

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0325-1599 Lot 103 Ducks Landing

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: I74088640 thru I74088659

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

June 11,2025

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Lot 103 Ducks Landing	
J0325-1599	A1	ROOF SPECIAL	6	1	Job Reference (optional)	174088640

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 10 07:25:50 ID:ZBV44jdxGe9Lzs09kQJltyyS8Pv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:97

Plate Offsets (X, Y): [13:0-3-0,0-4-4]

-		1			-		(
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.35	Vert(LL)	-0.20	15-17	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.58	Vert(CT)	-0.30	15-17	>999	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.79	Horz(CT)	0.05	13	n/a	n/a		
BCDL	10.0	Code	IRC2021	/TPI2014	Matrix-S		Wind(LL)	0.10	17-19	>999	240	Weight: 381 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x6 SP No.1 2x6 SP No.1 2x4 SP No.2 Structural wood she 4-5-4 oc purlins.	athing directly applie	2) d or	Wind: ASCE Vasd=103mp Cat. II; Exp C Exterior(2E) 26-1-14, Exte 34-11-8 to 50 cantilever lef MWFRS for r	7-16; Vult=130mph h; TCDL=6.0psf; B ; Enclosed; MWFR -0-6-15 to 3-9-14, Il erior(2R) 26-1-14 tc -3-10, Exterior(2E) exposed ;C-C for eactions shown: LL	n (3-sec SCDL=5 RS (env nterior (0 34-11- 0 34-11- 0 50-3-1 membe umber [ond gust) .0psf; h=25ft; elope) and C- (1) 3-9-14 to .8, Interior (1) 0 to 54-8-7 z ers and forces DOL=1.60 pla	; -C one; ; & ate					
BOICHORD	bracing.	applied of 6-0-0 oc		grip DOL=1.6	60								
WEBS	1 Row at midpt	4-17, 7-17, 7-15, 8-1	3 3)	All plates are	4x6 MT20 unless	otherwi	se indicated.						
FORCES	(size) 11=0-3-8, Max Horiz 20=151 (L Max Uplift 11=-66 (L 20=-323 (20=2018 ((lb) - Maximum Com Tension 1-2=0/6, 2-3=-1371/	13=0-3-8, 20=0-3-8 .C 14) C 23), 13=-255 (LC · LC 6) .C 24), 13=2994 (LC (LC 2) pression/Maximum 933, 3-4=-2944/678.	2), 6) 7)	chord live loa * This truss h on the bottom 3-06-00 tall b chord and an WARNING: F than input be All bearings a canacity of 5	d nonconcurrent w as been designed h chord in all areas y 2-00-00 wide will y other members, Required bearing si aring size. are assumed to be 35 pei	rith any for a liv where fit betw with BC ze at jo SP No.	other live loa e load of 40.0 a rectangle /een the botto DL = 10.0psf int(s) 13 grea 1 crushing	ds. Dpsf om ter					
	4-6=-2126/671, 6-7= 7-8=-1088/517, 8-10 10-11=-104/702, 11-	2137/905,)=-199/986, -12=0/5	8)	Provide mech bearing plate	nanical connection capable of withsta	(by oth nding 2 nd 323	ers) of truss to 255 lb uplift at 15 uplift at joir	io Int					
BOT CHORD	2-20=-843/1376, 19- 17-19=-495/2816, 15 13-15=-6/245, 11-13	-20=-383/1777, 5-17=0/997, 3=-578/182	LO	20. AD CASE(S)	Standard		o apint at join				an'	HTH CA	ROLIN
WEBS	3-20=-3015/1746, 3- 4-19=-123/263, 4-17 6-17=-563/463, 7-17 7-15=-529/205, 8-15 8-13=-2378/790, 10-	·19=-417/1092, '=-1042/218, '=-556/1580, 5=-136/1179, ·13=-530/394									î	SEA	
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for								1111		0363	ER. KIN

NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durant description (thrus phoneparate) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

minin G

June 11,2025

Job	Truss	Truss Type	Qty	Ply	Lot 103 Ducks Landing	
J0325-1599	A1GE	GABLE	1	1	Job Reference (optional)	174088641

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 10 07:25:51 ID:ZBV44jdxGe9Lzs09kQJltyyS8Pv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:97

Loading	-	(psf)	Spacing	2-0-0		CSI		DEFL	in	(lo	bc) I/	defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.39	Vert(LL)	n/a	``	-	n/a	999	MT20	244/19	0
TCDL		10.0	Lumber DOL	1.15		BC	0.36	Vert(CT)	n/a		-	n/a	999			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.38	Horz(CT)	-0.03		29	n/a	n/a			
BCDL		10.0	Code	IRC2021/TPI2014		Matrix-S	0.00		0.00		_0		1, 4	Weight: 459 lb) FT = 20	0%
	_	-	•		Ν.	ov Crov 20 146		21 200 /I C 1					2 5 7	09/11/ 4 56	E14/222 E	EE 2E/194
	OVE ED N	o 1			IVI	32-123	(LC 0), (LC 1)	33–167 (LC 1), 24)	VVE	53		5-57=		514/225, 5 155/08 8	0-00=-20/104, 2-52=0/83
		0.1				34-159	(LC 1), (LC 1)	35–160 (LC 2	- -), 24)				9-50-	161/113 10-40)
	2X0 SF N	0.1				36=160	(LC 1), (LC 1)	38=161 (LC 1	<i>)</i> ,				12-48	s=-121/103 13-4	- 107/102	.,
OTTERS	284 SF N	0.2				39=159	(1 C 24)	40=152 (LC	24)				14-46	S = -117/104 15-4	5=-100/16	50, 50
						41=246	(LC 1).	42=591 (LC 1	<i>)</i> ,				16-43	3=-206/147, 17-4	2=-551/27	, ,
						43=246	(LC 1),	45=140 (LC 2	23).				18-41	=-206/147, 19-4	0=-112/16	, 50,
	Structuro	lwood sho	athing directly applied	or		46=157	(LC 1),	47=161 (LC 1),				20-39	=-119/104, 21-3	8=-121/10)2,
TOP CHORD	10-0-0 00		atting unectly applied	01		48=160	(LC 23)	49=147 (LC	23),				22-36	5=-120/103, 24-3	5=-120/10)3,
BOT CHORD	Rigid ceil	ina directly	applied or 6-0-0 oc			50=199	(LC 1),	52=18 (LC 8)	,				25-34	=-120/103, 26-3	3=-123/10)5,
Bot offorte	bracing	ing anoony				53=166	(LC 1),	54=304 (LC 1),				27-32	2=-100/84, 28-31	=-228/182	2
WEBS	T-Brace:		2x4 SPF No.2 - 14-46	5.		55=199	(LC 6),	56=1060 (LC	1)	NO	TES					
			15-45, 16-43, 17-42,	FORCES	(lb) - Maximum Co	ompressi	on/Maximum		1)	Unbala	nced	l roof l	ive loads have b	een consi	dered for
			18-41, 19-40, 20-39		٦	ension				,	this de	sign.				
	Fasten (2	X) T and I	braces to narrow edg	e TOP CHORD	1	-2=0/6, 2-3=-364/	/663, 3-4	=-322/667,		2)	Wind: /	AŜĊE	E 7-16	; Vult=130mph (3-second	gust)
	of web w	ith 10d (0.1	31"x3") nails, 6in		4	-5=-274/572, 5-6	=-263/64	6, 6-7=-233/	636,		Vasd=	103m	nph; T(CDL=6.0psf; BC	DL=5.0psf	; h=25ft;
	o.c.,with	3in minimu	m end distance.			-8=-208/622, 8-9	=-188/69	96, 9-10=-142	2/679,		Cat. II;	Exp	C; En	closed; MWFRS	(envelope	e) exterior
	Brace m	nust cover 9	90% of web length.		1	0-12=-119/685, 1	2-13=-9	4/685,			zone a	nd C	-C Co	rner(3E) -0-6-15	to 3-9-14,	Exterior
REACTIONS	(size)	29=48-0-0	0, 31=48-0-0, 32=48-0	-0,	1	3-14=-09/084, 14	-15=-44		SEC.		(2N) 3-	9-14	to 26-	-1-14, Corner(3F	() 26-1-14	to 34-11-8,
		33=48-0-0	0, 34=48-0-0, 35=48-0	-0,	1	3-10=-19/094, 10 8-1033/602 10	0-17=0/0	50, 17-10=0/0 /683	556,		EXTERIO	r(ZN)) 34-1	1-8 to 50-3-10, C	Jorner(3E)	50-3-10 to
		36=48-0-0	0, 38=48-0-0, 39=48-0	-0,	2	0-21=-101/682 2	20=-07	35/682			54-0-7		, U-U I	lumbor DOI -1	60 plato a	IVIVERS IUI
		40=48-0-0	0, 41 = 48 - 0 - 0, 42 = 48 - 0	I-0,	-	2-24=-169/682 2	24-25=-2	03/682				60	iowii,	Lumber DOL=1.	oo plate yi	пр
		43=48-0-0), 45=48-0-0, 46=48-0	I-U,	2	5-26=-237/682. 2	26-27=-2	71/683.			DOL-1	.00				
		47=48-0-0), 48=48-0-0, 49=48-0) 52-49 0 0 52-49 0	I-0,	2	7-28=-301/675, 2	28-29=-3	70/727, 29-30	0=0/5					minin	Willy,	
		54-48-0-0	5,52=46-0-0,53=46-0		2	-57=-601/381, 56	6-57=-60	1/381,						"TH CA	ARO	11
	Max Horiz	56=255 (I	C. 14)	0	5	5-56=-601/350, 5	64-55=-6	01/350,					1	R	Sol.	1 de la
	Max Linlift	29=-247 (I C 23) 31=-162 (I C 1	11)	5	3-54=-601/350, 5	52-53=-6	01/350,					1.	O FES	Story .	Vi
	max opint	32=-63 (L	C 11), 33=-86 (LC 11)).	5	0-52=-597/350, 4	9-50=-5	97/350,				4	Ď	1P	1ª	
		34=-83 (L	C 11), 35=-83 (LC 11)).	4	8-49=-597/350, 4	17-48=-5	97/350,				-		70	X	A
		36=-83 (L	C 11), 38=-82 (LC 11)),	4	6-47=-597/350, 4	5-46=-5	97/350,				-		SE/	11	: =
		39=-84 (L	C 11), 40=-94 (LC 11)),	4	3-45=-597/350, 4	2-43=-5	97/350,					:	JL/		: =
		41=-50 (L	C 11), 42=-7 (LC 6),		4	1-42=-597/350, 4	+U-41=-5	97/350,				=		0363	322	
		43=-58 (L	C 10), 45=-92 (LC 10)),	-	9-40=-397/350, 3 6-38597/350 3	25-385	97/350, 97/350				-				3 <u>-</u>
		46=-84 (L	C 10), 47=-83 (LC 10)),		10-30=-397/350, 3	2-31-5	97/350,					-	1. A.		1 8
		48=-83 (L	C 10), 49=-82 (LC 10)),	2	2-33=-597/350 3	31-32=-5	97/350.					21	S. SNOW	EFR.	15
		50=-93 (L	C 10), 52=-31 (LC 10)),	2	9-31=-597/350							1	P/ GIN	15.0	4.5
		55- 541 (L	(LC 0), 54=-124 (LC 6),	\									1	ICA C	211 BE	111
		55=-54T (LC 1), 30=-413 (LC 6)	1										1111	212111	
															1 1 1 N N N	

June 11,2025

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and RCSI Building Component Safety (Information available from the Structural Building Component Association (www shearcomponent Safety (Information available from the Structural Building Component Association (www shearcomponent Safety (Information available from the Structural Building Component Association (www shearcomponent Association) (www shearcomponent Association) (wow shearco and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 103 Ducks Landing				
J0325-1599	A1GE	GABLE	1	1	Job Reference (optional)	174088641			

Comtech. Inc. Favetteville, NC - 28314.

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1. All plates are 2x4 MT20 unless otherwise indicated. 4)
- 5) Gable studs spaced at 2-0-0 oc.
- 6)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 40.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 8) All bearings are assumed to be SP No.1 crushing capacity of 565 psi.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 415 lb uplift at joint 56, 541 lb uplift at joint 55, 124 lb uplift at joint 54, 66 lb uplift at joint 53, 31 lb uplift at joint 52, 93 lb uplift at joint 50, 82 lb uplift at joint 49, 83 lb uplift at joint 48, 83 lb uplift at joint 47, 84 lb uplift at joint 46, 92 lb uplift at joint 45, 58 lb uplift at joint 43, 7 lb uplift at joint 42, 50 Ib uplift at joint 41, 94 Ib uplift at joint 40, 84 Ib uplift at joint 39, 82 Ib uplift at joint 38, 83 Ib uplift at joint 36, 83 Ib uplift at joint 35, 83 lb uplift at joint 34, 86 lb uplift at joint 33, 63 lb uplift at joint 32, 162 lb uplift at joint 31 and 247 lb uplift at joint 29.
- 10) Non Standard bearing condition. Review required.
- 11) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

LOAD CASE(S) Standard

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries. Inc. Tue Jun 10 07:25:51 ID:ZBV44jdxGe9Lzs09kQJltyyS8Pv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 103 Ducks Landing	
J0325-1599	B1	Common	8	1	Job Reference (optional)	174088642

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 10 07:25:52 ID:ZBV44jdxGe9Lzs09kQJltyyS8Pv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	13-3-7	25-8-9	39-0-0	
	13-3-7	12-5-3	13-3-7	1
Scale = 1:73.1				

Plate Offsets (X, Y): [10:0-1-8,0-2-4], [13:0-1-8,0-2-4]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.43	Vert(LL)	-0.26	8-10	>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.56	Vert(CT)	-0.44	8-10	>999	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.77	Horz(CT)	0.08	8	n/a	n/a			
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S		Wind(LL)	0.11	2-13	>999	240	Weight: 277 lb	FT = 20%	
LUMBER			5) * This truss	has been desig	ned for a liv	e load of 40.0	0psf						

NOTES

2)

this design

	2.0 01 10.1
BOT CHORD	2x6 SP 2400F 2.0E *Except* 12-11:2x6 SP No 1
WEBS	2x4 SP No.2 *Except* 13-10:2x6 SP No.1
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 3-6-15 oc purlins.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
REACTIONS	(size) 2=0-3-8, 8=0-3-8
	Max Horiz 2=-229 (LC 11)
	Max Uplift 2=-380 (LC 10), 8=-380 (LC 11)
	Max Grav 2=2085 (LC 2), 8=2085 (LC 2)
FORCES	(Ib) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/21, 2-4=-3759/1089, 4-5=-3490/1053,
	5-6=-3490/1053, 6-8=-3759/1089, 8-9=0/21
BOT CHORD	2-13=-736/3290, 10-13=-220/2199,
	8-10=-736/3290
WEBS	5-13=-326/1542, 4-13=-578/595,
	5-10=-326/1542, 6-10=-578/595

* This truss has been designed for a live load of 40.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) All bearings are assumed to be SP 2400F 2.0E crushing

- capacity of 805 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 380 lb uplift at joint 2 and 380 lb uplift at joint 8.

LOAD CASE(S) Standard

Page: 1

Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 3-6-5, Exterior(2N) 3-6-5 to 15-1-3, Corner(3E) 15-1-3 to 23-10-13, Exterior (2N) 23-10-13 to 35-5-11, Corner(3E) 35-5-11 to 39-10-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

DOL=1.60200.0lb AC unit load placed on the bottom chord, 19-6-0 from left end, supported at two points, 5-0-0 apart.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

1) Unbalanced roof live loads have been considered for

Wind: ASCE 7-16; Vult=130mph (3-second gust)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters only. Additional temporary and permanent bracing building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 103 Ducks Landing	
J0325-1599	B1GE	Common Supported Gable	1	1	Job Reference (optional)	174088643

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 10 07:25:52 ID:6R9I1uFJjB?m2q3LDniubKz8_6Y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:71.5

Continued on page 2

Plate Offsets (X, Y): [4:0-4-0,0-4-8], [18:0-4-0,0-4-8]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc	;) l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.06	Vert(LL)	n/a		- n/a	999	MT20	244/190	
TCDL		10.0	Lumber DOL	1.15		BC	0.04	Vert(CT)	n/a		- n/a	999			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.13	Horz(CT)	0.01	2	0 n/a	n/a			
BCDL		10.0	Code	IRC20	21/TPI2014	Matrix-S							Weight: 329 lb	FT = 20%	
LUMBER				I	FORCES	(lb) - Maximum Co	mpressi	on/Maximum		3) T	russ desig	ned fo	or wind loads in the	he plane of the t	russ
TOP CHORD	2x6 SP N	0.1				I ension				0	nly. For s	uds e	xposed to wind (i	normal to the fac	ce),
BOT CHORD	2x6 SP N	0.1			TOP CHORD	1-2=0/21, 2-3=-184	4/102, 3	5=-119/88,		S	ee Standa	ra inal	ustry Gable End	Details as applic	
OTHERS	2x4 SP N	0.2				5-6=-90/103, 6-7=-	-80/158,	7-8=-78/222,		4) A	r consult o		MT20 uplace of	er as per ANSI/	IPII. d
BRACING						10 11 - 111/100 1	1 120/3	11/400		4) A	li plates a	e 2x4	MIZU UNESS OU	chord booring	u.
TOP CHORD	Structura	I wood shea	athing directly applied	d or		10-11=-141/400, 1	2 14- 1	+1/400,		5) 6	able requ		ad at 2.0.0 aa	chord bearing.	
	6-0-0 oc p	purlins.				12-13=-120/307, 1	-1655	/158		0) C	bio truco h	space	eu al 2-0-0 00.	10 0 pot botton	~
BOT CHORD	Rigid ceil	ing directly	applied or 10-0-0 oc			16-17-46/94 17-	19-78/2	100, 19-20160	/66	<i>(</i>) 1	hord live k	as Det	en designed for a	1 10.0 psi bollon	nade
	bracing.					20-21=0/21	10= 10/2	.0, 10 20= 100	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	8) *	This trues	hae h	een designed for	ally other live ic	0 Onef
WEBS	1 Row at	midpt	11-31, 10-32, 12-30			2-40=-55/245 39-4	40=-55/2	45		0)	n the hotte	m chc	ord in all areas w	here a rectande	o.opsi
REACTIONS	(size)	2=39-0-0,	20=39-0-0, 22=39-0-	·0,		38-39=-60/251.37	-38=-60	/251.		3	-06-00 tall	bv 2-0	00-00 wide will fit	between the bc	ottom
		23=39-0-0), 24=39-0-0, 25=39-0	D-0,		36-37=-60/251, 35	-36=-60	251.		c	hord and a	nv oth	ner members		
		26=39-0-0), 27=39-0-0, 28=39-0)-0,		34-35=-60/251.32	-34=-60	251.		9) Å	II bearings	are a	ssumed to be SF	No 1 crushing	
		30=39-0-0), 31=39-0-0, 32=39-0	J-0,		31-32=-60/251, 30	-31=-60	251,		с, с	apacity of	565 ps	si.		
		34=39-0-0), 35=39-0-0, 36=39-0	J-0,		28-30=-60/251, 27	-28=-60	251,							
		37=39-0-0), 38=39-0-0, 39=39-0	J-0,		26-27=-60/251, 25	-26=-60	251,							
	Max Hariz	40=39-0-0				24-25=-60/251, 23	-24=-60	251,							
	Max Unlift	2=146 (LC	(10, 10)			22-23=-55/245, 20	-22=-55	245							
	wax upint	2=-24 (LU	C 11) 24- 51 (LC 11),	、 '	WEBS	11-31=-208/25, 10	-32=-12	2/70,							
		25=-37 (L)	C 11), 24=-51 (LC 11 C 11), 2646 (LC 11),)		9-34=-122/136, 8-3	35=-120	/121,							
		27=-47 (1)	C 11), 28=-56 (LC 11),		7-36=-120/119, 6-3	37=-118	/119,							
		30=-19 (L)	C 11) 32=-26 (I C 10),		5-38=-131/130, 4-3	39=-93/8	4, 3-40=-184/2	246,				unun	11111	
		34=-54 (L	C 10), 35=-47 (LC 10).		12-30=-122/70, 13	-28=-12	2/136,					IN'LY CA	AD	
		36=-46 (L	C 10), 37=-46 (LC 10),).		14-27=-120/121, 1	5-26=-1	20/119,				1	alri	10/14	
		38=-51 (L	C 10), 39=-37 (LC 10),		10-20=-110/119, 1	7-24=-1	31/130, /246			/	S.	0158	12 12	20
		40=-75 (L	C 10)			10-23=-95/04, 19-2	22=-104	240			L	U		- Alexandre	
	Max Grav	2=189 (LC	C 1), 20=189 (LC 1),	I	NOTES								ion L	N.	-
		22=262 (L	C 24), 23=117 (LC 2	4),	1) Unbalanced	roof live loads hav	e been o	considered for				() }	· · · · ·	60 C	-
		24=175 (L	C 1), 25=157 (LC 24)),	this design.								: SEA	۱L :	1
		26=160 (L	_C 1), 27=160 (LC 1),		2) Wind: ASCE	= 7-16; Vult=130mp		cond gust)			=		0363	222 :	
		28=162 (L	C 24), 30=162 (LC 1),	Cot III: Exp	ipn; TCDL=6.0psi; I	BCDL=0	oupsi; n=25it;	~				0505	22	-
		31=169 (L	_C 20), 32=162 (LC 1),	Corpor(2E)		vtorior/2						1. State 1.		-
		34=162 (L	_C 23), 35=160 (LC 1),	15-1-3 Corr	-0-10-0 to 3-0-0, E/	3-10-13	Exterior(2NI)				-	A.A.	air	5
		36=160 (L	LC 1), 37=157 (LC 23),	23-10-13 to	35-5-11 Corner(3)	E) 35-5-	11 to 39-10-8				15	S VGIN	EE	1
		30=1/3 (L	C 1), 39=117 (LC 23),	zone:C-C fo	r members and for	ces & M	WFRS for				1	10	" aF I	9.
		4∪=∠02 (L	.0 23)		reactions sh	own; Lumber DOL	la 06.1=	ate grip					11. A. C	allerin	
					DOL=1.60	,		51					111111	mm	
													Jun	e 11,2025	
														, - -	

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeR% connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the Section of the prevent collapse contervent for the Sectional temporation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 103 Ducks Landing	17 10000 10
J0325-1599	B1GE	Common Supported Gable	1	1	Job Reference (optional)	174088643

- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 2, 26 lb uplift at joint 32, 54 lb uplift at joint 34, 47 lb uplift at joint 35, 46 lb uplift at joint 36, 46 lb uplift at joint 37, 51 lb uplift at joint 38, 37 lb uplift at joint 39, 75 lb uplift at joint 40, 19 lb uplift at joint 30, 56 lb uplift at joint 28, 47 lb uplift at joint 27, 46 lb uplift at joint 26, 47 lb uplift at joint 25, 51 lb uplift at joint 24, 37 lb uplift at joint 23 and 74 lb uplift at joint 22.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.

LOAD CASE(S) Standard

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 10 07:25:52 ID:6R9I1uFJjB?m2q3LDniubKz8_6Y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durant description (thrus phoneparate) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 103 Ducks Landing	
J0325-1599	B2	Common	6	1	Job Reference (optional)	174088644

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 10 07:25:52

Page: 1 ID:ZBV44jdxGe9Lzs09kQJltyyS8Pv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 0-10-8 10-2-2 19-6-0 28-9-14 38-9-0 10-2-2 9-3-14 9-3-14 9-11-2 6x6= 5 15 14 6¹² 2x4、 2x4 🏿 4 6 10-3-8 4x8 👟 4x8 ≠ 3 7 16 13

Scale = 1:70.8

10-8-6

Plate Offsets (X, Y): [2:0-3-4,0-2-0]

												_			
Loa	ading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
τсι	LL (roof)	20.0	Plate Grip DOL	1.15		тс	0.46	Vert(LL)	-0.40	9-12	>999	360	MT20	244/190	
тсі	DLÌ	10.0	Lumber DOL	1.15		BC	0.99	Vert(CT)	-0.51	9-12	>899	240			
BCI	LL	0.0*	Rep Stress Incr	YES		WB	0.57	Horz(CT)	0.09	8	n/a	n/a			
BCI	DL	10.0	Code	IRC2021	I/TPI2014	Matrix-S		Wind(LL)	0.09	2-12	>999	240	Weight: 245 lb	FT = 20%	
				5)	Bearings are	assumed to be: I	oint 2 SE	No 1 crushi	na	-					
		OVE ED No.1		5)	capacity of 5	65 nsi			ng						
		2X0 OF NULL		6)	Refer to gird	or psi. er(s) for truss to tru		ections							
	Be	2x0 SF N0.1		7)	Provide med	hanical connection	hv oth	ers) of truss t	n						
ᇚ		244 01 100.2		• ,	bearing plate	capable of withst	anding 2	12 lb uplift at	t						
			مناهمه مانده مدار مصمانه		ioint 2 and 19	94 lb uplift at joint	8.								
101	PCHORD	2 9 11 oo purlino	atning directly applie		AD CASE(S)	Standard									
		Bigid coiling directly	applied or 2.2.0 oc		///D 0///02(0)	otandara									
50	TOTORD	bracing													
DE			Machanical												
	ACTIONS	(312e) $2=0-3-0, c$													
		Max Unlift 2 - 212 (LC	29) C 10) 9- 104 (I C 1	1)											
		Max $Grav = 212 (L)$	C 10), 0=-194 (LC 1	1)											
			.C 2), 0=1955 (LC 2)												
FOI	RCES	(Ib) - Maximum Com	pression/Maximum												
			000 4 5 0450/070	`											
101	P CHORD	1-2=0/21, 2-4=-3400 5 6 2127/000 6 0	2202/070	о,											
		3 - 0 = -3 + 3 / / 000, 0 - 0 = -3 + 3 / 000, 0 - 0 = -3 + 3 / 000, 0 - 0 = -3 + 3 / 000, 0 - 0 = -3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3	-3303/070 2_ 202/2001												
50	TOTORD	2-12=-033/3023, 9-1	2=-293/2001,												
NF	BS	5-12=-242/1403 4-1	2=-586/393												
	20	5-9=-244/1373 6-9=	-566/398												
	TES	00 210 1010, 00	000,000												
1)	Linhalance	ed roof live loads have	been considered for											1111	
''	this design												N'TH CA	Roille	
2)	Wind ASC	 CE 7-16: Vult=130mph	(3-second gust)									1	R	2 4/11/1	l.
-/	Vasd=103	mph: TCDL=6.0psf: B0	CDL=5.0psf: h=25ft:								/	25	Y FEDO	ON V	-
	Cat. II; Ex	p C; Enclosed; MWFR	S (envelope) and C-	С							4		1 /	C	/
	Exterior(2	E) -0-10-8 to 3-6-5, Inte	erior (1) 3-6-5 to 15-	1-3,							-		2	- S -	
	Exterior(2)	R) 15-1-3 to 23-10-13,	Interior (1) 23-10-13	to							-		SEA	:	=
	34-3-7, Èx	terior(2E) 34-3-7 to 38	-8-4 zone;C-C for								=	:	SLA	- :	=
	members	and forces & MWFRS	for reactions shown;								1		03632	22 :	-

Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom 3)

- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 40.0psf 4) on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

mannin G mmm June 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durant description (thrus phoneparate) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 103 Ducks Landing	
J0325-1599	B2GE	Common Supported Gable	1	1	Job Reference (optional)	174088645

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 10 07:25:52 ID:PK8oevk13o9xT7hD7vxVmzz8_5v-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

June 11,2025

818 Soundside Road Edenton, NC 27932

Scale = 1:70.8

Plate Offsets (X, Y): [4:0-4-0,0-4-8], [18:0-4-0,0-4-8]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(lo	oc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.06	Vert(LL)	n/a		-	n/a	999	MT20	244/190	
TCDL		10.0	Lumber DOL	1.15		BC	0.04	Vert(CT)	n/a		-	n/a	999			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.13	Horz(CT)	0.01		20	n/a	n/a			
BCDL		10.0	Code	IRC20	21/TPI2014	Matrix-S								Weight: 325 lb	$FT = 20^{\circ}$	%
LUMBER					FORCES	(lb) - Maximum Com	pressi	on/Maximum		3)	Trus	s desig	ned fo	or wind loads in th	e plane of	the truss
TOP CHORD	2x6 SP N	0.1		-			~ ~ ~	100/05			only.	. For st	uds ex	kposed to wind (r	iormal to tr	ne face),
BOT CHORD	2x6 SP N	0.1			I OP CHORD	1-2=0/21, 2-3=-186/	99, 3-5	=-122/85,			see	Standar	d Indi	ustry Gable End I	Jetails as a	applicable,
OTHERS	2x4 SP N	0.2				5-6=-92/98, 6-7=-82	/150, /	-8=-80/214,		•	OFCC	onsult q		a building design	er as per A	ANSI/TPTT.
BRACING						8-9=-103/279, 9-10=	-128/3	49,		4)	All p	lates ar	e ZX4	witzo unless oth	erwise indi	icated.
TOP CHORD	Structura	l wood shea	athing directly applied	or		10-11=-143/393, 11-	-12=-14	+3/393,		5) (C	Gab	le requi	res co	nunuous bollom	chord bear	nng.
	6-0-0 oc p	purlins.				12-13=-128/349, 13	-14=-10	J3/279, 150		6) 7)	Gab	le studs	spac	ed at 2-0-0 oc.	40.0 6	- 44
BOT CHORD	Rigid ceil	ing directly	applied or 10-0-0 oc			16-17-18/86 17-10	0=-30/	100, 6 10-20201	1/72	()	Inis	truss na id live le	as bee	en designed for a	10.0 psi b	live leads
	bracing.					2-30-57/220 38-30)13/2)57/2	20, 13-20-201	1/12	0)	* Th	u live lu	au nu			live loads.
WEBS	1 Row at	midpt	11-30, 10-31, 12-29			27-3862/236 36-3	2762	236		0)	on th	is iluss	m cho	een designed tor	a live load	noi 20.0psi
REACTIONS	(size)	2=38-9-0,	20=38-9-0, 21=38-9-	0,		35-3662/236 34-3	8562	236			3-06	LOO tall	hy 2-0	0_00 wide will fit	hotwoon t	he bottom
		22=38-9-0), 23=38-9-0, 24=38-9	9-0,		33-34=-62/236 31-3	33=-62	236			chor	d and a	nv oth	er members	between u	ne bottom
		25=38-9-0), 26=38-9-0, 27=38-9	9-0,		30-31=-62/236 29-3	30=-62/	236		a)		earings	area	ssumed to be SP		hina
		29=38-9-0), 30=38-9-0, 31=38-9	9-0,		27-29=-62/236, 26-2	27=-62/	236.		3)	capa	acity of f	565 ps	si	140.1 0103	ining
		33=38-9-0), 34=38-9-0, 35=38-9	9-0,		25-26=-62/236, 24-2	25=-62	236.			oupo		, oo be			
		36=38-9-0), 37=38-9-0, 38=38-9	9-0,		23-24=-62/236, 22-2	23=-62/	236,								
		39=38-9-0)			21-22=-63/236, 20-2	21=-63/	236								
	Max Horiz	2=149 (LC	()	1	NEBS	11-30=-202/27, 10-3	31=-12	2/71,								
	Max Uplift	2=-23 (LC	6), 21=-85 (LC 11),			9-33=-122/136, 8-34	l=-120/	'121,								
		22=-37 (L	C 11), 23=-48 (LC 11)),		7-35=-120/119, 6-36	6=-118/	'119,								
		24=-47 (L	C 11), 25=-46 (LC 11) C 11), 27- 56 (LC 11)),		5-37=-131/130, 4-38	8=-93/8	4, 3-39=-184/	246,							
		20=-47 (L	C 11), 27=-36 (LC 11)), \		12-29=-122/71, 13-2	27=-122	2/136,							1111	
		29=-20 (L	C(10), 31=-20 (LC 10) C(10), 34=-47 (LC 10)), \		14-26=-120/121, 15-	-25=-12	20/119,						M' CA	10 11	9
		3546 (1)	C 10), 34=-47 (LC 10)),)		16-24=-120/120, 17-	-23=-12	22/122,						"ATH UT	100	11.
		37=-51 (1)	C 10), 38=-37 (LC 10))		18-22=-99/97, 19-21	=-188/	292					1	OFFESS	1	110
		39=-75 (L	C 10)	'' I	NOTES								8 2		THE	47
	Max Grav	2=189 (LC	20=116 (LC 1),		 Unbalanced 	roof live loads have	been o	considered for					2	41 1		17-
		21=262 (L	.C 24), 22=125 (LC 24	4),	this design.							-			540 C.	1. 2.
		23=166 (L	.C 24), 24=159 (LC 24	4), 4	Wind: ASCE	7-16; Vult=130mph	(3-sec	ond gust)				=		SEA	(L	1 1
		25=160 (L	.C 1), 26=160 (LC 1),		Vasd=103m	ph; TCDL=6.0psf; B	CDL=5	.0psf; h=25ft;	~			=	:	0262	22	: z
		27=162 (L	.C 24), 29=162 (LC 1)),	Cat. II; Exp	C; Enclosed; MWFR	S (env	elope) and C-	С			1		0303	22	: z
		30=166 (L	.C 20), 31=162 (LC 1)),	Corner(3E)	-0-10-8 to 3-6-0, Ext	erior(2)	N) 3-6-0 to								j - 2
		33=162 (L	.C 23), 34=160 (LC 1)),	15-1-3, Corr	1er(3R) 15-1-3 to 23-	-10-13,	Exterior(ZN)				5	2	1 A	a :	5
		35=160 (L	.C 1), 36=157 (LC 23)),	23-10-13 l0	sta and forese & MM	04-4-0 /EDC f	10 36-9-0 2011	9,0-				2.5	NGIN	FE	13
		37=175 (L	.C 1), 38=117 (LC 23)),	shown: Lum	ber DOI -1 60 plata	arin D						11	710	······································	5
		39=262 (L	.C 23)		SHOWIT, LUIII		grip D	02-1.00						A G	iller	N
														11111	in the	
															TELEVISION	

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, recetion and bracing of trusses and truss systems, see **ANSI/TPI Quility Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 103 Ducks Landing		
J0325-1599	B2GE	Common Supported Gable	1	1	Job Reference (optional)	174088645	

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 23 lb uplift at joint 2, 26 lb uplift at joint 31, 54 lb uplift at joint 33, 47 lb uplift at joint 34, 46 lb uplift at joint 35, 46 lb uplift at joint 36, 51 lb uplift at joint 37, 37 lb uplift at joint 38, 75 lb uplift at joint 39, 20 lb uplift at joint 29, 56 lb uplift at joint 27, 47 lb uplift at joint 26, 46 lb uplift at joint 25, 47 lb uplift at joint 24, 48 lb uplift at joint 23, 37 lb uplift at joint 22 and 85 lb uplift at joint 21.

LOAD CASE(S) Standard

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 10 07:25:52 ID:PK8oevk13o9xT7hD7vxVmzz8_5v-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 103 Ducks Landing	
J0325-1599	C1GE	Common Supported Gable	1	1	Job Reference (optional)	174088646

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 10 07:25:52 ID:KcErsrTA4wV0yiOTofUGNQz8_2O-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1	:64
-----------	-----

Plate Offsets (X, Y): [14:Edge,0-5-0]

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	21/TPI2014	CSI TC BC WB Matrix-S	0.05 0.03 0.15	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 207 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SP N 2x6 SP N 2x4 SP N Left 2x4 S 1-1-9 Structura 6-0-0 oc Rigid ceil bracing. 1 Row at (size)	o.1 o.2 SP No.2 1 I wood shee ourlins. ing directly midpt 2=22-0-0, 17=22-0-(21=22-0-(24=22-0-(27=22-0-(2-264 () (1-1-9, Right 2x4 SP athing directly applie applied or 10-0-0 or 8-22 14=22-0-0, 16=22-0 0, 18=22-0-0, 20=22 0, 22=22-0-0, 23=22 0, 25=22-0-0, 26=22	No.2 ed or c D-0, V -0-0, -0-0, -0-0,	TOP CHORD	1-2=0/10, 2-3=-374 4-5=-163/137, 5-6= 7-8=-165/275, 8-9= 10-11=-96/69, 11-1 12-13=-192/109, 13 14-15=0/10 2-27=-121/287, 26 25-26=-121/287, 22 23-24=-121/287, 22 23-24=-121/287, 12 16-17=-121/287, 12 16-17=-121/287, 12 3-22=-222/82, 7-23 3-24=-147/171, 5-2 4-26=-148/184, 3-2 9-21=-135/102, 10-1 11-18=-140/151, 12 13-16=-162/239	/249, 3- 146/11 2=-113, 3-14=-3 27=-12 4-25=-1: 2-23=-1: 0-21=-1: 4-16=-1: 1-16=-1: 1-16=-1: 1-16=-1: 1-16=-1: 2-17=-1. 2-17=-1. 1-16=-1:	-4=-221/177, 9, 6-7=-131/1 75, 9-10=-124/ 70, 74/188, 1/287, 21/284, 21/29, 21/2	92, /192,	8) * T on 3-C chi 9) All cal 10) Prr be: joir upj joir lb t joir LOAD	his truss the botto 6-00 tall ord and a bearings bacity of ovide me aring plat at 2, 55 lk ift at join at 27, 49 uplift at join th 16 and CASE(S	has be om cho by 2-0 any oth a are as 565 ps chanic te capa o uplift t 25, 8 lb uplif bint 18, 85 lb) Sta	een designed for rd in all areas wi 0-00 wide will fit er members. ssumed to be SF i. al connection (b able of withstand at joint 23, 89 lb 5 lb uplift at joint 84 lb uplift at joint 44 lb uplift at joint 14. ndard	a live load of 2 bere a rectangl between the b ' No.1 crushing / others) of trus ing 155 lb uplif uplift at joint 2 26, 172 lb upli b uplift at joint 1 int 17, 159 lb u	20.0psf e ottom J ss to t at 4, 78 lb ft at 20, 78 plift at
FORCES	$\begin{array}{rllllllllllllllllllllllllllllllllllll$, 11), 1 1), 2 0), 2 0), 10)), 18), 18), 18), 17), 3 17), 3	 NOTES Unbalanced this design. Wind: ASCE Vasd=103mp Cat. II; Exp (Corner(3E) e 18-5-11, Cor members an Lumber DOL Truss design only. For stu see Standarr or consult qu All plates are 	roof live loads have 7-16; Vult=130mp bh; TCDL=6.0psf; E C; Enclosed; MWFF 0-10-8 to 3-6-5, Ex 3-7-3 to 15-4-13, E: ner(3E) 18-5-11 to d forces & MWFRS =1.60 plate grip D ted for wind loads i dl sexposed to win d Industry Gable Er ialified building des 2X4 MT20 unless	e been of h (3-sec 3CDL=5 RS (env terior(2) xterior(2) 22-10-{ 5 for rea OL=1.60 n the pla d (norm nd Deta igner as otherwi	considered for cond gust) i.0psf; h=25ft; elope) and C- N) 3-6-5 to 6- i.N) 15-4-13 to 3 zone;C- C fo ctions shown; an eof the trus al to the face) ils as applicat s per ANSI/TF se indicated.	C 7-3, r ; ss , ole, ole, 1.			Z	OR TH CA OR SEA 0363	ROUT ROUT	Mannun

- Gable requires continuous bottom chord bearing. 5)
- Gable studs spaced at 2-0-0 oc. 6)
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durant description (thrus phoneparate) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

11111111 G

June 11,2025

Job	Truss	Truss Type	Qty	Ply	Lot 103 Ducks Landing	
J0325-1599	C2	HIP	6	1	Job Reference (optional)	174088647

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 10 07:25:52 ID:ZBV44jdxGe9Lzs09kQJltyyS8Pv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:69.7 Plate Offsets (X, Y): [1:0-3-0,0-0-4], [5:0-3-0,Edge], [9:0-3-6,0-0-4]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.27	Vert(LL)	-0.11	9-10	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.42	Vert(CT)	-0.13	9-10	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.72	Horz(CT)	0.02	9	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S		Wind(LL)	0.14	1-12	>999	240	Weight: 160 lb	FT = 20%

LUMBER

WEBS NOTES

this design.

1)

2)

3)

TOP CHORD	2x6 SP No	p.1
BOT CHORD	2x6 SP No	o.1
WEBS	2x4 SP No	o.2
SLIDER	Left 2x4 S	P No.2 4-4-10, Right 2x4 SP
	No.2 4-4	4-10
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	6-0-0 oc p	ourlins.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	1=0-3-8, 9=0-3-8
	Max Horiz	1=-260 (LC 6)
	Max Uplift	1=-92 (LC 10), 9=-92 (LC 11)
	Max Grav	1=1176 (LC 17), 9=1176 (LC 18)
FORCES	(lb) - Maxi	mum Compression/Maximum
	Tension	·
TOP CHORD	1-3=-1490)/331, 3-4=-916/381, 4-5=-146/52,
	5-6=-146/	52, 6-7=-916/381, 7-9=-1490/331
BOT CHORD	1-12=-90/	1051, 10-12=-90/1051,
	9-1090/	1051

Unbalanced roof live loads have been considered for

Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C

Exterior(2R) 4-9-5 to 17-2-11, Interior (1) 17-2-11 to

17-7-3, Exterior(2E) 17-7-3 to 22-0-0 zone;C-C for members and forces & MWFRS for reactions shown;

Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom

Exterior(2E) 0-0-0 to 4-4-13, Interior (1) 4-4-13 to 4-9-5,

chord live load nonconcurrent with any other live loads.

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=25ft;

3-12=-13/608, 7-10=-13/608, 4-6=-1003/474

- This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 All bearings are assumed to be SP No.1 crushing
- capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 92 lb uplift at joint 1 and 92 lb uplift at joint 9.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 103 Ducks Landing	
J0325-1599	С3	COMMON TRUSS	1	2	Job Reference (optional)	174088648

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 10 07:25:52 ID:ZBV44jdxGe9Lzs09kQJltyyS8Pv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:65.1

Plate Offsets (X, Y):	[3:Edge,0-2-4],	[4:0-2-0,0-3-0]
-----------------------	-----------------	-----------------

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	3-0-0 1.15 1.15 NO IRC2021	/TPI2014	CSI TC BC WB Matrix-S	0.53 0.37 0.16	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.07 -0.11 0.01 0.03	(loc) 1-4 1-4 3 1-4	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 368 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) 2-ply truss (0.131"x3" Top chord staggered Bottom ch staggered Bottom ch	2x6 SP No 2x8 SP No 2x8 SP No 2x4 SP No Left: 2x6 S Right 2x8 - 2-0-0 oc p (Switched Rigid ceilin bracing. (size) Max Horiz Max Horiz Max Uplift Max Grav (lb) - Maxi Tension 1-2=-1941 1-4=-16/12 2-4=0/143 to be connected at 0-9-0 oc. ords connected at 0-9-0 oc. ords connected at 0-9-0 oc. ords connected as foll section. Ply to o distribute oc ervise indicided roof live lo n.	0.1 0.1 0.2 SP No.1 SP No.1	10-8-10 -0 max.) ted: Spacing > 2-8-0) applied or 10-0-0 oc =0-3-8 C 8) C 10), 3=-135 (LC 11 C 17), 3=1613 (LC 12 pression/Maximum -1964/456 16/1336 her with 10d : 2x6 - 2 rows 1 row at 0-9-0 oc. applied to all plies, xk (B) face in the LOA ections have been noted as (F) or (B), been considered for	4) , 5) 6) 7) 8) 9) LO	Wind: ASCE Vasd=103mp Cat. II; Exp C Exterior(2E) 1 17-5-7, Exter members and Lumber DOL This truss ha on the botton 3-06-00 tall be chord and an All bearings a capacity of 50 Provide mecl bearing plate bearing plate of the orienta bottom chord AD CASE(S)	7-16; Vult=130mpl h; TCDL=6.0psf; E ; Enclosed; MWFF 2-1-12 to 4-6-9, Int 6-7-3 to 15-4-13, Ir ior(2E) 17-5-7 to 2 d forces & MWFRS =1.60 plate grip DC s been designed fc d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members, are assumed to be 55 psi. nanical connection capable of withsta 5 lo uplift at joint 1 rlin representation tion of the purlin al Standard	n (3-sec 3CDL=5 3S (envi- erior (1) therior (1) 1-10-4 z 5 for rea DL=1.60 or a 10.0 ifth any for a liv where I fit betw with BC SP No. (by oth- ndiong the long the	ond gust) .0psf; h=25ft; elope) and C- 4-6-9 to 6-7- 1) 15-4-13 to cone;C-C for ctions shown) psf bottom other live load e load of 30.0 a rectangle veen the bottod DL = 10.0psf 1 crushing ers) of truss to 35 lb uplift at bt depict the s to p and/or	-C 3, ; ds.)psf om ize				SEA 03633	ROLL 22 E.P. A. M.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO AMITEK Affiliate 818 Soundside Road Edenton, NC 27932

June 11,2025

Job	Truss	Truss Type	Qty	Ply	Lot 103 Ducks Landing	
J0325-1599	D1	MONOPITCH TRUSS	3	1	Job Reference (optional)	174088649

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 10 07:25:52 ID:urHpUXSUqY2HTqw1dFbYnWzwO2N-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x6 II

0-10-8 9-1-12 11-0-0 9-1-12 1-10-4 0-10-8 2x6 II 4 12 3 Г 3 8 3-3-8 7 3-3-1 3x4 = 2 1 P 0 0-6-1 \bigotimes 9 10 5 6 3x6 =

Scale = 1:34.7

Plate Offsets (X, Y): [2:0-2-12,Edge]

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC (BC (WB (Matrix-S	0.43 0.51 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.27 -0.14 n/a	(loc) 2-6 2-6	l/defl >402 >755 n/a	L/d 240 240 n/a	PLATES MT20 Weight: 57 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP No. 2x6 SP No. 2x4 SP No. Structural w 6-0-0 cc pu Rigid ceiling bracing. (size) 2 Max Horiz 2	1 2 2 rlins. g directly =0-3-0, 6 =103 (LC	athing directly applie applied or 9-11-1 or 5=0-3-8 2 6)	LOAD CASE(S) ed or	Standard								
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=103 Cat. II; Exp Exterior(2E 6-7-3, Exterior(2E 6-7-3, Exterior(2E 6-7-3, Exterior(2E) 6-7-3, Exterior(2E) 7-7-7, Exterior(2E) 7-7, Exterior	Max Uplift 2 Max Grav 2 (lb) - Maxim Tension 1-2=0/6, 2-3 2-6=0/0, 5-6 3-6=-377/47 CE 7-16; Vult= imph; TCDL=6 p C; Enclosed E) -0-6-15 to 3 erior(2E) 6-7-3 C-C for membdo shown; Lumbe	(L1-191) (L1 =389 (LC num Com 3=-148/5(=0/0 77 =130mph 6.0psf; BC (; MWFR 3-9-14, In 3-9-14, In 3 to 11-0- ers and fe	C 6), 6=-204 (LC 6) C 1), 6=523 (LC 1) pression/Maximum 3, 3-4=-27/0 (3-second gust) CDL=5.0psf; h=25ft; S (envelope) and C- terior (1) 3-9-14 to -0 zone; porch left prces & MWFRS for 1.60 plate grip	с						4		OFESS	ROUTIN
 2) This truss chord live i 3) * This truss on the bott 3-06-00 tal chord and 4) All bearing capacity of 5) Provide me bearing pla joint 2 and 	has been des load nonconc s has been de tom chord in a ill by 2-00-00 v any other me js are assume f 565 psi. echanical con ate capable ol 204 lb uplift a	igned for urrent wi esigned fo all areas wi wide will f mbers. ed to be S unection (f withstan at joint 6.	a 10.0 psf bottom th any other live load or a live load of 40.0 where a rectangle fit between the botto SP No.1 crushing by others) of truss to ding 191 lb uplift at	ds. Ipsf D						1111111111		SEA 0363 CA.G	L 22 ILBERTITUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUT

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 103 Ducks Landing	
J0325-1599	E1GE	Common Supported Gable	1	1	Job Reference (optional)	174088650

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 10 07:25:53 ID:1Pcd0SYdAzQQLFVBPs0mP_z7zxq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-R	0.10 0.04 0.19	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 80 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.1 2x4 SP No.1 2x4 SP No.1 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 12=13-0-(15=13-0-(15=13-0-(18=13-0-(Max Horiz 18=164 (I Max Uplift 12=-54 (L 17=-123 (I Max Grav 12=170 (I 14=181 (I 16=180 (I 18=182 (I	Pathing directly applied cept end verticals. r applied or 6-0-0 oc 0, 13=13-0-0, 14=13-1 0, 16=13-0-0, 17=13-1 0 LC 9) .C 7), 13=-119 (LC 11 .C 71), 13=-119 (LC 11 .C 11), 16=-68 (LC 10 (LC 10), 18=-68 (LC 10 LC 17), 13=216 (LC 1 LC 18), 15=185 (LC 2 LC 17), 17=222 (LC 1 LC 18)	 2) Wind: ASCI Vasd=103m Cat. II; Exp Corner(3E) Corner(3E) and forces DOL=1.60 p 3) Truss design only. For si see Standa or consult q 0-0, 4) All plates ai 5) Gable requi 6) Truss to be braced aga 1), 7) Gable studs 6) chord live ld 8) This truss ho chord live ld 9) * This truss on the botto 17), 3-06-00 tall 	E 7-16; Vult=130m hph; TCDL=6.0psf; C; Enclosed; MWF -0-10-8 to 3-6-5, C 9-5-11 to 13-10-8 MWFRS for reac blate grip DOL=1.6 ned for wind loads uds exposed to wi rd Industry Gable F ualified building de re 2x4 MT20 unles res continuous bot fully sheathed fror inst lateral movem as been designed bad noncourcent has been designed m chord in all area by 2-00-00 wide winy other washes	ph (3-sec BCDL=5 FRS (env Corner(3F zone;C-C titions shc 0 s in the pl- ind (norm End Deta assigner as s otherwittom chor n one fac ent (i.e. d oc. for a 10.4 with any d for a liv as where vill ft betv.	cond gust) i.0psf; h=25ft; elope) and C- it) 3-6-5 to 9-5 f for members wm; Lumber ane of the tru: al to the face; ils as applical s per ANSI/TF se indicated. d bearing. e or securely liagonal web). D psf bottom other live load e load of 20.0 a rectangle veen the botto	-C -11, s ss), ole, PI 1. ds. om					
FORCES	(lb) - Maximum Com Tension	npression/Maximum	10) All bearings capacity of	are assumed to b 565 psi.	e SP No.	1 crushing						
TOP CHORD	2-18=-107/235, 1-2= 3-4=-114/109, 4-5=- 6-7=-202/373, 7-8=- 9-10=-10/33, 10-11=	=0/39, 2-3=-12/34, 135/233, 5-6=-202/37 135/233, 8-9=-95/92, =0/39, 10-12=-100/23	11) Provide me 73, bearing plat , 18, 54 lb up 35 unlift at ioin	chanical connectio te capable of withs lift at joint 12, 68 lb	on (by oth tanding 6 b uplift at ioint 14 a	ers) of truss to 8 lb uplift at jo joint 16, 123	o oint Ib ift at			- Int	ORTH CA	ROLIN
BOT CHORD	17-18=-71/144, 16-1 15-16=-71/144, 14-1 13-14=-71/144, 12-1	17=-71/144, 15=-71/144, 13=-71/144	joint 13. LOAD CASE(S) Standard	joint i i c		in at		L	e	220	No.
WEBS	6-15=-356/138, 5-16 4-17=-174/277, 3-18 7-14=-146/194, 8-13	6=-145/194, 3=-156/86, 3=-174/277, 9-12=-14	40/68								SEA 0363	L 22
NOTES										0	N	
 Unbalance 	ed roof live loads have	been considered for								-	·	0 1 . 5

this design.

818 Soundside Road Edenton, NC 27932

B GIL June 11,2025

Job	Truss	Truss Type	Qty	Ply	Lot 103 Ducks Landing	
J0325-1599	E2	HIP TRUSS	1	2	Job Reference (optional)	174088651

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 10 07:25:53 ID:ZBV44jdxGe9Lzs09kQJltyyS8Pv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:43.6

Plate Offsets (X, Y): [4:0-9-8,0-4-0]

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2021	I/TPI2014	CSI TC BC WB Matrix-S	0.20 0.29 0.88	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.04 -0.07 0.01 0.02	(loc) 3-4 3-4 3 3-4	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 221 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) 2-ply truss (0.131"x3" Top chord staggered Bottom ch staggered Web conn 2) All loads a except if n CASE(S) s provided tu unless oth 3) Unbalance this desigr 4) Wind: ASC Vasd=103 Cat. II; Ext DOL=1.60	2x6 SP No.1 2x12 SP 240 2x4 SP No.2 Structural we 6-0-0 cc pur Rigid ceiling bracing. (size) 1: Max Horiz 1: Max Horiz 1: Max Grav 1: (lb) - Maximu Tension 1-2=-5703/6 1-4=-427/42 2-4=-689/70 to be connected at 0-9-0 oc. ords connected as follow re considered oted as follow re considered oted as follow re considered oted as follow re considered oted as follow coted as follow re considered oted as follow coted as follow re considered oted as follow re considered re consi	200F 2.0E 2 cood sheat 1ins. 1 directly 5 =0-3-8, 3 =148 (LC =5676 (L um Comp 60, 2-3=: 79, 3-4=: 17 ted togetl ws: s follows d as follows d as follows vs: 2x4 - equally a F) or bac ply conn ly loads r ed. ds have 1 130mph .0psf; BC ; MWFRS L=1.60	athing directly applied applied or 10-0-0 oc =0-3-8 : 7) C 8), 3=-718 (LC 9) C 2), 3=6694 (LC 2) pression/Maximum -5702/660 -427/4279 her with 10d : 2x6 - 2 rows 1 row at 0-9-0 oc. applied to all plies, wws: 2x12 - 2 rows 1 row at 0-9-0 oc. applied to all plies, which (B) face in the LOA ections have been noted as (F) or (B), been considered for (3-second gust) DL=5.0psf; h=25ft; S (envelope); Lumber	5) 6) (or 7) 8) 9) LC 1)	This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an All bearings a capacity of 8l Provide med bearing plate 1 and 718 lb Hanger(s) or provided suff lb down and 1 bup at 4-0- 1913 lb dowr down and 20 203 lb up at selection of s responsibility DAD CASE(S) Dead + Roo Plate Increa Uniform Loa Vert: 1-2= Concentrate Vert: 5=- (F), 9=-1!	s been designed f d nonconcurrent v as been designed n chord in all areas y 2-00-00 wide wi y other members. are assumed to be 55 psi. nanical connection capable of withst uplift at joint 3. other connection of cicient to support c 204 lb up at 2-0-1 12, 1913 lb down a n and 204 lb up at 2-0-1 204 lb up at 10-0-12 12-0-12 on bottom uch connection de of others. Standard of Live (balanced): ise=1.15 ads (lb/ft) =-60, 2-3=-60, 1-3: ads (lb) 1521 (F), 6=-1521 521 (F), 10=-1523	or a 10.0 vith any for a liv s where Il fit betw SP 240 (by oth anding 6 device(s oncentra 2, 1913 and 204 8-0-12, , and 15 o chord. evice(s) Lumber =-20 (F), 7=- (F)	D psf bottom other live loa e load of 40.0 a rectangle veen the botto 0F 2.0E crus ers) of truss t i11 lb uplift at i11 lb uplift at i13 lb down and lb up at 6-0- and 1913 lb i15 lb down a The design/ is the Increase=1.	lds. Dpsf om ihing i joint 913 204 12, and 15,				SEA 03633	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com) June 11,2025

Job	Truss	Truss Type	Qty	Ply	Lot 103 Ducks Landing	
J0325-1599	VE1	Valley	1	1	Job Reference (optional)	174088652

Scale - 1:39 1

FORCES

TOP CHORD

BOT CHORD

this design.

WEBS

2)

3)

NOTES

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 10 07:25:53 ID:ZBV44jdxGe9Lzs09kQJltyyS8Pv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Max Uplift 1=-78 (LC 8), 5=-56 (LC 9), 6=-158

(LC 11), 8=-158 (LC 10)

(lb) - Maximum Compression/Maximum

1-8=-35/72, 7-8=-35/72, 6-7=-35/72,

1-2=-136/113, 2-3=-148/128, 3-4=-136/128,

3-7=-155/34, 2-8=-302/325, 4-6=-302/325

1=93 (LC 7), 5=74 (LC 11), 6=340 (LC 18), 7=241 (LC 1), 8=340 (LC

Max Grav

Tension

4-5=-121/80

5-6=-35/72

17)

1) Unbalanced roof live loads have been considered for

Wind: ASCE 7-16; Vult=130mph (3-second gust)

Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C

Exterior(2E) 0-4-13 to 4-9-10, Exterior(2R) 4-9-10 to 6-5-15, Exterior(2E) 6-5-15 to 10-10-11 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

1	1	-3	-9	
 _	_			

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.14	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.09	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.06	Horiz(TL)	0.00	5	n/a	n/a		
BCDL		10.0	Code	IRC202	1/TPI2014	Matrix-S							Weight: 46 lb	FT = 20%
LUMBER				5)	Gable studs	spaced at 0-0-0) oc.			·			-	
TOP CHORD	2x4 SP No.1	1		6)	This truss h	as been designe	ed for a 10.0) psf bottom						
BOT CHORD	2x4 SP No.1	1			chord live lo	ad nonconcurre	nt with any	other live loa	ads.					
OTHERS	2x4 SP No.2	2		7)	* This truss	has been desigr	ned for a liv	e load of 40.	0psf					
BRACING					on the botto	m chord in all ar	eas where	a rectangle						
TOP CHORD	Structural w	ood shea	athing directly applie	d or	3-06-00 tall	by 2-00-00 wide	will fit betw	een the bott	om					
	6-0-0 oc pu	rlins.	0 7 11		chord and a	ny other membe	ers.							
BOT CHORD	Rigid ceiling	directly	applied or 10-0-0 oc	; 8)	All bearings	are assumed to	be SP No.	1 crushing						
	bracing.			•	capacity of	565 psi.								
REACTIONS	(size) 1	=11-3-9,	5=11-3-9, 6=11-3-9	. 9)	Provide me	chanical connect	tion (by oth	ers) of truss	to					
	7	=11-3-9,	8=11-3-9		bearing plat	e capable of with	nstanding /	B ID uplift at	joint					
	Max Horiz 1=117 (LC 7)				1, 56 lb upli	It at joint 5, 158 I	ib uplift at jo	bint 8 and 15	a id					
					upini at ioin	0								

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 103 Ducks Landing	
J0325-1599	VE2	Valley	1	1	Job Reference (optional)	174088653

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 10 07:25:53 ID:ZBV44jdxGe9Lzs09kQJltyyS8Pv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.8

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-P	0.29 0.12 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.2 2x4 SP No.2 Structural w 6-0-0 oc pur Rigid ceiling bracing. (size) 1= Max Horiz 1= Max Uplift 1= Max Grav 1=	2 ood shea lins. directly =8-10-12 =-90 (LC =-40 (LC =187 (LC	athing directly applied applied or 10-0-0 oc , 3=8-10-12, 4=8-10- 6) 11), 3=-48 (LC 11) ; 1), 3=-187 (LC 1), 4:	7) 8) d or 9) .12 L (=273	 * This truss h on the bottom 3-06-00 tall b chord and an All bearings a capacity of 56 Provide mect bearing plate 1 and 48 lb u DAD CASE(S) 	as been designed as chord in all areas y 2-00-00 wide will y other members. The assumed to be 55 psi. Danical connection capable of withsta plift at joint 3. Standard	for a live where fit betw SP No. (by othe nding 4	e load of 40.0p a rectangle een the bottor 1 crushing ers) of truss to 0 lb uplift at joi	n n nt					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 Cat. II; Exj Exterior(21 MWFRS for grip DOL= 3) Truss desi only. For see Stand or consult 4) Gable requ 5) Gable stud 6) This truss chord live	(L (Ib) - Maxim Tension 1-2=-133/93 1-4=-23/60, 2-4=-172/11 ed roof live loan CE 7-16; Vult= imph; TCDL=6 p C; Enclosed; E) zone;C-C fc for reactions be reactions be igned for wind studs exposed and Industry G qualified build uires continuou ds spaced at 0 has been desi load nonconcu	C 1) um Com , 2-3=-11 3-4=-23/ 1 ds have 130mph .0psf; BC ; MWFRS or membe jown; Lui loads in t to wind able Enc ing desig us bottom -0-0 oc. gned for urrent wit	pression/Maximum 18/93 60 been considered for (3-second gust) DL=5.0psf; h=25ft; 5 (envelope) and C-C ers and forces & mber DOL=1.60 plate the plane of the trus: (normal to the face), I Details as applicabl iner as per ANSI/TPI n chord bearing. a 10.0 psf bottom h any other live load	C e s le, 1. s.							Withhan		SEAL O3632	ROLUNIUM INTERNET

- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)
- Gable studs spaced at 0-0-0 oc. 5)
- 6)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

GI 1000 minut June 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durant description (thrus phoneparate) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 103 Ducks Landing	
J0325-1599	VE3	Valley	1	1	Job Reference (optional)	174088654

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 10 07:25:53 ID:ZBV44jdxGe9Lzs09kQJltyyS8Pv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-5-15

Scale = 1.23.0														
Loading FCLL (roof) FCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-P	0.16 0.06 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD DTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 Structural wood shee 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=6-5-15, Max Horiz 1=63 (LC Max Uplift 1=-28 (LC Max Grav 1=132 (LC (LC 1)	athing directly applie applied or 10-0-0 oc 3=6-5-15, 4=6-5-15 7) : 11), 3=-34 (LC 11) C 1), 3=132 (LC 1), 4	7) 8) ed or 9) c LC	* This truss h on the botton 3-06-00 tall b chord and an All bearings a capacity of 5 Provide mecl bearing plate 1 and 34 lb u DAD CASE(S)	as been designed n chord in all area by 2-00-00 wide w ny other members are assumed to 65 psi. hanical connectio o capable of withsi uplift at joint 3. Standard	d for a livy ss where iill fit betw e SP No. n (by oth tanding 2	e load of 40.0 a rectangle veen the botto 1 crushing ers) of truss to 8 lb uplift at jo	opsf om o o oint						
FORCES	(Ib) - Maximum Com Tension 1-2=-93/77, 2-3=-83, 1-4=-16/42, 3-4=-16, 2-4 - 121/06	pression/Maximum /77 /42												
VIDES) Unbalance this design) Wind: ASK Vasd=103 Cat. II; Ex Exterior(2 MWFRS f grip DOL= D	ed roof live loads have n. CE 7-16; Vult=130mph smph; TCDL=6.0psf; B(p C; Enclosed; MWFR E) zone;C-C for memb or reactions shown; Lu =1.60	been considered for (3-second gust) CDL=5.0psf; h=25ft; S (envelope) and C- ers and forces & mber DOL=1.60 plat	C							4		ORTH CA	ROUNT	

- 3) signed for wind load is in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)
- Gable studs spaced at 2-0-0 oc. 5)
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.

Community P. SEAL 036322 GI 1000 min June 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 103 Ducks Landing	
J0325-1599	VE4	Valley	1	1	Job Reference (optional)	4088655

2-0-9

Comtech, Inc, Fayetteville, NC - 28314,

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 10 07:25:53 ID:ZBV44jdxGe9Lzs09kQJltyyS8Pv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-1-2

4-1-2

Page: 1

0	_
Scale - 1'21	7

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-P	0.06 0.02 0.01	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 Structural wood she 4-1-2 oc purlins. Rigid ceiling directly bracing. (size) 1=4-1-2, 3 Max Horiz 1=-37 (LC Max Uplift 1=-16 (LC Max Grav 1=76 (LC (LC 1)	athing directly applied applied or 10-0-0 oc 3=4-1-2, 4=4-1-2 : 6) : 11), 3=-20 (LC 11) 1), 3=76 (LC 1), 4=1	 7) * This truss I on the botton 3-06-00 tall I chord and at 8) All bearings d or 9) Provide mec bearing plate 1 and 20 lb o LOAD CASE(S) 	has been designed in chord in all areas by 2-00-00 wide winy other members. are assumed to be 65 psi. chanical connection e capable of withst uplift at joint 3. Standard	I for a liv s where II fit betv SP No. a (by oth anding 1	e load of 40.0 a rectangle veen the botto 1 crushing ers) of truss to 6 lb uplift at jo	opsf om o o oint					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	(lb) - Maximum Com Tension 1-2=-54/49, 2-3=-48 1-4=-9/25, 3-4=-9/25 2-4=-70/63 ed roof live loads have	ppression/Maximum /49 5 been considered for										

 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

SEAL 036322 June 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 103 Ducks Landing	
J0325-1599	VW1	Valley	1	1	Job Reference (optional)	174088656

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Jun 10 07:25:53 ID:ZBV44jdxGe9Lzs09kQJltyyS8Pv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.3

L oading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-S	0.13 0.09 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 49 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD SOT CHORD DTHERS WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.2 Left: 2x4 SP No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=13-2-14 7=13-2-14 Max Horiz 1=-48 (LC Max Uplift 1=-10 (LC 8=-102 (L Max Grav 1=57 (LC (LC 24), 7 23) (lb) - Maximum Com	athing directly applie applied or 10-0-0 oc 4, 5=13-2-14, 6=13-2 4, 8=13-2-14 :8) :11), 6=-98 (LC 11), C 10) 18), 5=80 (LC 1), 6= '=281 (LC 1), 8=295 pression/Maximum	5) 6) 7) • 9) • 14, 10 • LC • 316 (LC	Gable studs s This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an All bearings a capacity of 56 Provide med bearing plate 1, 102 lb uplit Beveled plate surface with t	spaced at 0-0-0 oc. s been designed fo d nonconcurrent w as been designed fo n chord in all areas y 2-00-00 wide will y other members. are assumed to be 55 psi. nanical connection capable of withsta it at joint 8 and 98 l or shim required t russ chord at joint(Standard	r a 10.(ith any for a liv where fit betw SP No. (by oth nding 1 b uplift o provid s) 1.) psf bottom other live loa e load of 40.(a rectangle reen the botto 1 crushing ers) of truss t 0 lb uplift at ji at joint 6. de full bearing	ds.)psf om o oint					
TOP CHORD	Tension 1-2=-63/43, 2-3=-88,	/137, 3-4=-89/136,											
30T CHORD VEBS VOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 Cat. II; Ext Exterior(21 8-2-10, Ex members Lumber Di 3) Truss desi only. For see Stand	1-8=-6/48, 7-8=-6/48 3-7=-197/121, 2-8=- ed roof live loads have n. CE 7-16; Vult=130mph mph; TCDL=6.0psf; Br p C; Enclosed; MWFR E) -0-0-1 to 4-4-12, Ex terior(2E) 8-2-10 to 12 and forces & MWFRS OL=1.60 plate grip DO igned for wind loads in studs exposed to wind lard Industry Gable Em- wanified building deci	8, 6-7=-6/48, 5-6=-6// 229/275, 4-6=-243/2 been considered for (3-second gust) CDL=5.0psf; h=25ft; S (envelope) and C-terior(2R) 4-4-12 to -7-7 zone;C-C for for reactions shown; L=1.60 the plane of the trus (normal to the face) d Details as applicab the constant of the face)	48 87 C							A Martinetters		SEAL OBERT	ROLAN L22 EP. Human

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-0-1 to 4-4-12, Exterior(2R) 4-4-12 to 8-2-10, Exterior(2E) 8-2-10 to 12-7-7 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.

G١ 100000

June 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty Ply Lot 103 Ducks Landing		Lot 103 Ducks Landing	17 1000057	
J0325-1599	VW2	Valley	1	1	Job Reference (optional)	174088657	
Comtech, Inc, Fayetteville, NC - 2	28314,	Run: 8.63 S Sep 26 ID:ZBV44jdxGe9Lzs(2024 Print: 8. 9kQJltyyS8P	630 S Sep 2 v-RfC?PsB7	6 2024 MiTek Industries, Inc. Tue Jun 10 07:25:53 0Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f	Page: 1	

3-10-14

7-9-12

7-9-12

See	6	_	4	.00 7
Sca	le.	=	1	22.1

oodio - meen													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-P	0.16 0.08 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 Structural wood shi 6-0-0 oc purlins. Rigid ceiling directh bracing. (size) 1=7-9-12 Max Horiz 1=24 (LC Max Uplift 1=-30 (Li (LC 10) Max Grav 1=134 (Li	eathing directly applie y applied or 10-0-0 or 2, 3=7-9-12, 4=7-9-12 C 7) C 10), 3=-35 (LC 11), LC 1), 3=134 (LC 1), 4	7) 8) ed or 9) c 4=-6 4=258	* This truss h on the bottor 3-06-00 tall b chord and ar All bearings i capacity of 5 Provide mec bearing plate 1, 35 lb uplift DAD CASE(S)	as been designe n chord in all are by 2-00-00 wide v ny other members are assumed to b 65 psi. hanical connection e capable of withs at joint 3 and 6 l Standard	ed for a livi as where vill fit betv s. De SP No. Dn (by oth standing 3 b uplift at	e load of 40.0 a rectangle veen the botto 1 crushing ers) of truss t 10 lb uplift at j joint 4.	Dpsf om oo oint					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: AS	(lb) - Maximum Cor Tension 1-2=-59/62, 2-3=-55 1-4=0/24, 3-4=0/24 2-4=-176/178 ed roof live loads have n. CE 7-16; Vult=130mp	mpression/Maximum 9/62 - e been considered for h (3-second qust)	r									mmm	um,

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

SEAL 036322 June 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 103 Ducks Landing			
J0325-1599	W1	Common Supported Gable	1	1	Job Reference (optional)	174088658		

8-0-0

8-0-0

Comtech, Inc, Fayetteville, NC - 28314,

-0-10-8

16-0-0

8-0-0

Scale = 1:35.9

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-S	0.03 0.01 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 107 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP N 2x6 SP N 2x4 SP N Structura 6-0-0 oc Rigid ceil bracing. (size) Max Horiz Max Uplift Max Grav	0.1 0.1 0.2 I wood she purlins. ing directly 2=16-0-0, 13=16-0-(2=98 (LC 2=-31 (LC 12=-102 (LC 14=-81 (L 17=-88 (L 2=130 (LC 14=-81 (L 17=-86 (L 14=166 (L 18=166 (L	athing directly applie applied or 10-0-0 oc 10=16-0-0, 12=16-0 0, 14=16-0-0, 15=16 0, 17=16-0-0, 18=16 10) 2 11), 10=-16 (LC 11 LC 11), 13=-89 (LC C 11), 16=-84 (LC 1 C 10), 18=-106 (LC C 1), 10=130 (LC 1), .C 24), 13=158 (LC 2 .C 23), 17=158 (LC 2 .C 23)	2) ed or 5 3))-0, -0-0, 4) -0-0 5) (11), 7) (0), 8) 24), 20), 9) 23), 9)	Wind: ASCE Vasd=103mp Cat. II; Exp C zone and C-C 3-7-15 to 12- C for membe shown; Lumb Truss design only. For stu see Standard or consult qu All plates are Gable requirn Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss to on the bottor 3-06-00 tall b chord and ar All bearings a capacity of 5	7-16; Vult=130mpl bh; TCDL=6.0psf; E 2; Enclosed; MWFF C Corner(3E) -0-8- 4-1, Corner(3E) 12 brs and forces & MV ber DOL=1.60 plate ted for wind loads in ids exposed to wind loadstry Gable Er alified building des 2x4 MT20 unless es continuous botto spaced at 2-0-0 oc s been designed fic ad nonconcurrent w has been designed n chord in all areas y 2-00-00 wide will by other members. are assumed to be 65 psi. banical connection	h (3-sec 3CDL=5 3C (env 14 to 3- -4-1 to 34-1 to 34-	ond gust) .0psf; h=25ft elope) exterit 7-15, Corner fl6-8-14 zone or reactions DL=1.60 ane of the true al to the face is as applica is per ANSI/TI se indicated. d bearing. 0 psf bottom other live loa e load of 40.0 a rectangle reen the bott 1 crushing ers) of truss 1	; or (3R) ;;C- ss), ble, PI 1. ds. Opsf om						
FORCES	(lb) - Maximum Compression/Maximum Tension {D 1-2=0/6, 2-3=-111/53, 3-4=-68/74, 4-5=-51/135, 5-6=-74/207, 6-7=-74/207, 7-8=-51/135, 8-9=-49/51, 9-10=-81/23, 10-11=0/6 11			bearing plate capable of withstanding 31 lb uplift at joint 2, 16 lb uplift at joint 10, 84 lb uplift at joint 16, 88 lb uplift at joint 17, 106 lb uplift at joint 18, 81 lb uplift at joint 14, 89 lb uplift at joint 13 and 102 lb uplift at joint 12.						ROJ 11,1					
BOT CHORD	2-18=-20, 15-16=-2 13-14=-2 10-12=-2	11 2-18=-20/116, 17-18=-20/116, 16-17=-20/116, 15-16=-20/116, 14-15=-20/116, 13-14=-20/116, 12-13=-20/116, 10-12=-20/116			LOAD CASE(S) Standard SEAL								North		
WEBS NOTES 1) Unbalance this desigr	6-15=-95, 3-18=-12 8-13=-12 ed roof live 1	/0, 5-16=-1 0/196, 7-14 0/165, 9-12 loads have	26/136, 4-17=-120/1 =-126/136, 2=-120/196 been considered for	65, T							1111.		U3632	ER ILBER 11,2025	ninne.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durant description (thrus phoneparate) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 103 Ducks Landing		
J0325-1599	W2	Common	2	1	Job Reference (optional)	74088659	

BOT CHORD	2X0 OF N	0.1			
WEBS	2x4 SP N	0.2			
BRACING					
TOP CHORD	Structura	l wood sheathing directly applied or			
	6-0-0 oc p	ourlins.			
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc				
	bracing.				
REACTIONS	(size)	2=0-3-8, 4=0-3-8			
	Max Horiz	2=63 (LC 9)			
	Max Uplift	2=-93 (LC 10), 4=-93 (LC 11)			
	Max Grav	2=681 (LC 1), 4=681 (LC 1)			
FORCES	(lb) - Max	imum Compression/Maximum			
	Tension				
TOP CHORD	1-2=0/6, 2	2-3=-867/455, 3-4=-867/455,			

4-5=0/6BOT CHORD 2-6=-238/667, 4-6=-238/667 WEBS 3-6=0/381

NOTES

Loading

TCDI

BCLL

BCDL

LUMBER

- Unbalanced roof live loads have been considered for 1) this design
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-8-14 to 3-7-15, Exterior(2R) 3-7-15 to 12-4-1, Exterior(2E) 12-4-1 to 16-8-14 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 40.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.1 crushing 5) capacity of 565 psi.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a fuss system. Derive use, the building designer host verify the applications of design had been and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

LOAD CASE(S) Standard

Edenton, NC 27932

