

RE: 24030108-01 1002 Serenity-Roof-B326 BRH COP BR4 Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: David Weekley Homes Project Name: 24030108-01 Lot/Block: 1002 Model: Address: 1027 SERENITY WALK PARKWS Ubdivision: Serenity City: Fuquay Varina State: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.7 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 38 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	165383268	D02	5/7/2024	21	165383288	VLD6	5/7/2024
2	165383269	B02	5/7/2024	22	165383289	VLD7	5/7/2024
3	165383270	D01	5/7/2024	23	165383290	VLB1	5/7/2024
4	165383271	A06	5/7/2024	24	165383291	VLB2	5/7/2024
5	165383272	A09	5/7/2024	25	165383292	VLB3	5/7/2024
6	165383273	A08	5/7/2024	26	165383293	VLB4	5/7/2024
7	165383274	A07	5/7/2024	27	165383294	VLB5	5/7/2024
8	165383275	A05	5/7/2024	28	165383295	VLB6	5/7/2024
9	165383276	G01	5/7/2024	29	165383296	VLB7	5/7/2024
10	165383277	A01	5/7/2024	30	165383297	VLB8	5/7/2024
11	165383278	A03	5/7/2024	31	165383298	PBA2	5/7/2024
12	165383279	A04	5/7/2024	32	165383299	PBA	5/7/2024
13	165383280	H01	5/7/2024	33	165383300	PBA1	5/7/2024
14	165383281	H02	5/7/2024	34	165383301	C01	5/7/2024
15	165383282	J01	5/7/2024	35	165383302	C02	5/7/2024
16	165383283	VLD1	5/7/2024	36	165383303	B03	5/7/2024
17	165383284	VLD2	5/7/2024	37	165383304	B01	5/7/2024
18	165383285	VLD3	5/7/2024	38	165383305	E01	5/7/2024
19	165383286	VLD4	5/7/2024				
20	165383287	VLD5	5/7/2024				

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

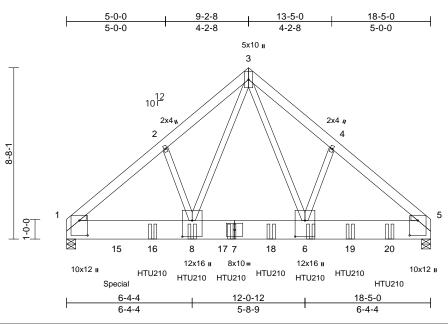
based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Pohlman, Elizabeth

My license renewal date for the state of North Carolina is December 31, 2025

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



Pohlman, Elizabeth

Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	D02	Common Girder	1	3	Job Reference (optional)	165383268

Scale = 1:58.3

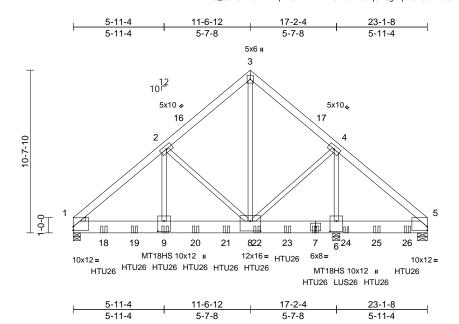
Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon May 06 11:58:40 ID:ahvaep5BsMWascBuTkn6buzRAib-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [1:0-9-0,0-5-0], [5:0-9-0,0-5-0], [6:0-9-12,0-6-0], [8:0-9-12,0-6-0]

	, , , , , , , , , , , , , , , , , , , ,		,	,, [0:0 0 :=,0]							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS	(psf) 20.0 20.0 10.0 0.0* 10.0 2x6 SP No.2 2x12 SP 2400F 2.0E 2x4 SP No.3 *Excep Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code t* 8-3,6-3:2x4 SP No athing directly applied	2-0-0 1.15 1.15 NO IRC2018, 4) .2 5) d or 6)	/TPI2014 Wind: ASCE Vasd=103mp II; Exp B; En cantilever lef right exposer TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design.	CSI TC BC WB Matrix-MSH 7-16; Vult=130mp bh; TCDL=6.0psf; closed; MWFRS (t and right expose d; Lumber DOL=1 7-16; Pr=20.0 psf (Lumber DOL=1 7-16; Pr=20.0 psf Is=1.0; Rough Cal =1.10 snow loads have as been designed	BCDL=6 envelope ed; end .60 plate f (roof Ll (Lum DC t B; Fully been co	6.0psf; h=25ft e) exterior zoi vertical left ar grip DOL=1. .: Lum DOL= DL=1.15 Plate Exp.; Ce=0. nsidered for t	ne; nd .60 1.15 e 9;		87 (B),		
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) 3-ply truss Top chords follows: 2x Bottom cho screws as Web chord follows: 2x 2) All loads at except ifn m CASE(S) s provided to unless other	2-3=-14046/0 1-8=0/10837, 6-8=0 2-8=-232/269, 3-8=(4-6=-148/268 to be connected toge s connected with 10d 6 - 2 rows staggered a ords connected with S follows: 2x12 - 3 rows ls connected with 10d 4 - 1 row at 0-9-0 oc. re considered equally oted as front (F) or ba section. Ply to ply com edistribute only loads erwise indicated. d roof live loads have	(LC 21), 5=10832 (LC apression/Maximum 12592/0, 1-2=-14114 /7190, 5-6=0/9583 0/10561, 3-6=0/7003, ther as follows: (0.131"x3") nails as at 0-9-0 oc. impson SDS 1/4 x 4- is staggered at 0-4-0 o (0.131"x3") nails as applied to all plies, ck (B) face in the LO/ nections have been noted as (F) or (B),	 2 6) 8) /0, 9) 10) 1/2 11) c. 12) AD 	chord live loa * This truss h on the bottor chord and ar This truss is International R802.10.2 ar Use Simpsor 14-10dx1 1/2 spaced at 2-1 end to 16-4-2 chord. Fill all nail hot Hanger(s) or provided suff lb down and design/selec responsibility AD CASE(S) Dead + Snc Increase=1 Uniform Loa Vert: 3-5a	ad nonconcurrent has been designed in chord in all area by 2-00-00 wide w by other members designed in accor Residential Code nd referenced stan in Strong-Tie HTU2 2 Truss, Single Ply 0-0 oc max. startif 4 to connect truss oles where hanger other connection ficient to support of 522 lb up at 2-6-4 tion of such connect of others. Standard bw (balanced): Lui 15	with any d for a living swhere ill fit betty with BC dance w sections ndard AN 210 (32- / Girder) ng at 4-4 (es) to b is in con device(s concentra 8 on bott ection de	other live load e load of 20. a rectangle veen the bott DL = 10.0ps ith the 2018 s R502.11.1 a ISI/TPI 1. 10d Girder, or equivalent -4 from the le ack face of both tact with lum s) shall be ated load(s) 8 om chord. Ti vice(s) is the	Opsf om f. and t sft ottom aber. 8833 he		Provide States	SEA 0557	L 27 EEP. HH

- Unbalanced roof live loads have been considered for 3) this design.
- Uniform Loads (lb/ft)
 - Vert: 3-5=-60, 1-3=-60, 9-12=-20 Concentrated Loads (lb)

Page: 1

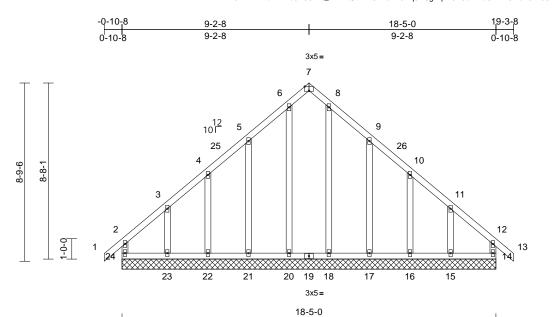

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	B02	Common Girder	1	2	Job Reference (optional)	165383269

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon May 06 11:58:39 ID:iFFKd9_s5HOVK9vBFwqTAGzRAMn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1


Scale = 1:75.3 Plate Offsets (X, Y): [1:Edge,0-2-13], [5:Edge,0-2-13], [6:0-8-0,0-5-0], [8:0-8-0,0-7-12], [9:0-8-0,0-5-0]

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0	Plate Grip DOL 1	2-0-0 .15 .15	CSI TC BC	0.26 0.32	DEFL Vert(LL) Vert(CT)	in -0.08 -0.14	(loc) 8-9 8-9	l/defl >999 >999	L/d 240 180	PLATES MT20 MT18HS	GRIP 244/190 244/190
TCDL 10.0 BCLL 0.0 BCDL 10.0	1 '	NO RC2018/TPI2014	WB Matrix-MSH	0.95	Horz(CT)	0.02	6	n/a	n/a	Weight: 425 lb	FT = 20%
LUMBER TOP CHORD 2x6 SP No.2 BOT CHORD 2x10 SP 2400F 2. WEBS 2x4 SP No.2 WEDGE Left: 2x4 SP No.3 BRACING TOP CHORD Structural wood sl 5-2-1 oc purlins. BOT CHORD Rigid ceiling direc bracing. REACTIONS (size) 1=0-5-8 Max Horiz 1=-226 Max Horiz 1=-226 Max Uplift 1=-238 6=-756 Max Grav 1=7853 6=1153 FORCES (lb) - Maximum Co Tension TOP CHORD 1-2=-8739/293, 2- 3-4=-4460/253, 4- 5-6=-252/75 WEBS 2-9=-121/5557, 2-	eathing directly applied o y applied or 6-0-0 oc 5=0-7-12, 6=0-5-8 LC 35) LC 12), 5=-272 (LC 13), LC 12), 5=-272 (LC 13), (LC 5), 5=680 (LC 19), i (LC 6) mpression/Maximum i=-4456/244, i=-108/355 I=-268/6662, 6-8=-252/75 i=-4535/335, I=-89/4874, 4-6=-6506/21 ether with 10d vs: 2x6 - 2 rows Ilows: 2x10 - 3 rows - 1 row at 0-6-0 oc. v applied to all plies, ack (B) face in the LOAD unections have been	 this design Wind: ASC Vasd=103 II; Exp B; E cantilever i right exposion 5) TCLL: ASC Plate DOL DOL=1.15 Cs=1.00; C 6) Unbalance design. 7) All plates a 8) This truss chord live 9) * This truss chord and 5. 10) One H2.5/ recommen UPLIFT at and does r 11) LGT2 Simp connect true This true This connect true This connect	E 7-16; Vult=130m mph; TCDL=6.0psf; inclosed; MWFRS (eft and right expose ed; Lumber DOL=1 2E 7-16; Pr=20.0 psf =1.15); Pf=20.0 psf ; Is=1.0; Rough Ca 2t=1.10 d snow loads have re MT20 plates unl has been designed oad nonconcurrent is has been designed or chord in all area l by 2-00-00 wide w any other members . Simpson Strong-T ded to connect trus jt(s) 1 and 5. This c iot consider lateral boson Strong-Tie cor iss to bearing walls ction is for uplift on	ch (3-sec BCDL=6 envelope d ; end v .60 plate f (roof LI (Lum DC t B; Fully been cor ess other for a 10.1 with any d for a 10.1 with	cond gust) .0.psf; h=25ft; .9) exterior zor vertical left an grip DOL=1. .: Lum DOL== DL=1.15 Plate Exp.; Ce=0.5 asidered for th wise indicate D psf bottom other live loa e load of 20.0 a rectangle veen the botto ctors sing walls due n is for uplift of recommender PLIFT at jt(s) es not consid ith the 2018 is R502.11.1 a ISI/TPI 1. od Girder, reed at 2-0-0 o to 15-10-0 to	c Cat. ne; d 60 1.15 j; nis d. ds. Dpsf com to pnly d to 6. ler nd c	Tru con 15) Use 11- spa enc bott 16) Fill 17) LG the LOAD (1) De In Ur	ss) or ea nect true e Simpson todat 1 lodat 1	quivale ss(es) on Strc /2 Trusus/2-0-0 or 0-0 to rd. 	mg-Tie LUS26 (4 ent at 17-10-0 fror to back face of b ong-Tie HTU26 (2 ss, Single Ply Gir c max. starting at connect truss(es) where hanger is in es must have two ndard alanced): Lumber b/ft) 3-5=-60, 10-13= ads (lb) (B), 9=-1817 (B), 2- (B), 24=-873 (B)	-10d Girder, 3-10d n the left end to ottom chord. 0-10d Girder, der) or equivalent 19-10-0 from the left to back face of contact with lumber. o studs in line below Increase=1.15, Plate -20 18=-1817 (B), 1=-1817 (B), 22=-1817

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

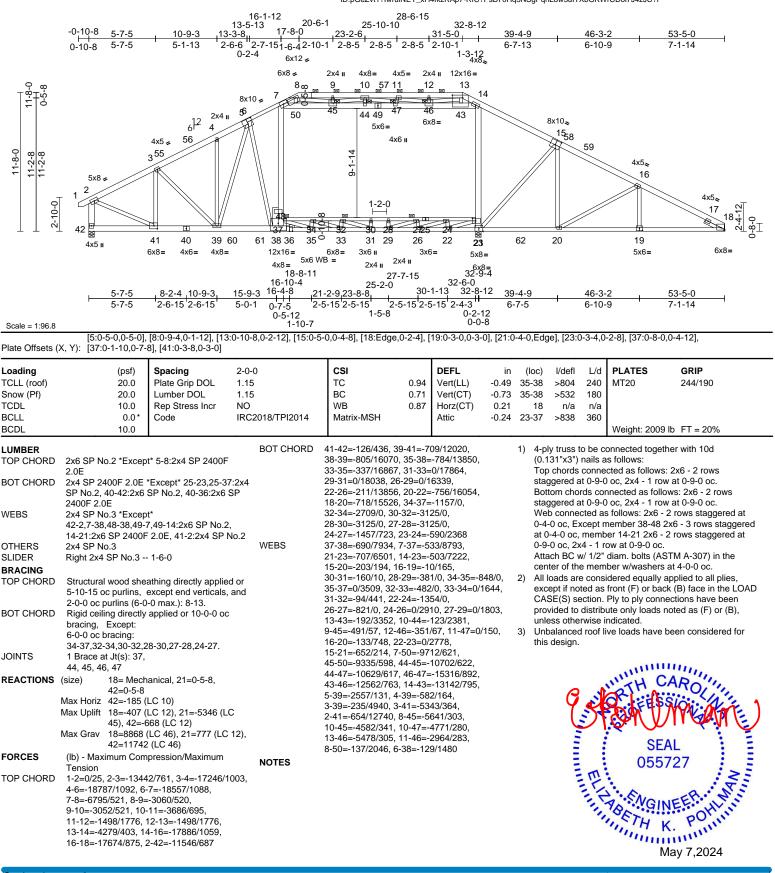
Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	D01	Common Supported Gable	1	1	Job Reference (optional)	165383270

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon May 06 11:58:40 ID:8F2D?hHuvW?rb9K6OMb_Y2zRQrE-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale =	1.56.9
Scale =	1:50.8

Plate Offsets (X, Y): [7:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL1.Lumber DOL1.Rep Stress IncrYI	0-0 15 15 ES 8C2018	/TPI2014	CSI TC BC WB Matrix-MR	0.21 0.12 0.20	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 126 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 14=18-5-0 21=18-5-0 24=18-5-0 Max Horiz 24=224 (L Max Uplift 14=-50 (L 21=-114 (23=-168 (Max Grav 14=189 (L 16=173 (L 18=225 (L 21=253 (L	applied or 6-0-0 oc), 15=18-5-0, 16=18-5-0,), 18=18-5-0, 20=18-5-0,), 22=18-5-0, 23=18-5-0,) C 13), 15=-163 (LC 15), C 15), 17=-116 (LC 15), LC 14), 22=-47 (LC 14), LC 14), 22=-47 (LC 14), LC 14), 22=-47 (LC 21), C 22), 20=225 (LC 21), C 21), 22=173 (LC 2	NC 1) 2)	Unbalanced this design. Wind: ASCE Vasd=103mp II; Exp B; End and C-C Corr 2-2-12 to 6-2 12-2-4 to 16- cantilever left right exposed for reactions DOL=1.60 Truss design only. For stu see Standarc or consult qu TCLL: ASCE Plate DOL=1	2-20=-185/8, 8-18= 1-22=-133/94, 3-23 1-17=-213/162, 10- 1-15=-155/167 roof live loads have 7-16; Vult=130mpt h; TCDL=6.0pst; B closed; MWFRS (en- ner(3E) -0-10-8 to 2 -8, Corner(3E) 16 t and right exposed (;C-C for members; shown; Lumber DC ned for wind loads i ds exposed to wind lindustry Gable Er alified building desi 7-16; Pr=20.0 psf (L s=1.0; Rough Cat {	=-159/1 16=-13 be been of a (3-sec CDL=6 nvelope 2-2-12, -8 to 12 -2-4 to 1; end of and fo DL=1.60 on the p d (normal igner at igner at igne	59, 3/92, considered for cond gust) 0.0psf; h=25ft; C exterior zone Exterior(2N) -2-4, Exterior(2 19-3-8 zone; vertical left and rces & MWFRS 0 plate grip lane of the truss al to the face), ils as applicable s per ANSI/TPI : Lum DCL=1.1 DL=1.15 Plate	cat. N)	on 1 3-0 cho 13) Pro bea 24, upli join 15. 14) Thi: Inte R80	the botto 6-00 tall ord and a vvide me aring plat 50 lb up ift at joint t 17, 47 s truss is ernationa	m cho by 2-0 iny oth chanic: e capa lift at jo t 22, 10 lb uplif s desig and ref	rd in all areas wh 0-00 wide will fit er members. al connection (by bible of withstand bint 14, 114 lb up 58 lb uplift at join t at joint 16 and ned in accordand dential Code sec erenced standar	between the bottom y others) of truss to ing 69 lb uplift at joint blift at joint 21, 47 lb it 23, 116 lb uplift at 163 lb uplift at joint ce with the 2018 tions R502.11.1 and
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 2-24=-167/63, 1-2=0 3-4=-104/90, 4-5=-9 6-7=-91/169, 7-8=-9	//39, 2-3=-165/140, 2/115, 5-6=-114/233, 1/169, 8-9=-114/233, =-89/71, 11-12=-153/11 154/47 23=-106/187, 21=-106/187, 18=-106/187,	6) 6, 7) 8) 9) 10)	Cs=1.00; Ćt= Unbalanced a design. This truss ha load of 12.0 p overhangs no All plates are Gable require Truss to be fit braced again Gable studs a	1.10 snow loads have be s been designed for osf or 1.00 times file on-concurrent with 2x4 MT20 unless as continuous botto ully sheathed from st lateral movemer spaced at 2-0-0 oc.	een cor or great at roof lo other li otherwi om chor one fac ot (i.e. c	nsidered for this er of min roof liv pad of 20.0 psf of ve loads. se indicated. d bearing. se or securely liagonal web).	/e			ELLEN	SEA 0557	• -
	14-15=-106/187	10=-100/107,	11)		s been designed fo id nonconcurrent w			i.				TH K	POlini


May 7,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	A06	Attic Girder	1	4	I65: Job Reference (optional)	5383271

Run: 8,73 S Apr 25 2024 Print: 8,730 S Apr 25 2024 MiTek Industries, Inc. Mon May 06 11:58:36 Page: 1 ID:pGeZvt1?IwruiNEY_xH4fkzRAp7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Continued on page 2

13-14=-4279/403, 14-16=-17886/1059. 16-18=-17674/875. 2-42=-11546/687

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	A06	Attic Girder	1	4	Job Reference (optional)	165383271

Run: 8 73 S. Apr 25 2024 Print: 8 730 S. Apr 25 2024 MiTek Industries. Inc. Mon May 06 11:58:36

ID:pGeZvt1?lwruiNEY_xH4fkzRAp7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Carter Components (Sanford, NC), Sanford, NC - 27332,

- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 8) Provide adequate drainage to prevent water ponding.
- 9) All plates are 3x5 MT20 unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 12) Ceiling dead load (5.0 psf) on member(s). 7-50, 45-50, 44-45, 44-47, 46-47, 43-46, 14-43; Wall dead load (5.0psf) on member(s).7-37, 14-23
- 13) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 34-37, 32-34, 30-32, 28-30, 27-28, 24-27, 23-24
- 14) Refer to girder(s) for truss to truss connections.
- 15) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 407 lb uplift at joint 18 and 5346 lb uplift at joint 21.
- 16) LGT4-SDS3 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 42. This connection is for uplift only and does not consider lateral forces.
- 17) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 19) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.
- 20) LGT4 Hurricane ties must have four studs in line below the truss.
- 21) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 9100 lb down and 774 lb up at 15-11-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 22) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

- Vert: 1-2=-60, 2-8=-60, 8-13=-60, 13-18=-60,
- 42-51=-20, 23-37=-30, 7-50=-10, 45-50=-10, 44-45=-10, 44-49=-10, 47-49=-10, 46-47=-10,
- 44-45=-10, 44-45=-10, 47-45=-10, 46-4

Drag: 37-48=-10, 7-48=-10, 14-23=-10

Concentrated Loads (lb) Vert: 38=-4881 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	A09	Attic Supported Gable	1	1	Job Reference (optional)	165383272

Carter Component	nts (Sanford, NC), Sanford, NC - 27332,	Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon May 06 11:58:38 Page: 1 ID:8kdnaNVfrXy7X5iJovJ26tzRBB2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1	1
F	<u>16-1-12</u> 16-1-12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	<u>13-11-0</u> 13-11-0 2-2-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27 80 4 - 9 - 9
$\frac{\text{Scale} = 1:90.8}{\text{Plate Offsets ()}}$,0-3-0], [39:0-4-0,0-2-4], [54:0-4-0,0-2-4], [66:0-2-11,0-1-8]	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD	10.0	5 TC 0.43 Vert(LL) n/a - n/a 999 MT20 244/190 5 BC 0.12 Vert(TL) n/a - n/a 999	
WEBS OTHERS BRACING TOP CHORD	2400F 2.0E, 57-64:2x4 SP No.1 2x4 SP No.3 *Except* 9-55,16-38,64-1:2x6 SP No.2, 16-66,66-9:2x4 SP No.2 2x4 SP No.3 *Except* 0-0,0-0,0-0,0-0,0-0:2x4 SPF No.2(flat) Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (4-2-4 max.): 10-15.	$\begin{array}{rll} 34=\!$	
BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing, Except: 10-0-0 oc bracing: 48-50,46-48,45-46,40-45,39-40. T-Brace: 2x4 SPF No.2 - 9-54, 16-39, 17-37, 18-36, 8-56, 7-58 Fasten (2X) T and I braces to narrow edge of	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
JOINTS	web with 10d (0.131*x3") nails, 6in o.c.,with 3in minimum end distance. Brace must cover 90% of web length. 1 Brace at Jt(s): 68, 69, 70, 71	64=100 (LC 50) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-53/118, 2-3=-37/99, 3-4=-52/127, 4-5=-70/149, 5-7=-107/211, 7-8=-122/250,	
REACTIONS	(size) 27=53-5-0, 28=53-5-0, 29=53-5-0, 30=53-5-0, 31=53-5-0, 32=53-5-0, 33=53-5-0, 34=53-5-0, 32=53-5-0, 37=53-5-0, 38=53-5-0, 41=53-5-0, 44=53-5-0, 47=53-5-0, 49=53-5-0, 51=53-5-0, 53=53-5-0, 55=53-5-0, 60=53-5-0, 61=53-5-0, 62=53-5-0, 63=53-5-0, 64=53-5-0 Max Horiz 64=-222 (LC 15)	4-5=-70/149, 5-7=-10//211, 7-8=-122/250, 8-9=-105/267, 9-10=-926/239, 10-11=-2068/439, 11-12=-2800/569, 12-13=-2800/569, 13-14=-2724/564, 14-15=-1991/436, 15-16=-812/241, 16-17=-104/278, 17-18=-123/270, 18-19=-109/246, 19-21=-89/222, 21-22=-70/199, 22-23=-52/176, 23-24=-48/153, 24-25=-69/135, 25-26=-156/123, 26-27=-142/144, 1-64=-66/91 May 7,2024	DAULTIN,

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and RCSI Building Component Safety Information, available from the Structural Building Component Association (www.shearonponent Scom) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	A09	Attic Supported Gable	1	1	Job Reference (optional)	165383272

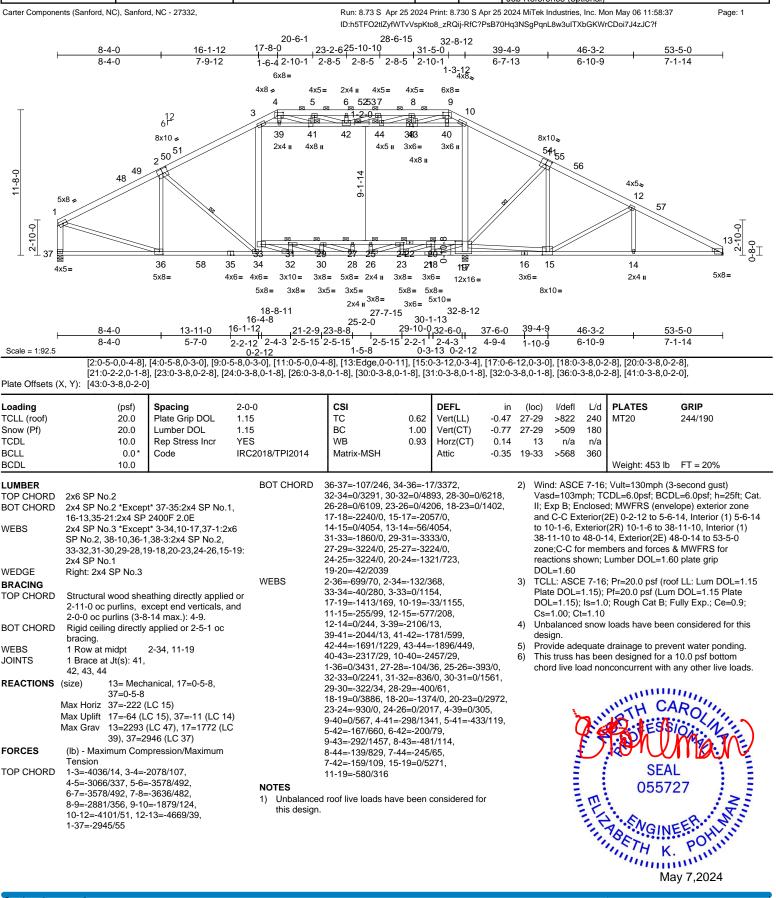
ID:8kdnaNVfrXy7X5iJovJ26tzRBB2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Run: 8 73 S. Apr 25 2024 Print: 8 730 S. Apr 25 2024 MiTek Industries. Inc. Mon May 06 11:58:38

Page: 2

WEBS 54-55=-1090/1.9-54=-1078/106. LOAD CASE(S) Standard 38-39=-1116/28, 16-39=-1101/123, 48-49=-115/0. 46-47=-115/0. 52-53=-171/0. 53-54=-57/22, 50-51=-147/0, 51-52=-13/11, 49-50=-11/13, 40-41=-173/0, 44-45=-148/0, 40-44=-3/15, 45-47=-10/17, 15-65=-48/11, 9-67=-16/694, 67-69=-15/688 68-69=-279/2058, 68-71=-412/2714, 70-71=-276/1982, 65-70=-11/565, 16-65=-13/579, 10-67=-15/15, 12-68=-256/65, 11-69=-470/113, 14-70=-483/114, 15-70=-281/1498, 13-71=-239/66, 14-71=-148/778, 13-68=-66/182, 39-41=-27/17, 10-69=-279/1447, 11-68=-145/779, 17-37=-86/159, 18-36=-176/71, 19-34=-194/69, 21-33=-177/67, 22-32=-128/68, 23-31=-118/69, 24-30=-144/52, 25-29=-31/163, 26-28=-346/91, 8-56=-87/150, 7-58=-187/70, 6-59=-199/74, 5-60=-183/61, 4-61=-145/69, 3-62=-120/62, 2-63=-168/118

NOTES


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-2-12 to 5-6-14, Interior (1) 5-6-14 to 10-1-6, Exterior(2R) 10-1-6 to 38-11-10, Interior (1) 38-11-10 to 48-0-14, Exterior(2E) 48-0-14 to 53-5-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Provide adequate drainage to prevent water ponding.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.10) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 12) Ceiling dead load (5.0 psf) on member(s). 9-67, 67-69,
- 68-69, 68-71, 70-71, 65-70, 16-65; Wall dead load (5.0psf) on member(s).9-54, 16-39
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 109 lb uplift at joint 64, 1 lb uplift at joint 38, 124 lb uplift at joint 37, 46 lb uplift at joint 36, 45 lb uplift at joint 34, 44 lb uplift at joint 33, 43 lb uplift at joint 32, 49 lb uplift at joint 31, 17 lb uplift at joint 30, 189 lb uplift at joint 29, 89 lb uplift at joint 28, 115 lb uplift at joint 56, 45 lb uplift at joint 58, 50 lb uplift at joint 59, 37 lb uplift at joint 60, 47 lb uplift at joint 61, 28 lb uplift at joint 62 and 119 lb uplift at joint 63.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 16) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.
- 17) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	A08	Attic	6	1	Job Reference (optional)	165383273

ontinued on page 2

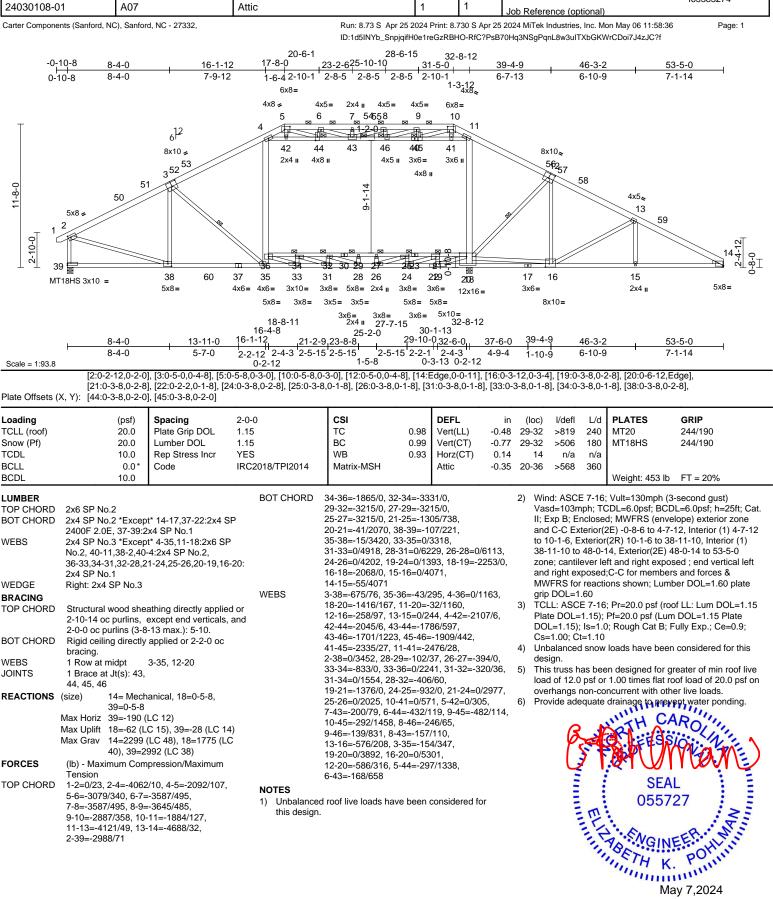
818 Soundside Road

Edenton, NC 27932

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	A08	Attic	6	1	Job Reference (optional)	165383273

- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Ceiling dead load (5.0 psf) on member(s). 3-39, 39-41, 41-42, 42-44, 43-44, 40-43, 10-40; Wall dead load (5.0psf) on member(s).3-33, 10-19
- Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 31-33, 29-31, 27-29, 25-27, 24-25, 20-24, 19-20
- 10) Refer to girder(s) for truss to truss connections.11) One H2.5A Simpson Strong-Tie connectors
- recommended to connect truss to bearing walls due to UPLIFT at jt(s) 37 and 17. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) Attic room checked for L/360 deflection.


LOAD CASE(S) Standard

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon May 06 11:58:37 ID:h5TFO2tiZyfWTvVspKto8_zRQij-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	A07	Attic	1	1	Job Reference (optional)	

ontinued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	A07	Attic	1	1	Job Reference (optional)	165383274

- 7) All plates are MT20 plates unless otherwise indicated.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf. 10) Ceiling dead load (5.0 psf) on member(s). 4-42, 42-44, 43-44, 43-46, 45-46, 41-45, 11-41; Wall dead load (5.0psf) on member(s).4-36, 11-20
- 11) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 34-36, 32-34, 29-32, 27-29, 25-27, 21-25, 20-21
- 12) Refer to girder(s) for truss to truss connections.
 13) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 39 and 18. This connection is for uplift only and does not consider lateral forces.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 16) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon May 06 11:58:36 ID:1d5INYb_SnpjqifH0e1reGzRBHO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job		Truss		Truss Type		Qty	/	Ply	1002 Ser	nity-Ro	of-B326	6 BRH COP BR4	
24030108-0	1	A05		Attic Girder		1	,	4					165383275
Carter Compone			d, NC - 27332,		Run: 8.73 S A		Print: 8.7		Job Refei 2024 MiTek			on May 06 11:58:35	5 Page: 1
					ID:VIY0g5gMU	gwQZRyxiB	8XYItzRA	_f-RfC?PsB	70Hq3NSgP	qnL8w3ul	TXbGK	WrCDoi7J4zJC?f	-
	-0-10-8	5-7-5	, 10-9-3 , ²	17-8-0 3-5-5 16-1-12 2)-6-1 23-2-625-1	28-6- 0-10	15 31-	32-10-8 5-0	39-4-9	9	4	16-3-2	52-11-8
		5-7-5			10-1 2-8-5 2-8			0-11-5-8	6-6-1	, – – †		5-10-9	6-8-6
				8x10 - 6x8 ≱	2x4 II 4x8=	2x4 II		4x8 12x16=	,				
0- 8-				7 _œ		54 10		12					
0-5-8				8x10 = 6			43		3				
			6 ¹² 4	48	42 446 5x6=	6x8=	4x6 I	47		8x10			
			53								455 55	6	
11-8-0 11-2-8 11-2-8			3 ⁵²		9-1-14							\sim	
	5x8 ≠				ъ							15	
					1-2	-0							
2-10-0							141						
1 I <u> </u>	40		39 38 37	57 58 365 3 4 3	2 	26 24 27 24	5 <u>23</u> 2 4602	2 80	61			17	
			6x8= 4x6= 4x8		6x8= 3x6 II	2x4 II	3x6=	12x10		4x		8x10=	
				18-8-1	1	27-7-15		32-10 32-7-12	-8				
	F	5-7-5	8-2-4 10-9-3	16-10-4 15-9-3 16-4-8	25-2 21-2-9 ₁ 23-8-8		30-1-13	32-9-	00 4 0)		46-3-2	52-11-8
	·	5-7-5	2-6-15 2-6-15	5-0-1 0-7-5 0-5-12	2-5-15 2-5-15 1-5	2-5-15 -8	2-5-15	0-1-8		·	6	6-10-9	6-8-6
Scale = 1:94.1				<u>1-10-</u> 0-5-0,0-4-8], [16:Edge:)-4-8], [21:	:0-8-0,0	0-1-4)-5-0], [34:0], [35:0-8	3-0,0-4-	-12], [35:0-1-8,0-	6-15],
Plate Offsets (2	X, Y): [39:0-3	3-8,0-3-0]], [46:0-2-12,0-2-8]										
Loading TCLL (roof)		(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.94	DEFL Vert(L		in (loc) 37 33-36	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf)		20.0	Lumber DOL	1.15	BC	0.60	Vert(0	CT) -0.	56 33-36	>703	180	IVIT20	244/190
TCDL BCLL		10.0 0.0*	Rep Stress Incr Code	NO IRC2018/TPI2014	WB Matrix-MSH	0.97	Horz(Attic	,	11 16 18 21-35	n/a >999	n/a 360		
BCDL		10.0										Weight: 2104 II	b FT = 20%
LUMBER TOP CHORD		2 * Even	t* 5-7:2x4 SP No.1	TOP CHORD	1-2=0/25, 2-3=-1 4-6=-18801/1123						to ho o	connected togethe	or with 10d
BOT CHORD	2x6 SP 240	0F 2.0E *	*Except* 23-21,23-3	5:2x4	7-8=-2690/499, 8	8-9=-2683/	500,		(0.	131"x3")	nails a	as follows:	
			6:2x6 SP No.2		9-10=-2405/1763 11-12=-2057/988	3, 12-13=-3	3882/38	30,	sta	iggered a	at 0-9-0	cted as follows: 2 0 oc, 2x4 - 1 row	at 0-9-0 oc.
WEBS	2x4 SP No.: 40-2,6-36,1		t* 36,46-6,46-13:2x6 S		13-15=-18187/10 2-40=-11679/710		=-5584	/329,				nnected as follow) oc, 2x4 - 1 row	
WEDGE	No.2, 39-2:2 Right: 2x4 S		lo.2	BOT CHORD	39-40=-129/435, 36-37=-844/1624								rows staggered at 6 - 3 rows staggered
BRACING	-				31-33=-395/1723 27-29=0/19361, 2	88, 29-31=	-7/1859	96,	at	0-4-0 oc	, memb		rows staggered at
TOP CHORD	4-7-10 oc p	urlins, ex	athing directly applie xcept end verticals, a		20-24=-378/1478	81, 18-20=	-735/13	3006,	Att	ach BC	w/ 1/2"	diam. bolts (AST	,
BOT CHORD		· ·	-0 max.): 7-12. applied or 10-0-0 oc	:	16-18=-241/4880 30-32=-2935/0, 2	28-30=-379	97/0,		2) All	loads ar	e cons		oplied to all plies,
	bracing, E 6-0-0 oc bra				26-28=-3797/0, 2 22-25=-2415/0, 2								(B) face in the LOAD ctions have been
JOINTS	32-35,30-32	2,28-30,2	6-28,25-26,22-25.	WEBS	35-36=-620/7425 19-21=-664/7226							ute only loads no indicated.	oted as (F) or (B),
	1 Brace at 41, 42, 43,	44			14-18=-7994/467 32-33=-850/0, 33	, 15-17=-6	6969/4 ⁻	19,	3) Ur		d roof li		een considered for
REACTIONS			3, 17=20-5-8, 18=20· 3, 40=0-5-8, 49=20-5		31-32=0/1900, 29 24-25=-683/0, 22	9-30=0/90	4, 20-2	2=-1495/0				mmm	un.
	Max Horiz 4 Max Uplift 1		LC 10) LC 13), 17=-319 (LC	; 12).	9-41=-141/2636,	8-42=-606	6/63,	_1=0/1443		6	4 4	"TH CA	ARO
	. 1	8=-240 (I	LC 13), 19=-10248 (690 (LC 12), 49=-15	LC	11-43=-637/113, 15-18=-391/7523	8, 20-21=0	/2270,			4	get_	O FASS	IQN Nº
	1	3)	. ,.	,	14-19=-373/7032 42-48=-10400/66						٦E	BAC VY	Y COM
	2	23), 18=42	(LC 46), 17=7106 (L 185 (LC 46), 19=102		41-44=-11973/71 43-47=-13172/82							SEA	L
		LC 12), 4 9=3001 (0=11867 (LC 46), (LC 46)		4-37=-719/158, 5	5-37=-2622	2/132,					0557	27
FORCES			pression/Maximum		3-39=-5345/374, 2-39=-679/12888	8, 12-47=-*	149/254	14,			ELLIN		27 EEP. POHL ay 7,2024
	I GIBIUII				9-42=-4491/349, 28-29=-219/0, 26	6-27=-301/	′0,				11	TO NGIN	EER
					5-36=-135/1913, 7-42=-5736/319,						1	ETH K	POLIN
					9-44=-6455/395		,					"Innin	mm
												Ma	ay 7,2024

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

ΓΩ

RENGINEERING BY

Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	A05	Attic Girder	1	4	Job Reference (optional)	165383275

Run: 8 73 S. Apr 25 2024 Print: 8 730 S. Apr 25 2024 MiTek Industries. Inc. Mon May 06 11:58:35

ID:VIY0g5gMUgwQZRyxiBXYItzRA_f-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

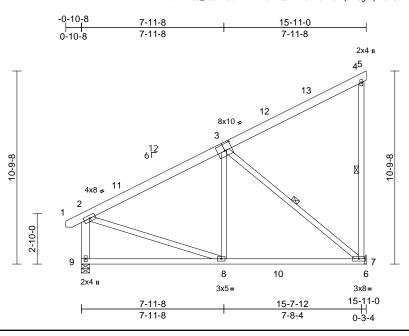
Page: 2

Carter Components (Sanford, NC), Sanford, NC - 27332,

- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 8) Provide adequate drainage to prevent water ponding.
- 9) All plates are 4x5 MT20 unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 12) Ceiling dead load (5.0 psf) on member(s). 6-48, 42-48, 41-42, 41-44, 43-44, 43-47, 13-47; Wall dead load (5.0psf) on member(s).6-35, 13-21
- 13) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 32-35, 30-32, 28-30, 26-28, 25-26, 22-25, 21-22
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 10248 lb uplift at joint 19.
- 15) LGT4-SDS3 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 40. This connection is for uplift only and does not consider lateral forces.
- 16) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 16, 18, and 17. This connection is for uplift only and does not consider lateral forces.
- 17) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 19) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.
- 20) LGT4 Hurricane ties must have four studs in line below the truss.
- 21) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 608 lb down and 52 lb up at 28-7-12, and 9100 lb down and 774 lb up at 16-0-12 on bottom chord. The design/ selection of such connection device(s) is the responsibility of others.
- 22) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (lb/ft) Vert: 1-2=-60, 2-7=-60, 7-12=-60, 12-16=-60, 40-49=-20, 21-35=-30, 6-48=-10, 42-48=-10, 41-42=-10, 41-46=-10, 44-46=-10, 43-44=-10, 43-47=-10, 13-47=-10 Drag: 35-45=-10, 6-45=-10, 13-21=-10 Concentrated Loads (lb)
 - Vert: 36=-4881 (F), 60=-326 (F)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	G01	Monopitch	5	1	Job Reference (optional)	165383276

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon May 06 11:58:40 ID:PdAAD85_ICJN?UaWrZNnF5zRQu2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

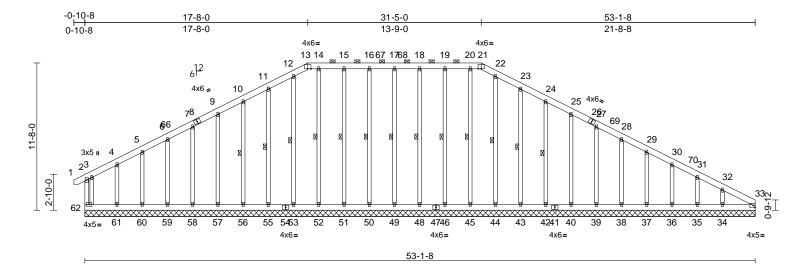
Page: 1

Scale = 1:64.4

Plate Offsets (X, Y): [3:0-5-0,0-4-8]

	(, .). [ere e e,e : e]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.3 *Excep Structural wood shea 6-0-0 oc purlins, exx Rigid ceiling directly bracing. 1 Row at midpt (size) 7= Mecha Max Horiz 9=269 (LC	athing directly applie cept end verticals. applied or 10-0-0 or 4-7, 3-7 nical, 9=0-5-8 2 14)	4) 5) ed or 6)	load of 12.0 overhangs n This truss ha chord live loa * This truss h on the botton 3-06-00 tall h chord and an Refer to gird Provide mec	CSI TC BC WB Matrix-MSH as been designed psf or 1.00 times f on-concurrent with as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members ler(s) for truss to tr thanical connection e capable of withst	lat roof I for a 10. with any d for a liv s where ill fit betv , with BC uss coni n (by oth	bad of 20.0 p ve loads. D psf bottom other live loa e load of 20. a rectangle veen the bott DL = 10.0ps hections. ers) of truss	ads. Opsf tom if.	(loc) 7-8 7-8 7	I/defl >999 >909 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 123 lb	GRIP 244/190 FT = 20%
Vasd=103 II; Exp B; and C-C E to 12-11-C cantilever exposed;C reactions DOL=1.6C 2) TCLL: AS Plate DOL DOL=1.15 Cs=1.00; f	2-4=-678/91, 4-5=-1: 8-9=-322/219, 7-8=- 3-8=0/310, 3-7=-773 CE 7-16; Vult=130mph imph; TCDL=6.0psf; BK Enclosed; MWFRS (en Exterior(2E) -0-8-6 to 2- 0, Exterior(2E) -0-8-6 to 2- 0, Exterior(2E) 12-11-0 left and right exposed C-C for members and fc shown; Lumber DOL=1) CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat B	 C 5), 9=743 (LC 5) pression/Maximum 646/82, 1-2=0/25, 2/0 199/606, 6-7=0/0 /257, 2-8=0/485 (3-second gust) CDL=6.0psf; h=25ft; velope) exterior zon 3-10, Interior (1) 2-3 to 15-11-0 zone; cond vertical left prces & MWFRS for .60 plate grip roof LL: Lum DOL=1 um DOL=1.15 Plate ; Fully Exp.; Ce=0.9 	Cat. e 3-10 1.15	International	designed in accor Residential Code nd referenced star Standard	sections	8 R502.11.1 a	and			ELIT	SEA 0557	• -

May 7,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	A01	Piggyback Base Supported Gable	1	1	l6 Job Reference (optional)	65383277

Run: 8,73 S Apr 25 2024 Print: 8,730 S Apr 25 2024 MiTek Industries. Inc. Mon May 06 11:58:33 ID:HvYYHe4LpHmiz2Dld9nw5TzRQov-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:91.3

Scale = 1.91.5						·						
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.12	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	n/a	_	n/a	999	101120	244/130
TCDL	10.0	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.01	33	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014									
BCDL	10.0										Weight: 545	lb FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 2x4 SP No.3 *Exce 49-17,48-18,46-19, 52-14,53-12:2x4 SI	45-20,44-22,50-16,51-	15,	Max Uplifi	33=-36 (LC 11), 35=-27 (LC 15), 37=-43 (LC 15), 39=-44 (LC 15), 42=-46 (LC 15), 46=-29 (LC 11), 49=-25 (LC 10).	36=-47 (LC 38=-44 (LC 40=-43 (LC 43=-51 (LC 48=-28 (LC	15), 15), 15), 15), 15), 11),	TOP CH	IORD	3-4=-7 6-7=-9 10-11 12-13 14-15	73/64, 4-5=-75	14=-151/373, 16=-151/373,
BRACING	52-14,55-12.284 51	- INU.2			51=-28 (LC 10),	· · ·	<i>,</i> ,				=-151/373, 19-	,
TOP CHORD	6-0-0 oc purlins, e 2-0-0 oc purlins (6-	eathing directly applied xcept end verticals, an 0-0 max.): 13-21. y applied or 10-0-0 oc			56=-46 (LC 14), 58=-44 (LC 14), 60=-27 (LC 14), 62=-33 (LC 15),	57=-43 (LC 59=-45 (LC 61=-116 (LC 63=-36 (LC	14), 14), 14), 14), 11)			20-21 22-23 24-25 27-28	=-151/373, 21- =-163/378, 23- =-130/283, 25- =-98/198, 28-2	22=-161/378, 24=-146/329, 27=-115/238, 9=-94/174,
	bracing.			Max Grav 33=135 (LC 28), 34=214 (LC 59), 35=144 (LC 1), 36=164 (LC 45),							=-106/151, 30-	
WEBS	1 Row at midpt	23-43, 24-42, 11-55, 10-56, 17-49, 18-48, 19-46, 20-45, 22-44, 16-50, 15-51, 14-52, 12-53			35=144 (LC 1), 37=159 (LC 1), 39=220 (LC 45), 42=229 (LC 45), 44=211 (LC 45), 46=220 (LC 40).	38=171 (LC 4 , 40=230 (LC , 43=231 (LC , 45=192 (LC	45), 45), 45), 40),			31-32	=-141/106, 32-	33=-185/113
REACTIONS	36=53-1 39=53-1 43=53-1 46=53-1 50=53-1 53=53-1	-8, 34=53-1-8, 35=53- -8, 37=53-1-8, 38=53- -8, 40=53-1-8, 42=53- -8, 44=53-1-8, 45=53- -8, 48=53-1-8, 49=53- -8, 55=53-1-8, 52=53- -8, 58=53-1-8, 59=53- -8, 58=53-1-8, 59=53-	I-8, I-8, I-8, I-8, I-8, I-8,		49=216 (LC 40), 51=220 (LC 40), 53=214 (LC 43), 56=233 (LC 43), 58=231 (LC 43), 60=158 (LC 1), 62=163 (LC 1),	50=218 (LC 52=192 (LC 55=235 (LC 57=233 (LC 59=188 (LC 61=183 (LC 63=135 (LC 2	40), 40), 43), 43), 43), 51), 28)		C	a 🗐	MILLA C	AROLAN
		-8, 61=53-1-8, 62=53- -8		(lb) - Ma Tension	ximum Compressi	on/Maximum			(5	John L	Wheekine)

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	A01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	165383277
Carter Components (Sanford N) Sanford NC - 27332	Bun: 8 73 S Apr 25 2	Page: 2			

ID:HvYYHe4LpHmiz2Dld9nw5TzRQov-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Carter Components (Sanford, NC), Sanford, NC - 27332,

OT CHORD	$\begin{array}{l} 61\mbox{-}62\mbox{=}-86\mbox{-}181,\ 60\mbox{-}61\mbox{=}-86\mbox{-}181,\ 58\mbox{-}59\mbox{=}-86\mbox{-}181,\ 58\mbox{-}59\mbox{=}-86\mbox{-}181,\ 53\mbox{-}55\mbox{=}-86\mbox{-}181,\ 53\mbox{-}55\mbox{=}-86\mbox{-}181,\ 53\mbox{-}52\mbox{=}-86\mbox{-}181,\ 51\mbox{-}52\mbox{=}-86\mbox{-}181,\ 51\mbox{-}52\mbox{=}-86\mbox{-}181,\ 51\mbox{-}52\mbox{=}-86\mbox{-}181,\ 51\mbox{-}52\mbox{=}-86\mbox{-}181,\ 51\mbox{-}52\mbox{=}-86\mbox{-}181,\ 51\mbox{-}52\mbox{=}-86\mbox{-}181,\ 43\mbox{-}49\mbox{=}-86\mbox{-}181,\ 43\mbox{-}44\mbox{=}-86\mbox{-}181,\ 43\mbox{-}44\mbox{=}-86\mbox{-}181,\ 43\mbox{-}44\mbox{=}-86\mbox{-}181,\ 43\mbox{-}44\mbox{=}-86\mbox{-}181,\ 43\mbox{-}42\mbox{=}-86\mbox{-}181,\ 43\mbox{-}42\mbox{=}-86\mbox{-}181,\ 43\mbox{-}42\mbox{=}-86\mbox{-}181,\ 43\mbox{-}42\mbox{=}-86\mbox{-}181,\ 43\mbox{-}43\mbox{=}-86\mbox{-}181,\ 43\mbox{-}43\mbox{=}-86\mbox{-}181,\ 43\mbox{-}43\mbox{=}-86\mbox{-}181,\ 43\mbox{-}43\mbox{=}-86\mbox{-}181,\ 43\mbox{-}43\mbox{=}-86\mbox{-}181,\ 43\mbox{-}43\mbox{=}-86\mbox{-}181,\ 33\mbox{-}39\mbox{=}-86\mbox{-}181,\ 33\mbox{-}33\mbox{=}-86\mbox{-}181,\ 33\mbox{-}32\mbox{=}-86\mbox{-}181,\ 32\mbox{-}32\mbox{=}-86\mbox{-}181,\ 32\mbox{-}32\mbox{=}-86\mbox{-}18$
VEBS	$\begin{array}{l} 34-35=-86/181,\ 33-34=-86/181\\ 23-43=-190/88,\ 24-42=-189/81,\\ 25-40=-190/77,\ 27-39=-180/77,\\ 28-38=-131/77,\ 29-37=-126/76,\\ 30-36=-128/81,\ 31-35=-119/104,\\ 32-34=-155/155,\ 11-55=-195/88,\\ 10-56=-193/81,\ 9-57=-193/77,\ 7-58=-192/77,\\ 6-59=-147/77,\ 5-60=-123/90,\ 4-61=-143/165,\\ 3-62=-174/99,\ 17-49=-176/57,\\ 18-48=-178/62,\ 19-46=-180/60,\\ 20-45=-152/14,\ 22-44=-171/10,\\ 16-50=-178/62,\ 15-51=-180/60,\\ 14-52=-152/8,\ 12-53=-174/0\\ \end{array}$

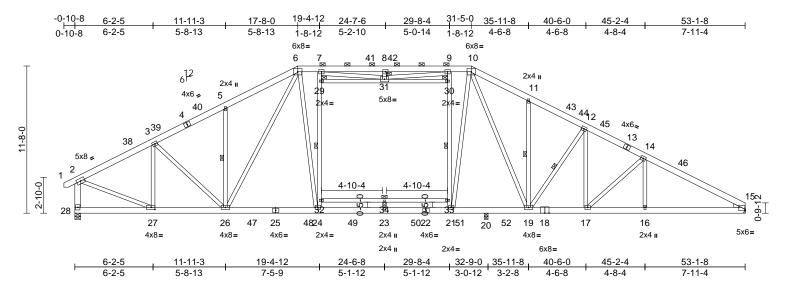
NOTES

B

W

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-8-6 to 4-6-8, Exterior(2N) 4-6-8 to 12-4-3, Corner(3R) 12-4-3 to 22-11-13, Exterior(2N) 22-11-13 to 26-1-3, Corner(3R) 26-1-3 to 36-6-8, Exterior(2N) 36-6-8 to 47-9-11, Corner(3E) 47-9-11 to 53-1-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult gualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhands non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 9)
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 62, 33, 43, 42, 40, 39, 38, 37, 36, 35, 34, 55, 56, 57, 58, 59, 60, 61, 49, 48, 46, 50, and 51. This connection is for uplift only and does not consider lateral forces.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second way the approximation of design and the second and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Page: 2

Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	A03	Piggyback Base	8	1	I653 Job Reference (optional)	83278

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon May 06 11:58:34 ID:OFJFx3IDTxFbWWzrBXohbzzRCTM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale =	1:91.3
---------	--------

Plate Offsets (X, Y): [15:Edge,0-1-5], [27:0-3-8,0-2-0]

												-	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.65	Vert(LL) -0).27	24-26	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.87	Vert(CT) -0).49	23-24	>788	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.95	Horz(CT) 0).11	15	n/a	n/a		
BCLL	0.0*	Code	IRC2018/1	PI2014	Matrix-MSH								
BCDL	10.0											Weight: 500 lb	FT = 20%
LUMBER			BOT		27-28=-113/224, 2			(bottom chord, 24-6-8
TOP CHORD		** ** ** ** * * * * *	-		24-26=-33/2370, 23			-				ported at two poin	
BOT CHORD	2x6 SP No.2 *Exce 2.0E	pt* 18-22:2x6 SP 240	JF		21-23=-26/2480, 20 19-20=-1/2308, 17-	-19=-50	/3064,	8	8) All	plates ar	e 4x5	MT20 unless oth	vent water ponding. erwise indicated.
WEBS		pt* 28-2:2x6 SP No.2,			16-17=-92/3362, 1			9					10.0 psf bottom
	, , ,	21,6-24,10-21:2x4 SP	WEE		14-16=0/178, 5-26								any other live loads.
WEDOE	No.2				12-17=-77/636, 14 12-19=-879/183, 1								a live load of 20.0psf
WEDGE	Right: 2x4 SP No.3				3-27=-741/130, 2-2							ord in all areas wh	between the bottom
BRACING	0	the international states and the			6-26=-255/593, 10-		,						h BCDL = 10.0psf.
TOP CHORD		eathing directly applie except end verticals, a			24-32=-505/217, 2							for truss to truss	
	2-0-0 oc purlins (3-				7-29=-473/219, 21								others) of truss to
BOT CHORD		y applied or 10-0-0 oc			30-33=-909/232, 9-	-30=-88	5/228, 6-24=0/82	27,	bea	ring plat	e capa	able of withstand	ing 41 lb uplift at joint
	bracing.	, , ,			29-31=-12/48, 30-3			'	15.				
WEBS	1 Row at midpt	5-26, 12-19, 11-19,			10-21=-67/1102, 7-							on Strong-Tie co	
		24-29, 21-30, 32-33			9-31=-283/816, 32- 23-34=0/38	-34=-67	/36, 33-34=-67/36	6,					bearing walls due to
JOINTS	1 Brace at Jt(s): 29	,			23-34=0/30							consider lateral	nnection is for uplift
	30, 31		NOT									ned in accordan	
REACTIONS	(size) 15= Mec 28=0-5-8	hanical, 20=0-3-8,		Jnbalanced his design.	roof live loads hav	e been	considered for						tions R502.11.1 and
	Max Horiz 28=-187				7-16; Vult=130mp	h (3-seo	cond aust)		R80)2.10.2 a	and ref	ferenced standar	d ANSI/TPI 1.
		LC 14), 20=-208 (LC ⁻	<i>′</i> ,		ph; TCDL=6.0psf; I			at.				minin	1111.
	28=-177	<i>//</i>	<i>''</i>		closed; MWFRS (e						5	N'LY CA	APOUL
	Max Grav 15=1979	(LC 47), 20=962 (LC			erior(2E) -0-8-6 to			0		1	b.	A.A.	
	28=2305	(LC 37)			erior(2R) 10-1-12 t							J. FESS	IO. N.
FORCES	· /	mpression/Maximum			7-9-11, Exterior(2E left exposed;C-C for					7	SXT.	DATIV/	MONTHE)
TODOUGSE	Tension				reactions shown; L			•					
TOP CHORD	,	8/196, 3-5=-3077/260		rip DOL=1.						-		SEA	L 1 E
	5-6=-3146/381, 6-7 7-8=-3064/422, 8-9		3)	CLL: ASCE	E 7-16; Pr=20.0 psf	(roof Ll	L: Lum DOL=1.15	5		=			
	9-10=-2550/233, 10	,			1.15); Pf=20.0 psf (- 3		055/	2/
	11-12=-3026/252, 1	,			Is=1.0; Rough Cat	B; Fully	/ Exp.; Ce=0.9;			-	E		: < :
	14-15=-3895/202, 2			Cs=1.00; Ct							51	1. 0.	A . N .
	- ,		,	Jnbalanced lesign.	snow loads have b	een co	nsidered for this				11	0557 18ETH K	EER
					as been designed f						1	TH V	POIN
					psf or 1.00 times fl			n				Min N	in the
			(overhangs n	ion-concurrent with	other li	ve loads.						7,0004
												6.74	av 7 2021

- Unbalanced snow loads have been considered for this 4) design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

May 7,2024

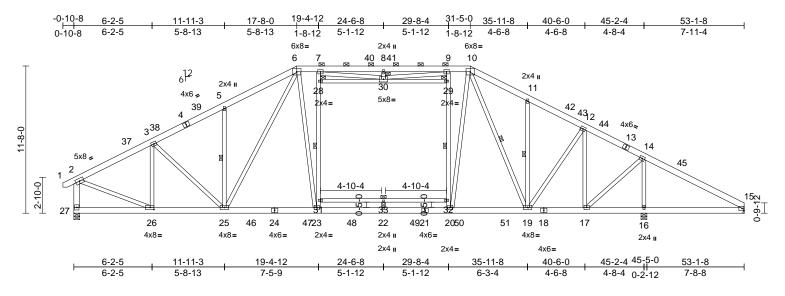
Page: 1

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty Ply 1002 Serenity-Roof-B326 BRH COP BR4			
24030108-01	A03	Piggyback Base	8	1	Job Reference (optional)	165383278
Carter Components (Sanford, NO	Run: 8.73 S Apr 25	2024 Print: 8.	730 S Apr 25	5 2024 MiTek Industries, Inc. Mon May 06 11:58:34	Page: 2	

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon May 06 11:58:34 ID:OFJFx3IDTxFbWWzrBXohbzzRCTM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	A04	Piggyback Base	3	1	I65383 Job Reference (optional)	3279

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon May 06 11:58:35 ID:DGN6a6f8caCKWpHw1clz1BzRCZx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:91.3

Plate Offsets (X, Y): [26:0-3-8,0-2-0]

		-												
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.63	Vert(LL)	-0.31	23-25	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.71	Vert(CT)	-0.46	23-25	>999	180			
TCDL	10.0	Rep Stress Incr	YES		WB	0.93	Horz(CT)	0.08	15	n/a	n/a			
BCLL	0.0*	Code	IRC2018/	TPI2014	Matrix-MSH									
BCDL	10.0											Weight: 499 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD		ot* 18-21:2x6 SP 2400			26-27=-113/224, 25 23-25=-2/2339, 22- 19-20=0/2223, 17-1	23=0/2	455, 20-22=0/2	2455,	Íloa	d of 12.0	psf or		reater of min roof live oof load of 20.0 psf on er live loads	
BUICHORD	2.0E	10-21.280 3P 2400			16-17=-381/1297, 1									
WEBS		ot* 27-2:2x6 SP No.2, 0,6-23,10-20:2x4 SP	WEE	BS	14-16=-2087/378, 3 2-26=-75/2401, 5-2	3-26=-7	36/123,		fror 7) Pro	200.0lb AC unit load placed on the bottom chord, 24-6-8 from left end, supported at two points, 5-0-0 apart. Provide adequate drainage to prevent water ponding. All plates are 2x4 MT20 unless otherwise indicated.				
BRACING					6-25=-268/634, 12-				9) Thi	s truss h	as bee	en designed for a	10.0 psf bottom	
TOP CHORD					14-17=-116/1569, 1 12-19=-51/636, 10- 23-31=-528/262, 28	19=-31 3-31=-5	5/70, 14/268,		10) * TI on 1	nis truss the botto	has be m cho	een designed for rd in all areas wh		
BOT CHORD	Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 16		7-28=-499/263, 20-32=-881/251, 3-06-00 tall by 2-00-00 wide will fit between the 29-32=-873/258, 9-29=-851/254, chord and any other members, with BCDL = 10. 6-23=-57/826, 28-30=-46/86, 29-30=-173/45, 11) Refer to girder(s) for truss to truss connections.								n BCDL = 10.0psf. connections.			
WEBS	1 Row at midpt 5-25, 11-19, 10-19, 23-28, 20-29, 31-32			8-30=-235/80, 10-20=-24/1464, 7-30=-308/702, 9-30=-287/824,						12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 222 lb uplift at joint				
JOINTS	1 Brace at Jt(s): 28,	, ,			31-33=-65/35, 32-3	3=-65/3	35, 22-33=0/30		15.		<u>.</u>			
	29, 30		NOT									on Strong-Tie co	nnectors pearing walls due to	
REACTIONS		nanical, 16=0-5-8,			roof live loads have	e been	considered for						inection is for uplift	
	27=0-5-8			this design.	7 40. 1/114 420 mm	h (2 aa								
	Max Horiz 27=-187 (<i>′</i> ,		7-16; Vult=130mpl ph; TCDL=6.0psf; E			Cat	only and does not consider lateral forces.					
	Max Uplift 15=-222 (closed; MWFRS (e								No lin	
	27=-158 (Max Grav 15=893 (L 27=2257	_C 43), 16=2345 (LC	39).	and C-C Ext	erior(2E) -0-8-6 to 4 erior(2R) 10-1-12 to	4-7-7, İr	nterior (1) 4-7-7			Ø	y'	OF LASS	ROLAND	
FORCES	(lb) - Maximum Com Tension	· · ·		cantilever let	7-9-11, Exterior(2E It and right exposed	່ງ;endາ	ertical left and	ģ			5	ONV	MEAN	
TOP CHORD			' 1 	for reactions DOL=1.60	d;C-C for members shown; Lumber D	OL=1.6) plate grip					SEA		
	9-10=-2521/233, 10-11=-2692/321, 11-12=-2645/230, 12-14=-2306/307, 14-15=-1512/500, 2-27=-2336/195			 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 						5 055727				
			4)		snow loads have b	een coi	nsidered for thi	is			111	ABETH K	POHLIN	
												Ma	7 2024	

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Dracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

May 7,2024

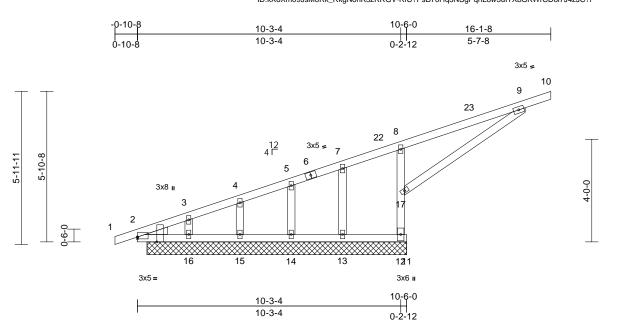
Job	Truss	Truss Type	ss Type Qty Ply 1002 Serenity-Roof-B326 BRH COP			Qty Ply 1002 Serenity-Roof-B326 BRH COP BR4		
24030108-01	A04	Piggyback Base		3	1	Job Reference (optional)	165383279	
Carter Components (Sanford, NO	Run	: 8.73 S Apr 25 20)24 Print: 8.7	730 S Apr 25	2024 MiTek Industries, Inc. Mon May 06 11:58:35	Page: 2		

ID:DGN6a6f8caCKWpHw1clz1BzRCZx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	10500000
24030108-01	H01	Monopitch Supported Gable	2	1	Job Reference (optional)	165383280

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon May 06 11:58:40 ID:kX6Xm09JsM8Rk_RkgNonK3zRRGV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [2:Edge,0-0-14], [2:0-2-5,Edge]

	., .). [g_,], [= -,9-]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS	No.3 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing, Except: 10-0-0 cc bracing: 1 (size) 2=10-1-8, 14=10-1-8 21=10-1-8	1-12. 12=10-1-8, 13=10-1- 3, 15=10-1-8, 16=10-1 3	1) l or 2) 8, 3) -8,	Vasd=103mp II; Exp B; En. and C-C Extr to 13-1-8, Ex left and right exposed;C-C reactions sho DOL=1.60 Truss design only. For stu see Standarr or consult qu TCLL: ASCE Plate DOL=1	CSI TC BC WB Matrix-MSH 7-16; Vult=130mp h; TCDL=6.0psf; closed; MWFRS ((erior(2E) -0-10-8 tr terior(2E) -0-10-8 tr terior(2E) 13-1-8 f exposed; end vei c for members and c for members and c for members and c for members and c for wind loads tds exposed to wird d Industry Gable E alified building de 7-16; Pr=20.0 psf is=1.0; Rough Cat =1.10	BCDL=6 envelope o 2-0-0, to 16-1-8 trical left d forces 8 =1.60 pl in the p nd (norm ind Deta signer a: f (roof LL (Lum DC	Vert(CT) Horz(CT) Horz(CT) .0psf; h=25ft) exterior zoo Interior (1) 2- zone; cantild and right & MWFRS for ate grip lane of the tru al to the face ils as applica s per ANSI/T .: Lum DOL= DL=1.15 Plate	ne 0-0 ever r Jss), ble, PI 1. 1.15	Ínte R80	rnationa	I Resident	PLATES MT20 Weight: 67 lb ned in accordance dential Code sect erenced standard ndard	ions R502.11.1	
	$\begin{array}{c} 15=-155\ (\\ Max\ Grav \\ 2=1\ (LC\ 2\\ 13=98\ (LC\ 2\\ 15=171\ (L\\ 21=1\ (LC\ (lb)\ - Maximum\ Com\ Tension \\ 1-2=0/17,\ 2-3=-535/3\\ 4-5=-474/378,\ 5-7=-8\\ -9=-579/743,\ 9-10=\\ 2-16=-339/244,\ 15-1\\ 14-15=-339/244,\ 11-1\\ 12-17=-870/552,\ 8-1\end{array}$	14), 12=-264 (LC 14), C 21), 14=-26 (LC 10), LC 14), 21=-3 (LC 14, 1), 12=893 (LC 21), C 7), 14=202 (LC 21), C 21), 16=253 (LC 1), 21) pression/Maximum 377, 3-4=-531/378, 435/359, 7-8=-437/43 -29/0 6=-339/244, 14=-339/244, 12=0/0 7=-396/210, i=-153/3, 4-15=-120/1	(, 5) (, 5) (, 7) (, 7) () () () () () () () () () () () () ()	design. This truss ha load of 12.0 j overhangs n All plates are Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar) Provide mec bearing plate 264 lb uplift a at joint 14, 1	snow loads have I ss been designed f psf or 1.00 times f on-concurrent with 2x4 MT20 unless spaced at 2-0-0 or s been designed f ad nonconcurrent i has been designed n chord in all area by 2-00-00 wide wi by other members. hanical connection capable of withst at joint 12, 155 b of 1 b uplift at joint 1 d bearing conditio	for great lat roof k n other lin s otherwic. for a 10.0 with any d for a liv s where ill fit betv n (by oth anding 3 uplift at jo 3 and 3	er of min roof pad of 20.0 p ve loads. se indicated. D psf bottom other live loa e load of 20.1 a rectangle veen the bott ers) of truss i l b uplift at join b uplift at join	f live sf on dds. Dpsf om to int 2, uplift				SEA 0557 SEA 0557	27	A DAY WILLIAM

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

May 7,2024

Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4		
24030108-01	H02	Monopitch	6	1	Job Reference (optional)	165383281	

Loading

TCLL (roof)

Snow (Pf)

LUMBER

WEBS

WEDGE

BRACING

FORCES

WEBS

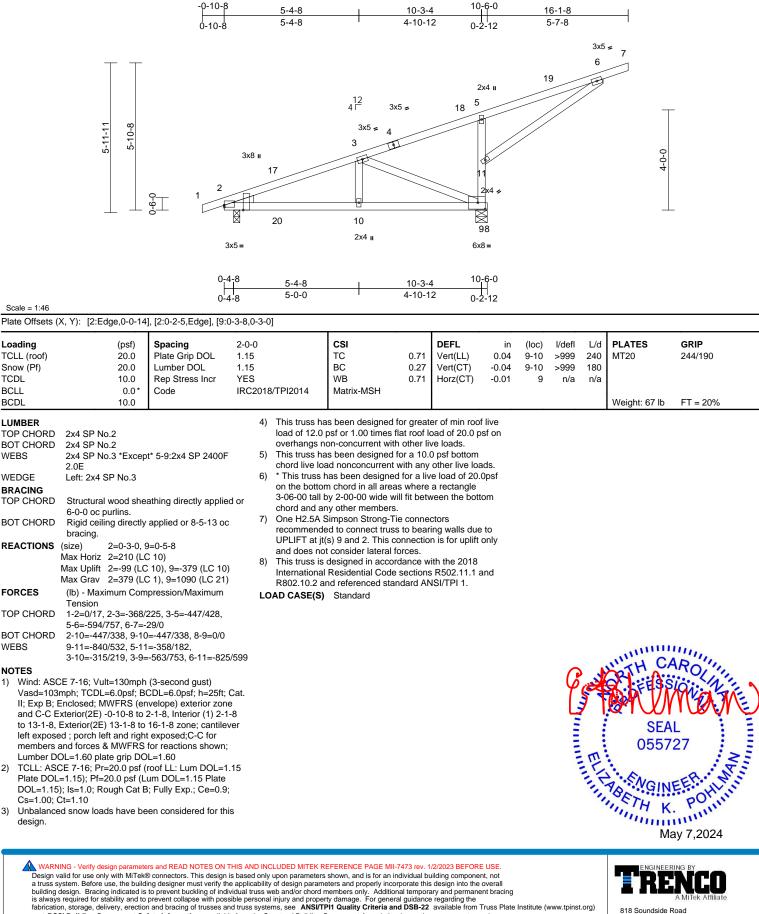
NOTES

2)

3)

design.

TCDL


BCLL

BCDL

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries. Inc. Mon May 06 11:58:40 ID:nLPVeuW3K4TytrtY3ILLguzRRHK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Edenton, NC 27932

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	J01	Common	5	1	Job Reference (optional)	165383282

8-7-8

4-1-15

Carter Components (Sanford, NC), Sanford, NC - 27332,

Scale = 1:40.2

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

WEBS

WEDGE

BRACING

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

this design.

WEBS

NOTES

2)

4-5-9

4-5-9

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries. Inc. Mon May 06 11:58:40 ID:yPXMLbyKekkHSiWSIZLGINzRR58-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

17-0-8

4-3-1

12-9-7

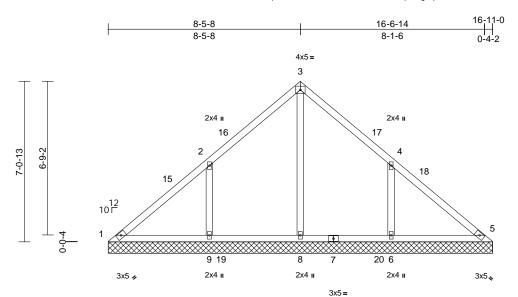
4-1-15

Page: 1

4x5 = 12 6 Г 3 2x4 👟 14 15 2x4 💋 2 4 4-9-6 13 16)-5-10 6-14 6 5x8 = 3x5 = 3x8 II 8-7-8 17-0-8 8-7-8 8-5-0 Plate Offsets (X, Y): [5:0-3-8,Edge], [6:0-4-0,0-3-0] 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) Spacing (loc) 20.0 Plate Grip DOL 1.15 TC 0.37 Vert(LL) -0.09 6-9 >999 240 MT20 244/190 20.0 Lumber DOL 1.15 BC 0.65 Vert(CT) -0.19 6-9 >999 180 10.0 Rep Stress Incr WB Horz(CT) YES 0.21 0.02 5 n/a n/a 0.0 IRC2018/TPI2014 Matrix-MSH Code 10.0 Weight: 75 lb FT = 20% 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 2x4 SP No.2 * This truss has been designed for a live load of 20.0psf 2x4 SP No.2 6) on the bottom chord in all areas where a rectangle 2x4 SP No.3 Right: 2x4 SP No.3 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Bearings are assumed to be: , Joint 5 User Defined . 7) Structural wood sheathing directly applied or 8) One H2.5A Simpson Strong-Tie connectors 5-1-6 oc purlins. recommended to connect truss to bearing walls due to Rigid ceiling directly applied or 10-0-0 oc UPLIFT at jt(s) 1 and 5. This connection is for uplift only bracing. and does not consider lateral forces. **REACTIONS** (size) 1=0-5-8, 5=0-5-8 9) This truss is designed in accordance with the 2018 Max Horiz 1=71 (LC 14) International Residential Code sections R502.11.1 and Max Uplift 1=-66 (LC 14), 5=-64 (LC 15) R802.10.2 and referenced standard ANSI/TPI 1. Max Grav 1=747 (LC 20), 5=746 (LC 21) LOAD CASE(S) Standard (Ib) - Maximum Compression/Maximum Tension 1-2=-1263/310, 2-3=-883/233, 3-4=-875/232, 4-5=-1219/301 1-5=-223/1092 3-6=-53/478, 4-6=-407/160, 2-6=-445/175 1) Unbalanced roof live loads have been considered for Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 5-7-8, Exterior(2R) 5-7-8 to 11-7-8, Interior (1) 11-7-8 to SEAL 14-0-8, Exterior(2E) 14-0-8 to 17-0-8 zone;C-C for 055727 members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Unbalanced snow loads have been considered for this 4) design.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	VLD1	Valley	1	1	Job Reference (optional)	165383283

Run: 8,73 S Apr 25 2024 Print: 8,730 S Apr 25 2024 MiTek Industries. Inc. Mon May 06 11:58:42 ID:?VRASUfm0qfd3oFPBHC5FHzRQud-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

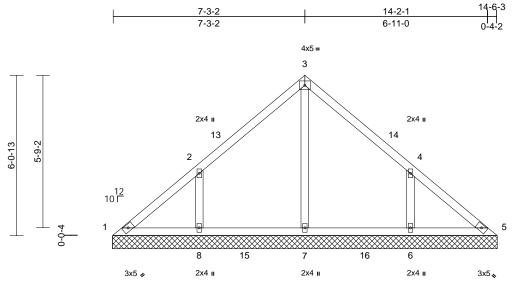
16-11-0

Scale = 1:50.7

Loading TCLL (roof) Snow (Pf) TCDL		(psf) 20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.39 0.18 0.41	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL		0.0* 10.0	Code	IRC20	18/TPI2014	Matrix-MSH							Weight: 76 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N Structura 10-0-0 or Rigid ceil bracing. (size) Max Horiz Max Uplift Max Grav	lo.2 lo.3 c purlins. ling directly 1=16-11-(8=16-11-(1=161 (LC 1=-58 (LC 9=-189 (LC 1=83 (LC (LC 6), 8= 24), 14=1	2 10), 6=-184 (LC 15 C 14) 35), 5=1 (LC 30), 6= 656 (LC 24), 9=514	4 ed or 5 11-0, 6 -11-0 7), 8 =513 (LC	 only. For stuse Standary or consult qu TCLL: ASCE Plate DOL=' DOL=1.15); Cs=1.00; Ct: Unbalanced design. Gable studs This truss has chord live low the botton 3-06-00 tall lichord and and standard stan	snow loads have les continuous bot spaced at 4-0-0 o is been designed l ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w y other members.	nd (norm ind Deta signer as f (roof LL (Lum DC B; Fully been cor c. for a 10. with any f for a liv s where ill fit betw with BC	al to the face ils as applica s per ANSI/TI .: Lum DOL= DE=1.15 Plate Exp.; Ce=0.9 nsidered for t d bearing. 0 psf bottom other live loa re load of 20.1 a rectangle veen the bott CDL = 10.0ps), ble, Pl 1. 1.15 9; his dds. 0psf om f.					
TOP CHORD	Tension	/374, 2-3=-	24/322, 3-4=-1/301,		bearing plate 1, 189 lb upl	hanical connection capable of withst ift at joint 9 and 18	anding 5 4 lb upli	58 lb uplift at j ft at joint 6.						
BOT CHORD WEBS NOTES	1-9=-200 5-6=-200	/77, 8-9=-2 /75	00/75, 6-8=-200/75, 4/222, 4-6=-393/220	h	Ínternational	designed in accor Residential Code nd referenced star Standard	sections	s R502.11.1 a	and			2 3	TH CA	RO
	ed roof live	loads have	been considered for	r								J.	O EFSS	10:1

- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust)
- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 5-5-13, Exterior(2R) 5-5-13 to 11-5-13, Interior (1) 11-5-13 to 13-6-12, Exterior(2E) 13-6-12 to 16-6-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

MEER May 7,20 Junnun erinner


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	VLD2	Valley	1	1	Job Reference (optional)	165383284

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries. Inc. Mon May 06 11:58:42 ID:Th_ZgqfOm8nUgyqbk?jKoVzRQuc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 2x4 II 14 4

Page: 1

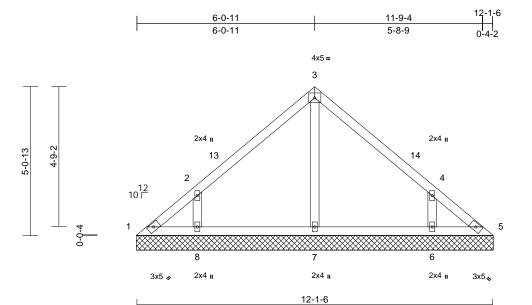
14-6-3 Т

Scale	= 1:	43.6

Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.31	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.16	Vert(TL)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES		WB	0.15	Horiz(TL)	0.00	5	n/a	n/a		
BCLL		0.0*	Code	IRC201	8/TPI2014	Matrix-MSH								
BCDL		10.0											Weight: 63 lb	FT = 20%
LUMBER				3)	Truss desig	ned for wind loads	s in the p	lane of the tru	ISS					
TOP CHORD	2x4 SP N	lo.2		,		ids exposed to wi								
BOT CHORD	2x4 SP N	lo.2			see Standar	d Industry Gable I	End Deta	ils as applica	ble,					
OTHERS	2x4 SP N	lo.3				alified building de								
BRACING				4)		7-16; Pr=20.0 ps								
TOP CHORD	Structura 6-0-0 oc		athing directly applie	d or		.15); Pf=20.0 psf s=1.0; Rough Ca								
BOT CHORD			applied or 6-0-0 oc		Cs=1.00; Ct=			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,					
BOTCHORD	bracing.	ing unectly	applied of 0-0-0 oc	5)		snow loads have	been cor	nsidered for th	nis					
REACTIONS	(size)	1=14-6-13	3, 5=14-6-13, 6=14-6	-13, 6)	design.	aa aantinusuus kat		al hearing						
		7=14-6-13	3, 8=14-6-13	7)		es continuous bot spaced at 4-0-0 c		u bearing.						
		1=138 (LC	,	ຄ່		s been designed) nef hottom						
	Max Uplift		: 10), 6=-155 (LC 15)	, 0)		ad nonconcurrent			eh					
		8=-158 (L		9)		as been designe								
	Max Grav		225), 5=98 (LC 24),	- /		n chord in all area								
			2 21), 7=410 (LC 24)	,	3-06-00 tall b	y 2-00-00 wide w	rill fit betw	veen the botte	om					
		8=457 (LC	,		chord and ar	y other members	, with BC	DL = 10.0pst						
FORCES		umum Com	pression/Maximum	10	/	hanical connectio		,						
TOP CHORD	Tension	140 2 2 -	172/123, 3-4=-172/1	10		capable of withs			oint					
TOP CHORD	4-5=-122	,	172/123, 3-4=-172/1	,		ft at joint 8 and 1								
BOT CHORD			2/101, 6-7=-62/101,	11		e or shim required		de full bearing	g					
	5-6=-62/1			40		truss chord at joir		:+h +h = 2010					minin	1111
WEBS			5/197, 4-6=-375/195	12		designed in accor Residential Code			nd				White C	AD
NOTES						nd referenced sta			nu		0	2.1		10/1
			heen considered for								13	N 1	CAL:HSS	In. MA

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-3-6, Interior (1) 3-3-6 to 4-3-6, Exterior(2R) 4-3-6 to 10-3-6, Interior (1) 10-3-6 to 11-3-6, Exterior(2E) 11-3-6 to 14-6-13 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	VLD3	Valley	1	1	Job Reference (optional)	165383285

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon May 06 11:58:42 ID:kUxM45s?bF21LX?KCRTFVAzRQqU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

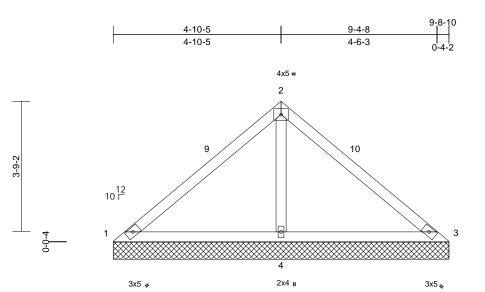
Scale = 1:39.3

Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0	Rep Stress Incr	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.31 0.12 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0											Weight: 50 lb	FT = 20%
	6-0-0 oc purlins. Rigid ceiling direct bracing. (size) 1=12-2 7=12-2 Max Horiz 1=-115 Max Uplift 1=-32 (6=-136 Max Grav 1=93 (I (LC 21) 20)	LC 10), 5=-4 (LC 11), (LC 15), 8=-139 (LC 1 LC 25), 5=72 (LC 24), (), 7=261 (LC 21), 8=43	c 5)), 6) 7) 8) 4) 9)	only. For stt see Standar or consult qu TCLL: ASCE Plate DOL=' DOL=1.15); Cs=1.00; Ct: Unbalanced design. Gable requir Gable studs This truss ha chord live loo * This truss ha on the bottoo 3-06-00 tall h	ned for wind load: dids exposed to wi d Industry Gable I ualified building de 7-16; Pr=20.0 psf Is=1.0; Rough Ca =1.10 snow loads have es continuous boi spaced at 4-0-0 d as been designed ad nonconcurrent has been designe m chord in all aree by 2-00-00 wide w y other members	nd (norm End Deta ssigner a: ssigner a: ssigner a: (Lum DC tof LL (Lum DC tof LL (Lum DC tof LL been cor to to S tom chor c. for a 10.1 with any d for a liv as where rill fit betw	al to the face ils as applical s per ANSI/TF L=1.15 Plate Exp.; Ce=0.5 ansidered for the d bearing. 0 psf bottom other live loa a rectangle), ble, PI 1. 1.15 9; his ds. Opsf				<u> </u>	
FORCES TOP CHORD	Tension	ompression/Maximum 3=-216/117, 3-4=-216/1		bearing plate	hanical connection capable of withs at joint 5, 139 lb u	tanding 3	32 lb uplift at j	oint					
BOT CHORD WEBS NOTES	1-8=-32/78, 7-8=- 5-6=-32/73 3-7=-174/0, 2-8=-	32/73, 6-7=-32/73, 398/218, 4-6=-398/218	3 12) Beveled plat surface with ?) This truss is International	e or shim required truss chord at joir designed in acco Residential Code	nt(s) 1, 5. rdance w sections	ith the 2018 8 R502.11.1 a	0		C		WITH CA	AROLI
1) Unbalance	ed roof live loads ha	ve been considered fo	r	R802.10.2 a	nd referenced sta	ndard AN	ISI/TPI 1.			- 4	S	St. LFE95	ON V

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-16; Vult=130mph (3-second gust)
- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 9-2-0, Exterior(2E) 9-2-0 to 12-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932


WILLIAM TO THE MENT

Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	VLD4	Valley	1	1	Job Reference (optional)	65383286

4-0-13

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon May 06 11:58:42 ID:kUxM45s?bF21LX?KCRTFVAzRQqU-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

9-8-10

Scale = 1:33.3

Loading TCLL (roof) Snow (Pf) TCDL	(psf) 20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.46 0.43 0.19	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0*	Code		8/TPI2014	Matrix-MSH	0.19	1012(12)	0.01	4	n/a	Π/a	Weight: 37 lb	FT = 20%
	$\begin{array}{l} 2x4 \ \text{SP No.2} \\ 2x4 \ \text{SP No.2} \\ 2x4 \ \text{SP No.3} \\ \\ \hline \\ Structural wood shead sh$	applied or 6-0-0 oc 3=9-8-10, 4=9-8-10 2 10) 2 1), 3=-51 (LC 20), C 14) 20), 3=95 (LC 21), 4	6) 7) 8)) 9)	Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b c-0rd and ar p) Provide mec bearing plate	7-16; Pr=20.0 p .15); Pf=20.0 ps is=1.0; Rough C =1.10 snow loads have es continuous bo spaced at 4-0-0 is been designed ad nonconcurren nas been designed in chord in all are by 2-00-00 wide by other member hanical connecti o capable of with at joint 3 and 1	f (Lum DC at B; Fully been cor oc. I for a 10.1 t with any ed for a liv as where will fit betv s. on (by oth standing 5	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the d bearing. 0 psf bottom other live load re load of 20.0 a rectangle veen the botthe ers) of truss is 51 lb uplift at j	e 9; his dds. 0psf om to					
TOP CHORD BOT CHORD WEBS	Tension 1-2=-117/380, 2-3=- 1-4=-248/174, 3-4=- 2-4=-646/274			International	designed in acco Residential Cod nd referenced st Standard	e sections	s R502.11.1 a	and					
this design	ed roof live loads have n. CE 7-16; Vult=130mph			(-)								TH CA	Rojin

- 2) Wind: ASCE 7-10, Vulle 150hph (3-Secton gust) Vasd=103mph; TCDL=6.0ps; BCDL=6.0ps; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 6-8-14, Exterior(2E) 6-8-14 to 9-8-14 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	VLD5	Valley	1	1	Job Reference (optional)	165383287

3-7-14

3-7-14

Carter Components (Sanford, NC), Sanford, NC - 27332,

2-9-2

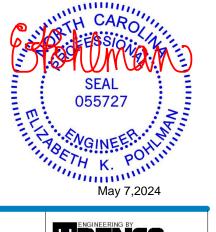
3-0-13

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon May 06 11:58:42 ID:CgVkHRtdMZAuzhaXm9_U10zRQqT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4x5 =

6-11-11

3-3-12



Scale = 1:29.3

FCLL (roof) Snow (Pf) FCDL 3CLL	(psf)Spacing20.0Plate Grip DOL20.0Lumber DOL10.0Rep Stress Incr0.0*Code10.0End	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.26 0.27 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
7-3-13 oc pur BOT CHORD Rigid ceiling bracing. REACTIONS (size) 1= Max Horiz 1= Max Uplift 1= 4= FORCES (lb) - Maximu Tension FOP CHORD 1-2=-91/234,	 bod sheathing directly applied rlins. directly applied or 6-0-0 oc 6.7-3-13, 3=7-3-13, 4=7-3-13 6-68 (LC 12) 19 (LC 21), 3=-19 (LC 20), 7-75 (LC 14) 105 (LC 20), 3=105 (LC 21), 541 (LC 21) Im Compression/Maximum 2-3=-91/234 3-4=-183/154 	d or d or d or d or d or d or d or d or	d snow loads have is spaced at 4-0-0 has been designed oad nonconcurren s has been designed om chord in all are l by 2-00-00 wide any other member echanical connecti the capable of with lift at joint 3 and 75 is designed in acco al Residential Cod and referenced sta	f (Lum DC at B; Fully been cor totom chor oc. I for a 10.0 t with any ed for a liv as where will fit bey on (by oth standing 1 i lb uplift <i>a</i> rodance w e sections	DL=1.15 Plate Exp.; Ce=0.9 hsidered for the d bearing. D psf bottom other live load e load of 20.00 a rectangle veen the botto ers) of truss to 9 lb uplift at jo ti joint 4. it the 2018 i R502.11.1 at	; ds. lpsf om oint					

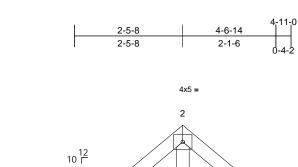
 Unbalanced roof live loads have been considered for this design.

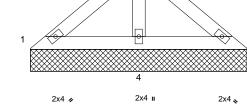
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 4-4-2, Exterior(2E) 4-4-2 to 7-4-2 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

RENCO

Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	VLD6	Valley	1	1	I65: Job Reference (optional)	5383288


1-9-2


0-0-4

2-0-13

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon May 06 11:58:42 ID:CgVkHRtdMZAuzhaXm9_U1OzRQqT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3

Scale = 1:26.2

Ocale = 1.20.2													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	18/TPI2014	CSI TC BC WB Matrix-MP	0.09 0.11 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-11-0 oc purlins. Rigid ceiling directly bracing. (size) 1=4-11-0. Max Horiz 1=-44 (LC Max Uplift 3=-7 (LC Max Grav 1=89 (LC (LC 20) (lb) - Maximum Com Tension 1-2=-81/106, 2-3=-8 1-4=-86/90, 3-4=-86 2-4=-215/100	applied or 6-0-0 oc , 3=4-11-0, 4=4-11-(; 10) 15), 4=-34 (LC 14) 20), 3=89 (LC 21), - ppression/Maximum 1/106	9) 1 ¹ 4=301 1	 design. Gable requir Gable studs This truss ha chord live loi * This truss I on the bottoo 3-06-00 tall I chord and at Provide mec bearing plate and 34 lb up This truss is International 	designed in acco Residential Code nd referenced sta	ottom chor oc. I for a 10. I with any ed for a liv as where will fit betw s. on (by oth standing 7 ordance w e sections	d bearing. D psf bottom other live loa e load of 20.1 a rectangle veen the bott ers) of truss t ' lb uplift at jo ith the 2018 s R502.11.1 a	ids. Opsf om int 3					
 this design Wind: ASC Vasd=103r II; Exp B; E and C-C E: exposed; c members a Lumber DC Truss desi 	ed roof live loads have a. E 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er xterior(2E) zone; cant end vertical left and ri and forces & MWFRS DL=1.60 plate grip DC igned for wind loads is studs exposed to wind	(3-second gust) CDL=6.0psf; h=25ft ivelope) exterior zor ilever left and right ght exposed;C-C for for reactions shown DL=1.60 n the plane of the tru	; Cat. ne r; uss								<i>ba</i>	SEA 0557	• •

3 see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Page: 1

Job	Truss	Truss Type Q		Ply	1002 Serenity-Roof-B326 BRH COP BR4			
24030108-01	VLD7	Valley	1	1	I65383289 Job Reference (optional)			

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon May 06 11:58:42 ID:CgVkHRtdMZAuzhaXm9_U1OzRQqT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 2-6-3 <u>1-3-2</u> 2-2-1 1-3-2 0-11-0

> > 3x5 =

2

2-6-3

2x4 🍫

3

2x4 💊

12 10 Г Page: 1

 Ing
 2-0-0
 CSI

 Srip DOL
 1.15
 TC
 0.05

 r DOL
 1.15
 BC
 0.05

 ress Incr
 YES
 WB
 0.00

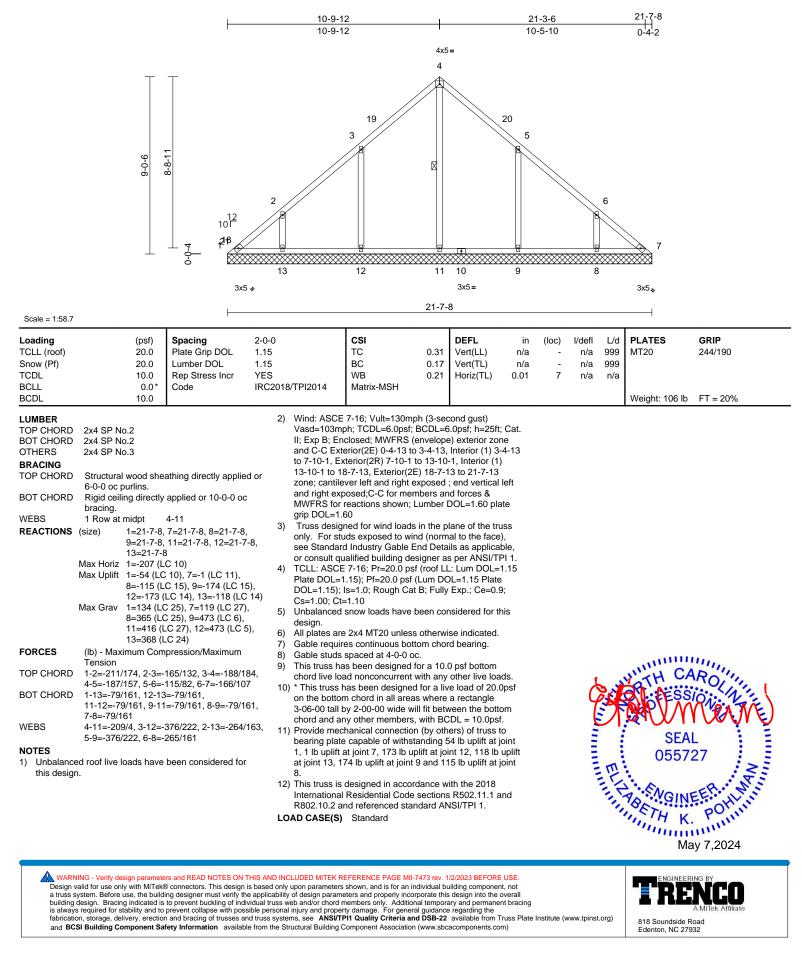
0-9-2

0-0-4

1-0-13

Scale = 1:25.1

Plate Offsets (X, Y): [2:0-2-8,Edge]


Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0		2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.05 0.05 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 7 lb	GRIP 244/190 FT = 20%
2-6-3 oc purlins.	11) 14), 3=-9 (LC 15) 2 20), 3=114 (LC 21) pression/Maximum 44/62 been considered for (3-second gust) CDL=6.0psf; h=25ft; C velope) exterior zone lever left and right ght exposed;C-C for for reactions shown; L=1.60 n the plane of the truss (normal to the face), d Details as applicable gner as per ANSI/TPI roof LL: Lum DOL=1.1 um DOL=1.15 Plate ;; Fully Exp.; Ce=0.9; then considered for this	 8) This truss ha chord live lo: 9) * This truss 1 or on the botton 3-06-00 tall 1 chord and at 10) Provide mec bearing plate and 9 lb upli 11) This truss is International R802.10.2 a LOAD CASE(S) 	designed in accor Residential Code nd referenced star	or a 10.0 with any I for a liv s where II fit betv n (by oth anding 9 dance w sections	other live loa e load of 20.0 a rectangle veen the botto ers) of truss t l b uplift at jo ith the 2018 s R502.11.1 a	Opsf om o int 1			ELIT	SEA 0557 785774 K	• •

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

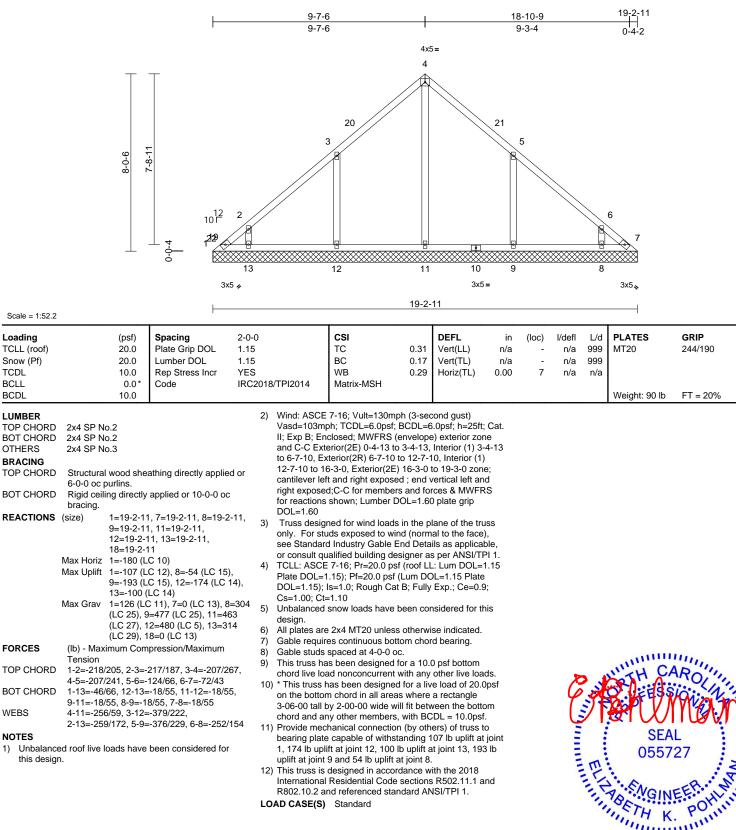
Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	VLB1	Valley	1	1	Job Reference (optional)	165383290

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon May 06 11:58:41 ID:uRu6rMLa1rlmrJyJNhjxxpzRQsR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	VLB2	Valley	1	1	Job Reference (optional)	165383291

TCDL

BCLL


BCDL

WEBS

1)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon May 06 11:58:41 ID:yJIn_UX?VSBe9dbBmLUS1zzRQsC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	VLB3	Valley	1	1	Job Reference (optional)	165383292

Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

FORCES

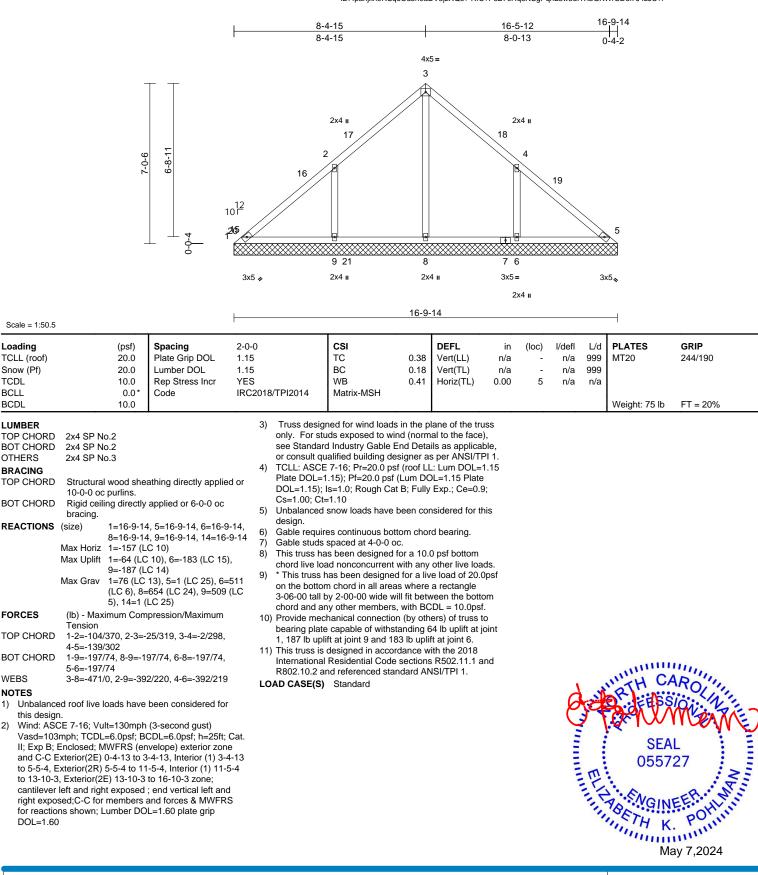
WEBS

NOTES

1)

2)

BRACING


TCDL

BCLL

BCDL

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon May 06 11:58:41 ID:4pahjxh9RSqoCd5h0aDV3jzRQs?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

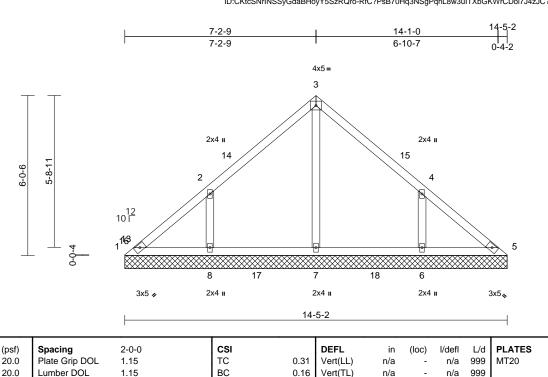
Page: 1

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	VLB4	Valley	1	1	Job Reference (optional)	165383293

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon May 06 11:58:41 ID:CKtcSNrINSSyGdaBHoyY5SzRQro-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

GRIP

Weight: 62 lb

244/190

FT = 20%

BCLL BCDL		0.0* 10.0	Code	IRC2018	8/TPI2014
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N Structural 6-0-0 oc p	o.2 o.3 I wood shea ourlins.	athing directly appli applied or 6-0-0 oc		Truss de only. For see Stan- or consul TCLL: AS Plate DO DOL=1.1 Cs=1.00; Unbalanc
REACTIONS	(size) Max Horiz Max Uplift Max Grav	7=14-5-2, 1=-137 (Lu 1=-29 (LC 8=-156 (Lu 1=109 (LC	C 10) 10), 6=-154 (LC 1) C 14) C 25), 5=100 (LC 24 C 21), 7=402 (LC 24	5), ⁶⁾ 5), ⁸⁾ 4), ⁹⁾	design. Gable red Gable stu This truss chord live * This tru on the bo 3-06-00 t
FORCES TOP CHORD BOT CHORD WEBS	Tension 1-2=-141/ 4-5=-122/ 1-8=-59/1 5-6=-59/1	imum Com (139, 2-3=- (105 19, 7-8=-59 00	pression/Maximum 177/119, 3-4=-177/ 9/100, 6-7=-59/100 4/196, 4-6=-375/19	112, , 11) ,	chord and Provide r bearing p 1, 156 lb This truss Internation R802.10.
NOTES	3-1=-223/	0, 2-0=-374	+/190, 4-0=-375/19	ິ LO	AD CASE

10.0

Rep Stress Incr

YES

Scale = 1:43.5 Loading

TCLL (roof)

Snow (Pf)

TCDL

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-13 to 3-2-14, Interior (1) 3-2-14 to 4-2-14, Exterior(2R) 4-2-14 to 10-2-14, Interior (1) 10-2-14 to 11-2-14, Exterior(2E) 11-2-14 to 14-5-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

0.14

Horiz(TL)

0.00

5

n/a n/a

- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) desian.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.

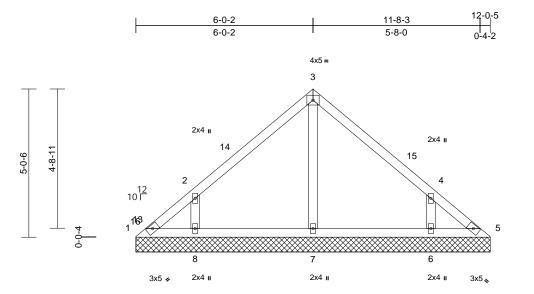
WB

Matrix-MSH

- 8) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 9)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 10) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 29 lb uplift at joint 1, 156 lb uplift at joint 8 and 154 lb uplift at joint 6.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Edenton, NC 27932

Job	Truss	Truss Type G		Ply	1002 Serenity-Roof-B326 BRH COP BR4			
24030108-01	VLB5	Valley	1	1	Job Reference (optional)	165383294		

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon May 06 11:58:41 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

12-0-5

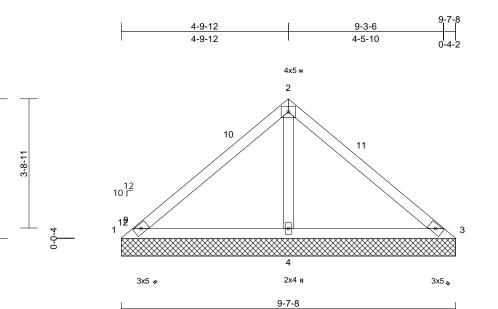
Scale = 1:39.1

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.31 0.12 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 50 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=12-0-5, 7=12-0-5, Max Horiz 1=-113 (LI Max Uplift 1=-38 (LC 6=-136 (LI Max Grav 1=77 (LC	5=12-0-5, 6=12-0-5, 8=12-0-5 C 10) 10), 5=-6 (LC 11), C 15), 8=-138 (LC 14)	5) 6) 7) 8) 434	only. For stu see Standaru or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall th	ned for wind loads ids exposed to wi d Industry Gable I ialified building de 7-16; Pr=20.0 ps I.15); Pf=20.0 ps Iss=1.0; Rough Ca =1.10 snow loads have es continuous bot spaced at 4-0-0 c is been designed ad nonconcurrent nas been designed ad nonconcurrent oy 2-00-00 wide w y other members	nd (norm End Deta signer as if (roof LL (Lum DC tom Chor c. for a 10.0 with any d for a liv is where ill fit betv	al to the face ils as applica s per ANSI/TI :Lum DOL= :L=1.15 Plate Exp.; Ce=0.9 asidered for the d bearing. D psf bottom other live load a rectangle), ble, PI 1. 1.15 e 3; his dds. Dpsf					
FORCES	(lb) - Maximum Com Tension) Provide mec	hanical connectio	n (by oth	,						
TOP CHORD	4-5=-89/63	219/116, 3-4=-218/115	5,		at joint 5, 138 lb u								
BOT CHORD	1-8=-32/73, 7-8=-31/ 5-6=-31/73	/73, 6-7=-31/73,	11) This truss is	designed in accor Residential Code			nd				mun	1111
WEBS	3-7=-172/0, 2-8=-400	0/215, 4-6=-401/220			nd referenced sta			uiu				"TH CA	RO
NOTES			LC	DAD CASE(S)	Standard						1	KR L CO	···· ////

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-16; Vult=130mph (3-second gust)
- Vind: AOCL 710, Vale 150mph (3-second gds) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-13 to 3-4-13, Exterior(2R) 3-4-13 to 9-0-10, Exterior(2E) 9-0-10 to 12-0-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

May 7,2024

818 Soundside Road Edenton, NC 27932



Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	VLB6	Valley	1	1	Job Reference (optional)	165383295

4-0-6

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon May 06 11:58:42 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:33.2

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.44 0.42 0.18	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 37 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	9-7-8 oc purlins. Rigid ceiling directly bracing.	C 21), 3=-47 (LC 20), LC 14)	6) 7) 8) 9)	Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requiri Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar	snow loads have es continuous bo spaced at 4-0-0 d s been designed ad nonconcurrent has been designe n chord in all are by 2-00-00 wide w y other members hanical connectic	(Lum DC t B; Fully been cor tom chor oc. for a 10.1 with any d for a liv as where vill fit betv t. n (by oth	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the d bearing. 0 psf bottom other live loa re load of 20.0 a rectangle veen the bottwers) of truss the	e); ds. Dpsf om o					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Cor Tension 1-2=-111/370, 2-3= 1-4=-241/170, 3-4= 2-4=-632/266			1, 47 lb uplift) This truss is International	e capable of withs at joint 3 and 10 designed in acco Residential Code nd referenced sta Standard	6 lb uplift rdance w sections	at joint 4. ith the 2018 8 R502.11.1 a						
this desigr	ed roof live loads have n. CE 7-16; Vult=130mpl		r									TH CA	Ro

- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-13 to 3-4-13, Exterior(2R) 3-4-13 to 6-7-13, Exterior(2E) 6-7-13 to 9-7-13 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

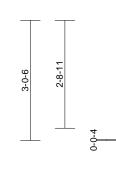
H K. POHLUM May 7,20 Strand The State

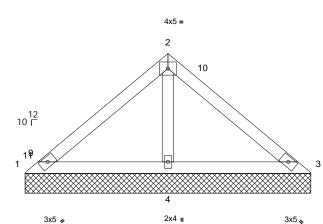
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	VLB7	Valley	1	1	Job Reference (optional)	165383296

3-7-6

3-7-6


Carter Components (Sanford, NC), Sanford, NC - 27332,


Run: 8,73 S Apr 25 2024 Print: 8,730 S Apr 25 2024 MiTek Industries. Inc. Mon May 06 11:58:42 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-10-9

3-3-4

7-2-11

Scale = 1:29.1

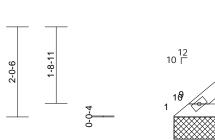
00010 = 112011													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.25 0.26 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES	2x4 SP No.2 2x4 SP No.3 Structural wood she 7-2-11 oc purlins. Rigid ceiling directly bracing. (size) 1=7-2-11, Max Horiz 1=-66 (LC Max Uplift 1=-26 (LC 4=-71 (LC Max Grav 1=71 (LC 4=524 (LC (lb) - Maximum Com Tension 1-2=-84/224, 2-3=-8	, 3=7-2-11, 4=7-2-11 C 10) C 21), 3=-15 (LC 20), C 14) 20), 3=103 (LC 21), C 20) npression/Maximum 17/223	6) 7) 8) 9) 10	Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced design. Gable requir Gable studs This truss ha chord live loo * This truss ha chord live loo 3-06-00 tall h chord and ar)) Provide mec bearing plate 1, 15 lb upliff) This truss is International	snow loads have b res continuous bott spaced at 4-0-0 or as been designed m chord in all areas by 2-00-00 wide wi ny other members. chanical connection e capable of withst t at joint 3 and 71 I designed in accord Residential Code nd referenced star	(Lum DC B; Fully been con com chor c. for a 10. with any f for a liv s where a liv f for a liv s where ill fit betw h (by oth anding 2 b uplift a dance w sections	DL=1.15 Plate Exp.; Ce=0.9 nsidered for th d bearing. D psf bottom other live load e load of 20.0 e load of 20.0 ers) of truss tr 26 lb uplift at jg tt joint 4. it joint 4. it th the 2018 s R502.11.1 a); ds.)psf om o					
	ed roof live loads have	been considered for											•

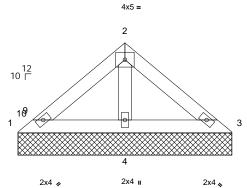
1) Unbalanced roof live loads have been considered for this design.

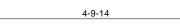
Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-13 to 3-7-10, Exterior(2R) 3-7-10 to 4-3-0, Exterior(2E) 4-3-0 to 7-3-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	VLB8	Valley	1	1	I6538 Job Reference (optional)	33297

Run: 8,73 S Apr 25 2024 Print: 8,730 S Apr 25 2024 MiTek Industries. Inc. Mon May 06 11:58:42

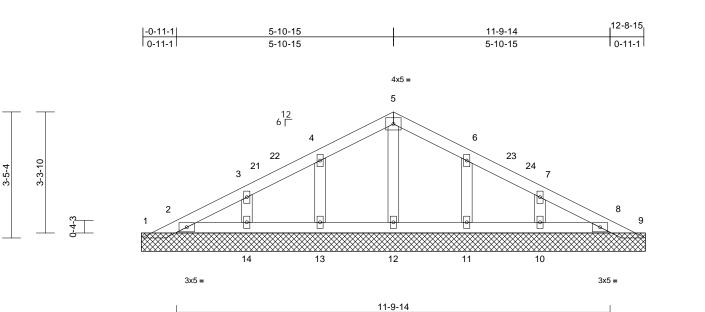
Scale = 1:26

00010 = 1.20													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.08 0.11 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-9-14 oc purlins. Rigid ceiling directly bracing. (size) 1=4-9-14. Max Horiz 1=-43 (LC Max Uplift 3=-7 (LC Max Grav 1=58 (LC (LC 20) (lb) - Maximum Con Tension 1-2=-61/99, 2-3=-79 1-4=-81/85, 3-4=-81 2-4=-204/92	applied or 6-0-0 oc , 3=4-9-14, 4=4-9-14 2 10) 15), 4=-30 (LC 14) 20), 3=86 (LC 21), - ppression/Maximum /99	9) ⁴ 1(4=286 1	design. Gable requi Gable studs This truss ha chord live lo * This truss on the botto 3-06-00 tall chord and a 0) Provide med bearing platt and 30 lb up 1) This truss is International	designed in account Residential Code nd referenced sta	ttom choi oc. for a 10. with any d for a liv as where vill fit betv s. n (by oth tanding 7 rdance we	rd bearing. 0 psf bottom other live loa re load of 20. a rectangle ween the bott uers) of truss 7 lb uplift at jc ith the 2018 s R502.11.1 a	ads. Opsf rom to pint 3					
this design. 2) Wind: ASCI Vasd=103n II; Exp B; E and C-C Ex	d roof live loads have E 7-16; Vult=130mph nph; TCDL=6.0psf; B nclosed; MWFRS (er tterior(2E) zone; cant and vertical left and ri	i (3-second gust) CDL=6.0psf; h=25ft ivelope) exterior zor ilever left and right	; Cat. ne							Ø	Ģ		NROUNT AND D

- members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,
- or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

27 NGINEER-HINRIN May 7,20 Community ELLIPTIC 1 7

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

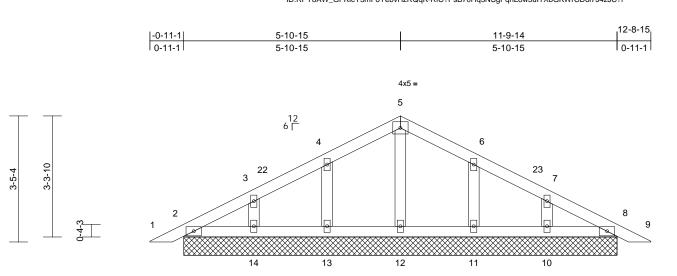
Job		Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-	-01	PBA2	Piggyback	2	4	Job Reference (optional)	165383298

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon May 06 11:58:41 ID:m2dQdjvppkexqPVgwg5aZPzRCX1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:31.4
---------	--------

Scale = 1:31.4														
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		8/TPI2014	CSI TC BC WB Matrix-MSH	0.02 0.01 0.01 ether as		in n/a n/a 0.00	(loc) - - 9 12) * Tř	I/defl n/a n/a n/a	L/d 999 999 n/a has be	PLATES MT20 Weight: 207 lb	GRIP 244/190 FT = 20% a live load of 20.0)psf
TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=13-9-0, 15=13-9-0, 15=13-9-0 Max Horiz 1=52 (LC Max Uplift 1=-25 (LC (LC 15), 9 15), 11=-4 (LC 15), 9 15), 11=-4 (LC 22), 1 (LC 21), 1 (LC 21), 1 (LC 22), 1	applied or 10-0-0 oc 2=13-9-0, 8=13-9-0, 10=13-9-0, 11=13-9 0, 13=13-9-0, 14=13-9 14) 2+5), 2=-14 (LC 14), 2+2 (LC 22), 10=-45 47 (LC 15), 13=-48 (L 44 (LC 14), 15=-14 (L 7 (LC 15) 18), 2=154 (LC 21), 10 1=245 (LC 22), 12=-1 3=244 (LC 21), 14=2 5=154 (LC 21), 18=1	-0, 3) 9-0, 4) 8=-7 (LC C C C C =233 44 5) 34 5)	follows: 2x4 Bottom chorr follows: 2x4 All loads are except if note CASE(S) see provided to c unless other Unbalanced this design. Wind: ASCE Vasd=103mg II; Exp B; En and C-C Ext 3-10-8, Exte to 10-4-13, E cantilever lef right expose for reactions DOL=1.60 Truss desigg only. For st see Standard	connected with 100 - 1 row at 0-9-0 oc ds connected with - 1 row at 0-9-0 oc considered equall ed as front (F) or b tion. Ply to ply con- tistribute only load wise indicated. roof live loads hav 7-16; Vult=130mp bh; TCDL=6.0psf; closed; MWFRS (e- erior(2E) 0-4-3 to 5 xiterior(2E) 0-4-3 to 5 xiterior(2E) 10-4-1 t and right exposed d;C-C for members shown; Lumber D hed for wind loads ids exposed to wird d Industry Gable E- ialified building de:	10d (0.1 y applie, ack (B) nection s noted e been of h (3-sec BCDL=6 anvelope 3-4-3, In 3-10-8, I 3 to 13 d; end v s and fou OL=1.60 in the p d (norm nd Deta	31"x3") nails as d to all plies, face in the LOAI s have been as (F) or (B), considered for cond gust) .0psf; h=25ft; Ci exterior zone terior (1) 3-4-3 to netrior (1) 9-10-6 4-13 zone; vertical left and ces & MWFRS 0 plate grip lane of the truss al to the face), ils as applicable	D at. 3	3-00 cho 13) Pro bea 2, 7 join upli 2 ai 14) This Inte R80 15) See Det con	6-00 tall rd and a vide me tring plat f b uplift t 9, 48 lt ft at join nd 7 lb u s truss is ernationa 02.10.2 a e Standa ail for C	by 2-0 any oth chanic te capa a t join o uplift t 11, 4 uplift at s desig al Resid and ref and ref ird Indu onnect lified b	er members. al connection (by able of withstandi it 8, 25 lb uplift at at joint 13, 44 lb 5 lb uplift at joint joint 8. ned in accordand dential Code sect ferenced standarr ustry Piggyback [*] tion to base truss uilding designer.	between the botto r others) of truss to ng 14 lb uplift at jo joint 1, 2 lb uplift at uplift at joint 14, 4 10, 14 lb uplift at jo re with the 2018 ions R502.11.1 ar	o oint at 7 Ib joint nd
FORCES TOP CHORD BOT CHORD WEBS NOTES	(lb) - Maximum Com Tension 1-2=-56/69, 2-3=-48, 4-5=-62/105, 5-6=-6i 7-8=-29/26, 8-9=0/2 2-14=-15/54, 13-14= 11-12=-15/54, 10-11 5-12=-103/0, 4-13=-; 6-11=-208/121, 7-10	/32, 3-4=-55/50, 2/105, 6-7=-55/40, 4 15/54, 12-13=-15/54 =-15/54, 8-10=-15/54 208/121, 3-14=-181/9	4 8) 90, 9) 10	TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. All plates are Gable requir 0) Gable studs 1) This truss ha	: 7-16; Pr=20.0 psf .15); Pf=20.0 psf (ls=1.0; Rough Cat	e (roof LL Lum DC B; Fully been cor otherwi om chor c. or a 10.0	L: Lum DOL=1.1 DL=1.15 Plate Exp.; Ce=0.9; asidered for this se indicated. d bearing. D psf bottom	5			ELINI	SEA 0557 VGIN	Meeth L 27 EEP. H. M. H.	


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

May 7,2024

Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	PBA	Piggyback	2	1	Job Reference (optional)	165383299

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon May 06 11:58:41 ID:RPY8AW_GFKIcY3mFoYebvHzRQqK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

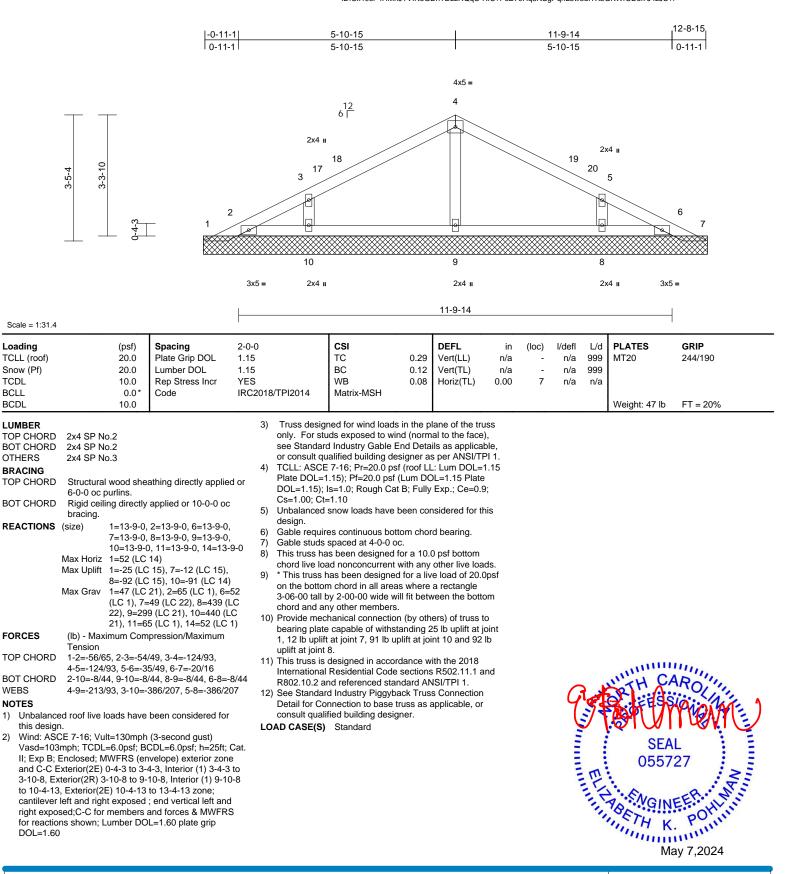
3x5 =

Page: 1

			L				11-9-14						
Scale = 1:31.4													
CLL (roof) Snow (Pf)	20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.08 0.04 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
	10.0	Code	11(02010	J/11/2014								Weight: 52 lb	FT = 20%
6-0-0 oc purl Rigid ceiling bracing. 2 EACTIONS (size) 2= 11 3 5 Max Horiz 2= Max Uplift 2= 13 15 Max Grav 2= 10 10 12 14 19	bod sheat ins. directly a =11-9-14, =11-9-14 =11-9-14 =21-9-14 =21-9-14 =21-9-14 =-47 (LC =-9 (LC 1 =-47 (LC =-9 (LC 1 =237 (LC =123 (LC =123 (LC	,	9-14, 3) 4) ;), ;), ;), 5) ;2), 6)	Vasd=103mp II; Exp B; End and C-C Corr 3-10-8, Corn to 10-4-13, C cantilever lef right exposed for reactions DOL=1.60 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 p overhangs no	7-16; Vult=130mp bh; TCDL=6.0psf; (e ner(3E) 0-4-3 to 3- er(3R) 3-10-8 to 9- corner(3E) 10-4-13 t and right exposed d;C-C for members shown; Lumber D0 ned for wind loads dids exposed to win 1 Industry Gable Er alified building des 7-16; Pr=20.0 psf (15); Pf=20.0 psf (i s=1.0; Rough Cat :1.10 snow loads have b s been designed for posf or 1.00 times fit on-concurrent with 2x4 MT20 unless	SCDL=6 envelope 4-3, Exit 10-8, E to 13-4 d; end v and fo OL=1.6 in the p d (norm nd Deta signer a: (roof LI Lum DC B; Fully been cor or great at roof li other li	.0psf; h=25ft; exterior zor erior(2N) 3-4, xterior(2N) 3-4, treior(2N) 3-4, rertical left an rces & MWFR plate grip lane of the tr. al to the face ils as applical s per ANSI/TF .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 asidered for th er of min roof bad of 20.0 ps ve loads.	ne -3 to 10-8 d :S ss s, bole, -1 1. 1.15); his live	Inte R80 14) See Deta	rnationa 2.10.2 a Standa ail for Co sult qua	I Resid and ref rd Indu onnect lified b	dential Code sec erenced standar ustry Piggyback ion to base truss uilding designer.	Truss Connection as applicable, or
Tension OP CHORD 1-2=0/17, 2-: 4-5=-63/116, 7-8=-29/25, 8 OT CHORD 2-14=-9/67, 11-12=-9/67,	3=-46/33, 5-6=-63/ 3-9=0/17 13-14=-9/ 10-11=-9 4-13=-20 25, 7-10=-	(116, 6-7=-56/49, (67, 12-13=-9/67, 9/67, 8-10=-9/67 08/125, 3-14=-181/1 -181/113	10 11 113,	Gable studs) This truss ha chord live loa) * This truss h on the bottom 3-06-00 tall b chord and an) Provide mecl bearing plate 11 lb uplift at joint 14, 47 lb	es continuous botto spaced at 2-0-0 oc s been designed fo de nonconcurrent w has been designed n chord in all areas y 2-00-00 wide wil by other members. hanical connection capable of withsta joint 8, 47 lb uplift p uplift at joint 11, 4 2 and 11 lb uplift a	5. or a 10. for a liv for a liv s where Il fit betw (by oth anding S at joint 45 lb up) psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t l b uplift at joi 13, 45 lb uplii ift at joint 10,	0psf om o int 2, it at		. and the second	ELLIN	SEA 0557 78 TH K	L 27 POHININ

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

3x5 =


May 7,2024

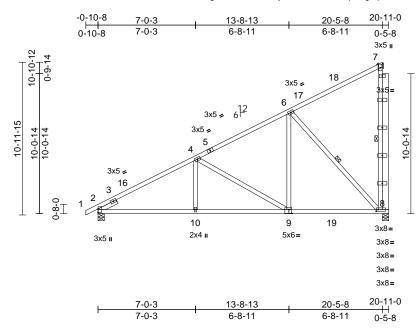
Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	PBA1	Piggyback	18	1	Job Reference (optional)	165383300

1)

2)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon May 06 11:58:41 ID:Cx19sF4HMnJTVINoGDnTDzzRQqC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road

Edenton, NC 27932

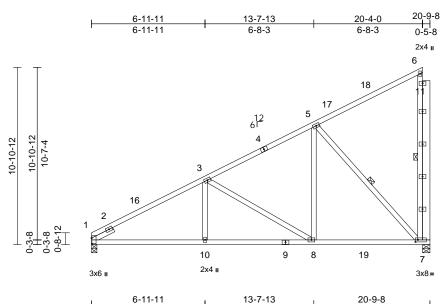
Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	C01	Half Hip	4	1	I6: Job Reference (optional)	5383301

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon May 06 11:58:39 ID:Je5w06f8goBW?T4xbCQ60Kyfk?K-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:82.9 Plate Offsets (X, Y): [2:0-3-1,0-0-1], [8:0-1-12,0-1-8], [9:0-2-8,0-3-4]

- 1410 0110010	(/(, /)) [2:0 0 /(0 0 /)]	[0:0 : :=;0 : 0]; [0:	0 2 0,0 0	.1									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.95 0.68 0.67	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.13 0.03	(loc) 8-9 8-9 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 148 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	 2x4 SP No.2 2x4 SP No.3 *Excep 11-8:2x6 SP No.2 Left 2x4 SP No.3 Structural wood she 4-9-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-5-8, 8 Max Horiz 2=386 (LC Max Uplift 2=-48 (LC Max Grav 2=948 (LC 	1-6-0 athing directly applie cept end verticals. applied or 10-0-0 or 7-8, 6-8 8=0-5-8 C 14), 8=-343 (LC 14 C 5), 8=1731 (LC 21	; 7)) 8)	design. This truss ha load of 12.0 overhangs m This truss ha chord live lo * This truss ha chord live lo * This truss on the botto 3-06-00 tall chord and a One H2.5A recommend UPLIFT at jt and does no: This truss is International	Residential Code	or great at roof I other li or a 10. with any for a liv s where Il fit betw with BC e conne to bea onnectio prces. dance w sections	er of min roo oad of 20.0 p ve loads. 0 psf bottom other live loa re load of 20. a rectangle ween the bot DL = 10.0ps ctors ing walls due n is for uplift ith the 2018 s R502.11.1	of live osf on ads. .0psf tom sf. e to only					
TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS Vasd=10 II; Exp 8; and C-C to 17-3-1: vertical le MWFRS grip DOL 2) TCLL: AS Plate DO	6-7=-164/105, 7-8=- 2-10=-397/1163, 8-1 4-10=0/264, 4-9=-58 6-8=-953/226 SCE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Bi Enclosed; MWFRS (er Exterior(2E) -0-10-8 to - 2, Exterior(2E) -0-10-8 to - 2, Exterior(2E) -0-10-8 to - 5, Exterior(2E) -0-10-8 to - 50 reactions shown; Lu =1.60 SCE 7-16; Pr=20.0 psf (L 1-1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E	1/28, 4-6=-813/0, 271/93 10=-317/1163 38/185, 6-9=0/584, (3-second gust) CDL=6.0psf; h=25ft; to 20-9:12 zone; en mbers and forces & imber DOL=1.60 pla (roof LL: Lum DOL=1 um DOL=1.15 Plate	1) Cat. e -8 d te .15	 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 747 Ib down and 128 lb up at 20-5-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-7=-60, 8-12=-20 Concentrated Loads (lb) Vert: 8=-747 							AGA	SEA 0557	• -


7 K. POHLMAN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	C02	Half Hip	1	1	Job Reference (optional)	165383302

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon May 06 11:58:40 ID:EGq646Pbf2EXC6nWIJzpaiyfjwU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:70.8				6-11-11	6-8-3	1	7-1-11		-	
Plate Offsets (X, Y)	: [1:0-4-1,0-0-5],	[7:0-1-12,0-1-8]							
Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	l/defl	L/d	PLATES

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.92 0.65 0.64	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.17 0.03	(loc) 7-8 7-8 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 146 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	6-7:2x4 SP No.2 Left 2x4 SP No.3 Structural wood she 2-2-0 oc purlins.	eathing directly applie y applied or 10-0-0 oc 6-7, 5-7 7=0-5-8 C 14) C 14), 7=-343 (LC 14)	6) 7) d or 8) 9)	design. Provide adec All plates are This truss ha chord live loa * This truss f on the bottor 3-06-00 tall t chord and ar One H2.5A S recommende UPLIFT at jt(and does no This truss is International	snow loads have quate drainage to a 3x5 MT20 unles is been designed ad nonconcurrent nas been designe n chord in all area by 2-00-00 wide w y other members Simpson Strong-T d to connect trus (s) 7 and 1. This of t consider lateral designed in acco Residential Code nd referenced sta	prevent of s otherwi for a 10.0 with any d for a liv as where vill fit betw s, with BC ie conne- s to bear connectio forces. rdance w	water pondin se indicated. 0 psf bottom other live loz e load of 20. a rectangle veen the bott DL = 10.0ps ctors ing walls due n is for uplift ith the 2018 s R502.11.1 a	g. ads. Opsf om f. e to only					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC	(lb) - Maximum Con Tension 1-3=-1328/28, 3-5=- 1-10=-409/1130, 8- 7-8=-157/661 6-7=-251/89, 3-10=1 5-7=-972/229, 3-8=- CE 7-16; Vult=130mpH	10=-316/1130, 0/254, 5-8=0/593, -562/184) Hanger(s) or provided suff lb down and design/selec responsibility DAD CASE(S)	other connection ficient to support 129 lb up at 20-5 tion of such conn of others. Standard bw (balanced): Lu 15	device(s concentra)-12 on b ection de	a) shall be ated load(s) 7 ottom chord. vice(s) is the	The		q	đ	WTH CA	ROLIN

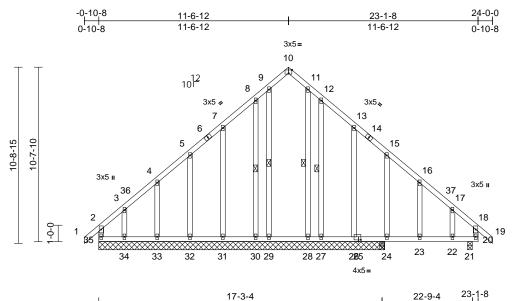
Vert: 1-6=-60, 7-12=-20

Concentrated Loads (lb)

Vert: 7=-747

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-8 to 3-1-8, Interior (1) 3-1-8 to 17-3-12, Exterior(2E) 17-3-12 to 20-3-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Page: 1

Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	B03	Common Structural Gable	1	1	Job Reference (optional)	165383303

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon May 06 11:58:39 ID:onyrICEMWITAUsFxYbXALJy7LR6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	(nsf)	Spacing	1-11-4	CSI	DEEL	in	(loc)	l/defl	L/d		
Plate Offsets (X, Y):	[10:0-2-8,Edge], [25:0-1-12,0-1	-4]								
Scale = 1:70.2				17-3-4			i	5-6-0	0-4	-4	
				17-3-4		1	4	5-6-0	~ ~	1,	
			1	17-3-4		1	2	2-9-4	23-	1-8	

				-		1								
Loading		(psf)	Spacing	1-11-4		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.24	Vert(LL)	0.05	22-23	>999	240	MT20	244/190
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.22	Vert(CT)	-0.04	22-23	>999	180		
TCDL		10.0	Rep Stress Incr	YES		WB	0.16	Horz(CT)	0.00	21	n/a	n/a		
BCLL		0.0*	Code	IRC201	8/TPI2014	Matrix-MR								
BCDL		10.0											Weight: 188 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS		o.2 o.3		T		1-2=0/38, 2-3=-289/ 4-5=-218/164, 5-7=- 8-9=-231/343, 9-10= 10-11=-159/197, 11 12-13=-190/232, 13	-199/19 =-158/1 -12=-2 -15=-1	1, 7-8=-197/2 96, 33/344, 89/168,	43,	Plat DO Cs= 5) Unt	te DOL= L=1.15); =1.00; Ct palanced	1.15); Is=1.0 t=1.10	Pf=20.0 psf (Lum); Rough Cat B; F	of LL: Lum DOL=1.15 n DOL=1.15 Plate Fully Exp.; Ce=0.9; n considered for this
BRACING						15-16=-88/59, 16-17			140		ign.		a designed for a	menter of min reaf live
TOP CHORD			athing directly applied	d or		17-18=-172/26, 18- ⁻ 18-20=-187/36	19=0/3	5, 2-35=-272/	142,					reater of min roof live
			cept end verticals.	в		34-35=-59/167, 33-3	3459	167					ncurrent with oth	
BOT CHORD	0	ng directly	applied or 10-0-0 oc	D		32-33=-59/167, 31-3								erwise indicated.
WEBS	bracing. 1 Row at	midnt	9-29, 11-28, 8-30, 12	70.07		30-31=-59/167, 29-3								e face or securely
						28-29=-59/167, 27-2	28=-59	/167,		bra	ced agai	nst lat	eral movement (i	.e. diagonal web).
FORCES	Max Horiz Max Uplift Max Grav	27=17-5-C 30=17-5-C 33=17-5-C 35=-262 (24=-248 (27=-168 (29=-55 (L 31=-84 (L) 33=-54 (L) 33=-54 (L) 33=-54 (L) 26=112 (L 26=112 (L 28=247 (L 30=174 (L) 30=174 (L) 30=175 (L)	LC 15), 26=-2 (LC 14 LC 15), 28=-35 (LC 1 C 13), 30=-113 (LC 1 C 14), 32=-76 (LC 14 C 14), 34=-201 (LC 1	5-0, 5-0, 5-0 W (), 3), 4), N (4), N (1), 2), 5), 5), 5),	VEBS OTES) Unbalanced this design.) Wind: ASCE Vasd=103m II; Exp B; Er and C-C Co to 8-6-12, C 14-6-12 to 2 cantilever le right expose for reactions DOL=1.60	26-27=-59/167, 24-2 23-24=-59/167, 22-2 21-22=-59/167, 20-2 9-29=-243/122, 11-2 8-30=-153/156, 7-3 5-32=-142/96, 4-33: 12-27=-166/163, 13 15-24=-276/165, 16 I roof live loads have E 7-16; Vult=130mpt ph; TCDL=6.0psf; B tclosed; MWFRS (er mer(3E) -0-10-8 to 2 orner(3R) 8-6-12 to 21-0-0, Corner(3E) 2 ft and right exposed dcjC-C for members a shown; Lumber DC gned for wind loads i	23=-59, 21=-59, 28=-24, 1=-169, =-152/9, -26=-12, -23=-53 been (0 (3-sec CDL=6, CDL=6, 2-1-8, E 14-6-12, 14-6-12, 14-6-12, 1-0-0t t ; end v and for DL=1.60	(167, (167, (167, (112, (112, (4, 3-34=-131), 32/80, 5/70, 17-22=- considered for considered for con	77/62 Cat. e 1-8) ; d S	10) This cho 11) * Th on t 3-0	s truss h and live lo his truss the botto 6-00 tall and and a	as bee bad nor has be m cho by 2-0 iny oth	een designed for rd in all areas wh 0-00 wide will fit er members, with	any other live loads. a live load of 20.0psf
					see Standar	uds exposed to wind rd Industry Gable En ualified building desi	d Deta	ils as applicat	ole,			111	ABETH K	POHLIN ay 7,2024

May 7,2024

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	B03	Common Structural Gable	1	1	Job Reference (optional)	165383303

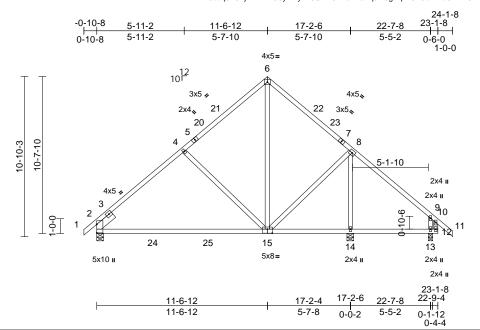
12) One H2.5A Simpson Strong-Tie connectors

- recommended to connect truss to bearing walls due to UPLIFT at jt(s) 35, 29, 28, 30, 31, 32, 33, 34, 27, 26, and 24. This connection is for uplift only and does not consider lateral forces.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries. Inc. Mon May 06 11:58:39 ID:onyrICEMWITAUsFxYbXALJy7LR6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1002 Serenity-Roof-B326 BRH COP BR4	
24030108-01	B01	Common	1	1	Job Reference (optional)	165383304

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon May 06 11:58:39 ID:Nseaq6A9EjNfxKX1O6yXnly7LSU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

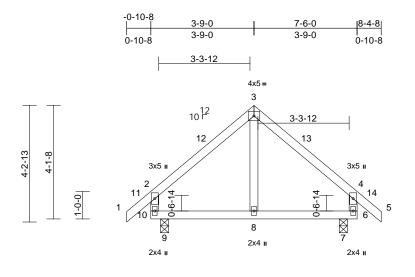
Page: 1

Scale = 1:78.1

Plate Offsets (X,	Y):	[15:0-4-0,0-3-4]
-------------------	-----	------------------

	(,,,,), [,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		8/TPI2014	CSI TC BC WB Matrix-MSH	0.65 0.86 0.47	DEFL Vert(LL) Vert(CT) Horz(CT)	-0.76 0.07	(loc) 15-18 15-18 2	l/defl >442 >272 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 134 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.3 Left 2x6 SP No.2	athing directly applie xcept end verticals. applied or 10-0-0 oc 13=0-3-8, 14=0-5-8 C 13) C 14), 13=-100 (LC 19 C 14) C 5), 13=492 (LC 25) LC 22)	4) d or 5) 6) 7) 5),	Plate DOL= DOL=1.15); Cs=1.00; Ct: Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss ha on the botton 3-06-00 tall I chord and ar One H2.5A S recommende UPLIFT at jt	I.15); Pf=20.0 psf (Is=1.0; Rough Cat	(Lum DC B; Fully been col or great lat roof I o other Ii or a 10. with any I for a liv s where II fit betv with BC e conne s to bear This con	DL=1.15 Plate Exp.; Ce=0. Insidered for t er of min rooi bad of 20.0 p ve loads. 0 psf bottom other live loa re load of 20. a rectangle veen the bott CDL = 10.0ps ctors ing walls due nection is for	e 9; f live sf on ds. 0psf om f.					
this design 2) Wind: AS(Vasd=103 II; Exp B; and C-C E to 8-6-12, 14-6-12 to cantilever right expo	6-8=-597/176, 8-9=- 10-11=0/44, 10-12=: 2-14=-251/721, 13-1 6-15=-97/412, 4-15= 9-13=-269/293, 8-14 ered roof live loads have in. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Bi Enclosed; MWFRS (er Exterior(2E) -0-10-8 to , Exterior(2E) -0-10-8 to , Exterior(2E) 8-6-12 to o 21-1-8, Exterior(2E) 2 r left and right exposed ons shown; Lumber DO	303/117, 9-10=-247/ -224/37 4=0/167, 12-13=0/10 -368/237, 8-15=-45/ =-827/75 been considered for (3-second gust) CDL=6.0psf; h==25ft; ivelope) exterior zon 2-1-8, Interior (1) 2-1 14-6-12, Interior (1) 2-1 14-6-12, Interior (1) 2-1-8 to 24-1-8 zone; end vertical left and and forces & MWFR:	0, L421, L42	International	designed in accord Residential Code nd referenced star Standard	sections	s R502.11.1 a	and			ELITION	SEA 0557	27 EER. H. W.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


May 7,2024

Job	Truss	Truss Type Qt		Ply	1002 Serenity-Roof-B326 BRH COP BR4			
24030108-01	E01	Common	1	1	Job Reference (optional)	165383305		

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon May 06 11:58:40 ID:5YjLyPhGJKHB5AEdSp6x7Qy7LK3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff

Page: 1

Scale = 1:41.9

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MR	0.40 0.29 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 8 8 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 37 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES	6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 7=0-3-8, 1 Max Horiz 9=-114 (L Max Uplift 7=-38 (LC Max Grav 7=460 (L0 (lb) - Maximum Com Tension 1-2=0/49, 2-3=-269/ 4-5=0/49, 2-10=-375 9-10=-11/120, 8-9=- 6-7=-11/120 3-8=-26/84	applied or 10-0-0 or 9=0-3-8 (C 12) (C 15), 9=-38 (LC 14) (C 22), 9=460 (LC 21) pression/Maximum 93, 3-4=-269/91, 5/176, 4-6=-375/174 11/120, 7-8=-11/120	load of 1 overhang 6) This trus chord live 3-06-00 chord an 8) H10A Sin connect and 7. Tl consider 9) This trus Internatic R802.10 LOAD CASE	s has been designe 2.0 psf or 1.00 time: s non-concurrent w s has been designe e load nonconcurrer ss has been design totom chord in all an all by 2-00-00 wide d any other membe mpson Strong-Tie c rruss to bearing wal is connection is for lateral forces. s is designed in acc onal Residential Coc 2 and referenced si (S) Standard	s flat roof le ith other li d for a 10.0 th with any ed for a liv ed for a liv ed for a liv ed for a liv eas where will fit betw rs. onnectors ls due to U uplift only ordance w de sections	bad of 20.0 p ve loads. D psf bottom other live loa e load of 20.0 a rectangle veen the bott recommende PLIFT at jt(s) and does no ith the 2018 s R502.11.1 a	ds. Dpsf om d to 9					
 this design Wind: ASC Vasd=103 II; Exp B; I and C-C E to 5-4-8, E and right e C for mem shown; Lu TCLL: ASC Plate DOL DOL=1.15 Cs=1.00; C 	CE 7-16; Vult=130mph imph; TCDL=6.0psf; B Enclosed; MWFRS (er ixterior(2E) -0-10-8 to ixterior(2E) 5-4-8 to 8- exposed; end vertical ibers and forces & MW imber DOL=1.60 plate CE 7-16; Pr=20.0 psf (L :=1.15); Pf=20.0 psf (L :j; Is=1.0; Rough Cat E	(3-second gust) CDL=6.0psf; h=25ft; tvelope) exterior zon 2-1-8, Exterior(2R) 2 4-8 zone; cantilever left and right expose /FRS for reactions grip DDL=1.60 'roof LL: Lum DOL=1 um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9	Cat. e 2-1-8 left d;C- 1.15							ELILI	SEA 0557 78 TH K	EER.

May 7,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

