

Trenco 818 Soundside Rd Edenton, NC 27932

Re: P02596-25453 1054 Serenity

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Lumber 2383 (Dunn, NC).

Pages or sheets covered by this seal: I73506957 thru I73506977

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

May 16,2025

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	1054 Serenity	
P02596-25453	A02	Common	11	1	Job Reference (optional)	173506957

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 06:19:44 ID:NBwIDJhuMCNWEmNhHXYXTzzx4kX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

20-7-0

13-7-8

6-11-8

Scale = 1:81.8				6-11-	-8	6-8-0		6-11	-8	1			
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.32	DEFL Vert(LL)	in -0.10	(loc) 10-11	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf/Pg) TCDL BCU	11.5/15.0 10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 YES	5/TPI2014	BC WB Matrix-MS	0.43 0.61	Vert(CT) Horz(CT)	-0.14 0.02	10-11 8	>999 n/a	180 n/a		
BCDL	10.0	Couo	11(02010	"TT 12011	Mathx Mo							Weight: 140 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	athing directly applied cept end verticals. applied or 10-0-0 oc	4) 5) f or 6) 7)	This truss ha load of 12.0 overhangs n Building Des verifying Rain requirements This truss ha chord live loa * This truss h	is been designe psf or 1.00 time on-concurrent w igner/Project er n Load = 5.0 (ps s specific to the is been designe ad nonconcurrei nas been desigr n chord in all ar	d for great s flat roof k with other lin gineer res sf) covers r use of this d for a 10.0 nt with any eed for a liv eas where	er of min roo bad of 11.5 p ve loads. bonsible for ain loading truss compo 0 psf bottom other live loa e load of 20. a rectangle	f live osf on onent. ads. .0psf					
REACTIONS	(size) 8=0-5-8, 1	2=0-5-8		3-06-00 tall b	by 2-00-00 wide	will fit betv	veen the bott	tom					

	Max Horiz 12=-203 (LC 12)
	Max Uplift 8=-79 (LC 15), 12=-79 (LC 14)
	Max Grav 8=875 (LC 2), 12=875 (LC 2)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/41, 2-3=-322/154, 3-4=-846/201,
	4-5=-846/201, 5-6=-321/153, 6-7=0/41,
	2-12=-350/143, 6-8=-350/143
BOT CHORD	11-12=-90/740, 10-11=0/513, 8-10=-12/652
WEBS	4-10=-142/441, 5-10=-227/187,
	4-11=-141/441, 3-11=-227/187, 3-12=-720/11,
	5-8=-720/11

Unbalanced roof live loads have been considered for

Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat.

and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to

II; Exp B; Enclosed; MWFRS (envelope) exterior zone

10-3-8, Exterior (2) 10-3-8 to 13-3-8, Interior (1) 13-3-8

TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15

Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15);

Category II; Exp B; Partially Exp.; Ct=1.10

to 21-6-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber

DOL=1.60 plate grip DOL=1.60

Wind: ASCE 7-10; Vult=115mph (3-second gust)

NOTES

this design.

1)

2)

3)

- chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 79 lb uplift at joint 12 and 79 lb uplift at joint 8. LOAD CASE(S) Standard

C Variation 11111111111 SEAL 036322 G mm May 16,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1054 Serenity	
P02596-25453	A03	Нір	1	1	Job Reference (optional)	173506958

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 06:19:45 ID:0VflkQqQXutpgcI__2mLyVzx4kL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	9-3-6	11-3-10	20-7-0	
Scale = 1:77.8	9-3-6	2-0-5	9-3-6	1

Plate Offsets (X, Y):	[4:0-4-4,0-2-0],	[5:0-4-4,0-2-0]

TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER	20.0 16.5/15.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr Code	1.15 1.15 YES IRC2015	5/TPI2014 TCLL: ASCE	TC BC WB Matrix-MS 7-10; Pr=20.0 psf	0.30 0.70 0.43 (roof LL	Vert(LL) Vert(CT) Horz(CT)	-0.18 -0.36 0.02	12-13 12-13 9	>999 >684 n/a	240 180 n/a	MT20 Weight: 136 lb	244/190 FT = 20%
TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood shee 6-0-0 oc purlins, exo 2-0-0 oc purlins (6-0 Pioid corbing directly	athing directly applied sept end verticals, ar -0 max.): 4-5.	4) d or nd 5)	Plate DOL=1 psf (flat roof s Category II; I This truss ha load of 12.0 p overhangs no Building Des verifying Rain	.15); Pg=15.0 psf (snow: Lum DOL=1. Exp B; Partially Exp s been designed fo osf or 1.00 times fla on-concurrent with igner/Project engine n Load = 5.0 (psf) c	ground .15 Plat o.; Ct=1 or great at roof lo other liv eer res covers r	snow); Pf=1 e DOL=1.15 .10, Lu=50-0 er of min roo bad of 11.5 p ve loads. bonsible for ain loading	6.5); i-0 f live isf on					
REACTIONS	(size) 9=0-5-8, 1 Max Horiz 13=186 (L Max Uplift 9=-76 (LC Max Grav 9=875 (LC	3=0-5-8 .C 13) .15), 13=-76 (LC 14) C 2), 13=875 (LC 2)	6) 7) 8)	requirements Provide adec This truss ha chord live loa * This truss h on the bottom	s specific to the use quate drainage to p s been designed fo ad nonconcurrent w has been designed n chord in all areas	of this revent or a 10.0 vith any for a liv	truss compo water pondin) psf bottom other live loa e load of 20. a rectangle	nent. g. ads. 0psf					
FORCES	(lb) - Maximum Com Tension 1-2=0/41, 2-3=-340/ 4-5=-504/157, 5-6=-7	pression/Maximum 119, 3-4=-752/167, 752/167, 6-7=-340/1	9) 19,	3-06-00 tall b chord and an Provide mech bearing plate	y 2-00-00 wide will y other members. hanical connection capable of withsta	fit betv (by oth Inding 7	veen the bott ers) of truss 6 lb uplift at	om to joint					
BOT CHORD WEBS	7-8=0/41, 2-13=-355 12-13=-87/637, 11-1 3-12=-205/162, 4-12 6-11=-205/163, 3-13	/115, 7-9=-354/115 2=-11/504, 9-11=-19 =-49/267, 5-11=-49/2 =-622/50, 6-9=-622/4	0/619 10 267, 49	13 and 76 lb) Graphical pu or the orienta bottom chore	uplift at joint 9. rlin representation ation of the purlin al I.	does no long the	ot depict the stop and/or	size					
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp B; I and C-C E 9-1-10, Ex 15-11-11 t exposed ; members a Lumber DO	ed roof live loads have b. E 7-10; Vult=115mph iph; TCDL=6.0psf; BCI Enclosed; MWFRS (en xterior (2) -0-11-0 to 2 terior (2) -0-11-0 to 15- o 21-6-0 zone; cantilex end vertical left and rig and forces & MWFRS DL=1.60 plate grip DO	been considered for (3-second gust) DL=3.0psf; h=25ft; C velope) exterior zone -1-0, Interior (1) 2-1-1 11-11, Interior (1) /er left and right /ht exposed;C-C for for reactions shown; L=1.60	LC Pat. e 0 to	OAD CASE(S)	Standard					Willing		SEA 0363	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

GI mmm May 16,2025

Job	Truss	Truss Type	Qty	Ply	1054 Serenity	
P02596-25453	A04	Нір	1	1	Job Reference (optional)	173506959

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 06:19:45 ID:re0Z?TvB6keyOXI8LJtlBmzx4kF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	8-0-15	12-6-1	20-7-0	
Scale = 1:73.6	8-0-15	4-5-2	8-0-15	1

Plate Offsets (X, Y): [3:0-4-4,0-2-0], [4:0-4-4,0-2-0], [7:Edge,0-3-8], [11:Edge,0-3-8]

Loading (psf) Spacing 2-0-0 CSI TCLL (roof) 20.0 Plate Grip DOL 1.15 TC Snow (Pf/Pg) 16.5/15.0 Lumber DOL 1.15 BC TCDL 10.0 Rep Stress Incr YES WB BCLL 0.0* Code IRC2015/TPI2014 Matrix-MS	DEFL in (loc) l/defl L/d PLATES GRIP 0.82 Vert(LL) -0.20 10-11 >999 240 MT20 244/190 0.64 Vert(CT) -0.29 10-11 >832 180 MT20 244/190 0.26 Horz(CT) 0.02 7 n/a n/a Weight: 118 lb FT = 20%
 LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BBRACING TOP CHORD Structural wood sheathing directly applied or 4-7-5 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-4. BOT CHORD Rigid ceiling directly applied or 9-8-7 oc bracing. REACTIONS (size) 7=0-5-8, 11=0-5-8 Max Horiz 11=166 (LC 13) Max Uplift 7=-72 (LC 15), 11=-72 (LC 14) Max Grav 7=875 (LC 2), 11=875 (LC 2) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 10-11=-345/643, 9-10=-30/583, 7-9=-272/523 BOT CHORD 10-11=-345/643, 9-10=-30/583, 7-9=-272/523 MVEBS 3-10=-15/239, 4-9=-15/239, 2-10=-229/386, 5-9=-236/389 NOTES 1) Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25f; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 12-2-2 to 12-7-13, Exterior (2) 7-11-3 to 12-2-2, Interior (1) 12-2-2 to 12-7-13, Exterior (2) 7-11-3 to 12-2-2, Interior (1) 16-10-11 to 21-60 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; 	f (roof LL: Lum DOL=1.15 (ground snow); Pf=16.5 1.15 Plate DOL=1.15); xp.; Cl=1.10, Lu=50-0-0 for greater of min roof live flat roof load of 11.5 psf on h other live loads. ineer responsible for covers rain loading se of this truss component. prevent water ponding. for a 10.0 psf bottom with any other live loads. d for a live load of 20.0psf is where a rectangle "III fit between the bottom , with BCDL = 10.0psf. n (by others) of truss to tanding 72 lb uplift at joint n does not depict the size along the top and/or SEAL 036322

G minin May 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1054 Serenity	
P02596-25453	A05	Нір	1	1	Job Reference (optional)	173506960

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 06:19:46 ID:CcpS2ByKxGGFUIe67sSwupzx4kA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	6-10-9	13-8-7	20-7-0
Scale = 1:69.4	6-10-9	6-9-14	6-10-9

Plate Offsets (X, Y):	[2:0-3-4,0-1-8],	[3:0-4-4,0-2-0],	[4:0-4-4,0-2-0],	[5:0-3-4,0-1-8]
-----------------------	------------------	------------------	------------------	-----------------

	(., .). [=		,. = .,	, [.1									
Loading TCLL (roof) Snow (Pf/Pg TCDL BCLL BCDL	(psf) 20.0) 16.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.84 0.66 0.16	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.24 0.01	(loc) 10-11 10-11 7	l/defl >999 >995 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 110 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORI WEBS BRACING TOP CHORI BOT CHORI REACTIONS FORCES TOP CHORI WEBS NOTES 1) Unbalan this desi 2) Wind: AS Vasd=91 II; Exp B and C-C 6-8-13, E 10-11-11	 2x4 SP No.2 Structural wood she. 5-7-5 oc purlins, exit 2-0-0 oc purlins, exit 2-0-0-0 oc purlins, exit 2-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	athing directly applie cept end verticals, ar -12 max.): 3-4. applied or 10-0-0 oc 11=0-5-8 .C 13) :15), 11=-66 (LC 14) C 2), 11=875 (LC 2) pression/Maximum 146, 3-4=-648/154, /41, 2-11=-817/150, 0=-48/648, 7-9=-202 /54, 2-10=-202/556, been considered for (3-second gust) DL=3.0psf; h=25ft; C ivelope) exterior zon -1-0, Interior (1) 2-1- 11-11, Interior (1)	3) d or nd 5) ; () 8) 9) 2/357 10 2/357	TCLL: ASCE Plate DOL=1 psf (flat roof Category II; I This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements Provide adee This truss ha chord live loa * This truss ha chord and ar Provide mec bearing plate 11 and 66 lb O Graphical pu or the orient bottom chorc DAD CASE(S)	7-10; Pr=20.0 ps .15); Pg=15.0 psf snow: Lum DOL= Exp B; Partially Exp s been designed to psf or 1.00 times f on-concurrent with igner/Project engit n Load = 5.0 (psf) s specific to the us uate drainage to s been designed that been designed n chord in all area by 2-00-00 wide w by other members hanical connection to capable of withst uplift at joint 7. rlin representation ation of the purlin at Standard	f (roof LI (ground 1.15 Plat, Ct=1 for great lat roof lu n other lin neer res covers r se of this prevent for a 10. with any d for a liv s where ill fit betw, with BC n (by oth anding 6 n does no along the	: Lum DOL= snow); Pf=1 e DOL=1.15; .10, Lu=50-0 er of min roo aad of 11.5 p /e loads. ponsible for ain loading truss compo water pondin other live loa e load of 20. a rectangle veen the bott DL = 10.0ps 6 lb uplift at t depict the e top and/or	1.15 6.5 6.5 7 -0 f live sof on nent. g. ads. 0psf to joint size			A LINE	ORTEESS SEA 0363	RO////	Name of the second s
Interior (exposed member Lumber	 18-1-2 to 21-6-0 zone end vertical left and rig s and forces & MWFRS DOL=1.60 plate grip DO 	e; cantilever left and i ght exposed;C-C for for reactions shown; JL=1.60	rignt							3		A CA C	EEP. KIN	14.

G 1111111 May 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1054 Serenity	
P02596-25453	A06	Нір	1	1	Job Reference (optional)	173506961

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 06:19:46 ID:Vyk5Wa2jHQ9FqNgS2q4ZgIzx4k3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	5-8-2	14-10-14	20-7-0	
Scale = 1:65.2	5-8-2	9-2-11	5-8-2	

Plate Offsets ((X, Y): [2:0-2-12,0-1-8]	, [3:0-4-4,0-2-0], [5:0)-4-4,0-2-	0], [6:0-2-12,0-	1-8]									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 16.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.35 0.68 0.22	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.29 0.01	(loc) 9-11 9-11 8	l/defl >999 >832 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 123 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood shea 5-9-5 oc purlins, exc 2-0-0 oc purlins (6-0- Rigid ceiling directly bracing.	athing directly applie cept end verticals, ar 0 max.): 3-5. applied or 10-0-0 oc	3; 4; d or nd 5;	 TCLL: ASCE Plate DOL=² psf (flat roof Category II; This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements 	7-10; Pr=20.0 ps 1.15); Pg=15.0 ps snow: Lum DOL= Exp B; Partially E: as been designed psf or 1.00 times to on-concurrent with igner/Project engin n Load = 5.0 (psf) s specific to the us	sf (roof LL f (ground :1.15 Plat xp.; Ct=1 for great flat roof lo h other liv ineer res covers r se of this	L: Lum DOL= snow); Pf=10 te DOL=1.157 .10, Lu=50-0 pad of 11.5 p ve loads. ponsible for ain loading truss compo	1.15 6.5); -0 f live sf on nent.						
REACTIONS	(size) 8=0-5-8, 1 Max Horiz 12=-128 (L Max Uplift 8=-59 (LC Max Grav 8=875 (LC	2=0-5-8 _C 12) 15), 12=-59 (LC 14) ; 2), 12=875 (LC 2)	6) 7) 8)	 Provide adea This truss has chord live lost * This truss lost on the bottor 	quate drainage to as been designed ad nonconcurrent nas been designed m chord in all area	prevent for a 10.0 with any d for a liv as where	water ponding 0 psf bottom other live loa re load of 20.0 a rectangle	g. ads. Opsf						
FORCES	(lb) - Maximum Com Tension	pression/Maximum		3-06-00 tall I chord and a	by 2-00-00 wide w by other members	vill fit betv s, with BC	veen the bott DL = 10.0ps	om f.						
TOP CHORD	1-2=0/41, 2-3=-938/1 4-5=-641/144, 5-6=-9 2-12=-836/142, 6-8=-	135, 3-4=-641/144, 938/135, 6-7=0/41, -836/143	9)	 Provide med bearing plate 12 and 59 lb 	hanical connectio capable of withs uplift at joint 8.	n (by oth tanding 5	ers) of truss i9 lb uplift at j	to joint						
BOT CHORD	11-12=-155/267, 9-1 8-9=-106/231	1=-103/773,	10	 Graphical pu or the orient 	Irlin representation	n does no along the	ot depict the s top and/or	size				mun	1011	
WEBS	3-11=-20/324, 4-11=- 5-9=-20/324, 2-11=-8	-250/108, 4-9=-250/ 32/510, 6-9=-87/511	107, L	bottom chore OAD CASE(S)	d. Standard							TH CA	ROUT	
NOTES											R	0'. F8.9	City 11	
1) Unbalance this design	ed roof live loads have n.	been considered for								4	Ì	R	Kell.	I.
 Wind: AS(Vasd=91r II; Exp B; and C-CE 5-6-6, Ext 15-0-10, E 19-3-8 to : end vertic forces & M 	CE /-10; Vult=115mph nph; TCDL=6.0psf; BCI Enclosed; MWFRS (em Exterior (2) -0-11-0 to 2- erior (2) 5-6-6 to 9-9-5, Exterior (2) 15-0-10 to 1 21-6-0 zone; cantilever al left and right exposed MWFRS for reactions sh	(3-second gust) DL=3.0psf; h=25ft; C velope) exterior zond 1-0, Interior (1) 2-1- Interior (1) 9-9-5 to 9-3-8, Interior (1) left and right expose d;C-C for members a own; Lumber	eat. e 0 to ed ; and							THE PARTY OF		SEA 0363	L 22 EP. Kulu	

II; E ; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 5-6-6, Exterior (2) 5-6-6 to 9-9-5, Interior (1) 9-9-5 to 15-0-10, Exterior (2) 15-0-10 to 19-3-8, Interior (1) 19-3-8 to 21-6-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G minin May 16,2025

Job	Truss	Truss Type	Qty	Ply	1054 Serenity	
P02596-25453	A07	Нір	1	1	Job Reference (optional)	173506962

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 06:19:46 ID:rwY_ZH6r6ynYw8YPqNgkNLzx4k_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

			4-:	5-12	10-3-8		16-1	-4		20-7	-0		
Scolo - 1:61			4-	5-12	5-9-12	I	5-9-	12	l	4-5-	12		
Plate Offsets	(X, Y): [3:0-6-4,0-2-0],	, [5:0-6-4,0-2-0]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 16.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.51 0.33 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.07 0.01	(loc) 9-11 9-11 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 122 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 5-11-11 oc purlins, 2-0-0 oc purlins (5-3 Rigid ceiling directly bracing. (size) 8=0-5-8, Max Horiz 13=-108 (Max Uplift 8=-53 (LC Max Grav 8=875 (LC (lb) - Maximum Com Tension 1-2=0/41, 2-3=-925/ 4-5=-1006/177, 5-6= 2-13=-837/144, 6-8= 12-13=-104/181 11	eathing directly applie except end verticals 3-13 max.): 3-5. r applied or 10-0-0 or 13=0-5-8 (LC 12) 2 10), 13=-53 (LC 11 C 2), 13=875 (LC 2) npression/Maximum '136, 3-4=-1006/177 =-925/136, 6-7=0/41 =-837/144 -12=-102/643	3) 4) ed or , and 5) c 6) 7) 8) 9) , 9)	TCLL: ASC Plate DOL= psf (flat rool Category II; This truss h load of 12.0 overhangs i Building De verifying Ra requiremen Provide ade This truss h chord live Ic * This truss on the botto 3-06-00 tall chord and a Provide me bearing plat 13 and 53 II	E 7-10; Pr=20.0 ps 1.15); Pg=15.0 ps snow: Lum DOL= Exp B; Partially E as been designed psf or 1.00 times non-concurrent wit signer/Project eng in Load = 5.0 (psf is specific to the u equate drainage to as been designed has been designed has been designed m chord in all area by 2-00-00 wide v hy other members chanical connectic e capable of withs o uplif at joint 8.	sf (roof Ll f (ground 1.1.5 Plai xp.; Ct=1 for great flat roof li h other li ineer res) covers r se of this prevent for a 10.1 with any d for a liv as where vill fit betv s.	: Lum DOL= snow); Pf=11 e DOL=1.15) .10, Lu=50-0 er of min roof bad of 11.5 p ve loads. ponsible for ain loading truss compon water ponding truss compon water ponding other live loa e load of 20.1 a rectangle ween the bott ers) of truss 1 33 lb uplift at j	1.15 6.5); -0 f live sf on nent. g. ads. 0psf om to joint					
WEBS	9-11=-51/643, 8-9=- 3-12=0/136, 3-11=-1 5-11=-109/482, 5-9= 6-9=-89/554	-55/148 109/482, 4-11=-413/ =0/136, 2-12=-86/55	128, ^{4,} L(or the orien bottom choi	tation of the purlin d. Standard	along the	e top and/or	5120			ال	TH CA	ROUT
NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=91r II; Exp B; and C-C E 4-4-0, Ext 16-3-0, Ext to 21-6-0 vertical le forces & M DOL=1.60	ed roof live loads have n. CE 7-10; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) -0-11-0 to 2 terior (2) 4-4-0 to 8-6-1. xterior (2) 16-3-0 to 20- zone; cantilever left an ft and right exposed;C- WWFRS for reactions s 0 plate grip DOL=1.60	been considered fo (3-second gust) DL=3.0psf; h=25ft; (nvelope) exterior zor 2-1-0, Interior (1) 2-1 5, Interior (1) 8-6-15 -5-4, Interior (1) 20-5 id right exposed ; en C for members and shown; Lumber	r Cat. ne -0 to to 5-4 d							4.000	E. M.	SEA 0363	EREPTION 16 2025

to 21-6-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

May 16,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1054 Serenity	
P02596-25453	A08	Нір	1	1	Job Reference (optional)	173506963

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 06:19:46 ID:khnVPf9MABH_PIsB3DIgYBzx4jw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

			3-3-6		10-3-8			17-3-10			20-7-	-0	
Scale = 1:56.8	1	I	3-3-6	I	7-0-2	1		7-0-2		1	3-3-	6 '	
Plate Offsets	(X, Y): [3:0-6-4,0-2-0],	[5:0-6-4,0-2-0]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 16.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.73 0.45 0.19	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.13 0.02	(loc) 11-12 11-12 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 114 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 6-0-0 oc purlins, exu 2-0-0 oc purlins, (4-0 Rigid ceiling directly bracing. (size) 8=0-5-8, 7 Max Horiz 13=89 (LC Max Grav 8=875 (LC (lb) - Maximum Com Tension 1-2=0/41, 2-3=-913/ 4-5=-1345/202, 5-6=	athing directly applied cept end verticals, an I-6 max.): 3-5. applied or 6-0-0 oc 13=0-5-8 C 13) C 10), 13=-76 (LC 11) C 2), 13=875 (LC 2) npression/Maximum 128, 3-4=-1345/202, 913/128, 6-7=0/41, e22(420)	3) 4) d or bd 5) 6) 7) 8) 9)	TCLL: ASCI Plate DOL= psf (flat roof Category II; This truss h- load of 12.0 overhangs r Building De: verifying Ra requirement Provide ade This truss h- chord live lo * This truss on the botto 3-06-00 tall chord and a Provide med bearing plat	E 7-10; Pr=20.0 p 1.15); Pg=15.0 ps snow: Lum DOL: Exp B; Partially E as been designed psf or 1.00 times ion-concurrent wi signer/Project end in Load = 5.0 (psi s specific to the u quate drainage to as been designed ad nonconcurren has been designed ad nonconcurren has been designed m chord in all are by 2-00-00 wide to ny other member chanical connecting e capable of with	sis (roof Ll sf (ground =1.15 Plai Exp.; Ct=1 if or great flat roof lit th other lin gineer ress f) covers r use of this p prevent t or a 10. t with any ed for a liv as where will fit betw s.	L: Lum DOL= snow); Pf=1 e DOL=1.15 .10, Lu=50-(er of min roc bad of 11.5 p ve loads. ponsible for ain loading truss compo water pondir 0 psf bottom other live lo e load of 20 a rectangle veen the bot ers) of truss '6 lb uplift at	=1.15 6.5 j); D-0 of live bosf on onent. ng. ads. .0psf tom to joint					
BOT CHORD	12-13=-73/102, 11-1 9-11=-66/659, 8-9=- 3-12=-50/105, 3-11= 5-11=-149/777, 5-9= 6-9=-91/675	12=-109/659, 21/63 149/777, 4-11=-495 50/105, 2-12=-88/67	10) 5/152, 75, LC) Graphical pro- or the orient bottom chor	ation of the purlin d. Standard	on does no along the	ot depict the e top and/or	size			11	TH CA	AROLIN
NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=91r II; Exp B; and C-C I 3-1-10, E: 17-5-6, E: and right C for mer shown; Lu	eed roof live loads have n. CE 7-10; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) -0-11-0 to 2 xterior (2) -0-11-0 to 7-4 xterior (2) -1-10 to 7-4 xterior (2) 17-5-6 to 21- exposed ; end vertical I nbers and forces & MW umber DOL=1.60 plate	been considered for (3-second gust) DL=3.0psf; h=25ft; C vvelope) exterior zone t-1-0, Interior (1) 2-1-1 -8, Interior (1) 7-4-8 t 6-0 zone; cantilever I left and right exposed /FRS for reactions grip DOL=1.60	eat. e 0 to to left t;C-							4		SEA 0363	EEFR. KINN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust structure Bucking Component Advancement and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

May 16,2025

Job	Truss	Truss Type	Qty	Ply	1054 Serenity	
P02596-25453	AE01	Common Supported Gable	1	1	Job Reference (optional)	173506964

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 06:19:47

ID:Y1ZUyGc8mMcMWrwXxGR7Dizx4kd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x6=

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

-0-11-0 21-6-0 10-3-8 20-7-0 \vdash + 10-3-8 10-3-8 0-11-0 0-11-0 20-7-0 4x6= 7 6 8 12 10 5 9 9-8-10 9-7-1 10 12 е---13 ЬÀ ***** ~~~~~~ 24 23 22 21 20 19 18 17 16 15

20-7-0

DEFI

Scale = 1:79.8

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15			0.09	Vert(LL)	n/a	-	n/a	999	M120	244/190
Snow (Pf/Pg)	11.5/15.0	Lumber DOL	1.15		BC	0.08	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.14	Horz(CT)	0.00	14	n/a	n/a		
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MR								
BCDL	10.0											Weight: 144 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2		W	/EBS	7-20=-246/142, 6 4-23=-140/81, 3-2 9-18=-136/89, 10	-21=-148 24=-136/1 -16=-141	/82, 5-22=-13 12, 8-19=-14 /82,	6/89, 7/81,	12) * Th on t 3-06	is truss he botto 3-00 tall	has be m cho by 2-0	een designed for rd in all areas wh 0-00 wide will fit	a live load of 20.0psf ere a rectangle between the bottom
WEBS	2x4 SP No.2				11-15=-133/108				cho	rd and a	ny oth	er members.	
OTHERS	2x4 SP No.2		N	OTES					13) Pro	vide me	chanica	al connection (by	others) of truss to
BRACING			1) Unbalanced	roof live loads ha	ave been	considered fo	r	bea	ring plat	e capa	ible of withstandi	ng 104 ib uplift at joint
TOP CHORD	Structural wood shea 6-0-0 oc purlins, exc	athing directly applied cept end verticals.	or 2	this design.) Wind: ASCE	7-10; Vult=115m	nph (3-seo	cond gust)		∠o, uplit ioint	73 10 up it at joint 24 72	111 at jo 22, 62 b uplif	2 lb uplift at joint 2 t at joint 19, 82 lb	23, 139 lb uplift at
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc		II; Exp B; En	closed; MWFRS	(envelope	opst; h=25ft; (e) exterior zor	bat. ne	Ib u	plift at jo	int 16	and 136 lb uplift	at joint 15.
WEBS	1 Row at midpt	7-20		and C-C Cor	ner (3) -0-11-0 to	2-1-0, E	xterior (2) 2-1	-0 to	14) III u			ted as front (E) o	r back (B)
REACTIONS	(size) 14=20-7-0), 15=20-7-0, 16=20-7	'- 0,	10-3-8, Corn	er (3) 10-3-8 to 1	3-3-8, Ex	terior (2) 13-3	3-8					Dack (D).
EOBCES	18=20-7-C 21=20-7-C 24=20-7-C Max Horiz 25=203 (L 16=-68 (L 19=-72 (L 22=-79 (L 24=-139 (4=216 (L 19=215 (L 19=215 (L 21=207 (L 23=189 (L 25=198 (L 25=198 (L 25=198 (L) 25=198 (L) 25=10 (L), 19=20-7-0, 20=20-7), 22=20-7-0, 23=20-7), 25=20-7-0 C 13) C 11), 15=-136 (LC 1! C 15), 18=-82 (LC 15) C 15), 21=-71 (LC 14) C 14), 23=-62 (LC 14) LC 14), 25=-104 (LC 27 C 36), 15=222 (LC 27 C 31), 18=209 (LC 27 C 27), 20=251 (LC 26 C 26), 22=192 (LC 26 C 30), 24=202 (LC 26 C 27)	0, 0, 5), 3),),), 10) 4 7), 7), 7), 5), 5 6),	 to 21-6-0 200 vertical left a forces & MW DOL=1.60 pl Truss design only. For stu see Standarc or consult qu TCLL: ASCE Plate DOL=1 psf (flat roof Category II; I) This truss ha load of 12.0 overhangs no Building Des 	ref, cantilever ref. nd right exposed (FRS for reaction ate grip DOL=1.6 (red for wind loads (rds exposed to w d Industry Gable (ratified building d (r-10; Pr=20.0 p (rot); Pg=15.0 ps snow: Lum DOL= Exp B; Partially E (rot) based to be show at the rot of the rot (rot) based to based (rot) based (rot) based (rot) based (rot) based (rot) based (rot) based (rot) based (rot) base	(C-C for r (C-C for r (C-C) for r (C-C for r	exposed, en nembers and Lumber ane of the tru: al to the face; ils as applical s per ANSI/TF :: Lum DOL=' snow); Pf=11 to DOL=1.15) .10 er of min roof poad of 11.5 ps ve loads. ponsible for	a ss), ble, Pl 1. 1.15 1.5 ; live sf on	1) De Inc Ur Tra	ad + Sn rease=' iform Lc Vert: 1-2 apezoida	ow (ba 1.15 bads (ll 2=-43, al Load	oft) 2-7=-43, 7-12=-4 is (lb/ft)	Increase=1.15, Plate 3, 12-13=-43
FURCES	Tension	pression/maximum		verifying Rai	n Load = 5.0 (psf) covers i	ain loading						
TOP CHORD	2-25=-161/83, 1-2=0 3-4=-106/106, 4-5=- 6-7=-199/231, 7-8=- 9-10=-87/111, 10-11 12-13=0/41, 12-14=-	/41, 2-3=-153/144, 93/126, 5-6=-144/169 199/231, 8-9=-144/16 =-81/83, 11-12=-121/ 141/58	, 7 9, 8 110, 9	requirements All plates are Gable require Truss to be f braced again	s specific to the u 2x4 () MT20 u es continuous bo ully sheathed from ist lateral movem	use of this inless oth ottom choi im one fac inent (i.e. c	truss compor erwise indicat d bearing. e or securely liagonal web)	nent. æd.		THE PARTY		SEA 0363	L 22
BOT CHORD	24-25=-94/107, 23-2 22-23=-94/107, 21-2 20-21=-94/107, 19-2 18-19=-94/107, 16-1 15-16=-94/107, 14-1	4=-94/107, 2=-94/107, 0=-94/107, 8=-94/107, 5=-94/107	1	 Gable studs This truss ha chord live loa 	spaced at 2-2-0 (is been designed ad nonconcurrent	l for a 10. t with any	0 psf bottom other live loa	ds.				AC A. G	ILBERT IN

CSI

May 16,2025

Page: 1

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1054 Serenity	
P02596-25453	AE01	Common Supported Gable	1	1	Job Reference (optional)	173506964

 $\begin{array}{l} \mbox{Vert: } 25=-20\mbox{-}to\mbox{-}24=-21 (F=-1), 24=-21 (F=-1)-to\mbox{-}23=-23 (F=-3), 23=-23 (F=-3)\mbox{-}to\mbox{-}22=-24 (F=-4), 22=-24 (F=-4), 22=-24 (F=-6)-to\mbox{-}22=-28 (F=-8), 20=-28 (F=-8)\mbox{-}to\mbox{-}19=-29 (F=-9), 19=-29 (F=-9), 19=-29 (F=-9), 19=-29 (F=-9)\mbox{-}to\mbox{-}12=-32 (F=-11), 18=-31 (F=-11)\mbox{-}to\mbox{-}17=-32 (F=-12), 17=-32 (F=-12)\mbox{-}to\mbox{-}15=-34 (F=-14), 15=-34 (F=-14), 15=-34 (F=-14), 15=-34 (F=-15) \mbox{-}15=-35 (F=-15) \mbox{-}12=-26 (F=-12)\mbox{-}12=-26 (F$

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 06:19:47 ID:Y1ZUyGc8mMcMWrwXxGR7Dizx4kd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1054 Serenity	
P02596-25453	AG09	Hip Girder	1	2	Job Reference (optional)	173506965

Scale = 1:56.6

Loading

TCDL

BCLL

BCDL

WEBS

LUMBER

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

oc

BRACING

TCLL (roof)

Snow (Pf/Pg)

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1054 Serenity	
P02596-25453	CJ01	Jack-Open	2	1	Job Reference (optional)	173506966

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 06:19:48 ID:aSB4mNuAYw53z_3x8t5tXpzGx5Z-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

NAILED

0-0-10

0-0-10

Scale = 1:36

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MR	0.28 0.11 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01 0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%	6
LUMBER TOP CHORD 3OT CHORD WEBS BRACING TOP CHORD 3OT CHORD 3OT CHORD REACTIONS FORCES TOP CHORD 3OT CHORD 3OT CHORD 3OT CHORD 3OT CHORD 1) Unbalance this design 2) Wind: AS(Vasd=91n II; Exp B; and C-C C 3-7-4 zone vertical lef forces & M DOL=1.6C 3) TCLL: AS Plate DOL plate	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she: 3-8-0 oc purlins, exc Rigid ceiling directly bracing. (size) 3= Mecha 5=0-9-7 Max Horiz 5=58 (LC Max Uplift 3=-58 (LC (LC 16) Max Grav 3=110 (LC (LC 2) (lb) - Maximum Com Tension 2-5=-246/249, 1-2=0 4-5=0/0 ed roof live loads have n. CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (en Corner (3) -1-9-6 to 2-5 e; cantilever left and rig t and right exposed;C-/ MWFRS for reactions 0 D plate grip DOL=1.60 CE 7-10; Pr=20.0 psf (g of snow: Lum DOL=1.' II; Exp B; Partially Exp. ed snow loads have be	athing directly applied cept end verticals. applied or 10-0-0 oc nical, 4= Mechanical 16) : 16), 4=-5 (LC 16), 5 : 2), 4=87 (LC 7), 5=: pression/Maximum 1/46, 2-3=-53/22 been considered for (3-second gust) DL=3.0psf; h=25ft; C tyelope) exterior zone -9, Exterior (2) 2-5-9 th exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1. for DL=1.15); ; Ct=1.10 en considered for thi	5) 6) d or 7) 8) 	This truss ha load of 12.0 overhangs n. Building Des verifying Raii requirements This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to girdd) Provide mec bearing plate 5, 58 lb upliff () "NAILED" ind NDS guidline) In the LOAD of the truss a DAD CASE(S) Dead + Snd Increase=1 Uniform Loa Vert: 1-2: Concentrate	s been designed for basis or 1.00 times fits on-concurrent with gner/Project enging of specific to the uses is been designed for do nonconcurrent w as been designed for a chord in all areas y 2-00-00 wide will y other members. er(s) for truss to tru- nanical connection capable of withsta at joint 3 and 5 lb titcates 2-12d (0.14 s. CASE(S) section, re noted as front (f Standard w (balanced): Lurr 15 ads (lb/ft) =-43, 2-3=-43, 4-5= ad Loads (lb) 26 (F), 4=-22 (F)	or greate at roof lo other liveer resp covers r e of this or a 10.0 vith any for a liv swhere I fit betw uss conn (by oth- anding 3 uplift at 8"x3.25 loads ap F) or bar aber Incl	er of min rool bad of 11.5 p re loads. bonsible for ain loading truss compo) ps bottom other live load e load of 20.1 a rectangle reen the bott hections. ers) of truss i 4 lb uplift at j joint 4. ") toe-nails p oplied to the ck (B). rease=1.15,	f live psf on ads. Opsf to joint ber face Plate				SEA 0363	ROJ L 22 ILBER 16,202	5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com) ENGINEERING BY

Job	Truss	Truss Type	Qty	Ply	1054 Serenity	
P02596-25453	G02	Common	2	1	Job Reference (optional)	173506967

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 06:19:48 ID:9IQAd0jaBu7V1DMQGhBn5Gzx4Go-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

L	7-3-8	13-11-0	17-3-8	24-7-0	
Scale = 1:70	7-3-8	6-7-8	3-4-8	7-3-8	
Plate Offsets (X_Y): [8:0-2-12 0-2-0] [10:0-2-12 0-2-0]					

						_							
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-3-8 1.15 1.15 NO IRC20	15/TPI2014	CSI TC BC WB Matrix-MS	0.70 0.87 0.72	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.20 0.05	(loc) 8-10 8-10 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 143 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.2 *Excep 2x4 SP No.2 Structural wood sheir 3-3-12 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, 6 Max Horiz 2=-99 (LC Max Uplift 2=-143 (L Max Grav 2=1280 (L	t* 10-8:2x8 SP DSS athing directly appli applied or 10-0-0 o 5=0-5-8 : 17) C 16), 6=-149 (LC 1 C 2), 6=-1318 (LC 2	4 ed or 6 ^c 7 8 17)	 Unbalanced design. This truss ha load of 12.0 overhangs n Building Des verifying Rai requirement This truss ha chord live lo. * This truss l on the bottol 3-06-00 tall l 	snow loads have as been designed psf or 1.00 times i on-concurrent witi signer/Project engi in Load = 5.0 (psf) s specific to the us as been designed ad nonconcurrent has been designee m chord in all area by 2-00-00 wide w	been cor for great flat roof le h other li ineer res) covers r se of this for a 10. with any d for a liv as where vill fit betw	nsidered for t er of min roo pad of 11.5 p ve loads. ponsible for ain loading truss compo 0 psf bottom other live loa e load of 20. a rectangle veen the bott	his f live ssf on nent. ads. 0psf					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	g	 Provide med bearing plate 	chanical connections connections capable of withs	n (by oth tanding 1	ers) of truss 43 lb uplift a	to t joint					
TOP CHORD	1-2=0/28, 2-3=-2192 4-5=-2192/325, 5-6= 2-10=-226/1911_8-1	2/251, 3-4=-2109/30 2276/267, 6-7=0/2 0=-79/1289	19, 18 1	2 and 149 lb 0) In the LOAD	uplift at joint 6. CASE(S) section	, loads a	pplied to the	face					
WEBS	6-8=-163/1985 4-8=-187/1020, 5-8= 4-10=-157/825, 3-10	-430/180, 430/180	L 1	.OAD CASE(S)) Dead + Sn Increase=1	Standard ow (balanced): Lu	mber Inc	rease=1.15,	Plate					10
NOTES					ade (lb/ft)								1111
	od roof live loade bave	boon considered fo	r	Vort: 1.4	aus (10/11)	14-22	4 22 40 (E)	`				IN TH CA	Roill
this docid		been considered to	1	vert: 1-4	=-49, 4-7=-49, 11	-14=-23,	4-23=-40 (F))			- 5	R	Della !!
	11. CE 7 10: \/ult_115mph	(2 second quet)								/	1	2 to the	02 pm
2) WINU. AS	C = 1 - 10, $Vuit= 1.15mpn$	DI -3 Onst h-25ft	Cat							~	C.	.04	

II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 12-3-8, Exterior (2) 12-3-8 to 15-3-8, Interior (1) 15-3-8 to 25-6-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

Thursday and the state of the s anninnin annin a SEAL 036322 G mmm May 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1054 Serenity	
P02596-25453	G03	Common	3	1	Job Reference (optional)	173506968

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 06:19:48 ID:9IQAd0jaBu7V1DMQGhBn5Gzx4Go-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

		L	7-3-	-8	13-	11-0	17-3-	8		24-7-0			
Scale = 1:70		I -	7-3-	-8	6-	7-8	3-4-	В		7-3-8			
Plate Offsets (X, Y): [8:0-1-8,0-1-12], [10:0-1-8,0-1-12]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015/TF	PI2014	CSI TC BC WB Matrix-MS	0.56 0.77 0.69	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.17 0.04	(loc) 8-10 8-10 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 143 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.2 Structural wood she 3-8-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, (Max Horiz 2=86 (LC Max Uplift 2=-127 (L Max Grav 2=1128 (L	t* 10-8:2x8 SP DSS athing directly applie applied or 10-0-0 oc 6=0-5-8 20) C 16), 6=-133 (LC 1 _C 2), 6=1166 (LC 2)	4) Ui de 5) Th lo: ov ed or 6) Bu ve re 7) Th ch 8) * ⁻ 7) 3- 0 ch	nbalanced esign. his truss ha ad of 12.0 p verhangs nu uilding Des erifying Rain equirements his truss ha nord live loa This truss ha nord live loa This truss ha nord live loa the bottom 06-00 tall b nord and ar	snow loads have so been designed psf or 1.00 times igner/Project eng n Load = 5.0 (ps s specific to the u is been designed ad nonconcurren has been designed n chord in all are by 2-00-00 wide i y other member	e been cor d for great flat roof k ith other k gineer res f) covers r use of this d for a 10.0 t with any ed for a liv eas where will fit betw rs, with BC	er of min roof pad of 11.5 p ve loads. ponsible for ain loading truss compo 0 psf bottom other live loa re load of 20.1 a rectangle veen the bott CDL = 10.0psl	his Flive sf on nent. ds. Dpsf om f.					
FORCES	Niak Grav 2=1126 (LC 2), 0=1106 (LC 2) chord and any other members, with BCDL = 10.0psf. (lb) - Maximum Compression/Maximum 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 127 lb uplift at joint 1-2=0/25, 2-3=-1938/224, 3-4=-1866/275.												
BOT CHORD	4-5=-1949/290, 5-6= 2-10=-201/1690, 8-1 6-8=-148/1764	=-2022/240, 6-7=0/25 0=-73/1147,	5 10) In of	the LOAD the truss a	CASE(S) sectio are noted as fron Standard	n, loads a t (F) or ba	pplied to the t ck (B).	face					
WEBS	4-8=-167/915, 5-8=- 3-10=-375/157	375/157, 4-10=-137/	720, 1) [Dead + Sno	ow (balanced): L	umber Inc	rease=1.15,	Plate					un

NOTES

Unbalanced roof live loads have been considered for 1) this design.

Wind: ASCE 7-10; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 12-3-8, Exterior (2) 12-3-8 to 15-3-8, Interior (1) 15-3-8 to 25-6-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

- Uniform Loads (lb/ft)
 - Vert: 1-4=-43, 4-7=-43, 11-14=-20, 4-23=-40 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1054 Serenity	
P02596-25453	G04	Common	1	1	Job Reference (optional)	173506969

0-4-3 ∏

Ø

3x6=

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 06:19:49 ID:9IQAd0jaBu7V1DMQGhBn5Gzx4Go-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6

3x6=

7 Ì

21

9

3x6=

8

3x6=

10

3x6=

		F		8-4-8		16-2-	8	+	2	-7-0			
Scale = 1:70				8-4-8		7-10-	0		8	-4-8			
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.52 0.71 0.15	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.26 0.05	(loc) 8-10 8-16 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 112 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood sheater and the second structural wood sheater and the second structural second s	athing directly appli applied or 10-0-0 c 5=0-5-8 : 17) C 16), 6=-113 (LC - C 2), 6=1038 (LC 2 pression/Maximum 5/189, 3-4=-1537/21 :-1715/189, 6-7=0/2 0=-38/982, 384/155, 4-10=-104	4) 5) ied or 6) 0 ^C 7) 8) 17) 2) 9) 11, 25 L 4/594,	Unbalanced design. This truss h load of 12.0 overhangs i Building De verifying Ra requiremen This truss h chord live lo * This truss on the botto 3-06-00 tall chord and a Provide me bearing plat 2 and 113 II DAD CASE(S	A snow loads hav as been designe psf or 1.00 times onc-concurrent w signer/Project en in Load = 5.0 (ps ts specific to the as been designe ord nonconcurrer has been design or chord in all arr by 2-00-00 wide iny other membe chanical connect te capable of with o uplift at joint 6.	e been col d for great s flat roof l ith other li gineer res f) covers I use of this d for a 10. t with any ed for a li eas where will fit betv rs, with BC ion (by oth standing '	nsidered for a set of min roc bad of 11.5 p ve loads. ponsible for ain loading truss compo 0 psf bottom other live load of 20 a rectangle veen the bot CDL = 10.0ps ers) of truss 13 lb uplift a	this if live osf on onent. ads. .0psf tom sf. to to t					
NOTES 1) Unbalance this design 2) Wind: AS Vasd=91 II; Exp B; and C-C 12-3-8, E to 25-6-0 vertical le forces & DOL=1.6 3) TCLL: AS Plate DO ps (flat m Category	ced roof live loads have in. CE 7-10; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (en Exterior (2) -0-11-0 to 2 xterior (2) 12-3-8 to 15- zone; cantilever left an- off and right exposed;C- MWFRS for reactions si 0 plate grip DOL=1.60 SCE 7-10; Pr=20.0 psf (co 20 sof snow: Lum DOL=1.7 Soft Spartially Expo	been considered for (3-second gust) DL=3.0psf; h=25ft; welope) exterior zoo -1-0, Interior (1) 2-1 3-8, Interior (1) 15-1 d right exposed ; er C for members and hown; Lumber roof LL: Lum DOL= ground snow); Pf=1 15 Plate DOL=1.15; - Ct=1 10	Cat. ne 1-0 to 3-8 nd 1 1.15 1.5 ;							U		SEA 0363	L 22 BEERING

- 12-3-8, Exterior (2) 12-3-8 to 15-3-8, Interior (1) 15-3-8 to 25-6-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 3)
- Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GI 11111111 May 16,2025

Job	Truss	Truss Type	Qty	Ply	1054 Serenity	
P02596-25453	GE01	Common Supported Gable	1	1	Job Reference (optional)	173506970

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 06:19:49 ID:GWAfnff48gd3Yb2f1s6rwQzx4Gs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

24-7-0

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	11.5	(psf) 20.0 5/15.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ²	15/TPI2014	CSI TC BC WB Matrix-MS	0.08 0.07 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 18	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190	
BCDL		10.0											Weight: 158 lb) FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural w 6-0-0 oc pur Rigid ceiling bracing. (size) 2- 2 2 2 2	2 2 2 9 directly =24-7-0, 1=24-7-(4=24-7-(8=24-7-(athing directly applied applied or 10-0-0 oc , 18=24-7-0, 20=24-7- 0, 26=24-7-0, 23=24-7 0, 26=24-7-0, 30=24-7	T I or B 0, 7-0, 7-0, 7-0, 7-0,	OP CHORD	1-2=0/25, 2-3=-9 4-5=-49/62, 5-6= 7-8=-44/121, 8-9 10-11=-61/169, 1 12-13=-44/123, 1 15-16=-27/47, 16 18-19=0/25 2-35=-21/90, 31 29-30=-21/90, 28 26-27=-21/90, 24 22-23=-21/90, 24	4/53, 3-4= -41/75, 6- =-53/147, 1-12=-53, 3-14=-35, i-17=-42/3 35=-21/90 -32=-21/9 -29=-21/9 -29=-21/9 -22=-21/9 -22=-21/9	68/51, 7=-35/96, 9-10=-61/167 /150, /99, 14-15=-3(31, 17-18=-57/ 0, 33-34=-21/9 00, 30-31=-21/ 00, 27-28=-21/ 00, 23-24=-21/ 00, 20-21=-21/	0/74, 32, 0, 90, 90, 90, 90,	 Unides Thioa Thioa Ove Buiver req All Ga Ga Ga Thioa Ga Thioa Choose 	balanced sign. s truss h d of 12.0 rrhangs r lding De lifying Ra uiremen plates ar ble requi ble studs s truss h rd live lo	as bee psf or non-co signer/ in Loa ts spec e 2x4 res col s space as bee bad nor	loads have been en designed for 1.00 times flat ncurrent with of (Project engineer d = 5.0 (psf) co- cific to the use of (II) MT20 unless ntinuous bottom an dat 1-4-0 oc. an designed for nconcurrent with	in considered for greater of min ro roof load of 11.5 her live loads. rr responsible for vers rain loading of this truss com s otherwise indi o chord bearing. a 10.0 psf botto h any other live	or this oof live 5 psf on or g ponent. icated. om loads.
	Max Horiz 2 Max Uplift 2 2 2 2 2 2 3 3 3 3 3	1=24-7-(4=24-7-(=-86 (LC) =-11 (LC) 0=-63 (L) 2=-32 (L) 4=-29 (L) 7=-20 (L) 0=-31 (L) 2=-27 (L) 4=-14 (L)	0, 32=24-7-0, 33=24-7 0, 35=24-7-0 2 17) 2 17), 18=-7 (LC 17), C 17), 21=-15 (LC 17), C 17), 23=-29 (LC 17), C 17), 26=-33 (LC 17), C 17), 26=-33 (LC 16), C 16), 31=-27 (LC 16), C 16), 33=-57 (LC 16), C 16), 33=-57.7 (LC 16), C 16), 35=-57.7 (LC 16), C 16), C 16), 35=-57.7 (LC 16), C 16)), N), N), 1), 2), 2	VEBS IOTES) Unbalanced this design.) Wind: ASC Vasd=91mj II; Exp B; E	10-28=-92/5, 9-2: 7-31=-80/39, 6-3: 4-34=-53/29, 3-3: 12-26=-80/68, 13 15-22=-86/43, 16 d roof live loads have t 7-10; Vult=115m ph; TCDL=6.0psf; nclosed; MWFRS	9=-85/62, 2=-79/39, 5=-149/85 -24=-80/3 -21=-49/2 ave been of hph (3-sec BCDL=3.0 (envelope	8-30=-80/68, 5-33=-85/43, 5, 11-27=-85/6 99, 14-23=-79/ 27, 17-20=-156 considered for cond gust) 0psf; h=25ft; C e) exterior zon	2, 39, 5/89 Cat. e	12) * TI on 3-0 chc	nis truss the bottc 6-00 tall ord and a	has be om cho by 2-0 ny oth	een designed fo rd in all areas w 0-00 wide will fi er members.	r a live load of 2 here a rectangle t between the be	20.0psf e iottom
	Max Grav 2: 22 2: 22 22 24 3 3 3 3 3 3	=169 (LC) =169 (LC) =276 (L) =169 (LC) =169 (L) =124 (L) =	C 10), 03=100 (LC 2), LC 35), 21=64 (LC 2), LC 35), 23=122 (LC 3 LC 2), 26=122 (LC 3 LC 34), 30=117 (LC 34 LC 34), 34=60 (LC 2), LC 34)	, 5), 3), 4), 3), 3	and C-C Co 12-3-8, Cor to 25-6-0 zo vertical left forces & MI DOL=1.60) Truss desig only. For s see Standa or consult c	orner (3) -0-11-0 to rner (3) 12-3-8 to 1 one; cantilever left and right exposed WFRS for reaction plate grip DOL=1.6 gned for wind loads tuds exposed to w urd Industry Gable jualified building d	2-1-0, E; 5-3-8, Ex and right ;C-C for n s shown; 60 s in the pla ind (norm End Deta esigner as	xterior (2) 2-1- terior (2) 15-3 exposed ; end nembers and Lumber ane of the trus ial to the face) ils as applicat s per ANSI/TP	0 to -8 d ss , ple, 1 1.		Manna Man	ie.	SE/ 0363	AL 322	Mannun
FORCES	(Ib) - Maxim Tension	ium Com	pression/Maximum	4) TCLL: ASC Plate DOL=	E 7-10; Pr=20.0 p =1.15); Pg=15.0 ps	sf (roof LL f (ground 1 15 Plat	L: Lum DOL=1 snow); Pf=11	.15 .5		ŝ	in the	A. SNGIN	IEER.A	A. A

Scale = 1:68.3

or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

mmm May 16,2025

Page: 1

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G

Job	Truss	Truss Type	Qty	Ply	1054 Serenity	
P02596-25453	GE01	Common Supported Gable	1	1	Job Reference (optional)	173506970

13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 11 lb uplift at joint 2, 7 lb uplift at joint 18, 23 lb uplift at joint 29, 31 lb uplift at joint 30, 27 lb uplift at joint 31, 27 lb uplift at joint 32, 30 lb uplift at joint 33, 14 lb uplift at joint 34, 57 lb uplift at joint 35, 20 lb uplift at joint 27, 33 lb uplift at joint 26, 29 lb uplift at joint 24, 29 lb uplift at joint 23, 32 lb uplift at joint 27, 15 lb uplift at joint 20, 11 lb uplift at joint 2, 15 lb uplift at joint 2, 16 lb uplift at joint 2, 11 lb uplift at joint 2, and 7 lb uplift at 3.

 Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 18.

15) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-10=-43, 10-19=-43

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 06:19:49 ID:GWAfnff48gd3Yb2f1s6rwQzx4Gs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1054 Serenity	
P02596-25453	J01	Jack-Open	2	1	Job Reference (optional)	173506971

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 06:19:49 ID:1iOAEZ5iu7?jAXy2L9luNDzGf4K-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:28.2

Plate Offsets (X, Y): [2:0-1-8,0-0-5]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	5/TPI2014	CSI TC BC WB Matrix-MP	0.17 0.13 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.02 0.01	(loc) 5-8 5-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2 1 Structural wood shea 3-8-6 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, 4 Mechanica Max Horiz 2=67 (LC Max Uplift 2=-17 (LC (LC 16) Max Grav 2=207 (LC (LC 7)	I-6-0 athing directly applie applied or 10-0-0 oc 4= Mechanical, 5= al 16) : 16), 4=-39 (LC 16), C 2), 4=92 (LC 2), 5=	4) 5) (d or 6) 5; 7) 5=-1 8) 9) 655	This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements This truss ha chord live loa * This truss h on the bottor 3-06-00 tall t chord and ar Refer to gird Provide mec bearing platt 4, 17 lb upliff	as been designed psf or 1.00 times on-concurrent witt igner/Project eng n Load = 5.0 (psf s specific to the u as been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w hy other members er(s) for truss to hanical connectic e capable of withs t at joint 2 and 1 Standard	for greate flat roof le th other liv ineer resp) covers r. se of this for a 10.0 with any d for a liv as where will fit betw s. truss conion (by oth- standing 3 b uplift at	er of min roo aad of 11.5 p ve loads. sonsible for ain loading truss compo 0 psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss 9 lb uplift at joint 5.	f live onent. ads. Opsf to joint						
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: AS(Vasd=91n II; Exp B; and C-C E 3-7-10 zor vertical lef forces & N DOL=1.6C 2) TCLL: AS Plate DOL psf (flat ro Category 3) Unbalance	(lb) - Maximum Com Tension 1-2=0/25, 2-4=-114/2 2-5=-98/65 CE 7-10; Vult=115mph nph; TCDL=6.0psf; BCI Enclosed; MWFRS (en Exterior (2) -0-11-0 to 2 ne; cantilever left and ri t and right exposed;C-1 MWFRS for reactions si 0 plate grip DOL=1.60 CE 7-10; Pr=20.0 psf (g -1.15); Pg=15.0 psf (g of snow: Lum DOL=1.1 II; Exp B; Partially Exp. ed snow loads have be	(3-second gust) DL=3.0psf; h=25ft; C velope) exterior zon -1-0, Interior (1) 2-1- ight exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1 roond snow); Pf=11 15 Plate DOL=1.15); ;; Ct=1.10 :en considered for th	Cat. e 0 to .15 .5							Contraction of the second seco		SEA 0363	ROJA L 22	Manning

Unbalanced snow loads have been considered for this design.

A. GILBE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1054 Serenity	
P02596-25453	J02	Jack-Open	8	1	Job Reference (optional)	173506972

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 06:19:50

ID:1iOAEZ5iu7?jAXy2L9luNDzGf4K-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

-0-11-0 3-11-8 3-11-8 0-11-0 3-11-8 12 6 Г 12 3x6 🞜 11 2-7-12 2-9-3 3 10 ² FO 0-8-0 \mathbb{N} 1 5 2x4 🛛

Scale = 1:29.3

Plate Offsets (X, Y): [2:0-1-8,0-0-5]

		-												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TP	PI2014	CSI TC BC WB Matrix-MP	0.20 0.16 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.02 0.01	(loc) 5-8 5-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m II; Exp B; I and C-C E 3-10-12 zc vertical lef forces & W DOL=1.60 2) TCLL: ASC Plate DOL psf (flat ro Category I 3) Unbalance design.	2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2 1 Structural wood shea 3-11-8 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, 4 Mechanic Max Horiz 2=71 (LC (LC 16) Max Grav 2=217 (LC (LC 7) (lb) - Maximum Com Tension 1-2=0/25, 2-4=-127/ 2-5=-113/73 CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (en Exterior (2) -0-11-0 to 2 cone; cantilever left and t and right exposed;C- /WFRS for reactions s1 0 plate grip DOL=1.60 CE 7-10; Pr=20.0 psf (g of snow: Lum DOL=1.' II; Exp B; Partially Exp. ed snow loads have be	 I-6-0 athing directly applied applied or 10-0-0 oc I= Mechanical, 5= I6) I6), 4=-42 (LC 16), C 2), 4=99 (LC 2), 5= pression/Maximum 35 (3-second gust) DL=3.0psf; h=25ft; C velope) exterior zone I-0, Interior (1) 2-1-1 right exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1. To Plate DOL=1.15); ; Ct=1.10 en considered for thi 	4) Th loc ov 5) BL ve 6) Th 6) Th 7) * 1 on 3- ch 5=-1 9) Pr 70 4, LOAD 4, LOAD	his truss ha ad of 12.0 p verhangs no uilding Desi erifying Raim nord live loa This truss ha hord live loa This truss h hord live loa This truss h hord and an efer to girde ovide meck earing plate 18 lb uplift CASE(S)	s been designed f bsf or 1.00 times f on-concurrent with gner/Project engin a Load = 5.0 (psf) s specific to the us s been designed f d nonconcurrent to as been designed f n chord in all area y 2-00-00 wide wi y other members. er(s) for truss to the nanical connection capable of withst at joint 2 and 1 lb Standard	for greatu lat roof lo n other lin neer resp covers r se of this. with any d for a 10.0 with any d for a 10.0	er of min roof aad of 11.5 p ve loads. ponsible for ain loading truss compo 0 psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss i 2 lb uplift at j joint 5.	f live sf on nent. ads. 0psf om to joint				SEA 0363	EER-FIL	
												May	16.2025	

May 16,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1054 Serenity	
P02596-25453	P01E	Monopitch Supported Gable	1	1	Job Reference (optional)	173506973

Image: Control of the second second

5-10-13

Scale	= 1:20	5.1	

Loading		(psf)	Spacing	2-0-0			CSI		DEFL	in	(loc)	l/defl	L/d	PLATES
TCLL (roof)		20.0	Plate Grip DOL	1.15			тс	0.21	Vert(LL)	n/a	-	n/a	999	MT20
Snow (Pf/Pg)	11.5	5/15.0	Lumber DOL	1.15			BC	0.24	Vert(CT)	n/a	-	n/a	999	
TCDL		10.0	Rep Stress Incr	YES			WB	0.04	Horz(CT)	0.00	2	n/a	n/a	
BCLL		0.0*	Code	IRC2	015/	TPI2014	Matrix-MP							
BCDL		10.0												Weight: 25 lb
LUMBER					4)	TCLL: ASCE	7-10; Pr=20.0 p	psf (roof LL	.: Lum DOL=	1.15				
TOP CHORD	2x4 SP No.2	2				Plate DOL=1	.15); Pg=15.0 p	sf (ground	snow); Pf=1	1.5				
BOT CHORD	2x4 SP No.2	2				psf (flat roof :	snow: Lum DOL	_=1.15 Plat	e DOL=1.15));				
WEBS	2x4 SP No.2	2				Category II; I	Exp B; Partially	Exp.; Ct=1	.10					
OTHERS	2x4 SP No.2	2			5)	Unbalanced	snow loads hav	e been cor	nsidered for t	his				
BRACING						design.								
TOP CHORD	Structural w	ood shea	athing directly applie	d or	6)	This truss ha	s been designe	d for great	er of min roof	live				
	5-10-13 oc j	purlins, e	except end verticals.			overbangs n	on-concurrent w	ith other liv	au or 11.5 p	51 011				
BOT CHORD	Rigid ceiling	g directly	applied or 10-0-0 oc		7)	Building Des	igner/Project en	igineer res	ponsible for					
PEACTIONS	(cizo) 2	_5 10 12	5-5 10 12 6-5 10	12		verifying Rain	n Load = 5.0 (ps	sf) covers r	ain loading					
REACTIONS	(SIZE) Z	-72 (1 C	, 5=5-10-13, 0=5-10 15)	-13		requirements	specific to the	use of this	truss compo	nent.				
	Max Liplift 2	= 73 (LC)	12) 5- 2 (I C 2) 6-	60	8)	Gable require	es continuous b	ottom chor	d bearing.					
		=-74 (LC	12), 5=-2 (LC 2), 0=	-00	9)	Gable studs	spaced at 1-4-0	oc.						
	Max Grav 2	=280 (I C	2) 5=46 (I C 7) 6=	335	10)	This truss ha	s been designe	d for a 10.0) psf bottom					
	(1	C 2)	2), 0-10 (201), 0-	000		chord live loa	ad nonconcurrer	nt with any	other live loa	ids.				
FORCES	(lb) - Maxim	um Com	oression/Maximum		11)	^ This truss h	ias been design	ied for a liv	e load of 20.	Upst				
TOROLO	Tension					on the botton	n chord in all are	eas where	a rectangle					
TOP CHORD	1-2=0/32. 2-	-3=-104/6	67. 3-4=-50/40.			s-up-uu tall D	y ∠-00-00 WIde	will lit DETV		UIII				
	4-5=-17/51	2 10 1/0	,		12)	Provide med	hanical connect	ion (hv oth	ers) of truce	to				
BOT CHORD	2-6=-37/100), 5-6=-27	7/37		12)	hearing nlate	canable of with	ion (by 0th standing 7	4 lh unlift at i	ioint				
WEBS	3-6=-258/20)2				2. 2 lb uplift a	at joint 5, 60 lb u	uplift at ioin	t 6 and 74 lb	uplift				
NOTES						at joint 2.	.,,	,,						minin
						•								

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) -1-8-0 to 1-4-0, Exterior (2) 1-4-0 to 5-9-1 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- LOAD CASE(S) Standard

Page: 1

GRIP 244/190

FT = 20%

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1054 Serenity	
P02596-25453	P02	Monopitch	6	1	Job Reference (optional)	173506974

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 06:19:50 ID:gb0vk86tRDYsWUI53oog3Dzx60c-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:37.8

Plate Offsets (X, Y): [2:Edge,0-5-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.31 0.32 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.06 -0.08 0.00	(loc) 4-5 4-5 7	l/defl >999 >840 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 33 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood shea 5-10-13 oc purlins, of Rigid ceiling directly bracing. (size) 2=0-3-8, 7 Max Horiz 2=86 (LC Max Uplift 2=-137 (LI Max Grav 2=366 (LC	athing directly applie except end verticals. applied or 10-0-0 oc '=0-1-8 12) C 12), 7=-56 (LC 12) C 2), 7=163 (LC 2)	4) 5) d or 7) 8) 9)	Unbalanced design. This truss ha load of 12.0 p overhangs nm Building Des verifying Raii requirements This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and ar Bearing at jo	snow loads have be s been designed fo osf or 1.00 times fla on-concurrent with of giner/Project engine h Load = 5.0 (psf) c s specific to the use s been designed fo di nonconcurrent w als been designed f n chord in all areas y 2-00-00 wide will by other members. int(s) 7 considers p int(s) 7 considers p	r great t roof k other liv eer res overs r of this r a 10.0 tith any tor a liv where fit betv arallel 1	isidered for the er of min roof pad of 11.5 p ve loads. ponsible for ain loading truss compo 0 psf bottom other live load e load of 20.0 a rectangle veen the botto o grain value	his f live sf on nent. ds. Opsf om					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC	(lb) - Maximum Com Tension 1-2=0/40, 2-3=-127/2 3-6=-85/97 2-5=-88/101, 4-5=0/ 2-4=-47/73, 3-7=-174 d roof live loads have Te 7-10; Vult=115mph	22, 4-6=-85/97, 12 4/120 been considered for (3-second gust)	9) 10) 11) 12) LO	using ANSI/T designer sho Provide mecl bearing plate 2 and 56 lb u Gap betweer diagonal or v AD CASE(S)	PI 1 angle to grain uld verify capacity of hanical connection at joint(s) 7. hanical connection capable of withstau plift at joint 7. hinside of top chorc ertical web shall no Standard	formula formula (by oth (by oth nding 1 I bearir t excee	a. Building ng surface. ers) of truss t ers) of truss t 37 lb uplift at ng and first ed 0.500in.	to to t joint			J. C.	NITH CA	R

- Vasd=91mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. Vasc=9 Impri, TCDL=0.0psi, BCDL=0.0psi, in-2.0i, Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-8-0 to 1-4-0, Interior (1) 1-4-0 to 5-5-9 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.5 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G

mmm May 16,2025

SEAL

036322

CHARLEN WARNEN

MULLIUM III

Job	Truss	Truss Type	Qty	Ply	1054 Serenity	
P02596-25453	P03G	Roof Special Girder	1	1	Job Reference (optional)	173506975

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 06:19:50 ID:pDR7I1mnx_sFBqvO6sC6I9zGy_W-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

LUS24 LUS24 LUS24

Scale = 1:34

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCCL	(psf) 20.0 16.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015/TPI201	4	CSI TC BC WB Matrix-MP	0.12 0.07 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 5 5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 43 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 2x4 BOT CHORD 2x4 BRACING TOP CHORD 2-0- BOT CHORD 2-0- BOT CHORD 2-0- BOT CHORD 2-0- BOT CHORD 2-0- BOT CHORD 2-0- BOT CHORD 5-0- WEAS 2-0- NOTES 1) Unbalanced roo this design. 2) Wind: ASCE 7-1 Vasd=91mph; T II; Exp 8; Enclos cantilever left ar right exposed; L 3) TCLL: ASCE 7- Plate DOL=1.15 psf (flat roof sno Category II; Exp 4) Building Design- verifying Rain Lo requirements sp 5) Provide adequa 6) This truss has b chord live load r	SP No.2 SP DSS SP No.2 0 oc purlins: 1-3 d ceiling directly ing. 4=0-1-8, (Horiz 6=-61 (LC Grav 4=603 (LC - Maximum Com sion -66/20, 1-2=-23 -66/20 -79/379, 4-5=-7 -478/84, 2-5=-1 f live loads have 0; Vult=115mph CDL=6.0psf; BC used; MWFRS (er d right exposed umber DOL=1.6 (0; Pr=20.0 psf (c w: Lum DOL=1. B; Partially Exp ar/Project engine bad = 5.0 (psf) oc ceific to the use te drainage to pr een designed fo ionconcurrent with	, except end verticals applied or 10-0-0 oc 5=0-3-8 31) 7), 6=-81 (LC 6) 2), 6=516 (LC 2) pression/Maximum /17, 2-3=-23/17, 9/379 6/376, 2-4=-478/83 been considered for (3-second gust) DL=3.0psf; h=25ft; Cr welope) exterior zone ; end vertical left and 0 plate grip DOL=1.6f roof LL: Lum DOL=1. 15 Plate DOL=1.15); .; Ct=1.10, Lu=50-00 per responsible for bvers rain loading of this truss compone event water ponding. r a 10.0 psf bottom th any other live load	 7) * This to on the 3-06-00 chord a 8) Bearing using A design. 9) Provide bearing 10) Provide bearing 4 and 8 11) Graphi or the C bottom 12) Use Sii Truss, oc max connect 13) Fill all r 11 11 11 r 14 1 In the L of the t LOAD CAS at. 1) Dead bearing 15 Concet 5 Verifier 	with the second	s been designed f c chord in all areas y 2-00-00 wide will y other members. nt(s) 6 considers pa Pl 1 angle to grain ald verify capacity of cancical connection at joint(s) 4. tanical connection capable of withstar biff at joint 6. lin representation of tion of the purlin ald Strong-Tie LUS24 Ply Girder) or equi ng at 1-3-9 from th (es) to front face of es where hanger is CASE(S) section, lo re noted as front (F Standard w (balanced): Lumi 15 ds (lb/ft) -53, 4-6=-20 d Loads (lb) 72 (F), 8=-172 (F),	or a livi view here fit betw arallel t formula of beari (by oth (by oth does no ong the (4-10c valent e left e bottorn oads ap) or ba ber Inc 9=-17	e load of 20. a rectangle veen the bott o grain value a. Building ng surface. ers) of truss 9 lb uplift at of depict the to the top and/or 1 Girder, 2-10 spaced at 2- nd to 5-3-9 tr n c hord. ttact with lurn oplied to the ck (B). rease=1.15, 8 (F)	Opsf to to joint size Dd 0-0 o hber. face Plate				SEA 0363	L 22 EEER 16,2025	

- 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

May 16,2025

Job	Truss	Truss Type	Qty	Ply	1054 Serenity	
P02596-25453	P04SE	Common Structural Gable	1	1	Job Reference (optional)	173506976

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Thu May 15 06:19:50 ID:aO7cjq6wH3fboBAxs?lptGzx4nr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

X

6x8 =

Page: 1

 \ge

6x8 🞜

3-2-10	6-4-0
3-2-10	3-1-6

7

4x8 =

Plate Offsets	(X, Y):	[6:Edge,0-5-8],	[8:0-2-12,0-2-0]

Scale = 1:38.2

2-4-1

3-3-2

	, , , , , [0.Luge,0-5-0],	[0.0-2-12,0-2-0]												
Loading ICLL (roof) Snow (Pf/Pg) ICDL BCLL BCDL	(psf) 20.0 11.5/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	/TPI2014	CSI TC BC WB Matrix-MP	0.58 0.08 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 40 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 30T CHORD WEBS 3RACING TOP CHORD 30T CHORD 30T CHORD 30T CHORD 30T CHORD 30T CHORD 30T CHORD WEBS 40TES 1) Unbalanci this design 2) Wind: AS(Vasd=91n II; Exp B; and C-C E to 3-2-10, vertical lef forces & N 00L=1.60 3) TCLL: AS Plate DOL= psf (flat ro Category 4) Unbalanci design.	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood shee 6-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) 6=0-8-0, 8 Max Horiz 8=44 (LC Max Grav 6=361 (LC (lb) - Maximum Com Tension 1-2=0/75, 2-3=-182/; 4-5=0/60, 2-8=-399/ 7-8=-49/48, 6-7=-8/6 3-7=-6/106, 2-7=0/12 ed roof live loads have h. CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er Exterior (2) -2-7-12 to 0 Exterior (2) -2-7-12 to 0 Dexterior (2) -2-7-10 to 0 Exterior (2) -2-7-10 to 0 Ext	athing directly applie cept end verticals. applied or 10-0-0 or 3=0-8-0 15) 2 (LT 16) 2 (LT 16) 2 (LT 16) 3 (LT 20) 3 (LT 20)	5) 6) c 8) 9) LC Cat. 1-12 -4	This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements This truss ha chord live loa * This truss h on the bottor on the bottor and ar Provide mec bearing plate 8 and 59 lb u AD CASE(S)	is been designed f psf or 1.00 times f on-concurrent with igner/Project engin n Load = 5.0 (psf) s specific to the us is been designed f ad nonconcurrent to has been designed n chord in all area by 2-00-00 wide wi by other members. hanical connectior e capable of withst uplift at joint 6. Standard	for great lat roof k n other lin neer res covers r e of this for a 10. with any f for a 10. with any f or a liv s where n (by oth anding 7	er of min rood aad of 11.5 p ve loads. ponsible for ain loading truss compo 0 psf bottom other live loa e load of 20.1 a rectangle even the bott ers) of truss i '2 lb uplift at j	f live isf on nent. ads. 0psf com to joint				SEA 0363		Ammini

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1054 Serenity	
P02596-25453	P05	Roof Special	3	1	Job Reference (optional)	173506977

Run: 8.83 E Feb 1 2025 Print: 8.830 E Feb 1 2025 MiTek Industries, Inc. Thu May 15 16:06:13 $ID: a CiuRGkvGk4MP0 a IMD9 mR0 zx4n2 \cdot vraydDYbUM fuoFrQIXND0 NETRE9 sqMZ u I4 v kwgzGCU u IA w a start a st$ Page: 1

Scale = 1:47.1

Plate Offsets (X, Y): [2:0-2-15,0-2-0]

												-		
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 0.0/15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.53 0.53 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.20 -0.01	(loc) 5-6 5-6 5	l/defl >764 >382 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 47 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91n II; Exp 8; I and C-C E exposed ; members : Lumber DOL psf (flat ro Category I 0) Unbalance design.	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood shea 6-11-12 oc purlins, or Rigid ceiling directly bracing. (lb/size) 5=40/ Mec Max Uplift 8=-24 (LC Max Grav 5=117 (LC (lb) - Maximum Com Tension 1-2=0/72, 2-3=-43/52 7-8=-204/210, 2-7=-3 4-5=0/0 5-6=-27/18 3-6=-48/41, 3-5=-28/ ed roof live loads have n. CE 7-10; Vult=115mph nph; TCDL=6.0psf; BCI Enclosed; MWFRS (on Scterior (2) zone; cantil end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO CE 7-10; Pr=20.0 psf (g of snow: Lum DOL=1.1 II; Exp B; Partially Exp. ed snow loads have be	athing directly applie except end verticals. applied or 6-0-0 oc chanical, 8=204/0-3- 13) 16) 27), 8=259 (LC 2) pression/Maximum 2, 3-4=0/0, 6-8=-13/1 32/26, 2-8=-126/91, /43 been considered for (3-second gust) DL=3.0psf; h=25ft; C ivelope) exterior zon ever left and right ght exposed;C-C for for reactions shown; L=1.60 roof LL: Lum DOL=1 pround snow); Pf=0.0 15 Plate DOL=1.15); ; Ct=1.10 ven considered for thi	5) 6) d or 7) 8 9) 10 11 12 13 14 14 14 5 LC 5	This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements This truss ha chord live loa * This truss ha chord and ar All bearings capacity of 5 9 Refer to gird bearing at jo using ANSI/ designer sho Provide mec bearing plate 8. 9 This truss is International R802.10.2 a 9 Graphical pu or the orienta bottom choro AD CASE(S)	as been designed f psf or 1.00 times f on-concurrent with signer/Project engin n Load = 5.0 (psf) s specific to the us as been designed f ad nonconcurrent i has been designed m chord in all area by 2-00-00 wide win y other members. are assumed to be 65 psi. er(s) for truss to tr init(s) 8 considers TPI 1 angle to grai build verify capacity thanical connection e capable of withst designed in accor Residential Code nd referenced star rlin representation at. Standard	for great lat roof li- n other li- neer res covers r se of this for a 10. with any d for a liv s where e SP No. uss conr parallel - n formul / of bear n (by oth canding 2 dance w sections ndard AN n does ne along the	er of min roo bad of 11.5 p ve loads. bonsible for ain loading truss compo 0 psf bottom other live loa e load of 20. 2 crushing mections. o grain value a. Building ng surface. ers) of truss 14 lb uplift at ith the 2015 is R502.11.1 a ISI/TPI 1. bt depict the e top and/or	f live osf on onent. ads. Opsf tom to joint and size				SEA 0363	ROCUT L 22 EEERER	

- Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=0.0 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

mmm May 16,2025

