

RE: J0325-1595 Lot 79 Ducks Landing Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: J0325-1595 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.6 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 25 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. 1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 10 10 11 12 10 10 10 10 10 10 10 10 10 10 10 10 10	Seal# I73916245 I73916246 I73916247 I73916248 I73916249 I73916250 I73916251 I73916252 I73916253 I73916255 I73916255 I73916256 I73916258 I73916259 I73916260 I73916261 I73916261 I73916262	Truss Name A1 A1-GE A2 A3 A4 B1 B1-GE C1 D1-GE H01 J1 J2 J3 M01 M02 M03 M04 M05	Date 6/3/2025	No. 21 22 23 24 25	Seal# 73916265 73916266 73916267 73916268 73916269	Truss Name P2 VC01 VC02 VC03 VC04	Date 6/3/2025 6/3/2025 6/3/2025 6/3/2025
19	173916263	M05 M06	6/3/2025				
20	173916264	P1	6/3/2025				

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

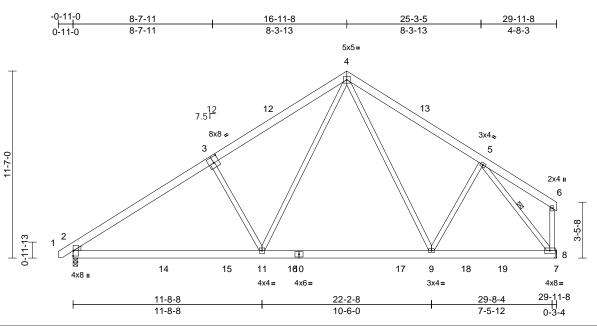
based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2025

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



Gilbert, Eric

Job	Truss	Truss Type	Qty	Ply	Lot 79 Ducks Landing	
J0325-1595	A1	COMMON	5	1	Job Reference (optional)	173916245

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 03 07:30:21 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

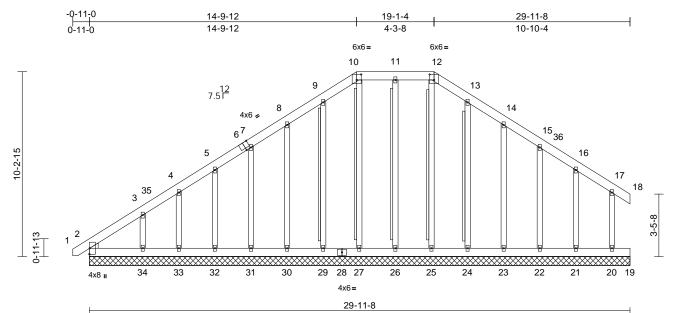
Plate Offsets (X, Y): [3:0-4-0,0-4-8]

Scale = 1:71.4

- 100010	(,,, ,). [e.e : e,e : e]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/T	PI2014	CSI TC BC WB Matrix-S	0.33 0.67 0.46	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.18 -0.31 0.03 0.05	(loc) 2-11 2-11 8 2-11	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 225 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	 2x6 SP No.1 2x4 SP No.2 Left: 2x4 SP No.2 Structural wood sheat 5-1-4 oc purlins, exc Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 8 Max Horiz 2=262 (LC Max Uplift 2=-108 (LL 	cept end verticals. applied or 10-0-0 o 5-8 B= Mechanical C 7) C 10), 8=-77 (LC 11	o 3 5) B ed or 6) R b jc LOAI	on the botton B-06-00 tall b shord and an Bearings are capacity of 50 Refer to girde Provide mech pearing plate	er(s) for truss to tru nanical connection capable of withsta I b uplift at joint 8.	s where II fit betw with BC Joint 2 S uss conr a (by oth anding 1	a rectangle veen the bott DL = 10.0ps SP No.1 crust nections. ers) of truss	om f. hing to					
FORCES	Max Grav 2=1566 (L (lb) - Maximum Com Tension	<i>,,</i>	18)										
TOP CHORD	1-2=0/0, 2-4=-2046/ 5-6=-60/90, 6-8=-81/												
BOT CHORD	2-11=-316/1778, 9-1 8-9=-189/978, 7-8=0												
WEBS	3-11=-463/309, 4-11 5-9=-37/341, 5-8=-10		4/353,									OP FESS	1111
NOTES	,											WTH CA	Roite
	ed roof live loads have	been considered fo	r								N	OH STEEC	in Alle
this desig	jn.										22	OFESS	N: VI
	CE 7-16; Vult=130mph										E	non g	and in
	3mph; TCDL=6.0psf; B0 xp C; Enclosed; MWFR									100	00		
	2E) -0-8-13 to 3-8-0, Inte									= =		SEA	L <u>:</u> E
	2R) 12-7-3 to 21-4-13, Ir									=	:	0363	22 : =
	Exterior(2E) 25-3-15 to									-	3		1 - E
	and forces & MWFRS		;								-	·	A 1. 3
	DOL=1.60 plate grip DO s has been designed for										20	NGINI	ENAS
	e load nonconcurrent wi		ds								14	SEA 0363	THE AND

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-8-13 to 3-8-0, Interior (1) 3-8-0 to 12-7-3, Exterior(2R) 12-7-3 to 21-4-13, Interior (1) 21-4-13 to 25-3-15, Exterior(2E) 25-3-15 to 29-8-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 79 Ducks Landing	
J0325-1595	A1-GE	GABLE	1	1	Job Reference (optional)	173916246

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 03 07:30:22 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:63.8

Plate Offsets (X, Y): [6:0-3-0,Edge], [10:0-3-0,0-3-10], [12:0-3-0,0-3-10]

	, i). [0.0 0 0,∟uge]	, [10.0-3-0,0-3-10], [12	.0-3-0,0-3-10]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-S	0.04 0.02 0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 18	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 284 lb	GRIP 244/190 FT = 20%		
LUMBER TOP CHORD BOT CHORD OTHERS WEDGE BRACING TOP CHORD BOT CHORD WEBS	SPF No.2(flat) Left: 2x4 SP No.2 Structural wood she 6-0-0 oc purlins.	ot* 0-0,0-0,0-0,0-0,0-0: eathing directly applied / applied or 6-0-0 oc 2x4 SPF No.2 - 10-27	or FORCES	Max Grav 2=240 (LC 18), 18=23 (LC 18), 19=10 (LC 3), 20=141 (LC 18), 21=183 (LC 18), 22=174 (LC 18), 23=180 (LC 18), 24=165 (LC 18), 25=174 (LC 20), 26=179 (LC 1), 27=194 (LC 20), 29=178 (LC 17), 30=176 (LC 17), 31=174 (LC 17), 32=179 (LC 17), 33=151 (LC 17), 34=284 (LC 17) (lb) - Maximum Compression/Maximum Tension 1-2=0/0, 2-3=-330/318, 3-4=-251/246,					 zone and C-C Corner(3E) -0-8-13 to 3-8-0, Exterior(3-8-0 to 10-5-7, Corner(3R) 10-5-7 to 23-6-9, Exterior((2N) 23-6-9 to 25-7-3, Corner(3E) 25-7-3 to 30-0-0, zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water pondin All plates are 2x4 MT20 unless otherwise indicated. Gable requires continuous bottom chord bearing. This truss has been designed for a 10.0 psf bottom 					
	Fasten (2X) T and of web with 10d (0.1 o.c.,with 3in minimu Brace must cover	9-29, 11-26, 12-25, 13 I braces to narrow edg 131"x3") nails, 6in Im end distance. 90% of web length.	, 3-24	1-2=0/0, 2-3=-330/318, 3-4=-251/246, 4-5=-229/241, 5-7=-212/246, 7-8=-192/286, 8-9=-175/329, 9-10=-193/354, 10-11=-174/321, 11-12=-174/321, 12-13=-193/341, 13-14=-164/287, 14-15=-123/213, 15-16=-86/144,				 chord live load nonconcurrent with any other live lo * This truss has been designed for a live load of 30 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bot 						
REACTIONS	19=29-11 21=29-11 23=29-11 25=29-11	I-8, 24=29-11-8, I-8, 26=29-11-8,	BOT CHORD	16-17=-45/73, 17-18=-9/24 chord and any other members 2-34=-1/1, 33-34=-1/1, 32-33=-1/1, 31-32=-1/1, 32-33=-1/1, 29-30					ssumed to be SP	6				
	$\begin{array}{c} 21=29\cdot11\cdot8,\ 22=29\cdot11\cdot8,\ 23=29\cdot11\cdot8,\ 24=29\cdot11\cdot8,\ 25=29\cdot11\cdot8,\ 25=29\cdot11\cdot8,\ 25=29\cdot11\cdot8,\ 30=29\cdot11\cdot8,\ 31=29\cdot11\cdot8,\ 32=29\cdot11\cdot8,\ 33=29\cdot11\cdot8,\ 33=29\cdot11\cdot8,\ 33=29\cdot11\cdot8,\ 34=29\cdot11\cdot8,\ 32=293\ (LC\ 7)\\ Max\ Uplift\ 2=\cdot135\ (LC\ 6),\ 18=\cdot18\ (LC\ 11),\ 20=\cdot66\ (LC\ 11),\ 21=\cdot90\ (LC\ 11),\ 22=\cdot86\ (LC\ 11),\ 21=\cdot90\ (LC\ 11),\ 22=\cdot86\ (LC\ 11),\ 22=\cdot86\ (LC\ 11),\ 23=\cdot97\ (LC\ 11),\ 24=\cdot57\ (LC\ 11),\ 25=\cdot11\ (LC\ 7),\ 26=\cdot64\ (LC\ 7),\ 27=\cdot49\ (LC\ 7),\ 29=\cdot69\ (LC\ 10),\ 30=\cdot93\ (LC\ 10),\ 31=\cdot86\ (LC\ 10),\ 32=\cdot88\ (LC\ 10),\ 33=\cdot73\ (LC\ 10),\ 34=\cdot172\ (LC\ 10)\\ \end{array}$			24-25=0/0, 23-24=0/0, 22-23=0/0, 21-22=0/0, 20-21=0/0, 19-20=0/0 10-27=-154/69, 9-29=-138/89, 8-30=-136/113, 7-31=-135/106, 5-32=-136/107, 4-33=-123/95, 3-34=-213/186, 11-26=-139/84, 12-25=-134/31, 13-24=-125/77, 14-23=-140/117, 15-22=-135/106, 16-21=-142/111, 17-20=-106/83 ed roof live loads have been considered for 1.			r	SEAL 036322						

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeR% connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the Section of the prevent collapse contervent for the Section of them been section of the prevent of the prevent of them been section of the prevent of the prevent of the prevent of them been section of the prevent and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

June 3,2025

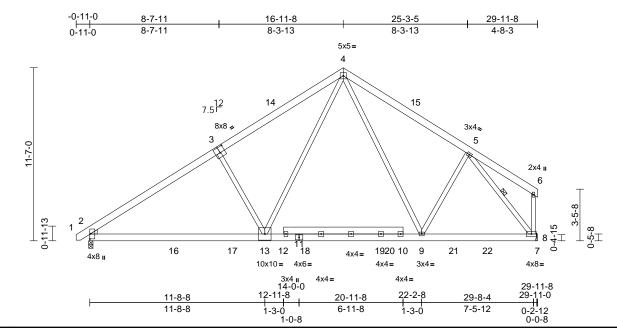
Job	Truss	Truss Type	Qty	Ply	Lot 79 Ducks Landing	
J0325-1595	A1-GE	GABLE	1	1	Job Reference (optional)	173916246

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 18, 135 lb uplift at joint 2, 49 lb uplift at joint 27, 69 lb uplift at joint 29, 93 lb uplift at joint 30, 86 lb uplift at joint 31, 88 lb uplift at joint 32, 73 lb uplift at joint 33, 172 lb uplift at joint 34, 64 lb uplift at joint 26, 11 lb uplift at joint 25, 57 lb uplift at joint 24, 97 lb uplift at joint 23, 86 lb uplift at joint 22, 90 lb uplift at joint 21 and 66 lb uplift at joint 20.

 Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

LOAD CASE(S) Standard

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 03 07:30:22 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 79 Ducks Landing	
J0325-1595	A2	COMMON	5	1	Job Reference (optional)	173916247

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 03 07:30:23 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

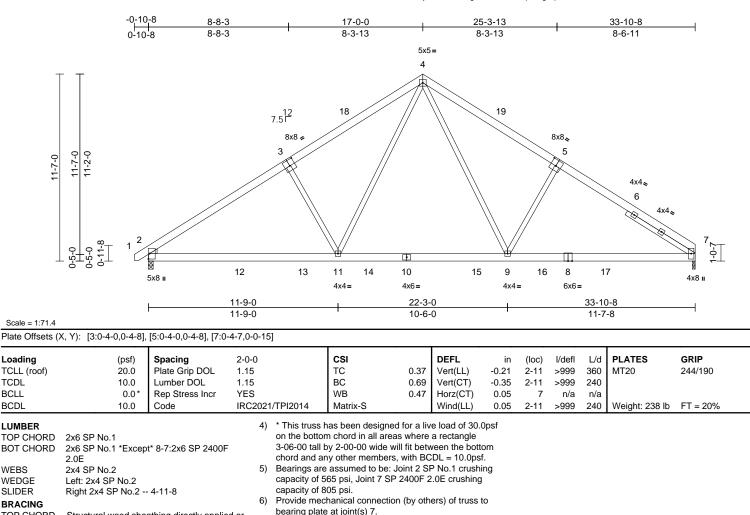
Page: 1

Plate Offsets (X, Y): [3:0-4-0,0-4-8]

Scale = 1:77.1

				-										
Loa	ading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
	LL (roof)	20.0	Plate Grip DOL	1.15		TC	0.32	Vert(LL)	-0.20	2-13	>999	360	MT20	244/190
TC	· · ·	10.0	Lumber DOL	1.15		BC	0.76	Vert(CT)	-0.32	2-13	>999	240		
BC	LL	0.0*	Rep Stress Incr	YES		WB	0.42	Horz(CT)	0.04	8	n/a	n/a		
BC	DL	10.0	Code	IRC2021/TPI	2014	Matrix-S		Wind(LL)	0.04	2-13	>999	240	Weight: 243 lb	FT = 20%
				0 T										
	MBER	0.000 N				s been designed			do					
	P CHORD					as been designed								
	T CHORD					n chord in all area			оры					
	BS	2x4 SP No.2 Left: 2x4 SP No.2				y 2-00-00 wide w			om					
		Leit. 284 SP 110.2				y other members								
		Other strengthere and all a	- the internation of the second in	O) D		assumed to be: J								
10	P CHORD				pacity of 56									
BO	T CHORD	4-11-2 oc purlins, e Rigid ceiling directly		7) Dot		er(s) for truss to tr	russ conr	ections.						
вО	TOTORD	bracing.				nanical connection			to					
WE	BS	0	5-8	bea	aring plate	capable of withst	tanding 2	2 lb uplift at j	joint					
			3= Mechanical	2.										
NL.		Max Horiz 2=262 (LC		LOAD	CASE(S)	Standard								
		Max Uplift 2=-22 (LC												
		Max Grav 2=1644 (L		18)										
FO	RCES	(lb) - Maximum Com	<i>,,</i>	,										
		Tension												
TO	P CHORD			,										
		5-6=-65/90, 6-8=-84												
BO	T CHORD													
		8-9=-102/1049, 7-8=		10.07										
WE	BS	3-13=-455/318, 4-13	,	/397,									minin	1111.
		5-9=0/385, 5-8=-172	25/173										OR FESS	ROUL
	TES											1	A	OL MA
1)		ed roof live loads have	been considered to	r								51	O`.:EESS	On Viz
2)	this design	n. CE 7-16; Vult=130mph	(2 accord quat)									~ >		5. 7 ·
2)		3mph; TCDL=6.0psf; B										- 4	UN Z	NUS
		p C; Enclosed; MWFR										0	CEA	
		E) -0-8-13 to 3-8-0, Inte											SEA	4 <u>8</u> 8
		R) 12-7-3 to 21-4-13, li											0363	22 : =
	· ·	Exterior(2E) 25-3-15 to	()								-			1 2
		and forces & MWFRS										-		1 2
	Lumber D	OL=1.60 plate grip DO	L=1.60									- 1	N. En	Rih S
3)	200.0lb A0	C unit load placed on the	he bottom chord,									20	GIN	A.S
	16-11-8 fr	om left end, supported	at two points, 5-0-0	1								11	SEA 0363	BEIN
	apart.												A. G	IL LINN
													111111	1111.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



minin June 3,2025

Job	Truss	Truss Type	Qty	Ply	Lot 79 Ducks Landing	
J0325-1595	A3	Common	4	1	Job Reference (optional)	173916248

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 03 07:30:23 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

- TOP CHORD Structural wood sheathing directly applied or 4-7-10 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 2=0-3-8, 7=0-2-0
- Max Horiz 2=-266 (LC 6) Max Uplift 2=-118 (LC 10), 7=-106 (LC 11) Max Grav 2=1778 (LC 17), 7=1728 (LC 18) FORCES (lb) - Maximum Compression/Maximum Tension 1-2=0/0, 2-4=-2419/550, 4-7=-2391/545 TOP CHORD BOT CHORD 2-11=-263/2110, 9-11=-42/1416, 7-9=-260/1887 WEBS 4-11=-180/1127, 3-11=-451/308,

NOTES

TCDL

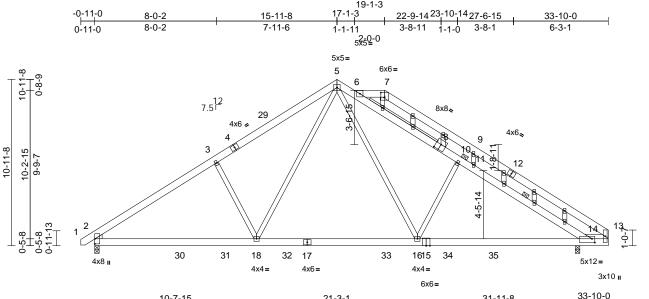
BCLL

BCDL

Unbalanced roof live loads have been considered for 1) this design.

4-9=-175/1079, 5-9=-435/307

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-8-13 to 3-8-0, Interior (1) 3-8-0 to 12-7-3, Exterior(2R) 12-7-3 to 21-4-13, Interior (1) 21-4-13 to 29-5-11, Exterior(2E) 29-5-11 to 33-10-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


- bearing plate at joint(s) 7.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 118 lb uplift at joint 2 and 106 lb uplift at joint 7.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 79 Ducks Landing	
J0325-1595	A4	GABLE	1	1	Job Reference (optional)	173916249

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 03 07:30:23 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	10-7-15	21-3-1	31-11-8		
	10-7-15	10-7-2	10-8-7	1-10-8	
Scale = 1:75.9	10110		10 0 1		
Plate Offsets (X, Y): [7:0-3-0,0-3-10], [8	:0-4-0,0-4-8], [14:0-2-4,0-3-0]				

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.44	Vert(LL)	-0.16	16-18	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.61	Vert(CT)	-0.23	16-18	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.67	Horz(CT)	0.05	14	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S		Wind(LL)	0.05	2-18	>999	240	Weight: 281 lb	FT = 20%

LUMBER	
TOP CHORD	2x6 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x4 SP No.2
OTHERS	2x4 SP No.2 *Except* 0-0:2x4 SPF No.2(flat)
WEDGE	Left: 2x4 SP No.2
SLIDER	Right 2x4 SP No.2 1-6-8
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	4-11-4 oc purlins. Except:
T-Brace:	2x4 SPF No.2 -
	6-10
1 Row at midpt	10-14
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
JOINTS	1 Brace at Jt(s): 10
REACTIONS ((size) 2=0-3-8, 14=0-3-8
	(size) 2=0-3-8, 14=0-3-8 Max Horiz 2=-313 (LC 8)
1	
1	Max Horiz 2=-313 (LC 8)
1	Max Horiz 2=-313 (LC 8) Max Uplift 2=-307 (LC 10), 14=-325 (LC 11)
 	Max Horiz 2=-313 (LC 8) Max Uplift 2=-307 (LC 10), 14=-325 (LC 11) Max Grav 2=1679 (LC 17), 14=1741 (LC 18)
 	Max Horiz 2=-313 (LC 8) Max Uplift 2=-307 (LC 10), 14=-325 (LC 11) Max Grav 2=1679 (LC 17), 14=1741 (LC 18) (Ib) - Maximum Compression/Maximum
FORCES	Max Horiz 2=-313 (LC 8) Max Uplift 2=-307 (LC 10), 14=-325 (LC 11) Max Grav 2=1679 (LC 17), 14=1741 (LC 18) (Ib) - Maximum Compression/Maximum Tension
FORCES	Max Horiz 2=-313 (LC 8) Max Uplift 2=-307 (LC 10), 14=-325 (LC 11) Max Grav 2=1679 (LC 17), 14=1741 (LC 18) (Ib) - Maximum Compression/Maximum Tension 1-2=0/0, 2-3=-2289/423, 3-5=-2137/508,
FORCES	Max Horiz 2=-313 (LC 8) Max Uplift 2=-307 (LC 10), 14=-325 (LC 11) Max Grav 2=1679 (LC 17), 14=1741 (LC 18) (Ib) - Maximum Compression/Maximum Tension 1-2=0/0, 2-3=-2289/423, 3-5=-2137/508, 5-6=-1792/479, 6-10=-1416/242,
FORCES	Max Horiz 2=-313 (LC 8) Max Uplift 2=-307 (LC 10), 14=-325 (LC 11) Max Grav 2=1679 (LC 17), 14=1741 (LC 18) (lb) - Maximum Compression/Maximum Tension 1-2=0/0, 2-3=-2289/423, 3-5=-2137/508, 5-6=-1792/479, 6-10=-1416/242, 10-11=-1405/228, 11-14=-1531/381, 6-7=-534/352, 7-9=-697/353, 9-13=-687/79 2-18=-414/2031, 16-18=-108/1350,
FORCES TOP CHORD BOT CHORD	Max Horiz 2=-313 (LC 8) Max Uplift 2=-307 (LC 10), 14=-325 (LC 11) Max Grav 2=1679 (LC 17), 14=1741 (LC 18) (lb) - Maximum Compression/Maximum Tension 1-2=0/0, 2-3=-2289/423, 3-5=-2137/508, 5-6=-1792/479, 6-10=-1416/242, 10-11=-1405/228, 11-14=-1531/381, 6-7=-534/352, 7-9=-697/353, 9-13=-687/79 2-18=-414/2031, 16-18=-108/1350, 14-16=-218/1734, 13-14=0/472
FORCES	Max Horiz 2=-313 (LC 8) Max Uplift 2=-307 (LC 10), 14=-325 (LC 11) Max Grav 2=1679 (LC 17), 14=1741 (LC 18) (lb) - Maximum Compression/Maximum Tension 1-2=0/0, 2-3=-2289/423, 3-5=-2137/508, 5-6=-1792/479, 6-10=-1416/242, 10-11=-1405/228, 11-14=-1531/381, 6-7=-534/352, 7-9=-697/353, 9-13=-687/79 2-18=-414/2031, 16-18=-108/1350, 14-16=-218/1734, 13-14=0/472 5-18=-281/1083, 3-18=-422/396,
FORCES TOP CHORD BOT CHORD	Max Horiz 2=-313 (LC 8) Max Uplift 2=-307 (LC 10), 14=-325 (LC 11) Max Grav 2=1679 (LC 17), 14=1741 (LC 18) (lb) - Maximum Compression/Maximum Tension 1-2=0/0, 2-3=-2289/423, 3-5=-2137/508, 5-6=-1792/479, 6-10=-1416/242, 10-11=-1405/228, 11-14=-1531/381, 6-7=-534/352, 7-9=-697/353, 9-13=-687/79 2-18=-414/2031, 16-18=-108/1350, 14-16=-218/1734, 13-14=0/472 5-18=-281/1083, 3-18=-422/396, 5-16=-238/946, 10-16=-373/365,
FORCES TOP CHORD BOT CHORD	Max Horiz 2=-313 (LC 8) Max Uplift 2=-307 (LC 10), 14=-325 (LC 11) Max Grav 2=1679 (LC 17), 14=1741 (LC 18) (lb) - Maximum Compression/Maximum Tension 1-2=0/0, 2-3=-2289/423, 3-5=-2137/508, 5-6=-1792/479, 6-10=-1416/242, 10-11=-1405/228, 11-14=-1531/381, 6-7=-534/352, 7-9=-697/353, 9-13=-687/79 2-18=-414/2031, 16-18=-108/1350, 14-16=-218/1734, 13-14=0/472 5-18=-281/1083, 3-18=-422/396,

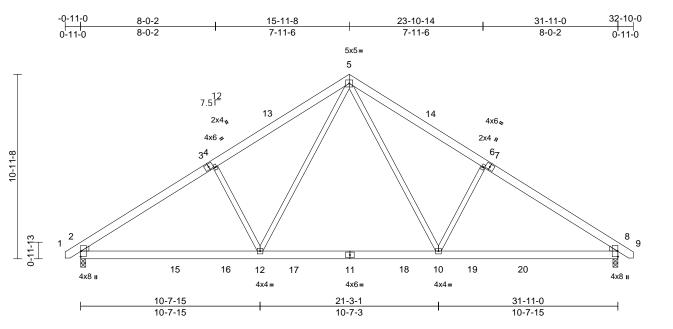
Unbalanced roof live loads have been considered for 1) this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-8-13 to 3-8-0, Interior (1) 3-8-0 to 11-7-3, Exterior(2R) 11-7-3 to 19-1-11, Exterior (2E) 16-0-0 to 17-0-15, Interior (1) 19-1-11 to 29-5-11, Exterior(2E) 29-5-11 to 33-10-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding.

- All plates are 2x4 MT20 unless otherwise indicated. 4)
- This truss has been designed for a 10.0 psf bottom 5)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 30.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf. All bearings are assumed to be SP No.1 crushing 7) capacity of 565 psi.
- Provide mechanical connection (by others) of truss to 8) bearing plate capable of withstanding 307 lb uplift at joint 2 and 325 lb uplift at joint 14.
- Graphical purlin representation does not depict the size 9) or the orientation of the purlin along the top and/or bottom chord.
- 10) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

LOAD CASE(S) Standard

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

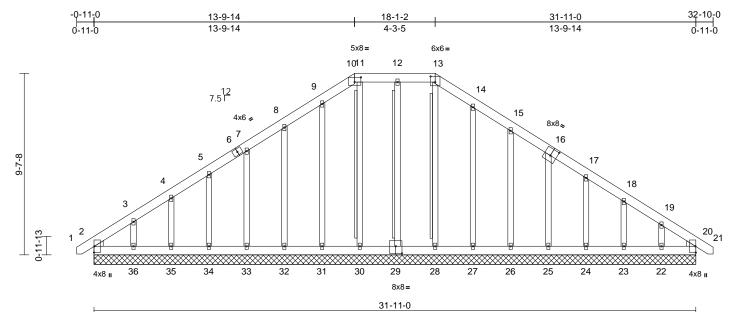
Job	Truss	Truss Type	Qty	Ply	Lot 79 Ducks Landing	
J0325-1595	B1	COMMON	5	1	Job Reference (optional)	173916250

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 03 07:30:23 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:68.4
---------	--------

		i			i		i					i	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.37	Vert(LL)	-0.16	10-12	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.59	Vert(CT)	-0.22	10-12	>999	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.40	Horz(CT)	0.04	8	n/a	n/a		
BCDL	10.0	Code	IRC2021	/TPI2014	Matrix-S		Wind(LL)	0.04	2-12	>999	240	Weight: 220 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE	2x6 SP No.1 2x6 SP No.1 2x4 SP No.2 Left: 2x4 SP No.2		4) 5)	on the bottor 3-06-00 tall t chord and ar	has been designed m chord in all area by 2-00-00 wide wi hy other members, are assumed to be	s where II fit betv with BC	a rectangle veen the bott DL = 10.0ps	om					
BRACING TOP CHORD	BRACING 6) Provide mechanical connection (by others) of truss to OP CHORD Structural wood sheathing directly applied or 4-11-14 oc purlins.												
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	oc LC	AD CASE(S)	Standard								
	(size) 2=0-3-8, 8 Max Horiz 2=251 (LC Max Uplift 2=-112 (L Max Grav 2=1655 (L	C 7) C 10), 8=-112 (LC 1	,										
FORCES	(lb) - Maximum Com Tension	<i>,,</i>	,										
TOP CHORD	1-2=0/0, 2-4=-2254/- 5-6=-2100/521, 6-8=												
BOT CHORD	2-12=-246/1958, 10- 8-10=-246/1772	,											
WEBS	5-10=-168/1050, 6-1 5-12=-168/1049, 4-1	,											
NOTES													11111
												· · · · · / · /	13 11


- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-8-13 to 3-8-0, Interior (1) 3-8-0 to 11-7-3, Exterior(2R) 11-7-3 to 20-4-13, Interior (1) 20-4-13 to 28-4-0, Exterior(2E) 28-4-0 to 32-8-13 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 79 Ducks Landing	
J0325-1595	B1-GE	HIP SUPPORTED GABLE	1	1	Job Reference (optional)	173916251

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 03 07:30:23 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:61.1

Plate Offsets (X, Y): [10:0-4-0,0-3-0], [13:0-3-0,0-3-10], [16:0-4-0,0-4-8], [29:0-4-0,0-4-8]

	x, i). [10.0	, 4 0,0 0 0 <u>.</u>	, [10.0 0 0,0 0 10],	[10.0 4	0,0 4 0], [20.0	+ 0,0) + 0]										
Loading TCLL (roof) TCDL BCLL		(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES)		CSI TC BC WB		DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01		-	defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190	
BCDL		10.0	Code		021/TPI2014		Matrix-S	0.15	11012(01)	0.01		20	n/a	Π/a	Weight: 286 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS WEDGE BRACING	2x6 SP No 2x6 SP No 2x4 SP No No.2(flat) Left: 2x4 S Right: 2x4	o.1 o.2 *Excep SP No.2	t* 0-0,0-0,0-0:2x4 S	PF		Max	24=16 26=18 28=14 30=16 32=17	36 (LC 18) 53 (LC 18) 37 (LC 18) 44 (LC 24) 56 (LC 20) 77 (LC 17)	20=149 (LC : 23=178 (LC 25=174 (LC 27=174 (LC 29=164 (LC 31=176 (LC 33=175 (LC 35=172 (LC	18), 18), 18), 24), 17), 17),	,	Vasd= Cat. II; zone a 3-8-0 to 22-6-7 zone;C	103m Exp (ind C- o 9-5- to 28 C-C for	ph; TC C; Enc C Cor 9, Coi -1-10, r mem	; Vult=130mph (3 CDL=6.0psf; BCE closed; MWFRS mer(3E) -0-8-13 t	B-second gust) DL=5.0psf; h=15ft; (envelope) exterior to 3-8-0, Exterior(2h 22-6-7, Exterior(2h -10 to 32-8-13 & MWFRS for	N)
TOP CHORD			athing directly applie	ed or	FORCES	(lb		18 (LC 17)	,			DOL=1	1.60			e plane of the truss	s
BOT CHORD	6-0-0 oc p Rigid ceili bracing.		applied or 10-0-0 or	0	TOP CHORD	Ťe	nsion -11=-159/257	•			,	only. F	For stu	uds ex	posed to wind (r	normal to the face), Details as applicable	,
WEBS	T-Brace:		2x4 SPF No.2 - 13-2 12-29, 11-30	,		12 3-4	-13=-160/257 4=-187/184, 4	, 1-2=0/0, 1 -5=-160/16	2-3=-280/241 5, 5-7=-143/	161,	4)	Provide	e ade	quate	drainage to prev	er as per ANSI/TPI ent water ponding.	
REACTIONS	of web wit o.c.,with 3 Brace m	h 10d (0.1 in minimur ust cover 9	braces to narrow ed 31"x3") nails, 6in n end distance. 10% of web length. 0, 20=31-11-0.	lge	BOT CHORD	13 15 18 2-3	3=-129/196, 8 -14=-178/271 -17=-103/141 -19=-111/76, 36=-97/188, 3	, 14-15=-1 , 17-18=-8 19-20=-20 5-36=-97/1	45/212, 5/57, 1/119, 20-21 88,	,	6) 7) 8)	Gable Gable This tru chord I	requir studs uss ha live loa	es co space as bee ad nor	ntinuous bottom ed at 2-0-0 oc. en designed for a nconcurrent with	10.0 psf bottom any other live loads	
	Max Horiz Max Uplift	22=31-11- 24=31-11- 26=31-11- 28=31-11- 30=31-11- 34=31-11- 36=31-11- 2=-275 (LI 22=-132 (I 24=-75 (LI	$\begin{array}{c} 0, 23 = 31 \cdot 11 \cdot 0, \\ 0, 25 = 31 \cdot 11 \cdot 0, \\ 0, 27 = 31 \cdot 11 \cdot 0, \\ 0, 29 = 31 \cdot 11 \cdot 0, \\ 0, 31 = 31 \cdot 11 \cdot 0, \\ 0, 33 = 31 \cdot 11 \cdot 0, \\ 0, 35 = 31 \cdot 11 \cdot 0, \\ 0, 35 = 31 \cdot 11 \cdot 0, \\ 0\end{array}$	11), 1),	WEBS	32 30 27 25 23 20 13 11 8-3 5-3 3-3	-35=-97/188, -33=-97/188, -28=-97/188, -26=-97/188, -22=-93/184, -22=-93/184, -22=-93/184, -22=-93/184, -22=-93/184, -22=-93/184, -22=-93/184, -23=-137/114, 34=-135/106, 6=-167/162, -26=-147/120	31-32=-97. 28-30=-97. 26-27=-97. 24-25=-93. 22-23=-93. 2-29=-124. 9-31=-135. 7-33=-135. 4-35=-135. 14-27=-13	(188, (188, (188, (184, (184, (184, (184, (184, (106, (106, (106, (5/92,		,	on the	botto	m cho	rd in all areas wh		
		29=-48 (L) 31=-61 (L) 33=-86 (L)	C 7), 30=-32 (LC 7), C 10), 32=-94 (LC 1), C 10), 34=-86 (LC 1) C 10), 36=-150 (LC	0), 0),	NOTES 1) Unbalance	19 d ro	-24=-123/95, -22=-141/144 of live loads h			or			1111		S. ENGIN	EEREAL	

 Unbalanced roof live loads have been considered fo this design.

June 3,2025

Page: 1

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, recetion and bracing of trusses and truss systems, see **ANSI/TPI Quility Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 79 Ducks Landing	
J0325-1595	B1-GE	HIP SUPPORTED GABLE	1	1	Job Reference (optional)	173916251
					· · · · · · · · · · · · · · · · · · · ·	

- 10) All bearings are assumed to be SP No.1 crushing capacity of 565 psi.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 102 lb uplift at joint 2, 48 lb uplift at joint 29, 32 lb uplift at joint 30, 61 lb uplift at joint 31, 94 lb uplift at joint 32, 86 lb 33, 86 lb uplift at joint 34, 84 lb uplift at joint 35, 150 lb uplift at joint 36, 72 lb uplift at joint 27, 100 lb uplift at joint 26, 87 lb uplift at joint 25, 75 lb uplift at joint 24, 88 Ib uplift at joint 23, 132 lb uplift at joint 22 and 29 lb uplift at joint 20.
- 12) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

LOAD CASE(S) Standard

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 03 07:30:23 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 79 Ducks Landing	
J0325-1595	C1	GABLE	1	1	Job Reference (optional)	173916252

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 03 07:30:23

5-2-4

5-3-8

Page: 1

Comtech, Inc, Fayetteville, NC - 28314,

ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-11-0 0-11-0 7-9-8 11-9-7 19-7-0 7-9-8 3-11-15 7-9-9 6x6 = 4x6 = 3 4 5x5 = 6-2-11 1-11-5 1-11-5 1<u>2</u> 8 6 ⊳ 4x4 👟 с. -6-2-11 5 7 3-9-14 Ð 4-3-6 4x4 👟 28 ٦ 2 11 8 1-0-5 0-5-8 0-5-8 12 ŀ X Ø X 22 23 24 10 25 9 26 27 4x8 II 4x4 II 3x10 🎜 4x6 = 9-1-4 14-3-8 19-7-0

9-1-4

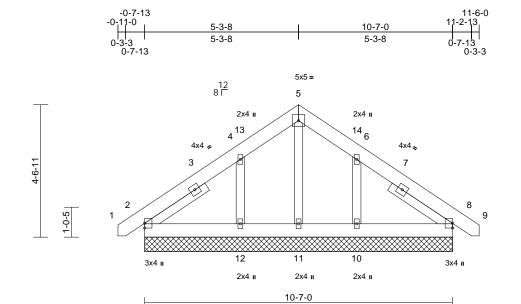
Scale = 1:46.6

Plate Offsets (X, Y): [3:0-3-0,0-3-8], [3:0-1-4,0-1-0], [4:0-3-0,0-3-8], [8:Edge,0-6-0]

	(,,, ,). [8:6 6 6]6 6 6],		0 0,0 0 0],	[0.2490,0 0 0	1								
Loading TCLL (roof) TCDL BCLL	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO		CSI TC BC WB	0.26 0.54 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 11-12 11-12 8	>999	L/d 360 240	PLATES MT20	GRIP 244/190
BCDL	10.0	Code		/TPI2014	Matrix-S	0.11	Wind(LL)		ہ 11-12	n/a >999	n/a 240	Weight: 160 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD JOINTS REACTIONS FORCES TOP CHORD	2x6 SP No.1 2x6 SP No.1 2x4 SP No.2 *Excep 2x4 SP No.2 Right 2x4 SP No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Brace at Jt(s): 5 (size) 8=0-3-8, ' Max Horiz 12=176 (I Max Uplift 8=-114 (L Max Grav 8=919 (LC 12=719 (I (lb) - Maximum Com Tension 1-2=0/34, 2-3=-690/ 6-8=-1096/209, 5-11 2-12=-623/331, 3-4=	t* 12-2:2x6 SP No.1 - 3-1-0 athing directly applie- cept end verticals. applied or 10-0-0 oc 11=0-3-8, 12=0-3-8 .C 7) C 8), 12=-285 (LC 27 C 1), 11=879 (LC 16) .C 15) pression/Maximum 319, 4-6=-548/401, =-573/102, 5-6=-568 -454/358	7) 8) 9) d or 10) 11) 12) () 13) /95,	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings i capacity of 5 Solid blockin joint(s), 11. Provide meci 8 and 285 lb Graphical pu or the orienta bottom choro: Hanger(s) or provided suff lb down at 9 at 13-11-4, a down at 17- of such conn others.	s been designed ad nonconcurrent as been designe n chord in all area by 2-00-00 wide w y other members are assumed to b 65 psi. g is required on b hanical connection capable of withs uplift at joint 12. rlin representatio titon of the purlin l. other connection icient to support -11-4, 117 lb down and 117 lb down al 11-4 on bottom cl ection device(s) i	with any d for a liv as where vill fit betw s, with BC so both sides on (by oth standing 1 n does no along the n device(s concentra vn at 11- hord. The is the resp	D psf bottom other live load e load of 30. a rectangle veen the bott DL = 10.0ps 1 crushing of the truss ers) of truss 14 lb uplift a ot depict the top and/or) shall be tted load(s) 1 11-4, 117 lb 4, and 117 lb e design/sele ponsibility of	ads. Opsf tom at to t joint size 117 down b b cection	11-12				
 this design Wind: ASI Vasd=1003 Cat. II; Ex zone; Lun Truss des only. For see Stand or consult Provide ar All plates 	6-9=0/459, 4-5=-168 ed roof live loads have	been considered for (3-second gust) CDL=5.0psf; h=15ft; S (envelope) exterior rip DOL=1.60 the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP event water ponding.	LO 1) s	of the truss a AD CASE(S) Dead + Roc Plate Increa Uniform Loc Vert: 1-2: 3-4=-60 Concentrate	of Live (balanced) ase=1.15 ads (lb/ft) =-60, 2-3=-60, 4-1 ed Loads (lb) 117 (F), 24=-11	(F) or ba): Lumber 6=-60, 6-8	ck (B). Increase=1. 3=-60, 8-12=	.15, 20,		=		SEA 0363	L : E

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

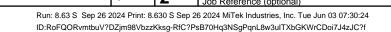
June 3,2025



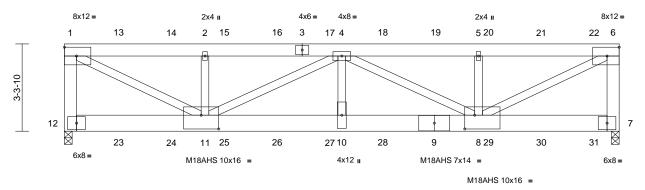
Job	Truss	Truss Type	Qty	Ply	Lot 79 Ducks Landing	
J0325-1595	D1-GE	COMMON SUPPORTED GAB	1	1	Job Reference (optional)	173916253

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 03 07:30:23 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1


Scale = 1:39.6

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-S	0.05 0.03 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 80 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP No.1 2x6 SP No.1 2x4 SP No.2 Left 2x4 SP No.2 2-6-0 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=10-7-0. 11=10-7-1 Max Horiz 2=-121 (L Max Uplift 2=-52 (LC 10=-150 (Max Grav 2=208 (LC 10=277 (I	2-6-0, Right 2x4 SP N athing directly applie applied or 10-0-0 oc 8=10-7-0, 10=10-7-0 C 8) 2 11), 8=-49 (LC 11), LC 11), 12=-156 (LC 2 1), 8=-208 (LC 1), -C 18), 11=105 (LC 1	4) 5) 6) No.2 7) d or 8) 9) 0, LC 10)	Gable require Gable studs i This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an All bearing s capacity of 5 Provide mech bearing plate	es continuous bot spaced at 2-0-0 o s been designed d nonconcurrent as been designed n chord in all area y 2-00-00 wide w y other members are assumed to b 65 psi. nanical connectio capable of withs at joint 8, 156 lb 10.	c. for a 10.0 with any d for a liv as where rill fit betw e SP No. n (by oth tanding 5) psf bottom other live load e load of 30.0 a rectangle veen the botto 1 crushing ers) of truss to 2 lb uplift at jo	ipsf om o pint					
FORCES TOP CHORD BOT CHORD	12=284 (I (Ib) - Maximum Com Tension 1-2=0/0, 2-4=-163/7 5-6=-142/232, 6-8=- 2-12=-29/79, 11-12= 8-10=-29/79	pression/Maximum 9, 4-5=-142/232, 132/65, 8-9=0/0	9,										
 this design Wind: ASC Vasd=103 Cat. II; Exp zone and to a 3-7-14 to 7 for member Lumber DU Truss desionly. For see Stand 	5-11=-165/60, 4-12= ed roof live loads have	(3-second gust) CDL=5.0pst; h=15ft; S (envelope) exteriors $5 to 3-7-14, Corner(3)2 to 11-4-15 zone; C-RS for reactions show JL=1.60the plane of the trusI (normal to the face)d Details as applicab$	s le,								and the second s	SEA 0363	EER A LU

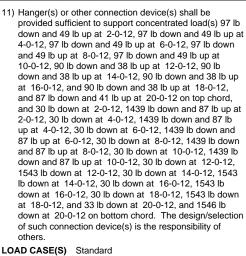


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 79 Ducks Landing	
J0325-1595	H01	Flat Girder	1	2	Job Reference (optional)	173916254

	0-2-12	5-3-14	10-6-0	15-8-2	20-9-4	21-0-0
	0-2-12	5-1-2	5-2-2	5-2-2	5-1-2	0-2-12
Scale = 1:43.6						

Offsets (X_Y): [8:0-4-8 0-6-4] [11:0-8-0 0-6-4]


Tate Offsets (A, T). [0.0-4-0,0-0-4], [11.0-0-0,0-0-4]													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.38	Vert(LL)	-0.18	10-11	>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.57	Vert(CT)	-0.32	8-10	>771	240	M18AHS	186/179	
BCLL	0.0*	Rep Stress Incr	NO	WB	0.58	Horz(CT)	0.05	7	n/a	n/a			
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S		Wind(LL)	0.07	10-11	>999	240	Weight: 331 lb	FT = 20%	
LUMBER TOP CHORD	2x6 SP 2400F 2.0E		Vasd=103r	E 7-16; Vult=130 nph; TCDL=6.0p C: Enclosed: M	sf; BCDL=5	.0psf; h=15ft		´ pro	vided su	ifficient	connection devie to support conce	ntrated load(s) §	

BOT CHORD	2x8 SP 2400F 2.0E							
WEBS	2x4 SP No.2 *Except* 12-1,6-7:2x6 SP No.1,							
	11-1,8-6:2x4 SP 2400F 2.0E							
BRACING								
TOP CHORD	Structural wood sheathing directly applied or							
	6-0-0 oc purlins, except end verticals.							
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc							
	bracing.							
REACTIONS	(size) 7=0-3-8, 12=0-3-8							
	Max Uplift 12=-109 (LC 4)							
	Max Grav 7=9064 (LC 15), 12=7943 (LC 15)							
FORCES	(lb) - Maximum Compression/Maximum							
	Tension							
TOP CHORD	1-12=-6719/75, 1-2=-12255/0, 2-4=-12255/0,							
	4-5=-12580/0, 5-6=-12580/0, 6-7=-6923/0							
BOT CHORD	11-12=-20/395, 10-11=0/16332,							
	8-10=0/16332, 7-8=0/436							
WEBS	1-11=0/13501, 2-11=-315/239, 4-11=-4624/0,							
	4-10=0/3782, 4-8=-4256/658, 5-8=-299/261,							
	6-8=0/13824							

NOTES

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-5-0 oc.
- Web connected as follows: 2x4 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

- DOL=1.60 plate grip DOL=1.60
- 4) Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated. 5)
- 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 30.0psf 7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 8) All bearings are assumed to be SP No.1 crushing capacity of 565 psi.
- 9) Bearing at joint(s) 12, 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 109 lb uplift at ioint 12

Page: 1

MILLIN The second secon NORT CARO SEAL 036322

June 3,2025

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 79 Ducks Landing	172046254	
J0325-1595	H01	Flat Girder	1	2	Job Reference (optional)	173916254	

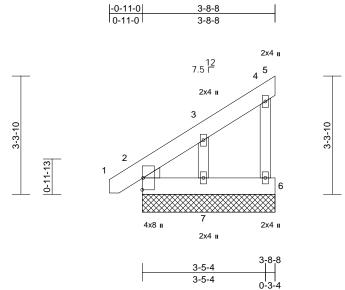
Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 03 07:30:24 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

 Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)

Vert: 1-6=-60, 7-12=-20

Concentrated Loads (lb)

Vert: 9=-1299 (F=-19, B=-1280), 13=-39 (F), 14=-39 (F), 15=-39 (F), 16=-39 (F), 17=-39 (F), 18=-38 (F), 19=-38 (F), 21=-38 (F), 22=-47 (F), 23=-1181 (F=-15, B=-1166), 24=-1181 (F=-15, B=-1166), 26=-1181 (F=-15, B=-1166), 26=-1181 (F=-15, B=-1166), 28=-1299 (F=-19, B=-1280), 29=-1299 (F=-19, B=-1280), 30=-1299 (F=-19, B=-1280), 31=-1304 (F=-22, B=-1283)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 79 Ducks Landing	
J0325-1595	J1	Monopitch Supported Gable	1	1	Job Reference (optional)	173916255

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 03 07:30:24 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:32.2

		i											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.02	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.01	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.03	Horz(CT)	0.00	6	n/a	n/a		
BCDL	10.0	Code	IRC2021/1	FPI2014	Matrix-P							Weight: 28 lb	FT = 20%
	0-0 0D No 4				as been designe n chord in all area								
TOP CHORD BOT CHORD	2x6 SP No.1 2x6 SP No.1				ide will fit betwee								
WEBS	2x4 SP No.2			any other me									
OTHERS	2x4 SP No.2				are assumed to b	e SP No.	1 crushing						
WEDGE	Left: 2x4 SP No.2			capacity of 56			0						
BRACING			,		nanical connectio		,						
TOP CHORD	Structural wood she	athing directly appli			capable of withs	tanding 2	23 lb uplift at j	oint					
	3-8-8 oc purlins, ex		(plift at joint 7.								
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	_{IC} LOA	D CASE(S)	Standard								
	bracing.												
REACTIONS	(size) 2=3-8-8, 6	6=3-8-8, 7=3-8-8											
	Max Horiz 2=90 (LC	10)											
	Max Uplift 6=-23 (LC	C 10), 7=-68 (LC 10))										
	Max Grav 2=113 (L0	C 1), 6=68 (LC 17),	7=172										
	(LC 17)												
FORCES	(lb) - Maximum Corr Tension	pression/Maximum											
TOP CHORD	1-2=0/0, 2-3=-171/1 4-6=-55/53	03, 3-4=-41/22, 4-5	=-3/0,										
BOT CHORD	2-7=0/0, 6-7=0/0												
WEBS	3-7=-161/193												
NOTES													1.1.2
1) Wind: AS	CE 7-16; Vult=130mph	(3-second gust)											1111
Vasd=103	Smph; TCDL=6.0psf; B	CDL=5.0psf; h=15ft	;									IN THUA	ROUL
	p C; Enclosed; MWFR		-C								N	A	in Alate
	E) zone;C-C for memb										22	ORTH CA	Ni. Ti
	or reactions shown; Lu	imber DOL=1.60 pla	ate								:1	in U	So.Si
grip DOL=		the plane of the two	~~							-	1	we k	NUY
	igned for wind loads in studs exposed to wind									Ξ		SEA	LE
	sidus exposed to WING	i (normal to the lace	·),							_			

- 2 only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- 4) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.

The second second GI 100000 June 3,2025

036322

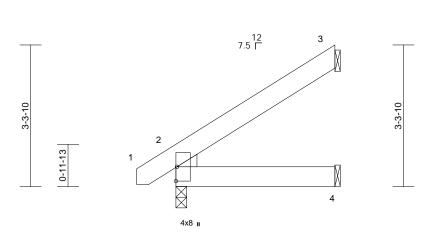
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 79 Ducks Landing	
J0325-1595	J2	Jack-Open	5	1	Job Reference (optional)	173916256

3-8-8

3-8-8

3-8-8


-0-11-0

0-11-0

Comtech, Inc, Fayetteville, NC - 28314,

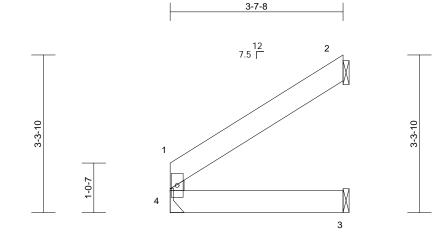
Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 03 07:30:24 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale	=	1:26.9	
000.0			

Scale = 1:26.9												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	0.00	2-4	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	0.00	2-4	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-P							Weight: 23 lb	FT = 20%
LUMBER			7) Provide	mechanical connect	tion (by oth	ers) of truss t	to					
TOP CHORD	2x6 SP No.1			plate capable of with	nstanding 7	70 lb uplift at j	joint					
BOT CHORD			3.									
WEDGE	Left: 2x4 SP No.2		LOAD CAS	E(S) Standard								
BRACING												
TOP CHORD	Structural wood she 3-8-8 oc purlins.	athing directly appli	ied or									
BOT CHORD		applied or 10-0-0 o)C									
DOT CHORD	bracing.											
REACTIONS		3= Mechanical, 4=										
	Mechanic Max Horiz 2=90 (LC											
	Max Uplift 3=-70 (LC											
	Max Grav 2=202 (L0		. 4=70									
	(LC 3)	,, ()	,									
FORCES	(lb) - Maximum Com	npression/Maximum										
	Tension											
TOP CHORD	1-2=0/0, 2-3=-123/7	6										
BOT CHORD	2-4=0/0											
NOTES												
	CE 7-16; Vult=130mph											
	mph; TCDL=6.0psf; B p C; Enclosed; MWFR											
	E) zone;C-C for memb		-0								mm	11111
	or reactions shown; Lu		ate								WAH CA	ROUN
grip DOL=										N	R	Lilly
	has been designed fo									3.	OFESS	Oi Vi
	load nonconcurrent w									1	120 4	12:4:
	s has been designed f								-	: 2	WU K	NUS
	tom chord in all areas 0 wide will fit between								-		SEA	I E
any other		the bottom chord at	nu								000	
	are assumed to be: , J	oint 2 SP No.1 crus	hina						=		0363	522 : :
capacity o	f 565 psi.		0							8	SEA 0363	1 5
	irder(s) for truss to tru									1	·	Airs
	echanical connection	(by others) of truss t	to							25	S. GIN	EFRAN
bearing pla	ate at joint(s) 2.									11	10	BEN
											CA. C	allun
											<i></i>	11111
												2 2025

June 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	Lot 79 Ducks Landing	
J0325-1595	J3	Jack-Open	5	1	Job Reference (optional)	173916257

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 03 07:30:24 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x6 🛛

3-7-8	

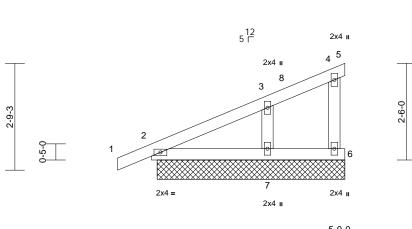
Scale = 1	1:24.1
-----------	--------

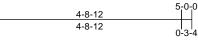
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.13	DEFL Vert(LL)	in 0.00	(loc) 3-4	l/defl >999	L/d 360	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	0.00	3-4	>999	240		
BCLL BCDL	0.0*	Rep Stress Incr	YES IRC2021/TPI2014	WB	0.00	Horz(CT)	0.00	2	n/a	n/a	Mainht 10 lb	FT 200/
BCDL	10.0	Code	IRC2021/1P12014	Matrix-R		Wind(LL)	0.00	3-4	>999	240	Weight: 19 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS	2x6 SP No.1 2x6 SP No.1 2x4 SP No.2											
BRACING TOP CHORD	Structural wood she 3-9-0 oc purlins, ex		ed or									
BOT CHORD	Rigid ceiling directly bracing.		с									
	(size) 2= Mecha Mechanic Max Horiz 4=70 (LC Max Uplift 2=-58 (LC Max Grav 2=108 (LC (LC 1)	10) C 10)										
FORCES	(lb) - Maximum Corr Tension	pression/Maximum										
TOP CHORD	1-4=-107/45, 1-2=-9	3/57										
BOT CHORD	3-4=0/0											
NOTES												
Vasd=103 Cat. II; Ex Exterior(21	CE 7-16; Vult=130mph smph; TCDL=6.0psf; B p C; Enclosed; MWFR E) zone;C-C for memb or reactions shown; Lu -1.60	CDL=5.0psf; h=15ft S (envelope) and C pers and forces &	-C								OR OFESS	ROLIN
	has been designed fo load nonconcurrent wi		ds							12	OFESS	OV: 7 ···
3) * This trus on the bot 3-06-00 ta	tom chord in all areas Ill by 2-00-00 wide will any other members.	or a live load of 30.0 where a rectangle	Opsf							:	UL	·- : :
4) Refer to gi	irder(s) for truss to trus										0363	22 : 3
	irder(s) for truss to tru									2	1. J.	1 5
	echanical connection ate capable of withstar										S. NGIN	EERA
LOAD CASE(S) Standard									1	A. C	ALBENN
												ne 3 2025

June 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 79 Ducks Landing	
J0325-1595	M01	Monopitch Supported Gable	1	1	Job Reference (optional)	173916258


-0-10-8


0-10-8

Comtech, Inc, Fayetteville, NC - 28314,

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 03 07:30:24 ID:LN2ht2atypzvjBdCm1pct3zA3g0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

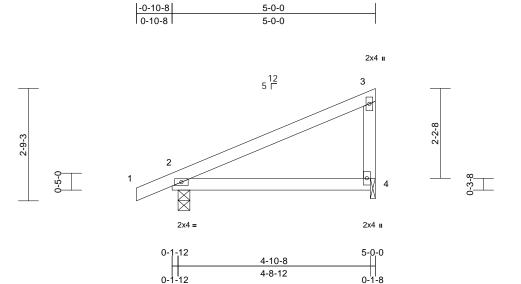
5-0-0

5-0-0

Scale = 1:29.8

		i										
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.06	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-P							Weight: 21 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.2 2x4 SP No.2 Structural wood she 5-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=4-10-4, 7=4-10-4 Max Horiz 2=78 (LC Max Uplift 2=-14 (LC (LC 10), 7	cept end verticals. applied or 10-0-0 oc 5=4-10-4, 6=4-10-4 10) 5 6), 5=-7 (LC 10), 6= 2=-51 (LC 10)	on the b 3-06-00 chord ar 6) All beari capacity 7) Provide bearing 5, 7 lb u uplift at 8) Non Sta LOAD CASI =-7	uss has been design ottom chord in all are tall by 2-00-00 wide id any other member ngs are assumed to l of 565 psi. mechanical connecti plate capable of with plift at joint 6, 14 lb u oint 7. ndard bearing condit E(S) Standard	eas where will fit betw s. be SP No. on (by oth standing 7 plift at join	a rectangle veen the bottom 1 crushing ers) of truss to 7 lb uplift at joint t 2 and 51 lb	ı					
FORCES	Max Grav 2=160 (LC (LC 1), 7= (lb) - Maximum Com	237 (LC 1)	=39									
	Tension											
TOP CHORD	1-2=0/15, 2-3=-196/ 4-5=-12/7, 4-6=-32/4											
BOT CHORD	2-7=0/0, 6-7=0/0											
WEBS	3-7=-191/362											• 1977 I.I.
NOTES											, in the second	1111
Vasd=103 Cat. II; Ex Corner(3E zone;C-C reactions DOL=1.60 2) Truss des	signed for wind loads in	CDL=5.0psf; h=15ft; S (envelope) and C- erior(2N) 3-6-5 to 5-(es & MWFRS for 1.60 plate grip the plane of the trus	C D-0							and the second second	ORTH CA ORTH CA OFESS SEA 0363	HOL WATTER
see Stand or consult3) Gable stu4) This truss	studs exposed to wind dard Industry Gable En- t qualified building desi ids spaced at 2-0-0 oc. s has been designed for load nonconcurrent wi	d Details as applicat gner as per ANSI/TF r a 10.0 psf bottom	ole, Pl 1.						111.	A MILLING	SEA 0363	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



818 Soundside Road Edenton, NC 27932

June 3,2025

Job	Truss	Truss Type	Qty	Ply	Lot 79 Ducks Landing	
J0325-1595	M02	Monopitch	5	1	Job Reference (optional)	173916259

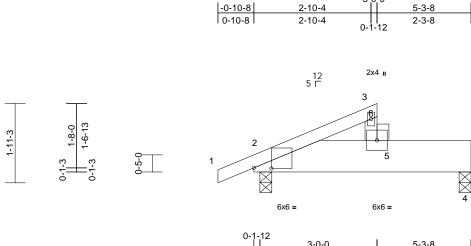
Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 03 07:30:24 ID:KWU?awMPYOlcbRUTI9ccAAzA3pL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:28.3

		i										
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.43	Vert(LL)	-0.03	2-4	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.56	Vert(CT)	-0.05	2-4	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Wind(LL)	0.08	2-4	>668	240		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-P							Weight: 20 lb	FT = 20%
LUMBER			7) Provide me	echanical connecti	ion (by oth	ers) of truss	to					
TOP CHORD	2x4 SP No.1			ate capable of with	standing 7	76 lb uplift at	t joint					
BOT CHORD				o uplift at joint 4.								
WEBS	2x4 SP No.2		LOAD CASE(S	 Standard 								
BRACING												
TOP CHORD	 Structural wood she 5-0-0 oc purlins, ex 		ied or									
BOT CHORD)C									
BOT ONORE	bracing.											
REACTIONS	(size) 2=0-3-8, 4	4=0-1-8										
	Max Horiz 2=76 (LC	10)										
	Max Uplift 2=-76 (LC											
	Max Grav 2=256 (LC											
FORCES	(lb) - Maximum Com	npression/Maximum										
TOP CHORD	Tension 1-2=0/15, 2-3=-103/	155 2 A- 142/10A										
BOT CHORD		55, 5-4=-142/194										
NOTES	210,0											
	CE 7-16; Vult=130mph	(3-second aust)										
	3mph; TCDL=6.0psf; B											
	xp C; Enclosed; MWFR											
	2E) zone; porch left and											
	s and forces & MWFRS DOL=1.60 plate grip DC		ז;								MILLIN	11111
	s has been designed fo										WAH CA	ROUL
	e load nonconcurrent w		ads.							1	R	
	ss has been designed f		0psf							32	U.FESS	ON: Vis
	ottom chord in all areas									: 1	120 4	12.5-
	all by 2-00-00 wide will	fit between the bott	om							20	WU K	NUI
	d any other members. are assumed to be: Jo	int 4 SP No 2 crush	ina						-		SEA	LE
	of 565 psi, Joint 2 SP N								=	:	0363	• -
565 psi.											0505	22 <u>:</u> E
	at joint(s) 4 considers pa		9							-	SEA 0363	1 3
	SI/TPI 1 angle to grain									2.	N. ENIO	-cRik S
	should verify capacity of		to							1	S, GIN	EF. A.N
	mechanical connection blate at joint(s) 4.		10							1	CA. C	II BEIN
boaring p	nate at joint(o) n										1111.0	
											~	2 2025

June 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	Lot 79 Ducks Landing	
J0325-1595	M03	Roof Special	5	1	Job Reference (optional)	173916260

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 03 07:30:24 ID:G75uyMuh_V1p7XjwSekP6LzA3d1-RfC?PsB70Hq3NSgPqnL&w3uITXbGKWrCDoi7J4zJC?f

3-0-0

Page: 1

	3-0-0	5-3-8
∏ 0-1-1	2-10-4 12	2-3-8

Scale = 1:28.1

Plate Offsets (X, Y): [2:0-5-2,0-0-3]

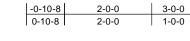
oading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.55	Vert(LL)	-0.03	2-5	>999	360	MT20	244/190
CDL	10.0	Lumber DOL	1.15	BC	0.62	Vert(CT)	-0.05	2-5	>999	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-P		Wind(LL)	0.11	2-5	>531	240	Weight: 29 lb	FT = 20%
UMBER				s) or other connection								
OP CHORD	2x4 SP No.1	_		d sufficient to suppor								
BOT CHORD	2x10 SP 2400F 2.0E	-		and 4216 lb up at 3 selection of such con								
VEBS	2x4 SP No.2			ibility of others.	inection de							
OP CHORD	Structural wood she	athing directly appli		E(S) Standard								
	3-0-0 oc purlins, ex			Roof Live (balance	d): Lumber	Increase=1.	.15,					
BOT CHORD	Rigid ceiling directly		Plate I	ncrease=1.15	,							
	bracing.		Uniforr	n Loads (lb/ft)								
REACTIONS	(size) 2=0-3-8, 4	4=0-3-8		: 1-3=-60, 2-4=-20								
	Max Horiz 2=47 (LC	,		ntrated Loads (lb)								
	Max Uplift 2=-367 (L			: 5=-2200								
	Max Grav 2=1180 (L	,)									
ORCES	(lb) - Maximum Com	pression/Maximum										
OP CHORD	Tension 1-2=0/27, 2-3=-44/1	6 3-577/88										
BOT CHORD	2-5=-12/11, 4-5=0/0	,										
OTES	20 12/11, 10 0/0											
	CE 7-16; Vult=130mph	(3-second gust)										
	mph; TCDL=6.0psf; B											
	D C; Enclosed; MWFR											
	zone; porch left and										minin	11111
	and forces & MWFRS		;								"TH CA	Rolly
	OL=1.60 plate grip DC has been designed for									Nº.	R	Since Land
	load nonconcurrent wi		ds.							32	U. FESS	ON: VIE
	s has been designed f									: 1	in U	30.5-
on the bott	tom chord in all areas	where a rectangle								VI	and h	NOV
	II by 2-00-00 wide will	fit between the botto	m						=	:	SEA	AL : =
	any other members.		hing						=	:	0363	
 All bearing capacity of 	is are assumed to be \$	SF 2400F 2.0E CIUS	ning						-		0303	
	echanical connection ((by others) of truss t	0							-	N	1 3
	ate capable of withstar									2.	N. EN	-cRik S
	367 lb uplift at joint 2.									35	SEA 0363	EFR
										1	CA -	BEIN
											A. C	212111
												1111

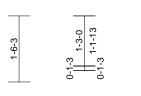
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

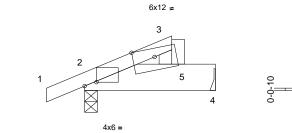
June 3,2025

Job	Truss	Truss Type	Qty	Ply	Lot 79 Ducks Landing	
J0325-1595	M04	Roof Special	6	1	Job Reference (optional)	173916261


Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 03 07:30:24 ID:HA7AZPaK4D8wNMR7veR3RBzA3p2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

June 3,2025


818 Soundside Road Edenton, NC 27932

0-2-0

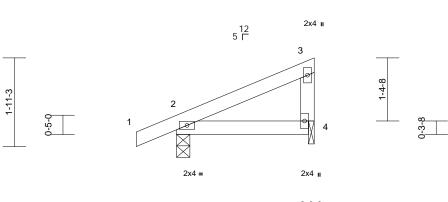
2-0-0	3-0-0
2-0-0	1-0-0

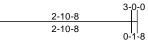
Scale = 1:26.4

Plate Offsets (X, Y): [2:0-3-4,0-1-1]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.05	Vert(LL)	0.00	2-5	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.22	Vert(CT)	-0.01	2-5	>999	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Wind(LL)	0.01	2-5	>999	240		
BCDL	10.0	Code	IRC2021/TPI20	014 Matrix-P							Weight: 15 lb	FT = 20%
BOT CHORD 2 WEBS 2 BRACING TOP CHORD 3 BOT CHORD 1	2x4 SP No.1 2x8 SP No.1 2x4 SP No.2 Structural wood she 2-0-0 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 or	ed or b c c c c c c c c c c c c c c c c c c	er(s) or other connection ded sufficient to support wn and 447 lb up at 2-1 n/selection of such conr insibility of others. LOAD CASE(S) section truss are noted as fron ASE(S) Standard d + Roof Live (balancece e Increase=1.15	concentra -12 on bo nection de n, loads a t (F) or ba	ated load(s) 6 ttom chord. ⁻ vice(s) is the pplied to the t ck (B).	The face					
M M	lax Horiz 2=34 (LC lax Uplift 2=-53 (LC lax Grav 2=390 (LC	5 10), 4=-47 (LC 10) C 1), 4=432 (LC 1)	Unii V Cor	orm Loads (lb/ft) ert: 1-3=-60, 2-4=-20 centrated Loads (lb) ert: 5=-600 (F)								
,	(lb) - Maximum Com	pression/Maximum	v	en. 5=-600 (F)								
	Tension	0 2 5- 56/52										
	1-2=0/22, 2-3=-28/1 2-5=0/0, 4-5=0/0	3, 3-3=-30/33										
NOTES	2 3-0/0, 4-3-0/0											
Vasd=103mp Cat. II; Exp (Exterior(2E) MWFRS for i grip DOL=1.6 2) This truss ha	as been designed for	CDL=5.0psf; h=15ft; S (envelope) and C- ers and forces & mber DOL=1.60 pla	C te							. Internet	OR SESS	ROLIN
 This truss h on the botton 3-06-00 tall b 	ad nonconcurrent wi has been designed f m chord in all areas by 2-00-00 wide will ny other members.	or a live load of 20.0 where a rectangle	psf						1111	G.	NA SEA	
	assumed to be: Joi	nt 2 SP No.1 crushir	ng								0363	22
 Refer to girde Provide mech bearing plate 	er(s) for truss to trus hanical connection (e capable of withstar uplift at joint 4.	by others) of truss to									0363	EER. KINN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	Lot 79 Ducks Landing	
J0325-1595	M05	Monopitch	5	1	Job Reference (optional)	173916262


<u>3-0-0</u> 3-0-0

-0-10-8 0-10-8

Comtech, Inc, Fayetteville, NC - 28314,

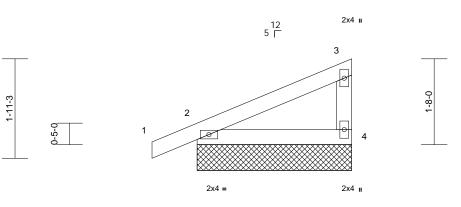
Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 03 07:30:24 ID:kxpqaa8lj80B_N5i?n5Yn3zA3bQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:25.1

Scale = 1.23.1												
oading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	0.00	2-4	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	-0.01	2-4	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	n/a	-	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-P							Weight: 12 lb	FT = 20%
UMBER			7) Provide	mechanical connect	tion (by oth	ers) of truss	to					
FOP CHORD 2	x4 SP No.1			plate capable of with	nstanding 2	29 lb uplift at	joint					
BOT CHORD 2	x4 SP No.1		2 and 22	lb uplift at joint 4.								
NEBS 2	2x4 SP No.2		LOAD CASE	(S) Standard								
BRACING												
		athing directly appli	ed or									
	3-0-0 oc purlins, ex											
	Rigid ceiling directly pracing.	applied or 10-0-0 o	C									
REACTIONS (si	0	4=0-1-8										
	ax Horiz 2=49 (LC											
Ma	ax Uplift 2=-29 (LC	C 6), 4=-22 (LC 10)										
Ma	ax Grav 2=181 (L0	C 1), 4=97 (LC 1)										
ORCES (lb) - Maximum Corr	npression/Maximum										
	Tension											
	-2=0/15, 2-3=-59/3	4, 3-4=-84/103										
BOT CHORD 2	2-4=0/0											
NOTES												
	7-16; Vult=130mph											
		CDL=5.0psf; h=15ft										
	; Enclosed; MVVFR zone;C-C for memb	S (envelope) and C	-0									
		umber DOL=1.60 pla	ato									
grip DOL=1.6			ale								OR OFESS	11111
	s been designed fo	r a 10.0 psf bottom									WAH CA	Rollin
		ith any other live loa	ıds.							1	R	and the
3) * This truss h	as been designed f	for a live load of 20.0	Opsf							5.	CEESS	Di Vi
	n chord in all areas	0								1	120 6	12: 5-
		fit between the botte	om							: 2	WU K	NUS
	y other members.								-		SEA	
		int 2 SP No.1 crushi lo.2 crushing capaci									01	
565 psi.	65 psi, Joint 4 5P N	0.2 crushing capaci									0363	22 : :
	int(s) 4 considers p	arallel to grain value	4							- 8	0363	1 2
	PI 1 angle to grain		•							5		all S
	uld verify capacity of									3.5	NGIN	FERMAN
		(by others) of truss t	to							1	710	THE AND
bearing plate	at joint(s) 4.										A. C	HLD
											111111	11111

June 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PA	GE MII-7473 rev. 1/2/2023 BEFORE LISE
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is f	
a truss system. Before use, the building designer must verify the applicability of design parameters and prope	
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only.	
is always required for stability and to prevent collapse with possible personal injury and property damage. For	r general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Crit	eria and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Asse	ociation (www.sbcacomponents.com)



ſ	Job	Truss	Truss Type	Qty	Ply	Lot 79 Ducks Landing	
	J0325-1595	M06	Monopitch Supported Gable	1	1	Job Reference (optional)	173916263

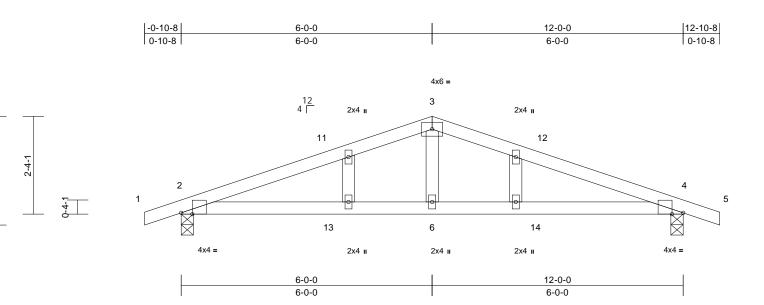
Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 03 07:30:24 ID:5MZsUgn6YEMJ?vN8oB3l6yzA3bt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3-0-0

Scale = 1:22.4

S


30ale = 1.22.4	4											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.15	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	n/a	-	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-P							Weight: 12 lb	FT = 20%
LUMBER			8) Provide me	chanical connect	ion (by oth	ers) of truss t	to					
TOP CHORD	2x4 SP No.1		bearing pla	te capable of with	standing 2	3 lb uplift at j	oint					
BOT CHORD	2x4 SP No.1			uplift at joint 2.								
WEBS	2x4 SP No.2		LOAD CASE(S) Standard								
BRACING												
TOP CHORD			ed or									
	3-0-0 oc purlins, ex											
BOT CHORD		applied or 10-0-0 c	C									
REACTIONS	bracing. (size) 2=3-0-0, 4	4-2.0.0										
REACTIONS	Max Horiz 2=49 (LC											
	Max Uplift 2=-24 (LC											
	Max Grav 2=175 (L0											
FORCES	(lb) - Maximum Corr											
	Tension											
TOP CHORD	0 1-2=0/15, 2-3=-92/3	4, 3-4=-87/186										
BOT CHORD	0 2-4=0/0											
NOTES												
	SCE 7-16; Vult=130mph											
	3mph; TCDL=6.0psf; B											
	xp C; Enclosed; MWFR		-C									
	E) zone;C-C for member											
grip DOL	for reactions shown; Lu	Imper DOL=1.60 pia	ate								minin	11111
01	signed for wind loads in	the plane of the tru									WAH CA	ROUL
	r studs exposed to wind									1	R	Chille
	dard Industry Gable En									5.	O'.FESS	101: V 1
or consul	It qualified building desi	gner as per ANSI/T	PI 1.						L.	17	100	A.T.
3) Gable red	quires continuous botto	m chord bearing.							-	9	WU X	NUL
	uds spaced at 2-0-0 oc.								-		SEA	1
	s has been designed fo								=	:	SLA	• -
	e load nonconcurrent w										0363	22 : =
	iss has been designed f		Upst							3 8		
	ottom chord in all areas tall by 2-00-00 wide will		om							-	·	1 1 5
	d any other members.	III between the bott	om							2.0	N. SNOW	EEP. X N
	ngs are assumed to be	SP No 1 crushing								1	SEA 0363	F. CAN
	of 565 psi.	or rearrange									A G	IL BEIN
. ,											A. C	in the second se
												ne 3,2025
											Jui	10 3,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 79 Ducks Landing	
J0325-1595	P1	GABLE	1	1	Job Reference (optional)	173916264

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 03 07:30:24 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:27.5

2-7-3

Plate Offsets (X, Y): [2:0-3-3,Edge], [4:0-3-3,Edge]

	(⊼, T). [2.0-5-5,⊏uge],	[4.0-3-3,⊏uge]			-							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI201	CSI TC BC WB 4 Matrix-S	0.44 0.37 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.12 -0.07 -0.02	(loc) 4-6 4-6 4	l/defl >999 >999 n/a	L/d 240 240 n/a	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.1 2x4 SP No.2 2x4 SP No.2 Structural wood she 5-11-14 oc purlins.		on the 3-06-0 chord 7) All bea capaci ed or 8) Provid bearin oc joint 2	truss has been designe bottom chord in all are 0 tall by 2-00-00 wide v and any other members rings are assumed to b ty of 565 psi. e mechanical connection g plate capable of withs and 305 lb uplift at join SE(S) Standard	as where will fit betw s. be SP No. on (by oth standing 3	a rectangle veen the bott 1 crushing ers) of truss	to					
REACTIONS	(size) 2=0-3-8, 4											
	Max Horiz 2=46 (LC Max Uplift 2=-305 (L											
	Max Grav 2=530 (LC											
FORCES	(lb) - Maximum Com	pression/Maximum										
TOP CHORD	Tension		2									
TOP CHORD	1-2=0/15, 2-3=-859/ 4-5=0/15	1555, 5-4=-659/155	з,									
BOT CHORD	,	-1375/759										
WEBS	3-6=-613/281											
NOTES												
 Unbalance this design 	ed roof live loads have	been considered for	r									11111
	CE 7-16; Vult=130mph	(3-second aust)								1	TH UA	ROM
Vasd=103	3mph; TCDL=6.0psf; B	CDL=5.0psf; h=15ft;								5	ONEESS	10: 1/2
	cp C; Enclosed; MWFR									37	OF	No. 7 -
	C-C Exterior(2E) -0-10 -5-11, Exterior(2E) 8-5-								-	4	We Z	NUL
	and right exposed;C-C		,						-		SEA	
	WWFRS for reactions s	hown; Lumber							Ξ		0202	• –
	0 plate grip DOL=1.60 signed for wind loads in	the plane of the true							1		0363	22 : =
	studs exposed to wind											1 E -
see Stand	dard Industry Gable End	d Details as applicat	ble,							- 1		ER. A S
	t qualified building desig	gner as per ANSI/TF	기 1.							1	A GIN	E.E. P.N
	ids spaced at 2-0-0 oc. has been designed for	r a 10.0 pef bottom									AG	ILBEIN
	load nonconcurrent wi		ds.								in the contract of the contrac	ILBERTUUT

June 3,2025

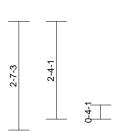
te (www.tpinst.org) te (www.tpinst.org)

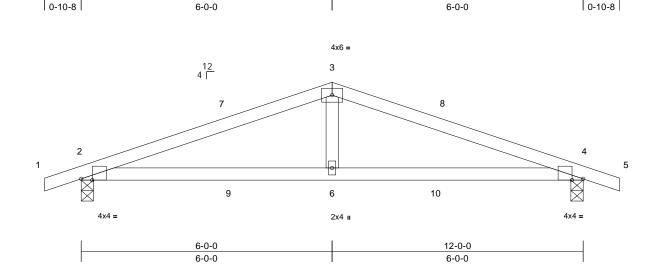
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 79 Ducks Landing	
J0325-1595	P2	Common	4	1	Job Reference (optional)	173916265

6-0-0

Comtech, Inc, Fayetteville, NC - 28314,


-0-10-8


Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 03 07:30:24 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12-0-0

Page: 1

12-10-8

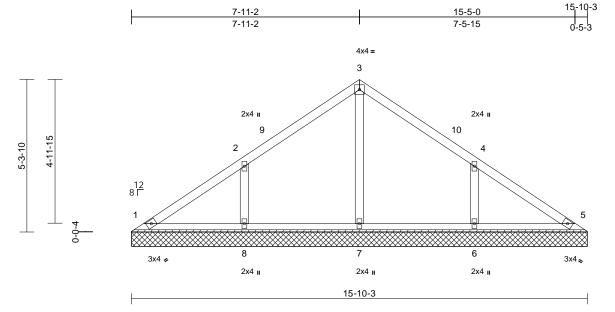
Scale = 1:27.5

Plate Offsets (X, Y): [2:0-3-3,Edge], [4:0-3-3,Edge]

i late Olisets	(X, T). [2.0-5-5,Euge],	, [4.0-3-3,∟uge]										
Loading TCLL (roof) TCDL BCLL	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.44 0.37 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.12 -0.07 -0.02	(loc) 2-6 2-6 4	l/defl >999 >999 n/a	L/d 240 240 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	IRC2021/TPI201								Weight: 42 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS			bearing joint 2	e mechanical connect g plate capable of with and 217 lb uplift at join SE(S) Standard	nstanding 2							
BRACING												
TOP CHORD		athing directly appli	ied or									
BOT CHORD	 5-11-14 oc purlins. Rigid ceiling directly bracing. 	applied or 4-11-14	ос									
REACTIONS	()											
	Max Horiz 2=-27 (LC	,	`									
	Max Uplift 2=-217 (L Max Grav 2=530 (L0)									
FORCES	(lb) - Maximum Com	,, , ,	ı									
	Tension											
TOP CHORD		1553, 3-4=-859/155	53,									
BOT CHORD	4-5=0/15 2-6=-1375/759, 4-6=	1375/750										
WEBS	3-6=-613/281											
NOTES	0 0 010/201											
	ed roof live loads have	been considered for	or								NITH CA	
this desig	•										mini	11111
	CE 7-16; Vult=130mph									-	W'TH CA	Rolly
	3mph; TCDL=6.0psf; B xp C; Enclosed; MWFR									N'	R	···· Linte
	2E) -0-10-8 to 3-6-5, Ex									32	U. FESS	ON: Si
	xterior(2E) 8-5-11 to 12		left							-12	in 4	30.5:
	exposed;C-C for memb								-	VI	and h	NOVE
grip DOL=	for reactions shown; Lu	imber DOL=1.60 pla	ate						=	:	SEA	L : E
	s has been designed for	r a 10.0 psf bottom							Ξ		0363	22 : 3
chord live	e load nonconcurrent wi	ith any other live loa							-			- <u>i</u> i i i
	ss has been designed f		.0psf							-	·	A 1. 3
	ttom chord in all areas		iom.							3.5	NGIN	FERRICAS
	all by 2-00-00 wide will d any other members.	in between the DOtt	lom							14	A CA	The service
	igs are assumed to be \$	SP No.1 crushing									11, A. C	allerin

All bearings are assumed to be SP No.1 crushing 5) capacity of 565 psi.

G minin June 3,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 79 Ducks Landing	
J0325-1595	VC01	Valley	1	1	Job Reference (optional)	173916266

Scale = 1:40.1

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 03 07:30:25 ID:dJJFFr_biuDogaPh910dMgzA4LO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.15	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S							Weight: 63 lb	FT = 20%

2x4 SP N	0.1
2x4 SP N	0.1
2x4 SP N	0.2
	wood sheathing directly applied or purlins.
	ing directly applied or 10-0-0 oc
(size)	1=15-10-3, 5=15-10-3, 6=15-10-3, 7=15-10-3, 8=15-10-3
Max Horiz	1=119 (LC 7)
Max Uplift	1=-7 (LC 6), 6=-115 (LC 11), 8=-115 (LC 10)
Max Grav	1=133 (LC 18), 5=125 (LC 1),
	6=378 (LC 18), 7=247 (LC 1), 8=378 (LC 17)
(lb) - Max	imum Compression/Maximum
Tension	·
1-2=-119/ 4-5=-88/5	/93, 2-3=-127/173, 3-4=-113/173, 6
1-8=-35/1	04, 7-8=-35/104, 6-7=-35/104,
5-6=-35/1	
3-7=-171/	0, 2-8=-289/331, 4-6=-289/331
ed roof live l n.	oads have been considered for
	2x4 SP N 2x4 SP N 2x4 SP N Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-2=-119/ 4-5=-88/5 1-8=-35/1 3-7=-171/ ed roof live I

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3E) 0-5-12 to 4-10-9, Corner(3R) 4-10-9 to 11-0-6, Corner(3E) 11-0-6 to 15-5-3 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.

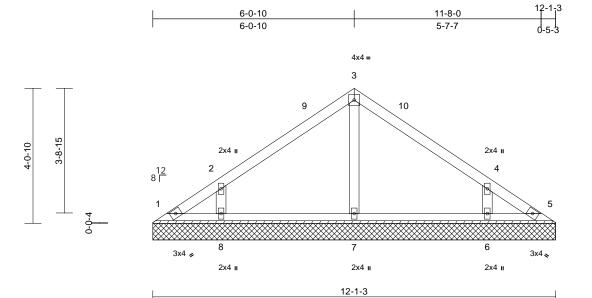
5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.1 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 7 lb uplift at joint 1, 115 lb uplift at joint 8 and 115 lb uplift at joint 6.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affiliat 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 79 Ducks Landing	
J0325-1595	VC02	Valley	1	1	Job Reference (optional)	173916267

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 03 07:30:25 ID:STgWWu3MIk_xOVsqVH61cxzA4LI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

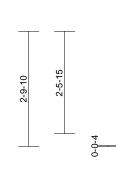
Scale =	1:34.6

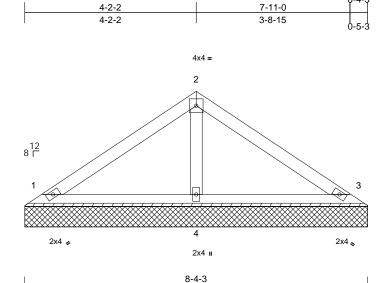
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202 ²	1/TPI2014	CSI TC BC WB Matrix-S	0.14 0.09 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	7=12-1-3, Max Horiz 1=90 (LC Max Uplift 1=-30 (LC (LC 11), 8 Max Grav 1=55 (LC	applied or 10-0-0 oc 5=12-1-3, 6=12-1-3 8=12-1-3 7) : 8), 5=-12 (LC 9), 6= 3=-100 (LC 10)	; 8) , 9) ≂-99 LC ∋=314	This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an All bearings a capacity of 5 Provide mech bearing plate	hanical connection capable of withsta at joint 5, 100 lb u 6.	or a 10.0 with any I for a liv s where II fit betv SP No. a (by oth anding 3	other live loa e load of 30.0 a rectangle veen the bott 1 crushing ers) of truss t 30 lb uplift at j	Opsf om o oint					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=-91/78, 2-3=-12 4-5=-86/46	2/145, 3-4=-113/145	,										
BOT CHORD	1-8=-22/71, 7-8=-22 5-6=-22/71	, ,											
WEBS	3-7=-178/62, 2-8=-2	52/350, 4-6=-252/35	0										in the
this design 2) Wind: AS0 Vasd=103 Cat. II; Ex Corner(3E 7-3-6, Cor and forces DOL=1.60 3) Truss des only. For	ed roof live loads have h. CE 7-16; Vult=130mph imph; TCDL=6.0psf; Br p C; Enclosed; MWFR c) 0-5-12 to 4-10-9, Col ner(3E) 7-3-6 to 11-8-3 s & MWFRS for reaction plate grip DOL=1.60 igned for wind loads in studs exposed to wind ard Industry Gable End	(3-second gust) CDL=5.0psf; h=15ft; S (envelope) and C- mer(3R) 4-10-9 to 3 zone;C-C for memi ns shown; Lumber the plane of the trus (normal to the face)	C bers ss								and the second second	SEA 0363	• –

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3E) 0-5-12 to 4-10-9, Corner(3R) 4-10-9 to 7-3-6, Corner(3E) 7-3-6 to 11-8-3 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.

G

annunning.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	Lot 79 Ducks Landing	
J0325-1595	VC03	Valley	1	1	Job Reference (optional)	173916268

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 03 07:30:25 ID:lpb9_H8letsxkavAPFIgOPzA4LB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

bi7J4zJC?f

Scale = 1:28.1

00010 = 1.20.1												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-P	0.27 0.10 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%
	6-0-0 oc purlins. Rigid ceiling directly bracing.	C 10), 3=-34 (LC 11)	on the both 3-06-00 tal chord and a 8) All bearing: 9) Provide me bearing pla 1 and 34 lb LOAD CASE(S	chanical connecti te capable of with uplift at joint 3.	eas where will fit bety rs. be SP No on (by oth	a rectangle veen the botto 1 crushing ers) of truss t	o					
this design 2) Wind: ASC Vasd=103r Cat. II; Exp Corner(3E)	(lb) - Maximum Com Tension 1-2=-98/97, 2-3=-90 1-4=-11/43, 3-4=-11 2-4=-179/180 d roof live loads have E 7-16; Vult=130mph mph; TCDL=6.0psf; B 0 C; Enclosed; MWFR) zone;C-C for member or reactions shown; Lu	//97 //43 been considered for (3-second gust) CDL=5.0psf; h=15ft; S (envelope) and C-0 ers and forces &	с							and a start	NITH CA	NROLINI,

- grip DOL=1.60
 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

SEAL 036322 June 3,2025

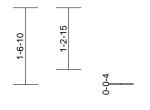
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

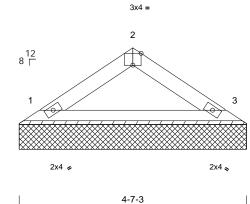
Job	Truss	Truss Type	Qty	Ply	Lot 79 Ducks Landing	
J0325-1595	VC04	Valley	1	1	Job Reference (optional)	173916269

2-3-10

2-3-10

Comtech, Inc. Favetteville, NC - 28314.


Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 03 07:30:25 ID:_YeZtMFOXe?gJy5vRePnFJzA4L2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



3x4 = 2

4-2-0

1-10-7

Scale = 1:23.3

Plate Offsets (X, Y): [2:0-2-0,Edge]

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-										
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.12	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC202	1/TPI2014	Matrix-P							Weight: 14 lb	FT = 20%
LUMBER			8)	All bearings	are assumed to	he SP No	1 crushing						
TOP CHORD	2x4 SP No.1		0)	capacity of 5			l'ordoning						
BOT CHORD	2x4 SP No.1		9)		chanical connecti	ion (by oth	ers) of truss	to					
BRACING	2		,		e capable of with								
TOP CHORD	Structural wood she	athing directly applie	ed or	1 and 12 lb	uplift at joint 3.								
	4-7-15 oc purlins.	5		DAD CASE(S)	Standard								
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	с										
	bracing.												
REACTIONS	(size) 1=4-7-3, 3	3=4-7-3											
	Max Horiz 1=-30 (LC	C 6)											
	Max Uplift 1=-12 (LC												
	Max Grav 1=148 (L0	C 1), 3=148 (LC 1)											
FORCES	(lb) - Maximum Com	pression/Maximum											
	Tension												
TOP CHORD	1-2=-125/154, 2-3=-	125/154											
BOT CHORD	1-3=-62/83												
NOTES													
,	ed roof live loads have	been considered fo	r										
this design		(2 accord quat)											
	CE 7-16; Vult=130mph mph: TCDI =6 0psf: B												

- Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4) 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

