

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: David Weekley Homes

Model: B326-Blakestone B

THE PLACEMENT PLAN NOTES:

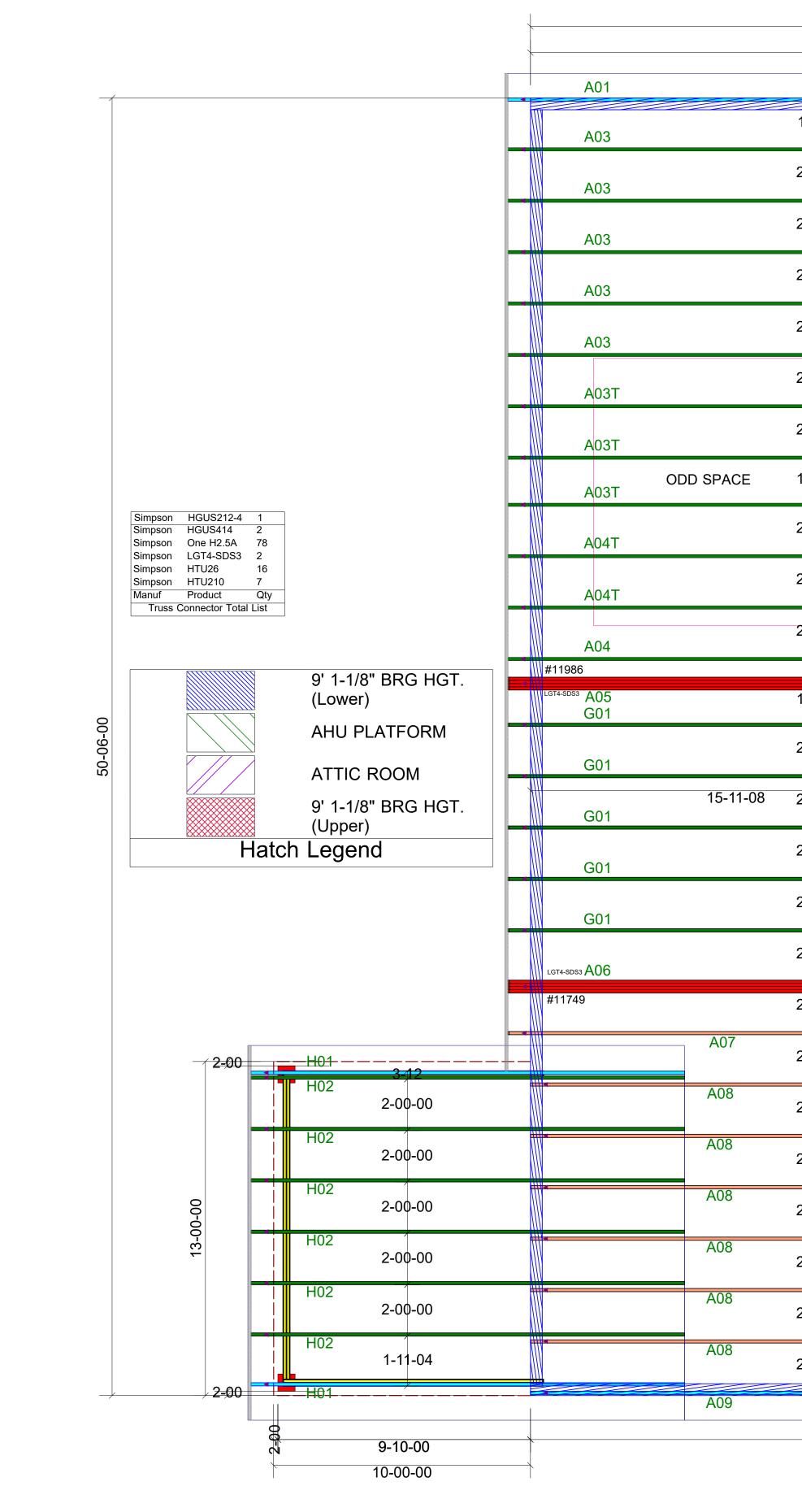
1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

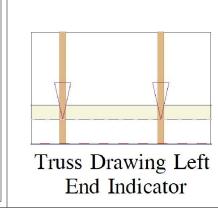
2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.


6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.


7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death. 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

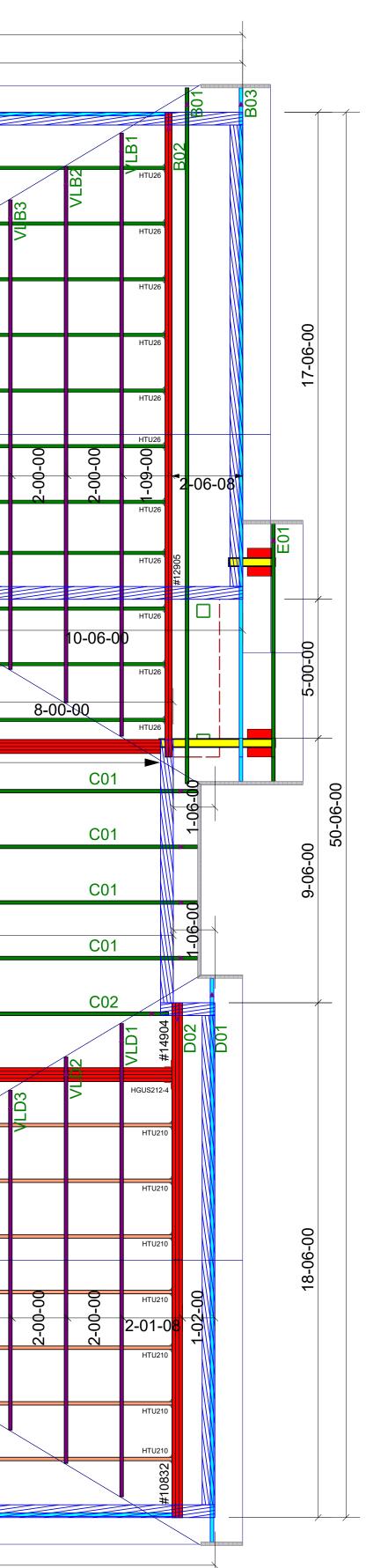
SFTTING

TO PLANS WHILE

REFER

MUST

IER


*

		56-00-00		1					
32-09-	-08 PBA			\			2	3-02-08	
1-11-04	PBA1								
2-00-00	PBA1								
2-00-00	PBA1						/	2	VLB4
2-00-00	PBA1		00-				'LB6	VLE	
2-00-00	PBA1		15-06		B8	VLB7			
2-00-00	PBA1								
2-00-00	PBA1					2-00-00	2-00-00	2-00-00	2-00-00
1-10-00	PBA1								
2-00-00	PBA1 AI	IU							
2-00-00	PBA1	FORM							
2-00-00	PBA1								, ,
9-04					8-12				
HGUS414 (For EWP Floor Beam)	PBA2 J01			. to	1-09-08	Bearing	g Wall U	Inder Gir	der —
HTU26	J01			. BLDR on Top.	2-00-00				
2-00-00 8	12-07-08 J01			ms Wal	2-00-00				
2-00-00 C	J01 Design Span 17-0 J01	0-08		cal For 2x6 Top	2-00-00		20-11-	08	
нти26 2-00-00	J01			End Ver stall (2)	2-00-00				
HTU26 2-00-00 (For EWP Floor Beam) HGUS414	PBA2			2x6 E Ins	2-00-00				
2-00-00 80 									
2-00-00	PBA1							D5	VLD4
2-00-00	PBA1						VLD6	ΛL	
2-00-00	PBA1 AT	TIC							
2-00-00						2-00-00	2-00-00	2-00-00	2-00-00
2-00-00	PBA1 16-0	1-08							
2-00-00	PBA1								
2-00-00	- PBA								

55-00-00

** PLUMBING DROPS NOTED ARE IN THE APPROXIMATE LOCATIONS PER PLAN. BUILDER TO VERIFY LOCATIONS BEFORE SETTING TRUSSES.

		Revisio	
tor.	00/00/		Name
er trac	00/00/		Name Name
E P	00/00/		Name
nly. or	00/00/		Name
o sr and	00/00/		Name
** All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibilty of the bldg designer and or contractor.	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for	each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The disign of the tuss support structure including headers, beams, walls, and columns is the responsibility of the	building designer. For general guidance regarding the bracing, consult "Bracing of Wood Truss" available from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179
			Lumber
ED TOGETHER PRIOR TO ADDING ANY LOADS. ** DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH.	David Weekley Homes	897 Serenity / B326 "B"	ROOF PLACEMENT PLAN
NECTE	Scale:		·]
	Date:	NTS	
ŭ		5/8/202	
BE FULLY CO	N	Designe Nick Da	rr
IUST BE FULLY CO	N F	lick Da Project Nu	n rr mber:
RS MUST BE FULLY CO	N F 25	lick Da	n r mber: 5-01
IRDERS MUST BE FULLY CO	N F 25	lick Da Project Nu 040246	n rr mber: 5-01
** GIRDERS MUST BE FULLY CONNECTED TOGETHE	N F 25	lick Da Project Nu 040246	nrr mber: 5-01
** GIRDERS MUST BE FULLY CO	N F 25	lick Da Project Nu 040246	n rr mber: 5-01

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 25040246-01 897 Serenity-Roof-B326-Blakestone B

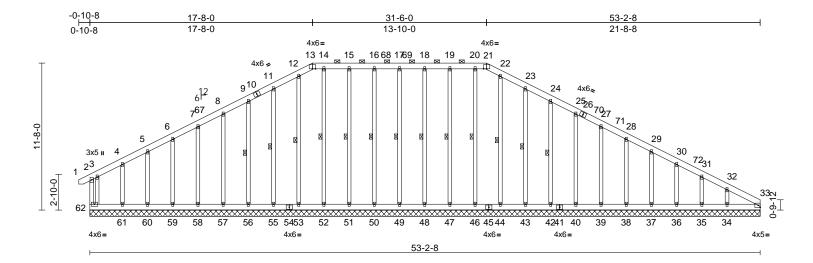
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I73351072 thru I73351111

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

May 12,2025


Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	A01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	173351072

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:26 ID:HvYYHe4LpHmiz2Dld9nw5TzRQov-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:91.4

Scale = 1:91.4												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.13 0.12 0.21	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 33	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 546 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 2x4 SP No.3 *Excel 49-17,48-18,47-19, 52-14,53-12:2x4 SP	, 46-20,44-22,50-16,51 [,]	-15,	38=17 40=23 43=23 46=19 48=21	96 (LC 41) 74 (LC 45) 30 (LC 45) 30 (LC 45) 30 (LC 45) 99 (LC 40) 7 (LC 40)	, 35=84 (LC 1: , 37=153 (LC 4: , 39=221 (LC 4: , 42=229 (LC 4: , 44=217 (LC 4: , 47=220 (LC 4: , 49=216 (LC 4: , 51=220 (LC 4:	59), 45), 45), 45), 45), 40), 40),	BOT CH	IORD	59-60 57-58 55-56 52-53 50-51 48-49	=-80/149, 60-61 =-80/149, 58-59 =-80/149, 56-57 =-80/149, 53-55 =-80/149, 51-52 =-80/149, 49-50 =-80/149, 47-48 =-80/149, 44-46	=-80/149, =-80/149, =-80/149, =-80/149, =-80/149, =-80/149,
BRACING TOP CHORD	6-0-0 oc purlins, ex 2-0-0 oc purlins (10			52=19 55=23 57=23	9 (LC 40) 4 (LC 43) 33 (LC 43)	, 53=217 (LC 4 , 53=217 (LC 4 , 56=233 (LC 4 , 58=233 (LC 4 , 60=151 (LC 5	43), 43), 43),			43-44 40-42 38-39	=-80/149, 44-40 =-80/149, 42-43 =-80/149, 39-40 =-80/149, 37-38 =-80/149, 35-36	=-80/149, =-80/149, =-80/149,
BOT CHORD	Rigid ceiling directly bracing.	y applied or 6-0-0 oc			,	, 62=134 (LC 5					=-80/149, 33-34	
	36=53-2- 39=53-2- 43=53-2- 47=53-2- 50=53-2- 53=53-2- 57=53-2- 60=53-2- Max Horiz 62=-186 Max Uplift 34=-66 (36=-15 (I	$\begin{array}{c} 17-49, 18-48, 19-47,\\ 20-46, 22-44, 23-43,\\ 24-42, 16-50, 15-51,\\ 14-52, 12-53, 11-55,\\ 8, 34=53-2-8, 35=53-\\ 8, 37=53-2-8, 38=53-\\ 8, 40=53-2-8, 42=53-\\ 8, 44=53-2-8, 49=53-\\ 8, 48=53-2-8, 54=53-\\ 8, 51=53-2-8, 52=53-\\ 8, 58=53-2-8, 59=53-\\ 8, 58=53-2-8, 59=53-\\ 8, 61=53-2-8, 62=53-\\ (LC 12)\\ LC 14), 35=-171 (LC 14), 37=-50 (LC 15), 39=-44 (LC 15), 32=-44 (LC 15), 32=-41 $	TOP CHOR 9-56 2-8, 2-8, 2-8, 2-8, 2-8, 2-8, 2-8, 2-8,	(lb) - Maximum (Tension) 2-62=-243/191, ' 3-4=-75/120, 4-5 6-7=-75/201, 7-8 9-11=-125/338, ' 12-13=-147/384, 14-15=-140/380, 16-17=-140/380, 20-21=-140/380, 20-21=-140/380, 20-21=-140/380, 22-23=-145/387, 24-25=-107/291, 27-28=-75/201, ' 29-30=-64/136, ' 31-32=-125/100, '	1-2=0/23, =-49/115, =-91/246, 11-12=-14, 13-14=-1 15-16=-1 17-18=-1 21-20=-1 23-24=-1 23-24=-1 25-27=-9 28-29=-60 30-31=-72	2-3=-100/92, 5-6=-59/156, 8-9=-107/291 5/387, 40/380, 40/380, 40/380, 40/380, 40/380, 40/384, 1/384, 1/246, 1/246, 1/11,	,		4		OR TH CA	ROW
	43=-52 (1 48=-28 (1 50=-28 (1 55=-52 (1 57=-43 (1 59=-46 (1	LC 15), 42=-46 (LC 15 LC 15), 47=-29 (LC 11 LC 11), 49=-25 (LC 10 LC 11), 51=-29 (LC 10 LC 14), 56=-46 (LC 14 LC 14), 58=-44 (LC 14 LC 14), 60=-22 (LC 14 (LC 14), 62=-88 (LC 14)),)),)), i), i), i),						11100	A A A A A A A A A A A A A A A A A A A	SEA 0363	EER A

May 12,2025

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	A01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	173351072

Run: 8 73 S. Feb 19 2025 Print: 8 730 S. Feb 19 2025 MiTek Industries. Inc. Thu May 08 12:47:26

ID:HvYYHe4LpHmiz2Dld9nw5TzRQov-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Carter Components (Sanford, NC), Sanford, NC - 27332,

WEBS 17-49=-176/57, 18-48=-177/62, 19-47=-180/61, 20-46=-159/6, 22-44=-177/2, 23-43=-190/87, 24-42=-188/81, 25-40=-190/77, 27-39=-181/77, 28-38=-132/77, 29-37=-125/77, 30-36=-138/78, 31-35=-67/120, 32-34=-241/136, 16-50=-177/62, 15-51=-180/61, 14-52=-159/1, 12-53=-177/0, 11-55=-194/87, 9-56=-193/81, 8-57=-193/77, 7-58=-194/77, 6-59=-157/77, 5-60=-116/91, 4-61=-185/158, 3-62=-226/261

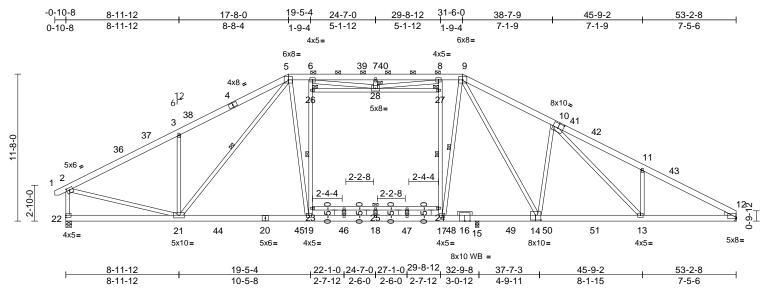
NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-8-6 to 4-7-0, Exterior(2N) 4-7-0 to 12-4-3, Corner(3R) 12-4-3 to 22-11-13, Exterior(2N) 22-11-13 to 26-2-3, Corner(3R) 26-2-3 to 36-7-0, Exterior(2N) 36-7-0 to 47-10-11, Corner(3E) 47-10-11 to 53-2-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) N/A
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


A MiTek Affiliat 818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	A03	Piggyback Base	5	1	Job Reference (optional)	173351073

Run: 8.73 E May 9 2024 Print: 8.730 E May 9 2024 MiTek Industries, Inc. Fri May 09 13:27:23 ID:OFJFx3IDTxFbWWzrBXohbzzRCTM-31oMlfA6YQAjtPbOB5vHnxtiuGdYSlcJ9UAV9yzIEG2

Page: 1

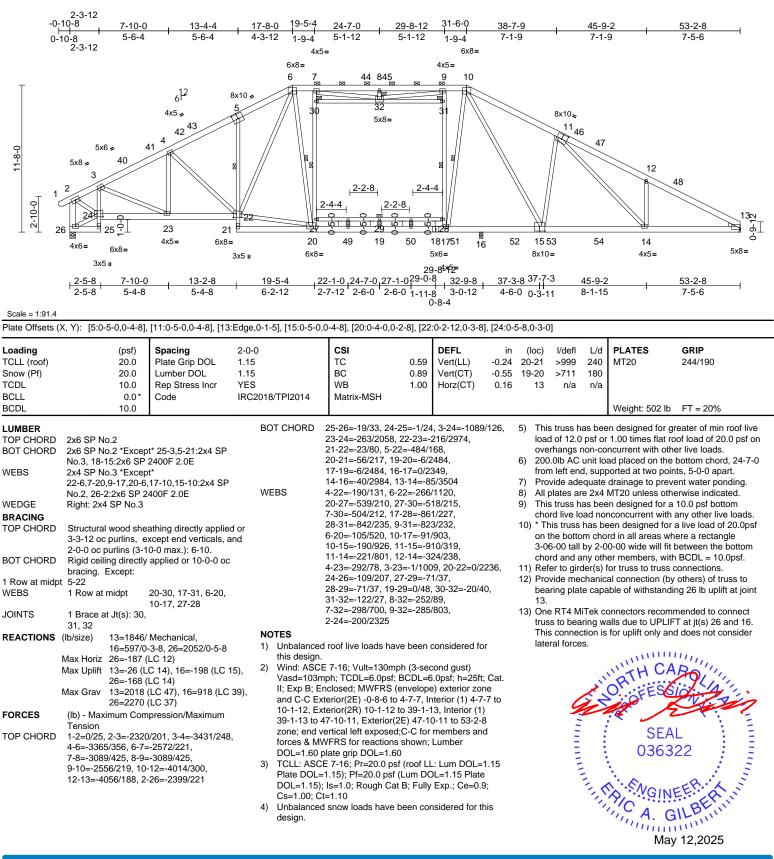
Scale = 1:91.4

Plate Offsets (X Y)	[2:0-2-12,0-2-0], [10:0-5-0,0-4-8], [12:Edge,0-1-5], [14:0-5-0,0-4-8]
	[2.0 2 12,0 2 0], [10.0 0 0,0 1 0], [12.2 ago,0 1 0], [11.0 0 0,0 1 0]

	A, T). [2.0-2-12,0-2-0], [10.0-3-0,0-4-0], [12.	.Euge,0-1-	5], [14.0-5-0	,0-4-0]								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Lumber DOL	2-0-0 1.15 1.15 YES IRC2018/T	PI2014	CSI TC BC WB Matrix-MSH	0.88 0.92 0.99	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.32 -0.50 0.10	(loc) 19-21 19-21 12	l/defl >999 >778 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 472 lb	GRIP 244/190 FT = 20%
	No.2 2x4 SP No.3 *Excep 21-2,6-19,8-17,17-9, No.2 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shea 3-2-9 oc purlins, exi 2-0-0 oc purlins, exi 2-0-0 oc purlins (3-8 Rigid ceiling directly bracing, Except: 2-2-0 oc bracing: 12 1 Row at midpt 1 Brace at Jt(s): 26, 27, 28 (lb/size) 12=1862/ 15=576/0- Max Horiz 22=-186 (Max Uplift 12=-25 (L 22=-187 (Max Grav 12=2088 (22=2369 ((lb) - Maximum Com Tension	14-9,19-5,21-5:2x4 SF athing directly applied cept end verticals, and -5 max.): 5-9. applied or 10-0-0 oc -13. 19-26, 17-27, 9-17, 5- 23-24 Mechanical, -3-8, 22=2058/0-5-8 LC 12) C 14), 15=-202 (LC 15 LC 14) LC 14) (LC 47), 15=842 (LC 3 (LC 37) ipression/Maximum 5/213, 3-5=-3382/413, -3236/426, -2704/219,	or 1) (221, 2) (1) (221, 2) (1) (221, 2) (1) (221, 2) (1) (221, 2) (1) (221, 2) (1) (221, 2) (1) (221, 2) (1) (221, 2) (1) (221, 2) (1) (221, 2) (1) (221, 2) (1) (221, 2) (1) (221, 2) (1) (221, 2) (1) (221, 2) (1) (221, 2) (1) (221, 2) (1) (221, 2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	ES Jnbalanced his design. Wind: ASCE Vind: ASCE and C-C Exi 10-1-12, Exi 39-1-13 to 4 cone; end vi orces & MW DOL=1.60 p Plate DOL= DOL=1.15); Cs=1.00; Ct Jnbalanced Jobalanced Jobalanced Jobalanced Jnbalanced Jobalanced Jnbalanced	21-22=-118/222, 1 18-19=-3/2629, 17 15-17=0/2487, 13- 12-13=-83/3646 2-21=-78/2773, 19 23-26=-476/250, 6 17-24=-870/220, 2 8-27=-835/223, 9-1 10-14=-907/319, 9 10-13=-222/774, 1 5-19=0/906, 3-21= 23-25=-70/38, 24-2 26-28=-14/48, 27-2 6-28=-296/704, 8-2 1 roof live loads have 5 7-16; Vult=130mp ph; TCDL=6.0psf; 1 rolosed; MWFRS (c terior(2R) 10-1-12 t 7-10-11, Exterior(2 ertical left exposed; VFRS for reactions late grip DOL=1.60 5 7-16; PT=20.0 psf 1.15); Pf=20.0 psf 1.10] snow loads have the as been designed f psf or 1.00 times fl non-concurrent with unit load placed on d, supported at two guate drainage to p	-18=-3/2 15=-38/ -23=-49 -26=-46 4-27=-8 17=-89/9 -14=-18 1-13=-3 -842/34 25=-70/2 28=-135 28=-284 e been bh (3-sec BCDL=6 envelope 4-7-7, Ir o 39-1-7 (C-C for shown;) (roof LL Lum DC B; Fully been con or great at roof lu o the bit the bott points;	2629, 3144, 4/240, 3/253, 56/226, 37, 6/974, 24/238, 2, 5-21=-282/5, 8, 18-25=0/3/ (26, 7-28=-255; 8/17 considered for terior (1) 4-7- 3, Interior (1) 0.0psf; h=25ft; e) exterior zon terior (1) 4-7- 13, Interior (1) 14, 15, 15, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12	4, 5/89, 5/89, Cat. e 7 to 7 to .15 ; is live if on -7-0	 9) Thi cho 10) * Ti 00 3-00 cho 11) Rei 12) Pro bea 12. 13) On trus 14) Thi Inte R8i 15) Gra or t bot LOAD 	s truss h ord live lc his truss the botto 6-00 tall ord and a fer to gird ovide me aring plat e RT4 M ss to bea s connece eral force s truss is ernationa 02.10.2 a aphical p the orien tom choo CASE(S	as bee aad nou has be m choo by 2-0 iny oth der(s) 1 ich chanic te capa iTek co itring w itrice capa itrek co itring w s. s. s. s. s. s. s. s. s. s. s. s. s.	en designed for a nconcurrent with een designed for rd in all areas wh 00-00 wide will fit for truss to truss all connection (by able of withstandi onnectors recom alls due to UPLIF for uplift only an uned in accordand dential Code sect ferenced standard	between the bottom h BCDL = 10.0psf. connections. y others) of truss to ing 25 lb uplift at joint mended to connect TT at jt(s) 22 and 15. id does not consider ce with the 2018 tions R502.11.1 and d ANSI/TPI 1. es not depict the size g the top and/or
							. 0					Max	12 2025

May 12,2025

818 Soundside Road Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Component Component Advancing Component Advancing Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	A03T	Piggyback Base	3	1	Job Reference (optional)	173351074

Run: 8.73 E May 9 2024 Print: 8.730 E May 9 2024 MiTek Industries, Inc. Fri May 09 13:28:58 ID:OFJFx3IDTxFbWWzrBXohbzzRCTM-nI1Hh8KiAc8En0LeFY6Z8zJ?QZ3CCj5I?mg1zyzIEEZ Page: 1

818 Soundside Road

Edenton, NC 27932

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	A03T	Piggyback Base	3	1	Job Reference (optional)	173351074
Carter Components (Sanford, NO	C), Sanford, NC - 27332,	Run: 8.73 E May 9	2024 Print: 8.	730 E May 9	9 2024 MiTek Industries, Inc. Fri May 09 13:28:58	Page: 2

14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

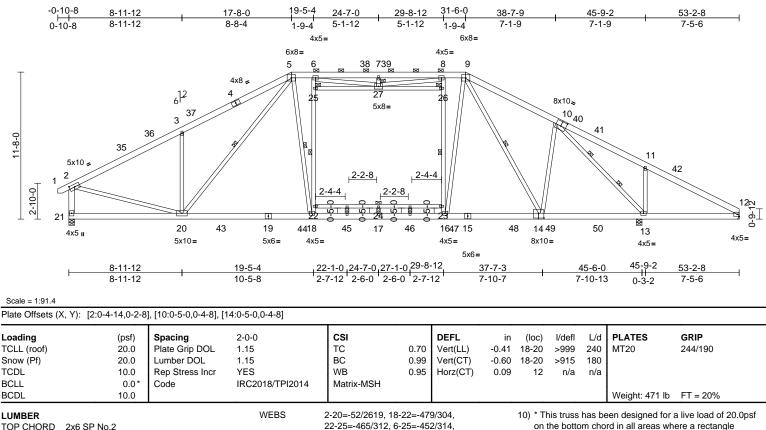
15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

0 Vananovan SEAL 036322 GILB A. GIL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932



Page: 2 ID:OFJFx3IDTxFbWWzrBXohbzzRCTM-nI1Hh8KiAc8En0LeFY6Z8zJ?QZ3CCj5I?mg1zyzIEEZ

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	A04	Piggyback Base	1	1	Job Reference (optional)	173351075

Run: 8,73 E May 9 2024 Print: 8,730 E May 9 2024 MiTek Industries, Inc. Fri May 09 13:30:20 ID:DGN6a6f8caCKWpHw1clz1BzRCZx-N4_HuAJ8toTbccdP3maoSGi?3c0wQp7NsXYNsCzIEDH

Page: 1

22-25=-465/312, 6-25=-452/314, on the bottom chord in all areas where a rectangle 16-23=-856/245, 23-26=-848/253, 3-06-00 tall by 2-00-00 wide will fit between the bottom 8-26=-828/249, 3-20=-817/329, chord and any other members, with BCDL = 10.0psf. 2x4 SP No.3 *Except* 21-2:2x6 SP No.2, 11) Refer to girder(s) for truss to truss connections. 20-2,6-18,8-16,20-5,18-5,16-9,14-9:2x4 SP 5-20=-284/531. 5-18=-63/867. 9-16=-32/1379, 9-14=-335/69, 10-14=0/553, 12) Provide mechanical connection (by others) of truss to 10-13=-2254/269, 11-13=-458/260, bearing plate capable of withstanding 210 lb uplift at joint 22-24=-58/49, 23-24=-58/49, 17-24=0/31 12 Structural wood sheathing directly applied or 25-27=-52/98, 26-27=-177/46, 7-27=-264/87, 13) One RT4 MiTek connectors recommended to connect 3-2-10 oc purlins, except end verticals, and 6-27=-309/732, 8-27=-288/850 truss to bearing walls due to UPLIFT at jt(s) 21. This 2-0-0 oc purlins (3-8-14 max.): 5-9. connection is for uplift only and does not consider lateral NOTES Rigid ceiling directly applied or 2-2-0 oc forces Unbalanced roof live loads have been considered for 1) 14) One RT7 MiTek connectors recommended to connect 18-25, 16-26, 5-20, 5-18, this design. truss to bearing walls due to UPLIFT at jt(s) 13. This Wind: ASCE 7-16; Vult=130mph (3-second gust) 9-14, 22-23 2) connection is for uplift only and does not consider lateral 10-13 Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. forces. II; Exp B; Enclosed; MWFRS (envelope) exterior zone 15) This truss is designed in accordance with the 2018 and C-C Exterior(2E) -0-8-6 to 4-7-7, Interior (1) 4-7-7 to International Residential Code sections R502.11.1 and 10-1-12, Exterior(2R) 10-1-12 to 39-1-13, Interior (1) 12=611/ Mechanical. R802.10.2 and referenced standard ANSI/TPI 1. 39-1-13 to 47-10-11, Exterior(2E) 47-10-11 to 53-2-8 13=1861/0-5-8. 21=2022/0-5-8 16) Graphical purlin representation does not depict the size zone; cantilever left and right exposed ; end vertical left Max Horiz 21=-187 (LC 12) or the orientation of the purlin along the top and/or and right exposed;C-C for members and forces & 12=-210 (LC 14), 13=-388 (LC 15), bottom chord. 111111 MWFRS for reactions shown; Lumber DOL=1.60 plate 21=-153 (LC 14) ORTH CAR grip DOL=1.60 12=880 (LC 43), 13=2428 (LC 39), 0 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

21=2304 (LC 37) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/25, 2-3=-3165/193, 3-5=-3281/387, 5-6=-2628/229, 6-7=-3191/435, 7-8=-3191/435, 8-9=-2605/228 9-11=-2832/531, 11-12=-1522/461, 2-21=-2369/212 20-21=-131/272, 18-20=0/2422, BOT CHORD 17-18=0/2532, 16-17=0/2532, 13-16=-94/2317, 12-13=-351/1308

BOT CHORD

BRACING

TOP CHORD

BOT CHORD

REACTIONS (lb/size)

WEBS

WEBS

JOINTS

WEBS

2x6 SP No.2

No.2

bracing.

26.27

Max Uplift

Max Grav

1 Row at midpt

2 Rows at 1/3 pts

1 Brace at Jt(s): 25,

- Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 6) 200.0lb AC unit load placed on the bottom chord, 24-7-0 from left end, supported at two points, 5-0-0 apart. 7) Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated. 8)
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WWWWWWWW G minin May 12,2025

SEAL

036322

ontinued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

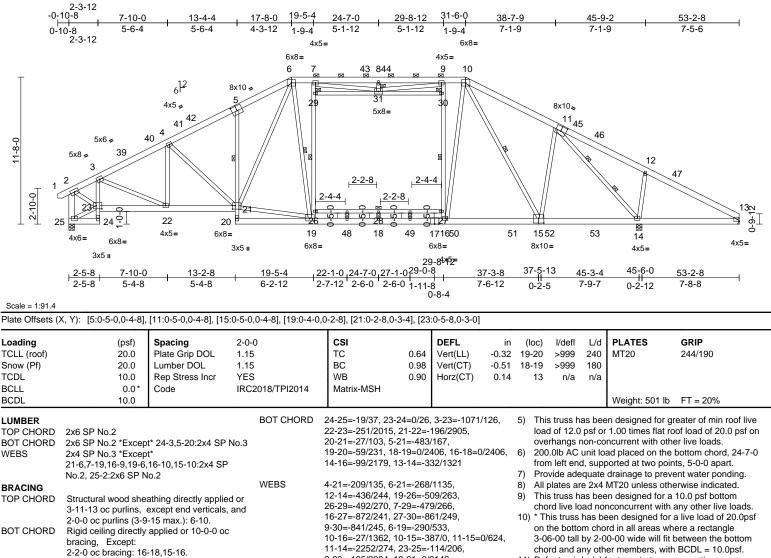
818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type		Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	A04	Piggyback Base		1	1	Job Reference (optional)	173351075
Carter Components (Sanford, No	C), Sanford, NC - 27332,		Run: 8.73 E May 92	024 Print: 8.	730 E May 9	9 2024 MiTek Industries, Inc. Fri May 09 13:30:20	Page: 2

Run: 8.73 E May 9 2024 Print: 8.730 E May 9 2024 MiTek Industries, Inc. Fri May 09 13:30:20 ID:DGN6a6f8caCKWpHw1clz1BzRCZx-N4_HuAJ8toTbccdP3maoSGi?3c0wQp7NsXYNsCzIEDH

LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affili 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	A04T	Piggyback Base	2	1	Job Reference (optional)	173351076

Run: 8.73 E May 9 2024 Print: 8.730 E May 9 2024 MiTek Industries, Inc. Fri May 09 13:31:35 ID:DGN6a6f8caCKWpHw1clz1BzRCZx-DJSFQTCYRXo5U_HdOJv8StmeFRHImHDGt2THSvzIEC7

2-23=-185/2284, 19-21=0/2142,

7-31=-312/719, 9-31=-284/839,

4-22=-272/79, 3-22=-2/980

Unbalanced roof live loads have been considered for

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.

and C-C Exterior(2E) -0-8-6 to 4-7-7, Interior (1) 4-7-7 to

II; Exp B; Enclosed; MWFRS (envelope) exterior zone

10-1-12, Exterior(2R) 10-1-12 to 39-1-13, Interior (1)

39-1-13 to 47-10-11, Exterior(2E) 47-10-11 to 53-2-8

and right exposed;C-C for members and forces &

zone; cantilever left and right exposed ; end vertical left

MWFRS for reactions shown; Lumber DOL=1.60 plate

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate

DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;

Unbalanced snow loads have been considered for this

Wind: ASCE 7-16; Vult=130mph (3-second gust)

26-28=-69/38, 27-28=-69/38, 18-28=0/35,

29-31=-43/94, 30-31=-172/42, 8-31=-260/88,

- 11) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 195 lb uplift at joint 13.

Page: 1

 One RT5 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 14. This connection is for uplift only and does not consider lateral forces.

ontinued on page 2

1 Row at midpt 5-21

REACTIONS (lb/size)

1 Row at midpt

30, 31

Max Horiz

Max Uplift

Max Grav

Tension

2 Rows at 1/3 pts

1 Brace at Jt(s): 29,

19-29, 16-30, 6-19,

10-15, 26-27

14=1832/0-5-8, 25=2008/0-5-8

13=-195 (LC 14), 14=-377 (LC 15),

13=892 (LC 43), 14=2466 (LC 39),

11-14

13=654/ Mechanical,

25=-187 (LC 12)

25=-154 (LC 14)

25=2211 (LC 37)

4-6=-3278/330, 6-7=-2483/226,

7-8=-3050/432, 8-9=-3050/432,

9-10=-2465/226, 10-12=-2613/499,

12-13=-1536/440, 2-25=-2349/206

(lb) - Maximum Compression/Maximum

1-2=0/25, 2-3=-2270/187, 3-4=-3355/225,

WEBS

WEBS

JOINTS

FORCES

TOP CHORD

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality** Criteria **and DSE2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

NOTES

this design.

grip DOL=1.60

Cs=1.00: Ct=1.10

design

1)

2)

3)

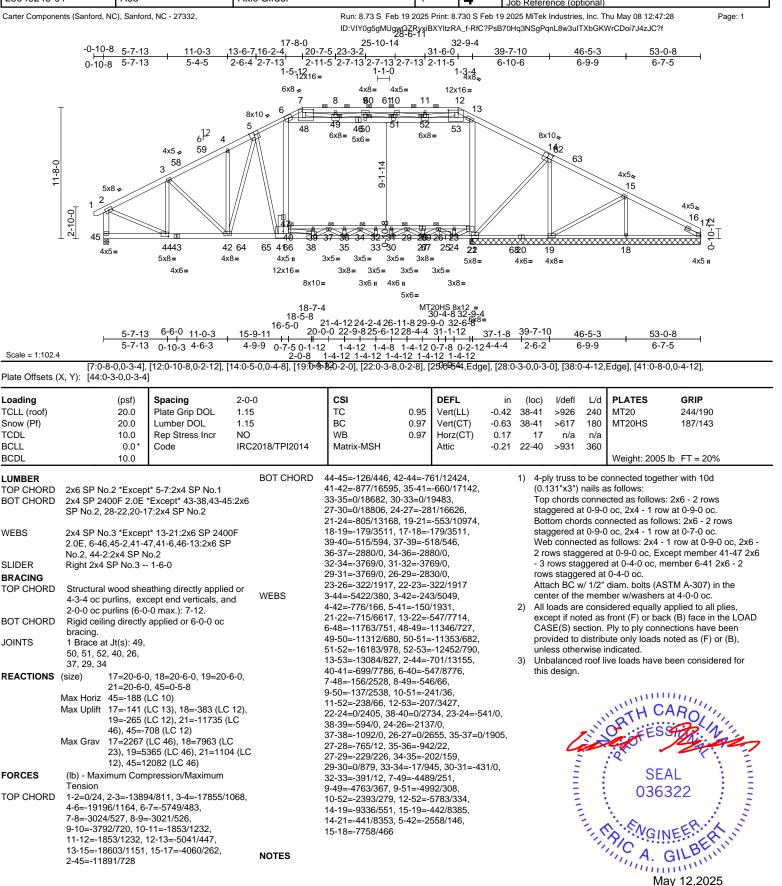
4)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	A04T	Piggyback Base	2	1	Job Reference (optional)	173351076

- 14) One RT4 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 25. This connection is for uplift only and does not consider lateral forces.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard


Run: 8.73 E May 9 2024 Print: 8.730 E May 9 2024 MiTek Industries, Inc. Fri May 09 13:31:35 ID:DGN6a6f8caCKWpHw1clz1BzRCZx-DJSFQTCYRXo5U_HdOJv8StmeFRHImHDGt2THSvzIEC7 Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	A05	Attic Girder	1	4	Job Reference (optional)	173351077

Continued on page 2 WARNING

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	A05	Attic Girder	1	4	Job Reference (optional)	173351077

- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 8) Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated.
 All plates are 2x4 MT20 unless otherwise indicated.
- 10) All plates are 2x4 M 20 unless otherwise indicated.11) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf.
 13) Ceiling dead load (5.0 psf) on member(s). 6-48, 48-49, 49-50, 50-51, 51-52, 52-53, 13-53; Wall dead load (5.0psf) on member(s).13-22, 6-40
- 14) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 39-40, 37-39, 36-37, 34-36, 32-34, 31-32, 29-31, 28-29, 26-28, 23-26, 22-23
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 11735 lb uplift at joint 21.
- 16) N/A

17) N/A

- 18) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 20) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.
- 21) LGT4 Hurricane ties must have four studs in line below the truss.
- 22) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 608 lb down and 52 lb up at 28-8-4, and 9100 lb down and 774 lb up at 16-1-4 on bottom chord. The design/ selection of such connection device(s) is the responsibility of others.
- 23) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft) Vert: 1-2=-60, 2-7=-60, 7-12=-60, 12-17=-60, 45-54=-20, 22-40=-30, 6-48=-10, 48-49=-10, 46-49=-10, 46-50=-10, 50-51=-10, 51-52=-10, 52-53=-10, 13-53=-10 Drag: 13-22=-10, 40-47=-10, 6-47=-10 Concentrated Loads (lb) Vert: 41=-4881 (F), 67=-326 (F) SEAL 036322

May 12,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:28 ID:VIY0g5gMUgwQZRyxiBXYItzRA_f-RtC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	A06	Attic Girder	1	4	Job Reference (optional)	173351078

Carter Components (Sanford, NC), Sanford, NC - 27332, Carter Components (Sanford, NC), Sanford, NC - 27332, Carter Components (Sanford, NC), Sanford, NC - 27332, $-0 \underbrace{10 \cdot 8}_{0-10-8} \frac{5 \cdot 7 \cdot 13}{5 \cdot 13} \underbrace{11 \cdot 0 \cdot 3}_{5 \cdot 4 \cdot 5} \underbrace{13 \cdot 6 \cdot 7}_{2 \cdot 6 \cdot 4} \underbrace{12 \cdot 7 \cdot 13}_{2 \cdot 2 \cdot 1 \cdot 5} \underbrace{23 \cdot 32}_{2 \cdot 1 \cdot 4} \underbrace{13 \cdot 6 \cdot 7}_{2 \cdot 1 \cdot 5} \underbrace{12 \cdot 3 \cdot 2}_{2 \cdot 1 \cdot 5} \underbrace{12 \cdot 15}_{2 \cdot 2 \cdot 1 \cdot 3} \underbrace{12 \cdot 15 \cdot 1 \cdot 3 \cdot 4}_{2 \cdot 1 \cdot 5 \cdot 1 \cdot 3 \cdot 4} \underbrace{6 \cdot 10 \cdot 6}_{6 \cdot 9 \cdot 9} \underbrace{7 \cdot 0 \cdot 5}_{4 \cdot 5 \cdot 7 \cdot 13} \underbrace{13 \cdot 6 \cdot 7}_{2 \cdot 1 \cdot 5} \underbrace{12 \cdot 11 \cdot 5}_{2 \cdot 7 \cdot 1 \cdot 3} \underbrace{12 \cdot 11 \cdot 5}_{2 \cdot 7 \cdot 1 \cdot 3} \underbrace{12 \cdot 11 \cdot 5}_{2 \cdot 7 \cdot 1 \cdot 3} \underbrace{12 \cdot 11 \cdot 5}_{2 \cdot 7 \cdot 1 \cdot 3} \underbrace{12 \cdot 11 \cdot 5}_{2 \cdot 7 \cdot 1 \cdot 3} \underbrace{12 \cdot 11 \cdot 5}_{2 \cdot 7 \cdot 1 \cdot 3} \underbrace{12 \cdot 11 \cdot 5}_{2 \cdot 7 \cdot 1 \cdot 3} \underbrace{12 \cdot 11 \cdot 5}_{4 \cdot 5 \cdot 7 \cdot 1 \cdot 3} \underbrace{12 \cdot 11 \cdot 5}_{4 \cdot 5 \cdot 7 \cdot 1 \cdot 3} \underbrace{12 \cdot 11 \cdot 5}_{4 \cdot 7 \cdot 1 \cdot 7} \underbrace{12 \cdot 11 \cdot 5}_{4 \cdot 7 \cdot 1 \cdot 7} \underbrace{12 \cdot 11 \cdot 5}_{4 \cdot 7 \cdot 1 \cdot 7} \underbrace{12 \cdot 11 \cdot 5}_{4 \cdot 7 \cdot 1 \cdot 7} \underbrace{12 \cdot 11 \cdot 5}_{4 \cdot 7 \cdot 1 \cdot 7} \underbrace{12 \cdot 11 \cdot 5}_{4 \cdot 7 \cdot 1 \cdot 7} \underbrace{12 \cdot 11 \cdot 5}_{4 \cdot 7 \cdot 1 \cdot 7} \underbrace{12 \cdot 11 \cdot 5}_{4 \cdot 7 \cdot 1 \cdot 7} \underbrace{12 \cdot 11 \cdot 5}_{4 \cdot 7 \cdot 1$	Page: 1
$\begin{array}{c} \begin{array}{c} -0 - 10 - 8 & 5 - 7 - 13 \\ 0 - 10 - 10 - 10 \\ 0 - 10 - 10 \\ 0 - 10 - 1$	
$\begin{array}{c} -0-10-8 & 5-7-13 \\ 0-10$	
$1-5-12_{216} = 4x5_{8}$ $12x16_{8} + 4x5_{8} = 12x16_{8} + 4x5_{8} = 3x5_{8} = 3x5_{8} = 3x6_{8} = 3x6_{8} = 3x5_{8} =$	
$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$	
$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$	
$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	
$\begin{array}{c} 4x5 = 60 \\ 3 \\ 59 \\ 60 \\ 7 \\ 7 \\ 47 \\ 3x6 = \\ 4645 \\ 3x6 = \\ 4x6 = \\ 4x8 = \\ 4x8 = \\ 4x8 = \\ 4x8 = \\ 4x5 = \\ 3x5 = \\ 3x8 = \\ 3x5 = \\ 3x$	
$\begin{array}{c} \begin{array}{c} 3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	
$\int_{47}^{5x8} \frac{2}{4x645} = \frac{4645}{4x64} + \frac{44}{65} + \frac{42}{4x6} + \frac{40}{59} + \frac{37}{37} + \frac{55}{53} + \frac{32}{52} + \frac{35}{52} + \frac{52}{52} + \frac{56}{28} + \frac{56}{28$	
$\int_{47}^{10} \int_{47}^{10} \int_{3x6}^{10} \int_{6x8}^{10} \int_{10}^{10} \int_$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4x5 👟 🔄
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
6x8 = 4x8 = 4x5 II 3x5 = 3x5 = 3x5 = 5x6 = MT20HS 3x8 = 4x6 = 12x16 = 3x5 = 3x8 = 3x8 = 3x8 = 3x5 = 3x5 = 0.10	Top I
	6x8=
8x10= 5x6 WB = 5x8=	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
0- <u>5-8 5-7-13 6-6-0 11-0-3 15-9-11 16-5-0 18-7-421-6-8 24-0-4 26-11-8 29-5-0 32-6-8 37-7-0 39-7-10 46-5-3 53-5-8</u> 0-5-8 5-2-5 0-10-3 4-6-3 4-9-9 0-7-5 0-1-121-4-12 1-1-0 1-4-12 1-0-12 1-4-12 4-9-12 2-0-10 6-9-9 7-0-5	
Scale = 1:93.9 2-0-81-6-8 1-4-12 1-6-8 1-4-12 1-4-12	
Plate Offsets (X, Y): [7:0-8-0,0-3-4], [9:0-8-0,0-2-4], [12:0-10-8,0-2-12], [18:Edge,0-2-0], [23:0-3-8,0-2-8], [28:0-3-0,0-3-0], [43:0-8-0,0-4-12], [46:0-3-8,0-3-0]	
Loading (psf) Spacing 2-0-0 CSI DEFL in (loc) I/defl L/d PLATES GR ICLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.99 Vert(LL) -0.49 41-43 >800 240 MT20 244	IP 1/190
Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.73 Vert(CT) -0.74 41-43 >530 180 MT20HS 187	7/143
TCDL 10.0 Rep Stress Incr NO WB 0.87 Horz(CT) 0.21 18 n/a n/a BCLL 0.0* Code IRC2018/TPI2014 Matrix-MSH Attic -0.24 23-42 >809 360	
BCDL 10.0 Weight: 2020 lb FT	= 20%
LUMBER BOT CHORD 46-47=-124/440, 44-46=-731/12075, 1) 4-ply truss to be connected together with TOP CHORD 2x6 SP No.2 *Except* 5-7:2x4 SP 2400F 43-44=-832/16083, 38-43=-686/16693, (0.131"x3") nails as follows:	10d
2.0E 36-38=0/17735, 34-36=0/18049, Top chords connected as follows: 2x6 - 2	
No.2, 42-28,28-23:2x4 SP No.2, 45-41:2x6 25-29=-154/14351, 22-25=-775/12144, Bottom chords connected as follows: 2x6	6 - 2 rows
SP 2400F 2.0E 20-22=-780/16080, 19-20=-737/15458, staggered at 0-9-0 oc, 2x4 - 1 row at 0-9 WEBS 2x4 SP No.3 *Except* 18-19=-737/15458, 40-42=-790/31, Web connected as follows: 2x4 - 1 row at 0-9	at 0-9-0 oc, 2x6 -
6-43,6-52,47-2,43-48,52-13:2x6 SP No.2, 39-40=-2303/0, 37-39=-2303/0, 2 rows staggered at 0-4-0 oc, Except me 13-22:2x6 SP 2400F 2.0E, 46-2:2x4 SP No.2 35-37=-3084/0, 33-35=-3084/0, - 3 rows staggered at 0-4-0 oc, member	
OTHERS 2x4 SP No.3 rows staggered at 0-9-0 oc. SLIDER Right 2x4 SP No.3 1-6-0 26-30=-1186/728, 24-26=-366/3070, Attach BC w/ 1/2" diam. bolts (ASTM A-3	307) in the
BRACING 23-24=-366/3070 center of the member w/washers at 4-0-	
4-4-5 oc purlins, except end verticals, and 4-2-5 oc purlins, except end verticals, and 4-4-5 oc purlins, except and verticals, and 4-2-2-5 oc purlins, except and verticals, and verticals, and verticals, an	ace in the LOAD
BOT CHORD Rigid ceiling (icetly applied or 6-0-0 cc 22-23=-712/6597, 13-23=-513/7232, provided to distribute only loads noted as	
JOINTS 1 Brace at Jt(s): 42. 51-53=-11084/660, 53-54=-15528/928, 3) Unbalanced roof live loads have been co	onsidered for
51, 52, 53, 54, 26, 50-54=-12362/7/1, 13-50=-12999/808, this design.	
REACTIONS (size) 18= Mechanical, 22=0-5-8, 8-51=-469/63, 9-51=-4230/346,	
47=0-5-8 Max Horiz 47=-190 (LC 10) Max Horiz 47=-190 (LC 10) 10-53=-108/93, 10-54=-2535/279,	Sille
23-22=0/1032, 24-22=-209/0, 22-20=-1/2/0,	Nº1
Max Grav 18=8904 (LC 46), 22=793 (LC 12), 26-29=0/2288, 38-40=0/1572, 28-29=-733/20,	1
FORCES (Ib) - Maximum Compression/Maximum 37-38=-363/251, 30-31=0/1377, 36-37=0/559, SFAL	
Tension 31-32=-542/0, 35-36=-323/0, 31-33=-172/5, SEAL TOP CHORD 1-2=0/24, 2-3=-13498/782, 3-4=-17368/1033, 33-34=-22/125, 41-42=0/2662, 40-41=-885/0, 036322	: E
4-6=-18572/1120, 6-7=-6007/480, 15-22=-629/212, 15-20=-254/167, 7-8=-3098/528, 8-9=-3095/527, 16-20=-135/835, 16-19=-34/151,	1 3
9-10=-3730/713, 10-11=-1716/1437, 5-44=-2270/112	NA S
NOTES 13-15=-17758/1088, 15-16=-17909/1006, 16-18=-17623/896, 2-47=-11551/702	361,111
A. GIV	1111
May 12,	37

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and RCSI Building Component Safety Information, available from the Structural Building Component Association (www.shearonponent Scom) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	A06	Attic Girder	1	4	Job Reference (optional)	173351078

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 8) Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated.
 All plates are 2x4 MT20 unless otherwise indicated.
- 10) All plates are 2x4 M 20 unless otherwise indicated.11) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf.
 13) Ceiling dead load (5.0 psf) on member(s). 6-49, 49-51, 51-52, 52-53, 53-54, 50-54, 13-50; Wall dead load (5.0psf) on member(s).6-42, 13-23
- 14) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 40-42, 39-40, 37-39, 35-37, 33-35, 32-33, 30-32, 28-30, 26-28, 24-26, 23-24
- 15) Refer to girder(s) for truss to truss connections.
- 16) Bearing at joint(s) 47 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 17) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 5383 lb uplift at joint 22 and 421 lb uplift at joint 18.
- 18) LGT4-SDS3 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 47. This connection is for uplift only and does not consider lateral forces.
- 19) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 20) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 21) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.
- 22) LGT4 Hurricane ties must have four studs in line below the truss.
- 23) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 9100 lb down and 774 lb up at 16-1-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 24) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (lb/ft) Vert: 1-2=-60, 2-7=-60, 7-12=-60, 12-18=-60, 47-55=-20, 23-42=-30, 6-49=-10, 49-51=-10, 51-52=-10, 52-53=-10, 53-54=-10, 50-54=-10,
 - 13-50=-10 Drag: 42-48=-10, 6-48=-10, 13-23=-10 Concentrated Loads (lb)
 - Vert: 43=-4881 (F)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:29 ID:pGeZvt1?IwruiNEY_xH4fkzRAp7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

SEAL

036322

May 12,2025

Job		Truss		Truss Type		Qty	Ply	897 Serenity-Roof-B326-Blakestone B
25040246-0)1	A07		Attic		1	1	173351079
Carter Compone			d, NC - 27332.	/	Run: 8.73 S Feb		.730 S Feb 1	Job Reference (optional) 9 2025 MiTek Industries, Inc. Thu May 08 12:47:30 Page: 1
	-0-10-8 	<u>8-4-0</u> 8-4-0	<u>16-2</u> 16-2 7-10		ID:1d5INYb_Snp -5 25-10-14 -23-3-2 2-7-13 2-7-13 2-7	igifH0e1reGzRB 6-11 32 31-6-0	HO-RfC?PsB -10-7 39	I-4-14 46-3-13 53-5-8 I-6-7 6-10-14 7-1-11
	5x8 = 1 42 MT18HS 3x10	52	6^{12} 4x6 = 4x5 = 354^{55} 53 41 5x8 = 62	4x8 ≈ 6 5 43 43 43 43 43 43 40 39 36 4x6= 4x6= 3x8 5x8 ⊪ 5x8=	3x10= 3x5= 4x5 II	10 1 10 1 14 48 44 5x8 3x6 25 24 22 25 23 20	1 12 5 12 219 219 12x16=	8x10x 59359 60 4x5x 14 14 15 15 7 7 7 7 7 7 7 7
Scale = 1:97.7 Plate Offsets (<u>13-11-0</u> 5-7-0], [6:0-5-8,0-3-0], [11], [41:0-3-8,0-2-8]	16-2-4 19-2-8 2-3-4 1 0-2-12	22-0-0 25-6-12 20 + + + + + + + + + + + + + + + + + + +	2 1-4-12 1-4 -4-120-1-0 (6-8 <u> 37-6</u> 12 4-9-)-2-12	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.97 Vert 0.95 Vert 0.94 Horz Attic	(LL) -0 (CT) -0 ±(CT) 0	in (loc) I/defl L/d PLATES GRIP .47 31-33 >832 240 MT20 244/190 .77 31-33 >509 180 MT18HS 244/190 .15 15 n/a n/a .32 21-38 >604 360 Weight: 454 lb FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS	No.2, 18-15 2x4 SP No. No.2, 5-46,41-2,2	1 *Except 5,40-23:2x 3 *Except 20-21,36-3 3-32,28-2	t* 38-26,23-18:2x4 5 k4 SP 2400F 2.0E t* 5-39,12-19:2x6 SF 38,20-24,36-35,25-2 7,31-32,46-12:2x4 S No 1	9 4,33-	 41-42=-107/219, 3 36-39=0/3348, 33- 28-31=0/6096, 25- 19-20=-2308/0, 17 16-17=0/4042, 15- 37-38=-1137/0, 35 34-35=-3123/0, 32 30-32=-3174/0, 29 27-29=-3174/0, 24 	36=0/5184, 3 ⁻ 28=0/4799, 20 -19=-2112/0, 16=-63/4042, -37=-1137/0, -34=-3123/0, -30=-3174/0,	-33=0/630 -25=0/181	
WEDGE BRACING TOP CHORD	Right: 2x4 s Structural v 2-9-9 oc pu	SP No.3 wood shea urlins, exc	athing directly applie cept end verticals, ar		22-24=0/3308, 21- 3-41=-681/78, 3-33 38-39=-27/336, 5- 19-21=-1401/162, 13-21=-575/314, 1	22=0/3308 9=-149/358, 38=0/1190, 12-21=-46/114	40,	 DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
BOT CHORD WEBS JOINTS		g directly hidpt Jt(s): 45,	-8 max.): 6-11. applied or 2-2-0 oc 3-39, 13-21, 12-48		14-17=-554/207, 1 5-43=-2080/21, 43 45-47=-1596/1329 44-48=-2469/25, 1 2-41=0/3475, 6-43 6-45=-342/1277, 7	4-16=0/243, -45=-2006/21, , 47-48=-1798 2-44=-2566/2 =0/354, 11-44 -45=-138/122,	/1222, 5, =0/450,	 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding.
REACTIONS	(size) 1 Max Horiz 4 Max Uplift 1 Max Grav 1	42=0-5-8 42=-190 (l 19=-53 (L0 15=2298 (anical, 19=0-5-8, LC 12) C 15), 42=-29 (LC 1- (LC 48), 19=1791 (L 001 (LC 38)	,	8-45=-874/122, 8- 9-47=-6/131, 9-48 11-48=-314/1439, 36-38=0/1559, 20- 20-24=-2166/0, 35 24-25=0/2106, 33- 33-34=-185/0, 25-2	=-923/115, 10 20-21=0/2701 22=-352/0, 36 -36=-1293/0, 35=0/1051, 25	48=-170/78 , -37=-230/0	CRIFESSION N
FORCES	(lb) - Maxin Tension	num Com	pression/Maximum		32-33=-302/182, 2 31-32=-365/27, 28	7-28=0/1531,)-31=-6/96	E E SEAL
TOP CHORD	1-2=0/22, 2 5-6=-2145/ 7-8=-2982/ 9-10=-2740 11-12=-177	100, 6-7= 360, 8-9=)/396, 10- 76/151, 12		NOTES 1) Unbalan this desig	17-21=0/5333 ced roof live loads hav			036322 MGINEER A. GILBER

May 12,2025

TRENCIO A MITEK Attiliate

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	A07	Attic	1	1	Job Reference (optional)	173351079

- 8) All plates are 2x4 MT20 unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom 9)
- chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf. 11) Ceiling dead load (5.0 psf) on member(s). 5-43, 43-45, 45-46, 46-47, 47-48, 44-48, 12-44; Wall dead load (5.0psf) on member(s).5-38, 12-21
- 12) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 37-38, 35-37, 34-35, 32-34, 30-32, 29-30, 27-29, 26-27, 24-26, 22-24, 21-22
- 13) Refer to girder(s) for truss to truss connections.
- 14) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 42 and 19. This connection is for uplift only and does not consider lateral forces.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 17) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Run; 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:30 ID:1d5INYb_SnpjqifH0e1reGzRBHO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Component Component Advancing Component Advancing Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	A08	Attic	6	1	Job Reference (optional)	173351080

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Thu May 08 12:47:31 Page: 1 ID:h5TFO2tlZyfWTvVspKto8_zRQij-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 28-6-11 20-7-5 17-8-0 25-10-14 32-10-7 17-6-14 8-4-0 16-2-4 31-6-0 39-4-14 46-3-13 53-5-8 ÷. 2-7-132-7-132-7-132-11-5 8-4-0 7-10-4 6-6-7 6-10-14 7-1-11 1-4-10 0₁1-2 722411-5 1-4-7 6x8= 6x8. 4x8 🞜 4x8= 4x5= 6x8= 0-0-0 59 558 7 9 10 6¹² -10-8 11 J. din 📾 4x6 🚽 42 44 45 46 47 43 4x5 🞜 8x10 2^{53⁵⁴} 5x8= 5x8= 3x6 562 51 52 58 11-8-0 11-7-7 9-1-14 11-7-7 4x5. 13 5x8 🖌 59 2-10-0 ÷. ¥ ÷, 28 11 24 22 19 2108 40 60 39 38 35 32 30 27 17 16 15 4x5 =5x8= 3x5= 3x8= 5x8= 4x6 =4x6= 3x5= 5x6 =3x6= 12x16= 3x5= 4x5 🛛 4x8= 8x10= 5x8 II 3x10= 5x8= 5x6 II 3x8= 6x10= ^{5x10=}29-10-032-9-4 17-9-12 16-5-0 20-7-423-4-12 26-11-829-94532-6-8 16-2-4 19-2-8 22-0-0 25-6-12 28-4-431-1-12 <u>37-6-8</u> 39-4-14 8-4-0 13-11-0 46-3-13 53-5-8 8-4-0 5-7-0 3-4 1-4-12 1-4-12 1-4-12 0 1-4-12 1-3-12 4-9-4 1-10-6 6-10-14 7-1-11 1-4-12 1-4-12 1-1-4-12 2-2-0 Scale = 1:105.6 0-2-12 [5:0-5-8,0-3-0], [10:0-5-8,0-3-0], [12:0-5-0,0-4-8], [14:Edge_0-0-9], [16:0-3-12,0-3-4], [0+8:0-60+2;0-3-0], [25:0-3-0,0-3-0], [27:0-3-8,0-1-8], [37:Edge,0-2-4], Plate Offsets (X, Y): [40:0-3-8,0-2-8], [47:0-4-0,0-2-0] DEFL 2-0-0 CSI PLATES GRIP (psf) Spacing in (loc) l/defl I/d TCLL (roof) Plate Grip DOL тс -0.47 30-32 >836 MT20 244/190 20.0 1.15 0.66 Vert(LL) 240 20.0 Lumber DOL 1.15 BC 0.95 Vert(CT) -0.76 30-32 >512 180 Snow (Pf) Rep Stress Incr YES WB 10.0 0.93 Horz(CT) 0 15 14 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MSH Attic -0.32 20-37 >605 360 10.0 Weight: 453 lb FT = 20% LUMBER BOT CHORD 40-41=-104/246. 38-40=0/3385 Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) 35-38=0/3320, 32-35=0/5160, 30-32=0/6293, Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. TOP CHORD 2x6 SP No.2 27-30=0/6093, 24-27=0/4802, 19-24=0/1826, II; Exp B; Enclosed; MWFRS (envelope) exterior zone BOT CHORD 2x4 SP No.1 *Except* 37-25,22-17:2x4 SP 18-19=-2291/0, 16-18=-2098/0, and C-C Exterior(2E) 0-2-12 to 5-6-14, Interior (1) 5-6-14 No.2, 17-14,39-22:2x4 SP 2400F 2.0E 2x4 SP No.3 *Except* 4-38,11-18,41-1:2x6 15-16=0/4026, 14-15=-64/4026 to 10-1-6, Exterior(2R) 10-1-6 to 39-0-10, Interior (1) 36-37=-1129/0, 34-36=-1129/0, 39-0-10 to 48-1-6, Exterior(2E) 48-1-6 to 53-5-8 zone;C-SP No.2. 4-45.40-1.19-20.35-37.19-23.35-34.24-23.32-33-34=-3123/0, 31-33=-3123/0, C for members and forces & MWFRS for reactions 34,24-26,32-31,27-26,30-31,45-11:2x4 SP 29-31=-3183/0, 28-29=-3183/0, shown; Lumber DOL=1.60 plate grip DOL=1.60 26-28=-3183/0, 23-26=-704/942, No.2. 20-16:2x4 SP No.1 21-23=0/3270, 20-21=0/3270 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Right: 2x4 SP No.3 WEBS 2-40=-705/62, 2-38=-131/400, Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate BRACING 37-38=-45/325, 4-37=0/1181, DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; TOP CHORD Structural wood sheathing directly applied or 18-20=-1397/105, 11-20=-46/1135, Cs=1.00; Ct=1.10 2-9-12 oc purlins, except end verticals, and 12-20=-570/324, 12-16=-271/93, 4) Unbalanced snow loads have been considered for this 2-0-0 oc purlins (3-9-9 max.): 5-10. 13-16=-555/210. 13-15=0/243. desian. BOT CHORD Rigid ceiling directly applied or 2-6-0 oc 4-42=-1878/67 42-44=-1804/66 Provide adequate drainage to prevent water ponding. 5) bracing. All plates are 2x4 MT20 unless otherwise indicated. 44-46=-1587/1326, 46-47=-1783/1225 6) 1 Row at midpt 2-38, 12-20, 11-47 43-47=-2448/0 11-43=-2544/0 1-40=0/3450 7) This truss has been designed for a 10.0 psf bottom 1 Brace at Jt(s): 44, 5-42=0/324. 10-43=0/447. 5-44=-341/1085. chord live load nonconcurrent with any other live loads. 45, 46, 47, 23, 34, 6-44=-46/157, 7-44=-845/121, 7-45=0/60, 26, 31 7-46=-279/3, 8-46=0/129, 8-47=-919/115, **REACTIONS** (size) 14= Mechanical, 18=0-5-8, ORTH 9-47=-170/78. 10-47=-314/1436. 41=0-5-8 CAR 19-20=0/2696, 35-37=0/1556, 19-21=-351/0, Max Horiz 41=-222 (LC 15) 35-36=-230/0, 19-23=-2163/0, 14=2293 (LC 47), 18=1786 (LC Max Grav 34-35=-1298/0, 23-24=0/2102, 32-34=0/1056, 39), 41=2957 (LC 37) 24-25=-319/0, 32-33=-185/0, 24-26=-1402/0,

- FORCES (Ib) - Maximum Compression/Maximum 31-32=-307/178, 26-27=0/1523 Tension 30-31=-356/12, 27-28=-531/0, 29-30=-2/94, TOP CHORD 1-2=-3909/0, 2-4=-4057/0, 4-5=-2341/100, 16-20=0/5300 5-6=-3002/359, 6-7=-2993/361, NOTES 7-8=-3600/503, 8-9=-2737/395, 1) 9-10=-2737/395, 10-11=-1774/149, this design. 11-13=-4089/46, 13-14=-4643/46, 1-41 = -2957/19
 - Unbalanced roof live loads have been considered for

minin May 12,2025

GI

SEAL

036322

UTITITITI I

ontinued on page 2

Loading

TCDI

BCLL

BCDL

WEBS

WEDGE

WEBS

JOINTS

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

CHARLEN WARMEN

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	A08	Attic	6	1	Job Reference (optional)	173351080

- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Ceiling dead load (5.0 psf) on member(s). 4-42, 42-44, 44-45, 45-46, 46-47, 43-47, 11-43; Wall dead load (5.0psf) on member(s).4-37, 11-20
- Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 36-37, 34-36, 33-34, 31-33, 29-31, 28-29, 26-28, 25-26, 23-25, 21-23, 20-21
- 11) Refer to girder(s) for truss to truss connections.12) This truss is designed in accordance with the 2018
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 13) Graphical purlin representation does not depict the size
- or the orientation of the purlin along the top and/or bottom chord.
- 14) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:31 ID:h5TFO2tlZyfWTvVspKto8_zRQij-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

A. GILb.

With Hilling

MILLIN

SEAL 036322

ORT

COLUMN STREET

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	A09	Attic Supported Gable	1	1	Job Reference (optional)	173351081

Run: 8.73 E May 9 2024 Print: 8.730 E May 9 2024 MiTek Industries, Inc. Fri May 09 13:34:15 Carter Components (Sanford, NC), Sanford, NC - 27332, Page: 1 ID:8kdnaNVfrXy7X5iJovJ26tzRBB2-?Hh6DX9YX?4FJk4aKdlvUqxCcLRJ_8TzubzJb4zIE9c 28-6-11 20-7-5 17-8-0 25-10-14 32-10-7 17-6-14 8-4-0 16-2-4 23-3-2 31-6-0 46-3-13 53-5-8 2-7-13 2-7-13 2-7-13 2-11-5 1-4-10 8-4-0 7-10-4 13-5-6 7-1-11 1-4-7 0₁1-2 1₂2₄11-5 6x8= 6x8. 4x8 🚽 6x8= 4x5 =110 8114 15 16 6-0-0 13 10 17 Ŧ ₽ a i 18 9 4x6 ≠ 6¹² 69 72 4 73 70 19 4x6 8 2021832 8423 б 5x8= 12x16 II 5x8= 5⁸⁰ 4x5 II 78 ⁴⁷⁹ 11-8-0 11-7-7 3 24 25 2 3x5 🛛 856 10-0 2 66 65 64 62 660 59 50 53 52 50 43 42 39 38 37 36 35 30 67 63 55 49 47 46 34 33 32 31 29 3x5 II 3x6= 3x6= 5x8 II 3x5= 3x5= 5x6= 5x8 II 4x5= 3x8= 3x8= 3x5= 3x5= 3x5= 3x5= ^{3x8}= ^{3x8}= 29-10-0 32-9-4 29-10-0 32-9-4 26-11-8 29-9-0 32-6-8 16-2-4 2-3-4 13-11-0 37-6-8 46-3-13 8-4-0 53-5-8 8-4-0 5-7-0 4-9-4 8-9-5 7-1-11 Scale = 1:102.3 Plate Offsets (X, Y): [7:0-2-6,Edge], [11:0-5-8,0-3-0], [16:0-5-12,0-3-0], [40;Egge20-2-4], [46:0-3-0,0-3-0], [58:Edge,0-2-4], [72:Edge,0-3-14] Loading 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) Spacing in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.45 Vert(LL) -0.01 10 >999 240 MT20 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.19 Vert(CT) -0.01 10 >999 180 TCDL 10.0 Rep Stress Incr WB YES 0.64 Horz(CT) 0.02 28 n/a n/a BCLL 0.0 Code IRC2018/TPI2014 Matrix-MSH Weight: 503 lb BCDL 10.0 FT = 20% LUMBER Max Uplift 28=-48 (LC 14), 29=-101 (LC 15), TOP CHORD 1-68=-88/30, 1-2=-63/32, 2-3=-65/69, 30=-28 (LC 15), 31=-47 (LC 15), 3-4=-77/106, 4-5=-88/139, 5-6=-101/178, 2x6 SP No.2 TOP CHORD 32=-41 (LC 15), 33=-44 (LC 15), 6-8=-120/220, 8-9=-135/263, 9-10=-114/295, BOT CHORD 2x4 SP No.2 *Except* 58-46:2x4 SP No.3 10-11=-941/255, 11-12=-2157/447, 34=-44 (LC 15), 35=-45 (LC 15), WEBS 2x4 SP No.3 *Except* 10-59,17-39:2x6 SP No.2, 10-72,72-17:2x4 SP No.2 37=-49 (LC 15), 38=-131 (LC 40), 12-13=-2150/448. 13-14=-2800/577. 14-15=-2130/440, 15-16=-2130/440, 39=-44 (LC 10), 59=-13 (LC 10), OTHERS 2x4 SP No.3 60=-134 (LC 40), 62=-50 (LC 14), 16-17=-894/238, 17-18=-122/311, BRACING 63=-45 (LC 14), 64=-43 (LC 14), 18-19=-143/298, 19-20=-137/273, TOP CHORD Structural wood sheathing directly applied or 65=-44 (LC 14), 66=-37 (LC 14), 20-22=-121/250, 22-23=-109/226, 6-0-0 oc purlins, except end verticals, and 67=-76 (LC 14), 68=-20 (LC 15), 23-24=-102/203, 24-25=-122/180, 2-0-0 oc purlins (4-1-8 max.): 11-16. 75=-48 (LC 14) 25-26=-147/158, 26-27=-170/133, BOT CHORD Rigid ceiling directly applied or 10-0-0 oc Max Grav 28=161 (LC 28), 29=234 (LC 45), 27-28=-220/125 bracing, Except: 30=148 (LC 22), 31=165 (LC 41), 6-0-0 oc bracing: 48-51. 32=149 (LC 22), 33=172 (LC 45), WEBS 1 Row at midpt 10-58, 17-40, 18-38, 34=219 (LC 45), 35=235 (LC 45), 19-37, 9-60, 8-62 37=208 (LC 45), 38=113 (LC 53), JOINTS 1 Brace at Jt(s): 44, 39=1108 (LC 40), 42=333 (LC 20), 55, 47, 52, 71, 72, 45=369 (LC 20), 48=319 (LC 20), 73, 74 51=319 (LC 20), 53=368 (LC 20), REACTIONS (lb/size) 28=122/53-5-8, 29=231/53-5-8, 56=329 (LC 20), 59=1127 (LC 40), TH CAD 30=148/53-5-8, 31=164/53-5-8, 60=121 (LC 51), 62=222 (LC 43), 32=149/53-5-8, 33=161/53-5-8, 63=242 (LC 43), 64=231 (LC 43), 34=160/53-5-8, 35=169/53-5-8, ORTH 65=181 (LC 43), 66=165 (LC 21), 37=127/53-5-8, 38=-21/53-5-8, 67=164 (LC 43), 68=122 (LC 21), 39=915/53-5-8, 42=156/53-5-8, 75=161 (LC 28) 45=138/53-5-8, 48=121/53-5-8, FORCES (Ib) - Maximum Compression/Maximum 51=121/53-5-8, 53=135/53-5-8, Tension 56=148/53-5-8, 59=937/53-5-8, Stran and stranger WITTER PARTY 60=-19/53-5-8, 62=142/53-5-8, SEAL 63=170/53-5-8, 64=160/53-5-8, 65=157/53-5-8, 66=163/53-5-8, 036322 67=152/53-5-8, 68=115/53-5-8, 75=122/53-5-8 Max Horiz 68=-221 (LC 15)

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

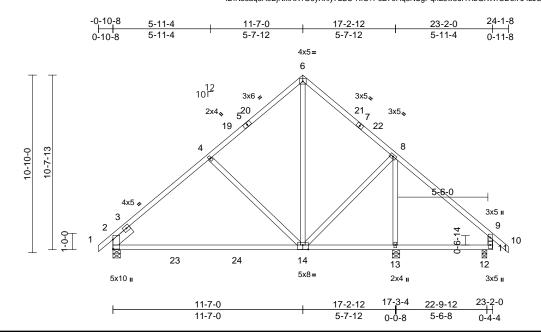
818 Soundside Road

Edenton, NC 27932

G minim May 12,2025

Job		Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	170054004
25040246-0 ⁻	1	A09	Attic Supported Gable	1	1	Job Reference (optional)	173351081
Carter Componer	nts (Sanford, NO	C), Sanford, NC - 27332,	Run: 8.7	3 E May 9 2024 Print: 8.	730 E May	9 2024 MiTek Industries, Inc. Fri May 09 13:34:15	Page: 2
BOT CHORD	65-66=-94/2 63-64=-94/2 60-62=-94/2 56-59=-102 51-53=-32/1 45-48=-32/1 37-38=-86/2 32-33=-86/2 30-31=-86/2 28-29=-86/2 28-29=-86/2 50-52=-36/1	11, 66-67=-94/211, 11, 64-65=-94/211, 11, 62-63=-94/211, 11, 59-60=-94/211, 1212, 53-56=-51/143, 30, 48-51=-57/107, 29, 42-45=-48/140, 99, 38-39=-86/211, 11, 35-37=-86/211, 11, 35-34=-86/211, 11, 31-32=-86/211, 11, 29-30=-86/211, 11, 29-30=-86/211, 11, 57-58=-11/89, 55-57=-1 10, 52-54=-28/110, 04, 49-50=-36/104, 04, 44-7=-30/113, 41-44=-	 12) Bottom chord live load (chord dead load (5.0 ps 55-57, 54-55, 52-54, 50 41-44, 40-41 13) N/A 14) This truss is designed in International Residentia R802.10.2 and reference 1/89, 15) Graphical purlin represe or the orientation of the bottom chord. 	40.0 psf) and addition f) applied only to roon -52, 49-50, 47-49, 46- n accordance with the I Code sections R502 ed standard ANSI/TP entation does not depi- purlin along the top an	al bottom n. 57-58, 47, 44-46, 2018 .11.1 and I 1. ct the size		
WEBS	$\begin{array}{l} 40\text{-}41\text{=-}11/8\\ 5\text{-}64\text{=-}191/6\\ 10\text{-}58\text{=-}110/\\ 17\text{-}40\text{=-}109\\ 10\text{-}69\text{=-}55/7\\ 71\text{-}74\text{=-}439/\\ 70\text{-}73\text{=-}40/6\\ 18\text{-}38\text{=-}74/1\\ 20\text{-}35\text{=-}195/\\ 23\text{-}33\text{=-}131/\\ 26\text{-}30\text{=-}117/\\ 9\text{-}60\text{=-}81/17\\ 9\text{-}60\text{=-}81/17\\ 9\text{-}60\text{=-}81/17\\ 4\text{-}65\text{=-}142/6\\ 40\text{-}42\text{=-}103/\\ 56\text{-}57\text{=-}202/\\ 44\text{-}45\text{=-}124/\\ 53\text{-}54\text{=-}180/\\ 16\text{-}57\text{=-}202/\\ 44\text{-}45\text{=-}124/\\ 53\text{-}54\text{=-}180/\\ 12\text{-}71\text{=-}180/\\ 12\text{-}71\text{=-}180/\\ 14\text{-}74\text{=-}23/5\\ 13\text{-}71\text{=-}643/\\ 14\text{-}73\text{=-}713/\\ \end{array}$	4 8, 58-59=-1098/31, 4/111, 39-40=-1081/60, 1/149, 25-31=-129/70, 13, 69-71=-52/703, 12717, 73-74=-445/2770, 128, 17-70=-43/635, 70, 19-37=-168/73, 169, 22-34=-179/67, 168, 24-32=-118/63, 157, 27-29=-186/117, 4, 8-62=-182/74, 6-63=-2011, 7, 3-66=-126/64, 2-67=-134 10, 56-58=-88/14, 41-42=-2 10, 42-44=-112/19, 55-56=-1 10, 51-52=-101/0, 48-49=-21 10, 51-52=-101/0, 48-49=-21 10, 51-52=-101/0, 48-49=-21 10, 51-52=-101/0, 48-49=-21 10, 11-69=-32/18, 16-70=-27 52, 13-72=-1/25, 15-73=-23 2, 11-71=-273/1476, 138, 13-74=-61/155, 146, 16-73=-289/1551	LOAD CASE(S) Standard (69, (93, 02/0, 18/21, 0/0, 1/0, 8/0, (19, 6/65,				
 this design. Wind: ASC Vasd=103rr II; Exp B; E and C-C Es to 10-1-6, E 39-0-10 to - C for memt shown; Lur Truss desig only. For s see Standa or consult c TCLL: ASC Plate DOL= DOL=1.15) 	E 7-16; Vult= nph; TCDL=6 nclosed; MW terior(2E) 0- Exterior(2R) 1 48-1-6, Exter pers and force nber DOL=1.1 gned for wind tuds exposed rd Industry G qualified build E 7-16; Pr=2 =1.15); Pf=20 ; Is=1.0; Rou	ds have been considered fo 130mph (3-second gust) .0psf; BCDL=6.0psf; h=25ft; FRS (envelope) exterior zor 1-12 to 5-5-14, Interior (1) 5- 0-1-6 to 39-0-10, Interior (1) ior(2E) 48-1-6 to 53-5-8 zonn es & MWFRS for reactions 60 plate grip DOL=1.60 loads in the plane of the true to wind (normal to the face iable End Details as applicad ing designer as per ANSI/TF 0.0 psf (roof LL: Lum DOL=: 0.0 psf (Lum DOL=1.15 Plate gh Cat B; Fully Exp.; Ce=0.5	Cat. e 5-14 s;C- ss , , ole, 11. .15				
 design. 6) Provide adi 7) All plates a 8) Gable stud: 9) This truss b chord live li 10) * This truss on the botti 3-06-00 the botti 3-06-00 the dati chord and a 11) Ceiling dea 71-72, 72-7 	d snow loads equate draina re 2x4 MT20 s spaced at 2 has been des bad nonconce has been de bm chord in a by 2-00-00 v by 2-00-00 v d load (5.0 p	igned for a 10.0 psf bottom urrent with any other live loa signed for a live load of 20.0 Il areas where a rectangle vide will fit between the botto mbers. sf) on member(s). 10-69, 69 73, 17-70; Wall dead load	l. ds. psf			SEA 0363	EER. Kuin

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



ENGINEERING B

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	B01	Common	1	1	Job Reference (optional)	173351082

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:32 ID:Nseaq6A9EjNfxKX1O6yXnly7LSU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

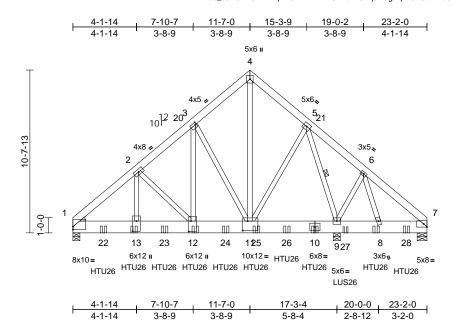
Page: 1

Scale = 1:70.3

Plate Offsets (X,	Y):	[14:0-4-0,0-3-4]
-------------------	-----	------------------

			-										
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.65	Vert(LL)		14-17	>439	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.86	Vert(CT)	-0.76	14-17	>271	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.51	Horz(CT)	0.07	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2	014	Matrix-MSH								
BCDL	10.0											Weight: 133 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.3 Left 2x6 SP No.2 Structural wood she 5-6-9 oc purlins, ex Rigid ceiling directly bracing.	athing directly applied cept end verticals. applied or 10-0-0 oc 213) 213) 214), 12=-101 (LC 15 C 14) 25), 12=496 (LC 26).	Plat DOU Cs= 4) Unb desi loac 5) This loac over 6) This choi 7) * Th on t 3-06 choi 8) One	e DOL=1 =1.15); 1.00; Ct= alanced gn. truss ha of 12.0 hangs n truss ha d live loa is truss h he bottor 6-00 tall k d and ar H2.5A \$	7-16; Pr=20.0 psf .15); Pf=20.0 psf (s=1.0; Rough Cat =1.10 snow loads have b s been designed f psf or 1.00 times f fon-concurrent with s been designed ad nonconcurrent v as been designed n chord in all areas by 2-00-00 wide wi y other members, Simpson Strong-Tie d to connect truss	(Lum DC B; Fully been con- for great lat roof I n other li for a 10. with any I for a liv s where ill fit betw with BC e conne	DL=1.15 Plate Exp.; Ce=0.5 nsidered for the er of min roof pad of 20.0 ps ve loads. 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf ctors); live sf on ds.)psf om					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	UPL	IFT at jt(s) 2 and 13. This of the state	connecti							
TOP CHORD	1-2=0/34, 2-4=-1149 6-8=-721/180, 8-9=- 9-11=-394/143 2-13=-251/724, 12-1	357/114, 9-10=0/42, 3=0/198, 11-12=0/19	9) H10 con This 8 late	A Simps nect trus connect al forces	on Strong-Tie con s to bearing walls o ion is for uplift only	nectors due to U y and do	PLIFT at jt(s) bes not consid	12.				Minimum	Poll
WEBS	6-14=-104/474, 8-14 4-14=-398/238	=-48/407, 8-13=-824	, 10) 1110		designed in accord Residential Code			nd			5	ATT	
NOTES					nd referenced stan			nu		/	5	U: EESS	Of the
	ed roof live loads have	been considered for			Standard					6	Z		MIL
this design 2) Wind: ASC Vasd=103 II; Exp B; and C-C E to 8-7-0, E to 21-1-8, left and rig exposed;C	n. CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; Bf Enclosed; MWFRS (er Exterior(2E) -0-10-8 to : Exterior(2E) -0-10-8 to : Exterior(2E) 21-1-8 to ght exposed ; end vertii shown; Lumber DOL="	(3-second gust) CDL=6.0psf; h=25ft; (welope) exterior zone 2-1-8, Interior (1) 2-1: -7-0, Interior (1) 14-7 24-1-8 zone; cantilev cal left and right prces & MWFRS for	Cat. 9 -8 -0							10000000000000000000000000000000000000		SEA 0363	22 EERER III

left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


May 12,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut beformation, available from the Structure Review Component Advancement description (www.tpinst.org) 818 Soundside Road Edenton, NC 27932 and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	B02	Common Girder	1	2	Job Reference (optional)	173351083

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:32 ID:iFFKd9_s5HOVK9vBFwqTAGzRAMn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:75.4		4-1-14	3-0-9	3-0-9
Plate Offsets (X, Y):	[1:Edge,0-2-5], [3:0-0-12,0-1-12], [11:0-	4-0,0-7-8], [12	::0-8-4,0-1-12], [13:0-8-0,0-3-0]

Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.28 0.34 0.96	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.16 0.02		l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	4-9-8 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt	athing directly applie applied or 6-0-0 oc 5-9 7=0-7-12, 9=0-5-8 C 8) C 12), 7=-206 (LC 1: C 13) C 5), 7=686 (LC 19)	2) 2), 3)	(0.131"x3") r Top chords of staggered at Bottom chord staggered at Web connec Except mem member 3-12 All loads are except if note CASE(S) see provided to of unless othern Unbalanced this design.	ds connected as fc 0-5-0 oc. ted as follows: 2x4 ber 2-13 2x4 - 2 rc 2 2x4 - 1 row at 0-7 considered equall ed as front (F) or b ction. Ply to ply con distribute only load wise indicated. roof live loads hav 7-16; Vult=130mp	vs: 2x6 - illows: 2 - 1 row ws stag 7-0 oc. y applie ack (B) anection s noted e been o h (3-sec	2 rows x10 - 2 rows at 0-9-0 oc, gered at 0-7-(d to all plies, face in the LC s have been as (F) or (B), considered for cond gust)	DAD	con This late 11) This Inte R80 12) Use 14- spa enc bott 13) Use Tru con 14) Use 14- 14-	anect trus s connect ral forces s truss is ernationa 02.10.2 d e Simpso 10dx1 1, aced at 2 1 to 15-1 tom choi e Simpso ss) or ec innect trus e Simpso 10dx1 1,	ss to b ction is s. s desig al Resid and ref on Stro 0-0 to rd. on Stro quivale ss(es) on Stro 2 Trus	earing walls due for uplift only and ned in accordanc dential Code sect erenced standard ng-Tie HTU26 (2 ss, Single Ply Gir c max. starting at connect truss(es) mg-Tie LUS26 (4 nt at 17-10-0 for to back face of bo ng-Tie HTU26 (1 ss) or equivalent s	ors recommended to to UPLIFT at jt(s) 9. d does not consider eve with the 2018 ions R502.11.1 and d ANSI/TPI 1. 0-10d Girder, der) or equivalent 2-0-0 from the left to back face of -10d Girder, 3-10d m the left end to obtom chord. 0-16d Girder, spaced at 2-0-0 oc
F ORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=-9953/211, 2-3=	=-7412/201,	400	II; Exp B; En cantilever lef	bh; TCDL=6.0psf; l closed; MWFRS (e t and right expose d; Lumber DOL=1.	envelope d ; end \	e) exterior zon vertical left an	ie; d	con 15) Fill 16) LG	inect trus all nail h T2 Hurrio	ss(es) oles w	to back face of bo here hanger is in	contact with lumber.
BOT CHORD	3-4=-4664/199, 4-5= 6-7=-158/485 1-13=-236/7542, 12 11-12=-136/5679, 9 8-9=-159/77, 7-8=-3	-13=-236/7542, -11=-23/1725,	182, 5)	Plate DOL=1	7-16; Pr=20.0 psf 1.15); Pf=20.0 psf (Is=1.0; Rough Cat =1 10	Lum DC	L=1.15 Plate		the	truss.	In	es must have two	ROUT
WEBS	2-13=-42/3426, 2-12 3-12=-138/5477, 3-1 4-11=-181/5529, 5-1 5-9=-6674/227, 6-9=	1=-4467/260,	6) 7) 23	Unbalanced design. This truss ha	snow loads have to as been designed f	or a 10.0) psf bottom					SEA	L
NOTES			8) 9)	* This truss h on the bottor 3-06-00 tall b chord and ar One H2.5A S recommende UPLIFT at jt(as been designed n chord in all area: by 2-00-00 wide wi y other members, Simpson Strong-Ti- ed to connect truss (s) 1 and 7. This co t consider lateral fo	for a liv s where Il fit betv with BC e conne to bear onnectio	e load of 20.0 a rectangle veen the botto DL = 10.0psf. ctors ing walls due	ipsf om to		LI UNA CONTRACTORIA		SEA 0363	EER.K

Continued on page 2

 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeR% connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the Section of the prevent collapse contervent for the Sectional temporation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

May 12,2025

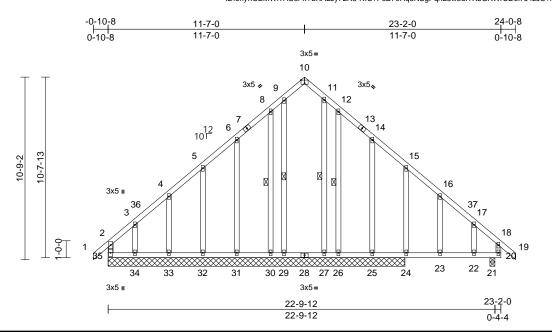
Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	B02	Common Girder	1	2	Job Reference (optional)	173351083
Carter Components (Sanford, NC	ter Components (Sanford, NC), Sanford, NC - 27332, Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:32					Page: 2

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:32 ID:iFFKd9_s5HOVK9vBFwqTAGzRAMn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard

- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15
 - Uniform Loads (lb/ft)
 - Vert: 1-4=-60, 4-7=-60, 14-17=-20
 - Concentrated Loads (lb)
 - Vert: 10=-1865 (B), 13=-1883 (B), 12=-1883 (B), 8=-872 (B), 22=-1883 (B), 23=-1883 (B), 24=-1883
 - (B), 25=-1865 (B), 26=-1865 (B), 27=-872 (B), 28=-860 (B)

IN TH CAS ORTH CAR 0 annun annun VULLING SEAL 036322 C GILB A. GIL May 12,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut beformation, available from the Structure Review Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	B03	Common Supported Gable	1	1	Job Reference (optional)	173351084

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:32 ID:onyrICEMWITAUsFxYbXALJy7LR6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:67.9

Plate Offsets (X, Y): [10:0-2-8,Edge]

				-				-						-
Loading		(psf)	Spacing	1-11-4		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.26	Vert(LL)	0.04	· · /	>999	240	MT20	244/190
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.22	Vert(CT)	-0.04	22-23		180	-	
TCDL		10.0	Rep Stress Incr	YES		WB	0.16	Horz(CT)	-0.02	10	n/a	n/a		
BCLL		0.0*	Code		B/TPI2014	Matrix-MR	00		0.02		1.7 Ca			
BCDL		10.0	Couc	11(02010	5/1112014								Weight: 188 lb	FT = 20%
									-					
LUMBER				тс		2-35=-304/195, 1-2	,		,					of LL: Lum DOL=1.15
TOP CHORD						3-4=-259/221, 4-5=		,	,					DOL=1.15 Plate
BOT CHORD						6-8=-253/357, 8-9= 10-11=-285/439, 11		,	/438,		=1.00; Ct		; Rough Cat B; F	Fully Exp.; Ce=0.9;
WEBS	2x4 SP No					12-14=-247/354, 14		,			,		loodo hovo hoor	considered for this
OTHERS	2x4 SP No	0.3				12-14=-247/354, 14 15-16=-137/186, 16				'	sign.	SHOW	loaus nave been	
BRACING						17-18=-158/69, 18-			2/100				n decigned for a	reater of min roof live
TOP CHORD			athing directly applie	dor bo		34-35=-27/100, 33-			122					oof load of 20.0 psf on
			cept end verticals.			32-33=-27/100, 33-3 32-33=-27/100, 31-3							ncurrent with oth	
BOT CHORD	0	ng directly	applied or 10-0-0 oc			30-31=-27/100, 31= 30-31=-27/100, 29=								erwise indicated.
	bracing.					27-29=-27/100, 29=								e face or securely
WEBS	1 Row at r		9-29, 11-27, 8-30, 12			25-26=-27/100, 24-3								.e. diagonal web).
REACTIONS), 21=0-3-8, 24=17-6			23-24=-27/100, 22-							ed at 2-0-0 oc.	.e. alagonal wobj.
), 26=17-6-0, 27=17-			21-22=-27/100, 20-							en designed for a	10.0 psf bottom
), 30=17-6-0, 31=17-			9-29=-84/38, 11-27								any other live loads.
), 33=17-6-0, 34=17-	6-0,		6-31=-170/101, 5-3								a live load of 20.0psf
		35=17-6-0				3-34=-135/130, 12-	26=-16	8/79,		,			rd in all areas wh	
	Max Horiz			-		14-25=-132/77, 15-3	24=-26	9/150,						between the bottom
		,	LC 13), 21=-85 (LC 1			16-23=-54/68, 17-2	2=-81/7	0		cho	ord and a	ny oth	er members, with	n BCDL = 10.0psf.
			LC 15), 25=-12 (LC 1		DTES					12) Be	aring at jo	pint(s)	10 considers par	allel to grain value
		· ·	C 15), 27=-7 (LC 15)	, 1)		roof live loads have	been	considered fo	r				angle to grain for	
			C 14), 30=-60 (LC 14 C 14), 32=-77 (LC 14	r), '	this design.				•	des	signer sh	ould ve	erify capacity of the	pearing surface.
			C 14), 32=-77 (LC 12 C 14), 34=-179 (LC 1		Wind: ASCE	7-16; Vult=130mph	n (3-seo	cond aust)					White CA	Dalle
		35=-244 (1), '		oh; TCDL=6.0psf; B			Cat.				OR FES	TO MA
			_C 15), 21=340 (LC 2	6)	II; Exp B; En	closed; MWFRS (e	nvelope	e) exterior zor	ne			~	ONIES	in the second
			LC 13), 21=340 (LC 2 LC 26), 25=111 (LC 2			ner(3E) -0-10-8 to 2					4	i a	10 FL	Phi: A
			_C 22), 27=140 (LC 6			ner(3R) 8-7-0 to 14					6		1 12	
			_C 5), 30=177 (LC 21		to 21-0-8, Co	orner(3E) 21-0-8 to	24-0-8	zone; cantile	/er					
			_C 21), 32=196 (LC 2			exposed ; end vert							SEA	
			_C 30), 34=227 (LC 3		exposed;C-0	c for members and	forces	& MWFRS for					0000	• –
		35=389 (L		•),		own; Lumber DOL=	1.60 pl	ate grip			1		0363	22 : :
FORCES		•	pression/Maximum		DOL=1.60						-			1 5
. 511020	Tension			3)	· · · · · · · · · · · · · · · · · · ·	ned for wind loads in					THURS	1	·	A 1. 5
	1013011					uds exposed to wind						20	A SNOW	EEM X N
						d Industry Gable Er						1	A GIN	E. CAN
					or consult qu	alified building des	igner a	s per ANSI/TF	ๆ 1.			1	CA C	BEIN
													11, 7. 6	
													A. G	III III
													May	/ 12,2025
													-	

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeR% connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the Section of the prevent collapse contervent for the Sectional temporation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	B03	Common Supported Gable	1	1	Job Reference (optional)	173351084
Carter Components (Sanford, NC	C), Sanford, NC - 27332,	Run: 8.73 S Feb 19 2	2025 Print: 8.	730 S Feb 19	9 2025 MiTek Industries, Inc. Thu May 08 12:47:32	Page: 2

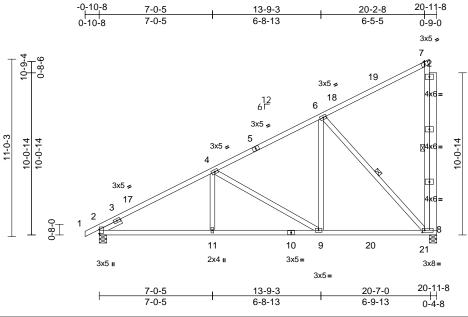
Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:32 ID:onyrICEMWITAUsFxYbXALJy7LR6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 172 lb uplift at joint

10. 14) N/A

- 15) H10A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 21. This connection is for uplift only and does not consider lateral forces.
- 16) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	C01	Half Hip	4	1	Job Reference (optional)	173351085

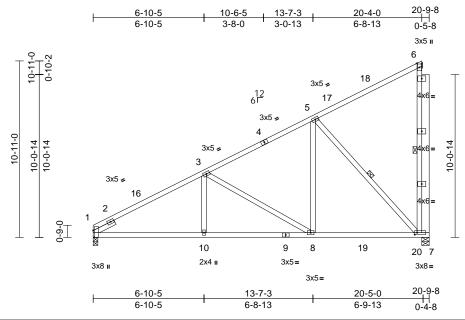
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:33 ID:Je5w06f8goBW?T4xbCQ60Kyfk?K-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [2:0-3-1,0-0-1], [8:0-1-12,0-1-8]

Scale = 1:71.5

	(X, Y): [2:0-3-1,0-0-1], [8	3:0-1-12,0-1-8]			-								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	20.0 F 20.0 L 10.0 F	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.83 0.62 0.79	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.14 0.03	(loc) 8-9 8-9 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 148 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.3 *Except* 2x6 SP No.2 Left 2x4 SP No.3 1-6 Structural wood sheath 4-8-11 oc purlins, exce Rigid ceiling directly ap bracing. 1 Row at midpt 7-1	5-0 hing directly applied ept end verticals. oplied or 10-0-0 oc 8, 6-8 0-5-8 14) 4), 8=-342 (LC 14)	3) 4) 5) 6) 1 or 7) 8) 9)	design. This truss ha load of 12.0 overhangs n All plates are This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar One H2.5A § recommende UPLIFT at jtt and does no	snow loads have b as been designed for psf or 1.00 times fla on-concurrent with a 3x5 MT20 unless as been designed for ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide will by other members, Simpson Strong-Tie ad to connect truss (s) 8 and 2. This con t consider lateral for designed in another the strong the strong the strong the strong the strong the strong the strong the strong the stron	or great at roof I other li otherwi or a 10. ith any for a liv where fit betw with BC conne to bear nnectio rces.	er of min rooi bad of 20.0 p ve loads. se indicated. 0 psf bottom other live loa e load of 20. a rectangle veen the bott CDL = 10.0ps ctors ing walls due n is for uplift	f live osf on ads. Opsf aom af. e to					
FORCES	(lb) - Maximum Compre Tension	ession/Maximum	-,	International R802.10.2 a	designed in accord Residential Code s nd referenced stand other connection d	ections	s R502.11.1 a ISI/TPI 1.	and					
BOT CHORD	6-7=-166/102, 7-8=-27 2-11=-399/1321, 9-11= 8-9=-159/721			lb down and	ficient to support co 128 lb up at 20-7-(tion of such connec) on bo	ttom chord.	The					11111
WEBS	4-11=0/263, 4-9=-691/ 6-8=-1026/227	185, 6-9=0/637,	LC	responsibility	/ of others.						an'	RTHUA	ROLIN
Vasd=103 II; Exp B;	CE 7-16; Vult=130mph (3 3mph; TCDL=6.0psf; BCD Enclosed; MWFRS (enve Exterior(2E) -0-10-8 to 2-1	DL=6.0psf; h=25ft; C elope) exterior zone	1) Cat.	Dead + Sno Increase=1 Uniform Lo Vert: 1-7	ow (balanced): Lum .15	ber Inc	rease=1.15,	Plate		4	i	SEA	L

- and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 17-4-4, Exterior(2E) 17-4-4 to 20-4-4 zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 2) DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Concentrated Loads (lb)
- Vert: 8=-747


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut beformation, available from the Structure Review Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

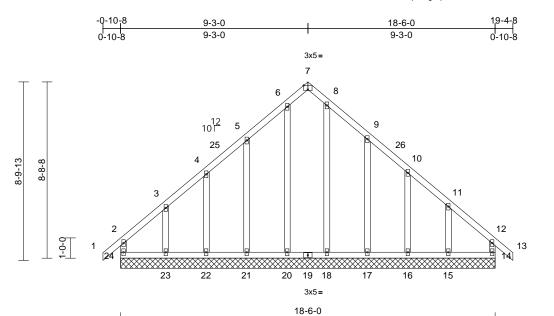
Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	C02	Half Hip	1	1	Job Reference (optional)	173351086

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:33 ID:EGq646Pbf2EXC6nWIJzpaiyfjwU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [1:0-5-1,Edge], [7:0-1-12,0-1-8]

Scale = 1:71.3

	,,, i): [1:0 0 1,Eugo],	, [o <u>_</u> ,o i o]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.82 0.63 0.75	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.14 0.03	(loc) 7-8 7-8 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 146 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x6 SP No.2 Left 2x4 SP No.3 Structural wood she 4-7-1 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 1=0-3-8, 1 Max Horiz 1=370 (LC Max Grav 1=900 (LC	1-6-0 athing directly applie cept end verticals. applied or 10-0-0 oc 6-7, 5-7 7=0-5-8 C 14), 7=-342 (LC 14	ed or 6) c 7)	design. This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar One H2.5A ³ recommende UPLIFT at jut and does no This truss is International R802.10.2 a Hanger(s) or	snow loads have l as been designed i ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w y other members. Simpson Strong-Ti ed to connect truss (s) 7 and 1. This cu t consider lateral f designed in accor Residential Code nd referenced star o ther connection ficient to support c	for a 10. with any d for a liv s where ill fit betv with BC e conne s to bear onnectio orces. dance w sections ndard AN device(s	0 psf bottom other live loa re load of 20. a rectangle veen the bott DL = 10.0ps ctors ing walls due n is for uplift ith the 2018 \approx R502.11.1 a SU/TPI 1. s) shall be	nds. Opsf om f. to only and					
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-3=-1401/30, 3-5=- 6-7=-265/95			design/selec responsibility									
BOT CHORD WEBS			1)	Dead + Sno Increase=1 Uniform Lo	ow (balanced): Lui .15	mber Inc	rease=1.15,	Plate				TH CA	ROUT
Vasd=103 II; Exp B; and C-C E 17-4-4, Ex members Lumber D 2) TCLL: AS Plate DOL	5-7=-1018/227 CE 7-16; Vult=130mph simph; TCDL=6.0psf; B Enclosed; MWFRS (er sixterior(2E) 0-2-0 to 3- sitterior(2E) 17-4-4 to 20 and forces & MWFRS OL=1.60 plate grip DC CE 7-16; Pr=20.0 psf (L _=1.15); Is=20.0 psf (L _5); Is=1.0; Rough Cat E Ct=1.10	CDL=6.0psf; h=25ft; ivelope) exterior zon 2-0, Interior (1) 3-2-0 0-4-4 zone;C-C for for reactions shown; 0L=1.60 roof LL: Lum DOL=1 um DOL=1.15 Plate	e) to ; 1.15		=-60, 7-12=-20 ed Loads (lb) 747						R. M.	SEA 0363	22 EERER IIII


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut beformation, available from the Structure Review Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

100000 May 12,2025

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	D01	Common Supported Gable	1	1	Job Reference (optional)	173351087

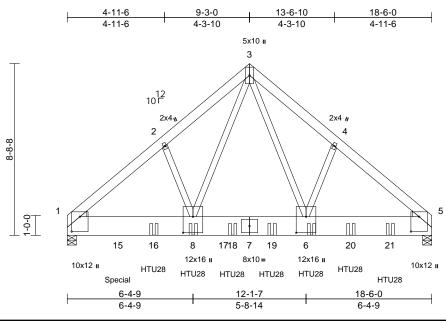
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:33 ID:8F2D?hHuvW?rb9K6OMb_Y2zRQrE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:56.9

Plate Offsets (X, Y): [7:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL1.1Lumber DOL1.1Rep Stress IncrYE	15 ES	/TPI2014	CSI TC BC WB Matrix-MR	0.21 0.12 0.20	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 127 lb	GRIP 244/190 FT = 20%		
	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 14=18-6-0 21=18-6-0 24=18-6-0 Max Horiz 24=-225 (Max Uplift 14=-48 (L 21=-114 (23=-168 (Max Grav 14=190 (L 16=173 (L 18=222 (L 21=252 (L)	applied or 6-0-0 oc), 15=18-6-0, 16=18-6-0,), 18=18-6-0, 20=18-6-0,), 22=18-6-0, 23=18-6-0,)	NO 1) 2) 3)	 9-17=-214/164, 10-16=-143/90, 11-15=-170/170 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-2-12, Exterior (2N) 2-2-12 to 6-2-12, Corner(3E) 16-2-4 to 19-4-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3-06-00 tall by chord and any 4-10 the face by and the plane of the trust 								rd in all areas where a rectangle 0-00 wide will fit between the bottom er members. al connection (by others) of truss to able of withstanding 71 lb uplift at joint toint 14, 114 lb uplift at joint 21, 47 lb 68 lb uplift at joint 23, 117 lb uplift at t at joint 16 and 163 lb uplift at joint ned in accordance with the 2018 dential Code sections R502.11.1 and erenced standard ANSI/TPI 1.			
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 2-24=-168/64, 1-2=0 3-4=-106/91, 4-5=-9 6-7=-96/175, 7-8=-9 9-10=-76/19, 10-11 12-13=0/39, 12-14=- 23-24=-105/187, 20- 18-20=-105/187, 20- 18-20=-105/187, 15- 14-15=-105/187	6) 5, 7) 8) 9) 10)	Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. All plates are 2x4 MT20 unless otherwise indicated.									EER. KUU			

May 12,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	D02	Common Girder	1	3	Job Reference (optional)	173351088

Scale = 1:58.5

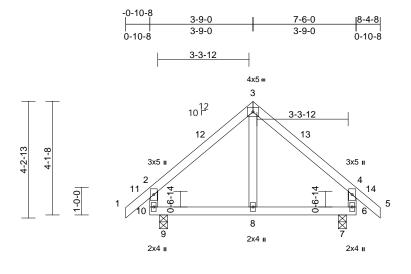
Run; 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:33 ID:ahvaep5BsMWascBuTkn6buzRAib-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [1:0-9-0,0-5-0], [5:0-9-0,0-5-0], [6:0-9-12,0-6-0], [8:0-9-12,0-6-0]

	())		,										
Loading TCLL (roof) Snow (Pf) TCDL	(psf) 20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO		CSI TC BC WB	0.37 0.52 0.87	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.15 0.02	(loc) 8-11 8-11 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC2018	3/TPI2014	Matrix-MSH							Weight: 546 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD	2x6 SP No.2 2x12 SP 2400F 2.0E 2x4 SP No.2 *Excep Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	t* 8-2,6-4:2x4 SP No athing directly applied applied or 10-0-0 oc 5=0-5-8	5) d or 6)	Vasd=103m II; Exp B; En cantilever lef right expose TCLL: ASCE Plate DOL= ² DOL=1.15); Cs=1.00; Ct: Unbalanced design. This truss ha	snow loads have as been designed	BCDL=6 envelop ed; end .60 plate f (roof L (Lum DC t B; Fully been co for a 10.	6.0psf; h=25ft e) exterior zon vertical left ar e grip DOL=1. L: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 nsidered for th 0 psf bottom	ne; nd .60 :1.15 e 9; his			97 (B),	(B), 6=-1893 (B), 18=-1893 (B), 19	
	Max Horiz 1=-181 (L Max Grav 1=14963	,	,	chord live loa	ad nonconcurrent has been designed	with any	other live loa						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	-,	on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom									
TOP CHORD	1-2=-14218/0, 2-3=- 4-5=-12624/0	14152/0, 3-4=-12497	7/0, 9)	chord and a	ny other members designed in accor	, with BC	DL = 10.0pst						
BOT CHORD WEBS	1-8=0/10921, 6-8=0/	/7222, 5-6=0/9610 243/269, 3-6=0/6972,	- /	International R802.10.2 a	Residential Code nd referenced star n Strong-Tie HTU2	section	s R502.11.1 a NSI/TPI 1.	and					
Top chord follows: 2) Bottom ch screws as Web chorn follows: 2) 2) All loads a except if r CASE(S) provided t unless oth	s to be connected toge ds connected with 10d $k6 - 2$ rows staggered a hords connected with 3 follows: 2x12 - 3 rows ds connected with 10d x4 - 1 row at 0-9-0 oc. are considered equally noted as front (F) or ba section. Ply to ply conr to distribute only loads herwise indicated. ed roof live loads have	(0.131"x3") nails as at 0-9-0 oc. impson SDS 1/4 x 4- staggered at 0-4-0 o (0.131"x3") nails as applied to all plies, ck (B) face in the LO/ nections have been noted as (F) or (B),	1/2 11 pc. 12 AD	26-10dx ¹ 1/2 spaced at 2- end to 16-4- bottom choro) Fill all nail ho) Hanger(s) or provided suf lb down and design/selec responsibility DAD CASE(S) Dead + Sm. Increase=1 Uniform Lo Vert: 1-3	2 Truss, Single Ply 0-0 oc max. startin 12 to connect trus d. oles where hanger other connection ficient to support of 536 lb up at 2-7- tion of such connect y of others. Standard ow (balanced): Lui .15	v Girder) ng at 4-4 s(es) to is in col device(s concentr 0 on bot ection de	or equivalent -12 from the l back face of htact with lum s) shall be ated load(s) 8 om chord. Ti vice(s) is the	left nber. 3869 he		(), (1111)		SEA 0363	22 EEREKUU

May 12,2025

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut beformation, available from the Structure Review Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	E01	Common	1	1	Job Reference (optional)	173351089

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:33 ID:5YjLyPhGJKHB5AEdSp6x7Qy7LK3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff

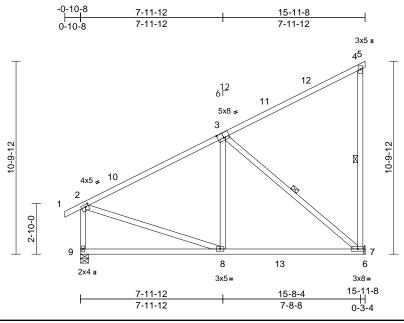
Page: 1

Scale = 1:41.9

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MR	0.40 0.29 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 8 8 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 37 lb	GRIP 244/190 FT = 20%
	bracing.	cept end verticals. ² applied or 10-0-0 oc 9=0-3-8 C 12) C 15), 9=-38 (LC 14) C 22), 9=460 (LC 21) hpression/Maximum 94, 3-4=-269/92, 5/177, 4-6=-375/175	d or d or d or d or d or d or d or d or	has been designed of psf or 1.00 times non-concurrent with has been designed bas been designed om chord in all are by 2-00-00 wide any other member ison Strong-Tie co ss to bearing walls connection is for teral forces. Is designed in acco al Residential Cod and referenced station Standard	a flat roof I ith other Ii d for a 10. It with any ed for a Iiv ed for a Iiv ed for a Iiv eas where will fit betw onnectors s due to L uplift only ordance w le sections	bad of 20.0 p ve loads. 0 psf bottom other live loa re load of 20.1 a rectangle veen the bott recommende IPLIFT at jt(s) and does no ith the 2018 s R502.11.1 a	sf on dds. Opsf om d to 9 9 t					
 Unbalance this design Wind: ASC Vasd=103 II; Exp B; I and C-C E to 5-4-8, E and right e C for mem shown; Lu TCLL: ASC Plate DOL DOL=1.15 Cs=1.00; C 	CE 7-16; Vult=130mph imph; TCDL=6.0psf; B Enclosed; MWFRS (er Exterior(2E) -0-10-8 to Exterior(2E) 5-4-8 to 8- exposed; end vertical inbers and forces & MW imber DOL=1.60 plate CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L i); Is=1.0; Rough Cat E	(3-second gust) CDL=6.0psf; h=25ft; rvelope) exterior zon 2-1-8, Exterior(2R) 2 4-8 zone; cantilever left and right expose, VFRS for reactions grip DDL=1.60 'roof LL: Lum DDL=1 um DDL=1.15 Plate 3; Fully Exp.; Ce=0.9	Cat. e -1-8 left t;C- .15						C. minner		SEA 0363	EER. A

May 12,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	G01	Monopitch	5	1	Job Reference (optional)	173351090

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:33 ID:PdAAD85_ICJN?UaWrZNnF5zRQu2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

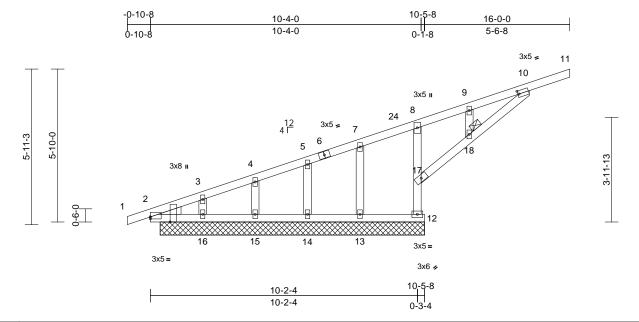
Page: 1

Scale =	1:64.6
---------	--------

Plate Offsets (X, Y): [2:0-2-0,0-1-8], [3:0-4-0,0-3-4]

	(;;;;;): [<u>_::: 2</u> 0;0 : 0];	[2:2 : 2,5 0 :]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-MSH	0.95 0.67 0.39	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.20 -0.01	(loc) 7-8 7-8 7	l/defl >999 >923 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 106 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	 2x4 SP No.2 2x4 SP No.3 *Except Structural wood she 2-2-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt 	t* 4-7:2x4 SP No.2 athing directly applie cept end verticals. applied or 10-0-0 or 4-7, 3-7 nical, 9=0-5-8 2 14) C 14)		load of 12.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar Refer to gird Provide meco bearing plate 7. This truss is	is been designed f psf or 1.00 times fl on-concurrent with is been designed f ad nonconcurrent v has been designed in chord in all area by 2-00-00 wide wi hy other members, er(s) for truss to tri hanical connectior e capable of withsta	lat roof le o other lin or a 10.1 with any I for a liv s where II fit betw with BC uss conn h (by oth anding 2 dance w	bad of 20.0 p ve loads. D psf bottom other live load e load of 20. a rectangle veen the bott DL = 10.0ps nections. ers) of truss 221 lb uplift a ith the 2018	ads. Opsf tom tf. t joint					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	LO		Residential Code nd referenced star Standard			and					
TOP CHORD	4-7=-328/122, 2-9=-	655/84											
BOT CHORD WEBS	D 8-9=-334/218, 7-8=- 3-8=0/313, 3-7=-768												
NOTES												White CA	111.
Vasd=10 II; Exp B; and C-C to 12-11- cantileve exposed;	SCE 7-16; Vult=130mph)3mph; TCDL=6.0psf; Bi ; Enclosed; MWFRS (er Exterior(2E) -0-10-8 to : -8, Exterior(2E) 12-11-8 er left and right exposed ;C-C for members and fi s shown; Lumber DOL= 50	CDL=6.0psf; h=25ft; velope) exterior zor 2-1-8, Interior (1) 2- to 15-11-8 zone; ; end vertical left prces & MWFRS for	ne 1-8							CN. IIIII	A. I.I.I.	ORTEESS	
2) TCLL: AS Plate DO DOL=1.1	SCE 7-16; Pr=20.0 psf (DL=1.15); Pf=20.0 psf (L I5); Is=1.0; Rough Cat E	um DOL=1.15 Plate								1111			ERA
Cs=1.00; 3) Unbalanc design.	; Ct=1.10 ced snow loads have be	en considered for th	nis								11	A. G	ILBERT

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut beformation, available from the Structure Review Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


mmm May 12,2025

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	173351091
25040246-01	H01	Monopitch Supported Gable	2	1	Job Reference (optional)	

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:33 ID:kX6Xm09JsM8Rk_RkgNonK3zRRGV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

_

Page: 1

Scale = 1:43.9

Plate Offsets (X, Y): [2:Edge,0-0-14], [2:0-2-5,Edge], [10:0-0-8,0-1-8]

May 12,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek A 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	173351092
25040246-01	H02	Monopitch	6	1	Job Reference (optional)	

Scale = 1:48.2

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

2x4 SP No.3 *Except* 5-9:2x4 SP No.1

6-0-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc

Max Uplift 2=-100 (LC 10), 9=-371 (LC 10)

Max Grav 2=377 (LC 1), 9=1084 (LC 21)

(Ib) - Maximum Compression/Maximum

1-2=0/17, 2-3=-368/82, 3-5=-393/465, 5-6=-456/707, 6-7=-45/0, 9-11=-847/467,

2-10=-230/338, 9-10=-230/338, 8-9=0/0

3-10=-124/211, 3-9=-614/478, 6-11=-811/468

2=0-3-0.9=0-5-8

Structural wood sheathing directly applied or

Left: 2x4 SP No.3

5-3-0 oc bracing: 9-11

Max Horiz 2=207 (LC 10)

Wind: ASCE 7-16; Vult=130mph (3-second gust)

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II: Exp B; Enclosed; MWFRS (envelope) exterior zone

and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8

to 16-0-0 zone; cantilever left exposed ; porch left and

right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;

Except:

bracing.

Tension

5-11=-321/163

(size)

TCDL

BCLL

BCDL

WEBS

WEDGE

BRACING

TOP CHORD

BOT CHORD

REACTIONS

FORCES

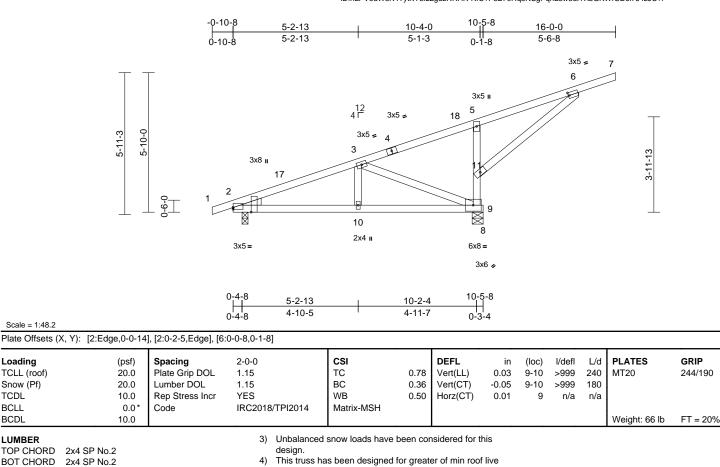
TOP CHORD

BOT CHORD

DOL=1.60

Cs=1.00; Ct=1.10

WEBS


NOTES

1)

2)

Run; 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:34 ID:nLPVeuW3K4TytrtY3ILLguzRRHK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

This truss has been designed for greater of min roof live

- load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom 5)
 - chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 9 and 2. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 8) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

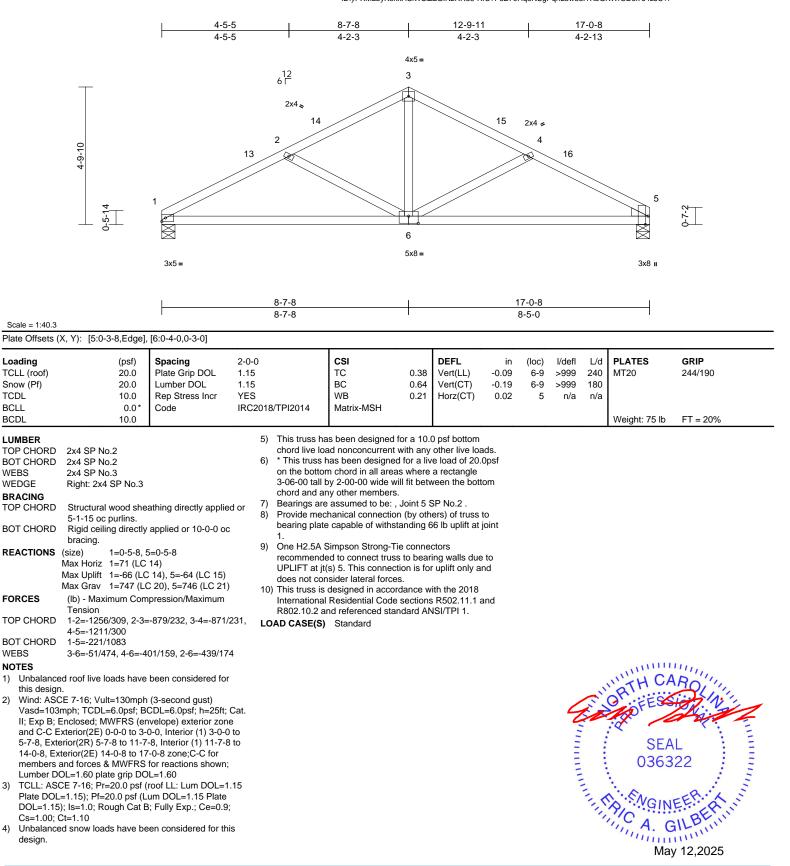
LOAD CASE(S) Standard

\cap annunn. SEAL 036322 G mm May 12,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a futs system: Denote use, the building designer inder very the applications of design had needed an intervent with a policitation of the system of the state of the system of the syste and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	173351093
25040246-01	J01	Common	5	1	Job Reference (optional)	


2)

3)

4)

Run; 8,73 S Feb 19 2025 Print; 8,730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:34 ID:yPXMLbyKekkHSiWSIZLGINzRR58-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com) Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	PBA	Piggyback	2	1	Job Reference (optional)	173351094

5-11-7

5-11-7

Carter Components (Sanford, NC), Sanford, NC - 27332,

3-3-14

0-4-3

3-5-8

0-11-1

2

3x5 =

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:34 ID:RPY8AW_GFKIcY3mFoYebvHzRQqK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11-10-14

5-11-7

12-9-15

0-11-1

8

3x5 =

9

4x5 = 5 12 6 Г 6 4 Þ 22 23 3 7 0 6 Ю P P 14 13 12 11 10

11-10-14

.

Scale = 1:31.5												-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.08 0.04 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 52 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=11-10-1 10=11-10. 14=11-10. 14=11-10. Max Horiz 2=52 (LC Max Uplift 2=-9 (LC 10=-45 (LC 10=-45 (LC 10=-45 (LC 10=-45 (LC) 10=-45 (LC) 10=-45 (LC) 10=-45 (LC) 10=-45 (LC) 10=-45 (LC) 10=-45 (LC) 10=-40 (LC)	applied or 10-0-0 oc 14, 8=11-10-14, -14, 13=11-10-14, -14, 13=11-10-14, -14 18) 15), 8=-12 (LC 15), C 15), 11=-47 (LC 15 C 14), 14=-46 (LC 14) C 21), 8=125 (LC 22), C 22), 11=243 (LC 2 C 22), 13=243 (LC 2	3) 4) 5), 4) 52), 5)	Vasd=103mp II; Exp B; En and C-C Cor 3-11-0, Corn to 10-5-13, C cantilever lef right expose for reactions DOL=1.60 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha	7-16; Vult=130m jb; TCDL=6.0psf; closed; MWFRS (ner(3E) 0-4-3 to 3 er(3R) 3-11-0 to 9 corner(3E) 10-4-3 corner(3E) 10-4-3 corner(3E) 10-6 corner(3E) 10-4-3 corner(3E) 10-4-3 corner(3E) 10-4-3 corner(3E) 10-4 solution of the second solution of the second s	BCDL=6 envelope 3-4-3, Ext 3-11-0, E: 3 to 13-5 ed; end v s and for DOL=1.6(in the pland on the pland on the pland f (roof LL (Lum DC t B; Fully been cor for greate	.0psf; h=25ft; exterior zor erior(2N) 3-4 txterior(2N) 9- 13 zone; rertical left an cces & MWFR 0 plate grip ane of the tru al to the face lls as applical s per ANSI/TF DL=1.15 Plate Exp.; Ce=0.5 sidered for the er of min roof	ne -3 to 11-0 d Ss ss), ble, Pl 1. 1.15 ; ; his live	Deta	ail for C sult qua	onnect Ilified b) Star	ion to base truss uilding designer. ndard	
FORCES	4-5=-64/116, 5-6=-64	3, 3-4=-56/50, 4/116, 6-7=-56/50,	7) 8) 9)	overhangs n All plates are Gable requir Gable studs	on-concurrent with 2x4 MT20 unless es continuous bot spaced at 2-0-0 o	n other liv s otherwi tom chor c.	ve loads. se indicated. d bearing.				11	TH CA	ROLI
BOT CHORD WEBS NOTES 1) Unbalance this design	7-8=-30/26, 8-9=0/1 2-14=-9/67, 13-14=- 11-12=-9/67, 10-11= 5-12=-102/0, 4-13=- 6-11=-207/124, 7-10 ed roof live loads have 1.	9/67, 12-13=-9/67, :-9/67, 8-10=-9/67 207/124, 3-14=-183/ [,])=-183/114	11 114,	chord live loa) * This truss h on the bottor 3-06-00 tall b	IS been designed ad nonconcurrent has been designed in chord in all area by 2-00-00 wide w hy other members	with any d for a liv is where ill fit betv	other live loa e load of 20.0 a rectangle	Opsf		Contraction of the second seco		SEA 0363	• –

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

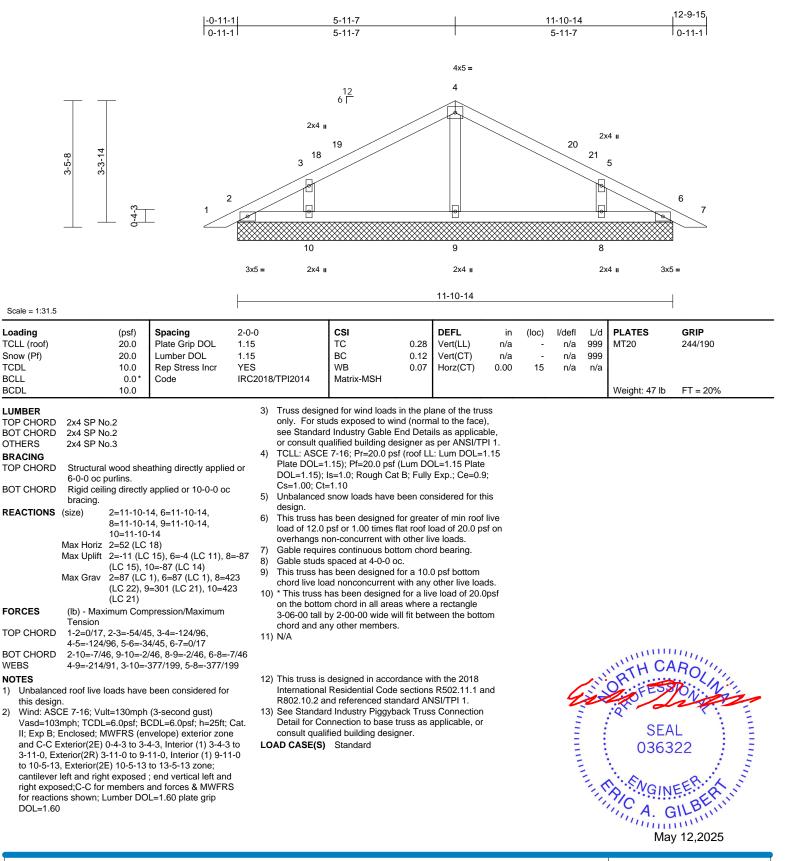
13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

818 Soundside Road Edenton, NC 27932

GI 1111111

May 12,2025


Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	PBA1	Piggyback	18	1	Job Reference (optional)	173351095

1)

2)

Run: 8 73 S. Feb 19 2025 Print: 8 730 S. Feb 19 2025 MiTek Industries. Inc. Thu May 08 12:47:34 ID:Cx19sF4HMnJTVINoGDnTDzzRQqC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	PBA2	Piggyback	2	4	Job Reference (optional)	173351096

3-5-8

Scale = 1:31.5 Loading

TCLL (roof)

Snow (Pf)

TCDL

BCLL

BCDL

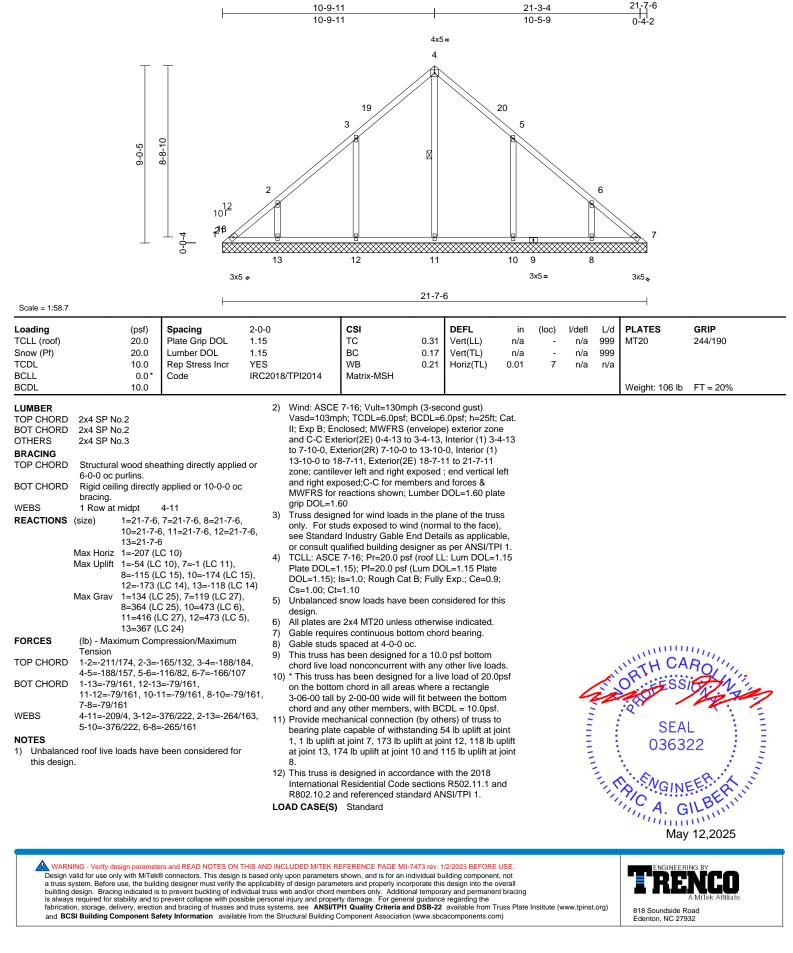
Run: 8 73 S. Feb 19 2025 Print: 8 730 S. Feb 19 2025 MiTek Industries. Inc. Thu May 08 12:47:34

Page: 1 ID:m2dQdjvppkexqPVgwg5aZPzRCX1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 12-9-15 11-10-14 -0-11-1 5-11-7 0-11-1 0-11-1 5-11-7 5-11-7 4x5 = 4 12 6 Г 2x4 u 2x4 I 20 19 21 18 , ч 5 3 0 6 -4-3 P ю 10 9 8 2x4 II 3x5 = 2x4 II 2x4 ı 3x5 = 11-10-14 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) Plate Grip DOL 20.0 1.15 TC 0.07 Vert(LL) n/a n/a 999 MT20 244/190 BC 20.0 Lumber DOL 1 15 Vert(CT) 0.03 n/a n/a 999 10.0 Rep Stress Incr YES WB 0.02 Horz(CT) 0.00 15 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MSH Weight: 188 lb 10.0 FT = 20%

- LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 OTHERS BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 2=11-10-14, 6=11-10-14, 8=11-10-14, 9=11-10-14, 10=11-10-14 Max Horiz 2=52 (LC 18) Max Uplift 2=-11 (LC 15), 6=-4 (LC 11), 8=-87 (LC 15), 10=-87 (LC 14) 2=86 (LC 1), 6=86 (LC 1), 8=423 Max Grav (LC 22), 9=302 (LC 21), 10=423 (LC 21) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/17, 2-3=-53/45, 3-4=-123/96, 4-5=-123/96, 5-6=-33/45, 6-7=0/17 BOT CHORD 2-10=-8/47, 9-10=-2/46, 8-9=-2/46, 6-8=-8/47 WEBS 4-9=-215/91, 3-10=-375/198, 5-8=-375/198
- NOTES
- 4-ply truss to be connected together as follows: 1) Top chords connected with 10d (0.131"x3") nails as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected with 10d (0.131"x3") nails as follows: 2x4 - 1 row at 0-9-0 oc.
- All loads are considered equally applied to all plies, 2) except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 4) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-3 to 3-4-3, Interior (1) 3-4-3 to 3-11-0, Exterior(2R) 3-11-0 to 9-11-0, Interior (1) 9-11-0 to 10-5-13, Exterior(2E) 10-5-13 to 13-5-13 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 6) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 7) Unbalanced snow loads have been considered for this
- design.
- This truss has been designed for greater of min roof live 8) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 4-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 12) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) N/A
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

15) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer. LOAD CASE(S) Standard

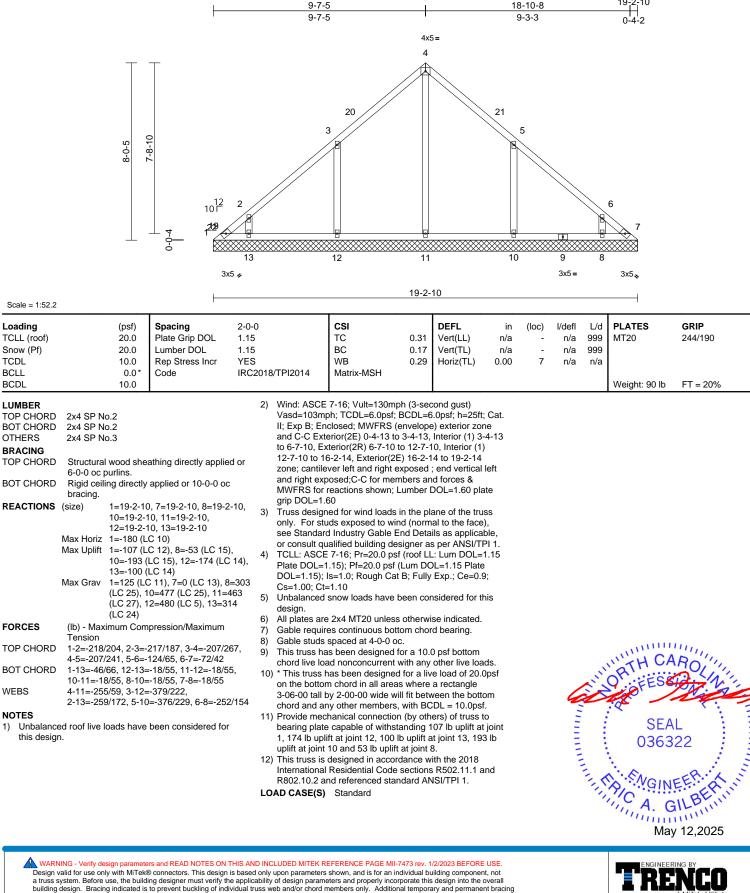


Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	VLB1	Valley	1	1	Job Reference (optional)	173351097

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:34 ID:uRu6rMLa1rImrJyJNhjxxpzRQsR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	VLB2	Valley	1	1	Job Reference (optional)	173351098

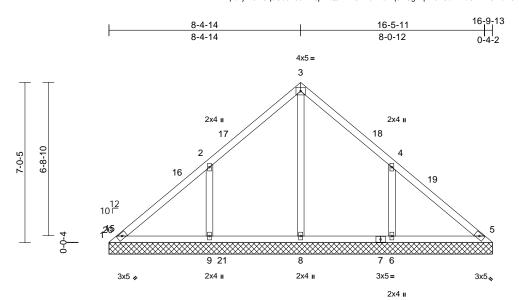
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:34 ID:yJIn_UX?VSBe9dbBmLUS1zzRQsC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

19-2-10

bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	VLB3	Valley	1	1	Job Reference (optional)	173351099

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:34 ID:4pahjxh9RSqoCd5h0aDV3jzRQs?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

GRIP 244/190

FT = 20%

16-9-13

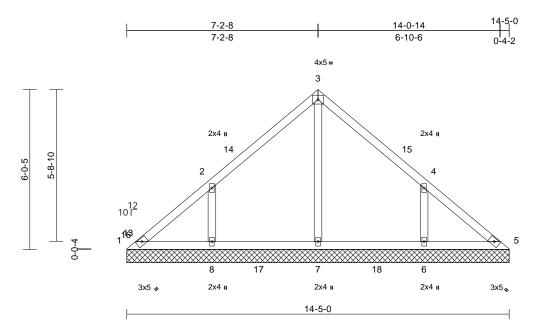
Scale = 1:50.5

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.38 0.18 0.41	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 75 lb
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=16-9-1 8=16-9-1 Max Horiz 1=-157 (I Max Uplift 1=-64 (LG 9=-187 (I Max Grav 1=76 (LC (LC 6), 8 5)	C 10), 6=-183 (LC 15) -C 14) : 13), 5=1 (LC 25), 6= =654 (LC 24), 9=509	5) -13, 6) 7)), 8) -510 ⁹⁾	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable studs This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall b	ed for wind loads dis exposed to w d Industry Gable alified building di 7-16; Pr=20.0 ps ss=1.0; Rough Ca =1.10 snow loads have es continuous bo spaced at 4-0-0 s been designed ad nonconcurrent has been designed n chord in all are by 2-00-00 wide v y other members	ind (norm End Deta esigner a: sf (roof LI (Lum DC at B; Fully been cor ttom chor oc. for a 10. with any d for a liv as where vill fit betw	al to the face ils as applica s per ANSI/TI :: Lum DOL= :)L=1.15 Plate Exp.; Ce=0.9 ansidered for the d bearing. 0 psf bottom other live loa re load of 20.0 a rectangle veen the botto), ble, Pl 1. 1.15 ; ; ; ds. 0psf om				
TOP CHORD	Tension	npression/Maximum -25/319, 3-4=-2/298,	10	bearing plate	hanical connection capable of withs ft at joint 9 and 1	standing 6	64 lb uplift at j					
BOT CHORD	5-6=-197/74	197/74, 6-8=-197/74,) This truss is International	designed in acco Residential Code nd referenced sta	rdance w e sections	ith the 2018 8 R502.11.1 a	nd				NITH CA
WEBS NOTES	3-8=-470/0, 2-9=-3	92/220, 4-6=-392/218	LC	AD CASE(S)	Standard						5	RTHUA

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-16; Vult=130mph (3-second gust)
- Vind: AGCE 7-10, VulterSomph (3-Section gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-13 to 3-4-13, Interior (1) 3-4-13 to 5-5-3, Exterior(2R) 5-5-3 to 11-5-3, Interior (1) 11-5-3 to 13-10-2, Exterior(2E) 13-10-2 to 16-10-2 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

SEAL 036322 May 12,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


TRENCO A MITEK Affiliate

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	VLB4	Valley	1	1	Job Reference (optional)	173351100

Scale = 1:43.4

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:35 ID:CKtcSNrINSSyGdaBHoyY5SzRQro-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MSH	0.31 0.16 0.14	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 62 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing.		d or	 only. For stuse Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. 	snow loads have	nd (norm ind Deta signer as f (roof LL (Lum DC B; Fully been cor	al to the face ils as applical s per ANSI/TF .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 nsidered for th), ble, PI 1. 1.15);				vveignt: 62 ib	FT = 20%
	7=14-5-0, Max Horiz 1=-136 (L0 Max Uplift 1=-29 (LC 8=-156 (L0 Max Grav 1=109 (L0	8=14-5-0 C 10) (10), 6=-154 (LC 15 C 14) C 25), 5=100 (LC 24) C 21), 7=401 (LC 24)),	 Gable studs This truss hat chord live load to be chord to be better 3-06-00 tall be chord to be	es continuous bot spaced at 4-0-0 o is been designed ad nonconcurrent has been designed in chord in all area by 2-00-00 wide w	c. for a 10.0 with any d for a liv s where ill fit betv) psf bottom other live loa e load of 20.0 a rectangle veen the botto)psf om					
FORCES	(lb) - Maximum Com Tension	pression/Maximum		10) Provide mec	ny other members hanical connectio e capable of withs	n (by oth	ers) of truss t	0					
TOP CHORD	1-2=-141/139, 2-3=- ⁻ 4-5=-122/104	178/119, 3-4=-177/1	,	1, 156 lb upl	ift at joint 8 and 15 designed in accor	i4 lb uplit	ft at joint 6.	UIII					
BOT CHORD	1-8=-59/119, 7-8=-59 5-6=-59/99	9/99, 6-7=-59/99,		Ínternational	Residential Code	sections	R502.11.1 a	nd				mun	uun.
WEBS NOTES	3-7=-223/0, 2-8=-374	4/196, 4-6=-375/195		LOAD CASE(S)								"TH CA	RO
	ed roof live loads have n.	been considered for								6	A.V.	OR FESS	N. N.

- this design.
 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-13 to 3-2-13, Interior (1) 3-2-13 to 4-2-13, Exterior(2R) 4-2-13 to 10-2-13, Interior (1) 10-2-13 to 11-2-13, Exterior(2E) 11-2-13 to 14-5-5 zone;
 - cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

4. GILP

SEAL

036322

Variation

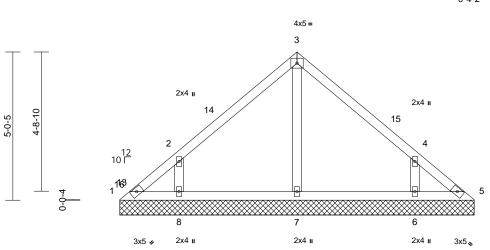
anninnin ann

ſ	Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
	25040246-01	VLB5	Valley	1	1	Job Reference (optional)	173351101

6-0-2

6-0-2

Carter Components (Sanford, NC), Sanford, NC - 27332,


Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:35 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11-8-1

5-8-0

12-0-3

Page: 1

12-0-3

Scale	 1.20 1	

Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.31	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.12	Vert(TL)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES		WB	0.08	Horiz(TL)	0.00	5	n/a	n/a		
BCLL		0.0*	Code	IRC201	8/TPI2014	Matrix-MSH								
BCDL		10.0											Weight: 50 lb	FT = 20%
LUMBER				3)	Truss design	ed for wind loads	in the pl	ane of the tru	SS					
TOP CHORD	2x4 SP N	0.2			only. For stu	uds exposed to wir	nd (norm	al to the face),					
BOT CHORD	2x4 SP N	0.2				d Industry Gable E								
OTHERS	2x4 SP N	0.3				alified building de	0							
BRACING				4)		7-16; Pr=20.0 ps								
TOP CHORD	Structura	I wood she	athing directly applie	d or		.15); Pf=20.0 psf								
	6-0-0 oc	purlins.	• • • •			Is=1.0; Rough Cat	B; Fully	' Exp.; Ce=0.9	9;					
BOT CHORD	Rigid ceil	ing directly	applied or 10-0-0 oc	; _,	Cs=1.00; Ct=									
	bracing.			5)		snow loads have I	been cor	nsidered for t	nis					
REACTIONS	(size)	1=12-0-3,	5=12-0-3, 6=12-0-3,		design.	aa aantinusuu hatt		م الم م م الم						
		7=12-0-3,	8=12-0-3	' 6) 7)		es continuous bott spaced at 4-0-0 o		u bearing.						
	Max Horiz	1=-113 (L	.C 10)	8)		spaced at 4-0-0 0		0 pef bottom						
	Max Uplift		C 10), 5=-6 (LC 11),	-,		ad nonconcurrent			de					
		· ·	.C 15), 8=-138 (LC 14	ý y		has been designed								
	Max Grav		30), 5=71 (LC 24), 6	=434		n chord in all area			0001					
			7=259 (LC 21), 8=432	2 (LC		by 2-00-00 wide wi			om					
		20)				ny other members.								
FORCES		timum Com	pression/Maximum	10		hanical connection		ers) of truss t	to					
	Tension					e capable of withst								
TOP CHORD		,	219/116, 3-4=-218/1	15,	1, 6 lb uplift a	at joint 5, 138 lb up	olift at joi	int 8 and 136	lb					
	4-5=-89/6				uplift at joint	6.								
BOT CHORD		,	/73, 6-7=-30/73,	11		designed in accor								
	5-6=-30/7		0/04 5 4 6 404/000		International	Residential Code	sections	s R502.11.1 a	and				TH CA	1111
WEBS	3-7=-171	/0, 2-8=-40	0/215, 4-6=-401/220		R802.10.2 a	nd referenced star	ndard AN	NSI/TPI 1.					N'TH UA	Bally
NOTES						Other and a start							(A)	(Y) , '

- NOTES
- Unbalanced roof live loads have been considered for 1) this design. 2)
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-13 to 3-4-13, Exterior(2R) 3-4-13 to 9-0-8, Exterior(2E) 9-0-8 to 12-0-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	VLB6	Valley	1	1	Job Reference (optional)	173351102

4-0-5

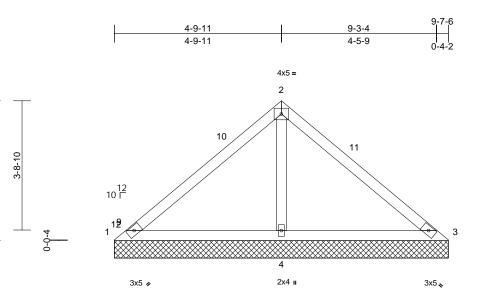
II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-13 to 3-4-13, Exterior(2R)

3-4-13 to 6-7-11, Exterior(2E) 6-7-11 to 9-7-11 zone;

cantilever left and right exposed ; end vertical left and

right exposed;C-C for members and forces & MWFRS

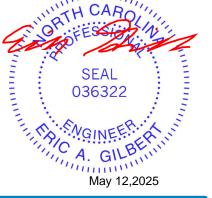
Truss designed for wind loads in the plane of the truss


only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

for reactions shown; Lumber DOL=1.60 plate grip

DOL=1.60

3)

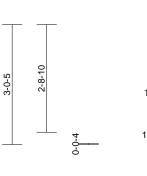

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:35 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-7-6

Scale = 1:33.2

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MSH	0.44 0.42 0.18	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 37 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.3 Structural wood shea 9-7-6 oc purlins. Rigid ceiling directly a bracing.	applied or 6-0-0 oc =9-7-6, 4=9-7-6 10) 21), 3=-47 (LC 20), C 14) 20), 3=94 (LC 21), 4 pression/Maximum 112/366	5 ed or 7 8 9 9 9 9 9 1 1	 Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. Gable requir(Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar Provide mec bearing plate 1, 47 lb uplift This truss is International 	snow loads have es continuous bo spaced at 4-0-0 o s been designed id nonconcurrent as been designe n chord in all aree y 2-00-00 wide w y other members nanical connectio capable of withs at joint 3 and 10 designed in acco Residential Code nd referenced sta	the product of the pr	DL=1.15 Plate Exp.; Ce=0.1 asidered for t d bearing. D psf bottom other live loa e load of 20.1 a rectangle veen the bott ers) of truss i 88 lb uplift at j at joint 4. ith the 2018 s R502.11.1 a	e 9; his 0psf om to joint					
this design 2) Wind: ASC	ed roof live loads have h n. CE 7-16; Vult=130mph (mph; TCDL=6.0psf; BC	(3-second gust)										NITH CA	ROUT

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	VLB7	Valley	1	1	Job Reference (optional)	173351103

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:35

Page: 1 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 3-7-5 6-10-8 3-7-5 3-3-3 4x5 = 2 10 2 2-8-12 10 Г 1₽ 1 3 4 3x5 🍫 2x4 ı 3x5 💊 7-2-10 GRIP 244/190 FT = 20% 7 lb

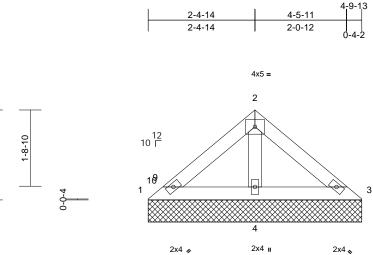
Scale	= 1	·29 1	

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MP	0.25 0.26 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 I
	7-2-10 oc purlins. Rigid ceiling directly bracing. (size) 1=7-2-10 Max Horiz 1=-66 (LI Max Uplift 1=-26 (LI 4=-70 (LI Max Grav 1=71 (LC	C 21), 3=-14 (LC 20), C 14) C 20), 3=103 (LC 21),	6) 7) 8) 9)	Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requir Gable studs This truss ha chord live los * This truss ha chord live los * This truss that on the bottor 3-06-00 tall b chord and an	F7-16; Pr=20.0 p I.15); Pf=20.0 ps Is=1.0; Rough C =1.10; Rough C =1.10 snow loads have es continuous be spaced at 4-0-0 is been designer ad nonconcurrer has been design n chord in all are by 2-00-00 wide hanical connecti	of (Lum DC at B; Fully e been cor oc. d for a 10.0 t with any ed for a liv eas where will fit betw rs.	DL=1.15 Plate Exp.; Ce=0. asidered for t d bearing. D psf bottom other live loz e load of 20. a rectangle veen the bott	e 9; his ads. Opsf				
FORCES TOP CHORD BOT CHORD WEBS	4=523 (L (lb) - Maximum Cor Tension 1-2=-83/223, 2-3=-{ 1-4=-176/150, 3-4= 2-4=-415/192	npression/Maximum 37/223		1, 14 lb uplift) This truss is International	e capable of with t at joint 3 and 70 designed in accord Residential Coord nd referenced st Standard	0 lb uplift a ordance w le sections	it joint 4. ith the 2018 R502.11.1 a					

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-13 to 3-7-10, Exterior(2R) 3-7-10 to 4-2-14, Exterior(2E) 4-2-14 to 7-2-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

TITLE COMPANY SEAL 036322 G mmm May 12,2025



Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	VLB8	Valley	1	1	Job Reference (optional)	173351104

2-0-5

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:35 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

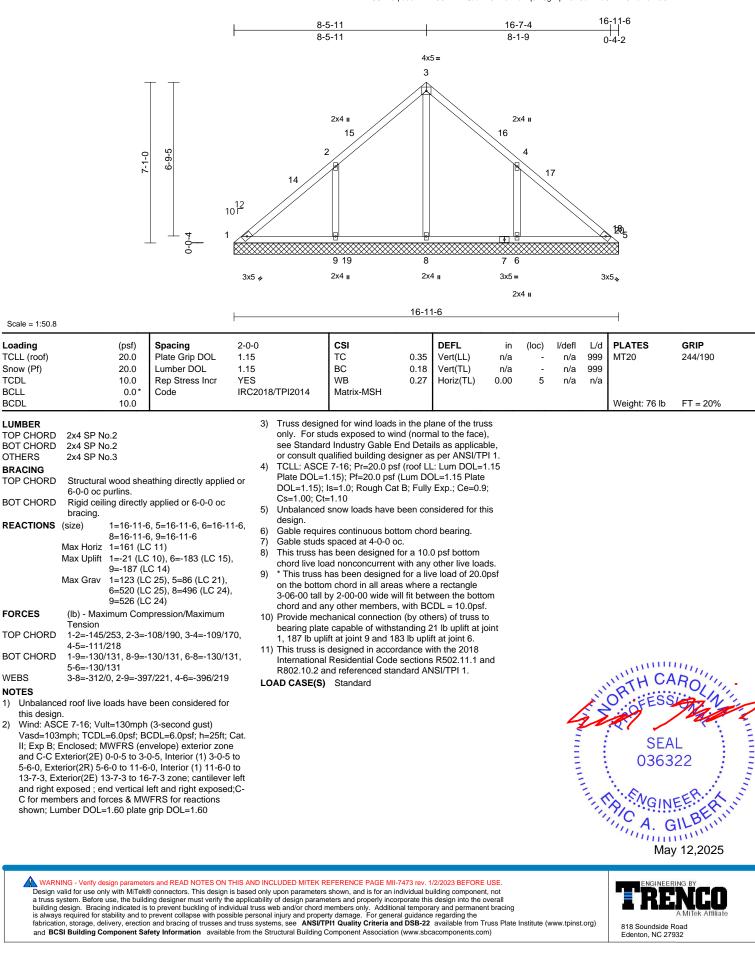
4-9-13

Scale = 1:26

		1										
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI201	4 Matrix-MP								
BCDL	10.0	-									Weight: 17 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP No.2		5) Unbala design	nced snow loads hav	e been co	nsidered for t	his					
BOT CHORD	2x4 SP No.2		0	requires continuous b	ottom cho	rd bearing.						
OTHERS	2x4 SP No.3			studs spaced at 4-0-0		0						
BRACING				uss has been designe								
TOP CHORD	Structural wood she 4-9-13 oc purlins.	athing directly appli	9) * This	ive load nonconcurrer russ has been design	ned for a liv	e load of 20.						
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc	3-06-0	bottom chord in all are tall by 2-00-00 wide	will fit betw		om					
REACTIONS	0	3=4-9-13, 4=4-9-13		and any other membe								
	Max Horiz 1=-43 (LC	2 10)		e mechanical connect plate capable of with								
	Max Uplift 3=-7 (LC	15), 4=-30 (LC 14)		b uplift at joint 4.	istanding	r ib upilit at jo	int 3					
	Max Grav 1=58 (LC	20), 3=86 (LC 21),		uss is designed in acc	ordance w	ith the 2018						
	(LC 20)		Interna	tional Residential Co			and					
FORCES	(lb) - Maximum Com	pression/Maximum	R802.1	0.2 and referenced st	tandard Al	NSI/TPI 1.						
	Tension	10.0	LOAD CA	SE(S) Standard								
TOP CHORD	1-2=-61/98, 2-3=-79											
BOT CHORD WEBS	1-4=-80/85, 3-4=-80 2-4=-203/92	/85										
	2-4=-203/92											
NOTES	a reaf live leads have	heen considered fo	-									
this design	ed roof live loads have	been considered id)r									
	CE 7-16; Vult=130mph	(3-second quist)									minin	11111
	mph; TCDL=6.0psf; B		: Cat.								WTH CA	ROUL
	Enclosed; MWFRS (er									1	R	see Links
	xterior(2E) zone; cant									K-	U.FESS	A line
	end vertical left and ri									22		1222
	and forces & MWFRS		1;						-		21 /	S . =
	OL=1.60 plate grip DC								-		SEA	AL : =
	igned for wind loads in								Ξ		000	• -
	studs exposed to wind ard Industry Gable En										0363	322 : E
	qualified building desi									- 8	N	1
	CE 7-16; Pr=20.0 psf (2	A	all S
	.=1.15); Pf=20.0 psf (L									31	NGIN	FERMAN
); Is=1.0; Rough Cat E									11	710	CEL IN
Cs=1.00; 0	Ct=1.10										SEA 0363	ALDIN
											A. C	unu.

May 12,2025

GI mmm Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	VLD1	Valley	1	1	Job Reference (optional)	173351105

1)

2)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:35 ID:?VRASUfm0qfd3oFPBHC5FHzRQud-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	VLD2	Valley	1	1	Job Reference (optional)	173351106

Scale = 1:43.7 Loading

TCLL (roof)

0 (D()

1)

2)

this design.

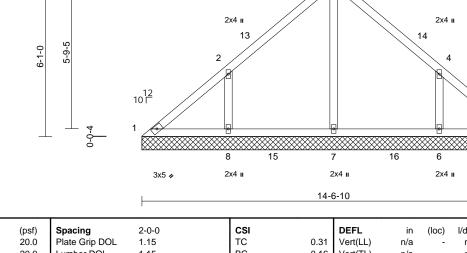
grip DOL=1.60

Unbalanced roof live loads have been considered for

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.

II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-3-10, Interior (1) 3-3-10

to 4-3-10, Exterior(2R) 4-3-10 to 10-3-10, Interior (1) 10-3-10 to 11-3-10, Exterior(2E) 11-3-10 to 14-6-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate


Wind: ASCE 7-16; Vult=130mph (3-second gust)

Run; 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:35 ID:Th_ZgqfOm8nUgyqbk?jKoVzRQuc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

14-2-8

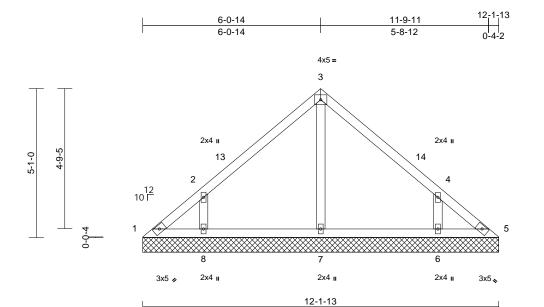
Page: 1

14-6-10 7-3-5 6-11-3 4x5 = 3 2x4 II 2x4 II 13 14 2 4 5 8 15 7 16 6 2x4 II 2x4 II 2x4 II 3x5、 14-6-10 CSI DEFL in l/defl L/d PLATES GRIP (loc) тс 0.31 Vert(LL) n/a n/a 999 MT20 244/190 , 999 n/a n/a n/a Weight: 63 lb FT = 20%

7-3-5

Snow (Pf) TCDL BCLL BCDL		20.0 10.0 0.0* 10.0	Lumber DOL Rep Stress Incr Code	1.15 YES IRC2		/TPI2014	BC WB Matrix-MSH	0.16 0.15	Vert(TL) Horiz(TL)	n/a 0.00	5
	6-0-0 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift	0.2 o.3 I wood shea purlins. ing directly 1=14-6-10 7=14-6-10 1=-138 (L 1=-24 (LC 8=-159 (L 1=124 (LC	: 10), 6=-156 (LC 15) C 14) C 30), 5=99 (LC 24), C 21), 7=407 (LC 24)	5-10,),	3) 4) 5) 6) 7) 8) 9)	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct Unbalanced design. Gable requirt Gable studs This truss ha chord live los * This truss ha chord live los * This truss ha chord live los * This truss ha	ed for wind load ds exposed to v 4 Industry Gable alified building (7-16; Pr=20.0 p s=1.0; Rough C 1.10; Rough C s=1.0; Rough C so continuous b spaced at 4-0-0 s been designe d nonconcurrer as been designe n chord in all ar y 2-00-00 wide y other membe	wind (norm a End Deta designer a: psf (roof Ll sf (Lum DC Cat B; Fully e been cor ottom chor oc. d for a 10. t with any ued for a liv eas where will fit betw	al to the face ils as applica is per ANSI/T :: Lum DOL= :L=1.15 Plate Exp.; Ce=0.1 asidered for t d bearing. 0 psf bottom other live loa re load of 20. a rectangle veen the bott	e), ble, PI 1. 1.15 9; his dds. 00psf om	
FORCES	(lb) - Max Tension	imum Com	pression/Maximum		10)	Provide mecl	nanical connect capable of with	ion (by oth	ers) of truss	to	
TOP CHORD	1-2=-153/ 4-5=-121/		173/121, 3-4=-173/1	11,	44)	1, 159 lb upli	ft at joint 8 and	156 lb upli	ft at joint 6.	UIII	
BOT CHORD		27, 7-8=-6	1/101, 6-7=-61/101,		11)	International	designed in acc Residential Coo nd referenced si	de sections	s R502.11.1 a	and	
WEBS			5/197, 4-6=-375/196		LO	AD CASE(S)		ianualu Ar	NOI/TELT.		
NOTES					-0		Clandard				

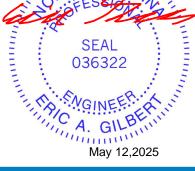
VIIIIIIII SEAL 036322 G mmm May 12,2025


818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	VLD3	Valley	1	1	Job Reference (optional)	173351107

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:35 ID:kUxM45s?bF21LX?KCRTFVAzRQqU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

Scale = 1:39.3

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.31 0.12 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 50 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins. Rigid ceiling directl bracing. (size) 1=12-1-1 7=12-1-1 Max Horiz 1=-115 (Max Uplift 1=-33 (L 6=-136 (Max Grav 1=94 (LC		5) 13, 6) 7) 8) (434 9)	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requir Gable studs This truss ha chord live loo * This truss ha on the bottor 3-06-00 tall th	hed for wind loads dids exposed to wi d Industry Gable ialified building de 7-16; Pf=20.0 psf Is=1.0; Rough Ca =1.10 snow loads have es continuous bo spaced at 4-0-0 d as been designed ad nonconcurrent has been designed ad nonconcurrent has been designed y 2-00-00 wide w y other members	nd (norm End Deta ssigner as sf (roof LL (Lum DC to LL (Lum DC to LL been cor tom chor oc. for a 10.1 with any d for a liv as where vill fit betw	al to the face ils as applical s per ANSI/TF i_: Lum DOL=: DL=1.15 Plate Exp.; Ce=0.5 ensidered for th rd bearing. 0 psf bottom other live loa other loz face a rectangle), ble, Pl 1. 1.15); his ds. 0psf					
FORCES	Tension	npression/Maximum) Provide mec	hanical connection connectication connectic	n (by oth							
TOP CHORD	1-2=-117/101, 2-3= 4-5=-91/63	-216/116, 3-4=-216/11	ο,	1, 5 lb uplift a uplift at joint	at joint 5, 140 lb u	plift at joi	int 8 and 136	lb					
BOT CHORD WEBS	1-8=-32/79, 7-8=-3 5-6=-32/74	2/74, 6-7=-32/74, 97/217, 4-6=-397/217	11) This truss is International	o. designed in acco Residential Code nd referenced sta	e sections	s R502.11.1 a	nd				NHTH CA	RO
NOTES 1) Unbalance	ed roof live loads have	e been considered for	L	DAD CASE(S)	Standard						and the	OREESE	D. N.

- Unbalanced roof live loads have been considered for 1) this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust)
- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 9-2-2, Exterior(2E) 9-2-2 to 12-2-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	VLD4	Valley	1	1	Job Reference (optional)	173351108

4-10-8

4-10-8

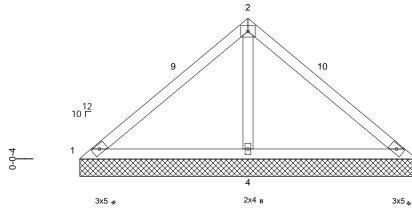
Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:35 ID:kUxM45s?bF21LX?KCRTFVAzRQqU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-4-14

4-6-6

9-9-0


3

Page: 1

4-1-0

3-9-5

4x5 =

9-9-0

Scale = 1:33.4

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	20.0Plate Grip DOL1.20.0Lumber DOL1.10.0Rep Stress IncrYE	15	CSI TC BC WB Matrix-MSH	0.46 0.44 0.19	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 37 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood sheathing directly applied or 9-9-0 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing.	 Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced design. Gable requir Gable studs This truss ha chord live loc * This truss h on the bottor 3-06-00 tall t chord and ar Provide mecc 	7-16; Pr=20.0 ps .15); Pf=20.0 ps ls=1.0; Rough Ca =1.10 snow loads have es continuous bot spaced at 4-0-0 c is been designed ad nonconcurrent nas been designe n chord in all area by 2-00-00 wide w yo other members hanical connectio o capable of withs	(Lum DC t B; Fully been cor tom chor oc. for a 10.0 with any d for a liv as where will fit betw s. n (by oth	DL=1.15 Plate Exp.; Ce=0.5 asidered for the d bearing.) psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t	ds. Dpsf om					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Compression/Maximum Tension 1-2=-117/382, 2-3=-117/382 1-4=-249/175, 3-4=-249/175 2-4=-650/275	1, 52 lb uplif 11) This truss is International	at joint 3 and 11 designed in acco Residential Code nd referenced sta	1 lb uplift rdance w sections	at joint 4. ith the 2018 R502.11.1 a						
NOTES 1) Unbalance this design	ed roof live loads have been considered for n.										

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 6-9-5, Exterior(2E) 6-9-5 to 9-9-5 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	VLD5	Valley	1	1	Job Reference (optional)	173351109

Run; 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:35

GRIP 244/190

FT = 20%

ID:CgVkHRtdMZAuzhaXm9_U1OzRQqT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 3-8-2 7-0-1 3-8-2 3-4-0 4x5 =2 9 10 2-9-5 3-1-0 12 10 Г 3 4 2x4 I 3x5 🍫 3x5 💊 7-4-3 Spacing 0.00 DEEL 2-0-0 (100) I/dof

Scale = 1:29.3

Looding

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.27	Vert(LL)	n/a	-	n/a	999	MT20
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.27	Vert(TL)	n/a	-	n/a	999	
TCDL		10.0	Rep Stress Incr	YES		WB	0.09	Horiz(TL)	0.00	4	n/a	n/a	
BCLL		0.0*	Code	IRC20	18/TPI2014	Matrix-MP							
BCDL		10.0											Weight: 27 lb
LUMBER TOP CHORD	2x4 SP No.	2		4		E 7-16; Pr=20.0 1.15); Pf=20.0 p							
BOT CHORD						Is=1.0; Rough C							
OTHERS	2x4 SP No.				Cs=1.00; Ct		, . unj	±,, 00 0.	,				
BRACING	22101110	0		Ę	,	snow loads hav	e been co	nsidered for t	his				
TOP CHORD			athing directly applie	dor	design.	res continuous b	ottom cho	rd bearing					
BOT CHORD	7-4-3 oc pu Rigid ceiling bracing.		applied or 6-0-0 oc	7	 Gable studs This truss has 	spaced at 4-0-0 as been designe) oc. d for a 10.	0 psf bottom					
REACTIONS	Max Horiz 1 Max Uplift 1	=68 (LC	21), 3=-19 (LC 20),	Ş	 * This truss on the botto 3-06-00 tall 	ad nonconcurre has been desigr m chord in all ar by 2-00-00 wide ny other membe	ned for a liv eas where will fit betw	ve load of 20.0 a rectangle	Opsf				
		=105 (LC	C 20), 3=105 (LC 21) C 20)		0) Provide med	chanical connect e capable of with	tion (by oth						
FORCES	(lb) - Maxim Tension	num Com	pression/Maximum		1, 19 lb uplif	t at joint 3 and 7 designed in acc	'6 lb uplift a	at joint 4.	onn				
TOP CHORD	1-2=-92/236	6, 2-3=-92	2/236			Residential Co			nd				
BOT CHORD	1-4=-184/15	55, 3-4=- ⁻	184/155			ind referenced s							
WEBS	2-4=-432/20	04		1	OAD CASE(S)	Standard							
NOTES				-	(-)								
1) Unbalanc	ed roof live loa	ads have	been considered for										mm
·													

1) this design.

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 4-4-8, Exterior(2E) 4-4-8 to 7-4-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

(nof)

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

1111111 CHARLEN COMPANY Mananana, SEAL 036322 G mmm May 12,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	VLD6	Valley	1	1	Job Reference (optional)	173351110

2-5-11

2-5-11

Carter Components (Sanford, NC), Sanford, NC - 27332,

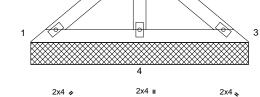
1-9-5

0-0-4

2-1-0

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:36 ID:CgVkHRtdMZAuzhaXm9_U1OzRQqT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-7-4


2-1-9

4-11-6

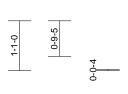
2 12 10 Г

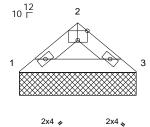
4x5 =

Scale = 1:26.2

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP				-				
BCDL	10.0										Weight: 18 lb	FT = 20%
LUMBER			5) Unbalan	ced snow loads hav	e been co	nsidered for th	nis					
TOP CHORD	2x4 SP No.2		design.									
BOT CHORD	2x4 SP No.2			quires continuous b		d bearing.						
OTHERS	2x4 SP No.3			uds spaced at 4-0-0								
BRACING				s has been designe								
TOP CHORD	Structural wood she 4-11-6 oc purlins.	athing directly appli	9) * This tru	e load nonconcurrer ss has been design	ned for a liv	e load of 20.0						
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc	3-06-00	ottom chord in all are all by 2-00-00 wide	will fit betw	0	om					
REACTIONS	0	, 3=4-11-6, 4=4-11-6		d any other membe			_					
	Max Horiz 1=-44 (LC	2 10)		nechanical connect								
	Max Uplift 3=-7 (LC	15), 4=-35 (LC 14)		blate capable of with puplift at joint 4.	istanding i	ib upilit at joi	nt 3					
	Max Grav 1=89 (LC	20), 3=89 (LC 21),		s is designed in acc	ordance w	ith the 2018						
	(LC 21)			onal Residential Cod			nd					
FORCES	(lb) - Maximum Con	pression/Maximum		2 and referenced st			na					
	Tension			(S) Standard								
TOP CHORD	1-2=-82/108, 2-3=-8											
BOT CHORD	1-4=-87/91, 3-4=-87	/91										
WEBS	2-4=-218/101											
NOTES												
1) Unbalance	ed roof live loads have	been considered for	or									
, this desigr	n.											11
2) Wind: ASC	CE 7-16; Vult=130mph	(3-second gust)									111110	No lin
Vasd=103	Smph; TCDL=6.0psf; B	CDL=6.0psf; h=25ft	; Cat.								"TH UA	ROUL
	Enclosed; MWFRS (er		ne								A STOP	D. Int
	Exterior(2E) zone; cant								/	~~	FESC	PN. Si
	end vertical left and ri								4			Neg
	and forces & MWFRS		ז;						-	е – <u>э</u>	:4	1: -
	OL=1.60 plate grip DC								=		SEA	AL E
	igned for wind loads in										0000	• –
	studs exposed to wind										0363	322 : 3
	lard Industry Gable En qualified building desi									((1	1 2
	CE 7-16; Pr=20.0 psf (1	· ~	A 1. 3
	_=1.15); Pf=20.0 psf (L									2.0	S. SNOW	FEN. AN
	5); Is=1.0; Rough Cat E									1	20	1. 11 S
Cs=1.00; (,, Exp., 00=0.	-, -,						TH DAY	1	i CA C	BUN
00-1.00, 0											in the second	in in its
											201111	TIME

un unin May 12,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	897 Serenity-Roof-B326-Blakestone B	
25040246-01	VLD7	Valley	1	1	Job Reference (optional)	173351111

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 08 12:47:36 ID:CgVkHRtdMZAuzhaXm9_U1OzRQqT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x5 =

2-6-10

Scale = 1:25.1

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI20	CSI TC BC WB 14 Matrix-I	0.05 0.05 0.00 MP	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 7 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS (N FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Unbalanced this design. 2) Wind: ASC Vasd=103n II; Exp 8; Ei and C-C Ex exposed ; e members ai Lumber DO 3) Truss desig only. For st see Standa or consult q 4) TCLL: ASC Plate DOL= DOL=1.15;; CS=1.00; CI 5) Unbalanced design.	2x4 SP No.2 2x4 SP No.2 Structural wood she 2-6-10 oc purlins. Rigid ceiling directly bracing. (size) 1=2-6-10, Wax Horiz 1=-21 (LC Max Uplift 1=-9 (LC Max Grav 1=115 (LC (lb) - Maximum Com Tension 1-2=-146/63, 2-3=-1 1-3=-34/104 d roof live loads have E 7-16; Vult=130mph nph; TCDL=6.0psf; B nclosed; MWFRS (er terior(2E) zone; cant end vertical left and right nd forces & MWFRS (or terior(2E) zone; cant end vertical left and right nd forces & MWFRS (er terior(2E) zone; cant end vertical left and right nd forces & MWFRS 0L=1.60 plate grip DC ned for wind loads in tuds exposed to wind rd Industry Gable En upalified building desi E 7-16; Pr=20.0 psf (1:15); Pf=20.0 psf (1:15); rf=20.0 psf (3=2-6-10 (12) 14), 3=-9 (LC 15) C 20), 3=115 (LC 21) pression/Maximum 46/63 been considered for (3-second gust) CDL=6.0psf; h=25ft; typelope) exterior zon- ilever left and right ght exposed;C-C for for reactions shown; DL=1.60 the plane of the trus (normal to the face) d Details as applicab gner as per ANS/TP roof LL: Lum DOL=1 um DOL=1.15 Plate B; Fully Exp.; Ce=0.9; seen considered for thi	8) This chorc 9) * This d or 10) Provi beari and 5 11) This Interr R802 LOAD C/	live load nonco truss has been a bottom chord in 00 tall by 2-00-0 and any other n de mechanical c g plate capable Ib uplift at joint : russ is designed ational Residen	esigned for a 10. Incurrent with any designed for a liv n all areas where 0 wide will fit betw nembers. onnection (by oth of withstanding § 3. in accordance w ial Code sections need standard AN	other live loa e load of 20.0 a rectangle veen the both ers) of truss t b lb uplift at jo ith the 2018 \$ R502.11.1 a	Opsf om to vint 1				Weight: 7 lb	AROLINI AL B22
											Ма	y 12,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

