

RE: 4600507 LONGLEAF B - LOT 40 - ILA'S WAY

Site Information:

Customer: Project Name: 4600507 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise] Roof Load: 40.0 psf Design Program: MiTek 20/20 8.8 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 12 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	172827217	A01	4/18/2025
2	172827218	A02	4/18/2025
3	172827219	A03	4/18/2025
4	172827220	A04	4/18/2025
5	172827221	A05	4/18/2025
6	172827222	B01G	4/18/2025
7	172827223	B02	4/18/2025
8	172827224	M01	4/18/2025
9	172827225	M02	4/18/2025
10	172827226	M03	4/18/2025
11	172827227	V01	4/18/2025
12	172827228	V02	4/18/2025

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision


based on the parameters provided by Builders FristSource (Pooler, GA).

Truss Design Engineer's Name: Johnson, Andrew

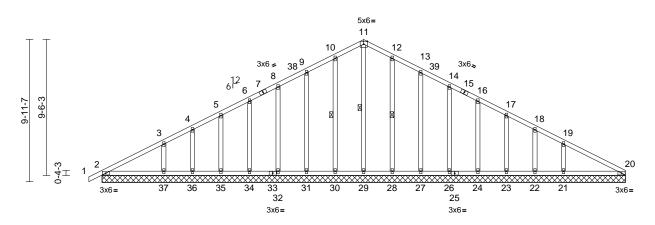
My license renewal date for the state of North Carolina is December 31, 2025

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Johnson, Andrew

Trenco 818 Soundside Rd Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	LONGLEAF B - LOT 40 - ILA'S WAY	
4600507	A01	Common Supported Gable	1	1	Job Reference (optional)	172827217

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 16 17:56:58 ID:QoOnpU5Aiic4YwNiThnLXUz46FF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:80.7		ŀ			36-8-	0						
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Plate Grip DOL1.1Lumber DOL1.1Rep Stress IncrYE	15	CSI TC BC WB Matrix-S	0.22 0.14 0.15	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 20	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 234 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 2=36-8- 22=36-8- 22=36-8- 32=36-8- 32=36-8- 32=36-8- 32=36-8- 32=36-8- 32=36-8- 32=36-8- 32=36-8- 32=36-8- 32=36-8- 32=36-8- 32=36-8- 32=36-8- 32=36-8- 32=36-8- 32=36-8- 32=34-42 (33=-48 (1 35=-54 (1	C 13), 21=-109 (LC 13), LC 13), 23=-54 (LC 13), LC 13), 26=-48 (LC 13), LC 13), 28=-43 (LC 13), LC 12), 31=-51 (LC 12), LC 12), 34=-48 (LC 12), LC 12), 36=-26 (LC 12), (LC 12) C 2), 20=147 (LC 2), LC 33), 22=-72 (LC 33), LC 3), 24=200 (LC 35), LC 3), 27=219 (LC 6), LC 6), 29=252 (LC 29), LC 3), 34=200 (LC 34), LC 3), 36=79 (LC 32),	BOT CHORD WEBS 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp B; E cantilever I plate grip I 3) Truss desis only. For s see Standa or consult 4) TCLL: ASC Plate DOL	35-36=-14/143, 34 32-34=-14/143, 31 30-31=-14/143, 29 28-29=-14/143, 27 26-27=-14/143, 27 26-27=-14/143, 22 21-22=-14/143, 20 11-29=-152/0, 10-3 8-32=-121/72, 6-34 4-36=-67/44, 3-377 13-27=-146/76, 14 16-24=-117/71, 17 18-22=-61/39, 19-2 ed roof live loads hav b CE 7-16; Vult=130mp mph; TCDL=6.0psf; I Enclosed; MWFRS (e left and right expose) DOL=1.60 gned for wind loads is studs exposed to win ard Industry Gable E qualified building des 2E 7-16; Pr=20.0 psf =1.15); Pg=20.0 psf	65/133, -45/206 -13=-46, -16=-39, 9=-69/2 7=-14/1 -35=-14, -32=-14, -32=-14, -32=-14, -32=-14, -28=-14, -28=-14, -28=-14, -29=-14, -21=-14, -21=-14, -21=-14, -21=-14, -21=-14, -21=-14, -223=-13, -223=-13, -223=-13, -223=-13, -223=-13, -223=-13, -223=-14, -21	6-8=-54/157, 5, 10-11=-51/22 (179, (92, 16-17=-40, (3, 19-20=-128, 43, (15))))))))))))))))))))))))))))))))))))	28, 7 /68, 8 /59 9 /75, 79, /67, 7 Cat. 2; 6 e, 1. 15 -=	loac ove 7) All p 3) Gat 9) Gat 9) Gat 9) Gat 10) This cho 11) * Th 0 t cho 11) * Th 0 t cho 12) Pro bea 26 l at jc 26 l at jc 48 l joint 13) This	d of 12.0 rhangs i plates ar plates ar ple requi ple studs s truss h rd live lo his truss he botto 5-00 tall rd and a vide me ring plat 6 lb upli pint 32, 4 b uplift a t 22 and s trus is rrustiona 2.10.2 a	b) psf or non-cc re 2x4 irres co s space s space bad non-cc s space bad non-cc bad non-cc non-cc bad non-cc bad non-cc	2.00 times flat re neurrent with oth ((II) MT20 unless ntinuous bottom ad at 2-0-0 oc. In designed for a neoncurrent with een designed for a neoncurrent with een designed for al ancas wi 0-00 wide will fit er members, with al connection (by able of withstandi nt 30, 51 lb upliff at joint 34, 5- 36, 104 lb upliff at pulift at joint 27, 44 24, 54 lb uplift at o uplift at joint 27, 44 24, 54 lb uplift at ouplift at joint 27, 44 20, 54 lb uplift at ouplift at joint 20, 45 20, 45	otherwise indicated. chord bearing. 10.0 psf bottom any other live loads. a live load of 20.0psf iere a rectangle between the bottom h BCDL = 10.0psf. others) of truss to ng 17 lb uplift at joint 35, at joint 37, 48 lb uplift 4 lb uplift at joint 36, joint 23, 22 lb uplift at ice with the 2018 ions R502.11.1 and
FORCES	,	npression/Maximum	1.15 Plate Exp.; Ce=1	DOL = 1.15); Is=1.0 1.0; Cs=1.00; Ct=1.1 d snow loads have b	; Rough 0	Cat B; Partially	ý			in V	NOREW J	EEP. ON 111

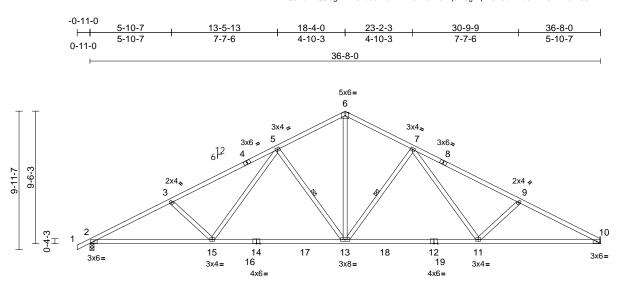
April 18,2025

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and RCSI Building Component Safety (Information available from the Structural Building Component Association (www shearcomponent Safety (Information available from the Structural Building Component Association (www shearcomponent Safety (Information available from the Structural Building Component Association (www shearcomponent Association) (www shearcomponent Association) (wow shearco and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	LONGLEAF B - LOT 40 - ILA'S WAY	
4600507	A01	Common Supported Gable	1	1	Job Reference (optional)	172827217
Builders FirstSource (Savannah)	, Pooler, GA - 31322,	Run: 8.83 S Apr 11 2	Page: 2			

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 16 17:56:58 ID: QoOnpU5Aiic4YwNiThnLXUz46FF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

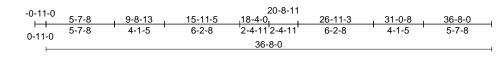
Job	Truss	Truss Type	Qty	Ply	LONGLEAF B - LOT 40 - ILA'S WAY	
4600507	A02	Common	10	1	Job Reference (optional)	172827218

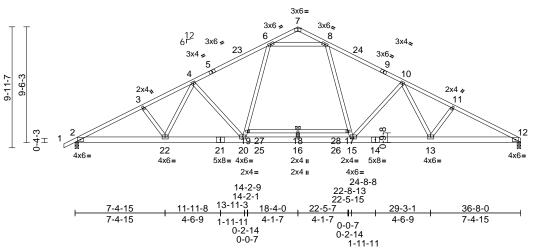
Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 16 17:56:59 ID:k1?QGZcD1QUCgH?wr82ue3z46DH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

		8-9-6		18-4-0			-10-10				36-8-0	4
Scale = 1:82.7		8-9-6	6	9-6-10	I	9.	-6-10		'	1	8-9-6	1
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.83 0.81 0.54	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.28 -0.51 0.11	(loc) 11-13 13-15 10	l/defl >999 >853 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 190 lb	GRIP 244/190 FT = 20%
	2x4 SP No.1 2x4 SP No.3 Structural wood she Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 7 Max Horiz 2=168 (L0 Max Uplift 2=-194 (L Max Grav 2=1523 (L (lb) - Maximum Com Tension 1-2=0/32, 2-3=-2775 5-6=-1720/262, 6-7= 7-9=-2540/323, 9-10 2-15=-406/2429, 13 11-13=-82/1847, 10 6-13=-159/1301, 3-1 5-15=-64/578, 5-13=	5-13, 7-13 10= Mechanical C 12) C 12), 10=-172 (LC 13 .C 2), 10=1457 (LC 2) pression/Maximum)/355, 3-5=-2516/317, -1719/260, 0=-2812/364 -15=-195/1840, -11=-263/2467 5=-384/242,	load of 12.0 overhangs r 6) This truss h chord live lo 7) * This truss on the botto 3-06-00 tall chord and a 8) Refer to girc 9) Provide mea bearing plat 2 and 172 lt 10) This truss is Internationa R802.10.2 a LOAD CASE(S)	ad nonconcurre has been desig m chord in all ai by 1-00-00 wide iny other membe der(s) for truss to chanical connec e capable of wit o uplift at joint 10 designed in acc I Residential Co and referenced s	es flat roof k with other li- ed for a 10.0 ned for a 10.0 reas where e will fit betw ers, with BC o truss conr- tion (by oth hstanding 1 D. cordance w ode sections	bad of 15.4 p ve loads. D psf bottom other live loa e load of 20.1 a rectangle veen the bott DL = 10.0ps eections. ers) of truss 1 94 lb uplift at ith the 2018 s R502.11.1 a	sf on ads. Opsf om f. to t joint					11111
 this design Wind: ASC Vasd=103i II; Exp B; E cantilever I plate grip I TCLL: ASC Plate DOL: 1.15 Plate Exp.; Ce=1 	E 7-16; Vult=130mph mph; TCDL=6.0psf; Bi Enclosed; MWFRS (er eft and right exposed DOL=1.60 CE 7-16; Pr=20.0 psf (=1.15); Pg=20.0 psf; F DOL = 1.15); Is=1.0; I 1.0; Cs=1.00; Ct=1.10	(3-second gust) CDL=6.0psf; h=30ft; C ivelope) exterior zone; ; Lumber DOL=1.60 roof LL: Lum DOL=1.1 Pf=15.4 psf (Lum DOL Rough Cat B; Partially	5 =						Continue	A STATE OF S	SEA 4584	4 ER. OLIV

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




April 18,2025

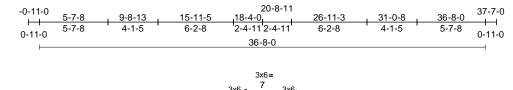
Job	Truss	Truss Type	Qty	Ply	LONGLEAF B - LOT 40 - ILA'S WAY	
4600507	A03	Common	6	1	Job Reference (optional)	172827219

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 16 17:57:00 ID:D?1nVn1fDGF?FkWnuSYA7qz465?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:94.8

Plate Offsets (X, Y): [7:0-3-0,Edge]


	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER TOP CHORD		Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	Plate DO	CSI TC BC WB Matrix-S	sf; Pf=15.4	l psf (Lum DO	-0.48 0.09 1.15 DL =	(loc) 13-15 17-18 12	I/defI >999 >901 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 233 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.3 Structural wood she 2-3-3 oc purlins. Rigid ceiling directly	athing directly applie	Exp.; Ce: 4) Unbaland d or design. 5) This trust load of 12	a DOC = 1.13), IS=1 =1.0; CS=1.00; Ct=1 ed snow loads have has been designed 2.0 psf or 2.00 times s non-concurrent wi	.10 e been cor d for great s flat roof le	nsidered for th er of min roof pad of 15.4 p	his f live					
	bracing. (size) 2=0-3-8, 7 Max Horiz 2=169 (LC Max Uplift 2=-143 (L Max Grav 2=1605 (L (lb) - Maximum Com	C 12) C 12), 12=-120 (LC _C 2), 12=1547 (LC 3	6) This trus chord live 7) * This tru 13) on the bo 3) 3-06-00 t	has been designed load nonconcurren ss has been designe ttom chord in all are all by 1-00-00 wide	d for a 10.4 It with any ed for a live as where will fit betw	0 psf bottom other live loa e load of 20.0 a rectangle veen the botto	0psf om					
TOP CHORD	Tension 1-2=0/37, 2-3=-3033 4-6=-2490/145, 6-7= 8-10=-2491/144, 10 11-12=-3042/239	3/232, 3-4=-2885/237 =-88/34, 7-8=-88/35, -11=-2893/242,	any other member nechanical connecti late capable of with 13 lb uplift at joint 2. is designed in acco nal Residential Cod	on (by oth standing 1 ordance w le sections	ers) of truss t 20 lb uplift at ith the 2018 \$ R502.11.1 a	to t joint						
BOT CHORD	2-22=-291/2653, 20 16-20=0/1948, 15-10 13-15=-23/2436, 12 18-19=-6/12, 17-18= 8-17=0/836, 15-17=	6=0/1948, -13=-149/2664, 6/12		2 and referenced sta (S) Standard	andard An	NSI/TPT1.			ſ		TH CA	ROL
WEBG	6-19=0/835, 6-8=-19 3-22=-232/132, 4-22 4-20=-635/276, 10-1 10-13=-103/438, 11-	946/211, 16-18=-232 2=-97/428, 15=-637/276,	/0,						U	dis	SEA	Wintern
this design 2) Wind: ASC Vasd=103 II; Exp B; I	CE 7-16; Vult=130mph imph; TCDL=6.0psf; B Enclosed; MWFRS (er left and right exposed	Cat. e;						111111	The second se	4584	EEP.ON	

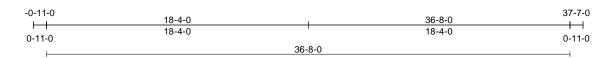
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	LONGLEAF B - LOT 40 - ILA'S WAY	
4600507	A04	Common	1	1	Job Reference (optional)	172827220

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 16 17:57:00 ID:8yRFT?Fpz4M4pF?McCyQjoz45bk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:94.8


Plate Offsets (X, Y): [7:0-3-0,Edge]

					-	· · · · ·							
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.80 0.94 0.89	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.34 -0.48 0.09	(loc) 14-16 18-19 12	l/defl >999 >904 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 235 lb	GRIP 244/190 FT = 20%	
	2x6 SP No.2 *Excep 2x4 SP No.3	12=0-3-8 C 13) C 12), 12=-143 (LC 1 _C 2), 12=1604 (LC 2	Plate DOL 1.15 Plate Exp.; Ce= 4) Unbalance d or 5) This truss load of 12 overhangs 6) This truss chord live 7) * This trus 3) on the bot 3-06-00 ta	CE 7-16; Pr=20.0 ps =1.15); Pg=20.0 ps DOL = 1.15); Is=1. I.0; Cs=1.00; Ct=1. d snow loads have has been designed 0 psf or 2.00 times non-concurrent with has been designed load nonconcurrent s has been designed or chord in all area I by 1-00-00 wide w any other members	f; Pf=15.4 0; Rough 10 been cou for great flat roof l th other li for a 10. with any d for a liv as where vill fit betw	4 psf (Lum Do Cat B; Partia nsidered for t er of min rooi oad of 15.4 p ve loads. 0 psf bottom other live loa e load of 20. a rectangle veen the bott	DL = ally his f live asf on ads. 0psf om						
TOP CHORD	Tension 1-2=0/37, 2-3=-3032 4-6=-2488/144, 6-7= 8-10=-2488/144, 10 11-12=-3032/233, 12	-11=-2884/237,	8) Provide m bearing pl 2 and 143 9) This truss	echanical connectic ate capable of withs lb uplift at joint 12. is designed in acco al Residential Code	on (by oth standing f rdance w	ers) of truss 43 lb uplift a ith the 2018	to t joint						
BOT CHORD	,	-23=-165/2432, 7=0/1946, 14-16=-5/2 9-20=-6/12, 18-19=-6,	432, LOAD CASE	and referenced sta 5) Standard	Indard AN	NSI/TPI 1.			CARO'				
WEBS	20-21=0/756, 6-20= 16-18=0/756, 6-8=-1 3-23=-232/132, 4-23 4-21=-635/276, 10-1 10-14=-98/428, 11-1	944/210, 17-19=-232 3=-97/428, 6=-635/276,	2/0,						\mathcal{C}	È	OR OFFER	lightin	
this design 2) Wind: ASC Vasd=103 II; Exp B; I	ed roof live loads have CE 7-16; Vult=130mph mph; TCDL=6.0psf; Bi Enclosed; MWFRS (er left and right exposed	been considered for (3-second gust) CDL=6.0psf; h=30ft; (avelope) exterior zone							111111	N. N	SEA 4584 SNGIN NOREW J	•	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	LONGLEAF B - LOT 40 - ILA'S WAY	
4600507	A05	Common Supported Gable	1	1	Job Reference (optional)	172827221

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 16 17:57:01 ID:f5b0ADn2flctlt9Q4SAMQtz45Vt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:80.7		 			36-8-0							-
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES RC2018/TPI2014	CSI TC BC WB Matrix-S	0.20 0.14 0.15	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 20	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 236 lb	GRIP 244/190 FT = 20%
	6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 2=36-8-0. 23=36-8-0. 27=36-8-0. 30=36-8-0. 37=36-8-0. 37=36-8-0. 37=36-8-0. 37=36-8-0. 23=-26 (L 23=-26 (L 23=-26 (L 33=-48 (L) 33=-48 (L) 38=-104 (L) 38=-104 (L) 22=343 (L) 23=-200 (L)	$\begin{array}{c} (13), 22 = -103 (LC 13), \\ (C 13), 24 = -54 (LC 13), \\ (C 13), 27 = -48 (LC 13), \\ (C 13), 29 = -42 (LC 13), \\ (C 12), 32 = -51 (LC 12), \\ (C 12), 35 = -48 (LC 12), \\ (C 12), 37 = -26 (LC 12), \\ (LC 12), 37 = -26 (LC 12), \\ (LC 12), 32 = -209 (LC 2), \\ (LC 3), 23 = -79 (LC 3), \\ (LC 3), 23 = -79 (LC 3), \\ (LC 3), 28 = -219 (LC 6), \\ (LC 3), 32 = -219 (LC 6), \\ (LC 3), 32 = -219 (LC 3), \\ (LC 3), 37 = -79 (LC 3), \\ (LC 3), 37 = -70 (LC 3), \\ (LC 3), \\ (LC 3), \\ (LC 3), 37 = -70 (LC 3), \\ ($	BOT CHORD , , , , , , , , , , , , ,	CE 7-16; Vult=130mj mph; TCDL=6.0psf; Enclosed; MWFRS (left and right expose DOL=1.60 gned for wind loads studs exposed to wi ard Industry Gable E qualified building de CE 7-16; Pr=20.0 ps	-64/138, =-45/212 -13=-45, -13=-45, -14=-39, 19=-64/2 38=-14/1 -33=-14, -33=-14, -33=-14, -23=-14, -23=-14, -22=-14, -22=-14, -22=-14, -22=-14, -22=-14, -22=-24, -23=-24, -23=-24, -24=-14, -22=-24, -23=-24, -24=-14, -22=-24, -22=-24, -23=-24, -24=-14, -22=-24, -24=-14, -24=-24, -24, -24=-24	6-8=-53/163, 2, 10-11=-51/233 (185, 97, 16-17=-40/7 25, 19-20=-120/5 152, (172, (172,	3, 7 71, 8 57, 9 57, 9 1 1 1 1 75, 9 3, 1 5 5	load over () All p () Gab () Gab () Gab () This chore (1) * Th () This chore (1) * Th () This () Chore (1) * Th () Chore (1) *	I of 12.0 rhangs r plates ar plates ar plates ar plates ar plates ar truss he botto 5-00 tall rd and a vide mea- ring plat 5 lb upli pint 33, 4 b uplift a t 23 and s truss is rnationa	psf or non-coc e 2x4 res coo s space aad noo has be m cho by 1-0 ny oth chanici e capa ft at joi t8 lb u at joint 103 lk a desig I Resia and ref	r 2.00 times flat ro nocurrent with oth (() MT20 unless intinuous bottom ed at 2-0-0 oc. en designed for a nconcurrent with een designed for a nconcurrent with een designed for rof in all areas wi 00-00 wide will fit er members, with all connection (b) able of withstandi int 31, 51 lb uplift plift at joint 28, 44 25, 54 lb uplift at joint 28, 54 lb uplift at joint 28, 44 25, 54 lb uplift at joint 22, uped in accordance dential Code sect ferenced standar	otherwise indicated. chord bearing. 10.0 psf bottom any other live loads. a live load of 20.0psf here a rectangle between the bottom n BCDL = 10.0psf. others) of truss to ing 19 lb uplift at joint at joint 32, 48 lb uplift d lb uplift at joint 36, at joint 38, 42 lb uplift b uplift at joint 27, joint 24, 26 lb uplift at ce with the 2018 tions R502.11.1 and d ANSI/TPI 1.
FORCES	(lb) - Maximum Com Tension	npression/Maximum	1.15 Plate	=1.15); Pg=20.0 psf DOL = 1.15); Is=1.0 1.0: Cs=1.00; Ct=1.2	; Rough					The second	NO. ENGIN	EERCO

Continued on page 2

WARNING

Exp.; Ce=1.0; Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been considered for this design.

JOHN JOHN April 18,2025

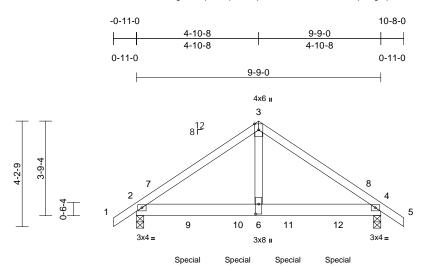
Page: 1

Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Job	Truss	Truss Type	Qty	Ply	LONGLEAF B - LOT 40 - ILA'S WAY	
4600507	A05	Common Supported Gable	1	1	Job Reference (optional)	172827221
Builders FirstSource (Savannah)	, Pooler, GA - 31322,	Run: 8.83 S Apr 11 2	025 Print: 8.8	830 S Apr 11	2025 MiTek Industries, Inc. Wed Apr 16 17:57:01	Page: 2

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Indu ID:f5b0ADn2flctIt9Q4SAMQtz45Vt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	LONGLEAF B - LOT 40 - ILA'S WAY	
4600507	B01G	Common Girder	1	2	Job Reference (optional)	172827222

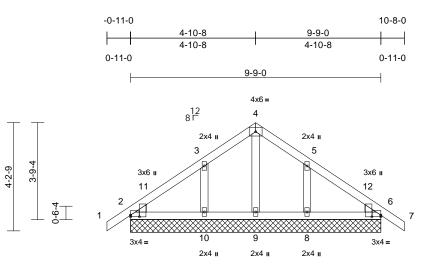
Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 16 17:57:01 ID:gSE80HpMePJp?x9mZpCHMoz45UY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	4-10-8	9-9-0	
Scale = 1:46	4-10-8	4-10-8	
Plate Offsets (X, Y): [6:0-4-12,0-1-8]			

	(X, Y): [6:0-4-12,0-1-8]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.41 0.49 0.85	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.08 0.01	(loc) 4-6 4-6 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 97 lb	GRIP 244/190 FT = 20%
(0.131"x3" Top chord oc. Bottom ch staggered Web conn 2) All loads a except if n CASE(S) : provided t unless oth	2x4 SP No.2 2x6 SP 2400F 2.0E of 2x4 SP No.3 Structural wood sheat 5-11-2 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 4 Max Horiz 2=95 (LC Max Uplift 2=-416 (L Max Grav 2=3259 (L (lb) - Maximum Com Tension 1-2=0/37, 2-3=-3982 4-5=0/37 2-6=-359/3238, 4-6= 3-6=-472/4248 sto be connected toget ') nails as follows: ls connected as follows: ls connected as follows: ords connected as follows: at 0-7-0 oc. rected as follows: 2x4 - are considered equally noted as front (F) or bac section. Ply to ply conro o distribute only loads ervise indicated.	athing directly applied applied or 10-0-0 oc 4=0-3-8 11) C 12), 4=-445 (LC 13 C 26), 4=3494 (LC 2 pression/Maximum 2/510, 3-4=-3979/509 e-359/3238 ther with 10d s: 2x4 - 1 row at 0-9-0 cows: 2x6 - 2 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO, nections have been noted as (F) or (B),	6) 3) 7) 77 8) 7, 9) 10 11 12 AD	Vasd=103m; II; Exp B; En, cantilever lef plate grip DC TCLL: ASCE Plate DOL=1 1.15 Plate DD Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar) Provide mect bearing plate 2 and 445 lb) This truss is International R802.10.2 at Hanger(s) or provided suff lb down and lb up at 4-0- 6-0-12, and * bottom chord device(s) is t DAD CASE(S) Dead + Snd Increase=1 Uniform Loa	7-16; Pr=20.0 ps .15); Pg=20.0 psf OL = 1.15); Is=1.0); Cs=1.00; Ct=1.1 snow loads have I s been designed f psf or 2.00 times f on-concurrent with s been designed f ad nonconcurrent to ab been designed f ad nonconcurrent with s been designed n chord in all area by 1-00-00 wide with y other members. hanical connection capable of withst uplift at joint 4. designed in accor Residential Code nd referenced star other connection icient to support c 184 lb up at 2-0-1 12, and 1484 lb down and 4. The design/sele he responsibility of Standard bw (balanced): Lur .15	BCDL=6 enveloped d; Lumit f (roof LI ; Pf=15.4; r, Rough 0 been cor for great lat roof lu for a 10.1 with any d for a liv s where ill fit betw dance w sections ndard AN device(c) concentra 12, 1484 own and adevice(c) concentra	:.0psf; h=30ff a) exterior zo ber DOL=1.6i cur DOL=1.6i cur DOL=2.6i cur DOL=2.6i	ne; 0 41.15 OL = ally his f live sf on ads. 0psf om to t joint and 1484 184 on otion		12=-127	1270 70 (B)	ads (lb)	44 EERSO

April 18,2025

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

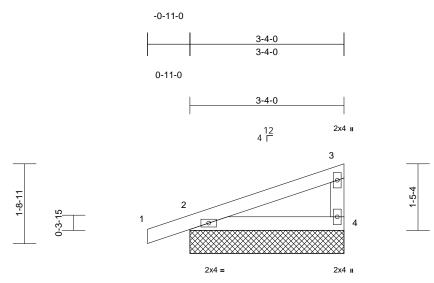
Job	Truss	Truss Type	Qty	Ply	LONGLEAF B - LOT 40 - ILA'S WAY	
4600507	B02	Common Supported Gable	1	1	Job Reference (optional)	172827223

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 16 17:57:01 ID:s?88QMoE0o_Yg8iHAF8I0Oz45S_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	9-9-0	
Scale = 1:44.9		
Plate Offsets (X, Y): [2:Edge,0-0-12], [2:0-0-13,0-4-3], [6:Edge,0-0-12], [6:0-	0-13,0-4-3]	

	X, 1). [2.Euge,0 0 12	?], [2:0-0-13,0-4-3], [6:	Euge,0-0	-12], [0.0-0-13	,0-4-3]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.12 0.06 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 47 lb	GRIP 244/190 FT = 20%
this design 2) Wind: ASC Vasd=103 II; Exp B; cantilever	2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.2 Right: 2x4 SP No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=9-9-0, 6 10=9-9-0 Max Horiz 2=-95 (LC Max Uplift 2=-18 (LC Max Uplift 2=-18 (LC Max Grav 2=169 (LC (LC 20), 9 (LC 19) (lb) - Maximum Com Tension 1-2=0/31, 2-3=-94/7: 4-5=-75/74, 5-6=-69, 2-10=-30/71, 9-10=- 6-8=-30/71 4-9=-81/0, 3-10=-23	 2 13), 6=-24 (LC 13), 2 13), 10=-98 (LC 12) C 2), 6=169 (LC 2), 8: 9=108 (LC 29), 10=29 hpression/Maximum 3, 3-4=-75/83, /58, 6-7=0/31 30/71, 8-9=-30/71, 2/125, 5-8=-232/124 been considered for asecond gust) CDL=6.0psf; h=30ft; (new considered point) 	5) 6) 3-9-0, 7) 8) 9) =299 10 11 12 LC Cat.	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 1.15 Plate DD Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 overhangs n Gable requir Gable studs This truss ha chord live loa)* This truss ha chord live loa)* This truss ha chord and ar) Provide mec bearing plate 2, 24 lb upliff uplift at joint !) This truss is International	designed in accor Residential Code nd referenced star	nd (norm ind Deta signer as f (roof LL ; Pf=152 ; Rough 0 been cor for great lat roof lo n other lin tom chor c. for a 10.0 with any 1 for a liv s where ill fit betv n (by oth anding 1 olift at joi dance w sections	al to the face ils as applical s per ANSI/TK : Lum DOL=: psf (Lum DC Cat B; Partia asidered for th er of min roof bad of 15.4 ps ve loads. d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle veen the bottot ers) of truss t 8 lb uplift at j nt 10 and 96 ith the 2018 R502.11.1 a), ble, PI 1. 1.15 DL = Illy his flive sf on ds. Dpsf om to oint Ib		/	Ŵ	SEA 4584	


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	LONGLEAF B - LOT 40 - ILA'S WAY	
4600507	M01	Monopitch Supported Gable	1	1	Job Reference (optional)	172827224

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 16 17:57:02 ID:OyuBr1ySihf5ncG97jneHDz45LK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

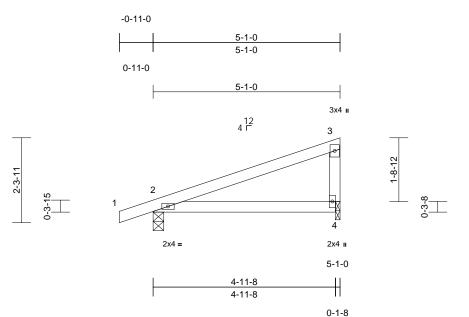
3-4-0

Scale	- 1	1.21	۵

Scale = 1:24.9												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.19 0.12 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a n/a	(loc) - -	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS (FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=103m II; Exp B; E cantilever le plate grip D 2) Truss desig only. For see Standa or consult c 3) TCLL: ASC Plate DOL= 1.15 Plate I Exp.; Ce=1 4) Unbalancer design. 5) This truss H load of 12.C overhangs 6) Gable requ	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 3-4-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=3-4-0, 4 Max Horiz 2=56 (LC Max Uplift 2=-58 (LC Max Grav 2=222 (LC (lb) - Maximum Com Tension 1-2=0/22, 2-3=-40/2 2-4=0/0 E 7-16; Vult=130mph nph; TCDL=6.0psf; Bi inclosed; MWFRS (er eft and right exposed 00L=1.60 gned for wind loads in tuds exposed to wind urd Industry Gable En qualified building desis E 7-16; Pr=20.0 psf (=1.15); Pg=20.0 psf (=1.15); Pg=20.0 psf (=1.15); Is=1.0; I .0; Cs=1.00; Ct=1.10 d snow loads have be nas been designed for 0 psf or 2.00 times fla	cept end verticals. applied or 10-0-0 o 4=3-4-0 8) 2 8), 4=-27 (LC 12) C 19), 4=137 (LC 19) apression/Maximum 7, 3-4=-105/47 (3-second gust) CDL=6.0ps; h=30ft; tovelope) exterior zor ; Lumber DOL=1.60 the plane of the tru (normal to the face d Details as applical gner as per ANSI/TF roof LL: Lum DOL=: 2f=15.4 psf (Lum DC Rough Cat B; Partia een considered for th r greater of min roof t roof load of 15.4 ps other live loads.	<pre>c chord liv 9) * This tru on the b 3-06-00 chord ar 10) Provide bearing 4 and 56 11) This trus Internati R802.10 LOAD CASI)) c cat. ne;)) ss), ble, PI 1. 1.15 DL = Illy his</pre>	s has been designe e load nonconcurrer uss has been design ottom chord in all ar tall by 1-00-00 wide id any other membe mechanical connect plate capable of with b uplift at joint 2. s is designed in acc onal Residential Cor .2 and referenced si E(S) Standard	nt with any ned for a liv eas where will fit betw rs. tion (by oth nstanding 2 cordance w de sections	other live load e load of 20.0 a rectangle veen the botto ers) of truss to 7 lb uplift at jo ith the 2018 s R502.11.1 ar	psf m o vint		Continue	C C C C C C C C C C C C C C C C C C C	OR LESS	L EEP. SO
Gable studs	s spaced at 2-0-0 oc.											il 18 2025

- overhangs non-concurrent with other live loads.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

April 18,2025

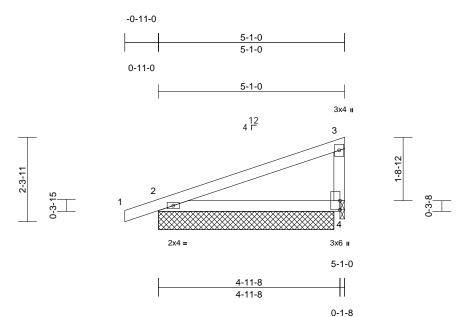
Job	Truss	Truss Type	Qty	Ply	LONGLEAF B - LOT 40 - ILA'S WAY	
4600507	M02	Monopitch	12	1	Job Reference (optional)	172827225

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 16 17:57:02 ID:qAetoQinVXDUT12PEfS1k?z45OE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.3

Loading (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TF	2014 CSI TC BC WB Matrix-R	0.34 0.19 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.03 0.00	(loc) 2-4 2-4 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.2 BRACING	athing directly applied or applied or 10-0-0 oc applied or 10-0-0 oc applied or 10-0-0 oc 10) Tr =0-1-8 8) 8), 4=-44 (LC 12) 19), 4=217 (LC 19) pression/Maximum 3, 3-4=-145/64 (3-second gust) 2DL=6.0psf; h=30ft; Cat. velope) exterior zone; Lumber DOL=1.60 roof LL: Lum DOL=1.15 f=15.4 psf (Lum DOL = Rough Cat B; Partially en considered for this greater of min roof live roof load of 15.4 psf on ther live loads. a 10.0 psf bottom h any other live loads. or a live load of 20.0psf where a rectangle	aring at joint(s) 4 considers ng ANSI/TPI 1 angle to gra signer should verify capacit vvide mechanical connectic aring plate at joint(s) 4. vvide mechanical connectic aring plate capable of withs nd 44 lb uplift at joint 4. s truss is designed in acco ernational Residential Code 02.10.2 and referenced sta CASE(S) Standard	ain formula ty of beari on (by oth on (by oth standing 7 ordance w e sections	a. Building ing surface. ers) of truss t ers) of truss t '1 lb uplift at j ith the 2018 \$ R502.11.1 a	to oint				WITH CA	EEP. 50	2


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	LONGLEAF B - LOT 40 - ILA'S WAY	
4600507	M03	Monopitch Supported Gable	1	1	Job Reference (optional)	827226

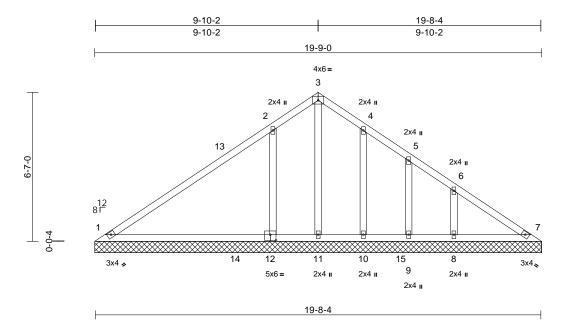
Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 16 17:57:02 ID:JvG6807kGIdXAPD8nWaEfNz45Nh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.5

					-						
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.37 BC 0.21 WB 0.00 Matrix-R	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.03 0.00	(loc) 2-4 2-4 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC	5-1-0 oc purlins. Rigid ceiling directly bracing. (size) 2=4-9-8, · Max Horiz 2=79 (LC Max Uplift 2=-65 (LC Max Grav 2=308 (LC (lb) - Maximum Com Tension 1-2=0/22, 2-3=-199/ 2-4=-27/136 CE 7-16; Vult=130mph	8) C 8), 4=-45 (LC 12) C 19), 4=227 (LC 19) pression/Maximum (5, 3-4=-150/66 (3-second gust)	chord live lo. 8) * This truss is on the bottoo 3-06-00 tall is chord and ar 9) Bearing at jou using ANSI/- designer sho 10) Provide meet bearing platter 11) Provide meet bearing platter 2 and 45 lb is 12) This truss is International R802.10.2 ar LOAD CASE(S)	as been designed for a 10 ad nonconcurrent with any has been designed for a li m chord in all areas where by 1-00-00 wide will fit bet ny other members. bint(s) 4 considers parallel TPI 1 angle to grain formu ould verify capacity of bea chanical connection (by oth e at joint(s) 4. chanical connection (by oth e capable of withstanding uplift at joint 4. designed in accordance w I Residential Code section and referenced standard A Standard	v other live load ve load of 20.0 a rectangle ween the bott to grain value la. Building ring surface. hers) of truss to hers) of truss to 55 lb uplift at j vith the 2018 s R502.11.1 a	Opsf om to to oint					
II; Exp B; E cantilever plate grip I 2) Truss desi only. For s see Standa	mph; TCDL=6.0psf; B Enclosed; MWFRS (er left and right exposed DOL=1.60 gned for wind loads in studs exposed to winc ard Industry Gable En qualified building desi	nvelope) exterior zon ; Lumber DOL=1.60 n the plane of the trus I (normal to the face) d Details as applicate	e; ss , ole,					$\left(\right)$	K.	OPTH CA	ROUTIN

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Gable studs spaced at 2-0-0 oc.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Truss Type Qty Ply LONGLEAF B - LOT 40 - ILA'S WAY		LONGLEAF B - LOT 40 - ILA'S WAY			
4600507	V01	Valley	1	1	Job Reference (optional)	172827227	

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 16 17:57:02 ID:kIWWUsncYtRseiLWxrYurmz45Mr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:50.9

Plate Offsets (X, Y): [12:0-3-0,0-3-0]

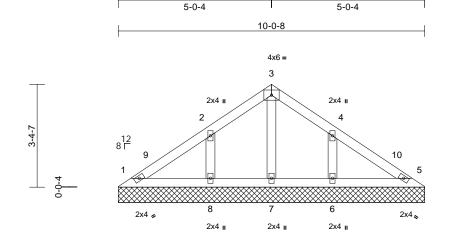
		1											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.75 0.45 0.26	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 94 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=19-9-0, 9=19-9-0, 12=19-9-C Max Horiz 1=-155 (L Max Uplift 1=-11 (LC 9=-49 (LC 11=-147 (C Max Grav 1=222 (LC 8=293 (LC	7=19-9-0, 8=19-9-0, 10=19-9-0, 11=19-9 0 C 8) C 13), 8=-109 (LC 13) LC 31), 10=-66 (LC 13) LC 31), 12=-273 (LC C 2), 7=112 (LC 32), C 26), 9=131 (LC 26) LC 6), 11=172 (LC 12)	5) -0, 6) 7) 8) , 9) 12)	only. For stu see Standarr or consult qu TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss f on the bottor 3-06-00 tall b chord and ar p) Provide mec bearing plate	ed for wind loads ids exposed to wind d Industry Gable E ialified building de: 7-16; Pr=20.0 psf; OL = 1.15); Is=1.0); Cs=1.00; Ct=1.1 snow loads have f es continuous bott spaced at 2-0-0 or is been designed fad nonconcurrent in has been designed n chord in all area by 1-00-00 wide wind y other members, hanical connectior e capable of withst ff at joint 11, 273 I	nd (norm ind Deta signer a f (roof Ll ; Pf=15. ; Rough 0 beeen col com choic c. for a 10. with any I for a liv s where ill fit betw with BC n (by oth anding	al to the face ils as applical s per ANSI/TF t psf (Lum DC Cat B; Partia nsidered for th d bearing. D psf bottom other live loa e load of 20.0 a rectangle ween the bottt CDL = 10.0psf 1 U.0psf t russ t 1 lb uplift at j), ble, PI 1. 1.15 DL = Illy ds. 0psf o o oont					
FORCES	(lb) - Maximum Com Tension	pression/Maximum			10, 49 lb uplift at j								11111
TOP CHORD	1-2=-128/215, 2-3=- 4-5=-44/65, 5-6=-49	,	^{3,} 11	 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and 								"ATH CA	ROLIN
BOT CHORD		=-55/120, 9-10=-55/	,	R802.10.2 and referenced standard ANSI/TPI 1.							Cristin		
WEBS	3-11=-170/89, 2-12=			LOAD CASE(S) Standard								Ki E	
this desig 2) Wind: AS Vasd=103 II; Exp B; cantilever	ed roof live loads have	Cat.							1111111	N. M. M.	SEA 4584 VOREW J	EER.OR	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

mmm April 18,2025

Job	Truss	Truss Type	Qty	Ply	LONGLEAF B - LOT 40 - ILA'S WAY		
4600507	V02	Valley	1	1	Job Reference (optional)	172827228	


5-0-4

Builders FirstSource (Savannah), Pooler, GA - 31322,

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Wed Apr 16 17:57:03 ID:z4h183QojkECcb0AkX6XOXzQ46q-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1<u>0-0-8</u>

Page: 1

10-0-8

Scale =	1:37.7
---------	--------

Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 20.0 15.4/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC 0.11 BC 0.05 WB 0.05	DEFLinVert(LL)n/aVert(TL)n/aHoriz(TL)0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0 10.0	Code	IRC2018/TPI2014	Matrix-S					Weight: 40 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sl 6-0-0 oc purlins. Rigid ceiling direc bracing. (size) 1=10-0 7=10-0 Max Horiz 1=-75 (Max Uplift 1=-7 (L (LC 12) Max Grav 1=95 (L (LC 19) 18)	C 13), 6=-90 (LC 13), C 18), 5=95 (LC 19), (, 7=104 (LC 28), 8=28	Plate DOL= 1.15 Plate I Exp.; Ce=1. 5) Unbalanced design. 6) Gable studs 7) Gable studs 8) This truss h chord live ld 9) * This truss on the botto 6=284 10) Provide me bearing plat 90 lb uplift a 90 lb uplift a 11) This truss h	E 7-16; Pr=20.0 psf (roof L1 1.15); Pg=20.0 psf; Pf=15.4 OOL = 1.15); Is=1.0; Rough 0; Cs=1.00; Ct=1.10 I snow loads have been col res continuous bottom choi s spaced at 2-0-0 oc. as been designed for a 10. bad nonconcurrent with any has been designed in accordance with a and 90 lb uplift at j designed in accordance with a state of the state of t	4 psf (Lum DOL = 1 Cat B; Partially Insidered for this rd bearing. 0 psf bottom 7 other live loads. 7 lo uplift at joint 1, oint 6.					
TOP CHORD	(lb) - Maximum Co Tension 1-2=-71/64, 2-3=-	ompression/Maximum 72/70, 3-4=-72/60,	Internationa	Il Residential Code sections and referenced standard AN						
BOT CHORD	4-5=-54/51 1-8=-24/52, 7-8=-2 5-6=-24/52	24/52, 6-7=-24/52,		JUanuaru						110.
WEBS		22/116, 4-6=-222/116							What CA	Dally
 this design Wind: ASO Vasd=103 II; Exp B; cantilever plate grip Truss des only. For see Stand 	n. CE 7-16; Vult=130m mph; TCDL=6.0psf; Enclosed; MWFRS (left and right expose DOL=1.60 igned for wind loads studs exposed to wi ard Industry Gable E	ve been considered fo bh (3-second gust) BCDL=6.0psf; h=30ft; envelope) exterior zor d; Lumber DOL=1.60 in the plane of the tru hd (normal to the face ind Details as applical signer as per ANSI/TF	; Cat. ;e;) ss), ble,				Comment	E.	SEA 458 VOREW J	44 EER O

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

11 JULIA April 18,2025

