

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0325-1587 Lot 119 Ducks Landing

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: I73830726 thru I73830759

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

May 30,2025

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Lot 119 Ducks Landing	
J0325-1587	A1	Roof Special Supported Gable	1	1	Job Reference (optional)	173830726

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 29 11:18:53 ID:VwVd4KjLUyJ2BJMRqTiVHXzCGjG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

lay 29 11:18:53 Page: 1 CDoi7J4zJC?f

Scale = 1:70.9

Plate Offsets (X, Y): [7:0-2-2,0-3-4], [14:0-4-0,0-4-8], [26:0-4-0,0-4-8]

Loading TCLL (roof)		(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.11	DEFL Vert(LL)	in n/a	(lc	oc) I -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/1	90
TCDL		10.0	Lumber DOL	1.15		BC	0.01	Vert(CT)	n/a		-	n/a	999			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.31	Horz(CT)	0.02	2	26	n/a	n/a			
BCDL		10.0	Code	IRC20	021/TPI2014	Matrix-S								Weight: 307 II	b FT = 2	20%
LUMBER TOP CHORD BOT CHORD	2x6 SP N 2x6 SP N	0.1 0.1			TOP CHORD	1-2=-152/362, 2-3≕ 4-5=-178/558, 5-6≕ 7-8=-212/653, 8-9≕	-147/36 -225/69 -211/64	65, 3-4=-140/4 13, 6-7=-241/7 9, 9-10=-186	146, 736, /578,	7) 8)	This ti chord * This	russ ha live lo truss	as bee ad no has be	en designed for nconcurrent wit een designed fo	a 10.0 ps h any othe or a live lo	f bottom er live loads. ad of 30.0psf
OTHERS	2x4 SP N	0.2				10-11=-100/010, 11	15_ 1	+0/402, 25/212			2 06 0			0 00 wido will f	it botwoor	the better
BRACING TOP CHORD	Structura	l wood shea	athing directly applie	ed or		12-13=-126/405, 13 15-16=-70/238, 16- 17 40 - 27/70 40 40	17=-50/	/168,		0)	chord	and a	ny oth	ier members.		
BOT CHORD	6-0-0 oc Rigid ceil	purlins. ing directly	applied or 6-0-0 oc		BOT CHORD	36-37=0/0, 35-36=0 32-33=0/0, 31-32=0	9=0/8 /0, 34-3 /0, 29-3	35=0/0, 33-34 31=0/0, 28-29	=0/0, =0/0,	9) 10)	capac Provic	arings ty of to the med	are a 565 ps chanic	ssumed to be S si. al connection (I	P No.1 cr	of truss to
WEDS	1 Pow of	midnt	7 21 6 22 9 20 0 4	20		27-28=0/0, 25-27=0	/1, 24-2	25=0/1, 23-24	=0/1,	- /	bearin	ng plat	e capa	able of withstan	ding 227 I	b uplift at
REACTIONS	(size)	1=32-8-8,	18=32-8-8, 20=32-8	20 3-8,		22-23=-6/7, 21-22= 18-20=-6/7	-6/7, 20	-21=-6/7,			joint 1 uplift a	, 23 lb at joint	uplift 34, 6	at joint 32, 77 ll 5 lb uplift at join	b uplift at j t 35, 45 lt	joint 33, 62 lb o uplift at joint
	Max Horiz Max Uplift Max Grav	24=32-8-8 27=32-8-8 31=32-8-8 31=32-8-8 37=32-8-8 1=-275 (L1 1=-227 (L1 20=-34 (L1 24=-38 (L1 24=-38 (L1 28=-53 (L1 35=-65 (L1 1=98 (LC	, 22–32-8-8, 26–32 , 25–32-8-8, 26–32 , 28–32-8-8, 29–32 , 35–32-8-8, 33–32 , 35–32-8-8, 36–32 C 8) C 8), 18=-33 (LC 1 C 13), 21–33 (LC 1 C 13), 25–33 (LC 1 C 13), 25–33 (LC 1 C 13), 25–33 (LC 1 C 13), 27–36 (LC 1 C 12), 34–62 (LC 1 C 12), 36–45 (LC 1 11), 18=-149 (LC 26)	-8-8, -8-8, -8-8, -8-8, -8-8, -8-8, -8-8, -3), 3), 3), 3), 3), 2), 2), 2), 2), 2),	18-20=-6/7 uplift at joint 34, 65 lb uplift at joint 35 WEBS 7-31=-563/130, 6-32=-157/51, 5-33=-133/189, 4-34=-136/177, 3-355=-144/238, 2-36=-103/173, 8-29=-124/0, 9-28=-122/137, 10-27=-120/109, 11-26=-120/103, 12-25=-119/104, 13-24=-128/113, 14-23=-119/103, 15-22=-110/98, 16-21=-121/132, 17-20=-120/162 uplift at joint 34, 65 lb uplift at joint 28, 36 lb uplift uplift at joint 28, 30 lb uplift uplift at joint 20, 30 lb uplift uplift at joint 20, 30 lb uplift uplift at joint 20, 30 lb uplift uplift at joint 28, 30 lb uplift uplift at joint 20, 30 lb uplift uplift at joint 28, 3								Jlift at join t 25, 38 lk Jlift at join it 20 and 3 provide ft) 18.	t 27, 32 lb) uplift at joint t 22, 33 lb 33 lb uplift at ull bearing		
FORCES	(lb) - Max Tension	20=166 (L 22=151 (L 24=168 (L 26=160 (L 28=162 (L 31=369 (L 33=173 (L 35=185 (L 37=1 (LC cimum Com	(1), 10-115 (LC 1), (C 1), 21=160 (LC 1), (C 26), 23=159 (LC 1), (C 26), 25=159 (LC 1), (C 1), 27=159 (LC 1), (C 26), 29=164 (LC 1), (C 13), 32=197 (LC 1), (C 13), 32=197 (LC 1), (C 19), 34=176 (LC 1), (C 19), 36=136 (LC 3), pression/Maximum), 1), 26),), 1), 19), 19), 19),	 12-9-11, Co 17-2-8 to 35 MWFRS for grip DOL=1. Truss design only. For str see Standar or consult qi All plates arr 5) Gable requin Gable studs 	rner(3R) 12-9-11 to -5-14 zone;C-C for r reactions shown; Lu 60 ned for wind loads ir uds exposed to wind d Industry Gable Er ualified building desi e 2x4 MT20 unless es continuous botto spaced at 2-0-0 oc.	17-2-8, membe umber I n the pla d (norm id Deta igner as otherwi m chor	Exterior(2N) rs and forces DOL=1.60 pla ane of the tru: al to the face ils as applical s per ANSI/TF se indicated. d bearing.	& te ss), ble, PI 1.			Variation 11		SEA 036	AL 322 YEER GILB	WALL DATE

May 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 119 Ducks Landing	
J0325-1587	A2	Roof Special	8	1	Job Reference (optional)	173830727

Loading

TCDI

BCLL

BCDL

WEBS

WEBS

FORCES

WEBS

NOTES

1)

2)

3) 4)

BRACING

LUMBER

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 29 11:18:54 ID:btRAI72F7f7VJzclHqi7k7zgvFp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 119 Ducks Landing	
J0325-1587	A3	Roof Special	2	1	Job Reference (optional)	173830728

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 29 11:18:54 ID:btRAI72F7f7VJzclHqi7k7zgvFp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:76														
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.45	Vert(LL)	-0.19	11-12	>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.62	Vert(CT)	-0.28	11-12	>999	240			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.68	Horz(CT)	0.05	7	n/a	n/a			
BCDL	10.0	Code	IRC20	21/TPI2014	Matrix-S		Wind(LL)	0.05	8	>999	240	Weight: 249 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SP No.1 2x6 SP No.1 2x4 SP No.2 Structural wood she 4-8-2 oc purlins, exi Rigid ceiling directly bracing. 1 Row at midpt (size) 7=0-3-8, 1 Max Horiz 12=-273 (Max Uplift 7=-94 (LC Max Grav 7=1485 (L (lb) - Maximum Com	athing directly applie cept end verticals. applied or 10-0-0 or 2-12, 4-11, 2-11 12=0-3-8 LC 8) 2 13), 12=-58 (LC 13 .C 20), 12=1587 (LC pression/Maximum	4 5 5 6 5 6 6 7 6 7 8 1 9 19)	 * This truss h on the bottor 3-06-00 tall b chord and ar All bearings capacity of 5 Provide mec bearing plate 12 and 94 lb OAD CASE(S) 	has been design in chord in all ar by 2-00-00 wide by other member are assumed to 65 psi. hanical connec e capable of witi uplift at joint 7. Standard	ned for a liv reas where e will fit betw ers, with BC b be SP No. tion (by oth hstanding 5	e load of 30. a rectangle veen the bot DL = 10.0ps 1 crushing ers) of truss 8 lb uplift at	.0psf tom sf. to joint						
TOP CHORD	1-2=-286/170. 2-3=-	1465/444.												

3-4=-1299/409, 4-6=-2299/476, 6-7=-2561/512, 1-12=-303/178 11-12=-93/1184, 8-11=-111/1536, BOT CHORD 7-8=-358/2215 WEBS 2-12=-1456/214, 3-11=-321/1229, 4-11=-832/314, 2-11=-118/255, 4-8=-83/887,

6-8=-457/288

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 2-2-9 to 6-7-5, Interior (1) 6-7-5 to 12-9-11, Exterior(2R) 12-9-11 to 17-2-8, Interior (1) 17-2-8 to 34-7-9 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.

Mannana - ITTA A MANAGEMENT SEAL 036322 G mm May 30,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 119 Ducks Landing	
J0325-1587	A4	Roof Special	8	1	Job Reference (optional)	173830729

Run; 8.63 S Sep 26 2024 Print; 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 29 11:18:54 ID:btRAI72F7f7VJzclHqi7k7zgvFp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.53	Vert(LL)	-0.06	5-6	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.41	Vert(CT)	-0.14	5-6	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.90	Horz(CT)	0.03	5	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S		Wind(LL)	0.03	5-6	>999	240	Weight: 221 lb	FT = 20%

LUMBER	
TOP CHORD	2x6 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 5-0-6 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
WEBS	1 Row at midpt 2-9
REACTIONS	(size) 5= Mechanical, 9= Mechanical
	Max Horiz 9=-293 (LC 13)
	Max Uplift 5=-27 (LC 13)
	Max Grav 5=1209 (LC 20), 9=1475 (LC 20)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-75/114, 2-3=-1166/209, 3-5=-1939/218,
	1-9=-110/119
BOT CHORD	9-10=0/8, 8-9=0/464, 6-8=-89/1517,
	5-6=-56/1643
WEBS	2-9=-1134/224, 2-8=-67/1260, 3-8=-845/399,

NOTES

Scale = 1:76

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 8-8-1 to 12-9-12, Exterior(2R) 12-9-12 to 17-2-8, Interior (1) 17-2-8 to 34-8-9 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3)
- 200.0lb AC unit load placed on the bottom chord, 4-5-0 from left end, supported at two points, 5-0-0 apart.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

Refer to girder(s) for truss to truss connections. 6)

- Provide mechanical connection (by others) of truss to 7)
- bearing plate capable of withstanding 27 lb uplift at joint

LOAD CASE(S) Standard

WWWWWWWWW SEAL 036322 GI minin May 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 119 Ducks Landing	
J0325-1587	A5	Roof Special Supported Gable	1	1	Job Reference (optional)	173830730

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 29 11:18:54 ID:btRAI72F7f7VJzclHqi7k7zgvFp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:73.2

Plate Offsets (X, Y): [3:0-2-2,0-3-4], [10:0-4-0,0-4-8], [21:0-4-0,0-4-8]

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	21/TPI2014	CSI TC BC WB Matrix-S	0.05 0.04 0.14	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(l	oc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 253 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS DTHERS BRACING TOP CHORD BOT CHORD WEBS	2x6 SP No 2x6 SP No 2x4 SP No 2x4 SP No Structural v 6-0-0 oc pr Rigid ceilin bracing. T-Brace: Fasten (2X of web witt o.c.,with 3i Brace mu	.1 .2 .2 wood shea urlins, exc g directly () T and I n 10d (0.13 n minimur st cover 9	athing directly applied ept end verticals. applied or 10-0-0 oc 2x4 SPF No.2 - 1-27 3-25, 2-26, 4-24, 5-2 braces to narrow ed 31"x3") nails, 6in n end distance. 0% of web length	+ d or م ع ge	TOP CHORD	1-27=-69/121, 1-2= 3-4=-78/250, 4-5=- 5-7=-133/93, 7-8=- 9-11=-292/85, 11-1 12-13=-392/24, 12 26-27=-138/452, 22 24-25=-138/452, 12 19-20=-138/452, 12 19-20=-138/445, 12 15-16=-133/446, 11 15-16=-133/446, 12 5-25=-134/17, 2-26 5-23=-122/116, 6-27 7-21=-120/105, 8-29 -19=-128/109, 10 11-17=-111/93, 12 13-15=-129/221	37/93, 98/213, 161/73, 2=-338, 3-14=-4; 5-26=-1: 3-24=-1: 0-22=-1: 8-17=-1: 4-15=-1: 2:2=-120, 2:2=-120, 2:2=-120, 1:3=-11: 1:6=-12;	2-3=-76/248, 5-6=-116/151, 8-9=-193/58, /103, 81/157 38/452, 38/452, 38/452, 38/452, 33/446, 33/446, 33/446, 215, 4-24=-124 /106, /105, 9/111, 0/146,	,	8) 9) 10) 11)	* This on th 3-06- chord All be capa Provi beari 27, 9 uplift 21, 6 uplift 16 ar Warr truss alway AD C	s truss le botto -00 tall d and a earings city of s ide med ing plat 7 lb up at joint nd 123 ning: Ac systen ys requ ASE(S)	has be m cho by 2-0 ny oth are as 565 ps chanic e capa lift at ju 23, 6 lift at ju 23, 6 lift at ju 18, 5 lb upli Idition n (not ired. Sta	een designed for rd in all areas wh 00-00 wide will fit rer members. ssumed to be SP ii. al connection (by able of withstandi oint 26, 53 lb uplif 9 lb uplift at joint 10 int 20, 71 lb upli 6 lb uplift at joint ft at joint 15. al permanent and part of this compound ndard	a live load of ere a rectang between the No.1 crushin others) of tri ng 62 lb uplif ft at joint 24, 22, 69 lb uplif ft at joint 19, 17, 71 lb uplif d stability bra- onent design	30.0psf jle bottom ^{1g} Jss to t at joint 75 lb ft at joint 75 lb ft at joint cing for) is
FORCES	(size) Max Horiz Max Uplift Max Grav (lb) - Maxir Tension	14=26-4-8 17=26-4-8 20=26-4-8 23=26-4-8 23=26-4-8 27=-431 (L 15=-123 (L 17=-56 (LC 21=-69 (LC 23=-75 (LC 21=-59 (LC 23=-75 (LC 26=-97 (LC 14=227 (L 18=157 (L 18=159 (L 22=159 (L 22=159 (L 22=159 (L 22=159 (L 24=164 (L 26=204 (L num Comp	, 15=26-4-8, 16=26- , 18=26-4-8, 19=26- , 24=26-4-8, 22=26- , 24=26-4-8, 22=26- , 27=26-4-8 LC 13), 16=-71 (LC 1 C 13), 18=-75 (LC 13 C 13), 20=-69 (LC 13 C 13), 22=-69 (LC 13 C 13), 22=-69 (LC 13 C 13), 22=-69 (LC 12 C 13), 15=178 (LC 2 C 26), 17=151 (LC 12 C 26), 19=168 (LC 12 C 26), 19=168 (LC 12 C 26), 12=160 (LC 11 C 10), 23=162 (LC 26 C 1), 25=172 (LC 21 C 1), 27=-86 (LC 19) pression/Maximum	4-8, 4-8, 4-8, 3), i), i), i), i), 6), , , (6),), (6), (6),), (6),), (6), (6),), (6),), (6),), (6),), (6), (6),), (6), (6),), (6), (6),), (6), (6),), (6), (6), (6), (6), (6), (6), (6), (6), (6), (6), (6), (6), (6), (6), (6), (6), (6), (6), (6), (7), ()), (), (), (), (), (), (), (), (),	 NOTES Unbalanced this design. Wind: ASCE Vasd=103m Cat. II; Exp 0 zone and C- 12-9-12 to 1 C for membe shown; Luml Truss desigr only. For stu see Standaru or consult qu All plates are Gable requir Gable studs This truss ha chord live los 	roof live loads hav 7-16; Vult=130mp b; TCDL=6.0psf; I C; Enclosed; MWFI C Corner(3E) 8-8- 7-2-8, Exterior(2N) ers and forces & M ber DOL=1.60 plat ued for wind loads i ids exposed to wind d Industry Gable E tailfied building des e scontinuous bott spaced at 2-0-0 oc is been designed fr ad nonconcurrent w	e been of h (3-sec 3CDL=6 RS (env I to 12-5 17-2-8 WFRS f e grip D n the pl- d (norm nd Deta signer as otherwi om chor bor chor chor the any	considered for cond gust) .0psf; h=15ft; elope) exterior -12, Corner(3I to 34-9-5 zone or reactions OL=1.60 ane of the trus al to the face), ils as applicab s per ANSI/TP se indicated. d bearing. D psf bottom other live load	R) ;C- s le, I 1.			Contraction of the second seco		SEA 0363	L 22 EEER NBERNY 30,2025	And Annun annun

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

ENGINEERING BY TREENCO A Mi Tek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 119 Ducks Landing	
J0325-1587	B1	ATTIC	1	1	Job Reference (optional)	3830731

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 29 11:18:54 ID:btRAI72F7f7VJzclHqi7k7zgvFp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:77.6

Plate Offsets (X, Y): [2:0-1-12,0-1-12], [6:0-3-9,Edge], [10:0-1-12,0-1-12], [13:0-4-0,0-4-12]

Loading TCLL (roof) TCDL	(psf) 20.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC 0.4 BC 0.2	43 Ve 23 Ve	EFL in ert(LL) -0.05 ert(CT) -0.07	(loc) 10-12 10-12	l/defl >999 >999	L/d 360 240	PLATES MT20	GRIP 244/190
BCLL	0.0*	Rep Stress Incr	YES	WB 0.1	10 Ho	orz(CT) 0.01	10	n/a	n/a		FT 000/
BCDL	10.0	Code	IRC2021/1PI2014	Matrix-S	VVI	/Ind(LL) 0.06	2-14	>999	240	weight: 227 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP No.1 2x10 SP No.1 2x6 SP No.1 Left: 2x6 SP No.2 Right: 2x6 SP No.2 Structural wood shea 6-0-0 cc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 1 Max Horiz 2=-346 (L0	athing directly appliec applied or 10-0-0 oc 0=0-3-8 C 10)	 5) This truss ha chord live loa 6) * This truss f on the bottor 3-06-00 tall b chord and ar 7) Ceiling dead Wall dead lo 8) Bottom chord chord dead l 9) All bearings capacity of 5 10) Attic room cf 	as been designed for a 1 ad nonconcurrent with a nas been designed for a n chord in all areas whe y 2-00-00 wide will fit b ny other members, with load (10.0 psf) on mem ad (5.0psf) on member(d live load (40.0 psf) and oad (10.0 psf) applied o are assumed to be SP N 65 psi. hecked for L/360 deflect Standard	10.0 psi any other a live loa ere a re between BCDL = nber(s). (s).4-14 d additi only to r No.1 cru- tion.	sf bottom her live loads. Dad of 30.0psf ectangle in the bottom . = 10.0psf.). 4-5, 7-8, 5-7; 4, 8-12 tional bottom room. 12-14 rushing					
	Max Grav 2=1460 (L	C 20), 10=1460 (LC 2	21) LOAD CASE(S)	Standard							
FORCES	(lb) - Maximum Comp Tension 1-2=0/13, 2-4=-1737, 5-6=-119/218, 6-7=-1 8-10=-1737/113, 10-	pression/Maximum /113, 4-5=-877/230, 119/218, 7-8=-877/23 11=0/13	0,								
WEBS	2-14=0/1110, 12-14= 5-7=-1274/505 4-14	=-63/736 8-12=-63/7	36								
NOTES										SAMPLE	17.5
 Unbalance this design Wind: ASC Vasd=103r Cat. II; Exp zone and C 3-8-6 to 11 (2N) 15-4- forces & M DOL=1.60 Truss desig only. For s see Standa or consult of 	d roof live loads have E 7-16; Vult=130mph mph; TCDL=6.0psf; BC 0 C; Enclosed; MWFRS C-C Corner(3E) -0-8-7 -0-0, Corner(3E) 11-0- 13 to 22-8-7 zone;C-C WFRS for reactions sh plate grip DOL=1.60 gned for wind loads in studs exposed to wind ard Industry Gable Enc qualified building desic	been considered for (3-second gust) CDL=6.0psf; h=15ft; S (envelope) exterior to 3-8-6, Exterior(2N) -0 to 15-4-13, Exterior for members and hown; Lumber the plane of the truss (normal to the face), J Details as applicable iner as per ANSI/TPI) r e, 1.					Contraction of the second seco		SEAL 03632	ROUNA INTERNET

DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable studs spaced at 0-0-0 oc.

> WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GI

minin May 30,2025

Job	Truss	Truss Type	Qty	Ply	Lot 119 Ducks Landing	
J0325-1587	B2	ATTIC	3	1	Job Reference (optional)	73830732

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 29 11:18:55 ID:btRAI72F7f7VJzclHqi7k7zgvFp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:77.6 Plate Offsets (X, Y): [2:Edge,0-0-5], [6:0-3-9,Edge], [11:0-4-0,0-4-12]

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.52	Vert(LL)	-0.06	9-10	>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.25	Vert(CT)	-0.09	9-10	>999	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.10	Horz(CT)	0.01	9	n/a	n/a			
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S		Wind(LL)	0.05	9-10	>999	240	Weight: 224 lb	FT = 20%	
LUMBER			5) Ceiling of	ead load (10.0 psf) o	on membei	r(s). 4-5, 7-8	, 5-7;						
TOP CHORD	2x6 SP No.1		Wall dea	d load (5.0psf) on me	ember(s).4	4-12, 8-10							
BOT CHORD	2x10 SP No.1		Bottom (hord live load (40.0 p	psf) and a	dditional bott	om						
WEBS	2x6 SP No.1		chord de	ad load (10.0 psf) ap	plied only	to room. 10-	-12						
WEDGE	Left: 2x6 SP No.2		 All beari 	igs are assumed to t	be SP No.	1 crushing							
	Right: 2x4 SP No.3		8) Attic roo	or 505 psi. m checked for 1 /360	deflection								
		athing directly opplie		(S) Standard	acheellon	•							
TOP CHORD	5-6-4 oc purlins	athing directly applie											
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or											
	bracing.		-										
REACTIONS	(size) 2=0-3-8, 9	=0-3-8											
	Max Horiz 2=275 (LC	9)											
	Max Grav 2=1466 (L	.C 20), 9=1425 (LC 2	20)										
FORCES	(lb) - Maximum Com	pression/Maximum											
	Tension												
TOP CHORD	1-2=0/13, 2-4=-1/32	/31, 4-5=-868/142, 2/224 7 8 000/155											
	3-0=-90/202, 0-7=-00 8-9=-1723/6	0/234, 7-0=-900/155	,										
BOT CHORD	2-12=0/1090, 10-12=	=0/1090. 9-10=0/109	0										
WEBS	5-7=-1334/337, 4-12	=-23/742, 8-10=-34/	688										
NOTES												111.	
1) Unbalance	ed roof live loads have	been considered for	•								WHY CA	Pall	
this design).									1	athon	10/11/	
2) Wind: ASC	E 7-16; Vult=130mph	(3-second gust)								N.	Q'EESS	d: 1. 1	
Vasd=103	mph; TCDL=6.0psf; B0	CDL=6.0pst; h=15ft;	<u>_</u>							1	10 /	Nin I	-
Exterior(2E	C; Enclosed; WWFR;	5 (envelope) and C-							-			- · · ·	
Exterior(2E	2) 11-0-0 to 15-4-13 Ir	nterior (1) 15-4-13 to	-0,								CEA.	- 1 E	
21-10-4 zo	one;C-C for members a	and forces & MWFR	, S						=	1	SEA		
for reactior	ns shown; Lumber DO	L=1.60 plate grip								:	0363	22 : =	
DOL=1.60									-	3			
3) This truss	has been designed for	a 10.0 psf bottom							-	-	·	11 3	
chord live l	load nonconcurrent wit	th any other live load	ds.							20	NGINE	Eticks	
4) I NIS Truss	s has been designed to	ur a live load of 30.0	psi							12	No.	THE N	
3-06-00 tal	ll by 2-00-00 wide will t	fit between the botto	m								A G	ILBUIN	
chord and	any other members. w	ith BCDL = 10.0 sf									1111111	innin	
	,											CBC 1	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 119 Ducks Landing
J0325-1587	B3	ATTIC	1	1	I73830733 Job Reference (optional)

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 29 11:18:55 ID:btRAI72F7f7VJzclHqi7k7zgvFp-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:79.5

Plate Offsets (X, Y):	: [2:Edge,0-0-5], [6:0-3-9,Edge], [9:0-4-12,0-2-4], [12:0-5-0,0-3-0], [13:0-4-0,0-4-12]	
-----------------------	---	--

4)

5)

6)

7)

8)

capacity of 565 psi.

LOAD CASE(S) Standard

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.53	Vert(LL)	-0.07	2-14	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.26	Vert(CT)	-0.09	2-14	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.25	Horz(CT)	0.01	10	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S		Wind(LL)	0.05	11-12	>999	240	Weight: 234 lb	FT = 20%

* This truss has been designed for a live load of 40.0psf on the bottom chord in all areas where a rectangle

3-06-00 tall by 2-00-00 wide will fit between the bottom

Ceiling dead load (10.0 psf) on member(s). 4-5, 7-8, 5-7;

Bottom chord live load (40.0 psf) and additional bottom

chord dead load (10.0 psf) applied only to room. 12-14

chord and any other members, with BCDL = 10.0psf.

Wall dead load (5.0psf) on member(s).4-14, 8-12

All bearings are assumed to be SP No.1 crushing

Attic room checked for L/360 deflection.

LUMBER TOP CHORD 2x6 SP No.1 BOT CHORD 2x10 SP No.1 2x6 SP No.1 *Except* 9-11,9-12:2x4 SP No.2 WEBS Left: 2x6 SP No.2 WEDGE BRACING TOP CHORD Structural wood sheathing directly applied or 5-9-2 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 11-12. **REACTIONS** (size) 2=0-3-8, 10=0-3-8 Max Horiz 2=273 (LC 9) Max Grav 2=1480 (LC 20), 10=1334 (LC 20) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/13, 2-4=-1705/25, 4-5=-849/139, 5-6=-96/266, 6-7=-83/224, 7-8=-894/152, 8-9=-1579/6 BOT CHORD 2-14=0/1067, 12-14=0/1067, 11-12=-22/1, 10-11=0/0

- WEBS 5-7=-1314/330, 4-14=-20/730, 8-12=-46/570, 9-11=-1356/37, 9-12=0/1099 NOTES
- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-8-7 to 3-8-6, Interior (1) 3-8-6 to 11-0-0, Exterior(2R) 11-0-0 to 15-4-13, Interior (1) 15-4-13 to 21-5-7 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

SEAL 036322 May 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

VIIIIIIIIIIII

Job	Truss	Truss Type	Qty	Ply	Lot 119 Ducks Landing	
J0325-1587	C1	Common Structural Gable	1	1	Job Reference (optional)	173830734

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 29 11:18:55 ID:btRAI72F7f7VJzclHqi7k7zgvFp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:59.4

Plate Offsets (X, Y): [9:0-2-4,0-2-0], [10:Edge,0-3-12], [13:0-4-3,0-2-11], [17:Edge,0-6-12]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	21/TPI2014	CSI TC BC WB Matrix-S	0.19 0.09 0.07	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.01 0.00 0.00	(loc) 16-17 16-17 10 16-17	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 164 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	2x6 SP No.1 2x6 SP No.1 2x4 SP No.2 2x4 SP No.2 Right 2x4 SP No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Brace at Jt(s): 4, 6 (size) 10=4-11 14=0-3-8 Max Horiz 17=272 (I Max Uplift 10=-6 (LC 13=-349 (I 13=297 (I 17=541 (I	- 2-10-13 athing directly applied cept end verticals. applied or 10-0-0 oc 3, 12=4-11-8, 13=4-11 17=0-3-8 _C 11) 2 11), 12=-221 (LC 13 LC 12), 17=-36 (LC 1 _C 22), 12=196 (LC 24 _C 1), 14=313 (LC 3), _C 1)	2 l or 3 l-8, 5 j-8, 6), 7 0), 7 8	 Wind: ASCE Vasd=103mp Cat. II; Exp C zone and C-0 3-7-12 to 8-1 (1) 12-6-9 to MWFRS for 1 grip DOL=1.6 Truss design only. For stu see Standard or consult qu Gable studs This truss ha chord live loa * This truss ha chord live loa * All bearings is capacity of 5 Pervivide mech 	7-16; Vult=130mp h; TCDL=6.0psf; I C; Enclosed; MWFI C Exterior(2E) -0.9 -12, Exterior(2E) 4 17-0-9 zone;C-C f reactions shown; L 60 ed for wind loads i ds exposed to wind l Industry Gable E alified building des spaced at 2-0-0 oc s been designed f ad nonconcurrent v as been designed n chord in all areas ride will fit betweer mbers. are assumed to be 65 psi. banical connection	h (3-sec BCDL=6 RS (env) -1 to 3-1-12 to for mem .umber I an the pl d (norm nd Deta signer a: c. or a 10.0 with any for a liv s where n the bo	cond gust) .0psf; h=15ft; elope) exteric poly exteric poly exteric poly exteric poly exteric poly exterior poly exteri	or (1) ior ess & te ss), ole, PI 1. ds. sf -00 d					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=0/37, 2-3=-476/ 5-7=-106/59, 7-8=-1 9-10=-410/209, 10- ⁻ 3-4=-345/261, 4-6=- 16-17=-279/355, 14 12-14=-157/364, 10	npression/Maximum 58, 3-5=-173/115, 47/0, 8-9=-208/102, 11=0/6, 2-17=-484/11 ⁻ 362/260, 6-13=-394/2 -16=-99/364, -12=-155/314	9 1, 99 L	 bearing plate bearing plate 17, 349 lb up lb uplift at joi Graphical pu or the orienta bottom chorc OAD CASE(S) 	capable of withsta lift at joint 13, 221 nt 10. rlin representation ition of the purlin a l. Standard	does no	at joint 12 an ot depict the s	o bint d 6 ize		4	A.	OR FESS	ROW
WEBS NOTES	2-16=-55/262, 4-5=- 8-13=-203/211, 9-12	52/39, 6-7=-94/101, 2=-183/240, 3-16=0/22	29							11111		SEA 0363	L 22

1) Unbalanced roof live loads have been considered for this design.

May 30,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 119 Ducks Landing	
J0325-1587	C2	Common Girder	1	2	Job Reference (optional)	173830735

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 29 11:18:55 ID:btRAI72F7f7VJzclHqi7k7zgvFp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:61.3		
Plate Offsets (X, Y):	[6:0-5-0.0-6-4].	[8:0-5-0.0-6-4]

	(, .). [e.e e e,e e .],	[
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.62	Vert(LL)	-0.04	1-8	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.75	Vert(CT)	-0.07	1-8	>999	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.40	Horz(CT)	0.02	5	n/a	n/a		
BCDL	10.0	Code	IRC202	1/TPI2014	Matrix-S		Wind(LL)	0.02	1-8	>999	240	Weight: 291 lb	FT = 20%
			4		7 40. \/	anh (2 and	(بمربيم اممرم						
LUMBER	0 0 0 D N 4		4)	Vood 102mm	7-16; Vuit=130/		Ond gust)						
TOP CHORD	2x6 SP No.1				Dn; TCDL=6.0pSI		.upsi; n= i sit	,					
BOICHORD	2x8 SP No.1				oto grip DOI -1 6	FK3 (env	elope), Lunic	bei					
WEBS	2x4 SP No.2		E)	This trues he	ale grip DOL=1.0	00 I for o 10 () not bottom						
WEDGE	Left: 2x4 SP No.3		5)	chord live los	a popooncurront	twith onv	othor live loc	de					
	Right: 2x4 SP No.3		6)	* This truce h		d for a liv		nof					
BRACING	.		. 0)	on the bottor	n chord in all are	as where	a rectande (1-00					
TOP CHORD	Structural wood she	athing directly applie	ed or	tall by 0-00 w	ide will fit betwee	on the hot	tom chord a	-00-0					
	6-0-0 oc purlins.			any other me	mbers			iu					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	; 7)		are assumed to h	SP No	1 crushing						
	bracing.		')	canacity of 5	65 nsi		rerusning						
REACTIONS	(size) 1=0-3-8, 5	5=0-3-8	8)	Provide med	hanical connection	on (hv oth	ers) of truss	to					
	Max Horiz 1=209 (LC	C 26)	0)	bearing plate	capable of withs	standing 1	64 lb uplift at	t					
	Max Uplift 1=-164 (L	C 9), 5=-191 (LC 8)		ioint 1 and 19	91 lb uplift at ioin	it 5.	o i io apint a	•					
	Max Grav 1=4849 (L	_C 16), 5=5838 (LC 1	15) 9)	Hanger(s) or	other connection	n device(s) shall be						
FORCES	(lb) - Maximum Com	pression/Maximum	- /	provided suff	icient to support	concentra	ted load(s) 1	189					
	Tension			Ib down and	39 lb up at 1-11	-4, 1189 II	o down and 3	39 lb					
TOP CHORD	1-2=-5054/217, 2-3=	-4730/311,		up at 3-11-4	, 1189 lb down a	ເກd 39 lb ເ	p at 5-11-4,	1189					
	3-4=-4705/310, 4-5=	-5031/216		lb down and	39 lb up at 7-11	-4, 1189 II	down and 3	39 lb					
BOT CHORD	1-8=-167/3341, 6-8=	-79/2426, 5-6=-82/3	238	up at 9-11-4	, 1189 lb down a	ind 39 lb u	pat 11-11-4	1, and					
WEBS	4-6=-66/423, 3-8=-2	35/3406, 2-8=-65/41	8,	1189 lb dowr	n and 39 lb up at	13-11-4,	and 1197 lb						
	3-6=-233/3345			down and 34	Ib up at 16-1-12	2 on botto	m chord. Th	е					111.
NOTES				design/selec	tion of such conn	nection de	vice(s) is the					IN CA	DIL
1) 2-ply truss	s to be connected toge	ther with 10d		responsibility	of others.						1.5	THUA	TOM
(0.131"x3'	") nails as follows:		LO	DAD CASE(S)	Standard						15	فكالمناء	A. Main
Top chord	is connected as follows	s: 2x6 - 2 rows	1)	Dead + Roo	of Live (balanced	l): Lumber	Increase=1.	15,		6	11		Nin
staggered	l at 0-9-0 oc.			Plate Increa	ase=1.15					-		19 10	ver y
Bottom ch	ords connected as foll	ows: 2x8 - 2 rows		Uniform Loa	ads (lb/ft)					-		. 4	1 1 1 2
staggered	at 0-7-0 oc.			Vert: 1-3	=-60, 3-5=-60, 1-	-5=-20				=		SEA	L 🕴 🗄
Web conn	ected as follows: 2x4 -	1 row at 0-9-0 oc.		Concentrate	ed Loads (lb)					Ξ		000	E E
All loads a	are considered equally	applied to all plies,		Vert: 7=-	1046 (F), 5=-105	64 (F), 9=-	1046 (F),			=		0363	22 : 3
except if n	noted as front (F) or ba	ck (B) face in the LO	AD	10=-1046	6 (F), 11=-1046 (F), 12=-10	046 (F), 13=-	1046		-	- (š		1 5
CASE(S)	section. Ply to ply conr	nections have been		(F), 14=-	1046 (F)						-	·	- 1 - S
provided t	o distribute only loads	noted as (F) or (B),									- 1	N. SNOW	FRIAN
unless oth	nerwise indicated.										1	SUCIN	1 15 15
3) Unbalance	ed roof live loads have	been considered for	•								1	CAR	11 BEIN
this desigi	n.											1, 7. 6	L'UNIT
													True

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 119 Ducks Landing	
J0325-1587	D1	Common Supported Gable	1	1	Job Reference (optional)	173830736

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 29 11:18:55 ID:btRAI72F7f7VJzclHqi7k7zgvFp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale	_ ^	1 • 4	55
Scale	_	1.4	0.0

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/	TPI2014	CSI TC BC WB Matrix-R	0.16 0.08 0.37	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 79 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 10=11-7- 13=11-7- 16=11-7- Max Horiz 16=-200 Max Uplift 10=-113 12=-124 15=-215 Max Grav 10=187 (12=195 (14=194 (16=198 (eathing directly applied compt end verticals. / applied or 6-0-0 oc 8, 11=11-7-8, 12=11- 8, 14=11-7-8, 15=11- 8 (LC 10) (LC 9), 11=-210 (LC 1 (LC 12), 16=-126 (LC (LC 12), 16=-126 (LC LC 19), 11=225 (LC 2 LC 20), 13=290 (LC 1 LC 19), 15=231 (LC 1 LC 20)	2) d or 7-8, 7-8, 4) 5) (3), (3), (3), (3), (3), (3), (3), (3)	Wind: ASCE Vasd=103mp Cat. II; Exp C zone and C-C (2N) 3-9-12 t Exterior(2N) and forces & DOL=1.60 pl Truss design only. For stu see Standard or consult qu All plates are Gable requirt Truss to be fi braced again Gable studs : This truss ha on the bottom	7-16; Vult=130mp bh; TCDL=6.0psf; 2; Enclosed; MWF C Corner(3E) -0-11 o 5-9-12, Corner(3 10-2-9 to 12-6-0 z MWFRS for react ate grip DOL=1.60 ed for wind loads ds exposed to win d Industry Gable E alified building der 2x4 MT20 unless es continuous bott ully sheathed from st lateral moveme spaced at 2-0-0 or s been designed id nonconcurrent v has been designed n chord in all area	ch (3-sec BCDL=6 RS (env 0-8 to 3- 3R) 5-9- cone;C-CC ions sho) in the pla do (norm ind Deta signer as o therwi o m chor o m chor o m chor o ne fac otherwi cor a 10.0 with any I for a liv s where	ond gust) .0psf; h=15ft; elope) exterio 9-12, Exterior 12 to 10-2-9, for members wn; Lumber ane of the trus al to the face) ils as applicat s per ANSI/TF se indicated. d bearing. e or securely iagonal web). 0 psf bottom other live load e load of 40.0 a rectangle	r ss , le, I 1. ds. psf					
FORCES	(lb) - Maximum Con Tension	npression/Maximum	10)	chord and an All bearings a	y other members. are assumed to be	e SP No.	1 crushing						
TOP CHORD	2-16=-156/138, 1-2: 3-4=-108/259, 4-5= 6-7=-106/253, 7-8= 8-10=-147/142	=0/43, 2-3=-144/150, -193/431, 5-6=-193/43 -130/137, 8-9=0/43,	^{32,} 11)	capacity of 5 Provide mech bearing plate	65 psi. hanical connection capable of withst b uplift at joint 10	n (by oth anding 1 124 lb i	ers) of truss to 26 lb uplift at uplift at joint 1	2			AN	ORTH CA	B9LILLE
BOT CHORD	15-16=-93/139, 14- 13-14=-93/139, 12- 11-12=-93/139, 10-	15=-93/139, 13=-93/139, 11=-93/139		215 lb uplift a uplift at joint	at joint 15, 124 lb u 11.	uplift at jo	bint 12 and 21	0 lb		9	E .	1 Ja	Chin.
WEBS	5-13=-493/153, 4-1- 3-15=-171/287, 6-1: 7-11=-172/286	4=-163/242, 2=-163/242,	LOA	AD CASE(S)	Standard					11111		SEA 0363	L 22
NOTES											e e	N	- 1 E

 Unbalanced roof live loads have been considered for this design.

A. GILD.... May 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 119 Ducks Landing	
J0325-1587	H1	FLAT GIRDER	1	2	Job Reference (optional)	173830737

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 29 11:18:55 ID:btRAI72F7f7VJzclHqi7k7zgvFp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:49.6

Plate Offsets (X, Y):	[5:Edge,0-2-0]	[6:0-6-12,0-2-8],	[7:0-8-0,0-1-8],	[9:0-3-8,0-7-4]	, [10:0-6-8,0-2-8]
-----------------------	----------------	-------------------	------------------	-----------------	--------------------

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2021	I/TPI2014	CSI TC BC WB Matrix-S	0.45 0.31 0.97	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.07 -0.15 0.02 0.03	(loc) 7-9 7-9 6 7-9	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 353 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x6 SP No.1 BOT CHORD 2x10 SP 2400F 2.0E WEBS 2x4 SP No.2 *Except* 10-1,5-6:2x6 SP No.1 OTHERS 2x6 SPF No.2(flat) BRACING TOP CHORD TOP CHORD 2-0-0 oc purlins (6-0-0 max.): 1-5, except end verticals. BOT CHORD 2-0-0 oc purlins (6-0-0 max.): 1-5, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS T-Brace: 2x6 SPF No.2 - 2-10, 4-6 Fasten (2X) T and I braces to narrow edge of web with 10d (0.131*x3") nails, 6in o.c., with 3in minimum end distance. Brace must cover 90% of web length. REACTIONS (size) 6=0-3-8, 10=-0-3-8 Max Grav 6=9773 (LC 15), 10=9211 (LC 15) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-10=-865/305, 1-2=-186/8, 2-4=-7321/0, 4-5=-198/7, 5-6=-1052/362 BOT CHORD 9-10=0/7321, 7-9=0/7264, 6-7=0/7264 WEBS 2-10=-9913/0, 2-9=0/4331, 4-9=0/85, 4-7=0/4221, 4-6=-9817/0			3) 0.1 4) 5) 1 6) 9e 7) 8) 15) 9) 10	Wind: ASCE Vasd=103mp Cat. II; Exp C DOL=1.60 pil Provide adeq This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an All bearings a capacity of 56 Bearing at joi using ANSI/T designer sho Graphical pul or the orienta bottom chord) Hanger(s) or provided suff down and 13 at 1-11-4, 79 down and 22	7-16; Vult=130mp h; TCDL=6.0psf; E ; Enclosed; MWFf ate grip DOL=1.60 uate drainage to p s been designed fr d nonconcurrent v as been designed fr d nonconcurrent v s been designed f d nonconcurrent v s been d nonconcurrent v s been	h (3-sec BCDL=6 RS (env orevent v or a 10.0 vith any for a 10.0 vith any for a 10.0 vith any for a 10.0 vith any for a 10.0 s where I fit betw SP No. ers para of beari does no long the device(s oncentra 97 lb do 20 lb up a 797 lb do	ond gust) .0psf; h=15ft; elope); Lumbor vater ponding 0 psf bottom other live loace e load of 30.0 a rectangle recen the botto 1 crushing lel to grain va a. Building ng surface. ot depict the si top and/or) shall be ted load(s) 47 wm and 289 li t 3-11-4, 797 own and 284	er J. Js. psf m lue ize 7 lb b up b lb b lb so 7	1) De Pla Un Co	ad + Ro tte Incre iform Lc Vert: 1-5 ncentrat Vert: 1=- 12=-686 17=-120 20=-120 23=-120	of Live ase=1. ads (lk i=-60, i red Los 16, 3= 3 (B), 3 (B), 3 (B), 3 (B)	(balanced): Lun .15 ./ft) 6-10=-20 adds (lb) 686, 2=-686, 9= 586, 14=-686, 15 18=-1203 (B), 19 21=-1203 (B), 22	 iber Increase=1.15, i-1203 (B), 11=-686, i-686, 16=-686, i-1203 (B), i-1203 (B),
 NOTES 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x10 - 2 rows staggered at 0-7-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 			۸D 11 LC	lb down and 2 289 lb up at 15-11-4 on to lb down at 3-1 down at 7-11 at 11-11-4, a down at 15-1 of such conne others.) Warning: Add truss system always requir	289 lb up at 11-11 13-11-4, and 797 l p chord, and 1455 11-4, 1455 lb down -4, 1455 lb down at 1455 lb down at 1-4 on bottom chu ection device(s) is litional permanent (not part of this co ed. Standard	-4, and b down 5 lb dow rn at 5 at 9-11- at 13-11 ord. The the resp and sta	797 lb down a and 289 lb up n at 1-11-4, 1 11-4, 1455 lb do -4, and 1455 b do e design/selec ponsibility of bility bracing f th design) is	and and 455 wn Ib ttion		A DITTURE		SEA 0363	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

RENCO

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 119 Ducks Landing	
J0325-1587	M1	Jack-Open Supported Gable	1	1	Job Reference (optional)	173830738

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 29 11:18:55 ID:btRAI72F7f7VJzclHqi7k7zgvFp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:101.1 Plate Offsets (X, Y): [2:0-1-5,0-0-11]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP				
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.09	Vert(LL)	0.00	15	>999	360	MT20	244/190				
TCDL		10.0	Lumber DOL	1.15		BC	0.04	Vert(CT)	0.00	15	>999	240						
BCLL		0.0*	Rep Stress Incr	YES		WB	0.09	Horz(CT)	-0.01	27	n/a	n/a						
BCDL		10.0	Code	IRC20	21/TPI2014	Matrix-R		Wind(LL)	0.00	15	>999	240	Weight: 174 lb	FT = 20%				
-												-						
LUMBER				E	BOT CHORD	2-25=-35/26, 24-2	5=-17/19	, 23-24=-17/	18,	9) Pr	ovide me	chanic	al connection (by	others) of truss to				
TOP CHORD	2x6 SP No	o.1				22-23=-17/19, 21-	22=-17/1	9, 20-21=-17	7/19,	be	aring plat	te capa	able of withstandi	ng 52 lb uplift at joint				
BOT CHORD	2x6 SP No	0.1				19-20=-17/19, 17-	19=-18/1	8, 16-17=-16	5/20,	16	, 66 lb up	lift at j	oint 17, 62 lb upli	It at joint 19, 62 lb				
WEBS	2x4 SP No	0.2				15-16=-18/7			uplift at joint 20, 63 lb uplift at joint 21, 62 lb uplift at joint									
OTHERS	2x4 SP No	0.2		V	VEBS	13-16=-133/132, 12-17=-141/150,					22, 66 lb uplift at joint 23, 42 lb uplift at joint 24, 344 lb							
SLIDER	Left 2x4 S	SP No.2 1	-7-3			11-19=-137/144, 1	0-20=-1	37/144,		uplift at joint 25, 244 lb uplift at joint 2 and 24 lb uplift at								
BRACING						9-21=-13//145, 7-	22=-13//	145,			1t 27.							
TOP CHORD	Structural	wood shea	athing directly applie	d or		6-23=-137/146, 5-	24=-137/	142,		10) Se	e Standa	ra ina	ustry Piggyback	russ Connection				
	6-0-0 oc p	ourlins, exc	cept end verticals.			4-25=-305/524, 14	-27=-48/	45		De	tall for C	onneci	tion to base truss	as applicable, or				
BOT CHORD	Rigid ceili	ng directly	applied or 10-0-0 oc	. r	IOTES						isuit qua		uliaing designer.					
	bracing,	Except:		1) Wind: ASCE	7-16; Vult=130mp	oh (3-sec	ond gust)		LOAD	CASE(S) Sta	ndard					
	6-0-0 oc b	oracing: 17-	-19,15-16.		Vasd=103m	ph; TCDL=6.0psf;	BCDL=6	.0psf; h=15ft	;									
REACTIONS	(size)	2=19-0-0,	16=19-0-0, 17=19-0	-0,	Cat. II; Exp	C; Enclosed; MWF	RS (env	elope) and C	-C									
		19=19-0-0	, 20=19-0-0, 21=19-	0-0,	Corner(3E)	-0-9-0 to 3-7-8, Ex	terior(2N) 3-7-8 to 19-	2-4									
		22=19-0-0	, 23=19-0-0, 24=19-	0-0,	zone;C-C for members and forces & MWFRS for													
		25=19-0-0	, 27=0-3-0		DOI = 1.60													
	Max Horiz	2=541 (LC	C 12)		DUL=1.60	and for wind loods	ام ماد ما											
	Max Uplift	2=-244 (L0	C 10), 16=-52 (LC 12	2), 4) Truss design	ied for wind loads	In the pla	ane of the tru	SS \									
		17=-66 (L0	C 12), 19=-62 (LC 12	2),	Only. For St	d Industry Cable F	Id (II0IIII), blo									
		20=-62 (L0	C 12), 21=-63 (LC 12	2),	or consult a	u industry Gable E	signer ag	ns as applica	DIE, DI 1									
		22=-62 (L0	C 12), 23=-66 (LC 12	2),) All plates an		otherwi	s per Anoi/ II										
		24=-42 (L0	C 12), 25=-344 (LC 1	12),) Cable stude	e 2A4 M120 unless		se muicaleu.						11				
		27=-24 (L0	C 12)	F) This trues h	spaceu al 2-0-0 0	6. For a 10 () nef bottom					1111 00	in the				
	Max Grav	2=666 (LC	(LC 19), 16=180 (LC 19	<i>i</i>), ~	chord live lo	ad nonconcurrent	with any	other live loa	de				I'TH UA	ROY				
		17=176 (L	.C 19), 19=178 (LC 1	19), Io) F	 This truss 	has been designed	for a liv	e load of 30 (nao. Nosf				A	in the				
		20=177 (L	C 19), 21=177 (LC 1	19), 9	on the botto	m chord in all area	s where	a rectangle	0001			~	CT. FEOD	Oit in the				
		22=177 (L	C 19), 23=177 (LC 1	19),	3-06-00 tall	by 2-00-00 wide w	ill fit betw	een the bott	om			12	11	Thin				
		24=176 (L	.C 19), 25=240 (LC 1	10),	chord and a	ny other members.												
		27=47 (LC		7) Bearings are	assumed to be: J	oint 2 SF	PNo.1 crushi	na		-		SEA	1 1 2				
FORCES	(Ib) - Max	imum Com	pression/Maximum		capacity of §	565 psi, Joint 27 SI	P No.2 ci	rushing capa	city		=	:	JLA	<u>-</u> : =				
		4 4070/	AA A E 000/400		of 565 psi.	. /		0 1					0363	22 ; =				
TOP CHORD	1-2=0/7, 2	442 6 7 6	041, 4-0=-890/403, 202/257 7 0 574/2	<u>م</u> 8) Bearing at jo	oint(s) 16, 17, 27 c	onsiders	parallel to gr	ain					1 - E				
	0.10- 466	413, 0-7 = 0	1_ 259/101	02,	value using	ANSI/TPI 1 angle	to grain f	ormula. Buile	ding			2	A	1 S - S -				
	11_122	50/136 12-	13–-330/181, 13–-130/70		designer sh	ould verify capacity	/ of beari	ng surface.				21	S. SNOW	-ERIX S				
	13_14=_43	2/10 15.26	-0/20 14-26-0/20									1	S, GIN	EF. AN				
	10-14-42	L/10, 10-20	-0/20, 14-20-0/20									1	CA A	BEIN				
													11, A. G	11-111				
													11111	UU.				

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

RENCO A MITEK Affiliate

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 119 Ducks Landing	
J0325-1587	M2	Jack-Closed	8	1	Job Reference (optional)	173830739

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 29 11:18:56 ID:btRAI72F7f7VJzclHqi7k7zgvFp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:93.3

Plate Offsets (X, Y): [2:0-1-13,0-2-7]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-S	0.53 0.34 0.59	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.06 -0.14 -0.06 0.04	(loc) 8-10 8-10 12 2-10	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 156 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS	2x6 SP No.1 2x6 SP No.1 2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2 4 Structural wood shea 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 2=0-3-8, 1 Max Horiz 2=541 (LC Max Uplift 12=-310 (Max Grav 2=830 (LC (Ib) - Maximum Com Tension 1-2=0/7, 2-4=-1696// 6-7=-198/29, 8-11=- 2-10=-766/1530, 8-1 4-10=-268/264, 6-10 6-8=-802/370, 7-12=	4-4-4 athing directly applie cept end verticals. applied or 8-11-3 oc 12=0-3-0 C 12) LC 12) C 1), 12=832 (LC 19) pression/Maximum 292, 4-6=-1364/203, 247/714, 7-11=-247/ 0=-443/937 =-108/672, 851/354	4) 5) d or : LC	Bearings are capacity of 56 of 565 psi. Bearing at joi using ANSI/T designer sho Provide mecl bearing plate joint 12. PAD CASE(S)	assumed to be: Jo 55 psi, Joint 12 SP nt(s) 2, 12 conside PI 1 angle to grain uld verify capacity hanical connection capable of withsta Standard	aint 2 SF No.2 cr Prs paral formula of beari (by othe inding 3	P No.1 crushir rushing capac a. Building ng surface. ers) of truss to 10 lb uplift at	ng ity lue						
 Wind: ASC Vasd=103i Cat. II; Exp Exterior(2E 19-2-4 zon reactions s DOL=1.60 This truss chord live * This truss on the bott 3-06-00 tai chord and 	E 7-16; Vult=130mph mph; TCDL=6.0psf; B(o C; Enclosed; MWFR: E) -0-9-0 to 3-7-13, Intr le;C-C for members ar shown; Lumber DOL=1 has been designed for load nonconcurrent wi s has been designed for load nonconcurrent wi s has been designed fi tom chord in all areas of Il by 2-00-00 wide will any other members.	(3-second gust) CDL=6.0psf; h=15ft; S (envelope) and C-1 erior (1) 3-7-13 to nd forces & MWFRS 1.60 plate grip r a 10.0 psf bottom th any other live load or a live load of 30.0 where a rectangle fit between the botto	C for Is. psf m							Mannan	The second secon	SEAL OR SEAL OBSING		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 119 Ducks Landing	
J0325-1587	M3	MONOPITCH	3	1	Job Reference (optional)	173830740

Scale = 1:77.5

Plate Offse	ts (X,	Y):	[3:0-3-0,Edge]	

	, .										-		
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.95	Vert(LL)	-0.32	2-8	>487	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.61	Vert(CT)	-0.51	2-8	>305	240	M18AHS	186/179	
BCLL	0.0*	Rep Stress Incr	NO	WB	0.18	Horz(CT)	0.00	7	n/a	n/a			
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S		Wind(LL)	0.29	2-8	>538	240	Weight: 117 lb	FT = 20%	
LUMBER			6) Provide me	chanical connec	tion (by oth	ers) of truss	to						

LOWIDER	
TOP CHORD	2x6 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x4 SP No.2 *Except* 6-7:2x6 SP No.1
WEDGE	Left: 2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	6-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
WEBS	1 Row at midpt 6-7
REACTIONS	(size) 2=0-3-8, 7=0-3-8
	Max Horiz 2=374 (LC 12)
	Max Uplift 7=-218 (LC 12)
	Max Grav 2=706 (LC 19), 7=847 (LC 19)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/7, 2-4=-510/78, 4-5=-184/29,
	5-6=-308/473, 7-10=-417/276, 6-10=-413/274
BOT CHORD	2-8=-111/242, 7-8=-111/242
WEBS	4-8=-123/269, 5-10=-532/241
NOTES	
1) Wind: AS	CE 7-16: Vult=130mph (3-second gust)
Vacd-102	mph: TCDI -6 Opef: BCDI -6 Opef: h-15ft:

- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15f Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-8-12 to 3-8-1, Interior (1) 3-8-1 to 13-0-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- All plates are MT20 plates unless otherwise indicated. 2)
- This truss has been designed for a 10.0 psf bottom 3)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 30.0psf 4) on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) All bearings are assumed to be SP No.1 crushing
- capacity of 565 psi.

Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 218 lb uplift at

joint 7.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 119 Ducks Landing	
J0325-1587	M4	MONOPITCH	5	1	Job Reference (optional)	173830741

Scale = 1:79

Plate Offsets (X, Y): [2:0-1-0,0-3-0], [9:0-3-9,0-0-13], [11:0-3-10,0-0-11], [12:0-3-0,0-1-4]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.88	Vert(LL)	-0.27	10	>572	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.52	Vert(CT)	-0.46	10	>340	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.17	Horz(CT)	0.11	8	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S		Wind(LL)	0.28	10	>560	240	Weight: 128 lb	FT = 20%

LUMBER TOP CHORD 2x6 SP No.1

BOT CHORD	2x8 SP N	0.1 *Except* 2-8:2x6 SP No.1
WEBS	2x4 SP N	0.2 *Except* 6-8:2x6 SP No.1
BRACING		
TOP CHORD	Structura	wood sheathing directly applied or
	6-0-0 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
JOINTS	1 Brace a	it Jt(s): 13
REACTIONS	(size)	2=0-3-8, 8=0-3-8
	Max Horiz	2=384 (LC 12)
	Max Uplift	8=-233 (LC 12)
	Max Grav	2=661 (LC 19), 8=849 (LC 19)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	·
TOP CHORD	1-2=0/11,	2-4=-543/50, 4-5=-207/25,
	5-6=-341/	443, 6-7=-20/0, 8-13=-428/330,
	6-13=-424	4/329
BOT CHORD	2-10=-123	3/252, 8-10=-123/252

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 233 lb uplift at

joint 8.

LOAD CASE(S) Standard

WEBS NOTES

 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-8-12 to 3-8-1, Interior (1) 3-8-1 to 13-7-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

4-10=-85/239, 5-13=-516/245

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

 All bearings are assumed to be SP No.1 crushing capacity of 565 psi.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 119 Ducks Landing	
J0325-1587	M4A	MONOPITCH	1	1	Job Reference (optional)	173830742

Scale = 1:79

Loading TCLL (roof) TCDL BCLL	(psf) 20.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL * Rep Stress Incr	2-3-0 1.15 1.15 NO	CSI TC 0.9 BC 0.6 WB 0.1	B DEFL Vert(LL) Vert(CT) Horz(CT	in -0.30 -0.51) 0.12	(loc) 10 10 8	l/defl >509 >303 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S	Wind(LL) 0.31	10	>499	240	Weight: 129 lb	FT = 20%
LUMBER	,		LOAD CASE(S)	Standard		·					
TOP CHORD	2x6 SP No.1										
BOT CHORD	2x8 SP No.1 *Ex	cept* 2-8:2x6 SP No.1									
WEBS	2X4 5P NO.2 EX	ept 6-8:2x6 SP NO.1									
TOP CHORD	Structural wood	heathing directly appli	ed or								
BOT CHORD	6-0-0 oc purlins, Rigid ceiling dire bracing.	except end verticals. otly applied or 10-0-0 o	C								
JOINTS	1 Brace at Jt(s):	13									
REACTIONS	(lb/size) 2=652	0-3-8, 8=614/0-3-8									
	Max Horiz 2=436	(LC 12)									
	Max Opint 8=-262 Max Grav 2-754	(IC 12) (IC 19) 8-954 (IC 19	2)								
FORCES	(lb) - Max Comp	/Max Ten - All forces	250								
I ONOLO	(lb) or less excep	t when shown.	200								
TOP CHORD	2-3=-611/39, 3-4	-387/57, 5-6=-382/49	8,								
	8-13=-481/371, 6	-13=-477/369									
BOICHORD	2-11=-135/252, 1 9-10=-138/283	0-11=-138/283,									
WEBS	4-10=-96/269, 5-	13=-579/275									
NOTES											111.
1) Wind: ASC	CE 7-16; Vult=130n	ph (3-second gust)								WH CA	Pall
Vasd=103	Smph; TCDL=6.0psf	; BCDL=6.0psf; h=15ft	;						N	R	L'in
Cat. II; EX	p C; Enclosed; IVIV E) -0-10-8 to 3-6-5	FRS (envelope) and C Interior (1) 3-6-5 to 13	-C -7-0						1	O' FESS	Dir Ville
zone;C-C	for members and for	rces & MWFRS for	10					4	Ø	11 /	Contraction of the second seco
reactions	shown; Lumber DO	L=1.60 plate grip						-	0	:4-	1 1 2
DOL=1.60)							=		SEA	L <u>1</u> 2
2) This truss	has been designed	for a 10.0 pst bottom	do					=	:	0363	22 : =
 3) * This trus 	s has been designed	d for a live load of 30	lus. Onsf					Ξ		0505	
on the bot	tom chord in all are	as where a rectangle	opoi					-	-	N	1 3
3-06-00 ta	all by 2-00-00 wide v	vill fit between the bott	om						20	N. SNOW	ER. X S
chord and	any other member	s, with BCDL = 10.0ps	f.						14	A. GIN	ER N
+) Provide m	ate capable of with	standing 262 lb unlift at	t							A G	ILBUIN
joint 8.	and supulate of With		-							"HILLING	11111
-										Mav	30,2025
											,

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 119 Ducks Landing	
J0325-1587	M5	MONOPITCH	1	1	Job Reference (optional)	173830743

Scale = 1:77.5

Plate Offsets (X, Y): [3:0-3-0,Edge]

				-	-								
Loading	(psf)	Spacing	2-3-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.66	Vert(LL)	-0.33	2-8	>473	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.65	Vert(CT)	-0.52	2-8	>296	240	M18AHS	186/179	
BCLL	0.0*	Rep Stress Incr	NO	WB	0.21	Horz(CT)	0.00	7	n/a	n/a			
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S		Wind(LL)	0.30	2-8	>521	240	Weight: 117 lb	FT = 20%	

LUMBER	
TOP CHORD	2x6 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x4 SP No.2 *Except* 6-7:2x6 SP 2400F 2.0E
WEDGE	Left: 2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	6-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
WEBS	1 Row at midpt 6-7
REACTIONS	(size) 2=0-3-8, 7=0-3-8
	Max Horiz 2=421 (LC 12)
	Max Uplift 7=-245 (LC 12)
	Max Grav 2=795 (LC 19), 7=953 (LC 19)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/9, 2-4=-588/71, 4-5=-212/26,
	5-6=-360/561, 7-10=-478/315, 6-10=-474/314
BOT CHORD	2-8=-134/291, 7-8=-134/291
WEBS	4-8=-122/316, 5-10=-648/295
NOTES	

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-8-14 to 3-7-14, Interior (1) 3-7-14 to 13-0-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) All plates are MT20 plates unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) All bearings are assumed to be SP No.1 crushing capacity of 565 psi.

6) Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 245 lb uplift at

joint 7.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

ERENCO A MITek Affiliate 818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 119 Ducks Landing	
J0325-1587	M6	MONOPITCH SUPPORTED	1	1	Job Reference (optional)	173830744

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 29 11:18:56 ID:btRAI72F7f7VJzclHqi7k7zgvFp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:70.9

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.05	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.02	Vert(CT)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.17	Horz(CT)	-0.01	11	n/a	n/a			
BCDL	10.0	Code	IRC20	21/TPI2014	Matrix-S							Weight: 139 lb	FT = 20%	
LUMBER				WEBS	9-13=-139/172,	8-14=-149	/186,		12) Wa	rning: A	ddition	al permanent and	I stability braci	ng fo
TOP CHORD	2x6 SP No.1			-	7-15=-143/178,	5-16=-141	/173,		trus	s syster	n (not	part of this compo	onent design) i	S
BOT CHORD	2x6 SP No.1				4-17=-151/226,	3-18=-219	/394		alwa	ays requ	uired.			
WEBS	2x4 SP No.2			NOTES					LOAD	CASE(S) Sta	andard		
OTHERS	2x4 SP No.2			 Wind: ASCE 	7-16; Vult=130	mph (3-seo	cond gust)							
WEDGE	Loft: 2v4 SP No 2			Vasd=103m	ph; TCDL=6.0p	sf; BCDL=6	6.0psf; h=15ft	;						
DRAGING	Len. 234 SF 110.2			Cal. II; Exp C			elope) exterior							
	Structural wood abo	othing directly opplied	or	3-8-1 to 13-3	C COMP(SE) = 0	7-0-12 10 3- r members	and forces &	2IN)						
TOP CHORD		cent end verticals	or	MWFRS for	reactions show	n I umber l	DOI = 1.60 n	ate						
BOT CHORD	Rigid ceiling directly	v applied or 10-0-0 oc		arip DOL=1.	60	, _0	201							
Bot offorte	bracing.			2) Truss design	ned for wind loa	ds in the pl	ane of the tru	ISS						
WEBS	T-Brace:	2x4 SPF No.2 - 10-12	2,	only. For stu	uds exposed to	wind (norm	al to the face	e),						
		9-13		see Standar	d Industry Gable	e End Deta	ils as applica	ble,						
	Fasten (2X) T and	I braces to narrow edg	е	or consult qu	alified building	designer a	s per ANSI/T	PI 1.						
	of web with 10d (0.1	131"x3") nails, 6in		 All plates are 	e 2x4 MT20 unle	ess otherwi	se indicated.							
	o.c., with 3in minimu	im end distance.		 Gable requir Cable stude 	es continuous t	Dottom choi	d bearing.							
	Brace must cover	90% of web length.	•	6) This trues ha	spaceu al 2-0-0	d for a 10	0 pef bottom							
REACTIONS	(SIZE) 2=13-3-8	, 11=13-3-8, 12=13-3-8	8,	chord live lo	ad nonconcurre	nt with any	other live los	aha						
	10=10-0-0	0, 14=13-3-0, 15=13-3 8 17-13-3-8 18-13-3	-o, -8	7) * This truss h	has been design	ned for a liv	e load of 30.	Opsf						
	Max Horiz 2=546 (I (C 12)	.0	on the bottor	m chord in all ar	reas where	a rectangle							
	Max Uplift 2=-165 (L	_C 10). 11=-38 (LC 12)).	3-06-00 tall b	oy 2-00-00 wide	will fit betw	veen the bott	om						
	12=-21 (L	_C 12), 13=-104 (LC 12	2),	chord and ar	ny other membe	ers.						IIIII	(11)	
	14=-117	(LC 12), 15=-110 (LC 1	12),	B) All bearings	are assumed to	be SP No.	1 crushing					WHILL CA	Dall	
	16=-108 ((LC 12), 17=-122 (LC 1	12),	capacity of 5	65 psi.	lara naralla	l to groin volu				1	alti	19/14	
	18=-279 ((LC 12)		using ANSI/	TPI 1 angle to g	iers paralle	a Building	ie			15.	O' EESS	i and	1
	Max Grav 2=572 (L0	C 12), 11=39 (LC 19), C 10), 12-180 (LC 10)		designer sho	ould verify capa	city of bear	ing surface				25		N. 7	-
	12=44 (L) 14-189 (I	LC 19), 13=180 (LC 19)	, a)	10) Provide mec	hanical connec	tion (by oth	ers) of truss	to				:2		-
	16=181 (1	LC 19), 13=103 (LC 19 LC 19) 17=191 (LC 19	9), 3)	bearing plate	e capable of wit	hstanding 3	38 lb uplift at j	joint		-		CEA	n in	
	18=201 (I	LC 19)	-,,	11, 21 lb upl	ift at joint 12, 16	65 lb uplift a	at joint 2, 104	lb		=	:	SEA	L :	
FORCES	(lb) - Maximum Corr	npression/Maximum		uplift at joint	13, 117 lb uplift	t at joint 14	, 110 lb uplift	at		=		0363	22 :	
	Tension			joint 15, 108	Ib uplift at joint	16, 122 lb	uplift at joint	17		-				-
TOP CHORD	1-2=0/7, 2-3=-1034/	/492, 3-4=-743/364,		anu ∠≀9 lD u 11) See Standar	plint at joint 18. d Industry Pigg	vback True	e Connection				-	·	a .:	-
	4-5=-585/293, 5-7=-	-459/232, 7-8=-330/17	0,	Detail for Co	nnection to has	e truss as	applicable or				2.0	S. SNGINI	EFT	5
	8-9=-196/103, 9-10=	=-71/37, 10-11=-34/24,	,	consult quali	fied building de	signer.					1	N/O	T. LAN	S
	10-12=-30/37	0 40 47 0/0 45 40 0	N/0	serieuri quui								A G	ILBUIN	
BOT CHORD	2-18=-1/0, 17-18=0/	/U, 16-17=0/0, 15-16=0	<i>)</i> /U,									11111	in the second	
	14-13=0/0, 13-14=0	12-13=0/0										- OTH	ChC - Providence	

May 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 119 Ducks Landing	
J0325-1587	M7	MONOPITCH	2	1	Job Reference (optional)	173830745

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 29 11:18:56

Page: 1

May 30,2025

818 Soundside Road Edenton, NC 27932

Comtech, Inc, Fayetteville, NC - 28314,

Scale = 1:29.8

Plate Offsets (X, Y): [4:Edge,0-2-0]

Loading TCLL (roof) TCDL BCLL BCDL	(psi 20.0 10.0 0.1 10.0) S) P) L)* R) C	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI201	4	CSI TC BC WB Matrix-P	0.64 0.29 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.03 -0.05 0.00 0.09	(loc) 2-4 2-4 4 2-4	l/defl >999 >999 n/a >897	L/d 360 240 n/a 240	PLATES MT20 Weight: 31 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x6 SP No.1 2x4 SP No.2 Structural wood 6-0-0 oc purlins, Rigid ceiling dire bracing. (size) 2=0-3 Max Horiz 2=86 Max Uplift 2=-12	sheath excep ctly ap 8, 4=0 LC 8) 9 (LC 8)	hing directly applied ot end verticals. splied or 10-0-0 oc)-1-8 8), 4=-114 (LC 8)	 6) Provide bearing 7) Provide bearing joint 2 a or LOAD CAS 	e mech plate mech plate and 11 SE(S)	nanical connection at joint(s) 4. nanical connection capable of withsta 4 lb uplift at joint 4 Standard	(by oth (by oth nding 1	ers) of truss to ers) of truss to 29 lb uplift at	0					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum (Tension 1-2=0/9, 2-3=-11 2-4=-3/2	(LC 1) Compre), 4=262 (LC T) ession/Maximum 3-4=-195/262											
 Wind: ASC Vasd=103 Cat. II; Exp Exterior(2I zone; porc MWFRS fc grip DOL= This truss chord live * This truss on the bott 3 * This truss on the bott 3-06-00 ta chord and Bearings a capacity of 565 psi. Bearing ANS designer s 	CE 7-16; Vult=130r imph; TCDL=6.0ps p C; Enclosed; MW E) -0-10-8 to 3-6-5 ch left exposed; C-C or reactions shown e1.60 has been designer load nonconcurrer s has been design tom chord in all are any other member are assumed to be f 565 psi, Joint 2 S t joint(s) 4 consider SI/TPI 1 angle to gr should verify capac	nph (3- ;; BCD FRS ((Interic for me ; Lumb I for a t with a ed for a eas wh will fit b s. Joint 4 P No.1 s paral ain forr ty of b	-second gust) IL=6.0psf; h=15ft; envelope) and C-C or (1) 3-6-5 to 6-9-1 embers and forces per DOL=1.60 plate 10.0 psf bottom any other live loads a live load of 30.0ps ere a rectangle between the bottom 4 SP No.2 crushing I crushing capacity Ilel to grain value mula. Building pearing surface.	5 & sf							A strutter way		SEA O3632	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 119 Ducks Landing	
J0325-1587	M8	GABLE	5	1	Job Reference (optional)	173830746

, -2

2-6-11

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 29 11:18:56 ID:btRAI72F7f7VJzclHqi7k7zgvFp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 6-0-0 -0-10-8 5-10-8 0-1-8 0-10-8 5-10-8

Scale = 1:28.5

Plate Offsets (X, Y): [4:Edge,0-2-0]

				:								_	
Loading	(ps	sf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20	.0	Plate Grip DOL	1.15		0.45	Vert(LL)	-0.06	2-4	>999	360	M120	244/190
TCDL	10	.0	Lumber DOL	1.15	BC	0.49	Vert(CT)	-0.11	2-4	>615	240		
BCLL	0	.0."	Rep Stress Incr	YES	VVB	0.00	Horz(CT)	0.00	4	n/a	n/a		FT 000/
BCDL	10	.0	Code	IRC2021/1PI2014	Matrix-P		Wind(LL)	0.18	2-4	>375	240	Weight: 22 lb	FT = 20%
LUMBER				 Provide med 	hanical connection	(by oth	ers) of truss	to					
TOP CHORD	2x4 SP No.1			bearing plate	at joint(s) 4.		,						
BOT CHORD	2x4 SP No.1			Provide med	hanical connection	(by oth	ers) of truss	to					
WEBS	2x4 SP No.2			bearing plate	capable of withsta	nding 1	15 lb uplift a	t joint					
BRACING				2 and 98 lb ι	plift at joint 4.								
TOP CHORD	Structural wood	l shea	thing directly applied	i or LOAD CASE(S)	Standard								
	6-0-0 oc purlins	s, exc	ept end verticals.										
BOT CHORD	Rigid ceiling dir bracing.	ectly	applied or 10-0-0 oc										
REACTIONS	(size) 2=0-3	3-8, 4	=0-1-8										
	Max Horiz 2=74	(LC 8	3)										
	Max Uplift 2=-1	15 (LC	C 8), 4=-98 (LC 8)										
	Max Grav 2=29	95 (LC	1), 4=221 (LC 1)										
FORCES	(lb) - Maximum	Comp	pression/Maximum										
	Tension												
TOP CHORD	1-2=0/5, 2-3=-9	9/51,	3-4=-164/225										
BOT CHORD	2-4=-3/2												
NOTES													
1) Wind: AS	CE 7-16; Vult=130)mph	(3-second gust)										
Vasd=103	Smpn; TCDL=6.0p	SI; BC	DL=6.0pst; n=15tt;	、									
Exterior(2	E) -0-10-8 to 3-6-4	5 Into	rior (1) 3-6-5 to 5-0-1	, 15									1
zone: por	ch left exposed:C-	C for	members and forces	&								WILL CA	Dille
MWFRS f	or reactions show	n; Lur	nber DOL=1.60 plate	9							1	TH UA	ROM
grip DOL=	=1.60	, -									2	ON JESS	in Alle
2) This truss	has been designe	ed for	a 10.0 psf bottom								~~	OFLOG	Nan
chord live	load nonconcurre	ent wit	h any other live loads	δ.						1	Ń		
3) * This trus	s has been desig	ned fo	or a live load of 30.0p	sf						-			
on the bo	ttom chord in all al	reas v	vhere a rectangle	-						=	:	SEA	L : =
3-06-00 la	all by 2-00-00 wide	e Will I	it between the botton	n							- 1	0363	22 E
4) Bearings	are assumed to be	loir	nt 2 SP No 1 crushing	r								. 0505	i E
capacity c	of 565 psi. Joint 4 \$	SP No	0.2 crushing capacity	of						-	1	N	1. 2.
565 psi.			5 - <u>5</u> - 1								- 1	N. ENG	CRIL S
5) Bearing a	t joint(s) 4 conside	ers pa	rallel to grain value								31	S, GIN	E. A.N
using ANS	SI/TPI 1 angle to g	grain f	ormula. Building								1	CA O	II BEIN
designer	should verify capa	city of	bearing surface.									11, A. G	1 Linn
												20000	TU

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

May 30,2025

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 119 Ducks Landing	
J0325-1587	M9	Roof Special Structural Gable	1	1	Job Reference (optional)	173830747

Run: 8.63 E Aug 30 2023 Print: 8.630 E Aug 30 2023 MiTek Industries, Inc. Fri May 30 08:34:04 ID:btRAI72F7f7VJzclHqi7k7zgvFp-fK8MCdc7ClU0gF5HTfMbqcKy0fvb6?nxvoSMLQzBXFn

Page: 1

6-0-0

9 6

6-0-0

2x4 II

5 2x6 u

Scale = 1:25.9													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.50	Vert(LL)	0.21	2-6	>320	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.54	Vert(CT)	-0.11	2-6	>643	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.05	Horz(CT)	n/a	-	n/a	n/a			
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S							Weight: 25 lb	FT = 20%	
LUMBER			8) Hanger(s) c	or other connection	on device(s) shall be							

LUMBER		
TOP CHORD	2x4 SP N	o.1
BOT CHORD	2x4 SP N	0.1
WEBS	2x4 SP N	0.2
OTHERS	2x4 SP N	0.2
BRACING		
TOP CHORD	Structural 6-0-0 oc p	l wood sheathing directly applied o ourlins.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(lb/size)	2=295/0-3-8, 5=774/ Mechanical
	Max Horiz	2=106 (LC 8)
	Max Uplift	2=-166 (LC 8), 5=-227 (LC 8)

2-7-3

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 4-5=-116/261

NOTES

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 3-6-5, Interior (1) 3-6-5 to 5-10-4 zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1. Gable studs spaced at 2-0-0 oc. 3)
- 4) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 6)
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 166 lb uplift at joint 2 and 227 lb uplift at joint 5.

- provided sufficient to support concentrated load(s) 551 Ib down and 107 lb up at 5-10-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- In the LOAD CASE(S) section, loads applied to the face 9) of the truss are noted as front (F) or back (B).
- LOAD CASE(S) Standard

or

3x4 =

- Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-4=-60, 2-5=-20
 - Concentrated Loads (lb) Vert: 5=-551 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second way the approximation of design and the property incorporate this design into the overall building design. Bracing indicated is to prevent building of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 119 Ducks Landing	
J0325-1587	P1	GABLE	1	1	Job Reference (optional)	173830748

Run; 8.63 S Sep 26 2024 Print; 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 29 11:18:56 ID:btRAI72F7f7VJzclHqi7k7zgvFp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Gable studs spaced at 2-0-0 oc. 4)

1)

2)

3)

This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

G mm May 30,2025

Job	Truss	Truss Type	Qty	Ply	Lot 119 Ducks Landing	
J0325-1587	P2	COMMON	4	1	Job Reference (optional)	173830749

6-0-0

Comtech, Inc, Fayetteville, NC - 28314,

-0-10-8

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 29 11:18:57 ID:btRAI72F7f7VJzclHqi7k7zgvFp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12-0-0

12-10-8

Scale = 1:27.6

Plate Offsets (X, Y): [2:Edge,0-1-12], [4:Edge,0-1-12]

Loading FCLL (roof) FCDL BCLL	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.49 0.38 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.14 -0.07 -0.02	(loc) 2-6 4-6 4	l/defl >999 >999 n/a	L/d 240 240 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S							Weight: 43 lb	FT = 20%	
UMBER OP CHORD OT CHORD VEBS BRACING	2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 Structural wood she	athing directly appli	 Provide med bearing plate joint 2 and 2 LOAD CASE(S) 	chanical connection e capable of withsta 05 lb uplift at joint 4 Standard	(by oth nding 2	ers) of truss t 05 lb uplift at	io i						
BOT CHORD	6-0-0 oc purlins. Rigid ceiling directly bracing.	applied or 5-2-14 o	c										
REACTIONS	(size) 2=0-3-8, 4 Max Horiz 2=-27 (LC Max Uplift 2=-205 (L Max Grav 2=530 (LC	4=0-3-8 \$ 17) .C 8), 4=-205 (LC 9) C 1), 4=530 (LC 1)											
ORCES	(lb) - Maximum Corr Tension	pression/Maximum											
TOP CHORD	1-2=0/5, 2-3=-809/1 4-5=0/5	320, 3-4=-809/1320	,										
BOT CHORD VEBS	2-6=-1157/700, 4-6= 3-6=-558/281	-1157/700											
NOTES													
 Unbalanc this desig Wind: AS Vasd=103 Cat. II; Ex Exterior(2 Exterior(2 	ed roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Β φ C; Enclosed; MWFR E) -0-10-8 to 3-6-5, Int R) 6-0-0 to 10-4-13, In	(3-second gust) CDL=6.0psf; h=15ft; S (envelope) and C- erior (1) 3-6-5 to 6-C terior (1) 10-4-13 to	r -C)-0,						4	In I	OPTH CA	ROLIN	1
12-10-8 z	one; porch left and righ	t exposed;C-C for	·								CEA		

- Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 4) * This truss has been designed for a live load of 30.0psf

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

5) All bearings are assumed to be SP No.1 crushing capacity of 565 psi.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 119 Ducks Landing	
J0325-1587	VC-1	Valley	1	1	Job Reference (optional)	173830750

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 29 11:18:57 ID:btRAI72F7f7VJzclHqi7k7zgvFp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:50.6

-

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-S	0.17 0.08 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 74 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 Structural wood s 6-0-0 oc purlins. Rigid ceiling direc bracing. (size) 1=15-4 7=15-4 Max Horiz 1=-177 Max Uplift 1=-28 Max Grav 1=83 6=402	heathing directly applie tty applied or 10-0-0 o -8, 5=15-4-8, 6=15-4-8 -8, 8=15-4-8 (LC 8) LC 8), 5=-2 (LC 9), 6= LC 20), 5=-148 (LC 19 (LC 20), 7=212 (LC 22)	5) 6) 7) ed or 8) 3, 9) -185 L(1),	Gable studs This truss ha chord live loa * This truss h on the bottor tall by 0-00 v any other me All bearings capacity of 5 Provide mec bearing plate 1, 2 lb uplift at uplift at joint	spaced at 4-0-0 is been designer ad nonconcurrer nas been design n chord in all are wide will fit betwe mbers. are assumed to 65 psi. hanical connecti e capable of with at joint 5, 184 lb 6. Standard	oc. d for a 10.0 nt with any ed for a liv eas where een the bot be SP No. ion (by oth nstanding 2 uplift at joi) psf bottom other live loa e load of 0.0 a rectangle (tom chord ar 1 crushing ers) of truss 8 lb uplift at nt 8 and 185	ads. psf 0-00 nd to joint Ib					
FORCES	(lb) - Maximum C	(LC 19) ompression/Maximum											
TOP CHORD	1 ension 1-2=-175/141, 2-3 4-5=-137/110	3=-188/155, 3-4=-182/^	148,										
BOT CHORD	1-8=-104/137 7-8	8=-104/137 6-7=-104/	137										

В 5-6=-104/137 WEBS 3-7=-134/7, 2-8=-406/300, 4-6=-414/307

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-4-4 to 4-9-0, Interior (1) 4-9-0 to 7-8-12, Exterior(2R) 7-8-12 to 11-10-8, Interior (1) 11-10-8 to 15-1-5 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietur Information**. Building from the Structure Building Component Advance interpretention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 119 Ducks Landing	
J0325-1587	VC-2	Valley	1	1	Job Reference (optional)	173830751

Run; 8.63 S Sep 26 2024 Print; 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 29 11:18:57 ID:btRAI72F7f7VJzclHqi7k7zgvFp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:46.3

_

FORCES

TOP CHORD

BOT CHORD

this design.

DOL=1.60

WEBS

2)

3)

4)

NOTES

Max Uplift 1=-36 (LC 8), 5=-19 (LC 11),

8=347 (LC 19)

(lb) - Maximum Compression/Maximum

1-8=-79/111, 7-8=-79/111, 6-7=-79/111,

3-7=-138/0, 2-8=-365/272, 4-6=-385/288

1-2=-158/125, 2-3=-168/133, 3-4=-165/128,

Max Grav

Tension

4-5=-128/107

5-6=-79/111

1) Unbalanced roof live loads have been considered for

Wind: ASCE 7-16; Vult=130mph (3-second gust)

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C

Exterior(2E) 0-4-4 to 4-9-0, Interior (1) 4-9-0 to 6-8-12, Exterior(2R) 6-8-12 to 10-10-8, Interior (1) 10-10-8 to

13-1-5 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,

or consult qualified building designer as per ANSI/TPI 1.

Gable requires continuous bottom chord bearing.

6=-168 (LC 13), 8=-163 (LC 12)

1=147 (LC 20), 5=111 (LC 19), 6=361 (LC 20), 7=222 (LC 1),

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.15	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.09	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.10	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2021	/TPI2014	Matrix-S							Weight: 62 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	eathing directly applie	5) 6) 7) ed or c 8) 9)	Gable studs This truss ha chord live loa * This truss l on the botton tall by 0-00 v any other me All bearings capacity of 5 Provide med	spaced at 4-0-0 s been designe ad nonconcurre nas been design n chord in all ar vide will fit betw embers. are assumed to 65 psi. hanical connect) oc. ed for a 10.0 nt with any ned for a liv eas where een the bot be SP No. tion (by oth) psf bottom other live loa e load of 0.0p a rectangle 0 tom chord ar 1 crushing ers) of truss t	ids. osf)-00 nd					
REACTIONS	(size) 1=13-4-8 7=13-4-8 Max Horiz 1=-153 (L	, 5=13-4-8, 6=13-4-8 , 8=13-4-8 _C 10)	, 0)	bearing plate 1, 19 lb uplif uplift at joint	e capable of with t at joint 5, 163	hstanding 3 Ib uplift at jo	6 lb uplift at j bint 8 and 168	oint 8 lb					

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietur Information**. Building from the Structure Building Component Advance interpretention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 119 Ducks Landing			
J0325-1587	VC-3	Valley	1	1	Job Reference (optional)			

Run; 8.63 S Sep 26 2024 Print; 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 29 11:18:57 ID:btRAI72F7f7VJzclHqi7k7zgvFp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11-4-8

3x4 💊

Scale = 1:44.9

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	21/TPI2014	CSI TC BC WB Matrix-S	0.17 0.09 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 51 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No 6-0-0 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav	0.1 0.1 0.2 wood she: urlins. ng directly 1=11-4-8, 7=11-4-8, 1=-129 (L 1=-129 (L 1=-110 (LC 6=-172 (L 1=110 (LC 6=-362 (LC	athing directly applied applied or 10-0-0 oc 5=11-4-8, 6=11-4-8, 8=11-4-8 C 8) 10), 5=-79 (LC 11), C 13), 8=-154 (LC 12) 2 9), 5=108 (LC 13), 2 20), 7=223 (LC 1), 3 (19)	5 6 7 4 or 9 2) L	 Gable studs This truss ha chord live loa * This truss I on the bottoo tall by 0.00 v any other me All bearings capacity of 5 Provide mec bearing plate 79 lb uplif uplift at joint OAD CASE(S) 	spaced at 4-0-0 c spaced at 4-0-0 c as been designed ad nonconcurrent has been designe n chord in all aree wide will fit betwee mebers. are assumed to b 65 psi. hanical connectic c capable of withs t at joint 5, 154 lb 6. Standard	oc. for a 10.0 with any d for a liv as where en the bol pe SP No. on (by oth standing 6 uplift at jo	D psf bottom other live loa e load of 0.0 a rectangle (tom chord ar 1 crushing ers) of truss 5 lb uplift at j bint 8 and 17	ads. psf)-00 nd to joint 2 Ib					

FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-151/119, 2-3=-160/112, 3-4=-157/108, 4-5=-156/140 BOT CHORD 1-8=-56/86, 7-8=-56/86, 6-7=-56/86,

5-6=-56/86 WEBS 3-7=-137/0, 2-8=-355/268, 4-6=-406/308

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-4-4 to 4-9-0, Interior (1) 4-9-0 to 5-8-12, Exterior(2R) 5-8-12 to 9-10-8, Interior (1) 9-10-8 to 11-1-5 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 119 Ducks Landing	
J0325-1587	VC-4	Valley	1	1	Job Reference (optional)	73830753

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 29 11:18:57 ID:btRAI72F7f7VJzclHqi7k7zgvFp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:35.9

Loading TCLL (roof) TCDL BCLL	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.29 0.14 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S							Weight: 38 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=9-4-8, 3 Max Horiz 1=105 (LC Max Uplift 1=-26 (LC Max Grav 1=199 (LC (LC 1)	athing directly applie applied or 10-0-0 oc 3=9-4-8, 4=9-4-8 C 11) C 13), 3=-26 (LC 13) C 1), 3=199 (LC 1), 4	7) * This tru on the bo tall by 0-0 any other 8) All bearin capacity of 9) Provide 9) Provide 1 and 26 LOAD CASE	ss has been desig ttom chord in all a 00 wide will fit betw members. gs are assumed to of 565 psi. nechanical connec late capable of wit lb uplift at joint 3. (S) Standard	ned for a liv reas where veen the bo o be SP No. ction (by oth thstanding 2	e load of 0.0 a rectangle (ttom chord ar 1 crushing ers) of truss 26 lb uplift at j	psf)-00 nd to					
FORCES	(lb) - Maximum Com	pression/Maximum										
TOP CHORD BOT CHORD WEBS	1 ension 1-2=-174/101, 2-3=- 1-4=-27/77, 3-4=-27 2-4=-172/116	164/125 /77										
 NOTES Unbalance this design Wind: ASC Vasd=103 Cat. II; Ex Exterior(2I MWFRS for grip DOL= 	ed roof live loads have CE 7-16; Vult=130mph imph; TCDL=6.0psf; B p C; Enclosed; MWFR E) zone;C-C for memb or reactions shown; Lu 1.60	been considered for (3-second gust) CDL=6.0psf; h=15ft; S (envelope) and C- ers and forces & imber DOL=1.60 plat	r C te						4		WHTH CA	ROUN

- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.
- 4)
- Gable studs spaced at 4-0-0 oc. 5)
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

The manual start Annual Community SEAL 036322 GI mmm May 30,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 119 Ducks Landing				
J0325-1587	VC-5	Valley	1	1	Job Reference (optional)	754			

3-8-12

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 29 11:18:57 ID:btRAI72F7f7VJzclHqi7k7zgvFp-RfC?PsB70Hq3NSgPqnL&w3uITXbGKWrCDoi7J4zJC?f

0		0
	- 1	 × ×
COLORIG	_	

Loading TCLL (roof) TCDL BCLL BCDL	(psf 20.0 10.0 0.0 10.0	Spacing D Plate Grip DOL D Lumber DOL D* Rep Stress Incr D Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-P	0.20 0.09 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 30 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 Structural wood 6-0-0 oc purlins. Rigid ceiling dire bracing. (size) 1=7-4 Max Horiz 1=-81 Max Uplift 1=-29 Max Grav 1=165 (LC 1)	sheathing directly appli ectly applied or 10-0-0 o -8, 3=7-4-8, 4=7-4-8 (LC 8) (LC 13), 3=-29 (LC 13) 5 (LC 1), 3=165 (LC 1),	7) 8) ed or 9) c L(4=211	* This truss h on the bottor tall by 0-00 w any other me All bearings a capacity of 5 Provide mec bearing plate 1 and 29 lb u OAD CASE(S)	has been designe n chord in all are vide will fit betwe mbers. are assumed to I 65 psi. hanical connection capable of withe uplift at joint 3. Standard	ed for a liv as where een the boi be SP No. on (by oth standing 2	e load of 0.0; a rectangle 0 tom chord ar 1 crushing ers) of truss t 9 lb uplift at j	osf I-00 Id io oint					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	(lb) - Maximum (Tension 1-2=-123/60, 2-3 1-4=-23/55, 3-4= 2-4=-127/47 ed roof live loads h.	Compression/Maximum 3=-111/60 -23/55 ave been considered fo	or										

- Wind: AŠCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

SEAL 036322 Mg/NEER May 30,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 119 Ducks Landing				
J0325-1587	VC-6	Valley	1	1	Job Reference (optional)	173830755			

2-8-12

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 29 11:18:57 ID:btRAI72F7f7VJzclHqi7k7zgvFp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x4 🅢

4

2x4 🛛 5-4-8

3x4 💊

Scale = 1:27.8													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-P	0.16 0.04 0.01	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 Structural wood she 5-5-8 oc purlins. Rigid ceiling directly bracing. (size) 1=5-4-8, 3	athing directly applie applied or 10-0-0 or 3=5-4-8, 4=5-4-8	7) 8) ed or 9) c LC	* This truss on the botto tall by 0-00 v any other m All bearings capacity of 5 Provide med bearing plate 1 and 21 lb o DAD CASE(S)	has been desig m chord in all ar wide will fit betw embers. are assumed to 565 psi. chanical connec e capable of wit uplift at joint 3. Standard	ned for a liv reas where veen the bot b be SP No. tion (by oth hstanding 2	e load of 0.0; a rectangle 0 tom chord ar 1 crushing ers) of truss t 1 lb uplift at j	psf)-00 nd to joint					
	Max Horiz 1=-57 (LC Max Uplift 1=-21 (LC Max Grav 1=116 (LC (LC 1)	: 8) : 13), 3=-21 (LC 13) : 1), 3=116 (LC 1), 4	4=149										
FORCES	(lb) - Maximum Com	pression/Maximum											
TOP CHORD BOT CHORD WEBS	1 ension 1-2=-87/67, 2-3=-78, 1-4=-16/46, 3-4=-16, 2-4=-89/80	/85 /46											
NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=100 Cat. II; EX Exterior(2) MWFRS 1 arin POL	ed roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Br φ C; Enclosed; MWFR E) zone;C-C for memb for reactions shown; Lu =1.60	been considered fo (3-second gust) CDL=6.0psf; h=15ft; S (envelope) and C- ers and forces & mber DOL=1.60 pla	r ·C te								and a second	ORTH CA	ROLIN

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4) 5)
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.

GI 11111111 May 30,2025

Variation

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

SEAL 036322

Annunnin

Job	Truss	Truss Type	Qty	Ply	Lot 119 Ducks Landing				
J0325-1587	VC-7	Valley	1	1	Job Reference (optional)	173830756			

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 29 11:18:57 ID:btRAI72F7f7VJzclHqi7k7zgvFp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-4-8

Page: 1

Scale = 1:24

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.03	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.06	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2021/1	TPI2014	Matrix-P							Weight: 11 lb	FT = 20%
LUMBER			8) /	All bearings	are assumed to b	be SP No.	1 crushing						
TOP CHORD	2x4 SP No.1			capacity of 5	65 psi.								
BOT CHORD	2x4 SP No.1		9) F	Provide mec	hanical connection	on (by othe	ers) of truss t	0					
BRACING			ł	bearing plate	capable of withs	standing 4	lb uplift at jo	int 1					
TOP CHORD	Structural wood sh 3-5-8 oc purlins.	eathing directly applie	ed or ^a LOA	and 4 lb uplif D CASE(S)	t at joint 3. Standard								
BOT CHORD	Rigid ceiling direct bracing.	ly applied or 10-0-0 o	C										
REACTIONS	(size) 1=3-4-8 Max Horiz 1=33 (L Max Uplift 1=-4 (LC Max Grav 1=110 (, 3=3-4-8 C 9) C 13), 3=-4 (LC 12) LC 1), 3=110 (LC 1)											
FORCES	(lb) - Maximum Co	mpression/Maximum											
	Tension												
TOP CHORD	1-2=-82/40, 2-3=-8	2/40											
BOT CHORD	1-3=-8/47												
NOTES													
1) Unbalance	ed roof live loads hav	e been considered fo	r										
this desig	n.												
2) Wind: AS	CE 7-16; Vult=130mp	h (3-second gust)											
Vasd=103	3mph; TCDL=6.0psf;	BCDL=6.0psf; h=15ft;	2										
Cat. II; Ex	(p C; Enclosed; MWF	RS (envelope) and C-											in the second se
EXTERIOR 2	or reactions shown: I	umber DOI =1.60 pla	to									N'TH CA	Rollin
arin DOL -	-1 60		ite								15	R	Della-
3) Truss des	aned for wind loads	in the plane of the true	22								12	1 to	DAMAN
only. For	studs exposed to wir	ind (normal to the face)).							_			
see Stand	ard Industry Gable E	nd Details as applical	ole,							1		Q.	5 1 2
or consult	qualified building de	signer as per ANSI/TF	ข1.							-		SEA	1 : =
4) Gable req	uires continuous bott	om chord bearing.								=	:	JLA	L : I
5) Gable stu	ds spaced at 4-0-0 o	D								=		0363	22 : =
6) This truss	has been designed f	or a 10.0 psf bottom								-	- 3		
chord live	load nonconcurrent	with any other live loa	ds.								-	·	- 1 E
This trus	ss has been designed	for a live load of 0.0p	osf								10	N.SNOW	EFR. AN
on the bot	ttom chord in all area	s where a rectangle 0	-00								1	P. GIN	5. 24 1
tall by 0-0	0 wide will fit betwee	n the bottom chord an	d								1		. BY N

- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 6)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 0.0psf 7) on the bottom chord in all areas where a rectangle 0-00 tall by 0-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GI

munn May 30,2025

Job	Truss	Truss Type	Qty	Ply	Lot 119 Ducks Landing	
J0325-1587	VP-1	Valley	1	1	Job Reference (optional)	173830757
Comtech Inc Eavetteville NC -	28314	Run: 8.63 S. Sep 26.2	2024 Print: 8	630 S Sen 2	6 2024 MiTek Industries Inc. Thu May 29 11:18:57	Page: 1

ID:btRAI72F7f7VJzclHqi7k7zgvFp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-5-7

1-1-7

0-0-8

8-5-9

Scale = 1.22.0		1										1	
Loading	(psf)	Spacing	2-0-0		CSI	0.40	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (root)	20.0	Plate Grip DOL	1.15			0.18	Vert(LL)	n/a	-	n/a	999	M120	244/190
DOLL	10.0	Lumber DOL	1.15 VEC		BC	0.08	Vert(IL)	n/a	-	n/a	999		
BCDL	10.0	Code	IRC20	21/TPI2014	Matrix-P	0.04		0.00	3	n/a	n/a	Weight: 24 lb	FT = 20%
		•		7) * This truss ł	nas been desid	aned for a liv	e load of 30.0	Opsf					
TOP CHORD	2x4 SP No.1			on the bottor	m chord in all a	areas where	a rectangle						
BOT CHORD	2x4 SP No.1			3-06-00 tall b	oy 2-00-00 wid	le will fit betv	veen the bott	om					
OTHERS	2x4 SP No.2			chord and ar	ny other memb	oers.							
BRACING				All bearings	are assumed t	to be SP No.	1 crushing						
TOP CHORD	Structural wood she	athing directly appli	ed or	capacity of 5 9) Provide mec	65 psi. hanical conne	ction (by oth	ers) of truss t	to					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	с	bearing plate 1 and 23 lb u	e capable of wi uplift at joint 3.	ithstanding 2	21 lb uplift at j	oint					
REACTIONS	(size) 1=8-5-9, 3	3=8-5-9, 4=8-5-9		LOAD CASE(S)	Standard								
	Max Horiz 1=-14 (LC	: 17)											
	Max Uplift 1=-21 (LC	8), 3=-23 (LC 9)											
	Max Grav 1=130 (LC (LC 1)	C 1), 3=130 (LC 1),	4=277										
FORCES	(lb) - Maximum Com	pression/Maximum											
	Tension												
TOP CHORD	1-2=-39/39, 2-3=-39	/45											
BOT CHORD	1-4=0/14, 3-4=0/14												
WEBS	2-4=-193/230												
NOTES													
1) Unbalance	ed roof live loads have	been considered fo	r										
this desigr	٦.												
Wind: ASC	CE 7-16; Vult=130mph	(3-second gust)											1111
Vasd=103	mph; TCDL=6.0psf; B	CDL=6.0psf; h=15ft	;									White CA	D-"11
Cat. II; Ex	p C; Enclosed; MWFR	S (envelope) and C	-C									"ATH UT	10,1

Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss

- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)
- 5)

Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 119 Ducks Landing	
J0325-1587	WA-1	Common Supported Gable	1	1	Job Reference (optional)	173830758

Run; 8.63 S Sep 26 2024 Print; 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 29 11:18:57

Page: 1

Comtech, Inc. Favetteville, NC - 28314.

BCLL

1)

this design.

BCDL		10.0	Code	IRC20	21/TPI2014
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x6 SP N 2x6 SP N 2x4 SP N Structura 6-0-0 oc I Rigid ceil	o.1 o.1 o.2 I wood shea purlins. ing directly	athing directly ap	oplied or	2) Wind: AS Vasd=10 Cat. II; E zone and 3-8-3 to 12-4-13 MWFRS grip DOL
REACTIONS	Max Horiz Max Uplift Max Grav	2=16-0-0, 13=16-0-0 2=88 (LC 2=-22 (LC 12=-79 (L1 14=-64 (L1 17=-71 (L1 2=127 (LC 12=167 (L 14=167 (L 16=167 (L 18=167 (I)	10=16-0-0, 12= 1, 14=16-0-0, 15: 1, 17=16-0-0, 18: 12) 13), 10=-12 (LC C 13), 13=-72 (LC C 13), 16=-67 (L C 12), 18=-82 (L C 12), 13=158 (C 26), 13=158 (C 25), 17=158 (C 25), 17=158 (C 25)	16-0-0, =16-0-0, =16-0-0 ; 13), C 13), C 12), C 12), C 12) (1), LC 26), LC 22), LC 25),	 only. For see Star or consult or consult or consult of the sec star or consult of the sec
FORCES	(lb) - Max Tension	imum Com	pression/Maxim	um .	capacity 10) Provide
TOP CHORD	1-2=0/10, 4-5=-49/1 7-8=-48/1 10-11=0/	2-3=-101/4 18, 5-6=-68 18, 8-9=-48 10	47, 3-4=-65/65, 8/183, 6-7=-68/1 8/42, 9-10=-74/2	83, 1,	bearing 2, 12 lb u uplift at j 14, 72 lb 11) See Star
BOT CHORD	2-18=-19, 16-17=-19 14-15=-19 12-13=-19	/107, 17-18 9/107, 15-1 9/107, 13-1 9/107, 10-1	=-19/107, 6=-19/107, 4=-19/107, 2=-19/107	I	Detail fo consult o
WEBS	6-15=-94, 3-18=-12 8-13=-12	/0, 5-16=-12 1/171, 7-14 0/146, 9-12	26/121, 4-17=-12 =-126/122, =-121/171	20/146,	

Unbalanced roof live loads have been considered for

0.0*

Rep Stress Incr

YES

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-8-10 to 3-8-3, Exterior(2N) 3-8-3 to 8-0-0, Corner(3R) 8-0-0 to 12-4-13, Exterior(2N) 12-4-13 to 16-8-10 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

0.03

Horz(CT)

0.00

10

n/a n/a

Weight: 106 lb

FT = 20%

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. All plates are 2x4 MT20 unless otherwise indicated. 4)
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.

WB

Matrix-S

- 7)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.1 crushing 9) capacity of 565 psi.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint 2, 12 lb uplift at joint 10, 67 lb uplift at joint 16, 71 lb uplift at joint 17, 82 lb uplift at joint 18, 64 lb uplift at joint 14, 72 lb uplift at joint 13 and 79 lb uplift at joint 12.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 119 Ducks Landing	
J0325-1587	WA-2	Common	2	1	I73830759 Job Reference (optional)	

Run; 8.63 S Sep 26 2024 Print; 8.630 S Sep 26 2024 MiTek Industries, Inc. Thu May 29 11:18:57

Page: 1

Comtech, Inc, Fayetteville, NC - 28314,

Plate Offsets (X, Y): [2:Edge,0-0-8], [4:Edge,0-0-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.29	Vert(LL)	-0.02	2-6	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.24	Vert(CT)	-0.05	2-6	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.09	Horz(CT)	0.01	4	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S		Wind(LL)	0.02	4-6	>999	240	Weight: 90 lb	FT = 20%

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 49 lb uplift at joint

2 and 49 lb uplift at joint 4.

LOAD CASE(S) Standard

6)

LUMBER TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 WEBS BRACING Structural wood sheathing directly applied or TOP CHORD 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 2=0-3-8, 4=0-3-8 Max Horiz 2=57 (LC 11) Max Uplift 2=-49 (LC 12), 4=-49 (LC 13) Max Grav 2=680 (LC 1), 4=680 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/10, 2-3=-876/331, 3-4=-876/330, 4-5=0/10BOT CHORD 2-6=-149/679, 4-6=-149/679 WFBS 3-6=0/381

NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-8-10 to 3-8-3, Interior (1) 3-8-3 to 8-0-0, Exterior(2R) 8-0-0 to 12-4-13, Interior (1) 12-4-13 to 16-8-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

 All bearings are assumed to be SP No.1 crushing capacity of 565 psi. SEAL 036322 May 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

