

Trenco 818 Soundside Rd Edenton, NC 27932

Re: P02234-24937 998 Serenity

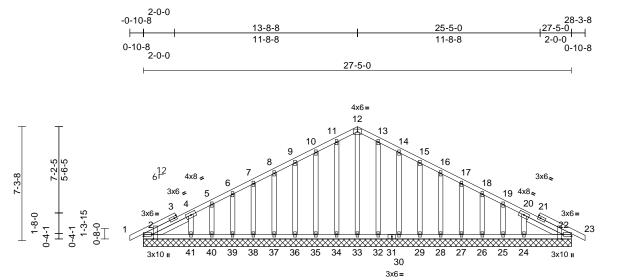
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Lumber 2383 (Dunn, NC).

Pages or sheets covered by this seal: I73152014 thru I73152045

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

May 2,2025


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	998 Serenity	
P02234-24937	A01E	Common Supported Gable	1	1	Job Reference (optional)	173152014

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 30 15:57:33 ID:4GEduPckuMMzkD59vRnJ2NzLqr0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:73.8	27-	5-0	
Plate Offsets (X, Y): [2:0-3-8,Edge], [2:Edge,0-1-8], [22)-3-8,Edge], [22:Edge,0-1-8]		

Plate Offsets (X, Y): [2:0-3-8,Ec	lge], [2	2:Edge,0-1-8], [22:	0-3-8,E	dge], [22:Edge,(0-1-8]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(ps 20. 11.5/15. 7. 0. 10.	0 0 0 0* (Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2) 2018/TPI2014	CSI TC BC WB Matrix-MS	0.11 0.05 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 22	· n/a · n/a	L/d 999 999 n/a	PLATES MT20 Weight: 201 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.3 *E: Left 2x4 SP No.3 *E: Left 2x4 SP No.3 2-7-7 Structural wood 6-0-0 oc purlins Rigid ceiling dire bracing. (size) 2=27 28=2 32=2 32=2 335=2 38=22 Max Horiz 2=110 Max Uplift 2=-27 24=-6 26=-4 30=-4 30=-4 30=-4 34=-5 36=-4 30=-4 34=-5 36=-4 30=-4 34=-5 36=-4 30=-4 38=-4 40=-4 Max Grav 2=18: 24=11 24=11 26=10 30=1 33=11 35=1 35=1 37=99 39=10	3 2-7 sheatt sctly ag (5-0, 22, 7-5-0, ; 7-5-0, ; 7-5-0, ; 7-5-0, ; 7-5-0, ; 7-5-0, ; (LC 1) (LC 1) (LC 2) (LC 2) (LC 2) (LC 2) (LC 2) (LC 2) (LC 3) (LC 2) (LC 3) (LC 2) (LC 3) (LC 2) (LC 3) (LC 2) (LC 3) (LC	2), 22=-21 (LC 17 17), 25=-44 (LC 1 17), 27=-42 (LC 1 17), 27=-42 (LC 1 17), 32=-30 (LC 1 16), 35=-46 (LC 1 16), 35=-46 (LC 1 16), 39=-41 (LC 1 16), 41=-55 (LC 1 16), 41=-55 (LC 1 2), 22=183 (LC 2), 37), 25=90 (LC 37 37), 25=90 (LC 37 37), 25=90 (LC 37 37), 25=90 (LC 37 37), 36=99 (LC 2), 36), 38=98 (LC 36 36), 38=98 (LC 36 2), 40=90 (LC 36)	2 No.3 ed or 5-0, -5-0, -5-0, -5-0, -5-0, -5-0, -5-0, -5-0, (), 7), 7), 7), 7), 6), 6), 6), 6), 6), 24), 23),),	this design 2) Wind: ASC Vasd=103r II; Exp B; E and C-C C to 13-8-8, (16-8-8 to 2 end vertica forces & M	38-39=-40/115, 37 36-37=-40/115, 35 34-35=-40/115, 33 32-33=-40/115, 30 29-30=-40/115, 26 25-26=-40/115, 26 25-26=-40/115, 24 22-24=-41/117 12-33=-113/28, 11 9-36=-72/56, 8-37: 6-39=-72/56, 5-40: 13-32=-86/41, 14-; 16-28=-72/56, 17-; 19-25=-69/56, 20-; d roof live loads hav	3/59, 4-5 3/59, 4-5 18/84, 7- =-54/138 -13=-77 -15=-54 -15=-54 -17=-30 20=-41/' 41=-40/' -38=-40 -38=-40 -34=-40 -32=-40 -29=-97/7 -29=-40 -	5=-91/62, 8=-38/99, 8, 10-11=-67/1 /194, /138, /78, 17-18=-22 /16, 20-22=-83/ /115, 39-40=-44 /115, /12, /12, /12, /12, /12, /12, /12, /12	71, 2/48, (42, 0/115, 5/62, (56, (56, (56, (56, (56, (56, (56, (56	or se or 4) T(PI 1. Ex 5) Ui de 6) Tr 6) Tr 6) Tr 8) AI 9) Gi 10) Gi 11) Tr	hly. For s see Standa consult of CLL: ASC ate DOL= 15 Plate I typ.; Ce=1 hbalance sign. his truss h ad of 12.0 rerhangs uilding De rif/ying Re quiremer I plates a able requ able stud his truss h	tuds exard Indu qualified (E 7-16 =1.15); DOL = .0; CS= d snow mas bee 0 psf or non-co esigner, ain Loa nts spec re 2x4 iires co s space nas bee	cosed to wind (r istry Gable End I d building design ; Pr=20.0 psf (ror Pg=15.0 psf; Pf= 1.15); Is=1.0; Ro =1.00; Ct=1.10 loads have beer en designed for g 1.00 times flat rr ncurrent with oth /Project engineer d = 5.0 (psf) covic fific to the use of (II) MT20 unless ntinuous bottom ed at 1-4-0 oc. en designed for a nconcurrent with NT20 sector SEA SEA	responsible for ers rain loading this truss component. otherwise indicated. chord bearing.

RENCO

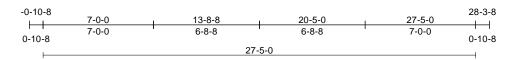
Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, recetion and bracing of trusses and truss systems, see **ANSI/TP1 Quility Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

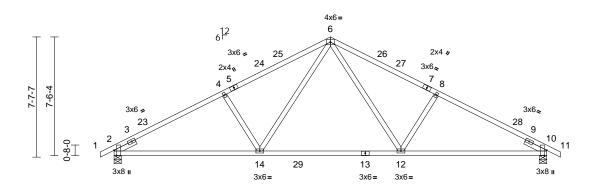
Job	Truss	Truss Type	Qty	Ply	998 Serenity	
P02234-24937	A01E	Common Supported Gable	1	1	Job Reference (optional)	173152014

- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint 22, 34 lb uplift at joint 34, 46 lb uplift at joint 35, 42 lb uplift at joint 36, 42 lb uplift at joint 37, 42 lb uplift at joint 38, 41 lb uplift at joint 39, 45 lb uplift at joint 40, 55 lb uplift at joint 41, 30 lb uplift at joint 32, 47 lb uplift at joint 30, 42 lb uplift at joint 29, 42 lb uplift at joint 28, 42 lb uplift at joint 27, 41 lb uplift at joint 26, 44 lb uplift at joint 25, 63 lb uplift at joint 24 and 27 lb uplift at joint 2.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 30 15:57:33 ID:4GEduPckuMMzkD59vRnJ2NzLqr0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



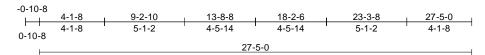
Job	Truss	Truss Type	Qty	Ply	998 Serenity	
P02234-24937	A02	Common	9	1	Job Reference (optional)	173152015

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 30 15:57:34 ID:EzjMI20gDvwMc0jk7vIlixzLqg9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

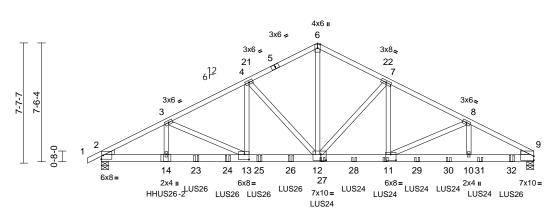
Page: 1

	L	9-2-13	1	18-2-3				27-5-0			
Scale = 1:73	I	9-2-13	I	8-11-5				9-2-13		I	
Plate Offsets (X, Y): [2:0-4-1,Edge], [10):0-4-1,Edge]										
Loading (psf) Si TCLL (roof) 20.0 Pl Snow (Pf/Pg) 11.5/15.0 Lu TCDL 7.0 Ref	pacing 2-0- late Grip DOL 1.15 umber DOL 1.15 lep Stress Incr YES	5	CSI TC BC WB Matrix-MS	0.68 0.91 0.24	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 12-14 12-14 10	l/defl >999 >792 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0										Weight: 131 lb	FT = 20%
LUMBER 10.0 TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 SLIDER Left 2x4 SP No.3 1.6-1	ing directly applied or plied or 2-2-0 oc 0-5-8 6), 10=-256 (LC 17) 3), 10=1153 (LC 3) session/Maximum 7, 4-6=-1659/428, 1795/417, 10-11=0/21 =-151/1070, 843/242, 943/242 en considered for second gust) L=3.0psf; h=25ft; Cat. lope) exterior zone -8, Interior (1) 2-1-8 -8-8, Interior (1)	 Plate DOL=1 1.15 Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced a design. This truss ha load of 12.0 p overhangs nd Building Desi verifying Rair requirements Building Desi verifying Rair requirements This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and an an 9) Provide mech bearing plate 2 and 256 lb This truss is a line for the set on an an	7-16; Pr=20.0 psf 15); Pg=15.0 psf; DL = 1.15); Is=1.0; ; Cs=1.00; Ct=1.1 snow loads have b s been designed from base of a 1.00 times fl pho-concurrent with gner/Project engin h Load = 5.0 (psf) - specific to the use s been designed find nonconcurrent with gner/Project engin h Load = 5.0 (psf) - specific to the use s been designed find nonconcurrent with gner/Project engin h Load = 5.0 (psf) - specific to the use s been designed find nonconcurrent with gner/Project engin h Load = 5.0 (psf) - specific to the use s been designed find nonconcurrent with a been designed find nonconcurrent with a been designed in accord Residential Code and referenced stan Standard	Pf=11.5 ; Rough 0 peen cor or great at roof k other lin heer res covers r e of this or a 10.1 with any l for a liv s where ll fit bettw with BC n (by oth anding 2 dance w sections	i psf (Lum DC Cat B; Partia usidered for the er of min roof bad of 11.5 p re loads. bonsible for ain loading truss compoi 0 psf bottom other live loa e load of 20.1 DL = 10.0psi eres) of truss i 56 lb uplift al ith the 2018 R502.11.1 a	OL = ally his f live sf on nent. ads. Opsf to f. to t joint		and the second se	A DE LA DE L	SEA 2867	ROUNT

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

GA (IIIIIII)


May 2,2025

Job	Truss	Truss Type	Qty	Ply	998 Serenity	
P02234-24937	A03G	Common Girder	1	2	Job Reference (optional)	173152016

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 30 15:57:34 ID:wnbgTa?jelW9BWizvl41CozLY6M-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	4-1-8	9-2-10	13-8-8	18-2-6	23-3-8	27-5-0	
Scale = 1:73	4-1-8	5-1-2	4-5-14	4-5-14	5-1-2	4-1-8	

Plate Offsets (X, Y): [9:Edge,0-3-1], [11:0-4-0,0-4-8], [12:0-4-0,0-4-8], [13:0-3-8,0-4-0]

												i	
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.94	Vert(LL)	-0.20	10-11	>999	240	MT20	244/190
Snow (Pf/Pg)	11.5/15.0	Lumber DOL	1.15		BC	0.70	Vert(CT)	-0.36	10-11	>927	180		
TCDL	7.0	Rep Stress Incr	NO		WB	0.67	Horz(CT)	0.08	9	n/a	n/a		
BCLL BCDL	0.0* 10.0	Code	IRC201	18/TPI2014	Matrix-MS							Woight: 254 lb	ET - 200/
BCDL	10.0											Weight: 354 lb	F1 = 20%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x6 SP DSS 2x4 SP No.3 *Excep No.2	ot* 12-4,12-6,12-7:2x4	2 SP	except if note CASE(S) see provided to c	considered equall ed as front (F) or b ction. Ply to ply cor listribute only loads wise indicated.	ack (B) nnectior	face in the LC is have been		4-1 cor 14) Use	0d Truss nect trus e Simpso	s) or eo ss(es) on Stro	quivalent at 4-1-2 to front face of bo ng-Tie LUS26 (4	2 (14-10d Girder, from the left end to ottom chord. -10d Girder, 3-10d lent spaced at 14-0-0
WEDGE	Left: 2x4 SP No.3 Right: 2x4 SP No.3		3	, this design.	roof live loads hav			or	cor	nect trus	ss(es)	to front face of bo	
BRACING			4		7-16; Vult=130mp oh; TCDL=4.2psf; I			Cat				ng-Tie LUS24 (4 nt at 14-0-4 from	-10d Girder, 2-10d
TOP CHORD	2-5-1 oc purlins.	athing directly applied	lor	II; Exp B; En	closed; MWFRS (e t and right expose	envelope	e) exterior zor	ne;	cor	nect trus	ss(es)	to front face of bo	
BOT CHORD	bracing.	applied or 10-0-0 oc			d; Lumber DOL=1.				SD	9212 Tru	iss, Sii	ngle Ply Girder) o	from the left end to
	(size) 2=0-5-8, 9 Max Horiz 2=122 (LC Max Uplift 2=-1254 (Max Grav 2=5041 (L	C 12) LC 12), 9=-1375 (LC		Plate DOL=1 1.15 Plate D	7-16; Pr=20.0 psf .15); Pg=15.0 psf; OL = 1.15); Is=1.0	Pf=11. Rough	5 psf (Lum DO	DL =	24- 17) Fill LOAD	0-4 to co all nail h CASE(S)	onnect oles w) Sta	truss(es) to front here hanger is in ndard	face of bottom chord. contact with lumber.
FORCES	(lb) - Maximum Corr Tension); Cs=1.00; Ct=1.1 snow loads have b		nsidered for th	his	ÍIn	crease="	1.15	,	r Increase=1.15, Plate
TOP CHORD			09, 7) This truss ha load of 12.0	s been designed f psf or 1.00 times fl on-concurrent with	at roof l	oad of 11.5 p		C	niform Lo Vert: 1-6 oncentra	bads (I 6=-37, ted Lo	b/ft) 6-9=-37, 15-18≕ ads (lb)	-20
BOT CHORD	2-14=-2101/8250, 1 11-13=-1691/7754, 9-10=-2041/9263	,	8	verifying Rai	igner/Project engir n Load = 5.0 (psf) s specific to the use	covers i	ain loading	nent.			and a	ORTH CA	ROUN
WEBS	8-10=-256/1426, 3-1 4-13=-538/2379, 3-1 4-12=-2508/691, 6-1 7-12=-3201/791, 7-1 8-11=-1668/430	3=-1014/451, 2=-1257/5487,		chord live loa 0) * This truss h on the bottor	s been designed f ad nonconcurrent v has been designed n chord in all areas by 2-00-00 wide wi	vith any for a liv s where	other live loa e load of 20.0 a rectangle	Opsf			1 V	SEA	
NOTES					y other members.					=		2867	17 : E
 2-ply truss (0.131"x3" Top chords oc. Bottom cho staggered 	to be connected toge) nails as follows: s connected as follows ords connected as follows at 0-9-0 oc. ected as follows: 2x4 -	s: 2x4 - 1 row at 0-9-0 ows: 2x6 - 2 rows		 Provide mec bearing plate joint 9 and 12 This truss is International 	hanical connectior capable of withsta 254 lb uplift at joint designed in accorr Residential Code nd referenced stan	anding 1 2. dance w sections	1375 lb uplift a ith the 2018 s R502.11.1 a	at			J. M.	6-937, 15-18- ads (lb) SEA 2867	EFR. St. In ALINS ay 2,2025
Continued on	page 2					473							

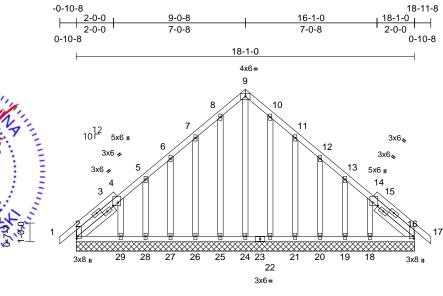
tinued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

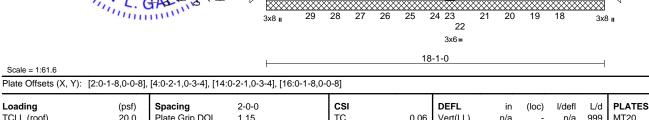
Job	Truss	Truss Type		Qty	Ply	998 Serenity	
P02234-24937	A03G	Common Girder		1	2	Job Reference (optional)	173152016
84 Lumber-2383 (Dunn, NC), Du	nn, NC - 28334,	Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 30 15:57:3				Page: 2	

ID:wnbgTa?jeIW9BWizvI41CozLY6M-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

Vert: 14=-989 (F), 11=-595 (F), 23=-554 (F), 24=-542 (F), 25=-530 (F), 26=-518 (F), 27=-506 (F), 28=-595 (F), 29=-595 (F), 30=-595 (F), 31=-595 (F), 32=-595 (F)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	998 Serenity	
P02234-24937	B01E	Common Supported Gable	1	1	Job Reference (optional)	173152017

Scale = 1:61.6

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 30 15:57:35 ID:SebGcinkMpmlEI1OH_num3zLpNq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

A REAL PROPERTY OF	TH CAL	
Service Servic	SEAL 28677	28-0 8-1 2-0-9 5-9
Street H	V L. GA	

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MS	0.06 0.04 0.18	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 156 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD	SP No.2 Left 2x4 SP No.3 2-6-0 Structural wood sh 6-0-0 oc purlins.	pt* 24-9,25-8,22-10:2x 2-6-0, Right 2x4 SP N eathing directly applied y applied or 10-0-0 oc	0.3 BOT CHORD	5-6=-100/92, 6-7= 8-9=-95/181, 9-10 11-12=-42/72, 12- 14-16=-148/80, 16	-89/94, 7 =-95/18 13=-53/3 -17=0/2 29=-73/ -27=-73 -25=-73 -22=-73 -22=-73	7-8=-79/135, , 10-11=-72/1 32, 13-14=-67/ 1 80, /180, /180, /180, /180,	35, 44,	ver req 7) All 8) Ga 9) Ga 10) Thi chc 11) * Ti on	ifying Ra uiremen plates ar ble requi ble studs s truss h ord live lo his truss the botto	in Loa ts spec res coi s space as bee bad noi has be m cho	() MT20 unless ntinuous bottom ed at 1-4-0 oc. en designed for a nconcurrent with een designed for rd in all areas wh	ers rain loading this truss component. s otherwise indicated. chord bearing. 10.0 psf bottom any other live loads. a live load of 20.0psf
REACTIONS	bracing. (size) 2=18-1-(19=18-1 22=18-1 26=18-1 29=18-1	0, 16=18-1-0, 18=18-1- -0, 20=18-1-0, 21=18-1 -0, 24=18-1-0, 25=18-1 -0, 27=18-1-0, 28=18-1 -0	-0, -0, -0, NOTES -0, 1) Unbalanc	9-24=-167/61, 8-24 6-27=-80/80, 5-28 10-22=-80/60, 11-2 13-19=-77/72, 14-20 ed roof live loads have	5=-86/61 =-73/72, 21=-83/8 18=-112	, 7-26=-81/89 4-29=-120/12 89, 12-20=-81/ /124	6, 80,	cho 12) Pro bea 2, 1 at j 118	ord and a ovide me aring plat I Ib uplift oint 26, 6 3 Ib uplift	ny oth chanic e capa at join 33 lb uj at join	er members. al connection (by able of withstandi t 24, 53 lb uplift a plift at joint 27, 43 t 29, 47 lb uplift a	y others) of truss to ing 36 lb uplift at joint at joint 25, 69 lb uplift 9 lb uplift at joint 28, at joint 22, 71 lb uplift 3 lb uplift at joint 19,
	18=-126 20=-63 (22=-47 (25=-53 (27=-63 (29=-118	C 10), 16=-15 (LC 11), (LC 15), 19=-53 (LC 1 LC 15), 21=-71 (LC 15), LC 15), 24=-71 (LC 15), LC 15), 24=-1 (LC 13), LC 14), 26=-69 (LC 14), (LC 14), 28=-49 (LC 14),	5), Vasd=100 11; Exp B; and C-C 1, to 9-0-8, 1, to 18-11- vertical le	n. CE 7-16; Vult=130mţ 3mph; TCDL=4.2psf; Enclosed; MWFRS (Corner(3E) -0-10-8 to Corner(3R) 9-0-8 to 1 3 zone; cantilever left ft and right exposed; WWFRS for reactions	BCDL=3 envelope 2-4-8, E 2-0-8, E and righ C-C for r	8.0psf; h=25ft; e) exterior zon Exterior(2N) 2 xterior(2N) 12- at exposed ; er nembers and	e 4-8 -0-8	126 13) Thi Inte	6 lb uplift s truss is ernationa	at join desig I Resio	t 18 and 15 lb up ned in accordance	blift at joint 16. ce with the 2018 tions R502.11.1 and
FORCES	18=161 20=109 22=107 25=113 27=109 29=152	LC 27), 16=155 (LC 2), (LC 27), 19=98 (LC 27) (LC 27), 21=109 (LC 27) (LC 27), 24=144 (LC 19 (LC 26), 26=107 (LC 26) (LC 26), 28=94 (LC 2), (LC 26) mpression/Maximum	, DOL=1.6 7), 3) Truss des 5), only. For 6), see Stan 6), or consul 4) TCLL: AS Plate DO	D plate grip DOL=1.60 signed for wind loads studs exposed to wir dard Industry Gable E t qualified building de t CE 7-16; Pr=20.0 psf L=1.15); Pg=15.0 psf) in the pl nd (norm ind Deta signer a f (roof Ll ; Pf=11.!	ane of the trus al to the face) ils as applicab s per ANSI/TP .: Lum DOL=1 5 psf (Lum DO	, le, I 1. .15 L =					
. Shoed	Tension		Exp.; Ce= 5) This truss load of 12	e DOL = 1.15); Is=1.0 =1.0; Cs=1.00; Ct=1.1 = has been designed f 2.0 psf or 1.00 times f	0 for great lat roof l	er of min roof l bad of 11.5 ps	ive					

overhangs non-concurrent with other live loads.

May 2,2025

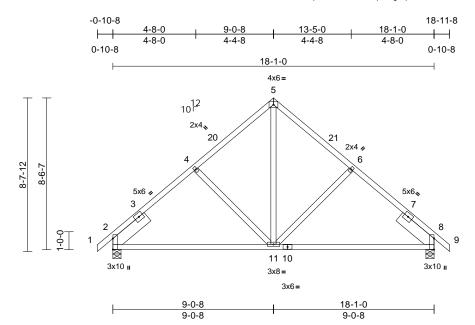
Page: 1

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	998 Serenity	
P02234-24937	B01E	Common Supported Gable	1	1	Job Reference (optional)	173152017
84 Lumber-2383 (Dunn, NC), Du	nn, NC - 28334,	Run: 8.83 S Apr 11 2	025 Print: 8.	830 S Apr 11	2025 MiTek Industries, Inc. Wed Apr 30 15:57:35	Page: 2

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 30 15:57:35 $ID:SebGcinkMpmlEI1OH_num3zLpNq-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f$

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	998 Serenity	
P02234-24937	B02	Common	5	1	Job Reference (optional)	173152018

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 30 15:57:35 ID:TXIFaODNLNIs02dGmUPo49zLpLz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

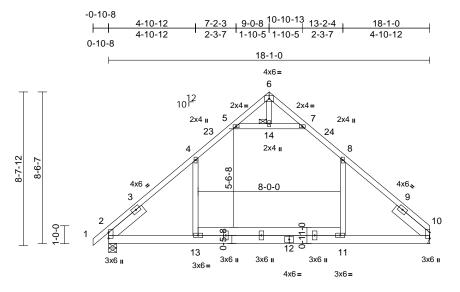
Scale	= 1:64.9	

Plate Offsets (X, Y): [2:0-7-7,Edge], [8:0-7-7,Edge]

Loading	(X, Y): [2:0-7-7,Edge],	Spacing	2-0-0		CSI		DEFL	in	(100)	l/dofi	L/d	PLATES	GRIP
TCLL (roof)	(psf) 20.0	Plate Grip DOL	2-0-0 1.15		TC	0.21	Vert(LL)	in -0.08	(loc) 11-18	l/defl >999	240	MT20	244/190
Snow (Pf/Pg)	11.5/15.0	Lumber DOL	1.15		BC	0.61	Vert(CT)	-0.16	11-18	>999	180		211/100
TCDL	7.0	Rep Stress Incr	YES		WB	0.18	Horz(CT)	0.01	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/	TPI2014	Matrix-MS								
BCDL	10.0											Weight: 111 lb	FT = 20%
					7-16; Pr=20.0 ps								
TOP CHORD BOT CHORD					.15); Pg=15.0 psf OL = 1.15); Is=1.0								
WEBS	2x4 SP No.2 2x4 SP No.3 *Excep	11-5-2x4 SP No 2			; Cs=1.00; Ct=1.1		Out D, I unic	any					
SLIDER	Left 2x8 SP DSS 2				s been designed f		er of min root	f live					
	2-6-0	, j	I		osf or 1.00 times f			sf on					
BRACING					on-concurrent with								
TOP CHORD	Structural wood she 6-0-0 oc purlins.	athing directly applie	u 0i 🧳	verifying Rai	igner/Project engi n Load = 5.0 (psf)	covers i	ain loading						
BOT CHORD		applied or 10-0-0 oc			s specific to the us s been designed f			nent.					
	bracing.				ad nonconcurrent			she					
REACTIONS					as been designed								
	Max Horiz 2=194 (LC	,	, í		n chord in all area								
	Max Uplift 2=-157 (L Max Grav 2=716 (L		· ·		y 2-00-00 wide wi y other members.		veen the bott	om					
FORCES	(lb) - Maximum Corr				hanical connection		ers) of truss	to					
	Tension				capable of withst								
TOP CHORD					uplift at joint 8.								
BOT CHORD	5-6=-585/210, 6-8=- 2-11=-188/566, 8-11				designed in accor								
WEBS	5-11=-151/456, 6-11				Residential Code nd referenced star			and				- ALLE	115
WEBO	4-11=-214/199	1= 210/100,		D CASE(S)			NOI/1111.					W'IL CA	Dille
NOTES			204		Standard							"aTH UA	TOI TI
	ed roof live loads have	been considered for									5.	OFFESS	WIII N'S
this desig											24	PI J	13.73
	CE 7-16; Vult=130mph		_									41/	Ki i
	3mph; TCDL=4.2psf; B Enclosed; MWFRS (er									-		SEA	1 1 1
	Exterior(2E) -0-10-8 to									=	:	SLA	L : :
	Exterior(2R) 9-0-8 to 12									=		2867	//
	8 zone; cantilever left a		ld									1	
	ft and right exposed;C-										Ξ.,	1. A.	als 3
	WWFRS for reactions s	hown; Lumber									1	O, NGIN	EETICALS
DOL=1.60	0 plate grip DOL=1.60										11	SEA 2867	IN NOW
												11, L. G	EER Structure
												in the second se	mm.
												Ma	av 2 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932


May 2,2025

Job	Truss	Truss Type	Qty	Ply	998 Serenity	
P02234-24937	B03	Attic	6	1	Job Reference (optional)	173152019

Scale = 1:64.9

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 30 15:57:35 ID:U9Sp_GSMKicOFjQskvEjDfzLpKN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

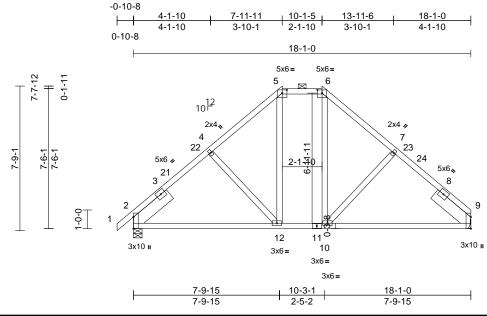
Page: 1

(ncf)	Spacing	200	C 61		DEEL	in	(loo) l/dofl	L/d	
		F	4-10-12	5-3-4	3-0-4	1	4-10-12	-	
		1	4-10-12	10-2-0	13-2-4		18-1-0	1	

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0	Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO IRC2018	8/TPI2014	CSI TC BC WB Matrix-MS	0.81 0.42 0.05	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	-0.21 0.03	(loc) 11-17 11-13 2 11-13	l/defl >999 >999 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 131 lb	GRIP 244/190 FT = 20%
	2-6-0 Structural wood she 5-0-4 oc purlins. Rigid ceiling directly bracing. 1 Brace at Jt(s): 14	2-6-0, Right 2x6 SP No athing directly applied applied or 10-0-0 oc 0= Mechanical 2 13) C 14), 10=-176 (LC 15	o.2 4) or 5) 6) 7)	Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 This truss ha load of 12.0 p overhangs no Building Des verifying Raii requirements This truss ha chord live loa * This truss ha on the bottom 3-06-00 tall b chord and an	7-16; $Pr=20.0 \text{ psf}$.15); $Pg=15.0 \text{ psf}$; DL = 1.15); $Is=1.0$; Cs=1.00; $Ct=1.1ts been designed forbosh or 1.00 times flaton-on-concurrent withigner/Project enginh Load = 5.0 (psf) ofs specific to the uses been designed foran onconcurrent vhas been designedn chord in all areasby 2-00-00 wide willy other members.$	Pf=11. Rough or great at roof l other li oer res covers r e of this or a 10. vith any for a li for a li s where l fit betw	is psf (Lum DC Cat B; Partia er of min roof pad of 11.5 p: ve loads. ponsible for ain loading truss compoi of psf bottom other live loa e load of 20.0 a rectangle veen the bottom	DL = Ily sf on nent. ds. Dpsf		Vert: 5=	:-100 (I	F), 7=-100 (F)	
FORCES	(lb) - Maximum Com Tension	,	 Bottom chord live load (20.0 psf) and additional bottom chord dead load (0.0 psf) applied only to room. 11-13 Defense the sinder the twee presentions 										
TOP CHORD	1-2=0/30, 2-4=-1006 5-6=-41/127, 6-7=-4 8-10=-1004/264			 Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 176 lb uplift at joint 									
BOT CHORD WEBS	2-13=-201/764, 11-1 10-11=-129/764	-61/313, 5-14=-854/31	12,	 10 and 196 lb uplift at joint 2. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 12) Hanger(s) or other connection device(s) shall be 								ROH	
this design 2) Wind: ASC Vasd=103 II; Exp B; E and C-C E to 9-0-8, E to 18-1-0 z vertical left forces & M	ed roof live loads have DE 7-16; Vult=130mph mph; TCDL=4.2psf; Bu Enclosed; MWFRS (er xterior(2E) -0-10-8 to 12 xterior(2R) 9-0-8 to 12 cone; cantilever left an t and right exposed;C- IWFRS for reactions si plate grip DOL=1.60	(3-second gust) CDL=3.0psf; h=25ft; C velope) exterior zone 2-1-8, Interior (1) 2-1-6 -0-8, Interior (1) 12-0- d right exposed ; end C for members and	at. 13 14	provided suff lb down and lb up at 10-1 such connecc Attic room ch h In the LOAD of the truss a DAD CASE(S) Dead + Snc Increase=1. Uniform Loa Vert: 1-6:	icient to support co 39 lb up at 7-2-3, 0-13 on top chord tion device(s) is the ecked for L/360 de CASE(S) section, re noted as front (i Standard ww (balanced): Lun 15	oncentra and 182 . The d e respo eflectior loads a F) or ba	Ated load(s) 1 2 Ib down and esign/selectic hsibility of oth opplied to the f ck (B). rease=1.15, I	l 39 on of iers. face			NV STILL	SEA 2867	EEP. C. LINE

Thummen a May 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	998 Serenity	
P02234-24937	B04	Нір	1	1	Job Reference (optional)	173152020

Scale = 1:61.8

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 30 15:57:36 ID:IEp0Y3iUgqIrApk3RO3jo6zLbT3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

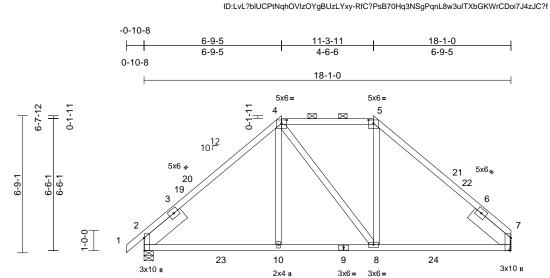
Page: 1

Plate Offsets (X, Y): [2:0-7-7,Edge], [5:0-3-0,0-2-1], [6:0-3-0,0-2-1], [9:0-7-7,Edge]

		-											
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.20	DEFL Vert(LL)	in -0.08	(loc) 10-15	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf/Pg)	16.5/15.0	Lumber DOL	1.15		BC	0.51	Vert(CT)	-0.14	10-15	>999	180	-	
TCDL	7.0	Rep Stress Incr	YES		WB	0.11	Horz(CT)	0.01	9	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MS								
BCDL	10.0											Weight: 115 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER		,	No.3	Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 This truss ha	7-16; Pr=20.0 psf .15); Pg=15.0 psf; OL = 1.15); Is=1.0;); Cs=1.00; Ct=1.10 is been designed fo psf or 1.00 times fla	Èf=16. Rough), Lu=5 or great	5 psf (Lum D Cat B; Partia 0-0-0 er of min roo	OL = ally f live					
BRACING	200			overhangs n	on-concurrent with	other li	ve loads.						
TOP CHORD	6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0	cept)-0 max.): 5-6.	e,	verifying Rai requirements	igner/Project engin n Load = 5.0 (psf) c s specific to the use quate drainage to p	overs r of this	ain loading truss compo						
BOT CHORD	Rigid ceiling directly bracing.	7	This truss ha	is been designed fo	or a 10.	0 psf bottom							
0 0 , 11				* This truss h on the bottor 3-06-00 tall b	ad nonconcurrent w has been designed n chord in all areas by 2-00-00 wide will ny other members, y	for a liv where fit betw	e load of 20. a rectangle veen the bott	0psf tom					
FORCES	(lb) - Maximum Com	pression/Maximum	9)		er(s) for truss to tru								
TOP CHORD	Tension 1-2=0/30, 2-4=-756/2 5-6=-476/208, 6-7=-			bearing plate	hanical connection capable of withsta uplift at joint 2.								
BOT CHORD	2-12=-165/650, 10-1 9-10=-103/562	1	1) This truss is	designed in accord Residential Code s			and					in the second se	
WEBS	5-12=-71/282, 6-10= 7-10=-197/183	=-71/285, 4-12=-193/		R802.10.2 a	nd referenced stand	dard AN	ISI/TPI 1.				an'	ORTHOR	Phin
NOTES					ation of the purlin al	long the	top and/or				32		Va. 7 -
,	ed roof live loads have	been considered for		bottom chore							2	AN	K: =
	this design.				 9 and 154 lb uplift at joint 2. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard 						1 E		
	CE 7-16; Vult=130mph 3mph: TCDI =4 2psf: Bi		Cat							=		SEA	L : E

Vasd=103mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 7-11-11, Exterior(2E) 7-11-11 to 10-1-5, Exterior(2R) 10-1-5 to 14-4-3, Interior (1) 14-4-3 to 18-1-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

STUDINI STAT GA mm 111 May 2,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	998 Serenity	
P02234-24937	B05	Нір	1	1	Job Reference (optional)	173152021

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 30 15:57:36

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

	6-7-9	11-5-7	18-1-0	
	6-7-9	4-9-14	6-7-9	
Scale = 1:56.8				

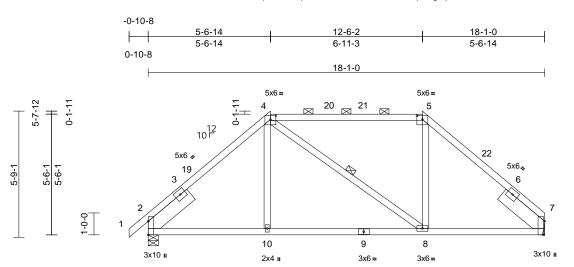
Plate Offsets (X, Y): [2:0-7-7,Edge], [4:0-3-0,0-2-1], [5:0-3-0,0-2-1], [7:0-7-7,Edge]

	(X, T). [2:0-7-7,Euge],	[4.0-0-0,0-2-1], [0.0-0	0,0-2-1]	, [1.0-1-1,Euge	3							-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 16.5/15.0 7.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MS	0.39 0.42 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.09 -0.09 -0.04	(loc) 8-13 8-13 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 107 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER	2x4 SP No.2 2x4 SP No.3 *Excep	t* 8-4:2x4 SP No.2 2-6-0, Right 2x8 SP DS	,	Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 This truss ha load of 12.0	7-16; Pr=20.0 ps 1.15); Pg=15.0 psf OL = 1.15); Is=1.0 0; Cs=1.00; Ct=1.1 is been designed in psf or 1.00 times f	; Pf=16.4); Rough 0, Lu=5 for great lat roof l	5 psf (Lum D(Cat B; Partia 0-0-0 er of min rool oad of 11.5 p	OL = ally f live					
BRACING TOP CHORD	Structural wood she 6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0			Building Des verifying Rai requirements	on-concurrent with igner/Project engi n Load = 5.0 (psf) s specific to the us	neer res covers se of this	ponsible for ain loading truss compo						
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	6) 7)		quate drainage to as been designed			g.					
REACTIONS	(size) 2=0-5-8, 7 Max Horiz 2=142 (LC	.C 14), 7=-129 (LC 15)	8)	* This truss h on the bottor 3-06-00 tall b	ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w hy other members.	d for a liv s where ill fit betv	ve load of 20. a rectangle ween the bott	0psf .om					
FORCES	(lb) - Maximum Com Tension			Refer to gird	er(s) for truss to tr hanical connection	uss con	nections.						
TOP CHORD	1-2=0/30, 2-4=-782/2 5-7=-756/205	204, 4-5=-547/215,			e capable of withst uplift at joint 2.	anding	129 Ib uplift a	t joint					
this desig 2) Wind: AS Vasd=103 II; Exp B; and C-C B to 6-9-5, B 11-3-11 to	4-10=-17/261, 4-8=- ed roof live loads have	(3-second gust) CDL=3.0psf; h=25f; C ivelope) exterior zone 2-1-8, Interior (1) 2-1-8 -3-11, Exterior(2R) 5-6-10 to 18-1-0 zone;	12 at. LC) This truss is International R802.10.2 a) Graphical pu	designed in accor Residential Code nd referenced star Irlin representation ation of the purlin a d.	sections ndard Al n does n	s R502.11.1 a NSI/TPI 1. ot depict the s				and the second s	ORTH CA ORTH CA SEA 2867 OX NGINI	LÌÈ
right expo	osed;C-C for members a								1111	OLIN L. G	ALINSKIII		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

May 2,2025

Page: 1



GA 1111111

Job	Truss	Truss Type	Qty	Ply	998 Serenity	
P02234-24937	B06	Hip	1	1	Job Reference (optional)	173152022

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 30 15:57:36 ID:bvvq2eoWHsf8pOUIVr?nFzzLYxY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

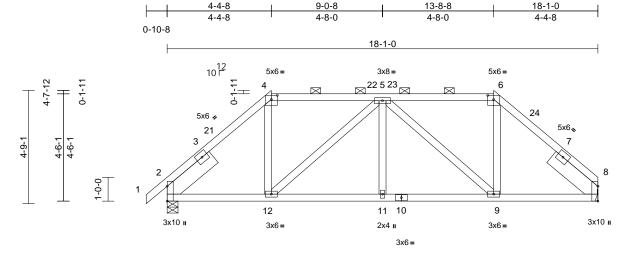
	5-5-2	12-7-14	18-1-0	
Scale = 1:52.6	5-5-2	7-2-11	5-5-2	

Plate Offsets (X, Y): [2:0-7-7,Edge], [4:0-3-0,0-2-1], [5:0-3-0,0-2-1], [7:0-7-7,Edge]

	,, i). [2.077,Euge],	, [4.0 0 0,0 2 1], [0.0	00,021	, [1.0 1 1,Eug									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 16.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MS	0.76 0.41 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.15 0.03	(loc) 8-10 8-10 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 104 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER			3) DSS 4)	Plate DOL= 1.15 Plate D Exp.; Ce=1.0 This truss has load of 12.0	E 7-16; Pr=20.0 ps 1.15); Pg=15.0 psf OL = 1.15); Is=1.0 0; Cs=1.00; Ct=1.1 as been designed f psf or 1.00 times f	; Pf=16. ; Rough 0, Lu=5 for great lat roof I	5 psf (Lum D0 Cat B; Partia 0-0-0 er of min root oad of 11.5 p	OL = ally f live					
BRACING TOP CHORD	6-0-0 oc purlins, exc 2-0-0 oc purlins (5-4	cept 1-6 max.): 4-5.	c)	Building Des verifying Rai requirement	on-concurrent with signer/Project engin in Load = 5.0 (psf) s specific to the us	neer res covers i e of this	ponsible for ain loading truss compo						
BOT CHORD	Rigid ceiling directly bracing.		; 6) 7)	This truss ha	quate drainage to as been designed f ad nonconcurrent	or a 10.	0 psf bottom						
WEBS REACTIONS	bracing.				has been designed m chord in all area by 2-00-00 wide wi ny other members. ler(s) for truss to tr	l for a liv s where ill fit betv	e load of 20. a rectangle veen the bott	0psf					
FORCES	(lb) - Maximum Com Tension 1-2=0/30, 2-4=-739/) Provide med bearing plate	chanical connection capable of withst uplift at joint 2.	n (by oth	ers) of truss						
BOT CHORD WEBS	5-7=-741/199)=-139/519, 7-8=-128	3/525) This truss is International R802.10.2 a	designed in accord Residential Code nd referenced star urlin representation	sections	s R502.11.1 a NSI/TPI 1.				and and	ORTESS	RO
	ed roof live loads have	been considered for		/ I I	ation of the purlin a						i's	4///	MARY
 Wind: ASC Vasd=103 II; Exp B; I and C-C E to 5-6-14, 9-9-13 to 2 	CE 7-16; Vult=130mph imph; TCDL=4.2psf; B Enclosed; MWFRS (er :xterior(2E) -0-10-8 to Exterior(2R) 5-6-14 to 12-6-2, Exterior(2R) 12 to 18-1-0 zone: cantil	CDL=3.0psf; h=25ft; nvelope) exterior zon 2-1-8, Interior (1) 2-1 9-9-13, Interior (1) 2-6-2 to 16-9-0, Interior	Cat. e -8	DAD CASE(S)								SEA 2867	7

(1) 16-9-0 to 18-1-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

May 2,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	998 Serenity	
P02234-24937	B07	Нір	1	1	Job Reference (optional)	173152023

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 30 15:57:37 ID:QwtKGg8dULIEqmbEOyxqPxzLYGV-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

1	4-2-12	9-0-8	13-10-4	18-1-0
Г	4-2-12	4-9-12	4-9-12	4-2-12
Scale = 1:48.4				

Plate Offsets (X, Y): [2:0-7-7,Edge], [4:0-3-0,0-2-1], [6:0-3-0,0-2-1], [8:0-7-7,Edge]

-0-10-8

	(, , [- , .3.],	, [o o o,o], [o.o	/ -	1,1	1								-
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.29	Vert(LL)	-0.03	9-11	>999	240	MT20	244/190
Snow (Pf/Pg)	16.5/15.0	Lumber DOL	1.15		BC	0.33	Vert(CT)	-0.05	11-12	>999	180		
TCDL	7.0	Rep Stress Incr	YES		WB	0.28	Horz(CT)	0.03	8	n/a	n/a		
BCLL	0.0*	Code	IRC20	18/TPI2014	Matrix-MS								
BCDL	10.0											Weight: 111 lb	FT = 20%
LUMBER			2		E 7-16; Pr=20.0 ps	sf (roof I I	· I um DOI =	1 15					
TOP CHORD	2x4 SP No.2				1.15); Pg=15.0 ps								
BOT CHORD					OL = 1.15); Is=1.								
WEBS	2x4 SP No.3			Exp.; Ce=1.	0; Cs=1.00; Ct=1.	10, Lu=50	0-0-0						
SLIDER	Left 2x8 SP DSS 2	2-6-0, Right 2x8 SP	DSS 4) This truss ha	as been designed	for great	er of min roo	f live					
	2-6-0				psf or 1.00 times			osf on					
BRACING					on-concurrent wit								
TOP CHORD	Structural wood she	athing directly applie	ed or ^t		signer/Project eng								
	6-0-0 oc purlins, exc	cept			n Load = 5.0 (psf								
	2-0-0 oc purlins (6-0		,		s specific to the u								
BOT CHORD	0 0 ,	applied or 10-0-0 or	C		quate drainage to as been designed			g.					
	bracing.				ad nonconcurrent			ade					
REACTIONS	· · · · ·	8= Mechanical	ş		has been designe								
	Max Horiz 2=95 (LC	,			m chord in all area			opoi					
	Max Uplift 2=-132 (L		5)		by 2-00-00 wide w			tom					
	Max Grav 2=717 (LC	C 2), 8=668 (LC 2)			ny other members								
FORCES	(lb) - Maximum Com	pression/Maximum	ç) Refer to gird	er(s) for truss to t	truss conr	ections.						
	Tension			0) Provide med	hanical connection	on (by oth	ers) of truss	to					
TOP CHORD					e capable of withs	standing 1	11 lb uplift a	t joint					
	5-6=-523/188, 6-8=-				uplift at joint 2.								
BOT CHORD					designed in acco							, mining	11111
WEBS	9-11=-196/756, 8-9=		14 4 2		Residential Code			and				WAH CA	Bolly
WEDS	4-12=-46/298, 5-12= 6-9=-46/298, 5-11=0				nd referenced sta						1	R	
NOTES	0-340/230, 3-11-0	0/211			Irlin representatio			size				U. FESS	Brick Sta
	ad roof live loads have	haan aanaidarad fa	-	bottom chor	ation of the purlin	aiony the	top anu/or				5 2		MAL 3
this desig	ed roof live loads have	been considered for								1		OR FESS	Vie : 3
0	n. CE 7-16; Vult=130mph	(3-second quet)		OAD CASE(S)	Sianuaru							SEA	
	3mph; TCDL=4.2psf; B		Cat							=	:		
	Enclosed; MWFRS (er									=		2867	7 : 5

Vasd=103mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 4-4-8, Exterior(2R) 4-4-8 to 8-7-7, Interior (1) 8-7-7 to 13-8-8, Exterior(2E) 13-8-8 to 18-1-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	998 Serenity	
P02234-24937	B08	Нір	1	1	Job Reference (optional)	173152024

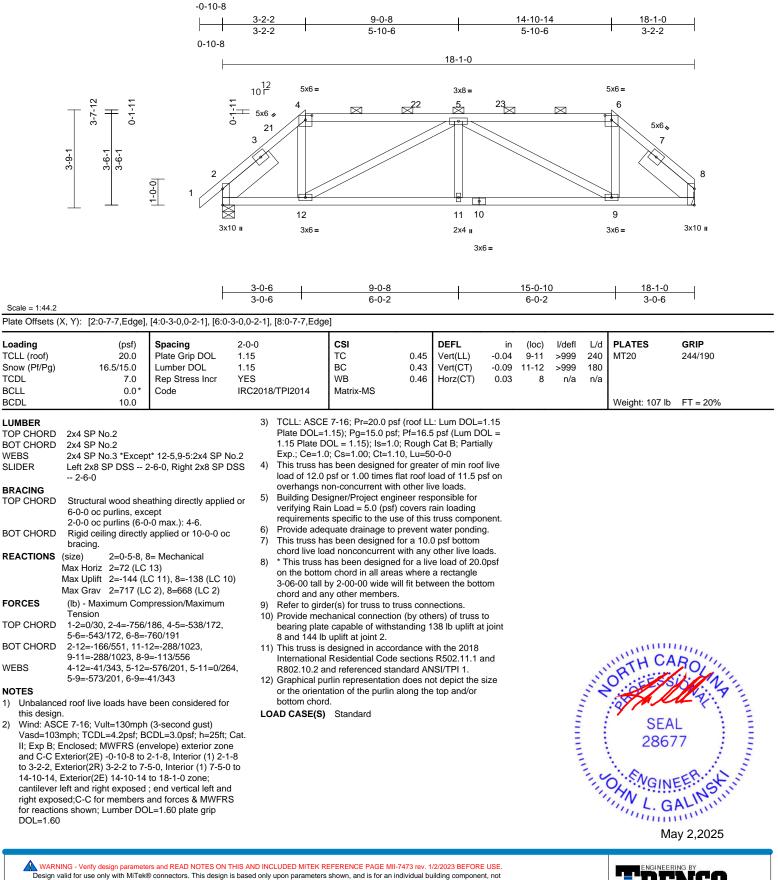
TCDL

BCLL

BCDL

WEBS

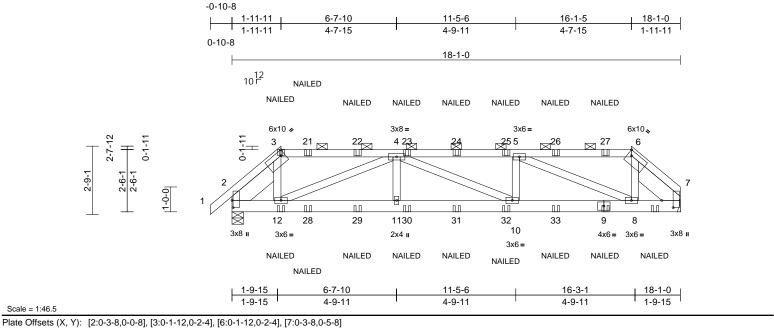
WEBS


NOTES

1)

2)

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 30 15:57:37 ID:crdmHsuWtOZRGIK90z2Nw0zLYFX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

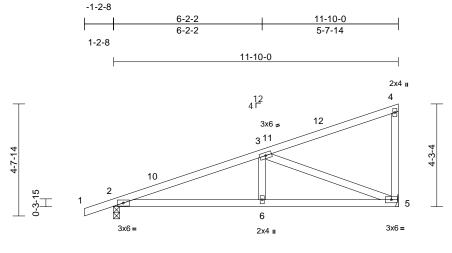
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	998 Serenity	
P02234-24937	B09	Hip Girder	1	2	Job Reference (optional)	173152025

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 30 15:57:37 ID:2DhtsGph7RwFgLGTe4tuBrzLYBm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	; ; ; ; = =;;		,-										
Loading TCLL (roof) Snow (Pf/Pg)	(psf) 20.0 16.5/15.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.21 0.25	DEFL Vert(LL) Vert(CT)	-0.07		l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 244/190
TCDL	7.0	Rep Stress Incr	NO		WB	0.17	Horz(CT)	0.01	7	n/a	n/a		
BCLL BCDL	0.0* 10.0	Code	IRC201	8/TPI2014	Matrix-MS							Weight: 239 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) 2-ply truss	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Left 2x8 SP DSS 2 2-3-9 Structural wood she 6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing.	athing directly applie ept -0 max.): 3-6. applied or 10-0-0 oc 7= Mechanical 10) C 7), 7=-374 (LC 6) C 1), 7=1009 (LC 1) pression/Maximum 7/441, 3-4=-973/405, -991/397, 6-7=-1136 2=-818/2042, -10=-800/2034, -1189/482, 4-11=-2/ 2/264, 5-8=-1161/48	3) d or 4) 5 5) 5) 5) 431 7) 5) 431 7) 5) 6, 8) 6, 9)	except if not CASE(S) see provided too unless other Unbalanced this design. Wind: ASCE Vasd=103m II; Exp B; En cantilever lef right expose TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.(This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements Provide ader This truss ha chord live loo 0) * This truss f	considered equal ed as front (F) or t ction. Ply to ply co distribute only load wise indicated. roof live loads hav 7-16; Vult=130mp ph; TCDL=4.2pst; closed; MWFRS (ft and right expose d; Lumber DOL=1 5.7-16; Pr=20.0 ps I.15); Pg=15.0 psf OL = 1.15); Is=1.0 0; Cs=1.00; Ct=1.7 as been designed psf or 1.00 times f on-concurrent witt igner/Project engin n Load = 5.0 (psf) s specific to the us quate drainage to as been designed and nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members	back (B) nnection is noted ve been bh (3-see BCDL=2 ed; end .60 plate f (roof LL ; Pf=16.9 b; Rough 10, Lu=5 for great ilat roof I n other li neer res covers I se of this prevent for a 10. with any d for a livis s where ill fit bety	face in the LC is have been as (F) or (B), considered fo cond gust) a) (C) (F) (C)	r Cat. he; d 60 1.15 DL = Ily live sf on hent. g. ds. Dpsf	or 1 bot 15) "N/ (0.' LOAD 1) D In U	he orien tom choi AILED" in 148"x3.2 CASE(S cad + Sr crease= niform Le Vert: 1- oncentra Vert: 3= 21=-58 25=-58 29=-29 33=-29	tation of rd. Indicate 5") toe) Stat how (ba 1.15 bads (ll 3=-37, ited Lo -24 (B), 22 (B), 26 (B), 30 (B)	presentation doe of the purlin along is 3-10d (0.148"x -nails per NDS g ndard alanced): Lumber b/ft) 3-6=-47, 6-7=-37 ads (lb)), 9=-29 (B), 12=- !=-58 (B), 27=-58 !=-29 (B), 31=-29	es not depict the size g the top and/or 3") or 2-12d uidlines. r Increase=1.15, Plate r, 13-17=-20 -22 (B), 15=-116 (B), (B), 24=-58 (B), (B), 32=-29 (B), (B), 32=-29 (B),
Top chords oc. Bottom cho staggered	ords connected as follows: ords connected as follows at 0-9-0 oc. ected as follows: 2x4 -	ows: 2x6 - 2 rows	1:	 Refer to gird Provide mec bearing plate 7 and 364 lb This truss is International 	er(s) for truss to trus thanical connectio e capable of withst uplift at joint 2. designed in accor Residential Code nd referenced star	russ coni n (by oth tanding 3 rdance w	ers) of truss to 374 lb uplift at ith the 2018 5 R502.11.1 a	joint			S. S. S.	2867	EER. St.

May 2,2025


Page: 1

Job	Truss	Truss Type	Qty	Ply	998 Serenity	
P02234-24937	E01	Monopitch	3	1	Job Reference (optional)	173152026

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 30 15:57:38 ID:FnOs4pdg6jgmrWx7yBTxl2zLVIn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

				<u>6-2-2</u> 6-2-2			1-10-0 5-7-14		_			
Scale = 1:47.9												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.38	Vert(LL)	0.04	6-9	>999	240	MT20	244/190
Snow (Pf/Pg)	11.5/15.0	Lumber DOL	1.15	BC	0.41	Vert(CT)	-0.09	6-9	>999	180		
TCDL	7.0	Rep Stress Incr	YES	WB	0.50	Horz(CT)	0.01	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS		1						
BCDL	10.0				ļ	1					Weight: 55 lb	FT = 20%

LUMBER TOP CHORD BOT CHORD WEBS		0.2
BRACING		0.0
	a	
TOP CHORD		I wood sheathing directly applied or purlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 9-7-10 oc
	bracing.	3,
REACTIONS	(size)	2=0-3-0, 5= Mechanical
	Max Horiz	2=165 (LC 15)
	Max Uplift	2=-171 (LC 12), 5=-141 (LC 16)
		2=501 (LC 2), 5=429 (LC 2)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/21	2-3=-784/276, 3-4=-104/65,
	4-5=-132	
BOT CHORD		/719, 5-6=-364/719
WEBS	3-6=0/264	4, 3-5=-752/329
NOTES		

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-2-8 to 1-9-8, Interior (1) 1-9-8 to 11-8-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=15.0 psf; Pf=11.5 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.: Ce=1.0: Cs=1.00: Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.5 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for 6) verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom 7) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 9)
- 10) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 171 lb uplift at joint 2 and 141 lb uplift at joint 5.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

May 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second way the approximation of design and the second and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

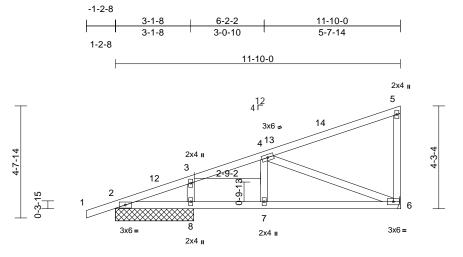
Job	Truss	Truss Type	Qty	Ply	998 Serenity	
P02234-24937	E02	Monopitch Structural Gable	1	1	Job Reference (optional)	173152027

II; Exp B; Enclosed; MWFRS (envelope) exterior zone

vertical left and right exposed;C-C for members and

Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.


forces & MWFRS for reactions shown; Lumber

DOL=1.60 plate grip DOL=1.60

3)

and C-C Exterior(2E) -1-2-8 to 1-9-8, Interior (1) 1-9-8 to 11-8-4 zone; cantilever left and right exposed ; end

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 30 15:57:38 ID:CFdKmkTbdDVrFGHa3ukM7pzLVkh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	3-1-8	6-2-2	11-10-0	
Scale = 1:47.9	3-1-8	3-0-10	5-7-14	
			· · · · · · · · · · · · · · · · · · ·	<u> </u>

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0		2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-MS	0.35 0.31 0.34	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.07 0.01	(loc) 6-7 6-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 56 lb	GRIP 244/190 FT = 20%
	6-0-0 oc purlins, exe Rigid ceiling directly bracing.	applied or 10-0-0 oc = Mechanical, 8=3-3- C 12), 6=-121 (LC 16) 16) C 2), 6=370 (LC 23),	5) or 6) 0 7) ^{(,} 8) 9)	Plate DOL=1 1.15 Plate DOL Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 overhangs n Building Des verifying Raii requirements Gable studs This truss ha chord live loa	7-16; Pr=20.0 psf .15); Pg=15.0 psf; DL = 1.15); Is=1.0; ; Cs=1.00; Ct=1.1 snow loads have b s been designed f psf or 1.00 times fl on-concurrent with igner/Project engin n Load = 5.0 (psf) s specific to the usis spaced at 1-4-0 or s been designed f ad nonconcurrent v has been designed	Pf=11.5 Rough opeen cor or great at roof lo other lim heer res covers r e of this covers r or a 10.0 vith any	5 psf (Lum Do Cat B; Partia nsidered for t er of min roo pad of 11.5 p ve loads. ponsible for ain loading truss compo 0 psf bottom other live loa	OL = ally this f live osf on onent. ads.					
this design 2) Wind: ASC	4-7=0/193, 4-6=-511 d roof live loads have	168, 3-4=-545/202, 41/125 278/499, 6-7=-278/499 /235, 3-8=-137/80 been considered for (3-second gust)	9 11) 9 12) 13)	on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 2, 121 lb upli uplift at joint This truss is International	n chord in all areas by 2-00-00 wide wi by other members. er(s) for truss to tru hanical connection e capable of withsta ft at joint 6, 75 lb u	s where Il fit betv uss conr (by oth anding 1 plift at jo dance w sections	a rectangle veen the bott nections. ers) of truss 21 lb uplift a point 8 and 12 ith the 2018 \$ R502.11.1 a	to t joint 1 lb			No. 10	ORTH CA	ROMUTIN

LOAD CASE(S) Standard

May 2,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	998 Serenity	
P02234-24937	E03	Monopitch	5	1	Job Reference (optional)	173152028

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 30 15:57:38

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

4-3-4

ID:1gW0bcl0DHOaVoY?vDelZfzLVkK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 3-2-2 8-10-0 3-2-2 5-7-14 0-10-8 8-10-0 2x4 II 4 12 4 Г 0 3x6 = 8 3 4-3-4 3x6 🚅 2 1-3-15 FA 7 5 6 2x4 🛛 3x6 = 3x6 = 8-10-0 3-2-2 3-2-2 5-7-14

Scale = 1:37.3

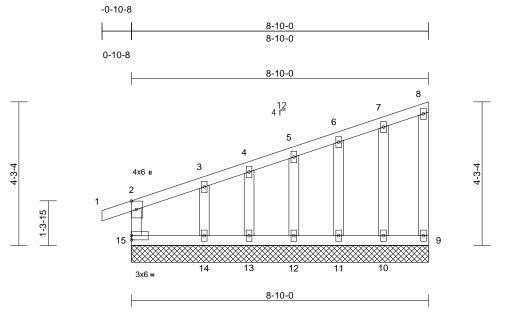
Looding	(20)	Sussian	2.0.0		0.01		DEFL		(10.0)	l/dofi	I /al	PLATES	
Loading	(psf)	Spacing	2-0-0 1.15		TC	0.40		in	(loc) 5-6	l/defl	L/d 240	MT20	GRIP 244/190
TCLL (roof)	20.0	Plate Grip DOL			-	0.40	Vert(LL)	-0.03		>999	-	101120	244/190
Snow (Pf/Pg)	11.5/15.0	Lumber DOL	1.15		BC	0.32	Vert(CT)	-0.07	5-6	>999	180		
TCDL	7.0	Rep Stress Incr	YES		WB	0.27	Horz(CT)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC20	18/TPI2014	Matrix-MP								FT 000/
BCDL	10.0											Weight: 50 lb	FT = 20%
LUMBER			5) This truss h	as been designed	d for great	er of min root	f live					
TOP CHORD	2x4 SP No.2				psf or 1.00 times								
BOT CHORD	2x4 SP No.2			overhangs i	non-concurrent w	ith other liv	/e loads.						
WEBS	2x4 SP No.3		6) Building De	signer/Project en	gineer res	oonsible for						
BRACING					in Load = 5.0 (ps								
TOP CHORD	Structural wood she	athing directly applie	ed or		ts specific to the			nent.					
	6-0-0 oc purlins, ex	cept end verticals.	7		as been designed								
BOT CHORD	Rigid ceiling directly	applied or 9-7-14 o	c a		ad nonconcurrer								
	bracing.		8		has been design			Upst					
REACTIONS	(size) 5= Mecha	anical, 7=0-3-0			m chord in all are by 2-00-00 wide			~~~					
	Max Horiz 7=158 (LO	C 15)			ny other member		veen the bott	UIII					
	Max Uplift 5=-108 (L	.C 16), 7=-125 (LC 1	2) g		der(s) for truss to		ections						
	Max Grav 5=315 (L0	C 23), 7=374 (LC 2)			chanical connecti			to					
FORCES	(lb) - Maximum Corr	pression/Maximum		,	e capable of with		,						
	Tension				o uplift at joint 5.	5							
TOP CHORD	1-2=0/17, 2-3=-412/	220, 3-4=-104/80,	1	1) This truss is	designed in acc	ordance w	ith the 2018						
	4-5=-132/140, 2-7=-			Internationa	I Residential Coc	le sections	R502.11.1 a	and					
BOT CHORD	6-7=-294/179, 5-6=-			R802.10.2 a	and referenced st	andard AN	ISI/TPI 1.						
WEBS	3-6=-24/126, 3-5=-4	04/351, 2-6=-188/40	D1 L	OAD CASE(S	Standard								
NOTES													
1) Unbalance	ed roof live loads have	been considered fo	r										
this desigr													11111
 Wind: ASC 	CE 7-16: Vult=130mph	(3-second aust)										N' I CA	D

2) Wind: ASCE Vult=130mph (3 Vasd=103mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 2-1-8 to 5-1-8, Interior (1) 5-1-8 to 11-8-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=15.0 psf; Pf=11.5 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.: Ce=1.0: Cs=1.00: Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

May 2,2025

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	998 Serenity	
P02234-24937	E05E	Monopitch Supported Gable	1	1	Job Reference (optional)	173152029

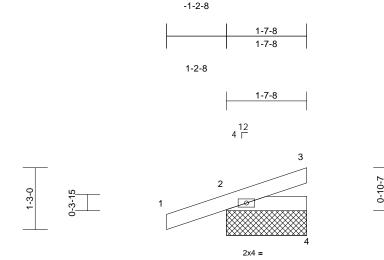
Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 30 15:57:39 ID:hFm_gW5COC2SUGGa6pfYEnzLVjt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:34.3

Plate Offsets (X, Y): [2:0-3-0,0-1-12]

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

May 2,2025

Job	Truss	Truss Type	Qty	Ply	998 Serenity	
P02234-24937	E06E	Roof Special Supported Gable	1	1	Job Reference (optional)	173152030

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 30 15:57:39 ID:a57Cn8zNQK7F7KmPKxyR9zzLVil-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:23.3

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.14	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	11.5/15.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	n/a	-	n/a	999		
TCDL	7.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 7 lb	FT = 20%

1-7-8

TOP CHORD	2x4 SP N	0.2						
BOT CHORD	2x4 SP N	0.2						
BRACING								
TOP CHORD	Structura	wood sheathing directly applied or						
	0-7-8 oc p	0-7-8 oc purlins.						
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc							
	bracing.							
REACTIONS	(size)	2=1-7-8, 3=1-7-8, 4=1-7-8						
	Max Horiz	2=40 (LC 12)						
	Max Uplift	2=-84 (LC 12), 3=-15 (LC 16)						
	Max Grav	2=150 (LC 2), 3=20 (LC 2), 4=33						
		(LC 7)						
FORCES	(lb) - Max	imum Compression/Maximum						
	Tension							
TOP CHORD	1-2=0/21,	2-3=-22/12						
BOT CHORD	2-4=0/0							

NOTES

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=15.0 psf; Pf=11.5 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 4) desian.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.5 psf on overhangs non-concurrent with other live loads.

- verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Gable requires continuous bottom chord bearing. 7)
- Gable studs spaced at 2-0-0 oc. 8)
- This truss has been designed for a 10.0 psf bottom 9)
- chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 15 lb uplift at joint 3, 84 lb uplift at joint 2 and 84 lb uplift at joint 2.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

HON THE STATE SEAL 28677 GA

May 2,2025

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	998 Serenity	
P02234-24937	G0E	Common Supported Gable	1	1	Job Reference (optional)	173152031

bracing.

Max Grav

Tension

14-15=-129/21

Max Horiz 2=88 (LC 20)

2=20-3-0, 15=20-3-0, 16=20-3-0,

17=20-3-0, 18=20-3-0, 19=20-3-0,

20=20-3-0, 22=20-3-0, 23=20-3-0,

24=20-3-0, 25=20-3-0, 26=20-3-0

17=-19 (LC 17), 18=-46 (LC 17),

19=-55 (LC 29), 20=-14 (LC 17),

22=-25 (LC 16), 23=-51 (LC 28),

24=-43 (LC 16), 25=-31 (LC 16),

2=195 (LC 2), 15=124 (LC 2),

16=242 (LC 3), 17=41 (LC 3),

18=134 (LC 39), 19=32 (LC 24),

20=276 (LC 6), 22=276 (LC 30),

23=32 (LC 23), 24=134 (LC 3),

25=41 (LC 36), 26=257 (LC 3)

Max Uplift 2=-22 (LC 16), 16=-96 (LC 17),

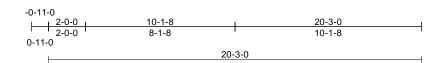
26=-76 (LC 16)

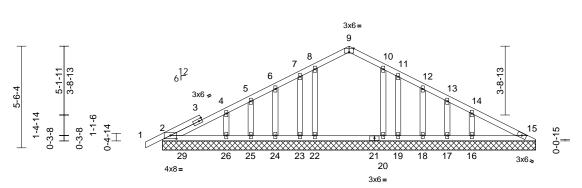
(lb) - Maximum Compression/Maximum

8-9=-104/91, 9-10=-104/91, 10-11=-71/66,

11-12=-91/40, 12-13=-89/14, 13-14=-102/1,

1-2=0/22, 2-4=-128/26, 4-5=-112/14,


5-6=-85/26, 6-7=-91/42, 7-8=-71/66,


REACTIONS (size)

FORCES

TOP CHORD

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 30 15:57:39 ID:HTea55eRtlz?3wQCrxv9z5zLWEI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:62.5			Γ								1	
Plate Offsets (2	X, Y): [2:0-4-0,0-2-1],	[9:0-3-0,Edge]					-					
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.12	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	11.5/15.0	Lumber DOL	1.15	BC	0.12	Vert(CT)	n/a	-	n/a	999		
TCDL	7.0	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	15	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MS								
BCDL	10.0										Weight: 105 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she	athing directly applie	BOT CHORD	2-26=-27/125, 25 24-25=-26/124, 2 22-23=-26/124, 2 19-20=-26/124, 1 17-18=-26/124, 1 15-16=-26/124	23-24=-26/ 20-22=-26/ 18-19=-26/	/124, /124, /124,		9) Gat 10) Gat 11) This cho	ble requi ble studs s truss h rd live lo	ires co s space las bee bad noi	ntinuous bottom o ed at 1-4-0 oc. en designed for a nconcurrent with	0
BOT CHORD	6-0-0 oc purlins. Rigid ceiling directly bracing.	U U U	WEBS	8-22=-121/47, 7- 5-25=-38/41, 4-2 11-19=-44/52, 12	26=-172/12	21, 10-20=-12	0/45,	3-06	5-00 tall	by 2-0		ere a rectangle between the bottom bCDL = 10.0psf.

14-16=-143/143 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint 2, 25 lb uplift at joint 22, 51 lb uplift at joint 23, 43 lb uplift Unbalanced roof live loads have been considered for at joint 24, 31 lb uplift at joint 25, 76 lb uplift at joint 26, this design. 14 lb uplift at joint 20, 55 lb uplift at joint 19, 46 lb uplift at

20-3-0

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-11-0 to 2-1-0, Exterior(2N) 2-1-0 to 10-1-8, Corner(3R) 10-1-8 to 13-1-8, Exterior(2N) 13-1-8 to 19-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pg=15.0 psf; Pf=11.5 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.5 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for 7) verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.

May 2,2025

GA

SEAL

28677

THURSDAY TO THE TANK

joint 18, 19 lb uplift at joint 17 and 96 lb uplift at joint 16.

International Residential Code sections R502.11.1 and

14) This truss is designed in accordance with the 2018

R802.10.2 and referenced standard ANSI/TPI 1.

ORT

OHN

LOAD CASE(S) Standard

THOM SOLUTION SOLUTION

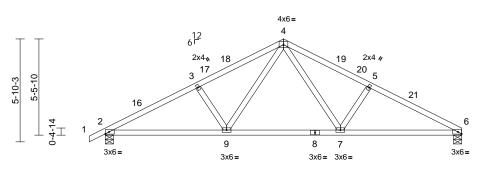
Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

NOTES

1)

818 Soundside Road

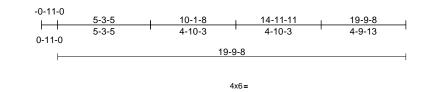

Edenton, NC 27932

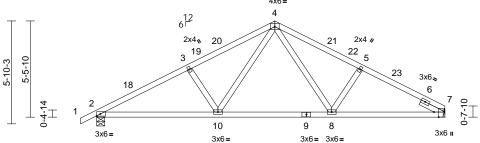
Job	Truss	Truss Type	Qty	Ply	998 Serenity	
P02234-24937	G02	Common	5	1	Job Reference (optional)	173152032

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 30 15:57:39 ID:SPQZm8RCU?vshAgjYweLhzzLVi9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

			L	6-10-11		13-			20-			4	
Scale = 1:65.5			I	6-10-11		6-5	-10	I	6-10)-11		1	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MS	0.29 0.46 0.18	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.11 0.03	(loc) 7-12 7-12 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 92 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design. 2) Wind: ASC Vasd=103n II; Exp B; E and C-C Ex to 10-1-8, E 13-1-8 to 2 end vertica forces & M	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-11-2 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, 6 Max Horiz 2=95 (LC Max Uplift 2=-197 (L Max Grav 2=800 (LC (lb) - Maximum Com Tension 1-2=0/22, 2-3=-1285 4-5=-1148/405, 5-6= 2-9=-306/1105, 7-9= 4-7=-144/445, 5-7=- 3-9=-274/183 d roof live loads have	20) C 16), 6=-175 (LC 17 C 2), 6=748 (LC 2) apression/Maximum 5/396, 3-4=-1143/398, -1289/403 -144/738, 6-7=-303/1 277/185, 4-9=-141/43 been considered for (3-second gust) CDL=3.0psf; h=25ft; C avelope) exterior zone 2-1-0, Interior (1) 2-1- 13-1-8, Interior (1) 1eft and right expose cd;C-C for members a	d or 7; 8;) 9; 110 L 99, L Cat. 0	load of 12.0 overhangs n Building Des verifying Rai requirements This truss ha chord live loa * This truss f on the bottor 3-06-00 tall h chord and ar Provide mec bearing platt 6 and 197 lb D) This truss is International	psf or 1.00 t on-concurre igner/Project n Load = 5.0 s specific to as been desi ad nonconcu has been desi ad nonconcu has been de n chord in a yy 2-00-00 w yy other mer hanical com e capable of uplift at join Residential nd reference	D (psf) covers i the use of this igned for a 10. urrent with any signed for a liv II areas where vide will fit betw mbers. nection (by oth withstanding of t 2.	bad of 11.5 p ve loads. ponsible for ain loading truss compo D psf bottom other live loa e load of 20. a rectangle veen the bott ers) of truss 75 lb uplift a ith the 2018 s R502.11.1 a	onent. ads. Opsf to t joint			And	ORTH CA ORTH CA SEA 2867	
3) TCLL: ASC Plate DOL= 1.15 Plate I Exp.; Ce=1	E 7-16; Pr=20.0 psf (=1.15); Pg=15.0 psf; F DOL = 1.15); Is=1.0; I .0; Cs=1.00; Ct=1.10 d snow loads have be	Pf=11.5 psf (Lum DOL Rough Cat B; Partially	_ =								and and a	SANGIN	EER. ALING

May 2,2025




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	998 Serenity	
P02234-24937	G03	Common	1	1	Job Reference (optional)	173152033

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 30 15:57:39 ID:Xrt52u1xx24v3hw8wi0qBJzLVhO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	0-10-11	13-4-5	19-9-8	
Scale = 1:65.5	6-10-11	6-5-10	6-5-3	

Plate Offsets (X, Y): [7:0-3-8,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 11.5/15.0 7.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MS	0.34 0.47 0.18	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.11 0.03	(loc) 10-17 10-17 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0											Weight: 93 lb	FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp B; f and C-C E to 10-1-8, 13-1-8 to 1 end vertice forces & M	2x4 SP No.2 2x4 SP No.3 Right 2x4 SP No.3 Structural wood she 5-0-8 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8,7 Max Horiz 2=99 (LC Max Uplift 2=-194 (L Max Grav 2=783 (LC (lb) - Maximum Com Tension 1-2=0/22, 2-3=-1250 4-5=-1053/384, 5-7= 2-10=-311/1074, 8-1 7-8=-283/1001 4-8=-124/369, 5-8=- 3-10=-273/182 ed roof live loads have	athing directly applie applied or 10-0-0 oc 7= Mechanical 16) C 16), 7=-169 (LC 1 ⁻ C 2), 7=731 (LC 2) pression/Maximum //393, 3-4=-1109/394 1161/381 0=-146/704, 230/168, 4-10=-141/ been considered for (3-second gust) CDL=3.0psf; h=25ft; ivelope) exterior zon 2-1-0, Interior (1) 2-1 13-1-8, Interior (1) 1eft and right exposs d;C-C for members a	4) d or 5) ; 6) 7) 7) 8) 10 444, 11 444, 11 444, 11 Cat. e -0 cot ;	Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss f on the bottor 3-06-00 tall t chord and ar Refer to gird Provide mec bearing platt 7 and 194 lb) This truss is International	7-16; Pr=20.0 pi. 1-(5); Pg=15.0 ps OL = 1.15); Is=1. 0, Cs=1.00; Ct=1. snow loads have as been designed psf or 1.00 times on-concurrent wii igner/Project eng n Load = 5.0 (psf s specific to the u is been designed ad nonconcurrent nas been designed n chord in all are by 2-00-00 wide u y other member or(s) for truss to 1 hanical connection e capable of withs uplift at joint 2. designed in accor Residential Coden nd referenced sta Standard	f; Pf=11.{ 0; Rough 10 been cor for great flat roof li th other li ineer ress) covers r se of this for a 10. with any ed for a liv as where vill fit betv s. rruss conr on (by oth standing 1 rdance w e sections	s psf (Lum D Cat B; Partia sidered for t er of min roo pad of 11.5 p ve loads. ponsible for ain loading truss compo 0 psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss 69 lb uplift a ith the 2018 s R502.11.1 a	OL = ally this f live psf on ads. Opsf to t joint			A STATE STAT	SEA 286	EEP. GLUUN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

May 2,2025

Job	Truss	Truss Type	Qty	Ply	998 Serenity	
P02234-24937	G04	Half Hip	1	1	Job Reference (optional)	173152034

Wind: ASCE 7-16; Vult=130mph (3-second gust)

14-6-6 to 19-7-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown;

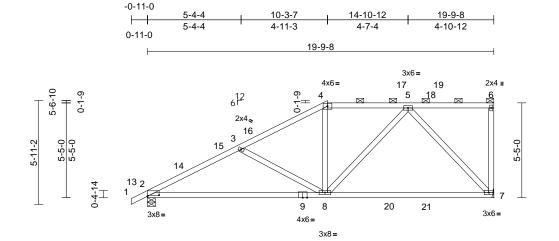
Lumber DOL=1.60 plate grip DOL=1.60

Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0

Vasd=103mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 10-3-7, Exterior(2R) 10-3-7 to 14-6-6, Interior (1)

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL =


1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially

2)

3)

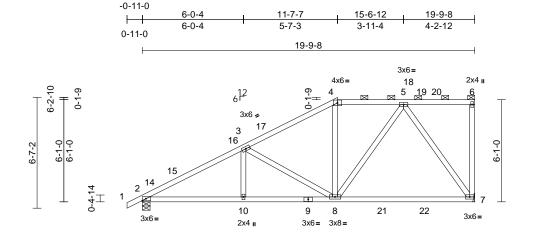
Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 30 15:57:40 ID:MLtV8?70W0Y_TgNdIJ8ANVzLVfz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:65.8	<u>10-1-11</u> 10-1-11	<u>19-9-8</u> 9-7-13	4
Plate Offsets (X_Y): [2:0-8-0 0-0-12]			

oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.52	Vert(LL)	-0.25	7-8	>946	240	MT20	244/190
now (Pf/Pg)	16.5/15.0	Lumber DOL	1.15		BC	0.78	Vert(CT)	-0.41	7-8	>572	180		
CDL	7.0	Rep Stress Incr	YES		WB	0.65	Horz(CT)	0.02	7	n/a	n/a		
CLL	0.0*	Code	IRC2018	8/TPI2014	Matrix-MS								
CDL	10.0											Weight: 105 lb	FT = 20%
UMBER			4)	Unbalanced	snow loads have	been cor	sidered for t	his					
OP CHORD	2x4 SP No.2			design.									
OT CHORD	2x4 SP No.2 *Excep	t* 9-7:2x4 SP No.1	5)		s been designed								
/EBS	2x4 SP No.3 *Excep	t* 8-5,7-5:2x4 SP No	.2		psf or 1.00 times			osf on					
RACING				0	on-concurrent wit								
OP CHORD	Structural wood shea				igner/Project eng n Load = 5.0 (psf)								
	4-6-15 oc purlins, ex		and		s specific to the us			nent					
	2-0-0 oc purlins (6-0	,	7)		uate drainage to								
OT CHORD	Rigid ceiling directly	applied or 8-7-8 oc	8)		s been designed			9.					
	bracing.		-,		ad nonconcurrent			ads.					
	· · · ·	7= Mechanical	9)		nas been designe								
	Max Horiz 2=198 (LC	,)	on the bottor	n chord in all area	s where	a rectangle						
	Max Uplift 2=-192 (L		,		y 2-00-00 wide w								
	Max Grav 2=862 (LC				y other members			f.					
ORCES	(lb) - Maximum Com Tension	pression/Maximum			er(s) for truss to t								
OP CHORD	1-2=0/24, 2-3=-1277	1/219 2 4- 000/240	11		hanical connectio								
	4-5=-832/248, 5-6=-	, ,			capable of withs uplift at joint 7.	anding 1	92 ib uplift a	tjoint					
OT CHORD	2-8=-462/1123, 7-8=	,			designed in acco	danco w	ith the 2019						
/EBS	3-8=-449/219, 4-8=0		12		Residential Code			and					
	5-7=-756/262				nd referenced sta								111.
OTES			13		rlin representation			size				"''U CA	Dille
	d roof live loads have	been considered for			ation of the purlin						N	OR. 155	TO/ 11
this design.				bottom chore		5	•				1		1. MA 1.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	998 Serenity	
P02234-24937	G05	Half Hip	1	1	Job Reference (optional)	173152035

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 30 15:57:40 ID:Q2sR?awQzIsdOqQJcAKf2QzLVex-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

GKWrCDoi7J4zJC?f

			6-0-4	ι I	11-5-11	1	19	9-9-8				
Scale = 1:68.6			6-0-4	t I	5-5-7	1	8-	-3-13		1		
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.49	Vert(LL)	-0.20	7-8	>999	240	MT20	244/190
Snow (Pf/Pg)	16.5/15.0	Lumber DOL	1.15	BC	0.74	Vert(CT)	-0.34	7-8	>697	180		
TCDL	7.0	Rep Stress Incr	YES	WB	0.62	Horz(CT)	0.03	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-M	IS							
BCDL	10.0										Weight: 112 lb	FT = 20%

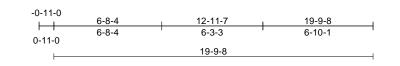
LUMBER			4)	Unba
TOP CHORD	2x4 SP No	p.2		desig
BOT CHORD	2x4 SP No	o.2	5)	This
WEBS	2x4 SP No	0.3 *Except* 7-5,8-5:2x4 SP No.2		load
BRACING				overh
TOP CHORD	Structural	wood sheathing directly applied or	6)	Build
		ourlins, except end verticals, and		verify
		ourlins (6-0-0 max.): 4-6.		requi
BOT CHORD		ng directly applied or 8-8-14 oc	7)	Provi
201 0110112	bracing.		8)	This
REACTIONS	0	2=0-5-8, 7= Mechanical		chore
REACTIONS	()	2=0-0-0, 7= Mechanical 2=223 (LC 15)	9)	* Thi
		· · · · · · · · · · · · · · · · · · ·		on th
		2=-198 (LC 16), 7=-201 (LC 13)		3-06-
		2=851 (LC 40), 7=805 (LC 3)		chore
FORCES	(lb) - Maxi	mum Compression/Maximum	10)	Refe
	Tension		11)	Provi
TOP CHORD	1-2=0/22,	2-3=-1367/296, 3-4=-840/240,		beari
	4-5=-696/2	241, 5-6=-111/109, 6-7=-119/54		7 and
BOT CHORD	2-10=-450)/1174, 8-10=-450/1174,	12)	This
	7-8=-217/4	428	,	Inter
WEBS	5-7=-709/2	260, 4-8=0/195, 5-8=-122/527,		R802
	3-8=-598/2	232, 3-10=0/200	13)	Grap

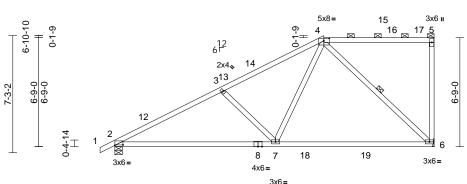
NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 11-7-7, Exterior(2R) 11-7-7 to 15-10-6, Interior (1) 15-10-6 to 19-7-12 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0

- Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.5 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- 7) Provide adequate drainage to prevent water ponding.
- 8) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Refer to girder(s) for truss to truss connections.11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 201 lb uplift at joint 7 and 198 lb uplift at joint 2.
- 2) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

May 2,2025




Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	998 Serenity	
P02234-24937	G06	Half Hip	1	1	Job Reference (optional)	173152036

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 30 15:57:40 ID:vsaNcoA1ixr0Ffo69Jgpj8zLVdK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	9-11-9	19-9-8	1
	9-11-9	9-9-15	
Scale = 1:71.4	• • • •		
Plate Offsets (X, Y): [2:0-6-0,0-0-4], [4:0-4-0,0-1-15]			

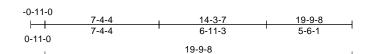
	(X, Y): [2:0-6-0,0-0-4], [4	4:0-4-0,0-1-15]	-										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	20.0 16.5/15.0 7.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MS	0.81 0.83 0.30	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.33 -0.50 0.03	(loc) 6-7 6-7 6	l/defl >725 >469 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 103 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 *Except* 2x4 SP No.2 *Except* Structural wood sheat 4-6-0 oc purlins, exce 2-0-0 oc purlins (6-0-C Rigid ceiling directly a bracing. 1 Row at midpt 4	* 7-3:2x4 SP No.3 thing directly applied ept end verticals, an 0 max.): 4-5. applied or 8-8-9 oc 4-6 = Mechanical 15) 2 16), 6=-197 (LC 13	nd 7) 8) 9) 3)	design. This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements Provide adea This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall b chord and ar	snow loads have to solve the second second second solve the second s	or great at roof le other lin heer res covers r e of this or event for a 10. vith any for a liv s where Il fit betw with BC	er of min roo bad of 11.5 p ve loads. ponsible for ain loading truss compco water pondin other live loa e load of 20. a rectangle veen the bott CDL = 10.0ps	f live osf on onent. Ig. ads. Opsf tom					
this design 2) Wind: ASC Vasd=103	(lb) - Maximum Comp Tension 1-2=0/22, 2-3=-1310/2 4-5=-125/124, 5-6=-2 2-7=-450/1145, 6-7=-2 3-7=-474/247, 4-7=-1 ed roof live loads have b	297, 3-4=-1059/264 32/98 277/552 31/789, 4-6=-731/27 been considered for 3-second gust) DL=3.0psf; h=25ft; 0	, , 78 13 L(Cat.) Provide mec bearing plate 2 and 197 lb 2) This truss is International R802.10.2 a 3) Graphical put 		(by oth anding 2 dance w sections dard AN does no	ers) of truss 202 lb uplift a ith the 2018 s R502.11.1 a ISI/TPI 1. ot depict the	it joint and			A. A	OR CA	ROUNT IN

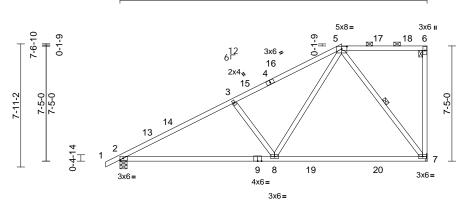
II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 12-11-7, Exterior(2R) 12-11-7 to 17-2-6, Interior (1) 17-2-6 to 19-7-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0

WILLING THE 28677 GA mm 111 May 2,2025

SEAL


Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	998 Serenity	
P02234-24937	G07	Half Hip	1	1	Job Reference (optional)	173152037

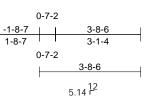
Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 30 15:57:41 ID:KioxpdPa?4MAfjKyKW1VXMzLVd0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

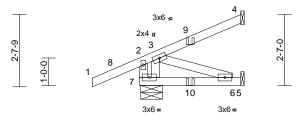
Scale = 1:74.2	9-11-9 9-11-9	<u>19-9-8</u> 9-9-15	——
Plate Offsets (X, Y): [5:0-4-0,0-1-15]			

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 16.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	;/TPI2014	CSI TC BC WB Matrix-MS	0.74 0.84 0.26	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.36 -0.54 0.02	(loc) 7-8 7-8 7	l/defl >655 >439 n/a	L/d 240 180 n/a	MT20	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp B; I and C-C E to 14-3-7, 18-6-6 to 2 exposed ; members Lumber Di 3) TCLL: ASC	2x4 SP No.2 *Excep 2x4 SP No.2 *Excep 2x4 SP No.2 *Excep Structural wood she 4-6-8 oc purlins, ex 2-0-0 oc purlins (6-C Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-5-8, 7 Max Horiz 2=273 (LC Max Uplift 2=-204 (L Max Grav 2=835 (LC (lb) - Maximum Com Tension 1-2=0/22, 2-3=-1286 5-6=-131/133, 6-7= 2-8=-440/1125, 7-8= 3-8=-487/265, 5-8=- ed roof live loads have n. CE 7-16; Vult=130mph imph; TCDL=4.2psf; B Enclosed; MWFRS (er Exterior(2R) 14-3-7 to 19-7-12 zone; cantileve end vertical left and ri and forces & MWFRS	t* 8-3:2x4 SP No.3 athing directly applied cept end verticals, an- 0 max.): 5-6. applied or 8-9-8 oc 5-7 7= Mechanical C 15) C 16), 7=-193 (LC 13 C 40), 7=823 (LC 3) pression/Maximum 3/289, 3-5=-1094/282 184/82 -254/431 190/893, 5-7=-690/25 been considered for (3-second gust) CDL=3.0psf; h=25ft; (velope) exterior zone 2-1-0, Interior (1) 2-1: 18-6-6, Interior (1) er left and right ght exposed; C-C for for reactions shown; V=1.60	d or d 7) 8) 9) 10) 11) , 12) 30 13) 20 13) Cat. -0	design. This truss ha load of 12.0 overhangs n Building Des verifying Rai requirement Provide ade This truss ha chord live lo * This truss l on the botto 3-06-00 tall I chord and an Refer to gird Provide mee bearing plate 2 and 193 lb This truss is International R802.10.2 a Graphical put		for great flat roof I h other Ii ineer res ocovers I se of this prevent for a 10. with any d for a Ii as where vill fit betv , with BC russ conn n (by oth tanding 2 rdance w e sections ndard Al	er of min roo bad of 11.5 p ve loads. ponsible for ain loading truss compo water pondin 0 psf bottom other live loa e load of 20. a rectangle veen the bott CDL = 10.0ps eections. ers) of truss 204 lb uplift a ith the 2018 is R502.11.1 i SI/TPI 1. bt depict the	of live part of on onent. ug. ads. .0psf tom sf. to to to to to to and			A STATE AND A STAT	OR TH CA OR SEA 2867	L
Plate DOL	=1.15); Pg=15.0 psf; F	Pf=16.5 psf (Lum DOI	. =									L.G	ALIMIN

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0


mm 111

May 2,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	998 Serenity	
P02234-24937	HC01	Diagonal Hip Girder	1	1	Job Reference (optional)	173152038

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 30 15:57:41 ID:Fpbk1F07SO5QmvNcETduDKzLuY2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

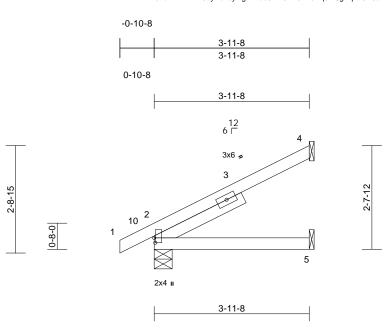
Scale = 1:42

Leading (ps) Spacing 2-0-0 CSi TO 0.23 DEFL in (icc) Idea PLATES GRIP TCLL (rood) 200 Name Plate Grip DOL 1.15 TO 0.23 Verif(T) -0.01 6-7 -999 240 PLATES GRIP TCDL 7.0 Rep Stress Inc NO TO Code Verif(T) -0.01 6-7 -999 240 PLATES GRIP SCDL 1.00 Code INCOURDINTE TO Code 10.01 PLATES GRIP BCDL 0.01 2-4.5 PN 0.2 Structural wood sheating directly applied or 6-0-0 or bracing. FO FO FO FO Eduiding Designe/Project engineer responsible for werhangs anon-concurrent with hary offer live loads for 1.00. per to com FO FO<	Scale = 1:42												
TOP CHORD BOT CHORD2x4 SP No.2load of 12.0 psf or 1.00 times flat roof load of 11.5 psf on overhangs non-concurrent with other live loads.WEBS BRACING2x4 SP No.3coverhangs non-concurrent with other live loads.TOP CHORD Structural wood sheathing directly applied or ra-8-6 oc purlins, except end verticals.coverhangs non-concurrent with other live loads.BOT CHORDStructural wood sheathing directly applied or ra-8-6 oc purlins, except end verticals.coverhangs non-concurrent with other live load of 12.0 psf otnom overhangs non-concurrent with other live loads.BOT CHORDStructural wood sheathing directly applied or ra-8-6 oc purlins, except end verticals.coverhangs non-concurrent with any other live loads.BOT CHORD(size)4 = Mechanical, 5= Mechanical, r=0-9-7coverhangs non-concurrent with any other live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.Max Horiz Tension7=7.71 (LC 12), max Grav9)Refer to girder(s) for truss to truss connection (by others) of truss to bearing plate capable of withstanding 43 to uplift at joint 7. (LC 2)TOP CHORD TOP CHORD2-7=210/171, 1-2=0/39, 2-3=-48/70, 3-4=-43/22coverhameses. (D therefore)Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 43 to uplift at joint 7. (LC 2)TOP CHORD De Derse (bb)2-7=-210/171, 1-2=0/39, 2-3=-48/70, 3-4=-43/22coverhameses. (D therefore)Provide mechanical connection stop 2-120 (D tal*3.2.57) toe-nails per NDS guidines.TOP CHORD De Derse (D b)2-7=-2	TCLL (roof) Snow (Pf/Pg) TCDL BCLL	20.0 11.5/15.0 7.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 NO IRC2018/TPI20	TC BC WB 114 Matrix-MP	0.16 0.04	Vert(LL) Vert(CT) Horz(CT)	-0.01 -0.02 0.00	6-7 6-7	>999 >999	240 180	MT20	244/190
Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design.	TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=103 II; Exp B; cantilever right expc 3) TCLL: AS Plate DOI 1.15 Plate Exp.; Ce= 4) Unbalanc	2x4 SP No.2 2x4 SP No.3 Structural wood she 3-8-6 oc purlins, ex Rigid ceiling directly bracing. (size) 4= Mecha 7=0-9-7 Max Horiz 7=70 (LC Max Uplift 4=-43 (LC 7=-71 (LC Max Grav 4=74 (LC (LC 2) (lb) - Maximum Com Tension 2-7=-210/171, 1-2=0 3-4=-43/22 6-7=-65/29, 5-6=0/0 3-7=-116/89, 3-6=-3 ed roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=4.2psf; Bi Enclosed; MWFRS (er left and right exposed ssed; Lumber DOL=1.6 SCE 7-16; Pr=20.0 psf (L=1.15); Pg=15.0 psf; F e DOL = 1.15); Is=1.0; 1.0; Cs=1.00; Ct=1.10	cept end verticals. applied or 6-0-0 oc anical, 5= Mechanica 12) 12), 5=-13 (LC 12) 12), 5=-13 (LC 12) 19), 5=70 (LC 7), 7= 19), 5=70 (LC 7), 7= 19), 5=70 (LC 7), 7= 10), 5=70 (LC 7), 7=70 (LC 7), 7= 10), 5=70 (LC 7), 7=70 (LC 7), 7=70 (LC 7), 7=70 (LC 7	load d overh 6) Buildi verify requi ed or 7) This t chorc 8) * This on th- chorc 9) Refer 10) Provi e257 4, 13 11) This t linterr R802 12) "NAIL NDS 13) In the of the LOAD C/ r 1) Dea 13) In the of the CAL V 10, You NDS 13) In the of the CAL V 10, You NDS 13) In the of the LOAD C/ r 1) Dea lincer Cat. V 10, You NDS 1,15 DL = Ily	of 12.0 psf or 1.00 times angs non-concurrent wi ng Designer/Project eng ing Rain Load = 5.0 (ps rements specific to the u russ has been designed live load nonconcurren to truss has been designed a bottom chord in all are 00 tall by 2-00-00 wide and any other member to girder(s) for truss to de mechanical connecti ng plate capable of with lb uplift at joint 5 and 7' russ is designed in accor ataional Residential Cod .10.2 and referenced st. ED" indicates 2-12d (0. guidlines. LOAD CASE(S) sectio truss are noted as fron ASE(S) Standard d + Snow (balanced): L basse=1.15 orm Loads (lb/ft) ert: 1-2=-37, 2-4=-37, 5 centrated Loads (lb)	I flat roof I th other lig ineer res f) covers see of this d for a 10. t with any ed for a lin- as where will fit beth s. truss cor on (by oth standing I lb uplift a bordance w e section andard Al 148"x3.25 n, loads a t (F) or bas	oad of 11.5 p ve loads. ponsible for ain loading truss compc 0 psf bottom other live loa ve load of 20. a rectangle ween the bott nections. lers) of truss 43 lb uplift at at joint 7. tith the 2018 s R502.11.1 a vSI/TPI 1. s'') toe-nails p pplied to the ick (B).	onent. ads. .0psf tom to joint and per face				ORTH CA ORTH CA SEA 286	EEP. Stunner

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.5 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GA mm

May 2,2025


818 Soundside Road Edenton, NC 27932

111

Job	Truss	Truss Type	Qty	Ply	998 Serenity	
P02234-24937	J6-1	Jack-Open	7	1	Job Reference (optional)	173152039

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 30 15:57:41 ID:snuRTLt1hVLJayVe?sywgVzLuc6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.4

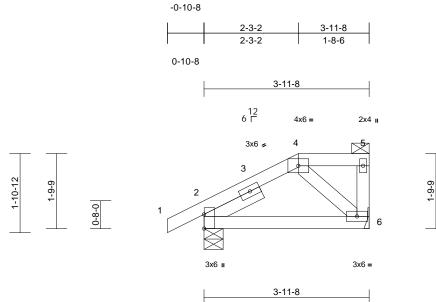
Plate Offsets (X, Y): [2:0-1-8,0-0-5]

Fiale Olisels	(A, T). [2.0-1-0,0-0-3]										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.2 BC 0.4 WB 0.6 Matrix-MP 0.6	6 Vert(CT)	in 0.02 -0.02 0.01	(loc) 5-8 5-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP No.2 Left 2x4 SP No.3 2 Structural wood she 3-11-8 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8,4 Mechanic Max Horiz 2=85 (LC Max Uplift 2=-41 (LC (LC 16) Max Grav 2=197 (LC (LC 7) (lb) - Maximum Com Tension 1-2=0/21, 2-4=-174/	athing directly applied applied or 10-0-0 oc 4= Mechanical, 5= al 16) C 16), 4=-62 (LC 16), 5 C 2), 4=106 (LC 23), 5 apression/Maximum	 load of 12.0 overhangs r Building Der verifying Ra requirement This truss h chord live lo This truss h chord live lo * This truss on the bottoo 3-06-00 tall chord and a Refer to gird Provide mee bearing plat 4, 41 lb uplii This truss is International 	as been designed for gri psf or 1.00 times flat rom non-concurrent with othe signer/Project engineer in Load = 5.0 (psf) cove is specific to the use of t ad nonconcurrent with a has been designed for a m chord in all areas whe by 2-00-00 wide will fit b y 2-00-00 wide will fit b by 2-00-00 wide will fit ber(s) for truss to truss to chanical connection (by e capable of withstandin ft at joint 2 and 4 lb uplifit designed in accordance I Residential Code section and referenced standard Standard	of load of 11.5 r live loads. esponsible for s rain loading nis truss comp 0.0 psf bottorr ny other live load live load of 20 re a rectangle etween the bor onnections. others) of truss g 62 lb uplift at at joint 5. with the 2018 ons R502.11.1	psf on onent. wads. J.Opsf ttom					
NOTES 1) Wind: AS Vasd=103 II; Exp B; and C-C F to 3-10-12 vertical le forces & N DOL=1.60 (2) TCLL: AS Plate DOI 1.15 Plate	CE 7-16; Vult=130mph 3mph; TCDL=4.2psf; Bi Enclosed; MWFRS (er Exterior(2E) -0-10-8 to 2 zone; cantilever left a ff and right exposed;C- WWFRS for reactions s 0 plate grip DDL=1.60 (3CE 7-16; Pr=20.0 psf; L=1.15); Pg=15.0 psf; F e DDL = 1.15); Is=1.0; 1.0; Cs=1.00; Ct=1.10	CDL=3.0psf; h=25ft; C twelope) exterior zone 2-1-8, Interior (1) 2-1-8 and right exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1.1 Pf=11.5 psf (Lum DOL Rough Cat B; Partially	3 1 5 =							SEA 286	Z

- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.5 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

STUDINIUM STAT 28677 L. GA1 minin

May 2,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	998 Serenity	
P02234-24937	J6-1B	Half Hip	1	1	Job Reference (optional)	173152040

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 30 15:57:41 ID:snuRTLt1hVLJayVe?sywgVzLuc6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

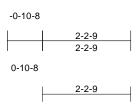
Page: 1

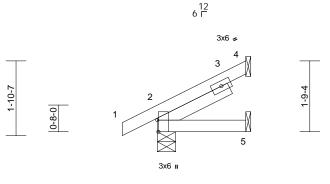
Scale = 1:27.6

Plate Offsets (X, Y): [2:0-4-1,Edge]

Plate Offsets (X, Y): [2:0-4-1,Edge]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 16.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MP	0.08 0.10 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01 0.00	(loc) 6-9 6-9 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp B; f and C-C exposed ; members a Lumber DC 3) TCLL: ASC Plate DOL 1.15 Plate Exp; Ce=	2-0-0 oc purlins: 4-5 Rigid ceiling directly bracing. (size) 2=0-5-8, 6 Max Horiz 2=60 (LC Max Uplift 2=-54 (LC Max Grav 2=224 (LC (lb) - Maximum Com Tension 1-2=0/27, 2-4=-172/ 5-6=-54/43 2-6=-105/90 4-6=-96/109 ed roof live loads have	athing directly applie xcept end verticals, a applied or 10-0-0 oc 3= Mechanical 15) 16), 6=-43 (LC 13) 2 38), 6=136 (LC 37) pression/Maximum 70, 4-5=-26/28, been considered for (3-second gust) CDL=3.0psf; h=25ft; ivelope) exterior zone lever left and right ght exposed;C-C for for reactions shown; L=1.60 roof LL: Lum DOL=1 Pf=16.5 psf (Lum DO Rough Cat B; Partiall , Lu=50-0-0	and 8) 9) 10 11 12 13 L2 Cat. a Cat. b 2 y	load of 12.0 overhangs n Building Des verifying Rai requirements Provide aded This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 2 and 43 lb u This truss is International R802.10.2 ar		lat roof lo other limeer res covers r or e of this prevent or a 10. with any I for a liv s where II fit betw uss conn n (by oth anding f dance w sections dard AN	bad of 11.5 p ve loads. consible for ain loading truss compo water pondin 0 psf bottom other live load e load of 20. a rectangle ween the bott nections. ers) of truss 4 lb uplift at ith the 2018 is R502.11.1 at SI/TPI 1.	onent. g. ads. Opsf tom to joint			A A A A A A A A A A A A A A A A A A A	SEA 286	EEP. St.

May 2,2025




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	998 Serenity	
P02234-24937	J6-2	Jack-Open	1	1	Job Reference (optional)	173152041

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 30 15:57:41 ID:ePUAQLninrwXidJESqJklWzLuaw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Pa

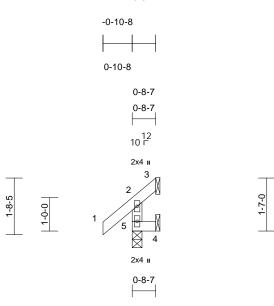
2-2-9

Scale = 1:28.8

Plate Offsets (X, Y): [2:0-3-8,Edge]

	(74, 1). [2.0 0 0,2490]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD	7.0 0.0* 10.0 2x4 SP No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201 5)	verifying Ra	CSI TC BC WB Matrix-MP signer/Project eng in Load = 5.0 (psf) s specific to the us	covers i	ain loading	in 0.00 0.00 0.00	(loc) 5-8 5-8 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%
SLIDER BRACING	Left 2x4 SP No.3 1	1-11-12	6)		as been designed ad nonconcurrent			ds.					
TOP CHORD		athing directly applie	ed or 7)	* This truss	has been designe m chord in all area	d for a liv	e load of 20.0						
BOT CHORD	2-2-9 oc purlins. Rigid ceiling directly bracing.	applied or 10-0-0 o	с	3-06-00 tall	by 2-00-00 wide w ny other members	vill fit betv		m					
FORCES	Mechanic Max Horiz 2=53 (LC Max Uplift 2=-31 (LC (LC 16) Max Grav 2=141 (LC (LC 7) (Ib) - Maximum Com	16) 216), 4=-36 (LC 16) 223), 4=52 (LC 23),	, 5=32	Provide med bearing plat 4, 31 lb uplit) This truss is Internationa	ler(s) for truss to t chanical connection e capable of withs t at joint 2 and 1 ll designed in accou I Residential Code and referenced sta Standard	n (by oth tanding 3 o uplift at rdance w e sections	ers) of truss t i6 lb uplift at j joint 5. ith the 2018 i R502.11.1 a	oint					
TOP CHORD	Tension 1-2=0/22, 2-4=-44/23	3											
BOT CHORD	2-5=-44/31												
NOTES	05 7 40: \/	(0											11111
Vasd=103 II; Exp B; and C-C E exposed ; members Lumber D 2) TCLL: AS Plate DOI 1.15 Plate Exp.; Ce= 3) Unbalanc design. 4) This truss load of 12	CE 7-16; Vult=130mph 3mph; TCDL=4.2psf; B(Enclosed; MWFRS (en Exterior(2E) zone; canti ; end vertical left and rig and forces & MWFRS ODL=1.60 plate grip DO OCE 7-16; Pr=20.0 psf; F a DOL = 1.15); Ig=15.0 psf; F a DOL = 1.15); Ig=1.0; F 1.0; Cs=1.00; Ct=1.10 red snow loads have be a has been designed for 2.0 psf or 1.00 times flat s non-concurrent with c	CDL=3.0psf; h=25ft; ivelope) exterior zor ilever left and right ght exposed;C-C for for reactions shown vL=1.60 roof LL: Lum DOL= 2f=11.5 psf (Lum DC Rough Cat B; Partia een considered for th r greater of min roof t roof load of 11.5 ps	ne ; 1.15 DL = Ily live								and Street	SEA 286	EEP. St.

May 2,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	998 Serenity	
P02234-24937	J10-9	JACK	1	1	Job Reference (optional)	173152042

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 30 15:57:42 ID:HyWxBliA8KyrBV7g_mucXUzLUy1-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

0-8-7

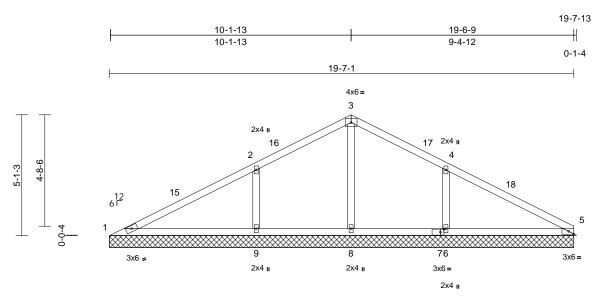
Scale = 1:34.5

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MR	0.12 0.04 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 5 5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 5 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 1-6-15 oc purlins, e Rigid ceiling directly bracing. (size) 3= Mecha 5=0-3-8 Max Horiz 5=38 (LC Max Uplift 3=-25 (LC (LC 14) Max Grav 3=8 (LC 1	xcept end verticals. applied or 10-0-0 oc inical, 4= Mechanica 11) : 2), 4=-20 (LC 11), 5	c 8 al, 9 5=-10 1 =127	verifying Rai requirement () This truss ha chord live lo () * This truss l on the botton 3-06-00 tall l chord and a () Refer to gird () Provide mec bearing platt (4, 10 lb uplif (0) This truss is International R802.10.2 a	igner/Project engi n Load = 5.0 (pst) s specific to the us as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w hy other members er(s) for truss to thanical connectio e capable of withsi t at joint 5 and 25 designed in accor Residential Code nd referenced star	covers r se of this for a 10. with any d for a liv as where rill fit betw i. truss conn n (by oth tanding 2 lb uplift a rdance w a sections	ain loading truss compo 0 psf bottom other live loa e load of 20.1 a rectangle veen the botto nections. ers) of truss t 0 lb uplift at j t joint 3. ith the 2018 s R502.11.1 a	ads. Opsf om to joint					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=0/35, 2-3=-35/2 4-5=0/0		L	OAD CASE(S)	Standard								
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp B; E and C-C E	ed roof live loads have	(3-second gust) CDL=3.0psf; h=25ft; ivelope) exterior zon ilever left and right	Cat. ne								New York	ORTH CA	ROJINA

Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.5 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

members and forces & MWFRS for reactions shown;

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.5 psf on overhangs non-concurrent with other live loads.


STITUTE STAT and a second second SEAL 28677 L. GA mmm May 2,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	998 Serenity	
P02234-24937	V01	Valley	1	1	Job Reference (optional)	173152043

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 30 15:57:42 ID:YQ2p4SJAoI70fbDDeV2WBOzLuXg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:48.6 Plate Offsets (X, Y): [5:0-2-10.0-1-8], [7:0-1-14.0-1-8]

Plate Offsets	(X, Y): [5:0-2-10,0-1-8], [7:0-1-14,0-1-8]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0) 11.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MS	0.39 0.31 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 75 lb	GRIP 244/190 FT = 20%
this desig 2) Wind: AS Vasd=10 II; Exp B and C-C 10-2-5, E to 19-8-5 vertical le forces &	 2x4 SP No.2 2x4 SP No.3 Structural wood she 10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=19-7-1, 8=19-7-1, Max Horiz 1=82 (LC 6=-191 (L 9=-198 (L Max Grav 1=126 (LC 6=445 (LC (LC 2)) (lb) - Maximum Com Tension 1-2=-189/244, 2-3=- 4-5=-82/2217 1-9=-150/113 3-8=-289/61, 2-9=-3 ced roof live loads have 	5=19-7-1, 6=19-7-1, 9=19-7-1 16) (17), 5=-28 (LC 17), C 17), 8=-27 (LC 16), C 16) (2), 5=136 (LC 36), C 2), 8=321 (LC 2), 9= pression/Maximum 14/191, 3-4=-3/191, 150/113, 6-8=-150/11 17/202, 4-6=-303/199 been considered for (3-second gust) CDL=3.0psf; h=25ft; C ivelope) exterior zone 0-0, Interior (1) 3-0-0 3-2-5, Interior (1) 13-2 dright exposed ; end C for members and	4) d or 5) 6) 7) 8) 9) =472 10 11 3, 13 13 13 20 12 13 13 20 12	only. For stu see Standarr or consult qu TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.(Unbalanced design. Building Des verifying Rai requirements Gable requir Gable studs This truss ha chord live loa this truss ha chord live loa 0) * This truss fa on the bottor 3-06-00 tall h chord and ar II) Provide med bearing plate 5, 25 lb uplift at joint 9, 19 2) Beveled plat surface with 3) This truss is International	hed for wind loads ads exposed to wind ads exposed to wind all fudustry Gable E allified building de 7-16; Pr=20.0 ps (DL = 1.15); Is=1.0 0; Cs=1.00; Ct=1.1 snow loads have signer/Project engin n Load = 5.0 (psf) is specific to the us es continuous bot spaced at 4-0-0 o ab been designed ad nonconcurrent has been designed ad nonconcurrent has been designed ad nonconcurrent as been designed in chord in all area by 2-00-00 wide w hy other members thanical connection e capable of withst t at joint 1, 27 lb u 1 lb uplift at joint 6 e or shim requirec truss chord at join designed in accor Residential Code nd referenced star Standard	nd (norm End Deta signer a signer a f (roof LL ; Pf=11.;); Rough 10 been col neer res covers i se of this tom choir c. for a 10. with any d for a liv is where ill fit betw n (by oth tanding 2 plift at jo and 28 t to provi ut(s) 5, 1, dance w sections	al to the face ils as applical s per ANSI/TF s per ANSI/TF s per ANSI/TF s per f (Lum DC Cat B; Partial nsidered for the ponsible for ain loading truss compoor d bearing. D psf bottom other live loa e load of 20.0. 20 psf bottom other live loa e load of 20.0. 21 b uplift at j nt 8, 198 lb up b uplift at joir de full bearing 10. 10.), ble, Pl 1. 1.15 DL = illy his nent. dds. opsf oom to joint uplift t5. g				ORTH CA ORTH CA SEA 286 OF NGIN	FER St.

May 2,2025

Page: 1

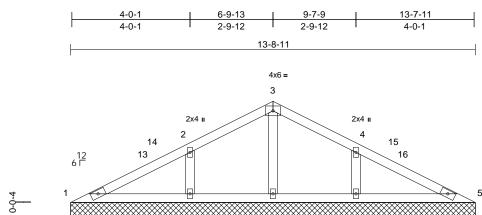
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

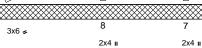
Job	Truss	Truss Type	Qty	Ply	998 Serenity	
P02234-24937	V02	Valley	1	1	Job Reference (optional)	173152044

Scale = 1:39.1

3-5-3

Run: 8.83 E Feb 1 2025 Print: 8.830 E Feb 1 2025 MiTek Industries, Inc. Thu May 01 16:40:35 ID:86u50FTyV3u1KIHvSSIoILzLuXS-CMQnt4vOOGbTFXDHF_L5I0gvxKFXekQsM_N7RPzKplg


6


2x4 II

3x6 。

		<u>4-0-1</u> 4-0-1		<u>9-7-9</u> 5-7-8	 	<u>13-7-1</u> 4-0-1	1	———————————————————————————————————————		
osf)	Spacing	2-0-0	CSI	DEFL	(loc)	l/defl		PLATES	GRIP	

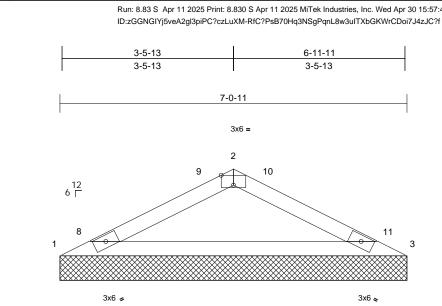
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 11.5/15.0 7.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-MS	0.17 0.13 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	MT20	GRIP 244/190
BCDL LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she	eathing directly applied		Vasd=103mp II; Exp B; En and C-C Exte 6-10-5, Exter 13-8-11 zone vertical left a	7-16; Vult=130mp bh; TCDL=4.2psf; closed; MWFRS (erior(2E) 0-0-0 to 3 ior(2R) 6-10-5 to b; cantilever left ar nd right exposed;	BCDL=3 envelope 3-0-0, Int 9-8-1, Int nd right e C-C for n	.0psf; h=25ft; e) exterior zon erior (1) 3-0-0 terior (1) 9-8-1 xposed ; end nembers and	Cat. e) to	Íntei	rnationa 2.10.2 a	I Resident	dential Code sec ferenced standar	FT = 20% ce with the 2018 tions R502.11.1 and d ANSI/TPI 1.
BOT CHORD	10-0-0 oc purlins. Rigid ceiling directly bracing. (lb/size) 1=60/13- 6=235/13 8=235/13 Max Horiz 1=-52 (L0 Max Upliff 1=-12 (L0 8=-128 (I Max Grav 1=89 (LC)	v applied or 6-0-0 oc 8-11, 5=60/13-8-11, 1-8-11, 7=194/13-8-11, 1-8-11 2 17) 2 17), 5=-20 (LC 17), 1-C 17), 7=-13 (LC 16),	3) 4) 310 ⁵⁾	DOL=1.60 pl Truss design only. For stu see Standard TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design. Building Des	FRS for reactions ate grip DOL=1.6(ned for wind loads dds exposed to win' d Industry Gable E alified building de 7-16; Pr=20.0 ps: .15); Pg=15.0 psf. DL = 1.15); Is=1.0 ; Cs=1.00; Ct=1.1 snow loads have I igner/Project engin n Load = 5.0 (psf)) in the pl nd (norm ind Deta signer as f (roof LL ; Pf=11.5 ; Rough 0 been cor neer resj	ane of the tru al to the face) ils as applicat s per ANS/ITF s per ANS/ITF Lum DOL=1 i psf (Lum DO Cat B; Partial asidered for the consible for	, ple, rl 1. .15 rL = ly					
FORCES	(lb) - Maximum Cor Tension	npression/Maximum	7)	requirements	specific to the us	e of this	truss compon	ent.					
TOP CHORD	1-13=-119/120, 13- 2-14=-63/168, 2-3=		8) 9)	Gable studs This truss ha	spaced at 4-0-0 of s been designed f ad nonconcurrent	c. for a 10.0) psf bottom	15			5	TH CA	ROI
BOT CHORD WEBS NOTES	1-8=-107/102, 7-8= 5-6=-107/96 3-7=-222/69, 2-8=-2	-107/96, 6-7=-107/96, 216/169, 4-6=-216/169	10)	* This truss h on the bottor 3-06-00 tall h chord and an	as been designed n chord in all area by 2-00-00 wide wi by other members.	d for a liv s where ill fit betw	e load of 20.0 a rectangle veen the botto	psf			N.V.	OR TH CA	
 Unbalance 	ed roof live loads have	been considered for	11)	All bearings	are assumed to be	e SP No.	2 crushing					UL/	·- : :

 Unbalanced roof live loads have been considered for this design.

- 11) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 1, 20 lb uplift at joint 5, 13 lb uplift at joint 7, 128 lb uplift at joint 8 and 128 lb uplift at joint 6.
- Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 5.

SEAL 28677 MGINEEP, 64

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	998 Serenity	
P02234-24937	V03	Valley	1	1	Job Reference (optional)	173152045

1-9-3

0-0-4

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 30 15:57:42

Page: 1

6-11-11

Scale = 1:23.4

Plate Offsets (X, Y): [2:0-3-0,Edge]

Fiale Olisels (7	∧, r). [2.0-3-0,⊏uge]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 11.5/15.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/T	TPI2014	CSI TC BC WB Matrix-MP	0.36 0.28 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.02	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD NOTES 1) Unbalance this design II; Exp B; E and C-C E: 3-6-5, Exte 7-0-11 zon vertical left forces & M DOL=1.60 3) Truss desig only. For s see Standa or consult d 4) TCLL: ASC Plate DOL= 1.15 Plate	2x4 SP No.2 2x4 SP No.2 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=7-0-11, Max Horiz 1=25 (LC Max Grav 1=261 (LC (lb) - Maximum Com Tension 1-2=-511/346, 2-3=-1 1-3=-316/451 d roof live loads have E 7-16; Vult=130mph mph; TCDL=4.2psf; BG Enclosed; MWFRS (en xterior(2E) 0-0-0 to 3-6 E; cantilever left and r and right exposed; C- WFRS for reactions sl plate grip DOL=1.60 gned for wind loads in studs exposed to wind ard Industry Gable Enq qualified building desig (2E 7-16; Pr=20.0 psf; F DOL = 1.15); Is=1.0; F I.0; Cs=1.00; Ct=1.10	applied or 10-0-0 oc 3=7-0-11 16) 16), 3=-62 (LC 17) 2), 3=261 (LC 2) pression/Maximum 511/345 been considered for (3-second gust) CDL=3.0psf; h=25ft; velope) exterior zon -0, Interior (1) 3-0-0 i, Interior (1) 6-6-5 tc ight exposed ; end C for members and nown; Lumber the plane of the trus (normal to the face) d Details as applicab gner as per ANSI/TP roof LL: Lum DOL=1 tf=11.5 psf (Lum DO	d or 6) E 7 6) E 7 8) C 9) T 10) * 10) * 10) * 10) * 10) * 10) * 11) F 12) E 13) T 12) E 13) T F Cat. LOAI e 11. 15 L =	design. Building Desi verifying Rair equirements Gable require Gable studs : This truss ha chord live loa this truss ha chord live loa this truss ha chord live loa this truss ha chord and an Provide mech bearing plate 1 and 62 lb u Beveled plate surface with i This truss is i nternational	snow loads have b gner/Project engin 1 Load = 5.0 (psf) of specific to the use se continuous bottk spaced at 4-0-0 oc s been designed for d nonconcurrent v as been designed n chord in all areas y 2-00-00 wide wil y other members. nanical connection capable of withsta plift at joint 3. e or shim required russ chord at joint designed in accord Residential Codes and referenced stan Standard	eer res covers r e of this om chor or a 10. vith any for a liv s where I fit betw (by oth anding 6 to provi (s) 1, 3. lance w sections	ponsible for ain loading truss compor d bearing. D psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss tr iz lb uplift at jo de full bearing ith the 2018 s R502.11.1 a	ds. Jpsf om oint				SEA 286 VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	EER. St.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

