

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0325-1580

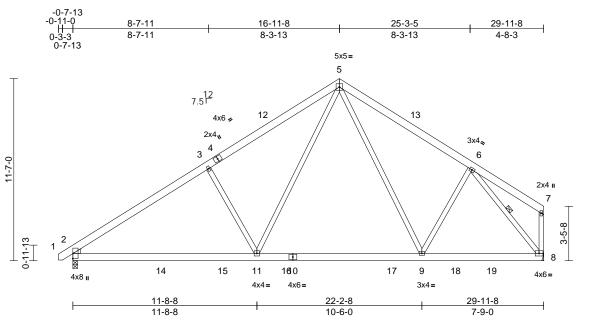
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: I73719869 thru I73719893

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

May 23,2025


Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply		
J0325-1580	A1	COMMON	6	1	Job Reference (optional)	173719869

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri May 23 08:27:33 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.32	Vert(LL)	-0.18	2-11	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.67	Vert(CT)	-0.31	2-11	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.46	Horz(CT)	0.03	8	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S		Wind(LL)	0.05	2-11	>999	240	Weight: 225 lb	FT = 20%

LUMBER	
TOP CHORD	2x6 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x4 SP No.2
WEDGE	Left: 2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	5-1-4 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
WEBS	1 Row at midpt 6-8
REACTIONS	(size) 2=0-3-8, 8= Mechanical
	Max Horiz 2=262 (LC 7)
	Max Uplift 2=-109 (LC 10), 8=-80 (LC 11)
	Max Grav 2=1573 (LC 17), 8=1459 (LC 18)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	
	5-6=-1457/407, 6-7=-63/92, 7-8=-87/33
BOT CHORD	2-11=-317/1790, 9-11=-94/1072,
	8-9=-193/1004
WEBS	3-11=-461/308, 5-11=-174/1161, 5-9=-93/374,
	6-9=-39/329, 6-8=-1624/321

NOTES

Scale = 1:73.3

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-8-15 to 3-7-14, Interior (1) 3-7-14 to 12-7-3, Exterior(2R) 12-7-3 to 21-4-13, Interior (1) 21-4-13 to 25-5-3, Exterior(2E) 25-5-3 to 29-10-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

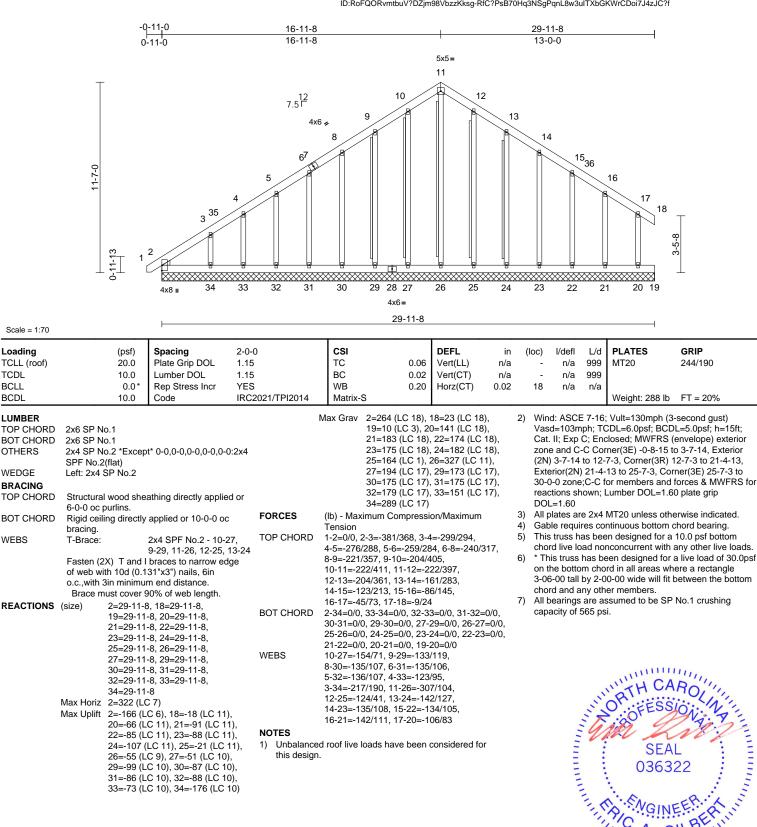
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Bearings are assumed to be: , Joint 2 SP No.1 crushing 5)
- capacity of 565 psi.
- Refer to girder(s) for truss to truss connections. 6)
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 109 lb uplift at joint 2 and 80 lb uplift at joint 8.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	
J0325-1580	A1-GE	GABLE	1	1	I73719870 Job Reference (optional)

TCDI


BCLL

BCDL

WEBS

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri May 23 08:27:34 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

G minin May 23,2025

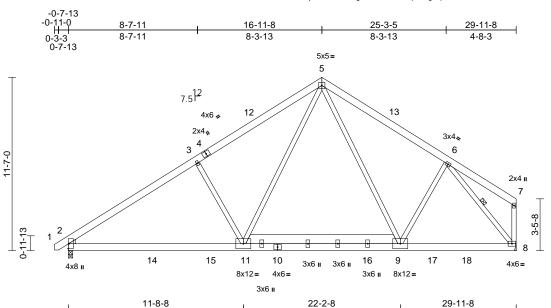
Job	Truss	Truss Type	Qty	Ply		170740070
J0325-1580	A1-GE	GABLE	1	1	Job Reference (optional)	173719870

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 18, 166 lb uplift at joint 2, 51 lb uplift at joint 27, 99 lb uplift at joint 29, 87 lb uplift at joint 30, 86 lb uplift at joint 31, 88 lb uplift at joint 32, 73 lb uplift at joint 33, 176 lb uplift at joint 34, 55 lb uplift at joint 26, 21 lb uplift at joint 25, 107 lb uplift at joint 24, 88 lb uplift at joint 23, 85 lb uplift at joint 22, 91 lb uplift at joint 21 and 66 lb uplift at joint 20.

 Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

LOAD CASE(S) Standard

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri May 23 08:27:34 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply		
J0325-1580	A2	COMMON	5	1	Job Reference (optional)	73719871

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri May 23 08:27:34 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

10-6-0

7-9-0

Scale	- 1.	77 1

TCLL (roof) 20.0 TCDL 10.0 BCLL 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-S	0.32 0.71 0.45	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.19 -0.32 0.03 0.04	(loc) 2-11 2-11 8 2-11	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 256 lb	GRIP 244/190 FT = 20%
	thing directly applied ept end verticals. applied or 10-0-0 oc 5-8 = Mechanical 7) 2 10), 8=-80 (LC 11) C 17), 8=1448 (LC 18 pression/Maximum	/) LO	on the bottom 3-06-00 tall b chord and an Bearings are capacity of 5 Refer to girde Provide mech bearing plate	er(s) for truss to tru hanical connection capable of withsta) lb uplift at joint 8.	where I fit betw with BC Joint 2 S ss conn (by othe	a rectangle reen the bottc DL = 10.0psf. P No.1 crush ections. ers) of truss to	om					

11-8-8

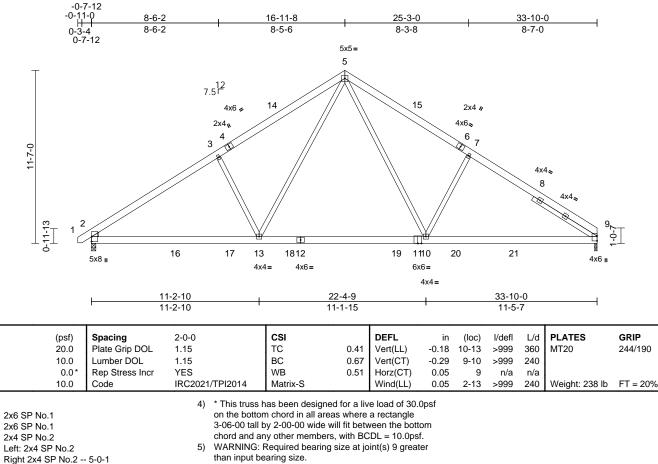
BOT CHORD 2-11=-330/1855, 9-11=-96/1094, 8-9=-200/1021 WEBS 3-11=-457/307, 5-11=-173/1204, 5-9=-89/368, 6-9=-38/328, 6-8=-1629/332

5-6=-1475/411, 6-7=-71/89, 7-8=-91/33

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-8-15 to 3-7-14, Interior (1) 3-7-14 to 12-7-3, Exterior(2R) 12-7-3 to 21-4-13, Interior (1) 21-4-13 to 25-5-3, Exterior(2E) 25-5-3 to 29-10-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply		
J0325-1580	A3	COMMON	4	1	Job Reference (optional)	19872

Comtech, Inc. Favetteville, NC - 28314

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri May 23 08:27:34 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

SLIDER BRACING TOP CHORD Structural wood sheathing directly applied or

Scale = 1:77.1 Loading

TCLL (roof)

TCDI

BCLL

BCDL

WEBS

WEDGE

LUMBER

TOP CHORD

BOT CHORD

- 4-8-7 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing **REACTIONS** (size) 2=0-3-8, 9=0-2-0
- Max Horiz 2=266 (LC 9) Max Uplift 2=-119 (LC 10), 9=-106 (LC 11) Max Grav 2=1779 (LC 17), 9=1728 (LC 18) FORCES (lb) - Maximum Compression/Maximum Tension 1-2=0/0, 2-3=-2444/465, 3-5=-2287/558, TOP CHORD
- 5-7=-2238/547, 7-9=-2411/466 BOT CHORD 2-13=-264/2127, 10-13=-43/1410. 9-10=-258/1902 WEBS
- 3-13=-436/307. 5-13=-187/1140. 5-10=-173/1119. 7-10=-431/307 NOTES
- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-8-14 to 3-7-15, Interior (1) 3-7-15 to 12-7-3, Exterior(2R) 12-7-3 to 21-4-13, Interior (1) 21-4-13 to 29-5-11, Exterior(2E) 29-5-11 to 33-10-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- All bearings are assumed to be SP No.1 crushing 6) capacity of 565 psi.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 119 lb uplift at joint 2 and 106 lb uplift at joint 9.
- LOAD CASE(S) Standard

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Comtech, Inc. Favetteville, NC - 28314

Scale = 1:79

Loading

TCDL

BCLL

BCDL

WEBS

OTHERS

WEDGE

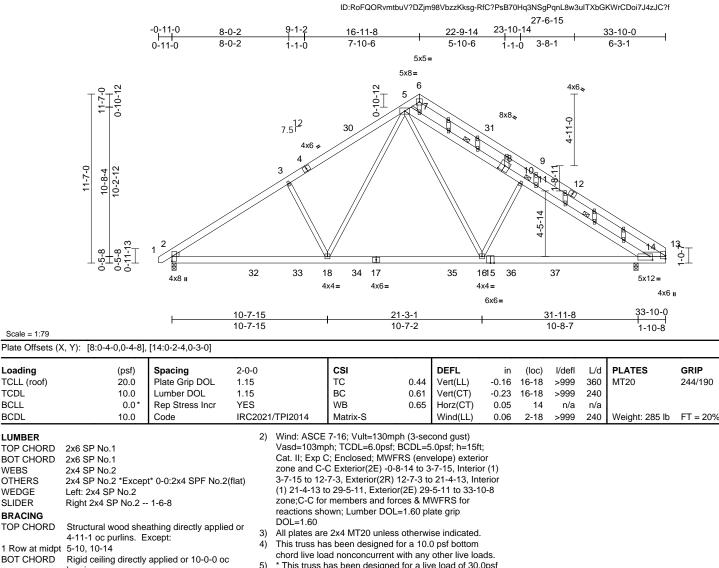
SLIDER

NOTES

this design.

BRACING

TOP CHORD


LUMBER

BOT CHORD

TCLL (roof)

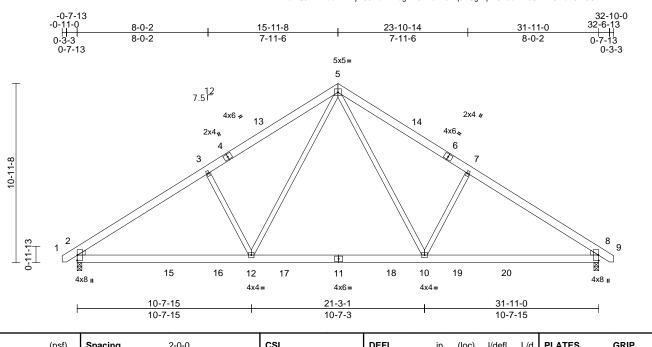
Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri May 23 08:27:34

Page: 1

bracing. JOINTS 1 Brace at Jt(s): 10 REACTIONS (size) 2=0-3-8, 14=0-3-8 Max Horiz 2=332 (LC 7) Max Uplift 2=-312 (LC 10), 14=-311 (LC 11) Max Grav 2=1686 (LC 17), 14=1769 (LC 18) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/0, 2-3=-2298/441, 3-5=-2145/525, 5-6=-482/273, 5-7=-1588/371, 7-10=-1497/345, 10-11=-1484/331, 11-14=-1634/500, 6-9=-698/299, 9-13=-637/0 BOT CHORD 2-18=-433/2052, 16-18=-131/1373, 14-16=-246/1772, 13-14=0/454 WEBS 5-18=-274/1076, 3-18=-413/389, 5-16=-270/992, 10-16=-405/390, 9-11=-576/497, 6-7=-64/224

1) Unbalanced roof live loads have been considered for

- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. All bearings are assumed to be SP No.1 crushing 6) capacity of 565 psi. 7) Provide mechanical connection (by others) of truss to
 - bearing plate capable of withstanding 312 lb uplift at joint 2 and 311 lb uplift at joint 14. Graphical purlin representation does not depict the size
 - or the orientation of the purlin along the top and/or bottom chord.
 - Warning: Additional permanent and stability bracing for 9) truss system (not part of this component design) is always required.
 - LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply		
J0325-1580	B1	COMMON	5	1	Job Reference (optional)	19874

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri May 23 08:27:35 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

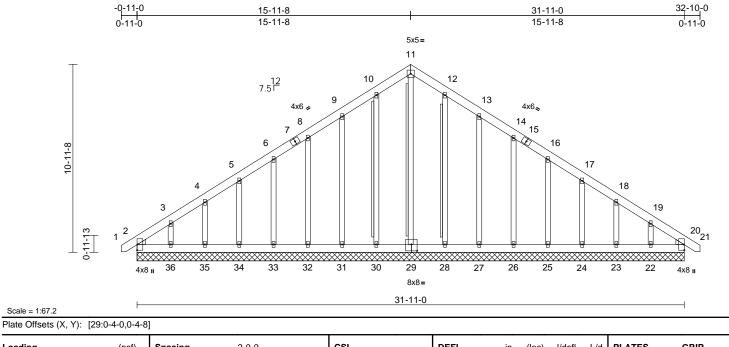
Page: 1

	Scale = 1:70.5
1	oading

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.37	Vert(LL)	-0.16	10-12	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.59	Vert(CT)	-0.22	10-12	>999	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.40	Horz(CT)	0.04	8	n/a	n/a		
BCDL	10.0	Code	IRC202	1/TPI2014	Matrix-S		Wind(LL)	0.04	2-12	>999	240	Weight: 220 lb	FT = 20%
LUMBER			4)	* This truss I	has been desig	ned for a liv	e load of 30.	0psf					
TOP CHORD	2x6 SP No.1		,	on the bottor	m chord in all a	reas where	a rectangle						
BOT CHORD	2x6 SP No.1			3-06-00 tall I	by 2-00-00 wide	e will fit betv	veen the bott	om					
WEBS	2x4 SP No.2				ny other membe	,		f.					
WEDGE	Left: 2x4 SP No.2		5)		are assumed to	be SP No.	1 crushing						
	Right: 2x4 SP No.2			capacity of 5									
BRACING			6)		hanical connec								
TOP CHORD	Structural wood she 4-11-12 oc purlins.	athing directly appli	ed or		e capable of wit uplift at joint 8.		12 lb uplift a	tjoint					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	_c LC	DAD CASE(S)	Standard								
REACTIONS	(size) 2=0-3-8, 8	3=0-3-8											
	Max Horiz 2=-251 (L	C 8)											
	Max Uplift 2=-112 (L	C 10), 8=-112 (LC 1	1)										
	Max Grav 2=1656 (L	_C 17), 8=1656 (LC	18)										
FORCES	(lb) - Maximum Com	pression/Maximum											
	Tension												
TOP CHORD	1-2=0/0, 2-3=-2256/	- ,	,										
	5-7=-2103/521, 7-8=	,											
BOT CHORD	2-12=-246/1962, 10-	-12=-39/1301,											
	8-10=-246/1775	0. 400/000											
WEBS	5-10=-169/1054, 7-1	,											
	5-12=-169/1054, 3-1	2=-400/289											11

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-8-15 to 3-7-14, Interior (1) 3-7-14 to 11-7-3, Exterior(2R) 11-7-3 to 20-4-13, Interior (1) 20-4-13 to 28-4-2, Exterior(2E) 28-4-2 to 32-8-15 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply		
J0325-1580	B1-GE	GABLE	1	1	Job Reference (optional)	3719875

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri May 23 08:27:35 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-S	0.04 0.03 0.15	- (-)	in n/a n/a 0.01	(loc) - - 20	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 290 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS WEDGE BRACING TOP CHORD	No.2(flat) Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she	t* 0-0,0-0,0-0:2x4 SP athing directly applied	F	24=179 26=179 28=160 30=18 32=179 34=179 36=210	23=174 (LC 25=175 (LC 27=180 (LC 29=204 (LC 31=176 (LC 33=175 (LC 35=175 (LC	18), 18), 18), 11), 11), 17), 17),	Vas Cat zor (2N Ext 32- for DO	sd=103m t. II; Exp he and C I) 3-7-14 erior(2N 8-15 zor reaction: L=1.60	nph; T(C; End -C Cor to 11-) 20-4- ne;C-C s show	closed; MWFRS (ner(3E) -0-8-15 t 7-3, Corner(3R) ⁻⁷ 13 to 28-4-2, Cor for members and n; Lumber DOL=	DL=5.0psf; h=15ft; (envelope) exterior to 3-7-14, Exterior 11-7-3 to 20-4-13, rmer(3E) 28-4-2 to d forces & MWFRS 11.60 plate grip	
BOT CHORD WEBS	6-0-0 oc purlins. Rigid ceiling directly bracing. T-Brace: Fasten (2X) T and I of web with 10d (0.1 o.c.,with 3in minimu Brace must cover \$	-	(lb) - Maximum C Tension 1-2=0/0, 2-3=-344 4-5=-196/176, 5-6 8-9=-138/208, 9 10-11=-178/277, 12-13=-156/234, 14-16=-77/97, 16 18-19=-155/95, 1	4=-236/202, 61, 6-8=-155/1 252, 79/278, 14/163, 68, 17-18=-10 5/141, 20-21=	169, 1/70, ₌0/0	 DOL=1.60 3) Truss designed for wind loads in the plane of the only. For studs exposed to wind (normal to the f see Standard Industry Gable End Details as app or consult qualified building designer as per ANS 4) All plates are 2x4 MT20 unless otherwise indicat 5) Gable requires continuous bottom chord bearing 6) Gable studs spaced at 2-0-0 oc. 7) This truss has been designed for a 10.0 psf bottor chord live load nonconcurrent with any other live 						
	(size) 2=31-11- 22=31-11 24=31-11 26=31-11 30=31-11 30=31-11 34=31-11 34=31-11 34=31-11 34=31-11 34=31-11 34=31-11 34=31-11 34=31-11 34=31-11 34=31-11 34=31-11 22=-145 (24=-86 (L 28=-87 (L 28=-87 (L 31=-97 (L 31=-97 (L 33=-86 (L)	$\begin{array}{c} 0, 20 = 31 - 11 - 0, \\ -0, 23 = 31 - 11 - 0, \\ -0, 25 = 31 - 11 - 0, \\ -0, 27 = 31 - 11 - 0, \\ -0, 29 = 31 - 11 - 0, \\ -0, 31 = 31 - 11 - 0, \\ -0, 33 = 31 - 11 - 0, \\ -0, 35 = 31 - 11 - 0, \\ -0 \\ C 8) \end{array}$), 1),),), NOTES	2-36=-111/236, 3 34-35=-111/236, 3 32-33=-111/236, 3 0-31=-111/236, 2 7-28=-111/235, 2 5-26=-111/235, 2 3-24=-111/235, 2 0-22=-111/235, 2 1-29=-184/66, 1 9-31=-136/117, 8 6-33=-135/106, 5 4-35=-137/109, 3 12-28=-128/65, 1 14-26=-135/106, 1 9-22=-150/157 ed roof live loads hat.	33-34=-1 31-32=-1 28-30=-1 26-27=-1 24-25=-1 22-23=-1 0-30=-14 -32=-135, -34=-135, -36=-164, 3-27=-14 16-25=-1 18-23=-1	11/236, 11/236, 11/236, 11/235, 11/235, 11/235, 0/76, '107, '105, '171, 0/120, 35/106, 36/108,		on 3-0	the botto 6-00 tall	om cho by 2-0	rd in all areas wh 0-00 wide will fit	a live load of 30.0psf here a rectangle between the bottom

May 23,2025

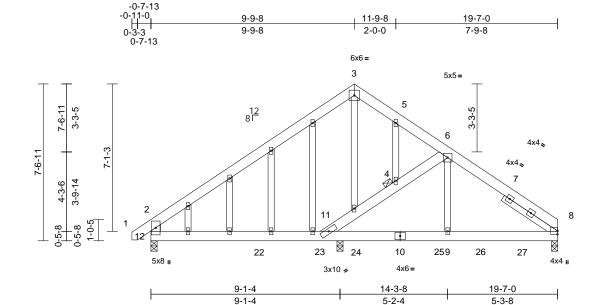
Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and RCSI Building Component Safety Information available from the Structural Building Component Association (www.stearonponent.scom) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply		170740075
J0325-1580	B1-GE	GABLE	1	1	Job Reference (optional)	173719875

- All bearings are assumed to be SP No.1 crushing 9) capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 20, 55 lb uplift at joint 30, 97 lb uplift at joint 31, 87 lb uplift at joint 32, 86 lb uplift at joint 33, 86 lb uplift at joint 34, 86 lb uplift at joint 35, 160 lb uplift at joint 36, 46 lb uplift at joint 28, 100 lb uplift at joint 27, 87 lb uplift at joint 26, 86 lb uplift at joint 25, 86 lb uplift at joint 24, 85 Ib uplift at joint 23, 106 lb uplift at joint 2 and 145 lb uplift at joint 22.
- 11) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

LOAD CASE(S) Standard

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri May 23 08:27:35 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply		
J0325-1580	C1	GABLE	1	1	Job Reference (optional)	173719876

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri May 23 08:27:35 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

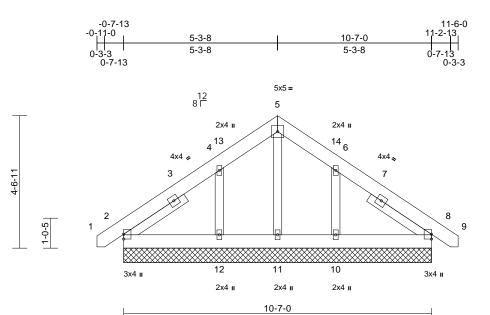
Page: 1

Scale = 1:55.5

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.44	Vert(LL)		11-12	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.59	Vert(CT)	-0.10	11-12	>999	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.11	Horz(CT)	0.01	8	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S		Wind(LL)	0.04	11-12	>999	240	Weight: 164 lb	FT = 20%
BCDL LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD JOINTS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this desig 2) Wind: AS Vasd=10: Cat. II; Es zone; Lur 3) Truss des States Truss des Stat	10.0 2x6 SP No.1 2x6 SP No.1 2x4 SP No.2 *Excep 2x4 SP No.2 Right 2x4 SP No.2 - Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Brace at Jt(s): 4 (size) 8=0-3-8, 7 Max Horiz 12=216 (I Max Uplift 8=-97 (LC Max Grav 8=883 (LC 12=699 (I (lb) - Maximum Com Tension 1-2=0/34, 2-3=-567/ 5-6=-482/354, 6-8=- 4-11=-685/128, 4-6= 11-12=-164/439, 9-1 6-9=0/477, 4-5=-117 ered roof live loads have	Code bt* 12-2:2x6 SP No.1 - 3-1-0 athing directly applied cept end verticals. - applied or 10-0-0 oc 11=0-3-8, 12=0-3-8 _ C 7) 2 8), 12=-252 (LC 27) C 1), 11=990 (LC 16) _ C 15) apression/Maximum 251, 3-5=-402/304, 1036/187, =-624/131, 2-12=-580 11=-76/764, 8-9=-76// 7/61 been considered for (3-second gust) CDL=5.0psf; h=15ft; S (envelope) exterior rip DOL=1.60 the plane of the trus I (normal to the face), d Details as applicab gner as per ANSI/TP	IRC2021/TPI2014 7) * This tru on the bo 3-06-00 1 chord an 8) All bearir capacity 9) Solid blo d or 10) Provide r bearing r 8 and 25 11) Graphica or the ori bottom c 12) Hanger(s provided 12) Hanger(s provided 12) Hanger(s provided 13) In the LC of the tru 764 10 Dead + Plate In Uniform Vert: Concen Vert: 5 11	Matrix-S ss has been designe itom chord in all area all by 2-00-00 wide w d any other members gs are assumed to b of 565 psi. cking is required on b 1. nechanical connectio late capable of withs 2 lb uplift at joint 12. I purlin representatio entation of the purlin	d for a liv as where vill fit betw s, with BC e SP No. ooth sides on (by oth tanding S n does nd along the device(s concentra n at 11- tat 15-11- nord. This s the resp l, loads and (F) or ba s: Lumber 6=-60, 6-6	Wind(LL) e load of 30.(a a rectangle veen the bott DL = 10.0psi 1 crushing of the truss : ers) of truss t 7 lb uplift at j bt depict the s top and/or) shall be ated load(s) 1 11-4, 123 lb c 4, and 123 lb e design/sele bonsibility of opplied to the f ck (B). Increase=1. B=-60, 8-12=-	0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05	11-12	>999	240	Weight: 164 lb	
5) Gable stu	ids spaced at 2-0-0 oc.									11	/C	BEIN

- Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. All plates are 2x4 MT20 unless otherwise indicated.
- 4) 5) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



G

mm May 23,2025

Job	Truss	Truss Type	Qty	Ply		
J0325-1580	D1-GE	COMMON SUPPORTED GAB	1	1	Job Reference (optional)	3719877

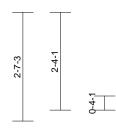
Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri May 23 08:27:35 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

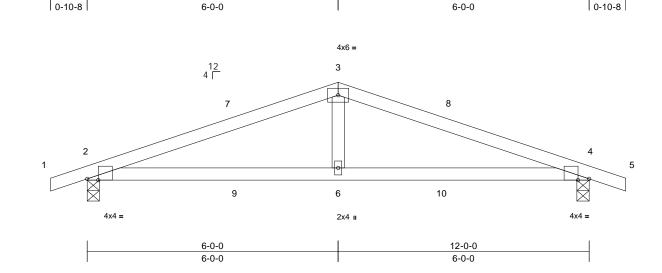
Scale = 1:39.6

Loading TCLL (roof) TCDL	(psf) 20.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.05 0.03	DEFL Vert(LL) Vert(CT)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES IRC202	1/TPI2014	WB Matrix-S	0.05	Horz(CT)	0.00	8	n/a	n/a	Weight: 80 lb	FT = 20%
	2-6-0 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=10-7-0 11=10-7- Max Horiz 2=-121 (I Max Uplift 2=-52 (LI 10=-150 Max Grav 2=208 (L	C 11), 8=-49 (LC 11), (LC 11), 12=-156 (LC C 1), 8=208 (LC 1), LC 18), 11=105 (LC	ed or 8) 9) 0, L(210)	Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings a capacity of 5 Provide mec bearing plate	hanical connectio capable of withs at joint 8, 156 lb 10.	oc. for a 10.0 with any d for a liv as where vill fit betw s. e SP No. m (by oth tanding 5) psf bottom other live loa e load of 30.(a rectangle reen the botto 1 crushing ers) of truss t 2 lb uplift at j	opsf om o oint					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Cor Tension 1-2=0/0, 2-4=-163/7 5-6=-142/232, 6-8=	npression/Maximum 79, 4-5=-142/232,	9,									amm	900.
WEBS	8-10=-29/79 5-11=-165/60 4-12	=-208/278, 6-10=-20 ⁻	1/278									WTH CA	ROUL
NOTES	5 11- 100/00, 4-12	200/210,010-20	., 210								3	ONEESS	10: 11:
 Unbalance this design Wind: ASC Vasd=103 Cat. II; Exp zone and 0 3-7-14 to 7 for membe Lumber D0 Truss desi only. For see Stand 	ed roof live loads have CE 7-16; Vult=130mpl imph; TCDL=6.0psf; E p C; Enclosed; MWFF C-C Corner(3E) -0-8- 7-0-2, Corner(3E) 7-0- ers and forces & MWF OL=1.60 plate grip DC igned for wind loads in studs exposed to winn ard Industry Gable Er qualified building des	h (3-second gust) SCDL=5.0psf; h=15ft; SC (envelope) exterio 15 to 3-7-14, Corner(-2 to 11-4-15 zone;C- RS for reactions sho DL=1.60 h the plane of the trus d (normal to the face) ad Details as applicat	r 3R) C wn; ss ple,								A A A A A A A A A A A A A A A A A A A	SEA 0363	EER A LUI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply		
J0325-1580	E1	Common	4	1	Job Reference (optional)	173719878


6-0-0


Comtech, Inc, Fayetteville, NC - 28314,

-0-10-8

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri May 23 08:27:35 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12-0-0

Scale = 1:27.5

Plate Offsets (X, Y): [2:0-3-3,Edge], [4:0-3-3,Edge]

	(A, T). [2.0-3-3,Euge],	, [4.0-3-3,Euge]										
Loading TCLL (roof) TCDL BCLL	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.44 0.37 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.12 -0.07 -0.02	(loc) 2-6 2-6 4	l/defl >999 >999 n/a	L/d 240 240 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	IRC2021/TPI201		0.06		-0.02	4	n/a	n/a	Weight: 42 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS			bearin joint 2	e mechanical connecti g plate capable of with and 217 lb uplift at joir SE(S) Standard	standing 2							
BRACING TOP CHORD	Structural wood she	athing directly appli	ied or									
TOP CHORD	5-11-14 oc purlins.	athing directly appli	led of									
BOT CHORD		applied or 4-11-14	OC									
REACTIONS	· · · · ·											
	Max Horiz 2=-27 (LC Max Uplift 2=-217 (L	,)									
	Max Grav 2=530 (LC)									
FORCES	(lb) - Maximum Com	pression/Maximum	ı									
TOP CHORD	Tension 1-2=0/15, 2-3=-859/	1553 3-4=-859/155	53									
	4-5=0/15	1000, 0 4= 000/100	50,									
BOT CHORD	,	-1375/759										
WEBS	3-6=-613/281											
NOTES	ad reaf live leads have	heen ennidered fo										
this design	ed roof live loads have	been considered to	or									11
	CE 7-16; Vult=130mph	(3-second gust)									OR OFESS	Pall
	3mph; TCDL=6.0psf; B									1	alri	
	(p C; Enclosed; MWFR 2E) -0-10-8 to 3-6-5, Ex		с-С							3.	O'. FESS	On Vi
	xterior(2E) 8-5-11 to 12		left							15	120 6	NY
	exposed;C-C for memb								-	: 21	WU K	NU
	for reactions shown; Lu	mber DOL=1.60 pla	ate						=		SEA	LE
grip DOL=	=1.60 s has been designed for	r a 10.0 pef bottom							Ξ		0363	• –
	load nonconcurrent wi		ads.							A A A A A A A A A A A A A A A A A A A	0000	j E
4) * This trus	ss has been designed f	or a live load of 30.								-		1 3
	ttom chord in all areas									2.0	NOIN	EER. A.S
	all by 2-00-00 wide will any other members.	tit between the bott	tom							11	A CA C	Et N
	gs are assumed to be \$	SP No.1 crushing									11, A. C	ILDUN

All bearings are assumed to be SP No.1 crushing 5) capacity of 565 psi.

May 23,2025

Page: 1

12-10-8

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

mmm

Job	Truss	Truss Type	Qty	Ply		
J0325-1580	E1-GE	GABLE	1	1	Job Reference (optional)	173719879

6-0-0

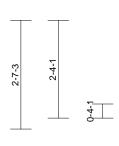
6-0-0

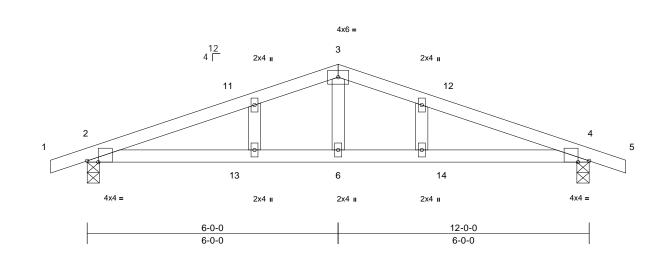
Comtech, Inc, Fayetteville, NC - 28314,

-0-10-8

0-10-8

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri May 23 08:27:35 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


12-0-0


6-0-0

Page: 1

12-10-8

0-10-8

Scale = 1:27.5

Plate Offsets (X, Y): [2:0-3-3,Edge], [4:0-3-3,Edge]

	⊼, 1). [2.0-3-3,∟uye],	[1.0 0 0,Edg0]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI	2014	CSI TC BC WB Matrix-S	0.44 0.37 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.12 -0.07 -0.02	(loc) 4-6 4-6 4	l/defl >999 >999 n/a	L/d 240 240 n/a	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%
	2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 2x4 SP No.2 Structural wood shee 5-11-14 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 4 Max Horiz 2=46 (LC Max Uplift 2=-305 (L)	applied or 4-11-14 c l=0-3-8 10) C 6), 4=-305 (LC 7)	on 3-0 chc 7) All cap d or 8) Pro bea bc join	the bottom 6-00 tall by rd and any bearings a acity of 56 vide mech tring plate	anical connection capable of withsta 5 lb uplift at joint 4	s where Il fit betv SP No. (by oth anding 3	a rectangle veen the bott 1 crushing ers) of truss t	om					
FORCES	Max Grav 2=530 (LC (lb) - Maximum Com												
FURCES	Tension	pression/waximum											
TOP CHORD	1-2=0/15, 2-3=-859/ 4-5=0/15	1553, 3-4=-859/1553	З,										
BOT CHORD WEBS	2-6=-1375/759, 4-6= 3-6=-613/281	-1375/759											
NOTES													
 this design Wind: ASC Vasd=103 Cat. II; Exp zone and I 3-6-5 to 8- porch left at forces & N DOL=1.60 Truss desion only. For see Stand or consult Gable stud This truss 	ad roof live loads have L CE 7-16; Vult=130mph mph; TCDL=6.0psf; B(p C; Enclosed; MWFR: C-C Exterior(2E) -0-10 -5-11, Exterior(2E) 8-5- and right exposed; C-C WFRS for reactions sl plate grip DOL=1.60 igned for wind loads in studs exposed to wind ard Industry Gable End qualified building desig ds spaced at 2-0-0 oc. has been designed for load nonconcurrent wi	(3-second gust) CDL=5.0psf; h=15ft; S (envelope) exterio 8 to 3-6-5, Exterior(11 to 12-10-8 zone; for members and hown; Lumber the plane of the trus (normal to the face) d Details as applicat gner as per ANSI/TP a 10.0 psf bottom	r 2R) ;; , , , , , , , , , , , , , , , , , ,							=		SEA 0363	L 22

May 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply		
J0325-1580	G01	COMMON SUPPORTED GAB	1	1	Job Reference (optional)	

Scale = 1:49.6

Loading

TCDL

BCLL

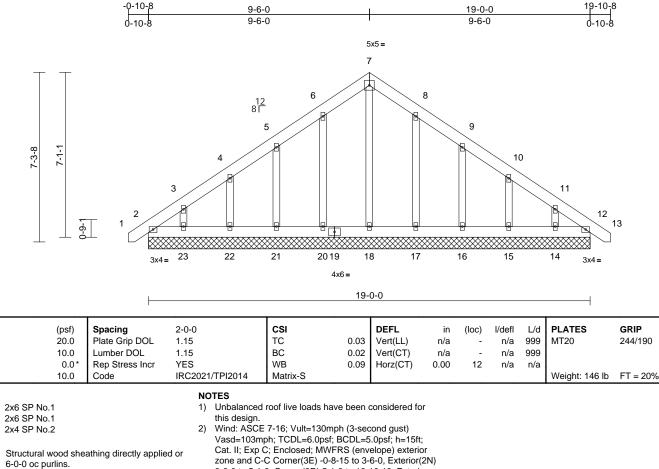
BCDL

LUMBER

OTHERS

BRACING

TOP CHORD


BOT CHORD

TOP CHORD

TCLL (roof)

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri May 23 08:27:35 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

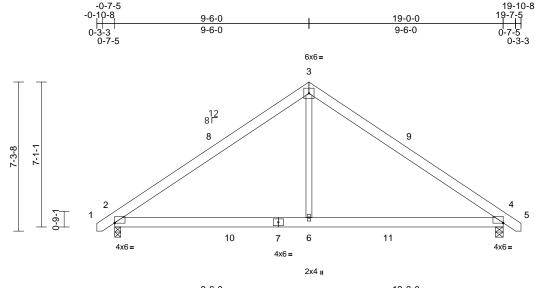
- BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **REACTIONS** (size) 2=19-0-0, 12=19-0-0, 14=19-0-0,
 - 15=19-0-0, 16=19-0-0, 17=19-0-0, 18=19-0-0, 20=19-0-0, 21=19-0-0, 22=19-0-0, 23=19-0-0
 - Max Horiz 2=-205 (LC 8) Max Uplift 2=-60 (LC 6), 12=-16 (LC 7), 14=-104 (LC 11), 15=-92 (LC 11), 16=-100 (LC 11), 17=-73 (LC 11), 20=-78 (LC 10), 21=-98 (LC 10),
 - 22=-93 (LC 10), 23=-110 (LC 10), Max Grav 2=155 (LC 18), 12=123 (LC 1), 14=162 (LC 18), 15=180 (LC 18), 16=179 (LC 18), 17=176 (LC 18), 18=157 (LC 20), 20=182 (LC 17),

21=176 (LC 17), 22=181 (LC 17), 23=168 (LC 17) FORCES (Ib) - Maximum Compression/Maximum

- Tension TOP CHORD 1-2=0/14, 2-3=-207/156, 3-4=-139/121, 4-5=-123/102, 5-6=-108/140, 6-7=-118/209, 7-8=-118/209. 8-9=-83/140. 9-10=-74/56.
- 10-11=-92/55, 11-12=-159/85, 12-13=0/14 BOT CHORD 2-23=-71/167, 22-23=-71/167 21-22=-71/167, 20-21=-71/167 18-20=-71/167, 17-18=-71/167 16-17=-71/167, 15-16=-71/167 14-15=-71/167, 12-14=-71/167 WEBS 7-18=-126/20, 6-20=-142/99, 5-21=-137/131, 4-22=-140/138, 3-23=-129/146, 8-17=-136/98, 9-16=-139/131 10-15=-140/138, 11-14=-124/146

- 3-6-0 to 5-1-3, Corner(3R) 5-1-3 to 13-10-13, Exterior (2N) 13-10-13 to 15-4-2, Corner(3E) 15-4-2 to 19-8-15 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated. Gable requires continuous bottom chord bearing.
- 5) 6)
- Gable studs spaced at 2-0-0 oc. 7)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.1 crushing 9) capacity of 565 psi.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 60 lb uplift at joint 2, 78 lb uplift at joint 20, 98 lb uplift at joint 21, 93 lb uplift at joint 22, 110 lb uplift at joint 23, 73 lb uplift at joint 17, 100 lb uplift at joint 16, 92 lb uplift at joint 15, 104 lb uplift at joint 14 and 16 lb uplift at joint 12.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 12.

LOAD CASE(S) Standard


818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	
J0325-1580	G02	COMMON	6	1	Job Reference (optional)

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri May 23 08:27:35 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

	9-6-0	19-0-0	1
	9-6-0	9-6-0	
4			

Plate Offsets (X, Y): [2:Edge,0-0-4], [4:Edge,0-0-4]												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.44	Vert(LL)	-0.08	2-6	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.48	Vert(CT)	-0.13	2-6	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.17	Horz(CT)	0.01	4	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S		Wind(LL)	0.04	2-6	>999	240	Weight: 113 lb	FT = 20%

LUMBER		
TOP CHORD	2x6 SP N	o.1
BOT CHORD	2x6 SP N	o.1
WEBS	2x4 SP N	0.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied
	6-0-0 oc p	ourlins.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	2=0-3-8, 4=0-4-8
	Max Horiz	2=-164 (LC 8)
	Max Uplift	2=-70 (LC 10), 4=-70 (LC 11)
	Max Grav	2=999 (LC 17), 4=1001 (LC 18)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/14,	2-3=-1144/231, 3-4=-1146/231,
	4-5=0/14	
BOT CHORD	2-6=-23/8	86, 4-6=-23/886
WEBS	3-6=0/736	3
NOTEO		

NOTES

Scale = 1:56.4

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-8-15 to 3-7-14, Interior (1) 3-7-14 to 5-1-3, Exterior(2R) 5-1-3 to 13-10-13, Interior (1) 13-10-13 to 15-4-2, Exterior(2E) 15-4-2 to 19-8-15 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- 5) All bearings are assumed to be SP No.1 crushing capacity of 565 psi.
- 6) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 70 lb uplift at joint
- 2 and 70 lb uplift at joint 4.
- LOAD CASE(S) Standard

or

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO A MITek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss		Truss Type			Qt	/	Ply					
J0325-1580	H01		FLAT GIRE	DER		1		2	Job Refer	ence (or	tional)		173719882
Comtech, Inc, Fa	yetteville, NC - 28314,					•			6 2024 MiTek	Industrie	s, Inc. F	ri May 23 08:27:36 KWrCDoi7J4zJC?f	Page: 1
	L	7-1-3			13-1	0-13				21-	0-0		
	I	7-1-3		I	6-9	-11		I		7-1	-3		
	8x12 =			4x6=	4x6 =			4x6 =				8x12	=
	1	13 14	15		3 17	1	8	4	19		20	21 5	
-				ار	•								
c				\frown					\ \		/		
°-2-10 2-10			_ //										
	12												
-			10 01 7	DE 00				20				34	6
	凶 M18AHS 5x1	22 23	10 24 2 M18AHS 10x1		27 28 9	9 8 8x8=	3 29	30	31 7 32 M18AHS	10x16 =	33		HS 5x10 ॥
		.		-			BAHS 6x1	2 -		10,110 -			
		5-4-12		10-6-	0	, in the second s	15-7				21-0	0	
		5-4-12		5-1-4			5-1				5-4-		
Scale = 1:42.7 late Offsets ()	X, Y): [7:0-8-0,0-6-4],	[9:0-4-0,0-6-4], [10:0	-8-0,0-6-4]										
oading	(psf)	Spacing	2-0-0		CSI	-	DEFL		in (loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC	0.65	Vert(LI Vert(C	,	. ,	>999 >731	360 240	M18AHS MT20	186/179 244/190
BCLL	0.0*	Rep Stress Incr	NO		WB	0.53 0.87	Horz(C	Ú. (T	04 6	n/a	n/a		
BCDL	10.0	Code	IRC2021/TP		Matrix-S	-	Wind(L	,	11 9-10	>999	240	Weight: 352 lb	FT = 20%
OP CHORD	2x6 SP No.1				2.0E bearing								
BOT CHORD	2x8 SP 2400F 2.0E 2x6 SP No.1 *Excep	t* 10-2,9-2,9-4,7-4:2x			3" o.c. 16 Total sumed to be SF			k.					
	SP No.2		4) Wi		7-16; Vult=130r h; TCDL=6.0ps								
OP CHORD		athing directly applied	dor Ca	t. II; Exp Ċ	; Enclosed; MW ate grip DOL=1.	/FRS (env							
SOT CHORD	3-6-4 oc purlins, exe Rigid ceiling directly	cept end verticals. applied or 10-0-0 oc	5) Pro	ovide adeq	uate drainage t	prevent							
EACTIONS	bracing. (size) 6=0-2-8. (req. 0-3-13), 12=(0-3	_{-8 +} 7) Thi	is truss has	MT20 plates ur been designe	d for a 10.0) psf bot	tom					
		lock), (req. 0-3-10)	cho		d nonconcurrer as been design								
	Max Grav 6=9226 (L	_C 15), 12=8698 (LC			chord in all are 2-00-00 wide								
ORCES	(lb) - Maximum Com Tension	pression/Maximum			y other member equired bearing		int(s) 6 (oreater					
OP CHORD	1-12=-7392/715, 1-2 2-4=-17139/1519, 4-		tha	n input bea				-					
OT CHORD	5-6=-7168/744 10-12=-52/373, 9-10		cap	pacity of 80	15 psi.			0					
VEBS	7-9=-1410/14682, 6- 1-10=-1278/15014, 2	-7=-54/389	bea	aring plate	anical connecti capable of with	standing 7							
VEBS	2-9=-124/2793, 4-9=	-141/3168,	joir	nt 12 and 8	46 lb uplift at jo	int 6.						N'IL CA	Dille
IOTES	4-7=-2927/490, 5-7=	-1247/14481									N.	RTHOR	TOLIN
	to be connected toget) nails as follows:	ther with 10d									1×	OFESS	Ny P
Top chords	s connected as follows at 0-9-0 oc.	s: 2x6 - 2 rows								-	V	M K	N
Bottom cho	ords connected as follo	ows: 2x8 - 2 rows								E		SEA	
Web conne	at 0-6-0 oc. ected as follows: 2x6 -											0363	22 j E
0-9-0 oc, 2	x4 - 1 row at 0-9-0 oc. re considered equally											SEA 0363	al, 3
except if no	oted as front (F) or bac section. Ply to ply conr	ck (B) face in the LOA	AD.								115	AGIN	EERIN
provided to	distribute only loads										1	A. G	ILBUTT
	anuuaa undiaatad												
unless othe	erwise indicated.												23,2025

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply		170740000
J0325-1580	H01	FLAT GIRDER	1	2	Job Reference (optional)	173719882

12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 62 lb down at 0-2-12, 96 lb down and 49 lb up at 2-0-12, 96 Ib down and 49 lb up at 4-0-12, 96 lb down and 49 lb up at 6-0-12, 96 lb down and 49 lb up at 8-0-12, 96 lb down and 49 lb up at 10-0-12, 98 lb down and 51 lb up at 12-0-12, 98 lb down and 51 lb up at 14-0-12, 98 lb down and 51 lb up at 16-0-12, and 98 lb down and 51 lb up at 18-0-12, and 95 lb down and 54 lb up at 20-0-12 on top chord, and 30 lb down at 2-0-12, 1439 lb down and 90 lb up at 2-0-12, 30 lb down at 4-0-12, 1439 lb down and 90 lb up at 4-0-12, 1439 lb down and 90 lb up at 5-4-4, 30 lb down at 6-0-12, 1439 lb down and 90 lb up at 6-8-12, 30 lb down at 8-0-12, 1439 lb down and 90 lb up at 8-8-12, 30 lb down at 10-0-12, 1439 lb down and 90 lb up at 10-8-12, 31 lb down at 12-0-12, 1428 lb down and 90 lb up at 12-8-12, 31 lb down at 14-0-12, 1428 lb down and 90 lb up at 14-8-12, 31 lb down at 16-0-12, 1428 lb down and 90 lb up at 16-0-12, 31 lb down at 18-0-12, 1428 lb down and 90 lb up at 18-0-12, and 37 lb down at 20-0-12, and 1431 lb down and 89 lb up at 20-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

- Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (Ib/ft) Vert: 1-5=-60, 6-12=-20 Concentrated Loads (Ib) Vert: 1=-27 (F), 8=-16 (F), 10=-1166 (B), 9=-1166
 - (B), 4=-47 (F), 13=-38 (F), 14=-38 (F), 15=-38 (F), 16=-38 (F), 17=-38 (F), 18=-47 (F), 19=-47 (F), 20=-47 (F), 21=-56 (F), 22=-1181 (F=-15, B=-1166), 23=-1181 (F=-15, B=-1166), 24=-15 (F), 25=-1166 (B), 26=-15 (F), 27=-1166 (B), 28=-15 (F), 29=-1166 (B), 30=-16 (F), 31=-1166 (B), 32=-1181 (F=-16, B=-1166), 33=-1181 (F=-16, B=-1166), 34=-1187 (F=-19, B=-1169)

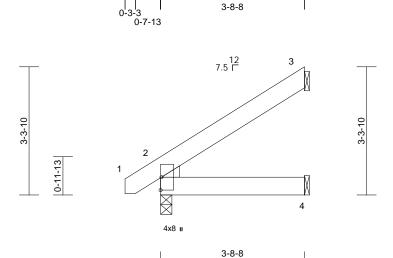
Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri May 23 08:27:36 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	
J0325-1580	J01	JACK-OPEN	6	1	I73719883 Job Reference (optional)


-0-7-13 -0-11-0

Comtech, Inc, Fayetteville, NC - 28314,

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri May 23 08:27:36 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

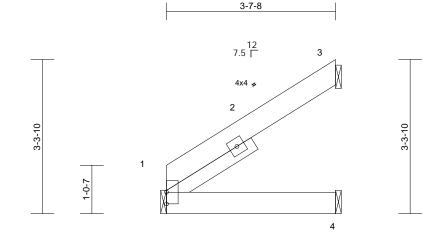
Page: 1

3-8-8

Sca	le –	1.29	7

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-P	0.07 0.04 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 2-4 2-4 3	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
LUMBER	· · ·	ļ		!	-		-					·
TOP CHORD	2x6 SP No.1											
BOT CHORD												
WEDGE BRACING	Left: 2x4 SP No.2											
TOP CHORD	Structural wood she	athing directly appli	ed or									
	3-9-0 oc purlins.											
BOT CHORD	 Rigid ceiling directly bracing. 	applied or 10-0-0 c	С									
REACTIONS	0	3= Mechanical, 4=										
	Mechanic	al										
	Max Horiz 2=90 (LC Max Uplift 3=-70 (LC	,										
	Max Grav 2=203 (LC		, 4=70									
	(LC 3)	,. , ,										
FORCES	(lb) - Maximum Com	npression/Maximum										
TOP CHORD	Tension 1-2=0/0, 2-3=-123/7	6										
BOT CHORD	,											
NOTES												
	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B											
	xp C; Enclosed; MWFR											
Exterior(2	2E) zone;C-C for memb	ers and forces &									11111	in the second se
	for reactions shown; Lu	umber DOL=1.60 pla	ate								"ATH UF	RO
	grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom								10: 1 1			
chord live load nonconcurrent with any other live loads.								NY TI				
	ss has been designed f ottom chord in all areas		Opsf						-	V	WU K	NUL
3-06-00 tall by 2-00-00 wide will fit between the bottom = SI								SEA	L E			
chord and any other members.								22 · E				
 a) This trust has been designed for a live load of solution of the load of solution of the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. b) Bearings are assumed to be: , Joint 2 SP No.1 crushing capacity of 565 psi. c) Refer to girder(s) for trusts to trust to								1 3				
5) Refer to g) Refer to girder(s) for truss to truss connections.								airs			
	nechanical connection									15	A NGIN	EF
bearing p 3.	late capable of withsta	nuing /u ib uplift at j	om							1	CAC	BEIN
	(S) Standard										A. C	
											Ma	100.0005

May 23,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

SINEEDING

Job	Truss	Truss Type	Qty	Ply		
J0325-1580	J02	JACK-OPEN	5	1	Job Reference (optional)	173719884

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri May 23 08:27:36 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

3x6 II

L	3-7-8
H	010

00010 = 1.24.7												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	0.00	1-4	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	0.00	1-4	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-P							Weight: 22 lb	FT = 20%
LUMBER												
TOP CHORD	2x6 SP No.1											
BOT CHORD												
SLIDER	Left 2x4 SP No.2 2	Left 2x4 SP No.2 2-1-14										
BRACING												
TOP CHORD		athing directly appli	ed or									
	3-7-8 oc purlins.											
BOT CHORD												
	bracing. EACTIONS (size) 1= Mechanical, 3= Mechanical, 4=											
REACTIONS	(size) 1= Mechanic		ai, 4=									
	Max Horiz 1=90 (LC											
	Max Uplift 3=-72 (LC											
	Max Grav 1=143 (L0		, 4=71									
	(LC 3)	,, , ,	,									
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension											
TOP CHORD												
BOT CHORD	1-4=0/0											
NOTES												
	CE 7-16; Vult=130mph											
	3mph; TCDL=6.0psf; B kp C; Enclosed; MWFR											
	2E) zone;C-C for memb		-0								minin	1111
	for reactions shown; Lu		ate								WAH CA	ROUL
 Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 30.0psf 										. Ult		
	s has been designed fo	r a 10.0 psf bottom								51	O'.FESS	101: V 1
	e load nonconcurrent wi		ids.						6	17	100	7.7:
3) * This trus	* This truss has been designed for a live load of 30.0psf									·U	11/1/1/	NV.1-

 * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

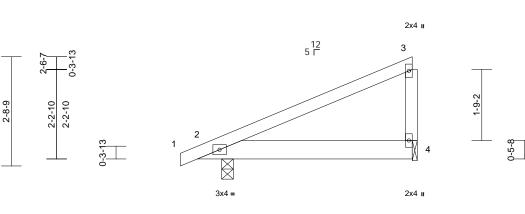
 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 72 lb uplift at joint 3.

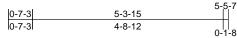
LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply		
J0325-1580	M1	MONOPITCH	6	1	Job Reference (optional)	73719885

0-5


| 0-5-


Comtech, Inc, Fayetteville, NC - 28314,

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri May 23 08:27:36 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:28.6

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.37	Vert(LL)	-0.01	2-4	>999	360	MT20	244/190
TCDL BCLL	10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 YES	BC WB	0.51 0.00	Vert(CT) Horz(CT)	-0.02 0.00	2-4 4	>999 n/a	240 n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-P	0.00	Wind(LL)	0.00	2-4	>999	240	Weight: 25 lb	FT = 20%
							· · · ·				0	
	0-4 0D N= 4			chanical connection								
TOP CHORD BOT CHORD	2x4 SP No.1 2x6 SP No.1			e capable of withs uplift at joint 2.	standing <i>i</i>	T ID UPIIIT AL	joint					
WEBS	2x4 SP No.2		LOAD CASE(S									
BRACING				,								
TOP CHORD	Structural wood she		ed or									
	5-0-0 oc purlins, ex											
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	0									
REACTIONS	0	4-0-1-8										
REAGNOND	Max Horiz 2=76 (LC											
	Max Uplift 2=-68 (LC											
	Max Grav 2=242 (Le	C 1), 4=203 (LC 1)										
FORCES	(lb) - Maximum Con	npression/Maximum										
Tension TOP CHORD 1-2=0/14, 2-3=-98/51, 3-4=-151/210												
BOT CHORD		1, 3-4=-131/210										
NOTES	2 . 0/0											
	CE 7-16; Vult=130mph	(3-second gust)										
	8mph; TCDL=6.0psf; B											
	p C; Enclosed; MWFR E) zone; porch left exp											
	s & MWFRS for reaction		615									
) plate grip DOL=1.60	ine enerni, zamber										1111
	has been designed fo										OFESS SEA	ROUT
	load nonconcurrent w is has been designed									5	ONEESS	io: All
	tom chord in all areas		ipsi							32	OF	No. 7 -
	all by 2-00-00 wide will		m							4	UN Z	NO
	any other members.								-	"	SEA	1
	are assumed to be: Jo								Ξ	. :	JL-	
565 psi.	of 565 psi, Joint 2 SP N	o. i crusning capaci	ly OI						-		0363	22 : 3
	t joint(s) 4 considers p	arallel to grain value							-	2 C		1 3
	SI/TPI 1 angle to grain									-	N.En.	RIAS
	should verify capacity of		_							25	GIN	EF
	echanical connection ate at joint(s) 4.	(by others) of truss t	D							1		BEIN
beamig ph	ato at joint(0) +.										1111.0	
											Ma	122 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

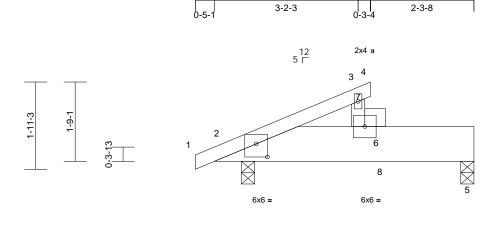
May 23,2025

Job	Truss	Truss Type	Qty	Ply		
J0325-1580	M2	ROOF SPECIAL	4	1	Job Reference (optional)	73719886

3-2-3

0-5

Comtech, Inc, Fayetteville, NC - 28314,


Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri May 23 08:27:36 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-5

5-8-15

Page: 1

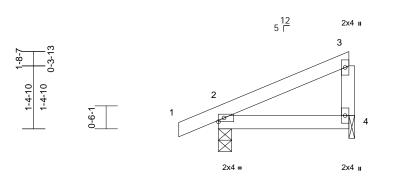
0-7-3	3-3-15	5-8-15
0-7-3	2-8-12	2-5-0

Scale = 1:25.5

Plate Offsets (X, Y): [2:0-3-0,0-3-7]

	1). [2.0-3-0,0-3-7]												
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.30	Vert(LL)	-0.03	2-6	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.51	Vert(CT)	-0.07	2-6	>944	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.00	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2021/TP	912014	Matrix-P		Wind(LL)	0.06	2-6	>999	240	Weight: 31 lb	FT = 20%
LUMBER TOP CHORD 2 BOT CHORD 2 BOT CHORD 2 BRACING TOP CHORD 3 BOT CHORD 4 BOT CHORD 4 BOT CHORD 6 BOT CHORD 6 BOT CHORD 6 BOT CHORD 6 BOT CHORD 2 NOTES 1 1) Wind: ASCE Vasd=103mp Cat. II; Exp 0 Exterior(2E) 2 MWFRS for 0 grip DOL=1.6 2) This truss ha chord live loa 3) * This truss ha chord and an 4) All bearings a capacity of 8	2x4 SP No.1 2x10 SP 2400F 2.0E 2x4 SP No.2 *Excep Structural wood she 3-0-0 oc purlins, ex Rigid ceiling directly bracing. ize) 2=0-3-8, § lax Horiz 2=49 (LC lax Uplift 2=-139 (L lax Grav 2=1093 (L (lb) - Maximum Com Tension 1-2=0/20, 2-3=-38/1 2-6=-14/12, 5-6=0/0 7-16; Vult=130mph ph; TCDL=6.0psf; Br C; Enclosed; MWFR zone;C-C for memb reactions shown; Lu 60 as been designed for ad nonconcurrent wi as been designed for ad nonconcurrent wi as	t* 6-7:2x6 SP No.1 athing directly applie cept end verticals. applied or 9-0-12 oc 5=0-3-8 10) C 10), 5=-218 (LC 1(C 1), 5=-7188 (LC 1) pression/Maximum 5, 3-4=-2/0, 3-6=-90/ (3-second gust) CDL=5.0psf; h=15ft; S (envelope) and C-1 ers and forces & imber DOL=1.60 plat r a 10.0 psf bottom th any other live loac or a live load of 30.0] where a rectangle fit between the botto SP 2400F 2.0E crush (by others) of truss to adding 218 lb uplift at modified. Building erify that they are	7) Ha priving de res LOAD d or 1) E P c C (108 C (108 C C c se ss. psf m hing	anger(s) or ovided suff ssign/select sponsibility CASE(S) Dead + Roo Plate Increa Vert: 1-3: Concentrate Vert: 8=- Dead: Lumt netal=0.90 Jniform Loa Vert: 1-3:	other connection icient to support c ion of such conne of others. Standard of Live (balanced): iss=1.15 ads (lb/ft) =-60, 3-4=-20, 2-6 ed Loads (lb) 2300 per Increase=0.90 ads (lb/ft) =-20, 3-4=-20, 2-6 ed Loads (lb)	concentra ection de : Lumber 5=-20, 5-1 0, Plate Ir) shall be ted load(s) . vice(s) is the Increase=1. 6=-130	The 15,				SEA 0363	ROLVAR 22 E.E.R. R.




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply		
J0325-1580	M3	MONOPITCH TRUSS	6	1	Job Reference (optional)	173719887

1-10-9

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri May 23 08:27:36 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

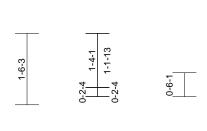
Page: 1

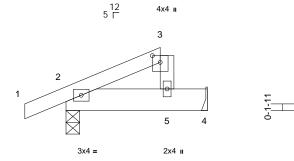
2-10-8 2-10-8 0-1-8

Scale = 1:25.4

Loading (psf) Spacing TCLL (roof) 20.0 Plate Grip ID TCDL 10.0 Lumber DC BCLL 0.0* Rep Stress BCDL 10.0 Code	_ 1.15	BC	0.08 0.11 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 -0.01 0.00 0.01	(loc) 2-4 2-4 2 2-4	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 WEBS 2x4 SP No.2 BRACING TOP CHORD Structural wood sheathing directly	bearing pla 2 and 35 lb LOAD CASE(S applied or	echanical connection (b ite capable of withstand uplift at joint 4. 5) Standard			nt					
BOT CHORD Rigid ceiling directly applied or 10										
bracing. REACTIONS (size) 2=0-3-8, 4=0-1-8 Max Horiz 4=49 (LC 10) Max Uplift 2=-58 (LC 6), 4=-35 (L1 Max Grav 2=181 (LC 1), 4=95 (L0										
	RCES (Ib) - Maximum Compression/Maximum									
TOP CHORD 3-4=-83/104, 1-2=0/10, 2-3=-60/3 BOT CHORD 2-4=-39/125	Ļ									
NOTES										
 Wind: ASCE 7-16; Vult=130mph (3-second gu Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; Cat. II; Exp C; Enclosed; MWFRS (envelope) Exterior(2E) zone; porch left exposed;C-C for and forces & MWFRS for reactions shown; Lu DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bic chord live load nonconcurrent with any other I * This truss has been designed for a live load on the bottom chord in all areas where a recta 3-06-00 tall by 2-00-00 wide will fit between th chord and any other members. Bearings are assumed to be: Joint 4 SP No.2 capacity of 565 psi, Joint 2 SP No.1 crushing 565 psi. Bearing at joint(s) 4 considers parallel to grain using ANSI/TPI 1 angle to grain formula. Buil designer should verify capacity of bearing sur Provide mechanical connection (by others) of bearing plate at joint(s) 4. 	=15ft; and C-C members mber ttom ve loads. of 30.0psf ngle e bottom crushing rapacity of value ling ace.						The second se		SEA 0363	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)




May 23,2025

Job	Truss	Truss Type	Qty	Ply	
J0325-1580	M4	MONOPITCH TRUSS	5	1	I73719888 Job Reference (optional)

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri May 23 08:27:36 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-1-12	3-0-0
2-1-12	0-10-4

Scale = 1:24.5

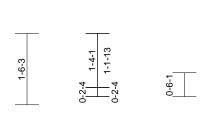
Plate Offsets (X, Y): [3:0-1-12,0-2-0]

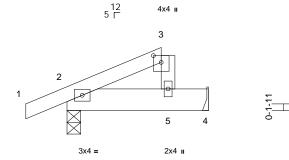
	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1											
Loading TCLL (roof) TCDL	(psf) 20.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.08 0.37	DEFL Vert(LL) Vert(CT)	in -0.01 -0.01	(loc) 2-5 2-5	l/defl >999 >999	L/d 360 240	PLATES MT20	GRIP 244/190
BCLL	0.0*	Rep Stress Incr	NO		WB	0.02	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code	IRC2021	/1912014	Matrix-S		Wind(LL)	0.02	2-5	>999	240	Weight: 13 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP No.1 2x4 SP No.2 Structural wood she 2-0-0 oc purlins. Rigid ceiling directly bracing.	applied or 10-0-0 or 4= Mechanical 10) .C 6), 4=-181 (LC 6) C 1), 4=579 (LC 1)	8) ed or c LO . 1)	designer mu correct for th Hanger(s) on provided suf design/select responsibility AD CASE(S) Dead + Roo Plate Increa Uniform Lo Vert: 1-3 Concentrat Vert: 5=-	Standard of Live (balanced ase=1.15 ads (lb/ft) =-60, 2-5=-20, 4- ed Loads (lb)	o verify tha of this truss n device(s concentra nection de d): Lumber -5=-130	at they are s.) shall be tted load(s) . vice(s) is the Increase=1.	.15,					
TOP CHORD BOT CHORD WEBS	1-2=0/14, 2-3=-53/2				ads (lb/ft) =-20, 2-5=-20, 4·	-5=-75							
NOTES					ed Loads (lb)								
1) Wind: ASC Vasd=103 Cat. II; Ex Exterior(2 and forces	CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; B p C; Enclosed; MWFR E) zone; porch left exp s & MWFRS for reactic 0 plate grip DOL=1.60	CDL=5.0psf; h=15ft; S (envelope) and C- osed;C-C for memb	-C	Vert: 5=-	300							ORTH CA	ROLIN
	has been designed fo										12	OFLOG	Ni. T'
 3) * This trus on the bot 3-06-00 ta chord and 4) Bearings a 	load nonconcurrent wi s has been designed f tom chord in all areas all by 2-00-00 wide will any other members. are assumed to be: , Ju	for a live load of 30.0 where a rectangle fit between the botto)psf om							COLUMN		SEA	L
capacity o	irder(s) for truss to trus	ss connections									5.	NGIN	Airis
, 0			-								25	> ··· VGIN	FEIRAS

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 181 lb uplift at joint 4 and 111 lb uplift at joint 2.

A. GILBER

May 23,2025


A. GILD


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	
J0325-1580	M5	MONOPITCH TRUSS	2	1	Job Reference (optional)

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri May 23 08:27:36 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-1-12	3-0-0
2-1-12	0-10-4

Scale = 1:24.5

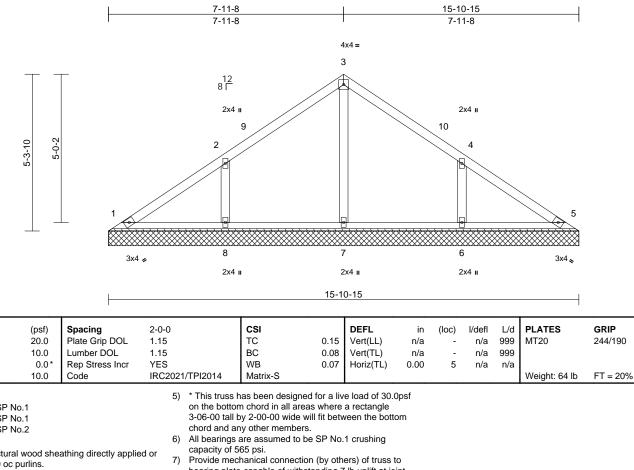
Plate Offsets (X, Y): [3:0-1-12,0-2-0]

	(, .). [0.0												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2021/T	PI2014	CSI TC BC WB Matrix-S	0.08 0.37 0.02	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.01 0.00 0.03	(loc) 2-5 2-5 2 2-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%
Vasd=10 Cat. II; Ex Exterior(2 and force DOL=1.6 2) This truss chord live 3) * This trus on the bo 3-06-00 tt chord and 4) Bearings capacity of	2x6 SP No.1 2x4 SP No.2 Structural wood she 2-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 4 Max Horiz 4=39 (LC Max Uplift 2=-112 (L Max Grav 2=349 (LC (lb) - Maximum Com Tension 1-2=0/14, 2-3=-53/2	applied or 10-0-0 or 4= Mechanical 10) C 6), 4=-183 (LC 6) C 1), 4=586 (LC 1) hpression/Maximum 7 7/106 (3-second gust) CDL=5.0psf; h=15ft; S (envelope) and C- osed;C-C for memb ons shown; Lumber r a 10.0 psf bottom ith any other live load fit between the bottoc prior 2 SP No.1 crust	ed or r c LOA 1) -C ers ds. Jpsf om	designer mus correct for the Hanger(s) or rovided suffi design/select responsibility D CASE(S) Dead + Roo Plate Increa Uniform Loa Vert: 1-3= Concentrate Vert: 5=-6 Dead: Lumb metal=0.90 Uniform Loa Vert: 1-3=	Standard if Live (balanced) ise=1.15 ads (lb/ft) =-60, 2-5=-20, 4 id Loads (lb) 500 per Increase=0.90 ads (lb/ft) =-20, 2-5=-20, 4 ed Loads (lb)	 verify that f this truss: a device(s concentra ection de): Lumber 5=-140 0, Plate Ir 	at they are s.) shall be ated load(s) . vice(s) is the Increase=1.	15,				ORTH CA OFESS SEA 0363	L 22
	pochanical connection		•								25	GIN	EFICAN

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 183 lb uplift at joint 4 and 112 lb uplift at joint 2.

A. GILBER

May 23,2025


A. GILD

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	
J0325-1580	VC01	Valley	1	1	I73719890 Job Reference (optional)

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri May 23 08:27:36 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

TOP CHORD	2x4 SP No.1
BOT CHORD	2x4 SP No.1
OTHERS	2x4 SP No.2

BRACING							
TOP CHORD	Structural 6-0-0 oc p	wood sheathing directly applied burlins.					
BOT CHORD	Rigid ceili bracing.	Rigid ceiling directly applied or 10-0-0 oc bracing.					
REACTIONS	(size)	1=15-10-15, 5=15-10-15, 6=15-10-15, 7=15-10-15, 8=15-10-15					
	Max Horiz	1=-119 (LC 8)					
	Max Uplift	1=-7 (LC 6), 6=-115 (LC 11), 8=-115 (LC 10)					
	Max Grav	1=133 (LC 18), 5=125 (LC 1), 6=378 (LC 18), 7=247 (LC 1), 8=378 (LC 17)					
FORCES	(lb) - Max Tension	imum Compression/Maximum					

TOP CHORD	1-2=-119/93, 2-3=-127/123, 3-4=-113/123,
	4-5=-88/56
	4-3=-00/30
BOT CHORD	1-8=-35/66, 7-8=-35/66, 6-7=-35/66,
	5-6=-35/66

WEBS 3-7=-171/1, 2-8=-289/207, 4-6=-289/207 NOTES

Scale = 1:39 Loading

TCLL (roof)

TCDI

BCLL

BCDL

LUMBER

- Unbalanced roof live loads have been considered for 1) this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) 2)
- Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-5-12 to 4-10-9, Exterior(2R) 4-10-9 to 11-0-6, Exterior(2E) 11-0-6 to 15-5-3 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing. 4)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

bearing plate capable of withstanding 7 lb uplift at joint 1, 115 lb uplift at joint 8 and 115 lb uplift at joint 6.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a fuss system. Derive use, the building designer host verify the applications of design had been and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply		
J0325-1580	VC02	Valley	1	1	Job Reference (optional)	

Scale = 1:33.3 Loading

TCLL (roof)

TCDI

BCLL

BCDL

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

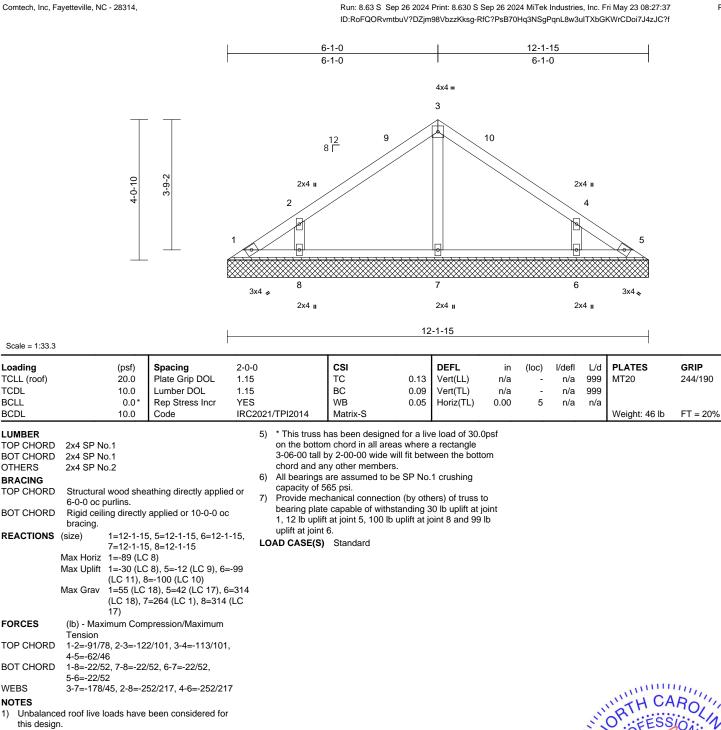
TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD


WEBS

NOTES

REACTIONS (size)

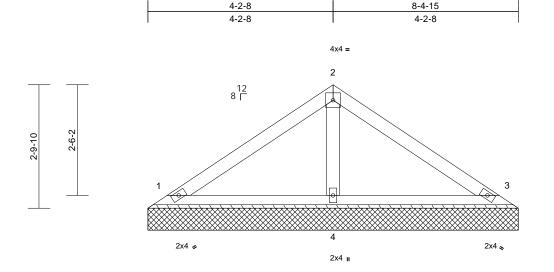
Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri May 23 08:27:37

Page: 1

- this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-5-12 to 4-10-9, Exterior(2R) 4-10-9 to 7-3-6, Exterior(2E) 7-3-6 to 11-8-3 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

The second secon NORTH WWWWWWWW SEAL 036322 G mmm May 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	
J0325-1580	VC03	Valley	1	1	I73719892 Job Reference (optional)

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri May 23 08:27:37 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

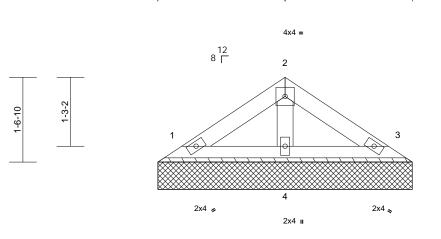
8-4-15

Scale	- 1.2	62

Loading TCLL (roof) TCDL BCLL	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.19 0.10 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	IRC2021/TPI201	4 Matrix-P							Weight: 29 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS			bearing 1 and 3	mechanical connect plate capable of with 4 lb uplift at joint 3. E(S) Standard							·	
BRACING TOP CHORD	Structural wood she 6-0-0 oc purlins.	eathing directly applie	ed or									
BOT CHORD	Rigid ceiling directly bracing.	y applied or 10-0-0 o	с									
REACTIONS	(size) 1=8-4-15 Max Horiz 1=-60 (Li Max Uplift 1=-28 (Li Max Grav 1=162 (L (LC 1)	C 10), 3=-34 (LC 11)										
FORCES	(lb) - Maximum Cor	npression/Maximum										
TOP CHORD BOT CHORD WEBS	,											
NOTES 1) Unbalance this design	ed roof live loads have		r									
Vasd=103 Cat. II; Ex Exterior(2 MWFRS f	Bmph; TCDL=6.0psf; E cp C; Enclosed; MWFF E) zone;C-C for member for reactions shown; L	CDL=5.0psf; h=15ft; S (envelope) and Corres and forces &	-C							and a second	ORTH CA	ROLIN
grip DOL= 3) Gable reg	=1.60 Juires continuous botto	om chord bearing.								-4	in L	12.
4) This truss	has been designed for load nonconcurrent w	or a 10.0 psf bottom	ds.							-	SEA	L
5) * This trus	ss has been designed	for a live load of 30.0	Opsf						-	9	0363	22 :

- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.1 crushing capacity of 565 psi. 6)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	
J0325-1580	VC04	Valley	1	1	I73719893 Job Reference (optional)

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri May 23 08:27:37 ID:RoFQORvmtbuV?DZjm98VbzzKksg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-7-15

2-4-0

Page: 1

4-7-15

2-4-0 2-4-0

Scale	_ 1	.21	1
Scale	= 1	:21	. I .

00010 = 1.21.1												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	BC 0	.05 .03 .01	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
BCDL	10.0	Code	IRC2021/1PI2014	Matrix-P							weight: 15 lb	FT = 20%
OTHERS BRACING	2x4 SP No.1 2x4 SP No.2		bearing plat 1 and 17 lb LOAD CASE(S)	chanical connection (by e capable of withstandi uplift at joint 3. Standard			nt					
TOP CHORD Structural wood sheathing directly applied or												
BOT CHORD	4-7-15 oc purlins. Rigid ceiling directly bracing.	applied or 10-0-0 or	2									
REACTIONS	(size) 1=4-7-15, Max Horiz 1=30 (LC Max Uplift 1=-14 (LC Max Grav 1=80 (LC (LC 1)	2 10), 3=-17 (LC 11)										
FORCES	(lb) - Maximum Corr	pression/Maximum										
	Tension											
TOP CHORD 1-2=-49/42, 2-3=-44/42												
BOT CHORD 1-4=-5/21, 3-4=-5/21 WEBS 2-4=-89/74												
NOTES	2 = 03/14											
1) Unbelanced reaf live loade have been expeddered for												
this design.												
2) Wind: ASCE 7-16; Vult=130mph (3-second gust)								1111				
 1) Onbatanced four loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load on concurrent with any other live loads. 5) * This truss has been designed for a live load of 30.0psf 									Pall			
	Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone;C-C for members and forces &									1	all	
	for reactions shown; Lu		te							5.	O'.FESS	101: Vi
grip DOL=										1	in U	7 4: 4:-
	 3) Gable requires continuous bottom chord bearing. 4) This trues have been designed for a 10.0 and bottom 									NUY		
	 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 								=		SEA	L E
	5) * This truss has been designed for a live load of 30.0psf										0363	22 : =
	ttom chord in all areas		•								0303	: E

3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. All bearings are assumed to be SP No.1 crushing capacity of 565 psi. 6)

ANGIN' A. GILB A. GIL May 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

