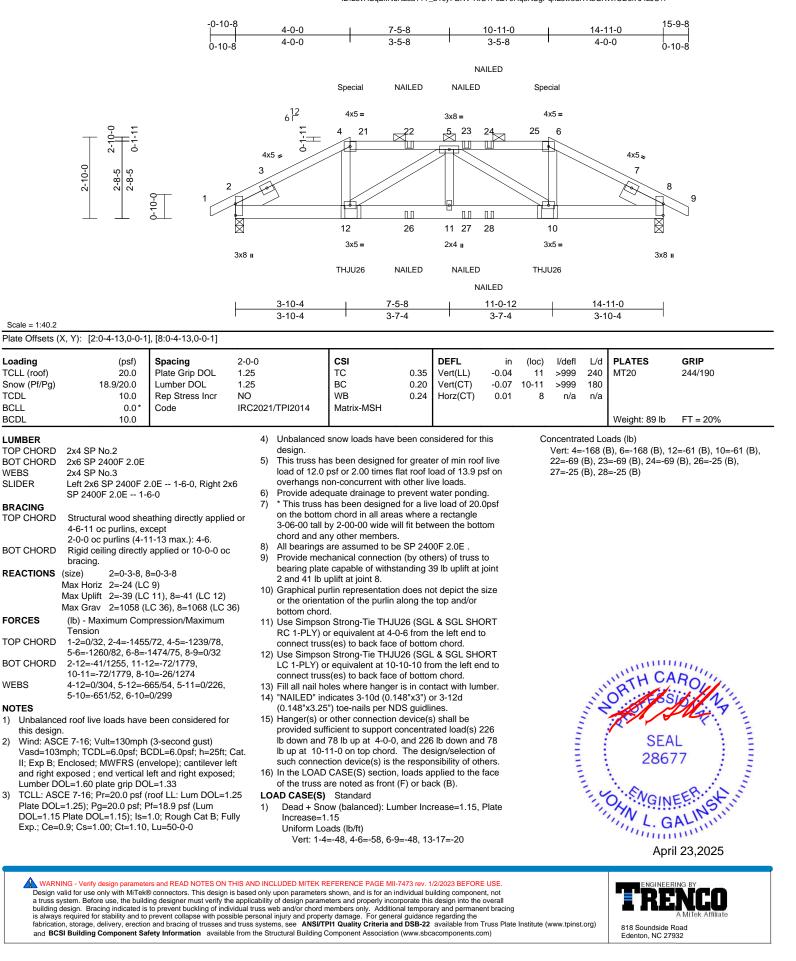
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	
25040105	C1	Hip Girder	1	1	Job Reference (optional)	172966402

TCDL

BCLL

BCDL


1)

2)

3)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 23 10:22:35 ID:L8vHSqEIINuNzsa11Y_b1cy7GRV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	
25040105	C2	Нір	1	1	Job Reference (optional)	172966403

Carter Components (Sanford, NC), Sanford, NC - 27332, Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 23 10:22:36 Page: 1 ID:irAlxk5D7hO4W0fjK1mmY4y7GRh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 6-0-0 8-11-0 14-11-0 15-9-8 0-10-8 6-0-0 2-11-0 6-0-0 0-10-8 5x8 = 4x5 = 4 5 3-10-0 0-1-11 0-1-1 \bowtie 12 6 Г d. 4x5 ≠ 4x5 👟 20 21 3-10-0 3-8-5 3-8-5 19 22 3 6 2 7 -10-0 8 6 Ŕ 10 9 2x4 🛚 3x5 = 3x8 II 3x8 II 5-10-4 9-0-12 14-11-0 5-10-4 3-2-8 5-10-4 Scale = 1:34.4 Plate Offsets (X, Y): [2:0-6-1,Edge], [4:0-4-0,0-1-15], [7:0-6-1,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.47 0.32 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 10-13 10-13 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 73 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: ASI Vasd=103 II; Exp B; Exterior(2 6-0-0, Ext to 13-1-15 left and rig	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x6 SP No.2 1 No.2 1-6-14 Structural wood she 5-6-9 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 2=0-3-8, 7 Max Horiz 2=-34 (LC (lb) - Maximum Com Tension 1-2=0/32, 2-4=-868/ 5-7=-869/185, 7-8=0 2-10=-144/697, 9-10 4-10=0/113, 4-9=-10	athing directly applie -0 max.): 4-5. applied or 10-0-0 or 7=0-3-8 :13) 2 44), 7=768 (LC 44 pression/Maximum 185, 4-5=-717/210, /32 been considered for (3-second gust) CDL=6.0psf; h=25ft; velope) and C-C terior (1) 2-1-15 to 0, Exterior (2R) 8-110 o, 15-9-1 zone; cantil cal left and right	2 4) 5) ed or 6) 7) 8) 9) 9) 697 r Cat. I-0 ever	Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 Unbalanced design. This truss ha load of 12.0 overhangs n Provide adee * This truss h on the bottor 3-06-00 tall th chord and ar All bearings Graphical pu		; Pf=18.5 s=1.0; Ro l0, Lu=50 been con for great lat roof lo n other li prevent d for a liv s where ill fit betw e SP No. n does no	e) psf (Lum bugh Cat B; F 0-0-0 nsidered for t er of min roo bad of 13.9 p ve loads. water pondin te load of 20. a rectangle veen the bott 2. bt depict the states and t	Fully his f live osf on g. Opsf				ORTH CA SEA 286	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

L. GA (IIIIIII)

April 23,2025

Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	
25040105	С3	Common	1	1	Job Reference (optional)	172966404

Loading

TCDL

BCLL

BCDL

WEBS

SLIDER

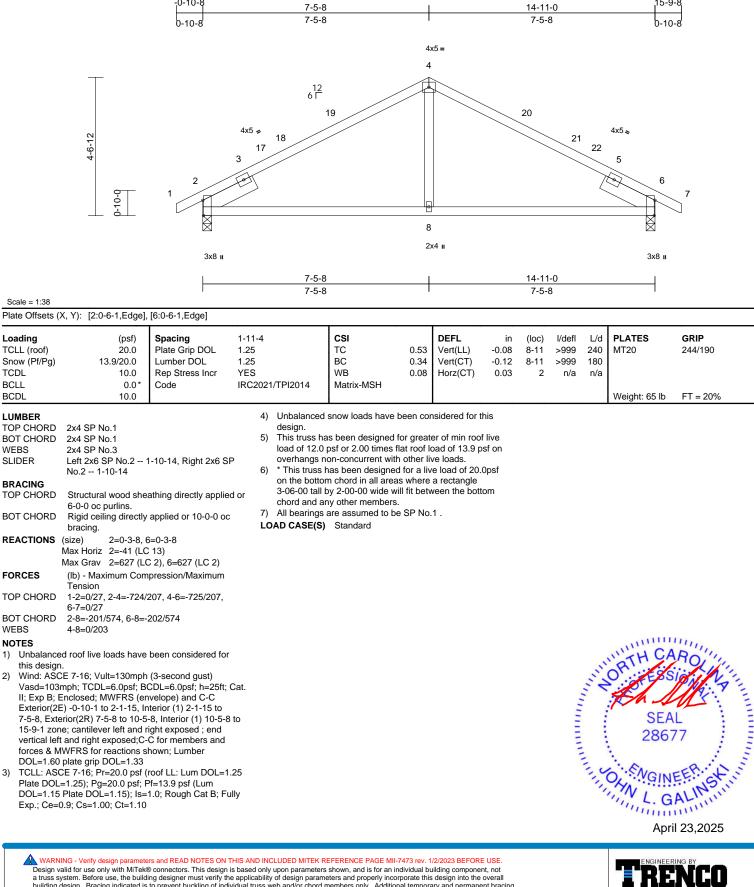
FORCES

WEBS

NOTES 1)

2)

3)


LUMBER

0-10-8

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 23 10:22:36 ID:A1k7936su?Wx89EvukH?4Hy7GRg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

15-9-8

building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	
25040105	C4	Common Girder	1	2	Job Reference (optional)	172966405

Loading

TCDL

BCLL

BCDL

WEBS

SLIDER

FORCES

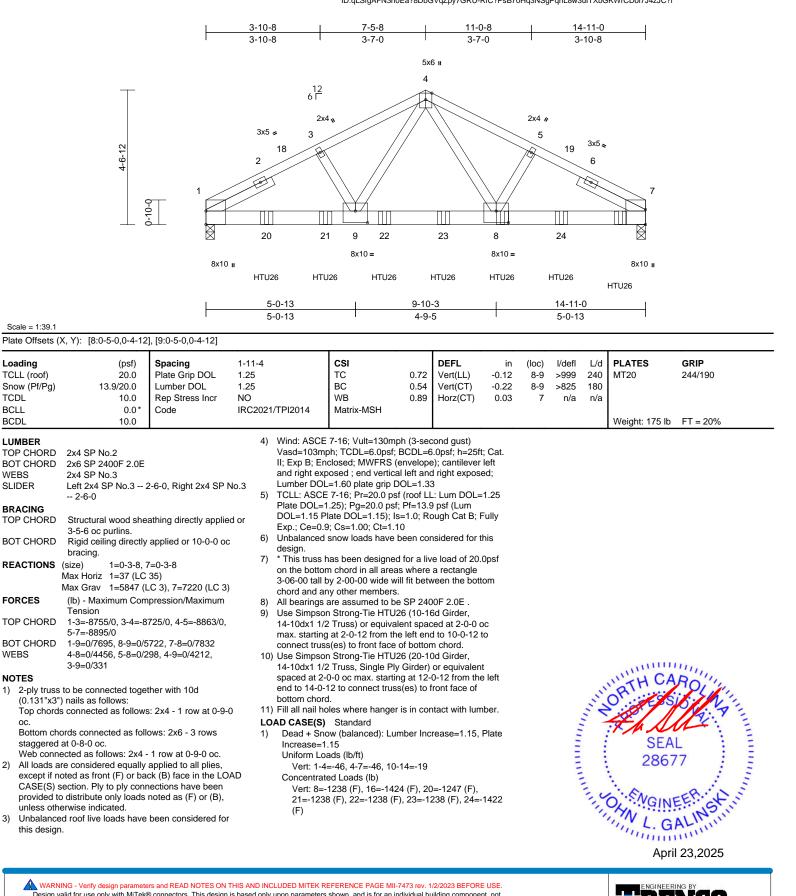
WEBS

NOTES

oc.

1)

2)

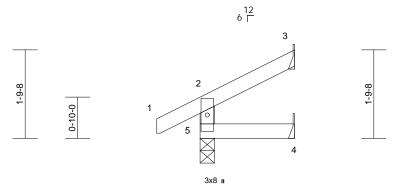

3)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 23 10:22:36 ID:qLSfgAFN3h0Ea?8DbGVqZpy7GRU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road

Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	
25040105	CJ1	Jack-Open	4	1	Job Reference (optional)	172966406

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 23 10:22:36 ID:A1k7936su?Wx89EvukH?4Hy7GRg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1-10-15

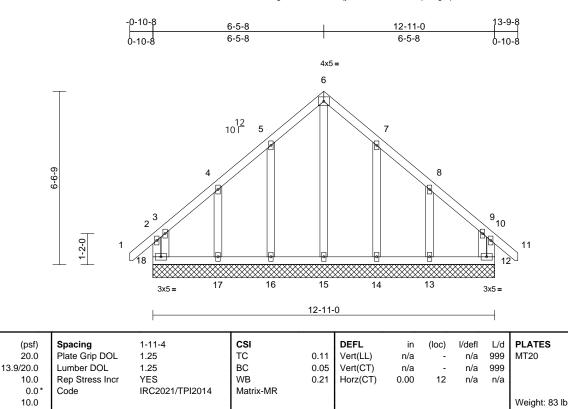
Scale = 1:23.3												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MR	0.10 0.05 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 1-10-15 oc purlins, Rigid ceiling directly bracing. (size) 3= Mecha 5=0-3-8 Max Horiz 5=32 (LC Max Grav 3=44 (LC (LC 22)	except end verticals. applied or 10-0-0 oc anical, 4= Mechanica 12) 2 15)	on the bot 3-06-00 ta chord and 6) Bearings a dor 7) Refer to gi 8) Provide m bearing pl 3. LOAD CASE(s has been designed om chord in all area: I by 2-00-00 wide wi any other members. Ire assumed to be: , rder(s) for truss to tri echanical connection ate capable of withst	s where ill fit betv Joint 5 S uss conr n (by oth	a rectangle veen the botto SP No.2 . nections. ers) of truss to	o					
FORCES	(lb) - Maximum Com Tension 2-5=-145/98, 1-2=0/											
Vasd=103r II; Exp B; E Exterior(2E vertical left forces & M DOL=1.60 2) TCLL: ASC Plate DOL= DOL=1.15 Exp.; Ce=C 3) Unbalance design. 4) This truss I load of 12.1	4-5=0/0 E 7-16; Vult=130mph mph; TCDL=6.0psf; Bi Enclosed; MWFRS (er) zone; cantilever left and right exposed;C- WFRS for reactions s plate grip DOL=1.33 CE 7-16; Pr=20.0 psf; F Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 d snow loads have be has been designed for 0 psf or 2.00 times flar non-concurrent with o	CDL=6.0psf; h=25ft; ivelope) and C-C and right exposed; C for members and hown; Lumber roof LL: Lum DOL=1 Pf=13.9 psf (Lum 1.0; Rough Cat B; Ft een considered for th r greater of min roof t roof load of 13.9 ps	end 1.25 ully is live						The second se	and a state of the	SEA 286 SEA 286	FER Stun

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

April 23,2025

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	
25040105	D1	Common Supported Gable	1	1	Job Reference (optional)	172966407


Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Wed Apr 23 10:22:37 ID:NAISHgRZINbt4tXtk_fEwqy6GUR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

GRIP

244/190

FT = 20%

		10.0
LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD		
WEBS	2x4 SP N	
OTHERS	2x4 SP N	
	284 SF IN	0.5
BRACING	-	
TOP CHORD		I wood sheathing directly applied or
		purlins, except end verticals.
BOT CHORD		ing directly applied or 6-0-0 oc
	bracing.	
REACTIONS	(size)	12=12-11-0, 13=12-11-0,
		14=12-11-0, 15=12-11-0,
		16=12-11-0, 17=12-11-0,
		18=12-11-0
	Max Horiz	
	Max Uplift	12=-33 (LC 10), 13=-66 (LC 14),
		14=-28 (LC 14), 16=-28 (LC 13),
		17=-67 (LC 13), 18=-44 (LC 9)
	Max Grav	12=170 (LC 29), 13=205 (LC 30),
		14=160 (LC 36), 15=151 (LC 14),
		16=160 (LC 35), 17=209 (LC 29),
		18=179 (LC 30)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	2-18=-124	4/168, 1-2=0/45, 2-3=-37/82,
	3-4=-103/	/85, 4-5=-109/201, 5-6=-151/290,
		/291, 7-8=-111/200, 8-9=-94/82,
		/82, 10-11=0/45, 10-12=-119/169
BOT CHORD		9/70, 16-17=-59/70, 15-16=-59/70,
	14-15=-59	9/70, 13-14=-59/70, 12-13=-59/70
WEBS		9/94, 5-16=-156/118,
	4-17=-172	2/174, 3-18=-149/97,
		5/118, 8-13=-171/175, 9-12=-136/80
NOTES		, ,
	ed roof live l	oads have been considered for
this design		
and design		

Scale = 1:43.5 Loading

TCLL (roof)

TCDL

BCLL

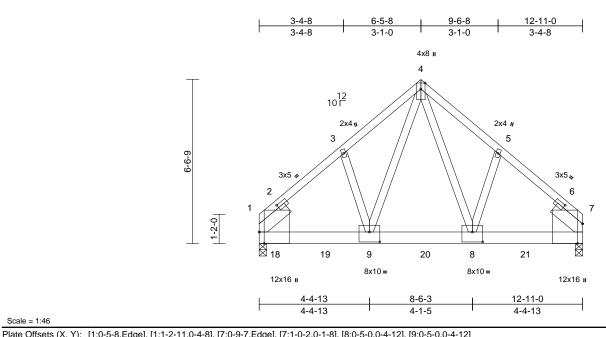
BCDL

Snow (Pf/Pg)

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) -0-9-14 to 2-5-8, Exterior(2N) 2-5-8 to 6-5-8, Corner (3R) 6-5-8 to 9-5-8, Exterior(2N) 9-5-8 to 13-8-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated. 6)
- Gable requires continuous bottom chord bearing. 7)
- Truss to be fully sheathed from one face or securely 8) braced against lateral movement (i.e. diagonal web).
- 9) Gable studs spaced at 2-0-0 oc.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) All bearings are assumed to be SP No.2 .
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 44 lb uplift at joint 18, 33 lb uplift at joint 12, 28 lb uplift at joint 16, 67 lb uplift at joint 17, 28 lb uplift at joint 14 and 66 lb uplift at joint 13.

LOAD CASE(S) Standard

April 23,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	
25040105	D2	Common Girder	1	2	Job Reference (optional)	172966408

Run: 8.73 E May 9 2024 Print: 8.730 E May 9 2024 MiTek Industries, Inc. Wed Apr 23 16:18:25 ID:0U1?ona4T36AXjSARWs2QMy6GUF-YGFqbvxQIZIGcOZ2G3mjCmeyDkqOXkFHsmtlu1zNoLi Page: 1

Scale = 1:46

Plate Offsets (2	X, Y): [1:0-5-8,Edge],	, [1:1-2-11,0-4-8], [7:0- -	9-7,Edge	9], [7:1-0-2,0-1	-8], [8:0-5-0,0-4-12	2], [9:0-5	-0,0-4-12]						
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 NO IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.74 0.42 0.74	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.13 0.03	(loc) 8-9 8-9 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 182 lb	GRIP 244/190 FT = 20%
	SP 2400F 2.0E 1- Structural wood she 3-11-15 oc purlins. Rigid ceiling directly bracing.	athing directly applied applied or 10-0-0 oc -3-8, 7=5318/0-3-8 C 6) _C 3), 7=7013 (LC 3) apression/Maximum 315/0, 4-5=-5451/0, 3072, 7-8=0/4147	5) or 6) 7)	Vasd=103mj II; Exp B; En and right exp Lumber DOL TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.3 * This truss H on the bottor 3-06-00 tall tb chord and ar Hanger(s) or provided suf Ib down at 0- down at 4-7 at 8-7-12, ar down at 12-	7-16; Vult=130mp ph; TCDL=6.0psf; closed; MWFRS (cosed; end vertica =1.60 plate grip D :	BCDL=6 envelope I left and OL=1.33 (roof LL Pf=13.32 =1.0; Rc 0 I for a liv s where II fit betv device(s oncentra vn at 2- at 6-7-1 rd. The	6.0psf; h=25ft b); cantilever d right expose 3 :: Lum DOL= 0 psf (Lum bugh Cat B; F e load of 20. a rectangle veen the bott b) shall be ated load(s) 1 7-12, 1641 lb 12, 1925 lb d 1925 lb d 2, and 1931 design/select	left ed; fully Opsf om l644 own lb					1117
 (0.131"x3" Top chords oc. Bottom cho staggered Web connet All loads a except if nu CASE(S) s 	to be connected toge) nails as follows: s connected as follows ords connected as foll at 0-8-0 oc. ected as follows: 2x4 - re considered equally oted as front (F) or ba section. Ply to ply conn	s: 2x4 - 1 row at 0-9-0 ows: 2x6 - 3 rows - 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LOA nections have been	1)	Dead + Sno Increase=1 Uniform Lo Vert: 1-4 Concentrat Vert: 8=-	ow (balanced): Lur .15	14=-20 (B), 16=	=-1430 (B),				and the second s	SEA	ROUNT

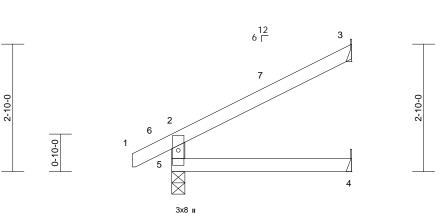
provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

April 23,2025


L. GA 111111111

Job	Truss Truss Type			Ply	11 Eagle Creek - Lawson C - Roof		
25040105	EJ1	Jack-Open	5	1	Job Reference (optional)	172966409	

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 23 10:22:37 ID:eDIVMP6UfJeomJp6SSpEdVy7GRf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ffinal and a strength of the second str

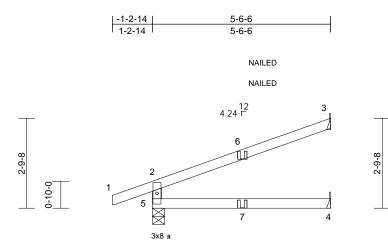
4-0-0

Scale	- 1	1.25	6

Scale = 1:25.6												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MR	0.29 0.19 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.02 -0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS (2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 3= Mecha 5=0-3-8 Max Horiz 5=55 (LC Max Grav 3=127 (LC 5=266 (LC	cept end verticals. applied or 10-0-0 oc inical, 4= Mechanica 15) : 15) :: 22), 4=45 (LC 22),	on the I 3-06-00 chord a 6) Bearing d or 7) Refer to 8) Provide bearing 3.	russ has been designe oottom chord in all area tall by 2-00-00 wide v nd any other members is are assumed to be: o girder(s) for truss to t mechanical connection plate capable of withs E(S) Standard	as where vill fit betv s. , Joint 5 \$ russ coni on (by oth	a rectangle ween the bott SP No.2 . nections. iers) of truss	om to					
TOP CHORD	(lb) - Maximum Com Tension 2-5=-236/137, 1-2=0 4-5=0/0	pression/Maximum										
NOTES 1) Wind: ASCI Vasd=103m II; Exp B; E: Exterior(2E 3-11-4 zone vertical left forces & MV DOL=1.60 [2) TCLL: ASC Plate DOL= DOL=1.15 I Exp.; Ce=0. 3) Unbalancee design. 4) This truss h load of 12.0	E 7-16; Vult=130mph nph; TCDL=6.0psf; B(nclosed; MWFRS (er) -0-10 to 2-1-15, In e; cantilever left and r and right exposed;C- WFRS for reactions s plate grip DOL=1.33 E 7-16; Pr=20.0 psf; F Plate DOL=1.15); Is= .9; Cs=1.00; Ct=1.10 d snow loads have be has been designed for 0 psf or 2.00 times flat non-concurrent with c	CDL=6.0psf; h=25ft; ivelope) and C-C iterior (1) 2-1-15 to ight exposed; end C for members and hown; Lumber roof LL: Lum DOL=1 2f=13.9 psf (Lum 1.0; Rough Cat B; Ft een considered for th r greater of min roof t roof load of 13.9 ps	.25 ully is							Super States	SEA 286	EER. Stummer

- DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 3)
- design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

L. GA mmm April 23,2025


818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	
25040105	HJ1	Diagonal Hip Girder	2	1	Job Reference (optional)	172966410

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 23 10:22:37 ID:7dr1oO7TSWOqasl9tKd2IOy7CBD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

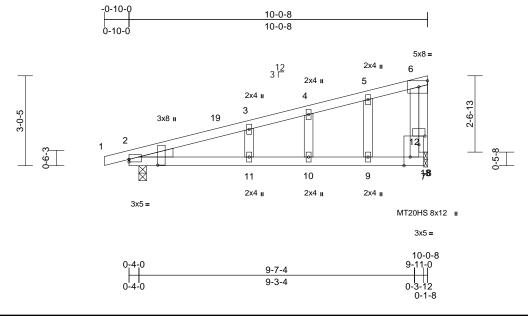
Page: 1

5-6-6

Scale = 1:35.7

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.25 1.25 NO IRC2021/TPI2014	CSI TC BC WB Matrix-MR	0.60 0.31 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.07 0.03	(loc) 4-5 4-5 3	l/defl >999 >891 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-6-6 oc purlins, ex Rigid ceiling directly bracing. (size) 3= Mecha 5=0-4-9 Max Horiz 5=58 (LC Max Grav 3=166 (LC 5=308 (LC	cept end verticals. applied or 10-0-0 oc anical, 4= Mechanica 7) 0 11), 5=-28 (LC 7) 0 18), 4=63 (LC 18),	7) Refer to gin 8) Provide me bearing pla 5 and 37 lb 5 and 37 lb 9) "NAILED" i (0.148"x3.2 10) In the LOA of the truss II, LOAD CASE(S 1) Dead + S Increase= Uniform L Vert: 1-	, now (balanced): Lur	uss coni n (by oth anding 2 48"x3") o OS guidli loads a (F) or ba mber Inc	nections. ers) of truss 28 lb uplift at or 2-12d nes. pplied to the ck (B).	joint face					
 Vasd=103r II; Exp B; E and right e: Lumber DC 2) TCLL: ASC Plate DOL= DOL=1.15 Exp.; Ce=C 3) Unbalance design. 4) This truss I load of 12.0 overhangs 5) * This truss on the bott 3-06-00 tal 	(lb) - Maximum Com Tension 2-5=-268/68, 1-2=0/ 4-5=0/0 EE 7-16; Vult=130mph mph; TCDL=6.0psf; Bi inclosed; MWFRS (er xposed ; end vertical I DL=1.60 plate grip DC EE 7-16; Pr=20.0 psf; F Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 d snow loads have be has been designed for 0 psf or 2.00 times flar non-concurrent with c s has been designed for om chord in all areas I by 2-00-00 wide will any other members.	apression/Maximum 33, 2-3=-68/43 (3-second gust) CDL=6.0psf; h=25ft; ivelope); cantilever le left and right expose 0L=1.33 roof LL: Lum DOL=1 Pf=13.9 psf (Lum 1.0; Rough Cat B; Fi een considered for the r greater of min roof t roof load of 13.9 ps other live loads. or a live load of 20.0 where a rectangle	Vert: 7: eft d; l.25 ully live if on	=0 (F=0, B=0)						A A A A A A A A A A A A A A A A A A A	SEA 2867	EER GUIL

April 23,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	
25040105	M1	Monopitch Structural Gable	1	1	Job Reference (optional)	172966411

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 23 10:22:37 ID:qLSfgAFN3h0Ea?8DbGVqZpy7GRU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:38.8

Plate Offsets (X, Y): [2:Edge,0-1-0], [2:0-2-5,0-11-9], [8:0-3-8,Edge], [12:0-2-8,0-3-8]

	(, i). [z.cuge,o i o],	2.0 2 0,0 11 0], [0.0	, o 0,∟ugo	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5 0]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-MR	0.82 0.39 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.20 -0.31 0.02	(loc) 10-11 10-11 2	l/defl >589 >385 n/a	L/d 240 180 n/a		GRIP 244/190 187/143 FT = 20%
WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=103n II; Exp B; E (3E) -0-9:1 (3E) -0-	6-0-0 oc purlins, exe Rigid ceiling directly bracing. (size) 2=0-3-0, 1 Max Horiz 2=64 (LC Max Uplift 2=-21 (LC Max Grav 2=465 (LC (lb) - Maximum Com Tension 1-2=0/15, 2-3=-351/	applied or 10-0-0 oc 18=0-1-8 11) 2 (LC 15) 2 2), 18=388 (LC 22) pression/Maximum 120, 3-4=-329/115, 289/164, 8-12=-122/2 11=-203/325, -203/325, 7-8=0/0 8/73, 3-11=-55/89, (3-second gust) CDL=6.0psf; h=25ft; ivelope) and C-C Cor y) 2-2-3 to 9-7-4 zone; end vertical left and and forces & MWFRS	4) 5) d or 6) 7) 8) 9) 10 236, 11 12 236, 11 12 236, 11 12 236, 11 12 236, 11	Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 Unbalanced design. This truss ha load of 12.0 0 overhangs n All plates are Gable studs * This truss h on the bottor 3-06-00 tall b chord and ar Bearings are Joint 18 SPI) Bearing at jo using ANSI/1 designer sho) Provide mec bearing plate) Provide mec	int(s) 18 considers IPI 1 angle to grain ould verify capacity hanical connection a t joint(s) 18. hanical connection capable of withsta uplift at joint 18.	Pf=13.: =1.0; R opeen col for great lat roof l other li ess other c. I for a liv s where II fit betv oint 2 S s paralle n formul of bear n (by oth	e) psf (Lum bugh Cat B; F nsidered for t er of min rool bad of 13.9 p ve loads. rwise indicate re load of 20.1 a rectangle veen the bott P 2400F 2.0E I to grain valu a. Building ing surface. ers) of truss i ers) of truss i	Fully his f live isf on ed. Opsf om E , Je to			A MARINE AND A MARIN	ORTEESS SEA 2867	ROLLT

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

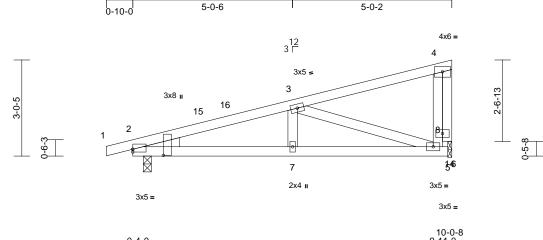
April 23,2025

L. GALIN

Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	
25040105	M2	Monopitch	2	1	Job Reference (optional)	172966412

5-0-6

Carter Components (Sanford, NC), Sanford, NC - 27332,


-0-10-0

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 23 10:22:37 ID:qLSfgAFN3h0Ea?8DbGVqZpy7GRU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-0-8

Page: 1

Scale = 1:36.3

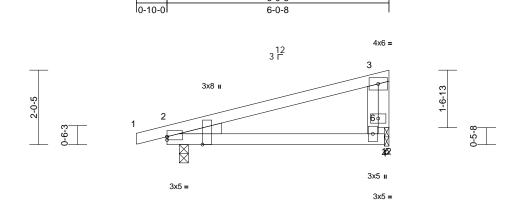
Plate Offsets (X, Y): [2:Edge,0-1-0], [2:0-2-5,0-11-9]													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.27 0.26 0.30	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.01	(loc) 7 6-7 14	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 49 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: AS: Vasd=103 II; Exp B; Exterior(2 zone; can and right i MWFRS f grip DOL= 2) TCLL: AS	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-3-0, ' Max Horiz 2=64 (LC Max Grav 2=465 (LC (lb) - Maximum Com Tension 1-2=0/15, 2-3=-763/ 6-8=-49/269, 4-8=-4 2-7=-269/748, 6-7=- 3-7=0/85, 3-6=-680/ CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed; MWFRS (er 2: 0-9-13 to 2-2-3, Int they related in dight expexposed; C-C for memb for reactions shown; Lu 1.33 SCE 7-16; Pr=20.0 psf (applied or 10-0-0 oc 14=0-1-8 11) 2 11), 14=-12 (LC 15) 2 2), 14=388 (LC 22) pression/Maximum 190, 3-4=-140/10, 9/269 269/748, 5-6=0/0 245, 4-14=-395/130 (3-second gust) CDL=6.0psf; h=25ft; 0 ivelope) and C-C erior (1) 2-2-3 to 9-7 bosed ; end vertical le pers and forces & mber DOL=1.60 plate roof LL: Lum DOL=1.	d or 6) 7) 8) 9) LC Cat. 4 ft	load of 12.0 overhangs n * This truss H on the bottor 3-06-00 tall b chord and ar Bearings arc SP No.3. Bearing at jo using ANSI/ designer sho Provide mec bearing plate Provide mec bearing plate	as been designed fr psf or 2.00 times fli on-concurrent with has been designed m chord in all areas by 2-00-00 wide will by other members. assumed to be: Jo int(s) 14 considers TPI 1 angle to grain buld verify capacity hanical connection a t joint(s) 14. hanical connection capable of withsta uplift at joint 14. Standard	at roof I other Ii for a liv s where Il fit bety bint 2 S paralle formul of bear (by oth	bad of 13.9 p ve loads. re load of 20. a rectangle veen the bott P No.2 , Join' I to grain valu a. Building ing surface. ers) of truss ers) of truss	osf on Opsf com t 14 ue to to				Weight: 49 lb ORTH CA ORTESS SEA 2867	
DOL=1.15 Exp.; Ce=	L=1.25); Pg=20.0 psf; F 5 Plate DOL=1.15); Is= =0.9; Cs=1.00; Ct=1.10 ed snow loads have be	1.0; Rough Cat B; Fu									in a start of the	OFN L.G	EEP. SK III

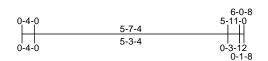
April 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	
25040105	М3	Monopitch	8	1	Job Reference (optional)	172966413

6-0-8


-0-10-0


Carter Components (Sanford, NC), Sanford, NC - 27332,

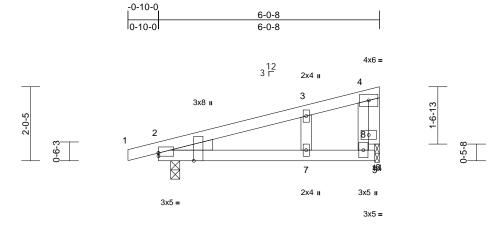
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 23 10:22:37 ID:qLSfgAFN3h0Ea?8DbGVqZpy7GRU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

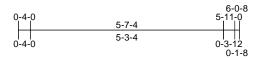
Page: 1

Scale = 1:31.4

Plate Offsets (X, Y): [2:Edge,0-1-0], [2:0-2-9,Edge]

Plate Offsets ((X, Y): [2:Edge,0-1-0],	[2:0-2-9,Edge]										-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-MR	0.35 0.24 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.03 0.00	(loc) 5-11 5-11 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%
Vasd=103 II; Exp B; I Exterior(21 zone; cant and right e MWFRS fr grip DOL= 2) TCLL: AS Plate DOL DOL=1.15 Exp.; Ce=	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) 2=0-3-0,1 Max Horiz 2=38 (LC Max Uplift 2=-23 (LC Max Grav 2=341 (LC (lb) - Maximum Com Tension 1-2=0/15, 2-3=-219/0 3-6=-51/116 2-5=-111/213, 4-5=0 3-12=-109/9 CE 7-16; Vult=130mph mph; TCDL=6.0psf; Bt Enclosed; MWFRS (er E) -0-9-13 to 2-2-3, Int ilever left and right exp exposed; C-C for memb or reactions shown; Lu	applied or 10-0-0 oc 12=0-1-8 11) 11) 11), 12=-5 (LC 15) 22), 12=215 (LC 22) pression/Maximum 89, 5-6=0/90, 100 (3-second gust) CDL=6.0psf; h=25ft; ivelope) and C-C erior (1) 2-2-3 to 5-7- posed ; end vertical le pers and forces & mber DOL=1.60 plat roof LL: Lum DOL=1. 2f=13.9 psf (Lum 1.0; Rough Cat B; Fu	5) d or 6) 7) 8) 9) LO Cat. 4 eft e 225 Illy	load of 12.0 overhangs n * This truss f on the bottor 3-06-00 tall l chord and ar Bearings are SP No.3 . Bearing at jo using ANSI/ designer sho Provide mec bearing plate bearing plate	as been designed is psf or 2.00 times f on-concurrent with has been designed in chord in all area by 2-00-00 wide w by other members. assumed to be: J int(s) 12 considers FPI 1 angle to grai uld verify capacity hanical connection e at joint(s) 12. hanical connection capable of withst blift at joint 12. Standard	lat roof lin o ther lin d for a liv s where ill fit betv loint 2 SI s paralle n formul o of bear n (by oth n (by oth	bad of 13.9 p ve loads. e load of 20.1 a rectangle veen the bott P No.2 , Joint I to grain valu a. Building ing surface. ers) of truss i ers) of truss i	opsf om t 12 ue to to				ORTH CA ORTH CA SEA 286 VGIN April	EER St.




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	
25040105	M4	Monopitch Structural Gable	1	1	Job Reference (optional)	172966414

Run; 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 23 10:22:38 ID:eDIVMP6UfJeomJp6SSpEdVy7GRf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ffinal and a strength of the second str

Page: 1

Scale = 1:31.5

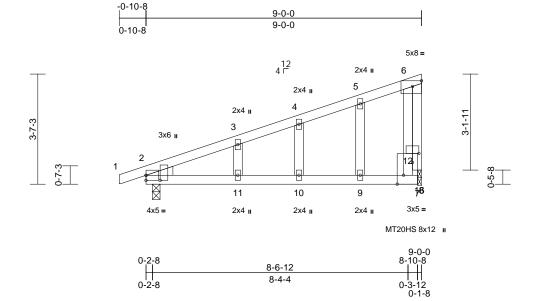
Plate Offsets (X, Y): [2:Edge,0-1-0], [2:0-2-9, Edge]

Plate Olisets (X, Y): [2:Edge,0-1-0],	[2.0-2-9,Euge]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MR	0.43 0.28 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.03 0.00	(loc) 7-13 7-13 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
Vasd=103 II; Exp B; I Exterior(21 zone; cant and right e MWFRS fo grip DOL= 2) Truss desi only. For see Stand	6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-3-0, . Max Horiz 2=38 (LC Max Uplift 2=-23 (LC Max Grav 2=341 (LC (lb) - Maximum Com Tension 1-2=0/15, 2-3=-217/ 6-8=-41/119, 4-8=0/ 2-7=-109/212, 6-7=- 3-7=-46/72, 4-14=-1 CE 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er E) -0-9-13 to 2-2-3, Int illever left and right ex exposed; C- C for memb pr reactions shown; LU	applied or 10-0-0 oc 14=0-1-8 11) 2 11), 14=-5 (LC 15) 2 22), 14=215 (LC 22 3 22),	4) 5) d or 6) 7) 8) 9) 10) 11) 2Cat. LO 4 eft e s le,	Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 Unbalanced design. This truss ha load of 12.0 overhangs n Gable studs * This truss h on the bottor 3-06-00 tall b chord and ar Bearings are SP No.3. Bearing at jo using ANSI/ designer sho Provide mect bearing plate	7-16; Pr=20.0 psf .25); Pg=20.0 psf; late DOL=1.15); Is or Cs=1.00; Ct=1.11 snow loads have b s been designed from the spaced at 2-00 to the spaced at 2-00 to the spaced at 2-00 or the spaced at 2-0	Pf=13.5 =1.0; Ro opeen cor or great at roof l other lin 2. for a liv s where il fit betw point 2 Sl paralle of formul of bear of boar (by oth	 psf (Lum bugh Cat B; F nsidered for t er of min roof bad of 13.9 p ve loads. e load of 20.4 a rectangle veen the bott P No.2, Joint I to grain valu a. Building ing surface. ers) of truss 	Fully his f live isf on Opsf om t 14 Je to				ORTH CA ORTH CA SEA 286 OLYN L. G	EEP. Stan

- Exterior(2E) -0-9-13 to 2-2-3, Interior (1) 2-2-3 to 5-7-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932


GA mm April 23,2025

Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	
25040105	M5	Monopitch Structural Gable	1	1	Job Reference (optional)	172966415

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 23 10:22:38 ID:Py6vvh1iqwMG7opEUxWx5By7Fgi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:37.6

Plate Offsets (X, Y): [2:0-2-0,0-5-9], [6:Edge,0-2-3], [8:0-3-8,Edge], [12:0-2-8,0-3-8]

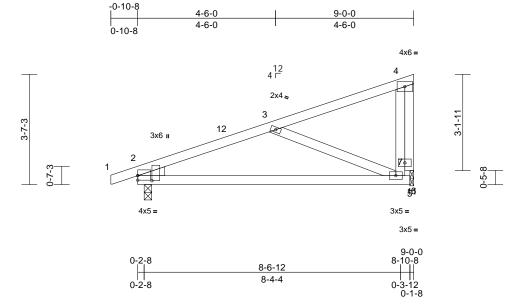
	Χ, Τ). [2.0-2-0,0-3-9],	, [0.Luge,0-2-0], [0.0	-5-0,∟ugej	, [12.0-2-0,0-3	-0]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MR	0.70 0.33 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.16 -0.21 0.02	(loc) 10-11 10-11 2	l/defl >692 >510 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 46 lb	GRIP 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=103, II; Exp B; E (3E) -0-10, zone; cant	2x4 SP 2400F 2.0E 2x4 SP 2400F 2.0E 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-3-0, (Max Uplift 2=-16 (LC Max Uplift 2=-16 (LC Max Grav 2=411 (LC (lb) - Maximum Com Tension 1-2=0/20, 2-3=-298/ 4-5=-257/105, 5-6=- 6-12=-103/170 2-11=-244/265, 10-1 9-10=-190/265, 8-9= 5-9=-21/61, 4-10=-6 6-16=-355/247 CE 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er 3 to 2-1-13, Exterior(2 tilever left and right ext	eathing directly applie cept end verticals. ⁷ applied or 10-0-0 oc 16=0-1-8 11) C 11), 16=-16 (LC 15 C 2), 16=367 (LC 22) npression/Maximum 190, 3-4=-278/68, -215/130, 8-12=-112/ 11=-190/265, -190/265, 7-8=0/0 i2/90, 3-11=-50/88, a (3-second gust) CDL=6.0psf; h=25ft; nvelope) and C-C Co 2N) 2-1-13 to 8-6-12 posed ; end vertical I	(1994, 10 (1994, 11 12 Cat. rrner	Plate DOL=1 DOL=1.15 P Exp.; Ce=0.3 Unbalanced design. This truss ha load of 12.0 overhangs n All plates are Gable studs * This truss I on the bottoo 3-06-00 tall I chord and ar Bearings are Joint 16 SP Bearing AlSI/ designer sho Provide med bearing plate Provide med bearing plate	bint(s) 16 considers TPI 1 angle to grain puld verify capacity shanical connection at joint(s) 16. chanical connection capable of withsta uplift at joint 16.	Pf=13.9 =1.0; Ro Deen color or great at roof I other li ss other s for a liv s where I fit betv paralle formul of bear (by oth	9 psf (Lum bugh Cat B; F nsidered for t er of min rooi oad of 13.9 p ve loads. rwise indicate ve load of 20. a rectangle ween the bott P 2400F 2.0E I to grain valu a. Building ing surface. iers) of truss	Fully his f live sof on ed. Opsf om E , Je to				ORTH CA ORTESS SEA 2867	ROL
	and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate									-			ala

grip DOL=1.33
2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

L. GA


mmm

April 23,2025

Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	
25040105	M6	Monopitch	12	1	Job Reference (optional)	172966416

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 23 10:22:38 ID:Mcl5uBGdMmIZvjmu5QMONBy7FgP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

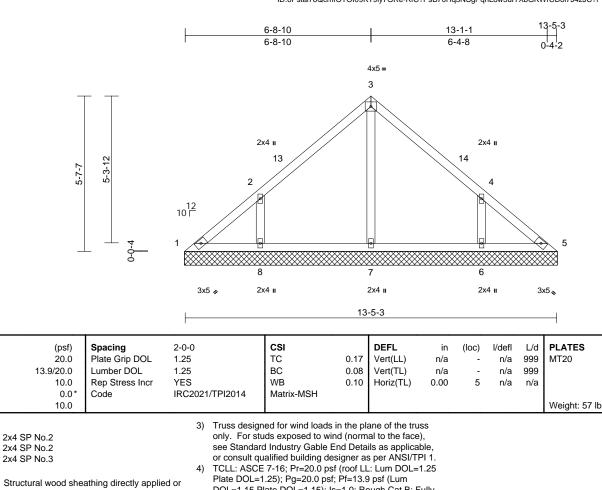
Page: 1

Scale = 1:37.6

Plate Offsets (2	X, Y): [2:Edge,0-1-12]], [2:0-2-0,0-5-9]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC202 ⁻ 4)		CSI TC BC WB Matrix-MSH				(loc) 6-10 6-10 11	l/defl >999 >755 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 45 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood shee 6-0-0 oc purlins, exe Rigid ceiling directly bracing.		5) or 6) 7)	overhangs n * This truss h on the bottor 3-06-00 tall b chord and ar Bearings are SP No.3 . Bearing at jo using ANSI/	psf or 2.00 times fl on-concurrent with has been designed in chord in all areas by 2-00-00 wide wi by other members. assumed to be: Ju- int(s) 11 considers FPI 1 angle to grain	n other liv I for a liv s where II fit betv oint 2 SI s paralle n formula	ve loads. e load of 20. a rectangle veen the bott P No.2 , Join to grain valu a. Building	0psf com t 11					
	(size) 2=0-3-0, 1 Max Horiz 2=79 (LC Max Uplift 2=-16 (LC Max Grav 2=411 (LC	11) 11), 11=-16 (LC 15)	8) 9)	Provide mec bearing plate Provide mec	buld verify capacity hanical connection at joint(s) 11. hanical connection capable of withsta	n (by oth n (by oth	ers) of truss	to					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	LC		uplift at joint 11.	anang i	o ib upint at	Joint					
TOP CHORD BOT CHORD	1-2=0/20, 2-3=-544/ 6-7=-58/258, 4-7=-5 2-6=-290/532, 5-6=0	8/258 //0											
WEBS	3-6=-499/263, 4-11=	-373/159											in the second se
 Vasd=103i II; Exp B; E Exterior(2E 8-6-12 zon vertical left forces & M DOL=1.60 2) TCLL: ASC Plate DOL: DOL=1.15 Exp.; Ce=(CE 7-16; Vult=130mph mph; TCDL=6.0psf; B(Enclosed; MWFRS (en E) -0-10-3 to 2-1-13, In e; cantilever left and r t and right exposed;C- WFRS for reactions sl plate grip DOL=1.33 CE 7-16; Pr=20.0 psf (r =1.25); Pg=20.0 psf; F Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 d snow loads have be	CDL=6.0psf; h=25ft; C velope) and C-C terior (1) 2-1-13 to ight exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1.2 f=13.9 psf (Lum 1.0; Rough Cat B; Ful	25 Iy								and summer	SEA 286	EER SK IIII

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	
25040105	VL1	Valley	1	1	Job Reference (optional)	172966417


Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 23 10:22:38 ID:6Pstal76QcmfOTOI09KT9iy7GRe-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

GRIP

244/190

FT = 20%

2x4 SP No.3 OTHERS BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **REACTIONS** (size) 1=13-5-13, 5=13-5-13, 6=13-5-13, 7=13-5-13, 8=13-5-13 Max Horiz 1=-102 (LC 11) 1=-16 (LC 9), 6=-72 (LC 14), 8=-74 Max Uplift (LC 13) 1=104 (LC 29), 5=86 (LC 2), 6=334 Max Grav (LC 29), 7=270 (LC 2), 8=336 (LC 28) FORCES (Ib) - Maximum Compression/Maximum

Tension TOP CHORD 1-2=-130/98, 2-3=-134/117, 3-4=-134/112, 4-5=-106/70 BOT CHORD 1-8=-38/99, 7-8=-38/71, 6-7=-38/71, 5-6=-38/81

WEBS 3-7=-189/0, 2-8=-306/195, 4-6=-306/195 NOTES

Scale = 1:41.7 Loading

TCLL (roof)

TCDL

BCLL

BCDL

LUMBER

TOP CHORD

BOT CHORD

Snow (Pf/Pg)

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 2-8-14, Interior (1) 2-8-14 to 6-8-14, Exterior(2R) 6-8-14 to 9-8-14, Interior (1) 9-8-14 to 13-5-13 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully
- Exp.; Ce=0.9; Cs=1.00; Ct=1.10 5) Gable requires continuous bottom chord bearing
- 6)
- Gable studs spaced at 4-0-0 oc. 7) This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2 . 8)
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 16 lb uplift at joint 1, 74 lb uplift at joint 8 and 72 lb uplift at joint 6. 10) Beveled plate or shim required to provide full bearing
- surface with truss chord at joint(s) 1, 5.
- LOAD CASE(S) Standard

April 23,2025

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	
25040105	VL2	Valley	2	1	Job Reference (optional)	172966418

Scale = 1:39 Loading

TCLL (roof)

TCDL

BCLL

BCDL

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

WEBS

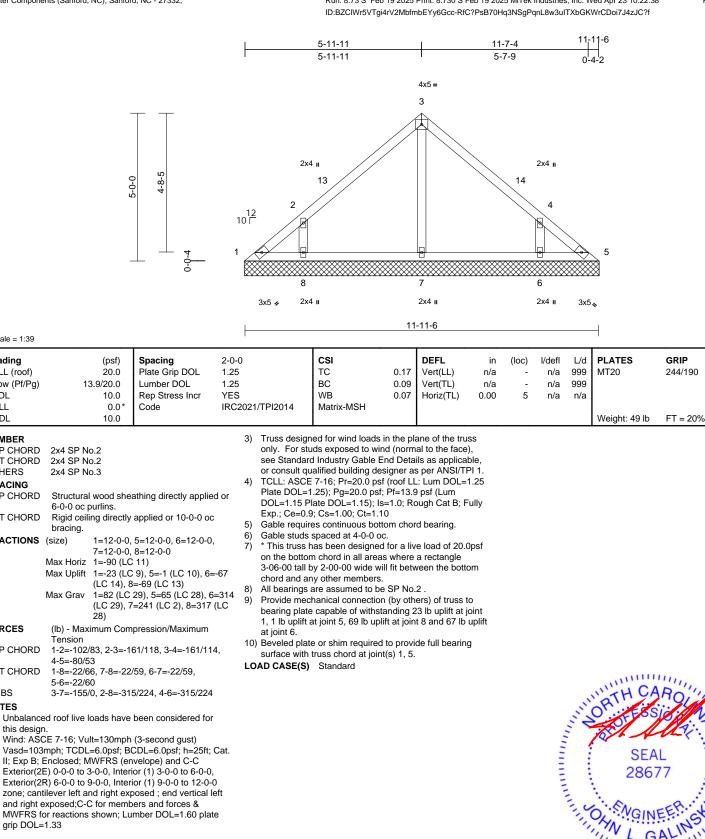
NOTES

1)

2)

TOP CHORD

BOT CHORD


this design.

REACTIONS (size)

Snow (Pf/Pg)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 23 10:22:38

Page: 1

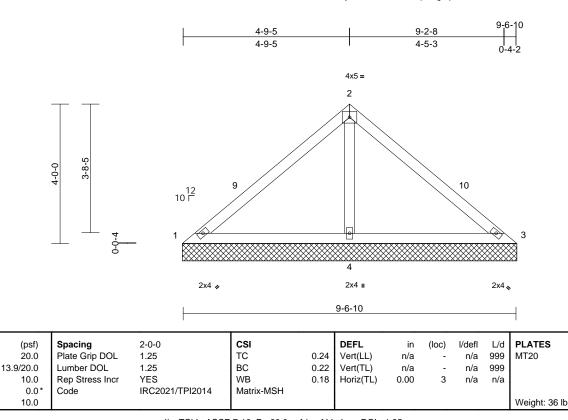
MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

April 23,2025

THURSDAY TO THE PARTY OF THE PA

GA 11111

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	
25040105	VL3	Valley	2	1	Job Reference (optional)	172966419

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 23 10:22:38 ID:6Pstal76Qcmf0T0I09KT9iy7GRe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

GRIP

244/190

FT = 20%

LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	9-6-10 oc	purlins.
BOT CHORD	Rigid ceili	ing directly applied or 6-0-0 oc
	bracing.	
REACTIONS	(size)	1=9-7-3, 3=9-7-3, 4=9-7-3
	Max Horiz	1=72 (LC 10)
	Max Uplift	1=-29 (LC 35), 3=-29 (LC 34),
		4=-17 (LC 13)
	Max Grav	1=67 (LC 34), 3=67 (LC 35), 4=715
		(LC 2)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-129/	/343, 2-3=-124/343

1-4=-251/183, 3-4=-251/183

Unbalanced roof live loads have been considered for

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C

Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 4-9-10, Exterior(2R) 4-9-10 to 7-9-10, Interior (1) 7-9-10 to 9-7-3 zone; cantilever left and right exposed ; end vertical left

MWFRS for reactions shown; Lumber DOL=1.60 plate

Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Wind: ASCE 7-16; Vult=130mph (3-second gust)

and right exposed;C-C for members and forces &

2-4=-647/278

Scale = 1:33.1

TCLL (roof)

TCDL

BCLL

BCDL

Snow (Pf/Pg)

BOT CHORD

this design.

grip DOL=1.33

WEBS

1)

2)

3)

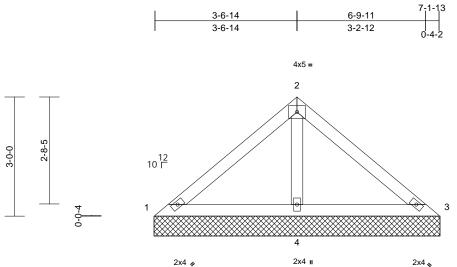
NOTES

- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 8) All bearings are assumed to be SP No.2 .
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 29 lb uplift at joint 1, 29 lb uplift at joint 3 and 17 lb uplift at joint 4.
- Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 3.

LOAD CASE(S) Standard

April 23,2025

ENGINEERING BY REENCO A MiTek Atfiliate 818 Soundside Road


Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	
25040105	VL4	Valley	2	1	Job Reference (optional)	172966420

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 23 10:22:38 ID:6Pstal76QcmfOTOI09KT9iy7GRe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

7-1-13

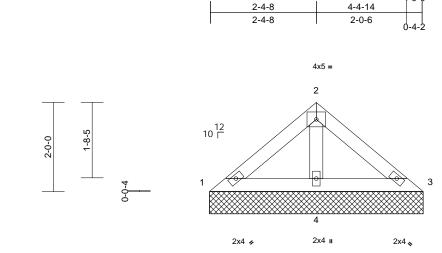
Scale =	1:29
---------	------

Scale = 1:29													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2021/T	PI2014	CSI TC BC WB Matrix-MP	0.16 0.15 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 7-1-13 oc purlins. Rigid ceiling directly bracing. (size) 1=7-2-6, 3 Max Horiz 1=-53 (LC Max Uplift 1=-7 (LC (LC 13) Max Grav 1=65 (LC	applied or 6-0-0 oc 3=7-2-6, 4=7-2-6 3 11) 35), 3=-7 (LC 34), 4	F E 5) C ed or 7) * 3 3 3 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 6 7 8 7 8 8 8 8 8 9 9 5 8 4 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	Plate DOL=1 DOL=1.15 P Exp.; Ce=0.5 Gable requir. Gable studs This truss h on the bottor I-06-00 tall b shord and ar NI bearings Provide mec pearing plate ' Ib uplift at j	7-16; Pr=20.0 ps .25); Pg=20.0 ps late DOL=1.15); ls cs continuous bot spaced at 4-0-0 o nas been designed n chord in all area y 2-00-00 wide w hanical connection e capable of withs oint 3 and 10 b u e or shim required	; Pf=13. s=1.0; Ro tom chor c. d for a liv as where ill fit betw e SP No. n (by oth tanding 7 plift at joi	 a) psf (Lum bugh Cat B; F bugh Cat B; F c) d bearing. e load of 20.0 a rectangle veen the botto 2. ers) of truss to r Ib uplift at joint 4. 	ully Dpsf om o int 1,					
FORCES	(LC 2) (Ib) - Maximum Com Tension			urface with D CASE(S)	truss chord at join Standard	nt(s) 1, 3.							
TOP CHORD BOT CHORD WEBS	1-2=-103/221, 2-3=- 1-4=-183/165, 3-4=- 2-4=-425/213												
NOTES													
,	ed roof live loads have	been considered fo	r									munn	UIII.
Vasd=103 II; Exp B; I Exterior(2I zone; cani and right e MWFRS for grip DOL= 3) Truss desi only. For see Stand	CE 7-16; Vult=130mph imph; TCDL=6.0psf; Bi Enclosed; MWFRS (er E) 0-0-0 to 3-0-0, Inter R) 3-7-3 to 6-4-12, Inter tillever left and right exp sxposed;C-C for memb or reactions shown; Lu	CDL=6.0psf; h=25ft; ivelope) and C-C ior (1) 3-0-0 to 3-7-3 irior (1) 6-4-12 to 7-2 oosed; end vertical bers and forces & imber DOL=1.60 plan the plane of the true (normal to the face) d Details as applical	s, left te ss), ole,								and Street	SEA 286	EER SC III

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

April 23,2025


Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	
25040105	VL5	Valley	2	1	Job Reference (optional)	172966421

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 23 10:22:38 ID:6Pstal76QcmfOTOI09KT9iy7GRe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

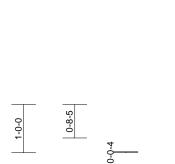
4-9-0

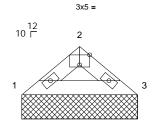
4-9-0

Page: 1

30ale = 1.23.9												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.25	BC	0.07	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 17 lb	FT = 20%
LUMBER			7) * This tr	uss has been design	ned for a liv	e load of 20.0	Opsf					
TOP CHORD	2x4 SP No.2			ottom chord in all are		0						
BOT CHORD	2x4 SP No.2			tall by 2-00-00 wide		veen the botte	om					
OTHERS	2x4 SP No.3			nd any other membe		_						
BRACING			,	ngs are assumed to								
TOP CHORD	Structural wood she 4-9-0 oc purlins.	athing directly appli		plate or shim requir with truss chord at jo			g					
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc	LOAD CAS	E(S) Standard								
REACTIONS	0	, 3=4-9-10, 4=4-9-10)									
	Max Horiz 1=-34 (LC											
	Max Grav 1=61 (LC	,	4=285									
	(LC 2)	0.), 0 0. (20 00),	. 200									
FORCES	(lb) - Maximum Con Tension	npression/Maximum										
TOP CHORD	1-2=-54/93, 2-3=-54	/93										
BOT CHORD	1-4=-84/88, 3-4=-84											
WEBS	2-4=-208/104											
NOTES												
	ed roof live loads have	been considered fo	r									
this design			-									
	CE 7-16; Vult=130mph	(3-second gust)										1111
Vasd=103r	mph; TCDL=6.0psf; B	CDL=6.0psf; h=25ft	; Cat.								M' U CI	Delle
	Enclosed; MWFRS (er										"ath or	10/ 11/
	E) zone; cantilever left									5	0	ike Alter
	t and right exposed;C									33		Ni. 7 -
	IWFRS for reactions s	shown; Lumber								2	:07 / N	May -
	plate grip DOL=1.33									1	7-1-	1 N E
	gned for wind loads in studs exposed to wind								=		SEA	L : =
	ard Industry Gable En								= =		286	77 : E
	qualified building desi								-		200	1 E E
	CE 7-16; Pr=20.0 psf (-	N	1 5
	=1.25); Pg=20.0 psf; I									20	. En	RINS
	Plate DOL=1.15); Is=		ully							1	O, GIN	EFERCE
	0.9; Cs=1.00; Ct=1.10									11	SEA 286	IN MIL
5) Gable requ	uires continuous botto	m chord bearing.									L.G	AL
6) Gable stud	ds spaced at 4-0-0 oc.	-									in the second se	mm
												1 22 2025

818 Soundside Road Edenton, NC 27932


April 23,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	
25040105	VL6	Valley	2	1	Job Reference (optional)	172966422

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 23 10:22:38 ID:6Pstal76QcmfOTOI09KT9iy7GRe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-4-3

1-2-22-0-11-2-20-10-0

2x4 🍫 2x4 💊

Scale = 1:23.9

Plate Offsets (X, Y): [2:0-2-8,Edge]

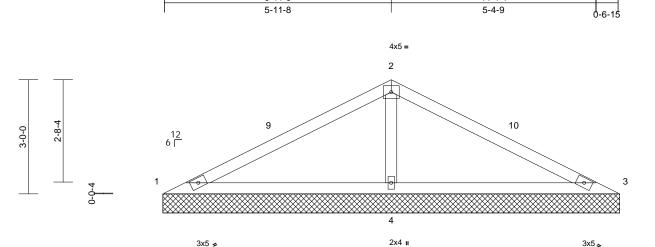
	(, 1). [2.0 2 0,20g0]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.04 0.04 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 7 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS (FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Unbalanced this design. 2) Wind: ASCI Vasd=103m II; Exp B; E Exterior(2E vertical left forces & MI DOL=1.61 3) Truss desig only. For s' see Standa or consult q 1) TCLL: ASC Plate DOL= DOL=1.15 I	2x4 SP No.2 2x4 SP No.2 Structural wood she 2-4-3 oc purlins. Rigid ceiling directly bracing. (size) 1=2-4-13, Max Horiz 1=-15 (LC Max Grav 1=96 (LC (lb) - Maximum Com Tension 1-2=-138/64, 2-3=-1 1-3=-39/99 d roof live loads have	applied or 10-0-0 o 3=2-4-13 (11) 2), 3=96 (LC 2) pression/Maximum 38/64 been considered for (3-second gust) CDL=6.0psf; h=25ft; welope) and C-C and right exposed ; C for members and hown; Lumber the plane of the tru (normal to the face d Details as applical gner as per ANSI/TF roof LL: Lum DOL=: Pf=13.9 psf (Lum	r c c c c c c c c c c c c c c c	uss has been designed ottom chord in all are tall by 2-00-00 wide wide any other member ngs are assumed to be plate or shim require with truss chord at join E(S) Standard	eas where will fit betw s. be SP No. ed to provi	a rectangle veen the botto 2 . de full bearing	om				Weight: 7 lb	
	ires continuous botto s spaced at 4-0-0 oc.	n chord bearing.								111	NN L.G	ALINS

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

April 23,2025

Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	
25040105	VL7	Valley	1	1	Job Reference (optional)	172966423

5-11-8


Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 23 10:22:38 ID:BZCIWr5VTgi4rV2MbfmbEYy6Gcc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11-4-1

Page: 1

11-11-D

11-11-0

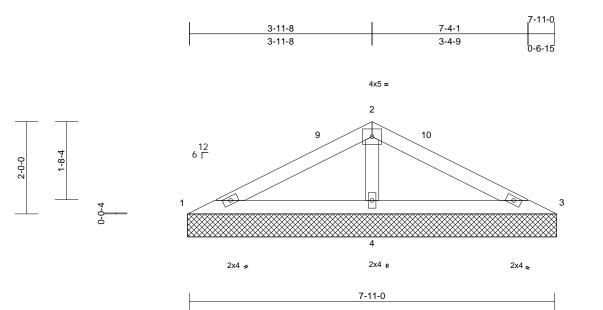
Scale = 1:30.3

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCLL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Lumber DOL	2-0-0 1.25 1.25 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.51 0.44 0.16	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 39 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS	10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=12-0-0, Max Horiz 1=29 (LC Max Uplift 1=-47 (LC	, 3=12-0-0, 4=12-0-0 14) 2 22), 3=-47 (LC 21) 38), 3=76 (LC 39), 4= npression/Maximum 172/532	Plate DOL=1 DOL=1.15 P Exp.; Ce=0.3 5) Unbalanced design. 6) Gable requir 7) Gable studs 8) * This truss I on the botton 3-06-00 tall i chord and ai 9) All bearings 10) Provide mec bearing plate 1 and 47 lb u 11) Beveled plat	7-16; Pr=20.0 psf 1.25); Pg=20.0 psf; late DOL=1.15); ls 9; Cs=1.00; Ct=1.1 snow loads have t es continuous bott spaced at 4-0-0 on has been designed in chord in all areas by 2-00-00 wide win yo other members, are assumed to be chanical connection e capable of withstupilif at joint 3. e or shim required truss chord at joint Standard	 Pf=13.§ Pf=13.§ =1.0; Ro 0 been cor om chor c. I for a live s where II for a live s where II for a live SP No. and booth to provi 	 psf (Lum pugh Cat B; F nsidered for the d bearing. e load of 20.0 a rectangle veen the botto 2. ers) of truss to 7 lb uplift at jo 	ully his Opsf om oint					
this design 2) Wind: ASC Vasd=103i II; Exp B; E Exterior(2E Exterior(2F	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er E) 0-0-0 to 3-0-0, Inter R) 6-0-0 to 9-0-0, Inter	(3-second gust) CDL=6.0psf; h=25ft; C tvelope) and C-C								New York	OR TH CA	ROUNT

- and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss 3)
- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

anna stat and a second second SEAL 28677 L. GA mmm

April 23,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	
25040105	VL8	Valley	1	1	Job Reference (optional)	172966424

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 23 10:22:39 ID:BZCIWr5VTgi4rV2MbfmbEYy6Gcc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:25			1								I	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES IRC2021/TPI2014	BC	0.22 0.23 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=1030 II; Exp B; E Exterior(2E Exterior(2E Exterior(2E Exterior(2E Exterior(2E Exterior(2E) zone; cant and right e MWFRS fc grip DOL= 3) Truss desi only. For s see Standa	Max Horiz 1=-19 (LC Max Uplift 1=-1 (LC Max Grav 1=91 (LC (LC 2) (lb) - Maximum Com Tension 1-2=-128/280, 2-3=- 1-4=-249/174, 3-4=- 2-4=-409/222 ed roof live loads have E 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er E) 0-0-0 to 3-0-0, Inter 3) 4-0-0 to 6-9-3, Inter ilever left and right exy xposed; C- C for memb or reactions shown; Lu	applied or 6-0-0 oc 3=8-0-0, 4=8-0-0 (13) 15), 3=-5 (LC 16) 21), 3=91 (LC 22), 4 pression/Maximum 120/280 249/174 been considered for (3-second gust) CDL=6.0pst; h=25ft; ivelope) and C-C ior (1) 3-0-0 to 4-0-0, ior (1) 6-9-3 to 8-0-0 posed ; end vertical I pers and forces & mber DOL=1.60 plat the plane of the trus (normal to the face) d Details as applicab	 Plate DOL= DOL=1.15 F Exp.; Ce=0. 5) Unbalanced design. 6) Gable requin 7) Gable studs 8) * This truss on the botto 3-06-00 tall chord and a 9) All bearings 10) Provide mec bearing plat and 5 lb upli 11) Beveled plat surface with LOAD CASE(S) 	e or shim required to truss chord at joint(s	Pf=13.9 1.0; Ro en cor m chor or a liv where fit betv SP No. by oth oding 1 o provi	 a) psf (Lum bugh Cat B; F b) nsidered for the d bearing. b) load of 20.0 a rectangle veen the botto c) load control <lic) control<="" li="" load=""> c) load co</lic)>	ully vpsf om nt 1				SEA 2867	ROLL T EER. CLIM

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

GA mm April 23,2025

Job	Truss	Truss Type	Qty	Ply	11 Eagle Creek - Lawson C - Roof	172966425
25040105	VL9	Valley	1	1	Job Reference (optional)	

Scale = 1:22

Loading

TCDL

BCLL

BCDL

LUMBER

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS

TOP CHORD

BOT CHORD

this design

FORCES

NOTES 1)

2)

3)

BRACING

2x4 SP No.2

2x4 SP No.2

bracing.

Tension

1-3=-149/274

(size)

TCLL (roof)

Snow (Pf/Pg)

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Wed Apr 23 10:22:39 ID:B38Izwlfu_CRGBBmbByf_Wy6GUc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-4-1

1-4-9

Plate Offsets (X, Y): [2:0-2-8,Edge] Spacing 2-0-0 CSI DEFL (psf) Plate Grip DOL 20.0 1.25 тс 0.11 Vert(LL) 13.9/20.0 Lumber DOL 1.25 BC 0.11 Vert(TL) 10.0 Rep Stress Incr YES WB 0.00 Horiz(TL) 0.0 Code IRC2021/TPI2014 Matrix-MP 10.0 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. All bearings are assumed to be SP No.2. 9) Structural wood sheathing directly applied or 10) Beveled plate or shim required to provide full bearing 3-11-0 oc purlins. surface with truss chord at joint(s) 1, 3. Rigid ceiling directly applied or 10-0-0 oc LOAD CASE(S) Standard 1=4-0-0, 3=4-0-0 Max Horiz 1=-9 (LC 13) Max Grav 1=160 (LC 2), 3=160 (LC 2) (lb) - Maximum Compression/Maximum 1-2=-314/170, 2-3=-314/159 Unbalanced roof live loads have been considered for Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25

4) Plate DOL=1.25); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 5)

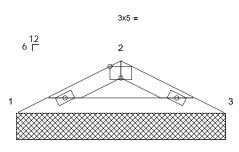
desian.

6) Gable requires continuous bottom chord bearing.

7) Gable studs spaced at 4-0-0 oc.

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


in n/a n/a

1-11-8

1-11-8

0-8-4

1-0-0

2x4 🍃 2x4 👟

3-11-0

3 0.00 n/a n/a Weight: 10 lb

L/d

l/defl

n/a 999

n/a 999

(loc)

3-11-0

0-6-15

FT = 20%

GRIP

244/190

PLATES

MT20

HON STR. OR SEAL 867 GA April 23,2025

