

Trenco 818 Soundside Rd Edenton, NC 27932

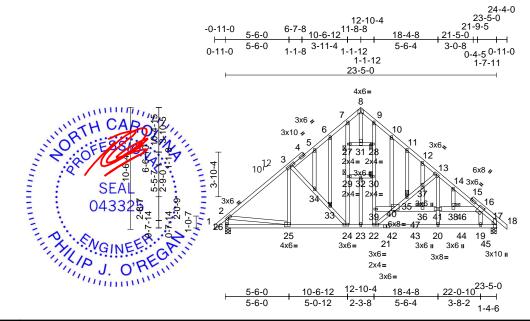
Re: P02057-24657 1057 Serenity

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Lumber 2383 (Dunn, NC).

Pages or sheets covered by this seal: T37069894 thru T37069923

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844


April 22,2025

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	1057 Serenity	
P02057-24657	A01SE	Attic Girder	1	1	Job Reference (optional)	T37069894

Run: 9.13 S 8.83 Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:43:21 ID:VhdkN?qr6SKQygAoVXcUtdzOYQi-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:99.5

Plate Offsets (X, Y): [16:0-5-0,0-1-8], [17:Edge,0-0-4], [40:0-2-15,0-1-8]

]; [· · · = ago; o o · ·]; [·		. 0]	_								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	/TPI2014	CSI TC BC WB Matrix-MS	0.47 0.47 0.58	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 20-22 20-22 17	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 236 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	2x4 SP No.2 2x4 SP No.3 *Excep SP No.1, 22-13,24-3 39-40,41-16,40-41:2 2x4 SP No.3 *Excep No.2 Right: 2x4 SP No.3 Structural wood she 5-2-9 oc purlins, ex Rigid ceiling directly bracing. 1 Brace at Jt(s): 27, 28, 29, 30, 33, 35, 36, 38 (size) 17=0-5-8, Max Horiz 26=-201 (Max Grav 17=1040)	:2x4 SP No.2, x6 SP No.2 t* 33-6,40-10:2x4 SI athing directly applie cept end verticals. applied or 10-0-0 or 26=0-5-8 LC 8) LC 10), 26=-144 (LC	ed or 2 NO 1) 2) 2 10)	TES Unbalanced this design. Wind: ASCE Vasd=91mp II; Exp B; Er	22-39=-192/555; 28-30=-198/552; 22-40=-706/329; 35-37=-335/120; 20-41=-21/268,11; 24-29=-86/291; 21; 3-34=-258/177; 32; 24-33=-324/213; 28-31=-45/14; 2-2; 30-32=-6/26; 8-31; 6-33=-6/26; 8-31; 6-33=-6/26; 8-31; 6-38=-14/27; 12; 14-38=-46/41; 39; 16-38=-14/123; 36-41=-173/123; 1 roof live loads ha E 7-16; Vult=115m; h; TCDL=4.2ps; E pclosed; MWFRS;	9-28=-11: 35-40=-3: 13-37=-3: 3-41=-66, 7-29=-93; 3-34=-28; 3-25=-8/1; 55=-20/65; =-58/14, 37=-68/4; 40=-2/16; 36-40=-1; 16-19=-1; ve been of ph (3-sec); 30-20=-2; ve been of ph (3-sec); ve bee	9/327, 32/126, 55/128, (332, (282, 7-27=-2 1/172, 50, 27-31=-4 6, 29-32=-6/; 7, 23-32=-38 10-40=-258/ 8, 36-37=-10 i, 38-41=-144 72/122, 36/45 considered fc considered fc cond gust) Dpsf, h=25ft; e) exterior zoi	15/14, 26, 3/0, 153, 03/62, 1/123, or Cat. ne;	9) Thi cha 10) * T on 3-00 cha 11) Pra 26 12) Thi Inte R8 13) Ha pra dov dov dov dov up sud	s truss h ord live lo his truss the botto 6-00 tall ord and a ovide me aring pla and 181 s truss ernationa 02.10.2 inger(s) o vided su wn and 8 5-3, 16 l wn and 8 2-4- ch conne	has been bad not has be bom cho by 2-0 any oth chanic te capa lb uplit s desig al Resid and ref for othe for othe for othe b b up a b com cho com	een designed for rd in all areas wh 00-00 wide will fit 1 er members. al connection (by able of withstandi ft at joint 17. Ined in accordance dential Code sect ferenced standard r connection devi t to support conce o at 22-4-3 on top at 14-5-3, 16 lb c n and 8 lb up at 1 at 20-5-3, and 25 ottom chord. The levice(s) is the re	any other live loads. a live load of 20.0psf ere a rectangle between the bottom others) of truss to ng 144 lb uplift at joint we with the 2018 ions R502.11.1 and d ANSI/TPI 1. ce(s) shall be entrated load(s) 54 lb o chord, and 16 lb lown and 8 lb up at 8-5-3, and 16 lb 0 lb down and 13 lb 0 design/selection of sponsibility of others.
FORCES TOP CHORD BOT CHORD	(b) - Maximum Com Tension 1-2=0/37, 2-3=-1082 5-6=-806/192, 6-7=- 8-9=-638/227, 9-10= 10-11=-795/210, 11- 12-13=-848/180, 13- 14-16=-1204/187, 1(17-18=0/21, 2-26=-9 25-26=-196/261, 24- 23-24=-56/608, 22-2 20-22=-156/1023, 11 17-19=-169/1060	pression/Maximum 2/165, 3-5=-826/176, 781/207, 7-8=-712/2 -879/247, -12=-8347,195, -14=-1158/211, 5-17=-1260/225, 324/160 -25=-159/799, 23=-56/608,	3) 26, 4) 5)	right expose Truss desig only. For st see Standai TCLL: ASCI Plate DOL= 1.15 Plate D Exp.; Ce=1. This truss h load of 12.0 overhangs r Building Des	ft and right expose d; Lumber DOL=1 ned for wind loads uds exposed to wi rd Industry Gable I ualified building de E 7-16; Pr=20.0 ps 1.15); Pg=10.0 ps JOL = 1.15); Is=1.0 OCL = 1.15); Is=1.0 0; Cs=1.00; Ct=1. as been designed psf or 1.00 times non-concurrent wit signer/Project eng in Load = 5.0 (psf)	.60 plate in the plate and (norm End Deta ssigner at sf (roof LL f; Pf=7.7 D; Rough 10 for great flat roof lu h other lin ineer res	grip DOL=1. ane of the tru al to the face ils as applica & per ANSI/TI :: Lum DOL= psf (Lum DO Cat B; Partia er of min roof bad of 7.7 psi <i>re</i> loads. ponsible for	60 lss ble, PI 1. 1.15 L = illy	14) Atti	c room o	checke	d for L/360 deflec	tion.

requirements specific to the use of this truss component. 7) All plates are 2x4 (||) MT20 unless otherwise indicated.

April 22,2025

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Dracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1057 Serenity	
P02057-24657	A01SE	Attic Girder	1	1	Job Reference (optional)	T37069894

Run: 9.13 S 8.83 Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:43:21 ID:VhdkN?qr6SKQygAoVXcUtdzOYQi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

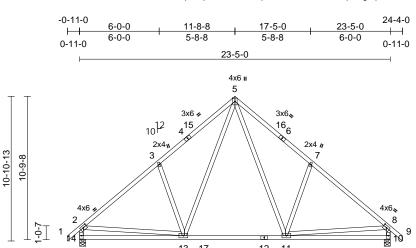
15) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (lb/ft)

Vert: 1-2=-29, 2-8=-29, 8-18=-29, 17-26=-20 Concentrated Loads (lb)

Vert: 20=-43 (B), 40=-39 (B), 16=10 (B), 19=-5 (B), 42=-5 (B), 43=-5 (B), 44=-5 (B), 45=-1 (B), 46=-39 (B), 47=-39 (B)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1057 Serenity	
P02057-24657	A02	Common	2	1	Job Reference (optional)	T37069895

Run: 9.13 S 8.83 Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:43:23 Page: 1 ID:0lhnpzYPpm0sHs8o_WcUpMzOYLv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x6 II

13 17

4x8=

11

12

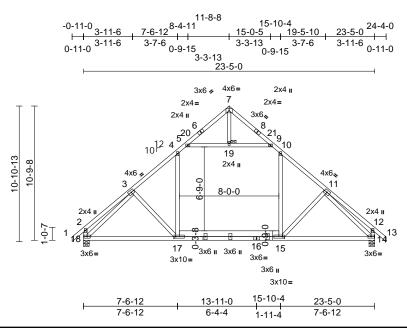
3x6= 4x8=

7-8-5 7-8-5	+ 15-8-11 + 8-0-5	23-5-0	

3x6 II

	X, Y): [2:0-3-0,0-1-12], [0.0-3-0,0-1-12]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER TOP CHORD		Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201 3)	Plate DOL=1	CSI TC BC WB Matrix-MS 7-16; Pr=20.0 pst; .15); Pg=10.0 pst; .0 = 1145; log 10	Pf=7.7	psf (Lum DO	-0.18 0.01 :1.15 L =	(loc) 11-13 11-13 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 158 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 *Excep 11-7,13-3,14-2,10-8:		4)	 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live 									
BRACING TOP CHORD BOT CHORD	Structural wood she 5-5-5 oc purlins, ex Rigid ceiling directly bracing.	5)	 load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads. 5) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component. 										
	(size) 10=0-5-8, Max Horiz 14=215 (L Max Uplift 10=-118 (Max Grav 10=1016	14) ´	 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom 										
FORCES	(lb) - Maximum Com Tension 1-2=0/37, 2-3=-1109 5-7=-1034/238, 7-8= 2-14=-900/156, 8-10	,	 chord and any other members, with BCDL = 10.0psf. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 118 lb uplift at joint 14 and 118 lb uplift at joint 10. 2) The trust is the provide mechanism in the post of the post of										
BOT CHORD	13-14=-204/387, 11- 10-11=-68/233	,			Residential Code nd referenced star			and					111. ·
WEBS	5-11=-168/580, 7-11 5-13=-169/581, 3-13 2-13=-12/610, 8-11=	=-293/212,	L	DAD CASE(S)	Standard						. In	WITH CA	ROLLIN
 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 11-8-8, Exterior(2R) 11-8-8 to 14-8-8, Interior (1) 14-8-8 to 24-4-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 											A PLAN PLAN	SEA 0433	L 25 PREGATION

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone


and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

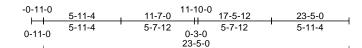
818 Soundside Road Edenton, NC 27932

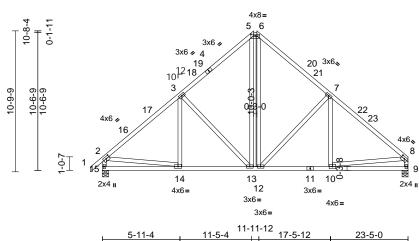
April 22,2025

Job	Truss	Truss Type	Qty	Ply	1057 Serenity	
P02057-24657	A03	Attic	5	1	Job Reference (optional)	T37069896

Run: 9.13 S 8.83 Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:43:23 Page: 1 ID:hV99ROYvyToSaDGW8f4A?9zOYJK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:92.6	
----------------	--


oading CLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.48	DEFL Vert(LL)	in -0.33	(loc) 14-15	l/defl >835	L/d 240	PLATES MT20	GRIP 244/190
now (Pf/Pg)	7.7/10.0	Lumber DOL	1.15		BC	0.77	Vert(CT)		14-15	>730	180		
CDL	7.0	Rep Stress Incr	YES		WB	0.55	Horz(CT)	0.02	14	n/a	n/a		
CLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MS		Attic	-0.28	15-17	>360	360		FT 000/
CDL	10.0											Weight: 169 lb	FT = 20%
UMBER			2)		7-16; Vult=115m								
OP CHORD	2x4 SP No.2		_		n; TCDL=4.2psf; I								
OT CHORD	2x4 SP No.2 *Excep				closed; MWFRS								
VEBS	2x4 SP No.3 *Excep		4 SP	SP and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 11-8-8, Exterior(2R) 11-8-8 to 14-8-8, Interior (1)									
	No.1, 18-2,14-12:2x4	4 SP N0.2			4-0 zone; cantile			ed ·					
	o , , , , , , ,				eft and right expo								
OP CHORD	Structural wood she		dor		FRS for reaction			ana					
OT CHORD	5-3-12 oc purlins, ex Rigid ceiling directly				ate grip DOL=1.6								
OT CHORD	bracing.	applied of 10-0-0 of	, 3)	TCLL: ASCE	7-16; Pr=20.0 ps	sf (roof LL	: Lum DOL=	1.15					
OINTS	1 Brace at Jt(s): 19			Plate DOL=1	.15); Pg=10.0 ps	f; Pf=7.7	osf (Lum DOI	_ =					
	(size) 14=0-5-8,	18-0-5-8			OL = 1.15); ls=1.0	, 0	Cat B; Partia	lly					
	Max Horiz 18=215 (L); Cs=1.00; Ct=1.								
	Max Uplift 14=-93 (L		4)		s been designed								
	Max Grav 14=975 (L				psf or 1.00 times			on					
ORCES	(lb) - Maximum Com												
	Tension		- /		n Load = 5.0 (psf								
OP CHORD	1-2=0/37, 2-3=-254/			requirements	s specific to the u	se of this	truss compor	nent.					
	4-5=-699/153, 5-7=-	,	, 6)		s been designed								
	9-10=-699/153, 10-1				ad nonconcurrent								
	11-12=-254/115, 12-	13=0/37, 2-18=-269	/114, 7)		nas been designe)psf				minin	1111.
	12-14=-269/113	47 44/700			n chord in all area							I'''H CA	ROUL
OT CHORD	17-18=-121/883, 15- 14-15=-31/780	17=-14/790,			y 2-00-00 wide w		een the botto	om			1	A	1 Still
VEBS	10-15=0/374, 4-17=0	1/37/ 5-10680/1/	4, 8)		ly other members d live load (20.0 p		dditional batt	~~~			31	0	O: NY
VLDO	9-19=-689/144, 7-19	,	, -,		bad (5.0 psf) app						24		N. 7 :
	11-14=-1012/92, 3-1		, 9)		hanical connectio						-	:0	K: =
	11-15=-143/155	,	0)		capable of withs								r 1, E
IOTES					uplift at joint 14.		,			=	- E	SEA	L <u>i</u> E
	d roof live loads have	been considered for	- 10) This truss is	designed in acco	rdance w	ith the 2018			=	:	0433	25 : =
this design				International	Residential Code	sections	R502.11.1 a	nd		-	1		
					nd referenced sta						-		1.5
				,	necked for L/360	deflection	•				- 2	. ENG.	ERISS
			LC	DAD CASE(S)	Standard						11	SEA 0433	F. Gra
											1	NP I P	REIN
												11, 0. 0	in the second se
													III,
												Anri	22,2025



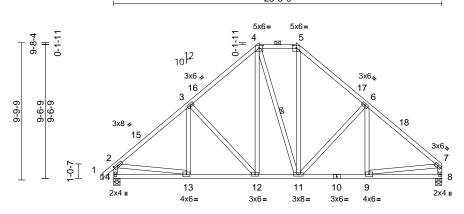
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1057 Serenity	
P02057-24657	A04	Нір	1	1	Job Reference (optional)	T37069897

Run: 9.13 S 8.83 Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:43:23 Page: 1 ID:34_kp6ELbzI_m1DuvhsOLgzOY1f-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	5-11-4	11-5-4	7-5-12	23-5-0	
· 1:88.3	5-11-4	5-6-0 0-6-8	5-6-0	5-11-4	
	1				


Scale = 1:88.3				5 11 -	, JC	0-6	-8		5 11	-			
late Offsets	(X, Y): [2:0-3-0,0-1-12], [5:0-4-0,0-1-8], [8:0-	-3-0,0-1-	12]									
Loading FCLL (roof) Snow (Pf/Pg) FCDL BCLL BCDL	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MS	0.40 0.34 0.36	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.06 0.02	(loc) 14-15 9-10 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 169 lb	GRIP 244/190 FT = 20%
UMBER OP CHORD OT CHORD VEBS RACING OP CHORD	2x4 SP No.2 2x4 SP No.3 *Excep 13-3,13-5,12-6,12-7 Structural wood she		, d or	Vasd=91mp II; Exp B; En and C-C Ext to 11-7-0, Ex 11-10-0 to 1 cantilever let right expose	7-16; Vult=115r h; TCDL=4.2psf; closed; MWFRS erior(2E) -0-11-C tterior(2E) 11-7- 6-0-15, Interior (t and right expos d;C-C for memb	BCDL=3.(6 (envelope) to 2-1-0, 0 to 11-10- 1) 16-0-15 sed ; end v ers and for	Desf; h=25ft; (e) exterior zor nterior (1) 2- 0, Exterior(21 to 23-3-4 zor ertical left an ces & MWFF	ne 1-0 R) ne; d	LOAD	CASE(S) Sta	ndard	
BOT CHORD	2-0-0 oc purlins (6-0 Rigid ceiling directly bracing.	-0 max.): 5-6. applied or 10-0-0 oc 15=0-5-8 _C 13) C 17), 15=-118 (LC 1	3)	DOL=1.60 TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced	shown; Lumber 7-16; Pr=20.0 p 1.15); Pg=10.0 p OL = 1.15); Is=1 0; Cs=1.00; Ct=1 snow loads have	osf (roof LL sf; Pf=7.7 .0; Rough .10, Lu=50	: Lum DOL= osf (Lum DOI Cat B; Partia)-0-0	_ = Ily					
ORCES	(lb) - Maximum Com Tension 1-2=0/37, 2-3=-1033	pression/Maximum	,	 design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads. 6) Building Designer/Project engineer responsible for 									
3OT CHORD WEBS	2-15=-859/134, 8-9= 14-15=-216/312, 13- 12-13=-21/546, 10-1 3-14=0/188, 3-13=-3	799/117 -14=-127/767, 2=-50/757, 9-10=-55/ 327/176, 5-13=-77/271 333/179, 7-10=0/186	/137 7) 1, 8)	verifying Rai requirements Provide ade This truss ha chord live los	n Load = 5.0 (ps s specific to the quate drainage t as been designed ad nonconcurrer	of) covers r use of this o prevent v d for a 10.0 nt with any	ain loading truss compor vater ponding) psf bottom other live loa	g. ds.				ORTH CA	BOLIN
NOTES 1) Unbalance this design	ed roof live loads have		11	on the botton 3-06-00 tall li chord and an 0) Provide mec bearing plate 15 and 101 l 1) This truss is International R802.10.2 a 2) Graphical pu	has been design in chord in all are by 2-00-00 wide by other member hanical connecti a capable of with b uplift at joint 9 designed in acc Residential Coo nd referenced st irlin representati ation of the purlin J.	eas where will fit betw rs. ion (by oth standing 1 ordance w de sections andard AN on does no	a rectangle veen the botto ers) of truss t 18 lb uplift at th the 2018 R502.11.1 a ISI/TPI 1. ot depict the s	om o joint nd			A A A A A A A A A A A A A A A A A A A	SEA 0433	L 25 REGALIUM


April 22,2025

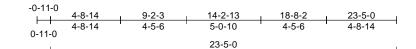
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1057 Serenity	
P02057-24657	A05	Нір	1	1	Job Reference (optional)	T37069898

Run: 9.13 S 8.83 Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:43:24 Page: 1 ID:MiRorKWPyLJaej3VJkI1JkzOY1H-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	5-4-1	10-2-14	13-2-2	18-0-15	23-5-0	
Scale = 1:82.2	5-4-1	4-10-13	2-11-5	4-10-13	5-4-1	1

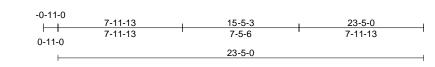
Dista Offesta (V. V).	[2.0.2.5.0.4.0]	[4.0.2.0.0.2.4] [5.0.2.0.0.2.4]
Plate Olisets (X, Y):	[2:0-3-5,0-1-8],	[4:0-3-0,0-2-1], [5:0-3-0,0-2-1]

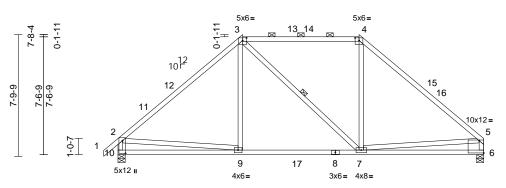

Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 20.0 12.7/10.0 7.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.31 0.30 0.25	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.05 0.02	(loc) 12-13 12-13 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC201	8/TPI2014	Matrix-MS							Weight: 173 lb	FT = 20%
UMBER OP CHORD OT CHORD VEBS BRACING OP CHORD OP CHORD VEBS CORCES TOP CHORD SOT CHORD VEBS OT CHORD VEBS IOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep 12-3,12-4,11-4,11-5 Structural wood she 5-6-15 oc purlins, e 2-0-0 oc purlins (6-1 Rigid ceiling directly bracing. 1 Row at midpt (size) 8=0-5-8, Max Horiz 14=188 (Max Uplift 8=-98 (LL Max Grav 8=854 (L (lb) - Maximum Con Tension 1-2=0/37, 2-3=-996 4-5=-532/163, 5-6= 2-14=-864/131, 7-8 3-14=-197/261, 12 11-12=-52/531, 9-1 3-3=0/155, 3-12=- 4-11=-103/108, 5-1 6-9=-4/152, 2-13=-1	,11-6:2x4 SP No.2 eathing directly applie except end verticals,)-0 max.): 4-5. r applied or 10-0-0 or 4-11 14=0-5-8 LC 11) C 15), 14=-116 (LC 1 C 2), 14=914 (LC 2) npression/Maximum (124, 3-4=-789/165, -792/177, 6-7=-996/1 =-804/112 -13=-119/701, 1=-62/704, 8-9=-46/1 271/153, 4-12=-88/2 1=-76/272, 6-11=-27 /572, 7-9=-24/597	ed or and c 3) (4) 4) (4) 5) (131, 6) (7) (114 8) (6) (55, 9) (7) (10) (10) (10) (10) (10) (10) (10) (10	Vasd=91mpl II; Exp B; En and C-C Ext to 10-4-10, E 13-0-6 to 17 cantilever lef right expose for reactions DOL=1.60 TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements Provide aded This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 14 and 98 lb 0) This truss is International R802.10.2 a	7-16; Vult=115m ;; TCDL=4.2psf; closed; MWFRS rior(2E) -0-11-0 xterior(2E) -0-11-0 xterior(2E) -10-4 3-5, Interior (1) 1 t and right expos d;C-C for member shown; Lumber I 7-16; Pr=20.0 ps JL = 1.15); Pg=10.0 ps DL = 1.15); Pg=10	BCDL=3. (envelope to 2-1-0, 10 to 13- 7-3-5 to 2 ed; end v rs and fo DOL=1.60 sf (roof LI f; Pf=12.7 0; Rough 10, Lu=50 for great flat roof LI fr of great flat roof LI fr of great flat roof LI for great flat roof LI for great flat roof LI for great se of this prevent 'i for a 10.1 with any d for a li with any d for a li with any d for a li sa where vill fit betw s. on (by oth standing 1 rdance w e sections indard AN n does no	Dpsf; h=25ft; exterior zo Interior (1) 2- o-6, Exterior(23-3-4 zone; vertical left ar vertical	ne 1-0 (2R) nd RS 1.15 OL = ally f live if on ment. g. ads. Opsf to t joint and t and				Weight: 173 lb	ROUNT

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1057 Serenity	
P02057-24657	A06	Нір	1	1	Job Reference (optional)	T37069899

Run: 9.13 S 8.83 Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:43:24 Page: 1 ID:FkCkFVna?ozbfx9X1eAyg9zOY0y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Scale = 1:78	9-0-7 9-0-7	14-4-9 5-4-2	23-5-0 9-0-7	1
Plate Offsets (X, Y): [4:0-3-0,0-2-1], [5:0-3-0,0-2-1]				


Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 12.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MS	0.51 0.70 0.51	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.17 -0.35 0.03	(loc) 8-10 8-10 8	l/defl >999 >788 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 156 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Excep SP No.3 Structural wood she 5-11-14 oc purlins, of 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing, 1 Row at midpt (size) 8=0-5-8, 1 Max Horiz 12=170 (L Max Horiz 12=170 (L Max Grav 8=936 (LC (lb) - Maximum Com Tension 1-2=0/37, 2-3=-408/ 4-5=-654/166, 5-6=- 2-12=-387/118, 7-8= 11-12=-128/787, 10- 8-10=-81/724 3-11=-141/152, 4-11	athing directly applie except end verticals, -0 max.): 4-5. applied or 10-0-0 oc 5-11 (2=0-5-8 C 11) : 15), 12=-112 (LC 1- C 3), 12=980 (LC 3) pression/Maximum 106, 3-4=-918/168, 927/171, 6-7=-379/7 -310/77 :11=-37/659, =-46/353, 5-11=-88/	d or and (; 3) (4) 4) (5) (4, 6) (7) (87, 8)	Vasd=91mpł II; Exp B; En and C-C Ext to 9-2-3, Ext to 14-2-13, E 18-5-11 to 22 exposed ; en members an Lumber DOL TCLL: ASCE Plate DOL=1 1.15 Plate DOL Exp.; Ce=1.0 This truss ha load of 12.0 J overhangs n Building Des verifying Raii requirements Provide adeo This truss ha chord live loa * This truss ha on the bottor	7-16; Vult=115mp 7; TCDL=4.2psf; E closed; MWFRS (erior(2E) -0-11-0 t erior(2R) 9-2-3 to ixterior(2R) 14-2-1 3-3-4 zone; cantile d vertical left and d forces & MWFR =1.60 plate grip L 7-16; Pr=20.0 psf -7-16; Pr=20.0 psf -7-16; Pr=20.0 psf 0L = 1.15); ls=1.0 y; Cs=1.00; Ct=1.1 s been designed psf or 1.00 times f pon-concurrent with igner/Project engin n Load = 5.0 (psf) s specific to the us us quate drainage to s been designed ad nonconcurrent has been designed ad nonconcurrent as been designed	CDL=3. envelopp o 2-1-0, 13-5-2, I 13-5-2, I 13-5-2, I 13-5-2, I 13-5-2, I 13-5-2, I 13-5-2, I 13-5-2, I 10-5, I 13-5-2, I 10-5, I 13-5-2, I 10-5, I 13-5-2, I 10-5, I 13-5-2, I	Opsf; h=25ft; e) exterior zointerior (1) 2- interior (1) 2- interior (1) 3- interior (1	ne 1-0 -5-2 (1) r ; 1.15 DL = ally f live f on nent. g. ads. 0psf					
NOTES 1) Unbalance this design	5-10=-66/392, 6-10= 6-8=-726/102 ed roof live loads have h.	,	9) 10 11	chord and ar Provide mec bearing plate 12 and 94 lb)) This truss is International R802.10.2 ar I) Graphical pu		, with BC n (by oth anding f dance w sections ndard AN n does no	EDL = 10.0ps ers) of truss 12 lb uplift a th the 2018 R502.11.1 a NSI/TPI 1. bt depict the s	f. to t joint and			N PLUE	SEA 0433	L 25 PREGATION 122,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1057 Serenity	
P02057-24657	A07	Нір	1	1	Job Reference (optional)	T37069900

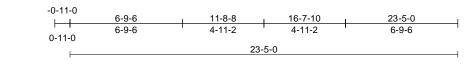
Run: 9.13 S 8.83 Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:43:24 Page: 1 ID:cF3URrF1pnt3rxe1qKN5INzOY0L-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

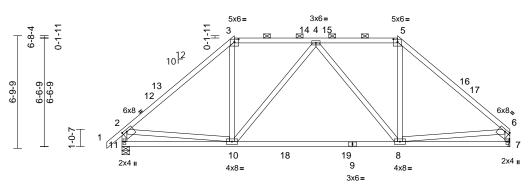
	7-10-1	15-6-15	23-5-0
Scale = 1:73.8	7-10-1	7-8-14	7-10-1

Plate Offsets (X, Y): [3:0-3-0,0-2-1], [4:0-3-0,0-2-1], [5:Edge,0-9-8], [10:0-9-12,0-2-4]

	(X, 1). [3.0-3-0,0-2-1],	[4.0-3-0,0-2-1], [3.Eu	ge,0-9-0],	, [10.0-9-12,0-	2-4]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 12.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MS	0.99 0.61 0.15	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.18 0.02	(loc) 6-7 6-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 139 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORE BOT CHORE WEBS BRACING TOP CHORE BOT CHORE WEBS REACTIONS	 2x4 SP No.2 2x4 SP No.2 *Except Structural wood she except end verticals (4-4-14 max.): 3-4. Rigid ceiling directly bracing. 1 Row at midpt 	_C 11) C 15), 10=-106 (LC 14)	4) I, 5) 6) 7) 8)	Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements Provide adeo This truss ha chord live loa * This truss h on the bottor	7-16; $Pr=20.0 \text{ psf}$.15); $Pg=10.0 \text{ psf}$; OL = 1.15); $Is=1.0); Cs=1.00; Ct=1.1s been designed fport of the transfer of the$	Pf=12.; Rough 0, Lu=5 for great lat roof I other lin heer res covers I e of this prevent for a 10. with any I for a liv s where	7 psf (Lum Dr Cat B; Partia 0-0-0 er of min roo pad of 7.7 ps ve loads. ponsible for ain loading truss compo water pondin 0 psf bottom other live loa e load of 20. a rectangle	OL = ally f live f on nent. g. ads. 0psf					
TOP CHORE	(lb) - Maximum Com Tension 0 1-2=0/37, 2-3=-1066		9)	 chord and any other members, with BCDL = 10.0psf. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 106 lb uplift at joint 									
BOT CHORE WEBS				0 10 and 89 lb uplift at joint 6.							11111		
NOTES			11		rlin representation			size			2	WTH UA	POIL
	ced roof live loads have	been considered for		or the orienta	ation of the purlin a						1	ON	Chilles .
this desig	gn.			bottom chore							32		N. TI
Vasd=91 II; Exp B; and C-C to 7-11-1 12-2-11 t (1) 19-8- exposed members	SCE 7-16; Vult=115mph mph; TCDL=4.2psf; BC ; Enclosed; MWFRS (er Exterior(2E) -0-11-0 to 3, Exterior(2R) 7-11-13 to 15-5-3, Exterior(2R) 1 2 to 23-3-4 zone; cantile ; end vertical left and rig s and forces & MWFRS DOL=1.60 plate grip DC	DL=3.0psf; h=25ft; Ca velope) exterior zone 2-1-0, Interior (1) 2-1- to 12-2-11, Interior (1) 15-5-3 to 19-8-2, Interior sver left and right ght exposed;C-C for for reactions shown;	OAD CASE(S)	Standard					CONTRACTOR OF	R. M.	SEA 0433	• -	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


0 mmm April 22,2025


⁸¹⁸ Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1057 Serenity	
P02057-24657	A08	Нір	1	1	Job Reference (optional)	T37069901

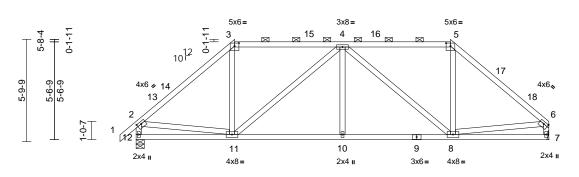
Run: 9.13 S 8.83 Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:43:25 ID:cn7LaTfMpD9Ew9FZpT_37YzOY?p-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:69.6	ł	6-7-10 6-7-10		<u>5-9-6</u> 1-1-11		23-5-0 5-7-10	——	
Plate Offsets (X, Y): [2:0-3-4,0-1-8], [3:0-3-0,0-2-1], [5:0-3-0,	,0-2-1], [6:0-3-4,0-1-8	3]					
Loading (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 12.7/10.0 TCDL 7.0 BCLL 0.0* DODL 10.0*	Plate Grip DOL1.Lumber DOL1.Rep Stress IncrYI	-0-0 .15 .15 ES RC2018/TPI2014	CSI TC 0.72 BC 0.96 WB 0.28 Matrix-MS	DEFLirVert(LL)-0.34Vert(CT)-0.54Horz(CT)0.02	8-10 >8 8-10 >5	09 240	PLATES MT20	GRIP 244/190
BRACING TOP CHORD Structural wood sh 4-4-5 oc purlins, e 2-0-0 oc purlins, e 2-0-0 oc purlins (6- BOT CHORD BOT CHORD Rigid ceiling direct bracing. REACTIONS (size) 7= Mech Max Horiz Max Horiz 11=133 Max Uplit 7=-83 (L Max Grav FORCES (lb) - Maximum Co Tension 1 TOP CHORD 1-2=0/37, 2-3=-110 4-5=-775/149, 5-6= 6-7=-865/111 6-7=-865/111 BOT CHORD 10-11=-234/374, 8- 7-8=-111/199 7-8=-26/437, 4-100	y applied or 2-2-0 oc anical, 11=0-5-8 (LC 11) C 15), 11=-100 (LC 14) C 3), 11=989 (LC 3) mpression/Maximum 5/131, 3-4=-771/149, -1102/130, 2-11=-914/139 10=-134/863, =-244/123, 4-8=-242/124, -111/627, 6-8=-95/646 e been considered for h (3-second gust) CDL=3.0psf; h=25ft; Cat. nvelope) exterior zone : 2-1-0, Interior (1) 2-1-0 1-0-5, Interior (1) 2-1-0 1-0-5, Interior (1) 1-0-5 0 to 20-10-8, Interior (1) ver left and right ight exposed;C-C for 6 for reactions shown;	 Plate DOL=1 1.15 Plate DOL 1.15 Plate DOL Exp.; Ce=1.0 4) This truss hat load of 12.0 poverhangs not service overhangs not service overhangs		7 psf (Lum DOL = Cat B; Partially 0-0-0 er of min roof live oad of 7.7 psf on ve loads. ponsible for ain loading truss component. water ponding. 0 psf bottom other live loads. re load of 20.0psf a rectangle veen the bottom DL = 10.0psf. nections. ers) of truss to 100 lb uplift at joint ith the 2018 s R502.11.1 and VSI/TPI 1. ot depict the size		And Antonio and	Weight: 139 Ib Weight: 139 Ib OF SEA 0433	25 ERECATION

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Marcine. Description, Component dependent description, Uww.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




O' mmm April 22,2025

Job	Truss	Truss Type	Qty	Ply	1057 Serenity	
P02057-24657	A09	Нір	1	1	Job Reference (optional)	T37069902

Run: 9.13 S 8.83 Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:43:25 ID:1eKunlvv5NhPKEmP_gLlxmzOY?V-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

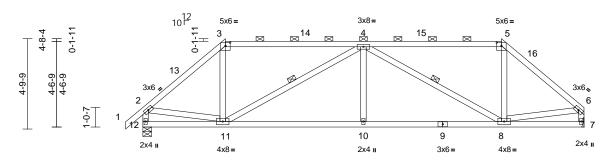
	5-5-4	11-8-8	17-11-12	23-5-0	
	5-5-4	6-3-4	6-3-4	5-5-4	
Scale = 1:65.4					
Plate Offsets (X, Y): [2:0-3-0,0-1-8], [3:0-3-0,0-2-1], [5:0-	3-0,0-2-1], [6:0-3-0,0-1-8]]			

	X, Y): [2:0-3-0,0-1-8],	[3.0-3-0,0-2-1], [3.0	00,021]	, [0.0 0 0,0 1 0									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 12.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MS	0.47 0.39 0.50	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.08 0.02	(loc) 8-10 8-10 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 139 lb	GRIP 244/190 FT = 20%
	Max Horiz 12=115 (L Max Uplift 7=-75 (LC Max Grav 7=854 (LC	athing directly applie cept end verticals, ar -0 max.): 3-5. applied or 10-0-0 oc nical, 12=0-5-8 -C 11) : 10), 12=-92 (LC 14 - 2), 12=914 (LC 2)	No.2 4) ed or nd 5) c 6) 7)	Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements Provide adea This truss ha chord live loa * This truss f on the bottor	i 7-16; Pr=20.0 psi .15); Pg=10.0 psf; OL = 1.15); Is=1.0 0; Cs=1.00; Ct=1.1 is been designed f psf or 1.00 times fi on-concurrent with igner/Project engin in Load = 5.0 (psf) is specific to the us quate drainage to ps been designed ad nonconcurrent as been designed n chord in all area	Pf=12.7 ; Rough 0, Lu=50 or great lat roof lu other limeer res covers r e of this prevent for a 10. with any l for a liv s where	r psf (Lum D(Cat B; Partia)-0-0 er of min roof pad of 7.7 ps re loads. ponsible for ain loading truss compo water pondin) psf bottom other live loa e load of 20.0 a rectangle	DL = ally f live f on nent. g. ads. 0psf					
FORCES	(lb) - Maximum Com Tension			chord and ar	by 2-00-00 wide winy other members.			om					
TOP CHORD	1-2=0/37, 2-3=-999/ 4-5=-699/140, 5-6=- 6-7=-805/110) Provide mec	er(s) for truss to tre hanical connectior capable of withst	n (by oth	ers) of truss						
BOT CHORD	11-12=-157/260, 10- 8-10=-171/988, 7-8=	-73/140		12 and 75 lb) This truss is	uplift at joint 7. designed in accore	dance w	ith the 2018					mun	90 <i>0</i> ,
WEBS	3-11=-25/355, 4-11= 4-8=-432/124, 5-8=-2 6-8=-107/566	,	i49,	R802.10.2 a	Residential Code nd referenced star rlin representation	ndard AN	ISI/TPI 1.					"ATH CA	ROUT
this design 2) Wind: ASC Vasd=91m II; Exp B; E and C-C E: to 5-7-0, E: to 17-10-0, 22-0-15 to exposed ; d members a	d roof live loads have	(3-second gust) DL=3.0psf; h=25ft; C welope) exterior zon 2-1-0, Interior (1) 2-1 9-15, Interior (1) 9-9 to 22-0-15, Interior (er left and right ght exposed;C-C for for reactions shown;	Cat. e I-0 -15 (1)		ation of the purlin a						N PLAN	SEA 0433	

to 5-7-0, Exterior(2R) 5-7-0 to 9-9-15, Interior (1) 9-9-15 to 17-10-0, Exterior(2R) 17-10-0 to 22-0-15, Interior (1) 22-0-15 to 23-3-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

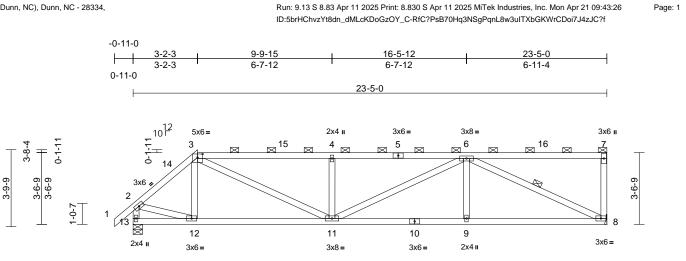

mmm April 22,2025

Job	Truss	Truss Type	Qty	Ply	1057 Serenity	
P02057-24657	A10	Нір	1	1	Job Reference (optional)	T37069903

Run: 9.13 S 8.83 Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:43:25 ID:zH_4mo7qdC4i59j3bABDCnzOY?C-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

			4-2-14	4	11-8-8		1	19-2	2-2		1	23-5-0	
Scale = 1:61.2			4-2-14	4	7-5-10			7-5-	10		1	4-2-14	
	, Y): [3:0-3-0,0-2-1],	[5:0-3-0 0-2-1]											
	, 1). [3.0-3-0,0-2-1],	[5.0-5-0,0-2-1]			-								
L oading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 20.0 12.7/10.0 7.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.69 0.57 0.28	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.14 0.03	(loc) 8-10 8-10 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL	0.0*	Code	IRC2018	/TPI2014	Matrix-MS							Maight 100 lb	FT 200/
BCDL	10.0					-						Weight: 132 lb	FT = 20%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS (4 M		athing directly appl cept end verticals, 0-10 max.): 3-5. applied or 10-0-0 of 4-11, 4-8 nical, 12=0-5-8 C 11) C 10), 12=-102 (LC	No.2 lied or and oc 3) 11) 4)	Vasd=91r II; Exp B; and C-C E to 4-4-10, to 19-0-6, left and rig exposed; reactions DOL=1.60 TCLL: AS Plate DOL 1.15 Plate Exp.; Ce= This truss	CE 7-16; Vult=115m nph; TCDL=4.2psf; I Enclosed; MWFRS S:xterior(2E) -0-11-0 Exterior(2E) 4-4-10 Exterior(2E) 19-0-6 ht exposed; end ve -C for members an shown; Lumber DOI 0 CE 7-16; Pr=20.0 ps =1.15); Pg=10.0 ps = DOL = 1.15); Is=1.0 1.0; CS=1.00; Ct=1. has been designed 0 psf or 1.00 times	3CDL=3. (envelop) to 2-1-0, to 8-7-8, to 23-3-/ ertical left d forces _=1.60 pl sf (roof LI f; Pf=12.); Rough 10, Lu=5 for great	Opsf; h=25ft; e) exterior zc Interior (1) 2 Interior (1) 8 4 zone; cantil t and right & MWFRS fc late grip L: Lum DOL= 7 psf (Lum D Cat B; Partit 0-0-0 er of min roo	one -1-0 3-7-8 lever or =1.15 OL = ally of live					
	(lb) - Maximum Com Tension 1-2=0/37, 2-3=-1002		5)	overhangs Building D	s non-concurrent wit besigner/Project eng Rain Load = 5.0 (psf)	h other li ineer res	ve loads. ponsible for						
	4-5=-728/131, 5-6=- 2-12=-883/127, 6-7=	1004/141,	,	requireme	ents specific to the used dequate drainage to	se of this	truss compo						
BOT CHORD	11-12=-112/149, 10- 8-10=-232/1252, 7-8	-11=-232/1252,		This truss	has been designed load nonconcurrent	for a 10.	0 psf bottom	•					inin.
	3-11=-18/369, 4-11= 4-8=-643/158, 5-8=- 6-8=-114/667			* This trus on the bot	s has been designe tom chord in all area all by 2-00-00 wide w	d for a liv as where	/e load of 20. a rectangle	.0psf			and a	ORTHO	ROLLIN
NOTES 1) Unbalanced this design.	I roof live loads have	been considered f	10) 11) 12)	Refer to g Provide m bearing pl 12 and 98 This truss Internation R802.10.2 Graphical or the orie bottom ch	any other members irder(s) for truss to t echanical connection ate capable of withs Ib uplift at joint 7. is designed in acco- nal Residential Code 2 and referenced sta purlin representation intation of the purlin ord. S) Standard	russ con n (by oth tanding rdance w sections ndard Al n does n	ners) of truss 102 lb uplift a vith the 2018 s R502.11.1 NSI/TPI 1. ot depict the	at joint and			1,	SEA 0433	GAN

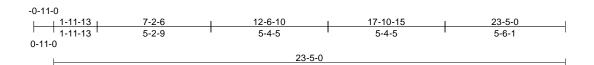

- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

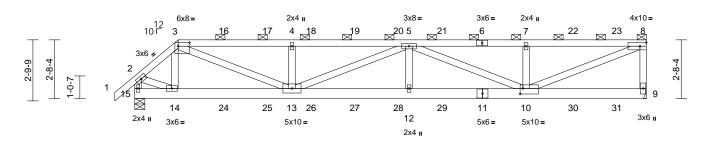
April 22,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1057 Serenity	
P02057-24657	A11	Half Hip	1	1	Job Reference (optional)	T37069904

		<u> 3-0-</u> 3-0-)-15 9-8		<u>16-5-12</u> 6-7-13				<u>23-5</u> - 6-11-	-	
Scale = 1:56.9		3-0-	/	0-	9-8		6-7-13				0-11-	-4	
late Offsets (X,	Y): [3:0-3-0,0-2-1]												
Loading FCLL (roof) Snow (Pf/Pg) FCDL BCLL BCDL	(psf) 20.0 12.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MS	0.58 0.55 0.39	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.15 0.04	(loc) 9-11 9-11 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 127 lb	GRIP 244/190 FT = 20%
	10.0				I							Wolght. 121 lb	11-20/0
SOT CHORD 2 WEBS 2 SRACING FOP CHORD 6 SOT CHORD 6 WEBS (S MM FORCES (S MM FORCES (S MM FORCES (S MM FORCES (S SOT CHORD 2 SOT	No.2 Structural wood shea 6-0-0 oc purlins, exc 2-0-0 oc purlins (3-1) Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 12- 1 Row at midpt size) 8= Mecha 1ax Horiz 13=101 (L 1ax Uplift 8=-169 (L) 1ax Grav 8=854 (LC (lb) - Maximum Com Tension 1-2=0/37, 2-3=-963/- 4-6=-1558/300, 6-7= 2-13=-904/130 12-13=-169/121, 11- 9-11=-288/1347, 8-9 6-8=-1451/290, 2-12 3-11=-209/953, 4-11 6-9=0/287	applied or 10-0-0 oc -13. 6-8 nical, 13=0-5-8 .C 11) C 11), 13=-128 (LC 1 C 2), 13=914 (LC 2) pression/Maximum 159, 3-4=-1558/301, -68/50, 7-8=-164/61, .12=-181/719,	or 1 3) 4) 1) 5) 6) 7) 8) 234, 9) 10 11 12	Vasd=91mpi II; Exp B; En and C-C Ext to 3-2-3, Ext 23-3-4 zone: vertical left a forces & MW DOL=1.60 p TCLL: ASCE Plate DOL=' 1.15 Plate D Exp.; Ce=1.0 This truss ha chord live lo: * This truss la chord and an Refer to gird Provide mec bearing plate 8 and 128 lb) This truss is International R802.10.2 a) Graphical pu		BCDL=3.(envelope to 2-1-0, 7-5-2, In d right ex; ;C-C for n s shown; 30 sf (roof LL f; Pf=12.7 0; Rough 10, Lu=50 for great: flat roof lk th other lin ineer res;) covers n se of this for a liv as where vill fit betw s. russ conro n (by oth tanding 1 rdance w e sections indard AN n does no	Dpsf; h=25ft; exterior zointerior (1) 2-5 posed; end hembers and Lumber : Lum DOL= ' psf (Lum DC Cat B; Partia)-0-0 er of min rool ad of 7.7 ps /e loads. ponsible for ain loading truss compo water pondin. D psf bottom other live loa: e load of 20.7 psf bottom other bive loa: e load of 20.7 psf bottom e load of 20.7 e load of 20.7 psf	ne 1-0 -2 to 1 1 1.15 DL = ally f live f on nent. g. ads. 0psf om t joint			Part Part Part Part Part Part Part Part	SEA 0433	


818 Soundside Road Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1057 Serenity	
P02057-24657	A12G	Half Hip Girder	1	1	Job Reference (optional)	T37069905

Run: 9.13 S 8.83 Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:43:26 ID:LmeWC4sbPeYeDu?VrdECMRzOXxg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	1-10-1	7-2-6	12-6-10	17-10-15	23-5-0	
	1-10-1	5-4-5	5-4-5	5-4-5	5-6-1	
Scale = 1:52.7						

	., ., [2:2 2 .,2 2],	[_										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER TOP CHORD	(psf) 20.0 12.7/10.0 7.0 0.0* 10.0 2x4 SP No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		Plate DOL=1	CSI TC BC WB Matrix-MS 7-16; Pr=20.0 ps 15); Pg=10.0 psf DL = 1.15); Is=1.0	0.71 0.99 f (roof Ll ; Pf=12.7	7 psf (Lum DC	DL =	, pro	vided su	fficient		ce(s) shall be entrated load(s) 102
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x6 SP No.2 2x4 SP No.3 Structural wood she 5-0-15 oc purlins, e 2-0-0 oc purlins (3-0 Rigid ceiling directly	xcept end verticals, -4 max.): 3-8.	and 5	 Exp.; Ce=1.0 This truss had load of 12.0 poverhangs not overhangs not building Des 	b); Cs=1.00; Ct=1.1 s been designed psf or 1.00 times f pon-concurrent with igner/Project engin n Load = 5.0 (psf)	10, Lu=5 for great flat roof le n other lin neer res	0-0-0 er of min roof oad of 7.7 pst ve loads. ponsible for	live	lb down and 101 lb up at 1-11-13, 52 lb down and 45 lb up at 4-0-15, 52 lb down and 45 lb up at 6-0-15, 52 lb down and 45 lb up at 8-0-15, 52 lb down and 45 lb up a 10-0-15, 52 lb down and 45 lb up at 12-0-15, 52 lb dow and 45 lb up at 14-0-15, 52 lb down and 45 lb up at 16-0-15, 52 lb down and 45 lb up at 18-0-15, and 52 lb down and 45 lb up at 20-0-15, and 52 lb down and 45 lb				
REACTIONS	bracing.	anical, 15=0-5-8 C 7) C 7), 15=-364 (LC 7	6 7	 Provide adec This truss ha chord live loa * This truss h 	s specific to the us quate drainage to s been designed ad nonconcurrent has been designed n chord in all area	prevent for a 10.0 with any d for a liv	water ponding 0 psf bottom other live loa re load of 20.0	g. ds.	up dov 8-0 and	at 1-11- vn and 6 -15, 30 I I 6 Ib up	13, 30 Ib up b dowr at 12-	Ib down and 6 lb at 6-0-15, 30 lb c n and 6 lb up at 1 0-15, 30 lb down	5 lb down and 17 lb 10 up at 4-0-15, 30 lb 10 down and 6 lb up at 10-0-15, 30 lb down 16-0-15, 30 lb down
FORCES	(lb) - Maximum Com Tension 1-2=0/37, 2-3=-1276 4-5=-2681/790, 5-7= 7-8=-2271/664, 8-9= 2-15=-1312/370	5/390, 3-4=-2681/79 2271/664,		 3-06-00 tall b chord and ar Refer to gird Provide mechanism bearing plate 	by 2-00-00 wide w by other members er(s) for truss to tr hanical connection capable of withst uplift at joint 15.	ill fit betv uss conr n (by oth	veen the botto nections. ers) of truss t	0	and 6 lb up at 18-0-15, and 30 lb down and 6 lb u 20-0-15, and 30 lb down and 6 lb up at 22-0-15 o bottom chord. The design/selection of such conne device(s) is the responsibility of others.				
BOT CHORD	14-15=-72/56, 13-14 12-13=-941/3162, 10 9-10=-36/66		1	1) This truss is International	designed in accor Residential Code nd referenced star	sections	s R502.11.1 a	nd				()	
WEBS	3-14=-210/118, 3-13 4-13=-411/186, 5-13 5-10=-970/293, 7-10 8-10=-693/2402, 2-1	3=-527/148, 5-12=0/2)=-416/189,		2) Graphical pu	rlin representation ation of the purlin	n does ne	ot depict the s	size			VIL	OF CONTRACT	NN
this design 2) Wind: ASC Vasd=91m II; Exp B; I cantilever	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=4.2psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6	(3-second gust) DL=3.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an	Cat. ie; d							THUNKS.	P. I.	SEA 0433	25 EER.CALI

818 Soundside Road Edenton, NC 27932

April 22,2025

Junin J. Chin O'

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING

Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1057 Serenity	
P02057-24657	A12G	Half Hip Girder	1	1	Job Reference (optional)	T37069905

Run: 9.13 S 8.83 Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:43:26 Page: 2 ID:LmeWC4sbPeYeDu?VrdECMRzOXxg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

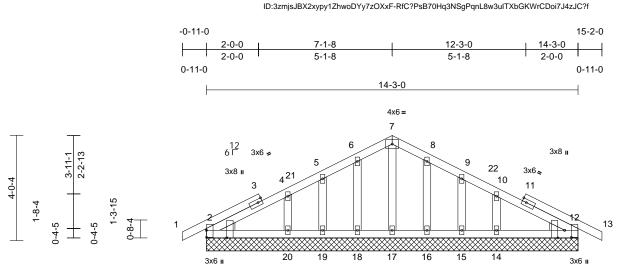
Uniform Loads (lb/ft)

Vert: 1-2=-29, 2-3=-29, 3-8=-39, 9-15=-20 Concentrated Loads (lb)

Vert: 6=-47 (F), 11=-25 (F), 14=-38 (F), 3=-80 (F), 7=-47 (F), 10=-25 (F), 16=-47 (F), 17=-47 (F),

- 7=-47 (F), 10=-25 (F), 10=-47 (F), 17=-47 (F), 18=-47 (F), 19=-47 (F), 20=-47 (F), 21=-47 (F), 22=-47 (F), 23=-47 (F), 24=-25 (F), 25=-25 (F), 26=-25 (F), 27=-25 (F), 28=-25 (F), 29=-25 (F), 30=-25 (F), 31=-25 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	1057 Serenity	
P02057-24657	B01E	Common Supported Gable	1	1	Job Reference (optional)	T37069906

Run: 9.13 S 8.83 Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:43:27

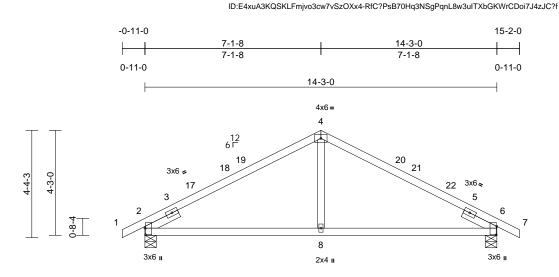
Page: 1

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

	14-3-0
Scale = 1:44.2	

Plate Offsets (X, Y): [2:0-3-4,0-0-1],	[2:0-3-8,Edge], [12:0-3	-4,0-3-1], [12:0-3-8,Ec	lge]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr 1	2-0-0 1.15 1.15 YES RC2018)/TPI2014	CSI TC BC WB Matrix-MS	0.07 0.05 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 80 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=14-3-0, 15=14-3-0 (8=14-3-0) Max Horiz 2=46 (LC Max Uplift 2=-22 (LC) 14=-52 (L 16=-28 (L 19=-25 (L Max Grav 2=165 (LC) 16=110 (L	12=14-3-0, 14=14-3-0,), 16=14-3-0, 17=14-3-0,), 19=14-3-0, 20=14-3-0 20) :16), 12=-28 (LC 17), C 17), 15=-25 (LC 17), C 17), 18=-29 (LC 16), C 16), 20=-48 (LC 16) C 2), 12=165 (LC 2), C 2), 15=71 (LC 24), C 37), 17=90 (LC 33), C 36), 19=71 (LC 23),	2) or 3)), 2, 4) 5)	this design. Wind: ASCE Vasd=91mpl II; Exp B; En and C-C Cor to 7-1-8, Cor to 15-2-0 zor vertical left a forces & MW DOL=1.60 pl Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 overhangs n	roof live loads hav 7-16; Vult=115mp r; TCDL=4.2psf; B closed; MWFRS (e ner(3E) -0-11-0 to ner(3E) -0-11-0 to ner(3R) 7-1-8 to 11 he; cantilever left a nd right exposed; (FRS for reactions ate grip DCL=1.6C ted for wind loads i dl ndustry Gable E alified building des 7-16; Pr=20.0 psf; 0L = 1.15); Is=1.0 b; Cs=1.00; Ct=1.1 snow loads have t is been designed f psf or 1.00 times fl on-concurrent with igner/Project engit	h (3-sec CDL=3. envelope 2-1-0, E 0-1-8, E nd right C-C for n shown;) in the pl- d (norm nd Deta signer a: (roof LL Pf=7.7; ; Rough 0 been cor or great at roof k other lin	cond gust) Opsf; h=25ft; exterior zon xterior(2N) 1 exposed; er nembers and Lumber ane of the tru al to the face is as applica s per ANSI/TI .: Lum DOL= psf (Lum DO Cat B; Partia nsidered for tl er of min roof pad of 7.7 psi ve loads.	Cat. ne -1-0 D-1-8 nd ss), ble, PI 1. 1.15 L = Illy his	bea 18, upli 14, 14) This Inte R80 LOAD (ring pla 25 lb up ft at join 22 lb up s truss is rnationa)2.10.2 d CASE(S	te capa blift at jo t 16, 29 blift at jo s desig al Resid and ref) Sta	able of withstand bint 19, 48 lb upl 5 lb uplift at joint bint 2 and 28 lb u ned in accordan dential Code sec erenced standar	ce with the 2018 tions R502.11.1 and d ANSI/TPI 1.
FORCES	(lb) - Maximum Com Tension 1-2=0/18, 2-4=-45/4 5-6=-25/65, 6-7=-38, 8-9=-25/65, 9-10=-2	7, 4-5=-28/41, /95, 7-8=-38/95,	9)	verifying Rai requirements All plates are Gable require	n Load = 5.0 (psf) s specific to the us 2x4 () MT20 un es continuous bott spaced at 1-4-0 oc	covers r e of this less oth om chor	ain loading truss compo erwise indica				N.V.	SEA	L
BOT CHORD	,		11	This truss ha chord live loa * This truss h on the bottor	is been designed f ad nonconcurrent v nas been designed n chord in all areas	or a 10.0 with any for a liv s where	other live loa e load of 20.0 a rectangle	Opsf				0433	25
NOTES		0/55, 5-19=-57/47, 80/55, 9-15=-57/47,			by 2-00-00 wide wi ny other members.	ll fit betv	veen the bott	om			in the	11111	D'REGANN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

April 22,2025

Job	Truss	Truss Type	Qty	Ply	1057 Serenity	
P02057-24657	B02	Common	2	1	Job Reference (optional)	T37069907

Run: 9.13 S 8.83 Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:43:27

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

	7-1-8	14-3-0	
	7-1-8	7-1-8	
Scale = 1:46.6	-	-	
Plate Offsets (X, Y): [2:0-3-4,0-0-5], [6:0-4-1,0-0-5]			

TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.55 Vert(LL) -0.07 8-11 >999 240 MT20 2 Snow (Pf/Pg) 7.7/10.0 Lumber DOL 1.15 BC 0.46 Vert(CT) -0.12 8-11 >999 180 TCDL 7.0 Rep Stress Incr YES WB 0.12 Horz(CT) 0.02 2 n/a n/a BCLL 0.0* Code IRC2018/TPI2014 Matrix-MS Horz(CT) 0.02 2 n/a n/a	
Snow (Pt/Pg) 7.7/10.0 Lumber DOL 1.15 BC 0.46 Vert(CT) -0.12 8-11 >999 180 TCDL 7.0 Rep Stress Incr YES WB 0.12 Horz(CT) 0.02 2 n/a n/a BCLL 0.0* 10.0 Code IRC2018/TPI2014 Matrix-MS Weight: 58 lb F LUMBER 4) Unbalanced snow loads have been considered for this design. Output Matrix-MS Weight: 58 lb F BOT CHORD 2x4 SP No.2 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads. overhangs non-concurrent with other live loads.	GRIP
TCDL 7.0 Rep Stress Incr YES WB 0.12 Horz(CT) 0.02 2 n/a BCLL 0.0* 10.0 Code IRC2018/TPI2014 Matrix-MS Horz(CT) 0.02 2 n/a n/a LUMBER 4) Unbalanced snow loads have been considered for this design. design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads. overhangs non-concurrent with other live loads.	244/190
BCLL 0.0* Code IRC2018/TPI2014 Matrix-MS Weight: 58 lb F LUMBER 10.0 4) Unbalanced snow loads have been considered for this design. Weight: 58 lb F TOP CHORD 2x4 SP No.2 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads. overhangs non-concurrent with other live loads.	
BCDL 10.0 Weight: 58 lb F LUMBER TOP CHORD 2x4 SP No.2 4) Unbalanced snow loads have been considered for this design. design. BOT CHORD 2x4 SP No.2 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads. overhangs non-concurrent with other live loads.	
LUMBER 4) Unbalanced snow loads have been considered for this design. TOP CHORD 2x4 SP No.2 5) BOT CHORD 2x4 SP No.2 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads. SLIDER Left 2x4 SP No.3 1-6-0, Right 2x4 SP No.3	
TOP CHORD2x4 SP No.2design.BOT CHORD2x4 SP No.25)This truss has been designed for greater of min roof liveWEBS2x4 SP No.3load of 12.0 psf or 1.00 times flat roof load of 7.7 psf onSLIDERLeft 2x4 SP No.3 1-6-0, Right 2x4 SP No.3overhangs non-concurrent with other live loads.	T = 20%
TOP CHORD2x4 SP No.2design.BOT CHORD2x4 SP No.25)This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.SLIDERLeft 2x4 SP No.3 1-6-0, Right 2x4 SP No.3overhangs non-concurrent with other live loads.	
WEBS 2x4 SP No.3 load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads. SLIDER Left 2x4 SP No.3 1-6-0, Right 2x4 SP No.3 load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.	
SLIDER Left 2x4 SP No.3 1-6-0, Right 2x4 SP No.3 overhangs non-concurrent with other live loads.	
1-6-0 6) Building Designer/Project engineer responsible for	
varifician Data Load 50 (not) equato rata loading	
BRACING verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.	
Tor or long Structural wood sheating directly applied of 7). This truck has been designed for a 10 0 pet bettem	
0-0-0 00 putilits.	
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 8) * This truss has been designed for a live load of 20.0psf	
REACTIONS (size) 2=0-5-8, 6=0-5-8	
Max Horiz 2- 50 (I C 17) 3-06-00 fail by 2-00-00 wide will fit between the bottom	
Max Halffer 2, and (LC 4C), c, and (LC 47).	
May Cray 2, 577 (1, 0, 0) C 577 (1, 0, 0)	
FORCES (Ib) - Maximum Compression/Maximum 2 and 88 Ib uplift at joint 2 and 88 Ib uplift at joint 6.	
Tension 10) This truss is designed in accordance with the 2018	
TOP CHORD 1-2=0/22, 2-4=-671/202, 4-6=-671/202, International Residential Code sections R502.11.1 and	
6-7=0/22 B802-10.2 and referenced standard ANSI/TPI 1.	
BOT CHORD 2-8=-167/540, 6-8=-168/540 LOAD CASE(S) Standard	
WEBS 4-8=0/302	L
BOT CHORD 2-8=-167/540, 6-8=-168/540 WEBS 4-8=0/302 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vascf 2-10pt -4 2psf: BCDL =3 0psf: h=25ft; Cat	111
1) Unbalanced roof live loads have been considered for	0/ 1/1
this design.	· All
2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4 2psf; BCDL=3 0psf; b=25f; Cat	No. 7 -

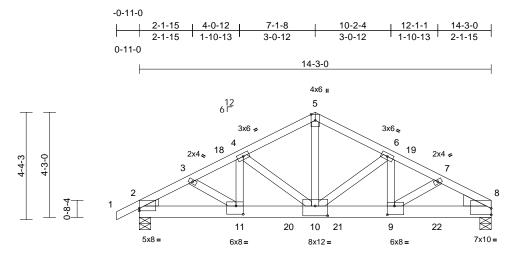
2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 7-1-8, Exterior(2R) 7-1-8 to 10-1-8, Interior (1) 10-1-8 to 15-2-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 SEAL 043325

April 22,2025

Manninnin II.

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1057 Serenity	
P02057-24657	B03G	Common Girder	1	1	Job Reference (optional)	T37069908

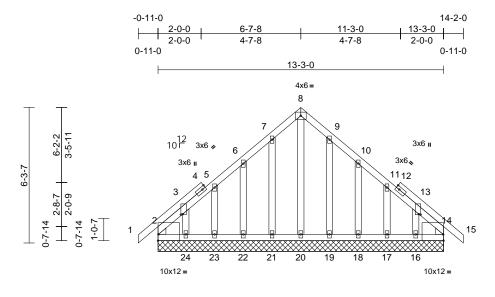
Run: 8.83 E Feb 1 2025 Print: 8.830 E Feb 1 2025 MiTek Industries, Inc. Tue Apr 22 15:00:30 ID:g5MsvPDHjF_6UiqnCNjiELzOXue-8hq?uA6onC82OQIHpuNi4YB3V1hQVXgk0tdSAjzO7iV

Page: 1

	4-0-12	7-1-8	10-2-4	14-3-0
	4-0-12	3-0-12	3-0-12	4-0-12
Scale = 1:46.6				

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.95	Vert(LL)	-0.10	10-11	>999	240	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15		BC	0.61	Vert(CT)		10-11	>984	180		
CDL	7.0	Rep Stress Incr	NO		WB	0.76	Horz(CT)	0.04	8	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MS								
BCDL	10.0					-						Weight: 90 lb	FT = 20%
UMBER			3)		7-16; Pr=20.0 p				,			alanced): Lumbe	r Increase=1.15, Plate
OP CHORD		ot* 5-8:2x4 SP No.2			1.15); Pg=10.0 ps					crease=			
BOT CHORD					OL = 1.15); Is=1.		Cat B; Partia	ally	U	niform Lo	,	,	
VEBS	2x4 SP No.2		4)); Cs=1.00; Ct=1 snow loads have		cidorod for t	hic	0		,	5-8=-29, 12-15=	-20
NEDGE	Left: 2x4 SP No.2 Right: 2x6 SP No.2		4)	design.	Show loads have	Deen coi	isideled for t	.1115				· · /	, 20=-664 (B), 21=-624
BRACING	Right. 280 SP 10.2		5)		as been designed	for great	er of min roo	f live		(B), 22=			, 20=-004 (D), 21=-024
TOP CHORD	Structural wood she	athing directly applie	ad or		psf or 1.00 times					(8), 22	- 000 (2)	
	1-10-6 oc purlins.	auning unecuy applie	50 01		on-concurrent wi								
BOT CHORD		applied or 9-4-4 oc	6)		igner/Project eng								
	bracing.				n Load = 5.0 (ps								
REACTIONS (lb/size) 2=2068/0-5-8, 8=2238/0-5-8			7)		s specific to the u as been designed			inent.					
	Max Horiz 2=55 (LC	16)	()	chord live lo	ad nonconcurren	with any	other live los	she					
	Max Uplift 2=-529 (L			* This truss	nas been designe	d for a liv	e load of 20.	Opsf					
	Max Grav 2=2651 (I)		m chord in all are								
ORCES	(lb) - Maximum Com	pression/Maximum			oy 2-00-00 wide v		veen the bott	tom					
	Tension	0000 0 40 4500/0			ny other member								
TOP CHORD	1-2=0/22, 2-3=-4436 4-18=-4533/918, 4-5	,	11, 9)		are assumed to b	be SP No.	2 crushing						
	5-6=-3687/663, 6-19		10	capacity of 5	hanical connection	n (hy oth	ore) of truce	to					
	7-19=-4743/721, 7-8				e capable of with								11.
BOT CHORD	2-11=-793/3818, 11	-20=-829/4106,			uplift at joint 2.	Juliung	io io upine u	, joint				11111 00	
	10-20=-829/4106, 1		11) This truss is	designed in acco						R	"THUS	ROIL
	9-21=-611/4250, 9-2	22=-609/4092,			Residential Cod			and			5	N's	All I
	8-22=-609/4092	005/000			nd referenced sta						22		N: Y'
WEBS	4-10=-1075/359, 4-1 5-10=-541/3090, 6-1		12		other connection			1010			8	1	X: 2
	6-9=-53/1053, 3-11=	,	9		ficient to support 360 lb up at 4-0					-		0.54	1 1 1
NOTES	0 0 00,1000,011	1 1/01/0, 1 0 00/22			12, 834 lb down					=		SEA	NL E
	ed roof live loads have	been considered for	r		own and 81 lb up					=		0433	25 =
this design				down and 89) lb up at 12-0-12	2 on botto	m chord. Th	e		-			: :
2) Wind: ASO	CE 7-16; Vult=115mph	(3-second gust)			tion of such conr	ection de	vice(s) is the	•		-			1. 1. 2. 3
	nph; TCDL=4.2psf; BC			responsibilit			B I	(10	K. SNOW	FER. SS
	Enclosed; MWFRS (er		,		CASE(S) section			Tace			14	SEA 0433	E. Grin
	left and right exposed			of the truss a	are noted as front	(r) or ba	υк (В).				1	ADD	D'RE.
right expo	sed; Lumber DOL=1.6	o plate grip DOL=1.0		DAD CASE(S)	Sianuaru							11110.	
													1 22 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)


818 Soundside Road Edenton, NC 27932

April 22,2025

Job	Truss	Truss Type	Qty	Ply	1057 Serenity	
P02057-24657	C01E	Common Supported Gable	1	1	Job Reference (optional)	T37069909

Run: 9.13 S 8.83 Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:43:27 Page: 1 ID:_P4CdIZz1sRamWf3Z6CC5FzOXrc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

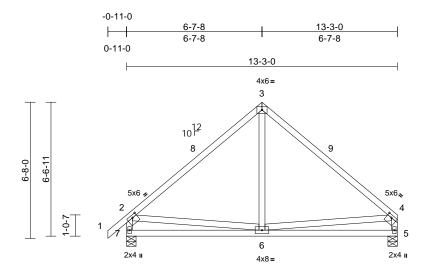
_

13-3-0

Scale = 1:53.5

Plate Offsets (X Y)	[2:Edge,0-3-8], [3:0-0-5,0-1-0], [13:0-0-5,0-1-0], [14:Edge,0-3-8]	

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI20	CSI TC 0.04 BC 0.02 WB 0.07 4 Matrix-MS		a - n/a a - n/a	L/d PLATES 999 MT20 999 n/a Weight: 101 lk	GRIP 244/190 PT = 20%
	6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=13-3-0, 17=13-3-0 20=13-3-0 23=13-3-0 Max Horiz 2=108 (LC		NOTES 1) Unbal this de 0, 2) Wind: 3-0, Vasd= 3-0, II; Exp and C to 6-7	22-23=-47/125, 21-22=-4 20-21=-47/125, 19-20=-4 18-19=-47/125, 17-18=-4 16-17=-47/125, 14-16=-5; 8-20=-103/32, 7-21=-80/6 5-23=-73/68, 3-24=-78/79 10-18=-78/78, 11-17=-74/ Inced roof live loads have been sign. ASCE 7-16; Vult=115mph (3-se 91mph; TCDL=4.2psf; BCDL=3 B; Enclosed; MWFRS (envelop C Corner(3E) -0-11-0 to 2-1-0, 8, Corner(3R) 6-7-8 to 9-7-8, Ei	7/125, 7/125, 7/125, 7/130 0, 6-22=-77/78, 9-19=-77/60, 69, 13-16=-76/78 considered for cond gust) .0psf; h=25ft; Cat. e) exterior zone Exterior(2N) 2-1-0 tterior(2N) 9-7-8 to	chord live loa 11) * This truss h on the botton 3-06-00 tall b chord and an 12) Provide mecl bearing plate 21, 49 lb upli uplift at joint 2 at joint 2 and 13) Beveled plate surface with 14) This truss is a International	has been designed for n chord in all areas w by 2-00-00 wide will fin hy other members. hanical connection (b capable of withstam, ft at joint 22, 36 lb up 24, 38 lb uplift at joint ft at joint 17, 70 lb up 17 lb uplift at joint 14. e or shim required to truss chord at joint(s) designed in accordar	n any other live loads. r a live load of 20.0psf here a rectangle t between the bottom by others) of truss to ding 41 lb uplift at joint lift at joint 23, 58 lb t 19, 50 lb uplift at joint lift at joint 16, 9 lb uplift provide full bearing 2, 14. ce with the 2018 ctions R502.11.1 and
	18=-50 (L 21=-41 (L 23=-36 (L 23=-36 (L) 16=111 (L 16=111 (L 18=105 (L 20=102 (L 22=104 (L 24=98 (LC (lb) - Maximum Com Tension 1-2=0/21, 2-3=-110// 5-6=-70/54, 6-7=-62/ 8-9=-65/120, 9-10=-/	C 15), 17=-38 (LC 15 C 15), 19=-38 (LC 15 C 14), 22=-49 (LC 14 C 14), 22=-49 (LC 14 C 14), 24=-58 (LC 14 C 2), 14=111 (LC 2), .C 27), 17=100 (LC 2 .C 27), 19=104 (LC 2 .C 26), 23=99 (LC 2), C 26) ppression/Maximum 81, 3-5=-73/64,), vertica), DOL=), DOL=) 3) Truss only. 7), see S 7), or cor 6), 4) TCLL: Plate 1.15 F Exp.; 5) This tt load c overh 6) Buildin verifyi requir 7) All pla 8) Gable	zone; cantilever left and right e left and right exposed;C-C for & MWFRS for reactions shown .60 plate grip DOL=1.60 designed for wind loads in the p for studs exposed to wind (norr andard Industry Gable End Det sult qualified building designer ASCE 7-16; Pr=20.0 psf; Pf=7.7 late DOL = 1.15); Is=1.0; Rougi De=1.0; Cs=1.00; Ct=1.10 Jss has been designed for great 12.0 psf or 1.00 times flat roof ngs non-concurrent with other 1 g Designer/Project engineer re- ig Rain Load = 5.0 (psf) covers ments specific to the use of thi- es are 2x4 () MT20 unless other requires continuous bottom cho- studs spaced at 1-4-0 oc.	members and Lumber lane of the truss nal to the face), ails as applicable, is per ANSI/TPI 1. L: Lum DOL = 1.15 psf (Lum DOL = 0 Cat B; Partially ter of min roof live load of 7.7 psf on ive loads. sponsible for rain loading s truss component. netwise indicated.	LOAD CASE(S)	Standard	AL DO'REER CALIN

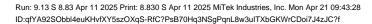

April 22,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

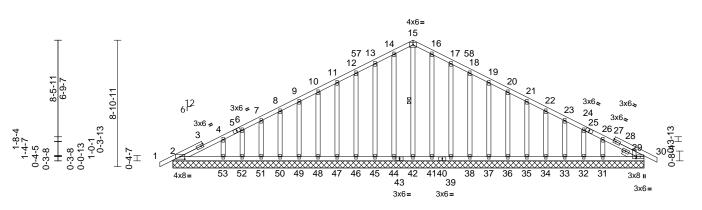
Job	Truss	Truss Type	Qty	Ply	1057 Serenity	
P02057-24657	C02	Common	1	1	Job Reference (optional)	T37069910

Run: 9.13 S 8.83 Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:43:28 Page: 1 ID:6BuXw?wnz4DKM7yqKQkEJazOXr8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	6-7-8	13-3-0	
Scale = 1:56.4	6-7-8	6-7-8	
Plate Offsets (X, Y): [2:0-2-12,0-1-8], [4:0-2-12,0-1-8]			


Plate Offsets (.	X, Y): [2:0-2-12,0-1-8]], [4:0-2-12,0-1-8]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MS	0.67 0.38 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.07 0.00	(loc) 5-6 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 77 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp B; E and C-C E to 6-7-8, E 13-1-4 zon vertical left forces & M DOL=1.60 3) TCLL: ASC Plate DOL 1.15 Plate	2x4 SP No.2 2x4 SP No.3 *Excep Structural wood shea 6-0-0 oc purlins, exa Rigid ceiling directly bracing. (size) 5=0-5-8, 7 Max Horiz 7=132 (LC Max Upliff 5=-55 (LC Max Grav 5=477 (LC (lb) - Maximum Com Tension 1-2=0/37, 2-3=-484/ 2-7=-482/151, 4-5= 6-7=-216/349, 5-6=- 3-6=0/271, 2-6=-99/2	athing directly applie cept end verticals. applied or 10-0-0 oc 7=0-5-8 C 11) C 15), 7=-72 (LC 14) C 2), 7=539 (LC 2) pression/Maximum 120, 3-4=-476/115, 420/114 101/192 216, 4-6=-61/162 been considered for (3-second gust) DL=3.0psf; h=25ft; C welope) exterior zone 2-1-0, Interior (1) 2-1 7-8, Interior (1) 9-7-8 ight exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1 2f=7.7 psf (Lum DOL	d or 6) 7) 8) 9) LC sat. e -0 to	load of 12.0 overhangs n Building Des verifying Rai requirements This truss ha chord live loo * This truss f on the bottor 3-06-00 tall h chord and ar Provide mec bearing plate 7 and 55 lb o This truss is International	as been designed for psf or 1.00 times fa on-concurrent with igner/Project engin in Load = 5.0 (psf) of s specific to the use is been designed for ad nonconcurrent v has been designed in chord in all areas by 2-00-00 wide will by other members. hanical connection e capable of withsts uplift at joint 5. designed in accord Residential Code s and referenced stan Standard	at roof le other lin eeer res covers r e of this or a 10.0 vith any for a liv s where I fit betw (by oth anding 7 dance w sections	bad of 7.7 ps ve loads. consible for ain loading truss compo 0 psf bottom other live loa e load of 20.1 a rectangle veen the bott ers) of truss i 2 lb uplift at j ith the 2018 R502.11.1 a	f on nent. ads. 0psf om to joint			The second se	SEA 0433	· : :

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


O'F (1111111) April 22,2025

Job	Truss	Truss Type	Qty	Ply	1057 Serenity	
P02057-24657	G01E	Common Supported Gable	1	1	Job Reference (optional)	T37069911

Page: 1

		F				33-1-0						
Scale = 1:80.9 Plate Offsets (X, Y): [2:0-4-0,0	-2-1], [29:0-1-8,0-0-8]										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	C	0.0 Plate Grip DOL	2-0-0 1.15 1.15 YES IRC2018/TPI20	CSI TC BC WB 14 Matrix-	0.11 0.07 0.07 •MS	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 29	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 253 It	GRIP 244/190 DFT = 20%
	2x4 SP No.2 2x4 SP No.3 *E 42-15,44-14,45 Right 2x4 SP No.3 *E 42-15,44-14,45 Sright 2x4 SP No Structural wood 6-0-0 oc purlins Rigid ceiling din bracing. 1 Row at midpt (size) 2=33 32=3 33=3 34=3 44=3 46=3 49=3 55=5 Max Horiz 2=11 Max Uplift 2=-1 31=- 33=- 35=- 37=- 39=- 44=- 46=- 48=- 50=-	-13,41-16,39-17:2x4 S o.3 1-0-8 d sheathing directly app 3. rectly applied or 6-0-0 of 15-42 3-1-0, 32=33-1-0, 31=33 3-1-0, 33=33-1-0, 31=33 3-1-0, 39=33-1-0, 31=33 3-1-0, 39=33-1-0, 41=33 3-1-0, 44=33-1-0, 45=3 3-1-0, 50=33-1-0, 51=33-1-0, 51=33-1-0, 53=33-10, 53=	 blied or FORCES 33-1-0, 34-0, 35-1-0, 36-1, 36-1,<td>(lb) - Ma: Tension RD 1-2=0/22 6-7=-74/ 9-10=-34 12-13=-6 14-15=-5 16-17=-8 18-19=-5 24-26=-5 RD 2-53=-47 51-52=-4 49-50=-4 47-48=-4 45-46=-4 42-44=-4 39-41=-4 35-36=-4 33-34=-4</td><td>2=168 (LC 2), 25 31=134 (LC 2), 25 31=134 (LC 2), 3 35=99 (LC 2), 33 37=99 (LC 2), 34 39=100 (LC 37), 42=124 (LC 33), 45=100 (LC 36), 47=99 (LC 2), 42 49=99 (LC 2), 42 49=99 (LC 2), 50 51=113 (LC 2), 52 53=246 (LC 2) ximum Compression 2, 2-4=-123/64, 4-6 61, 7-8=-55/67, 8-3 (/91, 10-11=-45/10) 30/140, 13-14=-83/ 30/143, 15-16=-91/ 33/166, 17-18=-69/ 30/140, 13-14=-83/ 37/105, 52-53=-47/1 17/105, 52-53=-47/1 17/105, 46-47=-47/1 17/105, 46-47=-47/1 17/105, 34-35=-47/1 17/105, 34-35=-47/1 17/105, 34-35=-47/1 17/105, 32-33=-47/1 17/105, 32-33=-47/1 17/105, 32-33=-47/1 17/105, 32-33=-47/1 17/105, 32-33=-47/1 17/105, 29-31=-49/1 17/105, 29-31=-4</td><td>12=89 (LC 37) 14=98 (LC 37) 14=98 (LC 37) 14=98 (LC 2), 141=101 (LC 3 144=102 (LC 2), 141=101 (LC 3 144=102 (LC 36), 19=96 (LC 36), 19=96 (LC 36), 19=96 (LC 36), 19=96 (LC 36), 19=96 (LC 36), 19=96 (LC 36), 10=94 (LC 36), 10=94 (LC 36), 10=94 (LC 36), 10=94 (LC 36), 10=94 (LC 37), 10=94 (LC 37),</td><td>), 37), 36),),), /117, 3/69, /20,</td><td>this 2) Win Vas II; E and 2-4 Exte righ for r</td><td>balance design dd: ASC d=91m Exp B; E I C-C C -11 to 1 erior(2N t expos membe nber DC</td><td>12-46 9-49= 6-52= 17-39 20-36 23-33 d roof I E 7-16 ph; TC nclose prner(3 6-10-5, i) 20-2- ed; en rs and DL=1.60</td><td>5=-71/41, 11-47= -72/42, 8-50=-7 73/31, 4-53=-1 73/48, 18-38- 5=-72/42, 21-35= 5=-73/42, 24-32= ive loads have to pL=4.2psf; BCE d; MWFRS (env) BE) -0-11-0 to 2 , Corner(3R) 16 -1 to 34-0-0 zon d vertical left ar forces & MWFR 0 plate grip DOL</td><td>L=3.0psf; h=25ft; Cat. relope) exterior zone 4-11, Exterior(2N) -10-5 to 20-2-1, e; cantilever left and d right exposed;C-C S for reactions shown;</td>	(lb) - Ma: Tension RD 1-2=0/22 6-7=-74/ 9-10=-34 12-13=-6 14-15=-5 16-17=-8 18-19=-5 24-26=-5 RD 2-53=-47 51-52=-4 49-50=-4 47-48=-4 45-46=-4 42-44=-4 39-41=-4 35-36=-4 33-34=-4	2=168 (LC 2), 25 31=134 (LC 2), 25 31=134 (LC 2), 3 35=99 (LC 2), 33 37=99 (LC 2), 34 39=100 (LC 37), 42=124 (LC 33), 45=100 (LC 36), 47=99 (LC 2), 42 49=99 (LC 2), 42 49=99 (LC 2), 50 51=113 (LC 2), 52 53=246 (LC 2) ximum Compression 2, 2-4=-123/64, 4-6 61, 7-8=-55/67, 8-3 (/91, 10-11=-45/10) 30/140, 13-14=-83/ 30/143, 15-16=-91/ 33/166, 17-18=-69/ 30/140, 13-14=-83/ 37/105, 52-53=-47/1 17/105, 52-53=-47/1 17/105, 46-47=-47/1 17/105, 46-47=-47/1 17/105, 34-35=-47/1 17/105, 34-35=-47/1 17/105, 34-35=-47/1 17/105, 32-33=-47/1 17/105, 32-33=-47/1 17/105, 32-33=-47/1 17/105, 32-33=-47/1 17/105, 32-33=-47/1 17/105, 29-31=-49/1 17/105, 29-31=-4	12=89 (LC 37) 14=98 (LC 37) 14=98 (LC 37) 14=98 (LC 2), 141=101 (LC 3 144=102 (LC 2), 141=101 (LC 3 144=102 (LC 36), 19=96 (LC 36), 19=96 (LC 36), 19=96 (LC 36), 19=96 (LC 36), 19=96 (LC 36), 19=96 (LC 36), 10=94 (LC 36), 10=94 (LC 36), 10=94 (LC 36), 10=94 (LC 36), 10=94 (LC 37), 10=94 (LC 37),), 37), 36),),), /117, 3/69, /20,	this 2) Win Vas II; E and 2-4 Exte righ for r	balance design dd: ASC d=91m Exp B; E I C-C C -11 to 1 erior(2N t expos membe nber DC	12-46 9-49= 6-52= 17-39 20-36 23-33 d roof I E 7-16 ph; TC nclose prner(3 6-10-5, i) 20-2- ed; en rs and DL=1.60	5=-71/41, 11-47= -72/42, 8-50=-7 73/31, 4-53=-1 73/48, 18-38- 5=-72/42, 21-35= 5=-73/42, 24-32= ive loads have to pL=4.2psf; BCE d; MWFRS (env) BE) -0-11-0 to 2 , Corner(3R) 16 -1 to 34-0-0 zon d vertical left ar forces & MWFR 0 plate grip DOL	L=3.0psf; h=25ft; Cat. relope) exterior zone 4-11, Exterior(2N) -10-5 to 20-2-1, e; cantilever left and d right exposed;C-C S for reactions shown;

Continued on page 2 WARNING - Verify

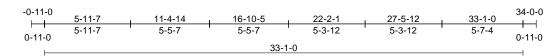
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)

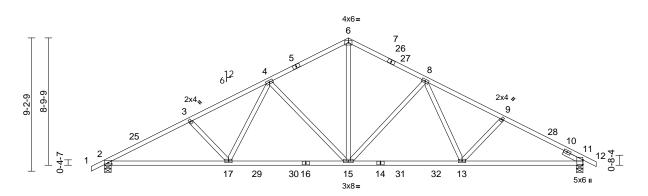
April 22,2025

Job	Truss	Truss Type	Qty	Ply	1057 Serenity	
P02057-24657	G01E	Common Supported Gable	1	1	Job Reference (optional)	T37069911

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- All plates are 2x4 (||) MT20 unless otherwise indicated.
- 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 1-4-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members.
 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 14 lb uplift at joint 2, 20 lb uplift at joint 44, 33 lb uplift at joint 45, 28 lb uplift at joint 46, 29 lb uplift at joint 47, 29 lb uplift at joint 48, 29 lb uplift at joint 49, 28 lb uplift at joint 50, 31 lb uplift at joint 51, 18 lb uplift at joint 52, 51 lb uplift at joint 33, 15 lb uplift at joint 37, 29 lb uplift at joint 36, 29 lb uplift at joint 37, 29 lb uplift at joint 36, 29 lb uplift at joint 37, 29 lb uplift at joint 33, 27 lb uplift at joint 32, 48 lb uplift at joint 31, 7 lb uplift at joint 32, and 14 lb uplift at joint 2.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


Run: 9.13 S 8.83 Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:43:28 Page: 2 ID:qfYA92SObbl4euKHvfXY5szOXqS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



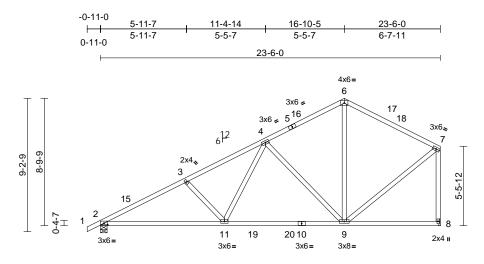
Job	Truss	Truss Type	Qty	Ply	1057 Serenity	
P02057-24657	G02	Common	3	1	Job Reference (optional)	T37069912

Run: 9.13 S 8.83 Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:43:28 ID:cdn1y5PNh32ESd7EqzwJ6pzOXnx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1.79.7 Re-6-14 8-3-7 7-10-5 8-4-6 Plate Offsets (X, Y): [2:0-3-0,0-1-0], [11:0-3-13,0-0-1] Example = 1.79,7 TCLL (roof) 2:0-0 TCL (roof) Plate Grip DOL 1.15 FC 0.74 Vert(L) -0.21 13-15 >999 2:0-0 MT20 244/190 Snow (P/Pg) 7.710.0 Lumber DOL 1.15 FC 0.88 Vert(C) -0.21 13-15 >999 180 SCDL 7.0 Rep Stress Incr YES WB 0.67 Horz(CT) 0.10 11 n/a n/a BCLL 0.0* Rep Stress Incr YES WB 0.67 Horz(CT) 0.10 11 n/a n/a BCLL 0.0* Rep Stress Incr YES WB 0.67 Horz(CT) 0.10 11 n/a n/a SDC CHORD 2x4 SP No.2 SP No.2 SP No.3 ST CLL: ASCE 7-16: Pr-20.0 pf (roof LL: Lum DOL= 1.15 Plate DOL= 1.15): IS=-10; Rough Cat B; Partally Exp. (Cat In 10) SP Stress In 120-5 SP Stress In 120-5 Stress In 12
Plate Offsets (X, Y): [2:0-3-0,0-1-0]. [1:1:0-3:13,0-0-1] Loading TCLL (roof) (ps) 200 Spacing End Grip DOL 2-0-0 1.15 CSI TC 0.74 DEFL in (loc) I/deft L/d Snow (PI/Pg) 7.7/10.0 Beg Stress Incr YES Code IRC2018/TPI2014 BC 0.89 Vert(LL) -0.25 13-15 >999 180 BCLL 0.0* Boot ChORD 2x4 SP No.2 Eccept* 16-14:2x4 SP No.3 State Stress Incr YE Vert(LL) -0.10 11 n/a n/a BOT CHORD 2x4 SP No.2 Scoept* 17*.3(3.99:2x4 SP No.3 State Stress Incr YE Plate DOL - 1.15; Pg=10.0 pst; Pl=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15; Pg=10.0 pst; Pl=7.7 psf (Lum DOL = 1.15 Plate DOL = 0.1.15; 1.15 Plate DOL = 0.1.15; State Stress Incr YE Y
TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.74 Vert(LL) -0.21 13-15 >999 240 MT20 244/190 Snow (PI/Pg) 7.71/10.0 Rep Stress Incr YES 0.89 WB 0.67 Vert(CT) -0.35 13-15 >999 240 WT20 244/190 BCL 0.0* Code IRC2018/TPI2014 WB 0.67 Vert(CT) -0.35 13-15 >999 240 Weight: 174 lb FT = 20% LUMBER 10.0 Code IRC2018/TPI2014 Matrix-MS Vert(LL) -0.10 11 n/a n/a BOT CHORD 2x4 SP No.2 Except* 16-14:2x4 SP No.2 Strept*: 173,13-9:2x4 SP No.3 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15; Is=1-0; Rough Cat B; Par.7. psf (Lum DOL = 1.15 Plate DOL=1.15; Is=1-0; Rough Cat B; Par.7. psf (Lum DOL = 1.15 Plate DOL=1.15; Is=1-0; Rough Cat B; Par.7. psf (Lum DOL = 1.15 Plate DOL=1.15; Is=1-0; Rough Cat B; Par.7. psf (Lum DOL = 1.15 Plate DOL=1.15; Is=1-0; Rough Cat B; Par.7. psf (Lum DOL = 1.15 Plate DOL=1.15; Is=1-0; Rough Cat B; Par.7. psf (Lum DOL = 1.15 Plate DOL = 1.15 Pl
 a. 8-9103/200, 9-11-12=0/20 BOT CHORD 2-17=-344/2191, 15-17=-221/1766, 13-15=-339/1707, 11-13=-202/1961 WEBS 3-17=-297/142, 4-17=-63/580, 4-15=-604/192, 6-15=-139/1141, 8-15=-536/181, 8-13=-45/424, 9-13=-203/123 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2R) 16-10-5 to 20-2-1, Interior (1) 20-2-1 to 34-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for exposed ; end vertical left and right exposed; C-C for

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties.


and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

April 22,2025

Job	Truss	Truss Type	Qty	Ply	1057 Serenity	
P02057-24657	G03	Common	2	1	Job Reference (optional)	T37069913

Run: 9.13 S 8.83 Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:43:29 Page: 1 ID:gnj8g2oS8u4iIYaNihUpPZzOXnR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

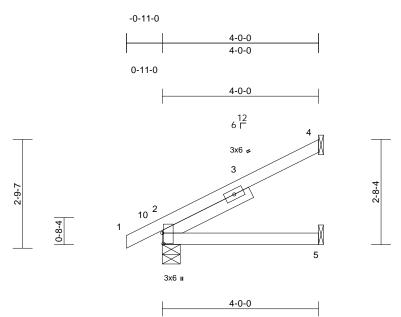
	8-6-14	16-10-5	23-6-0
Scale = 1:79.7	8-6-14	8-3-7	6-7-11

Plate Offsets (X, Y): [2:0-3-0,0-1-4]

						-							
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 7.7/10.0 7.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MS	0.63 0.87 0.67	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.14 -0.23 0.03	(loc) 9-11 11-14 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0											Weight: 134 lb	FT = 20%
FORCES TOP CHORD BOT CHORD WEBS 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp B; E and C-C Es to 16-10-5 to exposed ; e members a Lumber DC 3) TCLL: ASC Plate DOL= 1.15 Plate	Max Horiz 2=189 (LC Max Uplift 2=-151 (L Max Grav 2=982 (LC (Ib) - Maximum Com Tension 1-2=0/22, 2-3=-1604 4-6=-678/196, 6-7=- 2-11=-367/1426, 9-1 3-11=-307/143, 4-11 6-9=-45/341, 7-9=-1: ed roof live loads have	athing directly applie cept end verticals. applied or 9-8-5 oc 3= Mechanical C 15) C 16), 8=-118 (LC 1 C 3), 8=941 (LC 3) ipression/Maximum l/266, 3-4=-1437/25- 685/182, 7-8=-852/1 1=-265/986, 8-9=-51 =-65/597, 4-9=-610, 29/697 been considered for (3-second gust) DL=3.0psf; h=25ft; C ivelope) exterior zon 2-1-0, Interior (1) 2-7 to 19-10-5, Interior (2) releft and right ght exposed;C-C for for reactions shown L=1.60 roof LL: Lum DOL=1 7=7.7 psf (Lum DOL	No.3 ed or 6 7 8 6) 9 4, 186 9/70 1 /191, 1 10 (1) ; 1.15 - =	 design. This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements This truss ha chord live loa * This truss f on the bottor 3-06-00 tall t chord and ar Refer to gird Provide mec bearing plate 2 and 118 lb This truss is International 	snow loads have as been designed psf or 1.00 times on-concurrent wit igner/Project eng n Load = 5.0 (psf) s specific to the us is been designed n chord in all area by 2-00-00 wide w ay other members of truss to t hanical connectio e capable of withs uplif at joint 8. designed in accoo Residential Code nd referenced sta Standard	for great flat roof I h other li ineer res > covers I se of this for a 10. with any d for a liv as where vill fit betv s, with BC russ conn on (by oth tanding ' rdance we sections	er of min roo oad of 7.7 ps ve loads. ponsible for ain loading truss compc 0 psf bottom other live loa re load of 20. a rectangle veen the bott DL = 10.0ps rections. ers) of truss (51 lb uplift a ith the 2018 \$ R502.11.1 a	of live onent. ads. .0psf tom sf. to tto			and the second sec	SEA 0433	25 NIII

- and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior (1) to 16-10-5, Exterior(2R) 16-10-5 to 19-10-5, Interior (1) 19-10-5 to 23-4-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15
- 3) Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

818 Soundside Road Edenton, NC 27932


mmm April 22,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1057 Serenity	
P02057-24657	J01	Jack-Open	11	1	Job Reference (optional)	T37069914

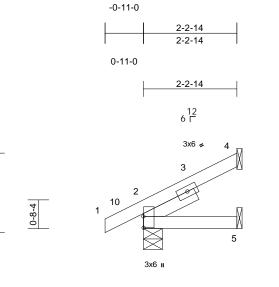
Run: 9.13 S 8.83 Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:43:29 ID:COx2NhZimNHpoGFswXkx_TzOaA4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.5

Plate Offsets (X, Y): [2:0-3-4,0-0-5]

	,,,,,,): [<u>2</u> .0 0 1,0 0 0]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI20 ⁻	CSI TC BC WB 4 Matrix-MP	0.21 0.13 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.02 0.01	(loc) 5-8 5-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 Left 2x4 SP No.3 Structural wood she 4-0-0 oc purlins. Rigid ceiling directly bracing.	eathing directly applie / applied or 10-0-0 or 4= Mechanical, 5= cal : 16) C 16), 4=-46 (LC 16) C 2), 4=94 (LC 2), 5=	ed or 7) * This chord c 3:06-0 c chord 8) Refer 9) Provid bearin 4 and 10) This tr Interna R802.	g Designer/Project en Ig Rain Load = 5.0 (ps ments specific to the i uss has been designer ive load nonconcurrer truss has been design bottom chord in all are 0 tall by 2-00-00 wide and any other member 0 girder(s) for truss to e mechanical connecti g plate capable of with 25 lb uplift at joint 2. uss is designed in acc tional Residential Coo 0.2 and referenced st SE(S) Standard	sf) covers i use of this d for a 10. ht with any eed for a live eas where will fit betw rs. o truss con ion (by oth histanding 4 ordance wide sections	ain loading truss compo 0 psf bottom other live loa e load of 20.1 a rectangle veen the bott nections. ers) of truss 16 lb uplift at ith the 2018 s R502.11.1 a	ads. Opsf om to joint					
TOP CHORD BOT CHORD NOTES	Tension 1-2=0/22, 2-4=-165/ 2-5=-118/61											
 Vasd=91n II; Exp B; I and C-C E to 3-11-4 z vertical lef forces & M DOL=1.60 2) TCLL: ASf Plate DOL 1.15 Plate Exp.; Ce= 3) Unbalancc design. 4) This truss load of 12 	CE 7-16; Vult=115mph nph; TCDL=4.2psf; BC Enclosed; MWFRS (er exterior(2E) -0-11-0 to zone; cantilever left ar t and right exposed;C MWFRS for reactions s 0 plate grip DOL=1.60 0 CE 7-16; Pr=20.0 psf; DOL = 1.15); Pg=10.0 psf; DOL = 1.15); Is=1.0; 1.0; Cs=1.00; Ct=1.10 ed snow loads have be has been designed fo .0 psf or 1.00 times fla s non-concurrent with	CDL=3.0psf; h=25ft; (nvelope) exterior zor 2-1-0, Interior (1) 2- dright exposed ; en- -C for members and shown; Lumber (roof LL: Lum DOL= Pf=7.7 psf (Lum DOL Rough Cat B; Partia) een considered for th or greater of min roof tt roof load of 7.7 psf	ne 1-0 d 1.15 _= Ily nis live							NIN PART	SEA 0433	EER Church


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1057 Serenity				
P02057-24657	J02	Jack-Open	1	1	Job Reference (optional)	T37069915			

Run: 9.13 S 8.83 Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:43:29 ID:IMb4irCNzrlfV?4oLNfcyxzOa7z-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-9-11

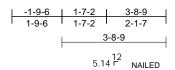
Page: 1

Scale = 1:27.6

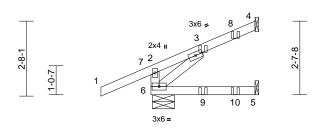
Plate Offsets (X, Y): [2:0-3-4,0-0-1]

1-10-14

	7, 1). [2.0 0 4,0 0 1]					-							
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201		CSI TC BC WB Matrix-MP			in 0.00 0.00 0.00	(loc) 5-8 5-8 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.3 Structural wood she 2-2-14 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, 4 Mechanic Max Horiz 2=43 (LC Max Uplift 2=-20 (LC (LC 16) Max Grav 2=140 (LC (LC 7) (lb) - Maximum Com Tension	athing directly applie applied or 10-0-0 or 4= Mechanical, 5= al 16) 2 16), 4=-25 (LC 16), 2 2), 4=48 (LC 2), 5=	6) ed or 7) c 5 5=-1 1(=35	verifying Ra requirement This truss ha chord live lo * This truss on the botto 3-06-00 tall chord and a 9 Refer to girc 9 Provide mec bearing platt 4, 20 lb uplif 20 This truss is International	in Load = 5.0 (psf) s specific to the us as been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w ny other members ler(s) for truss to i chanical connectio e capable of withs t at joint 2 and 1 ll designed in accou Residential Code nd referenced sta) covers r se of this for a 10. with any d for a liv as where vill fit betw s. truss conn n (by oth tanding 2 o uplift at rdance we	ain loading truss compor 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto nections. ers) of truss t 5 lb uplift at ji joint 5. th the 2018 s R502.11.1 a	ds. Dpsf om o oint					
TOP CHORD BOT CHORD	1-2=0/22, 2-4=-41/1 2-5=-40/29	8											
Vasd=91m II; Exp B; E and C-C E exposed ; members a Lumber DO 2) TCLL: ASC Plate DOL 1.15 Plate Exp.; Ce=1 3) Unbalance design. 4) This truss I load of 12.1	CE 7-16; Vult=115mph nph; TCDL=4.2psf; BC Enclosed; MWFRS (er ixterior(2E) zone; cant end vertical left and rig and forces & MWFRS DL=1.60 plate grip DC CE 7-16; Pr=20.0 psf (=1.15); Pg=10.0 psf; F DOL = 1.15); Is=1.0; 1 1.0; Cs=1.00; Ct=1.10 d snow loads have be has been designed for 0 psf or 1.00 times flat is non-concurrent with or	DL=3.0psf; h=25ft; (vvelope) exterior zor ilever left and right ght exposed;C-C for for reactions shown vL=1.60 roof LL: Lum DOL= ?f=7.7 psf (Lum DOL Rough Cat B; Partial een considered for th r greater of min roof t roof load of 7.7 psf	ne ; = Ily iis									SEA 0433	

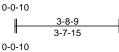

April 22,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	1057 Serenity	
P02057-24657	J03	Diagonal Hip Girder	1	1	Job Reference (optional)	T37069916

Run: 9.13 S 8.83 Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:43:29 Page: 1 ID:3sk8jkx4InJM9_WHDvj8F5zOa5k-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

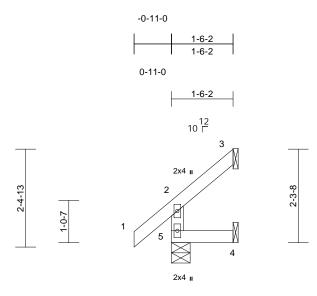


NAILED

NAILED

Scale = 1:41.1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	/TPI2014	CSI TC BC WB Matrix-MP	0.25 0.16 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 -0.01	(loc) 5-6 5-6 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 3-8-9 oc purlins, ex Rigid ceiling directly bracing. (size) 4= Mecha 6=0-9-7 Max Horiz 6=56 (LC Max Uplift 4=-53 (LC (LC 8) Max Grav 4=69 (LC (LC 2)	cept end verticals. applied or 10-0-0 or anical, 5= Mechanica 12) 212), 5=-3 (LC 8), 6:	7) 2 8) II, =-52 9) 10) =264	load of 12.0 overhangs n Building Des verifying Rai requirements This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mecc bearing plate 4, 3 lb uplift a	as been designed psf or 1.00 times f on-concurrent with igner/Project engin n Load = 5.0 (psf) s specific to the us is been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w hy other members er(s) for truss to t hanical connection e capable of withst at joint 5 and 52 lb designed in accor	ilat roof I n other li neer res covers I se of this for a 10. with any d for a liv is where ill fit betv. russ con n (by oth tanding § o uplift at	bad of 7.7 ps ve loads. consible for ain loading truss compo 0 psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss 3 lb uplift at joint 6.	onent. ads. Opsf tom					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	11)	International	Residential Code	sections	R502.11.1 a	and					
TOP CHORD	2-6=-227/110, 1-2=0 3-4=-25/24)/41, 2-3=-49/52,	12)		dicates 2-12d (0.1			ber					
BOT CHORD WEBS	5-6=0/0 3-6=-80/15		13)	In the LOAD	CASE(S) section are noted as front			face					
NOTES			LO	AD CASE(S)			(- /-					, in the second	11111
this design 2) Wind: ASC Vasd=91m II; Exp B; I cantilever	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=4.2psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6	(3-second gust) DL=3.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an	f 1) Cat. le; d	Dead + Sno Increase=1 Uniform Loa Vert: 1-2 Concentrate	ow (balanced): Lui .15		rease=1.15,	Plate			Vin	NITH CA	


- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 4) design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1057 Serenity				
P02057-24657	J04	Jack-Open	1	1	Job Reference (optional)	T37069917			

Run: 9.13 S 8.83 Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:43:29 Page: 1 ID:MMyDo8BJ47_nDghie3VvrdzOa_y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

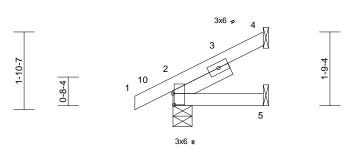
1-6-2

Scale = 1:28.3

		· · · · · · · · · · · · · · · · · · ·											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0 2x4 SP No.2 2x4 SP No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	verifying Rai	CSI TC BC WB Matrix-MR igner/Project englin h Load = 5.0 (psf) s specific to the us	covers r	ain loading	in 0.00 0.00 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.3 Structural wood she 1-6-2 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 oc nical, 4= Mechanica 14) : 14), 4=-10 (LC 14)	; I, 8) 9) 10	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 4 and 30 b u) This truss is International	is been designed i ad nonconcurrent has been designed in chord in all area by 2-00-00 wide wi by other members. er(s) for truss to t hanical connection capable of withst iplift at joint 3. designed in accor Residential Code nd referenced star	for a 10.4 with any d for a liv is where ill fit betw russ con n (by oth canding 1 dance w sections	D psf bottom other live load e load of 20.0 a rectangle veen the botto nections. ers) of truss to 0 lb uplift at jo ith the 2018 s R502.11.1 a	ds. Ipsf om D Dint					
 this design Wind: ASC Vasd=91m II; Exp B; E and C-C E: exposed; e members a Lumber DC TCLL: ASC Plate DOL: 1.15 Plate Exp.; Ce=1 4) This truss I load of 12.0 	(lb) - Maximum Com Tension 2-5=-111/75, 1-2=0/ 4-5=0/0 di roof live loads have b tre 7-16; Vult=115mph ph; TCDL=4.2psf; BC Enclosed; MWFRS (er xterior(2E) zone; cant end vertical left and ri and forces & MWFRS DL=1.60 plate grip DC DE 7-16; Pr=20.0 psf; F DOL= 1.15); Pg=10.0 psf; F DOL= 1.15); Pg=10.0 psf; F DOL= 1.15); Is=1.0; 1 1.0; Cs=1.00; Ct=1.10 0 psf or 1.00 times fla non-concurrent with c	37, 2-3=-48/27 been considered for (3-second gust) DL=3.0psf; h=25ft; C ivelope) exterior zon lever left and right ght exposed;C-C for for reactions shown; L=1.60 roof LL: Lum DOL=1 Y=7.7 psf (Lum DOL Rough Cat B; Partial r greater of min roof t roof load of 7.7 psf	cat. e .15 .≓ Iy Iive	DAD CASE(S)	Standard					. annumers.	Print Print	SEA 0433	EER.GANIN

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- This truss has been designed for greater of min roof live 4) load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



O' (1111111) April 22,2025

Job	Truss	Truss Type	Qty	Ply	1057 Serenity				
P02057-24657	J05	Jack-Open	5	1	Job Reference (optional)	T37069918			

Run: 9.13 S 8.83 Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:43:30 Page: 1 ID:XleogjXtUkWpa_q4Hx?TzXzOa_W-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-2-0

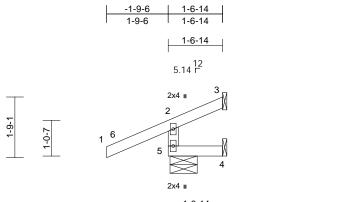
Scale = 1:27.7

Plate Offsets (X, Y): [2:0-3-4,0-0-5]

	(71, 1): [2:0 0 1,0 0 0]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER	7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201		CSI TC BC WB Matrix-MP			in 0.00 0.00 0.00	(loc) 5-8 5-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 Left 2x4 SP No.3 1 Structural wood she 2-2-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, 4 Mechanic Max Horiz 2=41 (LC Max Uplift 2=-19 (LC (LC 16) Max Grav 2=138 (LC	athing directly applie applied or 10-0-0 or 4= Mechanical, 5= al 16) : 16), 4=-24 (LC 16)	c 8) 9) , 5=-2 10	requirement This truss h chord live lo * This truss on the botto 3-06-00 tall chord and a Refer to girc Provide mee bearing plat 4, 19 lb upili) This truss is Internationa	in Load = 5.0 (psf) s specific to the us as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members ler(s) for truss to t chanical connectio e capable of withs t at joint 2 and 2 lt designed in accoil I Residential Code nd referenced sta	se of this for a 10.1 with any d for a liv as where vill fit betw truss con n (by oth tanding 2 o uplift at rdance w e sections	truss compoid opsf bottom other live loa e load of 20.1 a rectangle veen the botto nections. ers) of truss t 24 lb uplift at joint 5. ith the 2018 s R502.11.1 a	ads. Opsf om to joint					
FORCES TOP CHORD BOT CHORD	,		LC	DAD CASE(S)	Standard								
NOTES													111.
Vasd=91r II; Exp B; and C-C F exposed ; members Lumber D 2) TCLL: AS Plate DOI 1.15 Plate Exp.; Ce= 3) Unbalanc design. 4) This truss load of 12	CE 7-16; Vult=115mph mph; TCDL=4.2psf; BC Enclosed; MWFRS (er Exterior(2E) zone; canti ; end vertical left and rig and forces & MWFRS 00L=1.60 plate grip DO CCE 7-16; Pr=20.0 psf; e DOL = 1.15); Pg=10.0 psf; F = DOL = 1.15); Is=1.0; f = 1.0; Cs=1.00; Ct=1.10 wed snow loads have be a has been designed for 2.0 psf or 1.00 times flat s non-concurrent with c	DL=3.0psf; h=25ft; (ivelope) exterior zor ilever left and right ght exposed;C-C for for reactions shown vL=1.60 roof LL: Lum DOL= ?f=7.7 psf (Lum DOL Rough Cat B; Partia een considered for th r greater of min roof t roof load of 7.7 psf	ne r; 1.15 L = Illy his									SEA 0433	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932


April 22,2025

Job	Truss	Truss Type	Qty	Ply	1057 Serenity				
P02057-24657	J06	Jack-Open	1	1	Job Reference (optional)	T37069919			

Run; 9.13 S 8.83 Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries. Inc. Mon Apr 21 09:43:30 ID:CDblkKJieC9pKj8Wy0fBzkzOZyC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-8-8

Page: 1

1-6-14

0-0-10

0-0-10

1-6-4

Scale = 1:33.4

Max Uplift 3=-17 (LC 22), 4=-4 (LC 2), 5=-55

(lb) - Maximum Compression/Maximum

2-5=-195/196, 1-2=0/41, 2-3=-36/12

3=6 (LC 12), 4=22 (LC 7), 5=227

(LC 12)

(LC 2)

Unbalanced roof live loads have been considered for

Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially

Unbalanced snow loads have been considered for this

exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown;

Lumber DOL=1.60 plate grip DOL=1.60

Exp.; Ce=1.0; Cs=1.00; Ct=1.10

Wind: ASCE 7-16; Vult=115mph (3-second gust)

Max Grav

Tension

4-5=0/0

FORCES

NOTES

1)

2)

3)

4)

design.

TOP CHORD

BOT CHORD

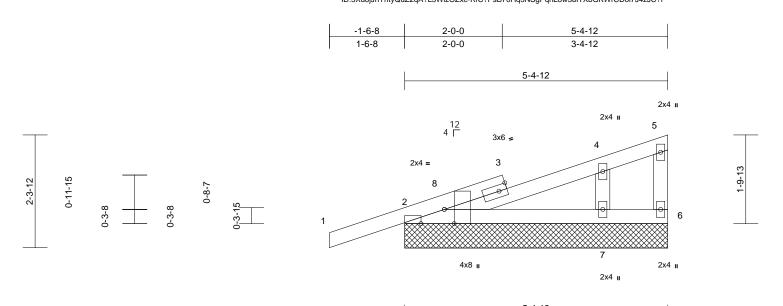
this design.

Loading TCLL (roof) Snow (Pf/Pg)	(psf) 20.0 7.7/10.0	Plate Grip DOL 1	2-0-0 .15 .15	CSI TC BC	0.23 0.06	DEFL Vert(LL) Vert(CT)	in 0.00 0.00	(loc) 4-5 4-5	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 244/190
TCDL	7.0		ΈS	WB	0.00	Horz(CT)	0.00	- 3	n/a	n/a		
BCLL	0.0*	Code IF	RC2018/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 9 lb	FT = 20%
	1-6-14 oc purlins, e Rigid ceiling directly bracing.	applied or 10-0-0 oc nical, 4= Mechanical,	 load of overhar Building verifying requirer This tru chord li * This tru * This tru a-06-00 chord a 	ss has been designe 12.0 psf or 1.00 time: gs non-concurrent w Designer/Project en g Rain Load = 5.0 (ps nents specific to the ss has been designe ve load nonconcurrer uss has been design oottom chord in all ar tall by 2-00-00 wide nd any other membe	s flat roof lo vith other lin agineer resp sf) covers r use of this d for a 10. ht with any hed for a liv eas where will fit betw rs.	bad of 7.7 ps ve loads. ponsible for ain loading truss compo 0 psf bottom other live load e load of 20. a rectangle veen the bott	f on nent. ads. 0psf					

9) Refer to girder(s) for truss to truss connections. 10) Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 4 lb uplift at joint 4, 17 lb uplift at joint 3 and 55 lb uplift at joint 5. 11) This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

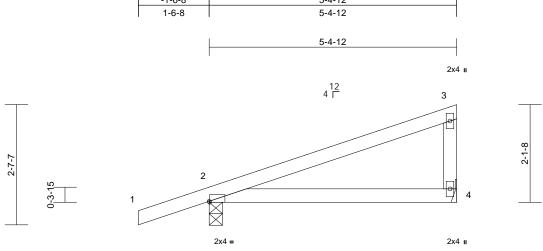
Job	Truss	Truss Type	Qty	Ply	1057 Serenity	
P02057-24657	P01	Monopitch Supported Gable	1	1	Job Reference (optional)	T37069920

Run: 9.13 S 8.83 Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:43:30 ID:5Xu6jJnYhtyQuZ2qA?L5WIzOZxc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-4-12

Scale = 1:23.6 Plate Offsets (X, Y): [2:0-3-8,Edge], [2:0-5-12,Edge]


Plate Offsets (2	X, Y): [2:0-3-8,Edge],	[2:0-5-12,Edge]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201		CSI TC BC WB Matrix-MP				(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp B; E and C-C C 1-8-13 to 5 end vertica forces & M DOL=1.60 3) Truss desi only. For s see Standa	Max Horiz 2=54 (LC Max Uplift 2=-79 (LC (LC 16) Max Grav 2=228 (LC (LC 2)) (Ib) - Maximum Com Tension 1-2=0/26, 2-4=-95/5i 2-7=-20/27, 6-7=-20, 4-7=-184/228 ed roof live loads have	xcept end verticals. applied or 6-0-0 oc 6=5-4-12, 7=5-4-12 15) 12), 6=-35 (LC 7), 7 2 2), 6=4 (LC 16), 7= pression/Maximum 6, 4-5=-32/30, 5-6=-1/27 been considered for (3-second gust) DL=3.0psf; h=25ft; C welope) exterior zon 3-13, Exterior(2N) eft and right exposed d;C-C for members a hown; Lumber the plane of the trus (normal to the face) d Details as applicab	d or 6) 7) 7=-51 8) 9) 273 10 10/16 12 16/16 12 13 16/16 12 13 14 14 15 14 15 16 12 13 14 15 16 16 12 13 16 16 12 13 16 16 12 13 16 16 12 13 16 16 16 16 16 16 16 16 16 16	 1.15 Plate D Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 2, 35 lb upliff This truss is International 	I.15); Pg=10.0 psi OL = 1.15); Is=1.0. (Ct=1.0; Ct=1. snow loads have as been designed psf or 1.00 times on-concurrent wit igner/Project eng n Load = 5.0 (psf) s specific to the u es continuous bot spaced at 1.4-0 c as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members hanical connectio e capable of withs t at joint 6 and 51 designed in accoo Residential Code nd referenced sta Standard); Rough 10 been cou- for great flat roof I h other Ii ineer res covers is se of this tom choi oc. for a 10. for a 10. for a 10. d for a liv as where vill fit betv. n (by oth tanding 7 Ib uplift a rdance w	Cat B; Partia nsidered for the er of min roof pad of 7.7 psive loads. ponsible for ain loading truss compoind bearing. 0 psf bottom other live load re load of 20.1 a rectangle veen the botti- ers) of truss to 9 lb uplift at j at joint 7. tith the 2018 s R502.11.1 a	ally his f live f on nent. ads. Opsf om to joint				SEA 0433	EER CANING

TRENCO A MITEK Atfiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1057 Serenity	
P02057-24657	P02	Monopitch	5	1	Job Reference (optional)	T37069921

Run: 9.13 S 8.83 Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:43:30 Page: 1 ID:_af27V1jkKbRvo9svvD0sAzOZxH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -1-6-8 5-4-12

5-4-12

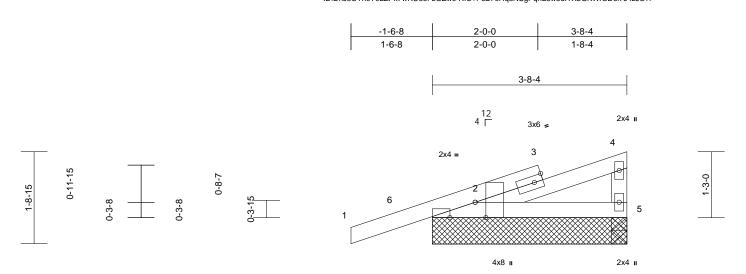
Scale = 1:25.1

Plate Offsets (X, Y): [2:0-0-2.Edge]

Plate Offsets ()	X, Y): [2:0-0-2,Edge]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MP	0.34 0.26 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.03 -0.07 0.00	(loc) 4-7 4-7 2	l/defl >999 >965 n/a	L/d 240 180 n/a		GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp 8; E and C-C E: 5-3-0 zone vertical left forces & M DOL=1.60 3) TCLL: ASC Plate DOL 1.15 Plate Exp.; Ce=1	Max Horiz 2=63 (LC Max Uplift 2=-87 (LC Max Grav 2=290 (LC (lb) - Maximum Com Tension 1-2=0/26, 2-3=-73/4 2-4=-24/100 ed roof live loads have	xcept end verticals. applied or 10-0-0 oc 4= Mechanical 15) 212), 4=-38 (LC 16) 22), 4=182 (LC 2) pression/Maximum 5, 3-4=-119/100 been considered for (3-second gust) DL=3.0psf; h=25ft; C ivelope) exterior zon -5-8, Interior (1) 1-5- pht exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1 Pf=7.7 psf (Lum DOL	9) 10 11 LC r Cat. He 8 to	verifying Rai requirements This truss ha chord live loa * This truss f on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 4 and 87 lb (c)) This truss is International	igner/Project engi n Load = 5.0 (psf) s specific to the us is been designed ad nonconcurrent nas been designe m chord in all aree by 2-00-00 wide w ny other members er(s) for truss to th hanical connectio e capable of withs uplift at joint 2. designed in accor Residential Code nd referenced sta Standard) covers r se of this for a 10.0 with any d for a liv as where vill fit betw s. russ conr n (by oth tanding 3 rdance w	ain loading truss compo) psf bottom other live loa e load of 20.1 a rectangle veen the bott nections. ers) of truss 8 lb uplift at ith the 2018 R502.11.1 a	ads. Opsf om to joint				SEA 0433	OXAR L 25 L

- design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.

J. O'REGAT April 22,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1057 Serenity	
P02057-24657	P03	Monopitch Supported Gable	1	1	Job Reference (optional)	T37069922

Run: 9.13 S 8.83 Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:43:30 ID:DrIJ8CYhcY0LZPx7wRU66FzOZwc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-8-4

Page: 1

Scale =	1:21.8
---------	--------

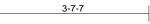
Plate Offsets (X, Y): [2:0-3-8,Edge], [2:0-5-12,Edge]

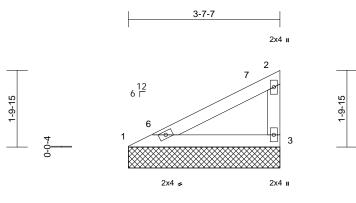
	(, .). [=	[,,											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.32 0.08 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 2-5 2-5 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD NOTES	2x4 SP No.2 2x4 SP No.3 Structural wood she 3-8-4 oc purlins, ex Rigid ceiling directly bracing. (size) 2=3-8-4, { Max Horiz 2=36 (LC Max Uplift 2=-122 (L Max Grav 2=283 (LC (Ib) - Maximum Com Tension 1-2=0/33, 2-4=-31/2 2-5=-13/14 ed roof live loads have	cept end verticals. applied or 10-0-0 or 5=3-8-4 15) .C 12), 5=-3 (LC 16) C 2), 5=59 (LC 7) npression/Maximum 5, 4-5=-55/23	5 8 9 1 1 1	 design. This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements Gable studs This truss ha chord live loa * This truss lo on the bottoo 3-06-00 tall lo chord and at Provide mec bearing platte 2 and 3 lb up 2) This truss is International R802.10.2 a 	designed in accord Residential Code s nd referenced stan	or great at roof I other li beer res covers i or a 10. vith any for a liv s where I fit betw (by oth anding 1 dance w sections	er of min roo oad of 7.7 ps ve loads. ponsible for ain loading truss compo 0 psf bottom other live loa re load of 20. a rectangle ween the bott uers) of truss 122 lb uplift a ith the 2018 s R502.11.1 a	f live onent. ads. Opsf to t joint					
2) Wind: AS	CE 7-16; Vult=115mph	L	LOAD CASE(S) Standard										

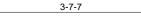
 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-6-8 to 1-5-8, Interior (1) 1-5-8 to 3-6-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate link design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)




A MiTek


Job	Truss	Truss Type	Qty	Ply	1057 Serenity	
P02057-24657	V01	Valley	1	1	Job Reference (optional)	T37069923

Run: 9.13 S 8.83 Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:43:31 ID:fgIZb_3Xs85zvDGvYQie?uzOZtN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:27.5

Scale = 1:27.5												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI201	CSI TC BC WB 4 Matrix-MP	0.13 0.15 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 3-7-7 oc purlins, ex Rigid ceiling directly bracing. (size) 1=3-7-7, 3 Max Horiz 1=45 (LC Max Uplift 1=-19 (LC Max Grav 1=128 (LC (lb) - Maximum Corr Tension 1-2=-203/80, 2-3=-7	cept end verticals. ² applied or 10-0-0 o 3=3-7-7 13) C 16), 3=-30 (LC 16) C 2), 3=128 (LC 2) 1000000000000000000000000000000000000	ed or c 10) 4 5 6 6 7) 6 8) 6 9) 7 16 7 10) 4 7 10) 4 7 10) 4 7 10) 4 7 10 4 7 10 10 10 10 10 10 10 10 10 10	g Designer/Project eng g Rain Load = 5.0 (psi ments specific to the u requires continuous bo studs spaced at 4-0-0 uss has been designed bottom chord in all are 0 tall by 2-00-00 wide v and any other member e mechanical connectii g plate capable of withs 19 lb uplift at joint 1. uss is designed in acco tional Residential Cod 0.2 and referenced st	f) covers is use of this stom choic oc. If for a 10. t with any ed for a live as where will fit betw s. on (by oth standing 3 ordance w e sections	ain loading truss compored bearing. 0 psf bottom other live loa re load of 20.0 a rectangle ween the botto ers) of truss t 30 lb uplift at j ith the 2018 s R502.11.1 a	ids. Opsf om io ioint					
BOT CHORD	1-3=-132/176		LOAD CAS	SE(S) Standard								
NOTES												
 Unbalance this design 	ed roof live loads have	been considered to	or									
 Wind: ASC Vasd=91m II; Exp B; E and C-C E 3-6-3 zone vertical left forces & M 	TE 7-16; Vult=115mph nph; TCDL=4.2psf; BC Enclosed; MWFRS (er :xterior(2E) 0-0-8 to 3- e; cantilever left and rig t and right exposed;C- MWFRS for reactions s 0 plate grip DOL=1.60	DL=3.0psf; h=25ft; (nvelope) exterior zor 0-8, Interior (1) 3-0-4 ght exposed ; end -C for members and	ne 8 to							A IN THE REAL PROPERTY IN	SEA 0433	ROLUN
 Truss desi only. For s see Standa 	igned for wind loads in studs exposed to wind ard Industry Gable En qualified building desi	l (normal to the face d Details as applical	e), ble,								SEA 0433	L
4) TCLL: ASC Plate DOL 1.15 Plate	CE 7-16; Pr=20.0 psf (.=1.15); Pg=10.0 psf; F DOL = 1.15); Is=1.0; I 1.0; Cs=1.00; Ct=1.10	roof LL: Lum DOL= Pf=7.7 psf (Lum DOI Rough Cat B; Partia	1.15 L =								S. ENGIN	EERCATI
1 /	ed snow loads have be		his							1	KIP J (D'RE

- 3 only. For studs exposed to wind loads in the plane of the trdss see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL= 4.45 Plate DOL=4.45), Id. 40, Paureb Cost PL Pacificility
- 4) 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

