

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0325-1577 Lot 74 Ducks Landing

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: I73479963 thru I73479980

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

May 15,2025

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Lot 74 Ducks Landing	
J0325-1577	A1	Attic	1	1	Job Reference (optional)	173479963

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed May 14 09:51:49 ID:eo_4ms57ZKhslxK1ijvAQdyiOuh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:76.9

	(X, T). [2.Euge,0-1-10], [5.0-4-0,∟uge], [4.	0-0-12,0-1	-4], [0.0-0-12,0	l=1=4], [3.0=4=0,⊏0	ugej, [10.L	uge,0-1-10],	[12.0-7-	0,0-1-0]	[13.0-7	-0,0-1-	0]		
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-S	0.99 0.88 0.18	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.32 -0.54 0.05 0.28	(loc) 12-15 12-15 10 2-15	l/defl >999 >791 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 331 lb	GRIP 244/190 FT = 20%	
TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x10 SP No.1 *Exce 2x10 SP No.1 *Exce 2.0E 2x6 SP No.1 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shea Rigid ceiling directly bracing. 2 Rows at 1/3 pts (size) 2=0-3-0, 1 Max Horiz 2=356 (LC Max Uplift 2=-57 (LC Max Grav 2=2413 (L	pt* 1-3,9-11:2x6 SP pt* 14-13:2x10 SP 2 athing directly applie applied or 10-0-0 or 5-7 (0=0-3-0 2 9) : 12), 10=-57 (LC 13 .C 20), 10=2413 (LC	No.1 5) 2400F 6) c 8) c 9) 10 221) 11	This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall t chord and ar Ceiling dead Wall dead lo Bottom chorr chord dead I All bearings capacity of 5 D) Provide mec bearing plate	spaced at 2-0-0 is been designed ad nonconcurren has been designed n chord in all are by 2-00-00 wide v y other member load (10.0 psf) or ad (5.0psf) on m d live load (40.0 p oad (10.0 psf) ap are assumed to b 65 psi. hanical connection e ta joint(s) 2. hanical connection e capable of withs	oc. t with any ed for a 10.0 t with any ed for a liv as where will fit betw s, with BC on membe ember(s).4 psf) and a oplied only be SP No. on (by oth- on (by oth- standing 5	 psf bottom other live loa e load of 20.0 a rectangle veen the bottic DL = 10.0psf r(s). 4-5, 7-8, 3-12, 4-15 dditional bottic to room. 12-1 1 crushing ers) of truss t r of truss t 7 lb uplift at j 	ds. Dpsf 5-7; om 15 o o o						
FORCES	(lb) - Maximum Com Tension 1-2=0/0, 2-4=-3628/ 5-6=-50/773, 6-7=-50	pression/Maximum 113, 4-5=-2605/277, 0/774, 7-8=-2605/27	, 12 , L 0 77,	2 and 57 lb u 2) Attic room ch DAD CASE(S)	uplift at joint 10. hecked for L/360 Standard	deflection								
BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: ASI Vasd=100 Cat. II; Ex zone and (2N) 3-7-1 Exterior(2 and force: DOL=1.6(3) Trus des	8-10=-3628/113, 10- 2-15=0/2853, 12-15= 8-12=0/1320, 4-15= ed roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B(cp C; Enclosed; MWFR; C-C Corner(3E) -0-8-1 14 to 18-0-0, Corner(3F) N) 22-8-5 to 36-8-15 zc s & MWFRS for reactio 0 plate grip DOL=1.60 0 plate grip DOL=1.60	11=0/0 =0/2853, 10-12=0/28 0/1320, 5-7=-3616/4 been considered fo (3-second gust) CDL=6.0psf; h=15ft; S (envelope) exterio 5 to 3-7-14, Exterior 8) 18-0-0 to 22-8-5, one;C-C for member ns shown; Lumber the plane of the true	853 124 r or rs							A CONTRACTOR OF		SEA 0363	ROLL 22	

and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) 818 Soundside Road Edenton, NC 27932 and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G mmm

May 15,2025

Job	Truss	Truss Type	Qty	Ply	Lot 74 Ducks Landing	
J0325-1577	A2	Attic	7	1	Job Reference (optional)	173479964

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed May 14 09:51:50 ID:eo_4ms57ZKhslxK1ijvAQdyiOuh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:76.9

	X, 1). [2.Luge,0-1-10]	, [5.0-4-0,Luge], [4.	0-0-12,0-1	-4], [0.0-0-12,0	-1-4], [3.0-4-0,Ľu	gej, [10.L	_uge,0-1-10],	[12.0-7-	0,0-1-0],	[13.0-7-	0,0-1-	oj		
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-S	0.99 0.88 0.18	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.32 -0.54 0.05 0.23	(loc) 12-15 12-15 10 2-15	l/defl >999 >791 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 331 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 Cat. II; Ex Exterior(2) X62-515	2x10 SP No.1 *Excep 2x10 SP No.1 *Excep 2.0E 2x6 SP No.1 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shea Rigid ceiling directly bracing. 2 Rows at 1/3 pts (size) 2=0-3-0, 1 Max Horiz 2=285 (LC Max Grav 2=2410 (L (lb) - Maximum Com Tension 1-2=0/0, 2-4=-3621/0 5-6=0/770, 6-7=0/77 8-10=-3621/0, 10-11 2-15=0/2835, 12-15= 8-12=0/1320, 4-15=0 ad roof live loads have CE 7-16; Vult=130mph mph; TCDL=6.0psf; BC p C; Enclosed; MWFRS E) -0.8-15 to 3-7-14, In terior(2R) 18-0-0 to 22	bt* 1-3,9-11:2x6 SP pt* 1-3,9-11:2x10 SP 2 athing directly applie applied or 10-0-0 or 5-7 0=0-3-0 3 9) C 20), 10=2410 (LC pression/Maximum), 4-5=-2612/142, 0, 7-8=-2611/142, =0/0 0/2835, 10-12=0/28 0/1320, 5-7=-3635/1 been considered for (3-second gust) DL=6.0psf; h=15ft; 5 (envelope) and C- terior (1) 3-7-14 to -8-5, Interior (1) 22- s and forces & MWF	4) No.1 2400F 5) 6) 6) 6) 7 8) 9) LC 2 21) 3355 86 r C 8-5 FRS	* This truss f on the bottor 3-06-00 tall b chord and ar Ceiling dead Wall dead lo Bottom chord chord dead la All bearings a capacity of 5 Provide mec bearing plate Attic room ch DAD CASE(S)	Intervention of the second sec	d for a liv as where iill fit betw n membe mber(s).3 sf) and a blied only e SP No. n (by oth deflection	e load of 20.0 a rectangle veen the botto DL = 10.0psf. r(s). 4-5, 7-8, 8-12, 4-15 dditional botto to room. 12-1 1 crushing ers) of truss to	0.20 ipsf 5-7; om 15				OFTEESS SEA 0363	ROUT	
for reactio DOL=1.60 3) This truss chord live	ns shown; Lumber DO) has been designed for load nonconcurrent wit	L=1.60 plate grip a 10.0 psf bottom h any other live load	ds.									A SNGIN	ERAL	inn.

818 Soundside Road Edenton, NC 27932

G minin May 15,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 74 Ducks Landing	
J0325-1577	B1	Common Supported Gable	1	1	Job Reference (optional)	173479965

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed May 14 09:51:50 ID:eo_4ms57ZKhslxK1ijvAQdyiOuh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:75.4

Plate Offsets (X, Y): [8:0-4-0,0-4-4], [18:0-4-0,0-4-4], [32:0-4-0,0-4-8], [35:0-4-0,0-4-8]

Loading TCLL (roof) TCDL BCLL BCDL	() 2 1 1	psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014		CSI TC BC WB Matrix-S	0.05 0.03 0.18	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(lo	ic) I/d - r - r 24 r	efl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 358 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER	2x6 SP No.1 2x6 SP No.1 2x4 SP No.2 * 0-0,0-0,0-0,0-0 (flat) Left 2x6 SP N 1-7-2	*Except 0,0-0,0 [.] lo.1 1	* 0,0-0:2x4 SPF No.2 -7-2, Right 2x6 SP N	0.1	Max	Cuplift 2=-151 (I 26=-199 28=-86 (I 30=-84 (I 32=-101 35=-45 (I 37=-86 (I 39=-84 (I	LC 10), (LC 13), LC 13), LC 13), (LC 13) (LC 12), LC 12), LC 12), LC 12),	24=-48 (LC , 27=-73 (LC 29=-84 (LC 31=-87 (LC , 33=-31 (LC 36=-97 (LC 38=-84 (LC 40=-87 (LC	11), ; 13), 13), 13), ; 13), ; 13), 12), 12), 12),	WEE	35		13-34= 11-36= 9-38=- 6-40=- 4-42=- 15-32= 17-30= 20-28=	=-221/92, 12-35= =-137/122, 10-37 -136/108, 7-39=- -136/109, 5-41=- -190/230, 14-33= =-141/125, 16-31 =-136/108, 19-29 =-136/109, 21-27	-140/69, =-136/110, 136/109, 132/99, :-126/56, =-136/111, ==-136/109, '=-135/101,
BRACING						41=-70 (I	LC 12),	42=-227 (LC	; 12)				22-26=	=-163/205	
TOP CHORD	Structural woo 6-0-0 oc purlir	od shea ns.	thing directly applied	lor	Мах	Grav 2=274 (L 26=214 (C 9), 24 LC 21),	l=217 (LC 23 27=172 (LC	3), 21),	NOT 1)	' ES Unbalar	iced	roof li	ve loads have be	en considered for
BOT CHORD	 Rigid ceiling directly applied or 10-0 oc bracing. 					28=177 (LC 21), 29=176 (LC 21), this design. 30=176 (LC 21), 31=176 (LC 21), 2) Wind: ASCE 7-16: Vult=130mph (3-second aust)								-second gust)	
WEBS	T-Brace: Fasten (2X) 1 of web with 10 o.c.,with 3in m	T and I Od (0.13 ninimun	2x4 SPF No.2 - 13-34 12-35, 11-36, 10-37, 14-33, 15-32, 16-31 braces to narrow edg 81"x3") nails, 6in n end distance.	4, je	/11	32=181 (34=245 (36=178 (38=176 (40=177 (42=245 (LC 21), LC 13), LC 20), LC 20), LC 20), LC 20), LC 20)	35=167 (LC 35=180 (LC 37=175 (LC 39=176 (LC 41=169 (LC	20), 20), 20), 20), 20),	 Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-8-15 to 3-7-14, Exterior (2N) 37-14 to 18-0-0, Corner(3R) 18-0-0 to 22-4-13, Exterior(2N) 22-4-13 to 36-8-15 zone;C-C for member and forces & MWFRS for reactions shown; Lumber Dol. 4 constant and point and poi				L=6.0psf; h=15ft; envelope) exterior o 3-7-14, Exterior 18-0-0 to 22-4-13, ne;C-C for members shown; Lumber	
	Brace must of	cover 9	0% of web length.	FORCES	(ID) - Maximum Cor	npressi	on/Maximum			DOL=1.	60 p	late gr	ip DOL=1.60	
REACTIONS	(size) 2=3 26= 28= 30= 32= 34= 36= 38= 40= 42= Max Horiz 2=-	35-11-0 =35-11- =35-11- =35-11- =35-11- =35-11- =35-11- =35-11- =35-11- =366 (LC	, 24=35-11-0, 0, 27=35-11-0, 0, 29=35-11-0, 0, 31=35-11-0, 0, 33=35-11-0, 0, 37=35-11-0, 0, 37=35-11-0, 0, 39=35-11-0, 0, 41=35-11-0, 0 2 8)	TOP CHORD BOT CHORD	1-2 5-6 9-' 11 13 15 17 20 22 2-4 40 38 36 33 30 28 26	122-10/0, 2-4=-422 53=-242/212, 6-7= 10=-169/209, 10- -14=-207/320, 14- -14=-207/320, 14- -19=-89/87, 19-2 -21=-130/92, 21- -24=-335/168, 24- 42=-132/278, 35 -39=-132/278, 35 -39=-132/278, 35 -37=-132/278, 34 -31=-132/278, 25 -29=-132/278, 27 -27=-132/278, 24	9/306, 4 -209/18 11=-150 2-13=-20 -17=-10 0=-104/ 22=-190 -22=-190 -22=-190 -42=-13 -40=-11 -38=-11 -38=-11 -33=-11 -33=-11 -33=-11 -32=-11	-5=-278/234 7, 7-9=-189/)/250, 38/281, 33/136, 66, 3/117, 0/0 2/278, 32/278, 32/278, 32/278, 32/278, 32/278, 32/278, 32/278, 32/278, 32/278, 32/278,	, 182,			Manna Martin		SEA O363	EER. K

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeR% connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the Section of the prevent collapse contervent for the Sectional temporation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

May 15,2025

Job	Truss	Truss Type	Qty	Ply	Lot 74 Ducks Landing	
J0325-1577	B1	Common Supported Gable	1	1	Job Reference (optional)	173479965

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.1 crushing capacity of 565 psi.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 151 lb uplift at joint 2, 48 lb uplift at joint 24, 45 lb uplift at joint 35, 97 lb uplift at joint 36, 86 lb uplift at joint 37, 84 lb uplift at joint 38, 84 lb uplift at joint 39, 87 lb uplift at joint 40, 70 lb uplift at joint 41, 227 lb uplift at joint 42, 31 lb uplift at joint 33, 101 lb uplift at joint 32, 87 lb uplift at joint 31, 84 lb uplift at joint 30, 84 lb uplift at joint 29, 86 lb uplift at joint 28, 73 lb uplift at joint 27 and 199 lb uplift at joint 26
- Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.
- 12) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.
- 13) Attic room checked for L/360 deflection.
- LOAD CASE(S) Standard

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed May 14 09:51:50 ID:eo_4ms57ZKhslxK1ijvAQdyiOuh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

SEAL 036322 May 15,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 74 Ducks Landing	
J0325-1577	B2	Common	4	1	Job Reference (optional)	173479966

Run; 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed May 14 09:51:50 Page: 1 ID:eo_4ms57ZKhslxK1ijvAQdyiOuh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-11-0 9-1-4 17-9-9 18-1-7 26-9-12 35-11-0 36-10-0 0-11-0 9-1-4 8-8-5 8-8-5 9-1-4 0-3-14 0-11-0 6x6= 6 12 7.75 16 17 4x8 🎜 2x4 🏿 4x8. 2x4 5 7 4 8 R 12-8-0 4x4 🎜 4x4、 3 9 4x4. 10,1 Ϋ́ 20 18 19 15 14 21 13 12 22 23 4x8 II 4x8 II 6x8= 4x4 =6x8= 4x4 =11-10-10 24-0-6 35-11-0 11-10-10 12-1-12 11-10-10

	Scale	=	1:76.9
--	-------	---	--------

Scale = 1:76.9		-											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.39	Vert(LL)	-0.18	10-12	>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.71	Vert(CT)	-0.29	2-15	>999	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.37	Horz(CT)	0.05	10	n/a	n/a			
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S		Wind(LL)	0.03	2-15	>999	240	Weight: 287 lb	FT = 20%	
		-											

LU	M	в	Е	R

TOP CHORD	2x6 SP No.1
BOT CHORD	2x6 SP No.1 *Except* 14-13:2x10 SP No.1
WEBS	2x4 SP No.2
SLIDER	Left 2x6 SP No.1 5-4-15, Right 2x6 SP
	No.1 5-4-15
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 4-7-8 oc purlins.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
REACTIONS	(size) 2=0-3-0, 10=0-3-0
	Max Horiz 2=-294 (LC 8)
	Max Grav 2=1882 (LC 20), 10=1883 (LC 21)
FORCES	(Ib) - Maximum Compression/Maximum
TOF CHORD	1-2=-10/0, 2-4=-2300/230, 4-0=-2344/340, $6_{-8}=-2345/345, 8_{-1}0=-2507/235, 10-11=-10/0$
	2-1574/2157 12-15-0/1454
	10-12=-59/1953
WEBS	4-15=-441/351, 6-15=-75/1182.

NOTES

1) Unbalanced roof live loads have been considered for this design

6-12=-73/1184, 8-12=-441/351

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-8-15 to 3-7-14, Interior (1) 3-7-14 to 18-0-0, Exterior(2R) 18-0-0 to 22-4-13, Interior (1) 22-4-13 to 36-8-15 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 200.0lb AC unit load placed on the bottom chord, 18-0-0 3) from left end, supported at two points, 5-0-0 apart.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- All bearings are assumed to be SP No.1 crushing 6)
- capacity of 565 psi.
- 7) Attic room checked for L/360 deflection.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply Lot 74 Ducks Landing		
J0325-1577	B3	Attic	5	1	Job Reference (optional)	173479967

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed May 14 09:51:50

Page: 1

NOTES

WEBS

Scale = 1:85.5

Loading

TCDL

BCLL

BCDL

WEBS

OTHERS

WEDGE

BRACING

TOP CHORD

BOT CHORD

WEBS

JOINTS

FORCES

TOP CHORD

BOT CHORD

LUMBER

BOT CHORD

TCLL (roof)

Unbalanced roof live loads have been considered for 1) this design.

14-19=-1424/0, 6-20=-1810/0

4-16=-13/584, 8-13=0/560, 5-18=-2042/392,

18-20=-2034/392, 19-20=-2034/392, 7-19=-2046/392, 15-18=-1557/0,

G mm May 15,2025

SEAL

036322

WWWWWWW

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 74 Ducks Landing	
J0325-1577	C1	ATTIC	1	1	Job Reference (optional)	173479968

Run: 8.63 E Aug 30 2023 Print: 8.630 E Aug 30 2023 MiTek Industries, Inc. Thu May 15 14:26:15 ID:eo_4ms57ZKhslxK1ijvAQdyiOuh-?7n0aRzo6P_bG?JjUDkbdKWY5QJ3BhG4mWoH5NzGOVe

Page: 1

Scale = 1:86.7	

Plate Offsets (X, Y): [6:0-3-11	1,Edge], [10:0-2-8,Edge], [12:0-4-8	3,0-6-12], [13:0-5-0,0-7-4], [14:0-4-0,0-4-12]
---------------------------------	-------------------------------------	--

opding	(ncf)	Spacing	200		C 61		DEEL	in	(loc)	l/dofl	I /d		CDID
	(psi) 20.0	Plate Grin DOI	1 15			0.57	Vort(LL)	-0.08	12-14	~000	360	MT20	2///100
	20.0		1.15		BC	0.36	Vert(CT)	-0.00	12-14	~000	240	101120	244/130
	10.0	Ren Stress Incr	VES		WB	0.30	Horz(CT)	0.01	12-14	>333 n/a	240 n/a		
BCDI	10.0	Code	IRC2021	I/TPI2014	Matrix-S	0.11	Wind(LL)	0.01	2-14	>999	240	Weight: 248 lb	FT = 20%
		0000			induix o		·····d(22)			1000	2.0	rroigiti 2 to is	
UMBER			5)	This truss ha	s been designed fo	or a 10.0	0 psf bottom						
FOP CHOR	D 2x6 SP No.1			chord live loa	ad nonconcurrent w	ith any	other live loa	ads.					
30T CHOR	D 2x10 SP No.1		6)	* This truss h	has been designed	for a liv	e load of 20.	Opst					
NEBS	2x6 SP No.1 On the bottom chord in all areas where a rectangle												
3RACING	G 3-06-00 tail by 2-00-00 wide will no between the bottom												
FOP CHOR	+ORD Structural wood sheathing directly applied or Chord and any other members, with BCDL = 10.0psr.												
	5-4-13 oc purlins.		()	Wall dead lo	ad (5 Onsf) on mem	her(s)	4-14 8-12	, 5-7,					
SOT CHOR	D Rigid ceiling directly	2) Rigid ceiling directly applied or 10-0-0 oc wall dead to (5) (5) (4) (5) (4) (5) (4) (4) (5) (4) (4) (5) (4) (5) (4) (5) (4) (4) (5) (4) (5) (4) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (5) (5) (5) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5											
		2 0 40 4054/0 2 0	,	chord dead l	oad (10.0 psf) appli	, ied only	to room. 12-	-14					
LACTION	5 (ID/SIZE) Z=1251/0-	-3-8, 10=1251/0-3-8	9)	Attic room ch	ecked for L/360 de	flection							
	Max Honz 2=-377 (L Max Gray 2=1571 (L	C 10) C 20) 10–1571 (LC	. 21) LC	AD CASE(S)	Standard								
		LC 20), 10=1571 (LC	, Z1) 050										
-ORCES	(Ib) - Max. Comp./Ma	ax. Ten All forces .	250										
		110011 SHOWH.											
	3-11713/66 1-5	=-1751/33, 10/0/200											
	7-8=-1040/209 8-9=	-1712/66											
	9-18=-1751/32 10-1	8=-1962/28											
BOT CHOR	D 2-15=0/1263. 14-15=	=0/1263. 13-14=0/12	263.										
	12-13=0/1263, 12-16	6=0/1263, 10-16=0/1	263										
NEBS	5-7=-1357/370, 4-14	=-32/831, 8-12=-31/	/912										
NOTES													11.
i) Unbalar	nced roof live loads have	been considered for	r									N''LL CA	DUL
this des	ign.										1	THUA	ROIL
2) Wind: A	SCE 7-16; Vult=130mph	(3-second gust)									50	n JESE	D. A.L
Vasd=1	03mph; TCDL=6.0psf; B0	CDL=6.0psf; h=15ft;								/	52	A PLOY	N. A'
Cat. II; I	Exp C; Enclosed; MWFR	S (envelope) exterio	r							- U		1. J.	ville -
zone an	d C-C Corner(3E) -0-8-1	4 to 3-7-15, Exterior										. ~	
(2N) 3-7	7-15 to 12-0-0, Corner(3R	R) 12-0-0 to 16-2-12,								Ξ		SEA	L 1 E
Exterior	(2N) 16-2-12 to 24-8-14 ;	zone:C-C for membe	ers									02/1	- : :

and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) N/A

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek A 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 74 Ducks Landing	
J0325-1577	C2	ATTIC	3	1	Job Reference (optional)	173479969

Run: 8.63 E Aug 30 2023 Print: 8.630 E Aug 30 2023 MiTek Industries, Inc. Thu May 15 14:28:08 ID:eo_4ms57ZKhslxK1ijvAQdyiOuh-7FEUjIMx1kTHZgcpjtIZnbnBnmZwdhh?Dv9tdDzGOTr

Plate Offsets (X, Y):	[6:0-3-11,Edge], [10:0-2-8,Edge], [11:0-2-8,0-3-0], [12:0-5-0,0-7-4], [13:0-4-0,0-4-12]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.59	Vert(LL)	-0.08	11-13	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.36	Vert(CT)	-0.14	11-13	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.11	Horz(CT)	0.01	10	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S		Wind(LL)	0.07	2-13	>999	240	Weight: 245 lb	FT = 20%

LUMBER TOP CHORD BOT CHORD

Scale = 1:86.7

C		abord live	lood	(10 0	nof	and	additional	hotto
0) Dollom	chord live	iuau	(40.0)	psi,	anu	auuilionai	DOLLOI

chord dead load (10.0 psf) applied only to room. 11-13

7) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

2x6 SP No.1
Structural wood sheathing directly applied or 5-1-4 oc purlins.
Rigid ceiling directly applied or 10-0-0 oc bracing.
(lb/size) 2=1252/0-3-8, 10=1197/0-3-8 Max Horiz 2=298 (LC 9)
Max Grav 2=1577 (LC 20), 10=1530 (LC 20)
(lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.
2-3=-1948/0, 3-4=-1698/0, 4-5=-1038/143, 7-8=-1045/151, 8-9=-1683/0, 9-10=-1932/0
2-14=0/1233, 13-14=0/1233, 12-13=0/1233, 11-12=0/1233, 11-15=0/1233, 10-15=0/1233
5-7=-1380/249, 4-13=0/815, 8-11=0/787

2x6 SP No.1 2x10 SP No.1

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-8-14 to 3-7-15, Interior (1) 3-7-15 to 12-0-0, Exterior(2R) 12-0-0 to 16-2-12, Interior (1) 16-2-12 to 23-10-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Ceiling dead load (10.0 psf) on member(s). 4-5, 7-8, 5-7; Wall dead load (5.0psf) on member(s).4-13, 8-11

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A MI lek A 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 74 Ducks Landing		
J0325-1577	G1	Common Supported Gable	1	1	Job Reference (optional)	173479970	

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed May 14 09:51:51 ID:wm33gxfHd5TCreSBDNUqe2zGgEI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

19-0-0

Scale = 1:39.7 Plate Offsets (X, Y): [15:0-2-8,0-3-0]

													-	
Loading TCLL (roof) TCDL BCLL		(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.09 0.06 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL		10.0	Code	IRC202	1/TPI2014	Matrix-S							Weight: 91 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structural 6-0-0 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav	o.1 o.1 o.2 lwood shea purlins. ing directly 2=19-0-0, 13=19-0-0 16=19-0-0 2=-57 (LC 2=-14 (LC 12=-55 (L 14=-34 (L 17=-22 (L) 2=181 (LC 12=272 (L 14=180 (L 18=272 (L 18=272 (L) 18=272 (L)	athing directly applied applied or 10-0-0 oc 10=19-0-0, 12=19-0- , 14=19-0-0, 15=19-0 , 17=19-0-0, 18=19-0 13) 8), 10=-12 (LC 13), C 13), 13=-23 (LC 13) C 13), 13=-35 (LC 12) C 12), 18=-56 (LC 12) C 12), 18=-56 (LC 12) C 26), 13=-115 (LC 1) C 26), 13=-115 (LC 1) C 25), 17=115 (LC 1) C 250, 100000000000000000000000000000000000	2) d or 3) -0, 0-0, 0-0 4) 5) 3), 6) 3), 7) 2), 8)), 2), 8)),), 9)	Wind: ASCE Vasd=103mp Cat. II; Exp C Corner(3E) -(Corner(3E) 9 19-10-8 zone for reactions DOL=1.60 Truss design only. For stu see Standard or consult qu All plates are Gable require Gable studs z This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an All bearings a capacity of 50	7-16; Vult=130mpf h; TCDL=6.0psf; Enclosed; MWFF D-10-8 to 3-6-0, Exi -6-0 to 13-10-13, E ;C-C for members shown; Lumber DC ed for wind loads in ds exposed to wind I ndustry Gable Er alified building des 2x4 MT20 unless as continuous botto spaced at 2-0-0 oc been designed for d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members. are assumed to be 55 psi.	n (3-sec SCDL=6 SS (env terior(2) Exterior and for DL=1.60 n the pla d (norm nd Deta igner at igner at igner at otherwi or a 10.0 vith any for a liv where l fit betw SP No.	cond gust) .0psf; h=15ft; elope) and C- N) 3-6-0 to 9- (2N) 13-10-13 ces & MWFR 0) plate grip ane of the tru; al to the face; ils as applicat is per ANSI/TF se indicated. d bearing. 0) psf bottom other live load e load of 20.0 a rectangle veen the bottoc 1 crushing	-C 6-0, to S ss ,, ole, PI 1. ds. Dpsf om					
TOP CHORD	(lb) - Maximum Compression/Maximum Tension 1-2=0/14, 2-3=-78/56, 3-4=-46/87, 4-5=-47/133, 5-6=-68/192, 6-7=-68/193, 7-8=-47/132, 8-9=-46/92, 9-10=-60/42,				10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 14 lb uplift at joint 2, 35 lb uplift at joint 16, 22 lb uplift at joint 17, 56 lb uplift at joint 18, 34 lb uplift at joint 14, 23 lb uplift at joint 13, 55 lb uplift at joint 12 and 12 lb uplift at joint 10.								ROLIN	
BOT CHORD	2-18=-23/ 14-16=-23 12-13=-23	'110, 17-18 3/110, 13-1 3/110, 10-1	=-23/110, 16-17=-23, 4=-23/110, 2=-23/110	/110, ¹¹ L(Surface with Solution	russ chord at joint(Standard	(s) 2.		9		11111		SEA	
WEBS	6-15=-97/ 3-18=-194 9-12=-194	′0, 5-16=-13 4/229, 7-14 4/228	35/121, 4-17=-91/86, =-135/120, 8-13=-91,	/86,							1111		0303	
NOTES												25	S. GINI	EFIAN
 Unbalance this design 	ed roof live I n.	oads have	been considered for									11	CA. G	ILBE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

RENCO

818 Soundside Road Edenton, NC 27932

May 15,2025

Job	Truss	Truss Type	Qty	Ply	Lot 74 Ducks Landing	
J0325-1577	G2	Common	6	1	Job Reference (optional)	173479971

Run; 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed May 14 09:51:51 ID:gUzpfE8JIu2IB1fwBrDkO_zGgFQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:40

Plate Offsets (X, Y): [8:0-4-0.0-3-0]

	,, , , , [0.0 1 0,0 0 0]												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.22	Vert(LL)	-0.14	2-8	>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.68	Vert(CT)	-0.30	2-8	>742	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.16	Horz(CT)	0.03	6	n/a	n/a			
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S		Wind(LL)	0.03	2-8	>999	240	Weight: 84 lb	FT = 20%	
LUMBER TOP CHORD	2x4 SP No.1		6) Provide me bearing pla 2 and 60 lb	chanical connect te capable of with uplift at joint 6	ction (by othe thstanding 6	ers) of truss 0 lb uplift at j	to joint						

LOAD CASE(S) Standard

or

BOT CHORD	2X4 OF IN	0.1
WEBS	2x4 SP N	0.2
BRACING		
TOP CHORD	Structura	l wood sheathing directly applied
	5-3-9 oc p	ourlins.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	2=0-3-8, 6=0-3-8
	Max Horiz	2=-57 (LC 13)
	Max Uplift	2=-60 (LC 12), 6=-60 (LC 13)
	Max Grav	2=810 (LC 1), 6=810 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum

- Tension TOP CHORD 1-2=0/14, 2-3=-1281/466, 3-4=-972/334, 4-5=-972/334, 5-6=-1281/466, 6-7=0/14 BOT CHORD 2-6=-348/1110
- WFBS 4-8=-95/536, 5-8=-339/268, 3-8=-339/268 NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-10-8 to 3-6-5, Interior (1) 3-6-5 to 9-6-0, Exterior(2R) 9-6-0 to 13-10-13, Interior (1) 13-10-13 to 19-10-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

All bearings are assumed to be SP No.1 crushing 5) capacity of 565 psi.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 74 Ducks Landing	
J0325-1577	M1	Monopitch	1	1	Job Reference (optional)	1/34/99/2

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed May 14 09:51:51 ID:eo_4ms57ZKhslxK1ijvAQdyiOuh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:28.6

Plate Offsets (X, Y): [2:0-2-15,Edge]

Loading TCLL (roof) TCDL BCLL BCDI	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2021/TPI2014	CSI TC BC WB Matrix-P	0.49 0.28 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.07 -0.04 n/a	(loc) 2-6 2-6 -	l/defl >999 >999 n/a	L/d 240 240 n/a	PLATES MT20	GRIP 244/190
	10.0			MaanA I							***ignt. 2010	1 1 - 2070
	2v4 SP No 1											
BOT CHORD	2x6 SP No.1											
WEBS	2x4 SP No.2											
BRACING												
TOP CHORD	Structural wood shea	athing directly applie	d or									
	6-0-0 oc purlins, exc	cept end verticals.										
BOICHORD	kigia celling airectly	applied or 10-0-0 oc										
REACTIONS	(size) 2=0-3-8.5	5=0-3-8										
	Max Horiz 2=112 (LC	C 8)										
	Max Uplift 2=-177 (Le	C 8), 5=-138 (LC 8)										
	Max Grav 2=306 (LC	C 1), 5=216 (LC 1)										
FORCES	(lb) - Maximum Com	pression/Maximum										
			7/000									
	1-2=0/19, 2-3=-94/40 2-6=0/0 5-6=0/0	0, 3-4=-2/0, 3-6=-16	//233									
NOTES	2-0-0/0, 3-0-0/0											
1) Wind ASC	CE 7-16: Vult=130mph	(3-second qust)										
Vasd=103	mph; TCDL=6.0psf; B0	CDL=6.0psf; h=15ft;										
Cat. II; Ex	p C; Enclosed; MWFR	S (envelope) exterio	r									
zone and	C-C Exterior(2E) -0-10	-8 to 3-6-5, Interior (1)								minin	1111.
3-0-3 10 0-	and forces & MWERS	for reactions shown:									IN TH CA	Roille
Lumber D	OL=1.60 plate grip DO	L=1.60								N	A SECC	CHA!
2) This truss	has been designed for	a 10.0 psf bottom								in	1000	Nin
chord live	load nonconcurrent with	th any other live load	ls.								:0	K.I.
 Inis trus 	s nas been designed fo	or a live load of 20.0	psr						-			1 - 5
3-06-00 ta	Il by 2-00-00 wide will f	fit between the botto	m						- E	1	SEA	4 1 1
chord and	any other members.								=		03632	22 : =
									-	•		

All bearings are assumed to be SP No.1 crushing capacity of 565 psi.

Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 177 lb uplift at joint 2 and 138 lb uplift at joint 5.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust structure Bucking Component Advancement and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 74 Ducks Landing	
J0325-1577	M2	GABLE	4	1	Job Reference (optional)	1/34/99/3

2-6-11

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed May 14 09:51:51 ID:eo_4ms57ZKhsIxK1ijvAQdyiOuh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:27.7

										_			
L oading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.52	DEFL Vert(LL)	in -0.06	(loc) 2-4	l/defl >999	L/d 360	PLATES MT20	GRIP 244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.67	Vert(CT)	-0.11	2-4	>615	240			
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES IRC2021/TPI2014	WB Matrix-P	0.00	Horz(CT) Wind(LL)	0.00 0.18	4 2-4	n/a >375	n/a 240	Weight: 22 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-3-8, 4 Max Horiz 2=77 (I C	athing directly applie cept end verticals. applied or 10-0-0 oc 4=0-1-8 8)	 7) Provide mec bearing plate 2 and 95 lb u LOAD CASE(S) d or 	hanical connection capable of withsta plift at joint 4. Standard	n (by othe anding 1	ers) of truss t 17 lb uplift at	o : joint						
	Max Uplift 2=-117 (L Max Grav 2=295 (LC	C 8), 4=-95 (LC 8) C 1), 4=221 (LC 1)											
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD BOT CHORD	1-2=0/15, 2-3=-90/40 2-4=-3/2	6, 3-4=-164/219											
 NOTES Wind: ASC Vasd=103i Cat. II; Exp Exterior(2E zone; porc MWFRS for DOL= This truss chord live I This truss on the bott This truss on the bott 3) * This truss 5) Bearing at using ANS designer si 5) Provide me bearing plate 	CE 7-16; Vult=130mph mph; TCDL=6.0psf; Bu o C; Enclosed; MWFR E) -0-10-8 to 3-6-5, Intr h left exposed;C-C for or reactions shown; Lu 1.60 has been designed for load nonconcurrent wi s has been designed for load nonconcurrent with the been designed for	(3-second gust) CDL=6.0psf; h=15ft; S (envelope) and C- erior (1) 3-6-5 to 5-9- members and force mber DOL=1.60 plat r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto nt 4 SP No.2 crushir o.1 crushing capacit arallel to grain value formula. Building of bearing surface. (by others) of truss to	C -15 s & e ds. psf m ug y of						A CONTRACTOR OF		SEA 0363	RO 22 E.R. F.R. F. 15,2025	A Manual and A Man

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCIO AMITek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 74 Ducks Landing	
J0325-1577	P1	GABLE	1	1	Job Reference (optional)	173479974

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed May 14 09:51:51 ID:eo_4ms57ZKhslxK1ijvAQdyiOuh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-0-10-8 6-0-0 12-0-0 12-10-8 0-10-8 6-0-0 6-0-0 0-10-8 4x6 =12 4 Г 3 2x4 u 2x4 🛛 6 ø 11 12 2 4

Scale = 1:27.5

Plate Offsets (X, Y): [2:0-3-0,Edge], [4:0-3-0,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.60	Vert(LL)	0.16	2-6	>901	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.46	Vert(CT)	-0.07	2-6	>999	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.07	Horz(CT)	-0.02	4	n/a	n/a			
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S							Weight: 46 lb	FT = 20%	
LUMBER		-	6) * This trus	s has been designe	ed for a liv	e load of 20.0	Opsf						
TOP CHORD	2x4 SP No.1		on the bo	ttom chord in all are	as where	a rectangle	-						
BOT CHORD	2x4 SP No.1		3-06-00 ta	all by 2-00-00 wide v	will fit betw	veen the botto	om						
WEBS	2x4 SP No.2		chord and	any other member	s.								
OTHERS	2x4 SP No.2		All bearin	gs are assumed to b	be SP No.	1 crushing							
BRACING			capacity o	of 565 psi.									
TOP CHORD	Structural wood she	athing directly applie	ed or 8) Provide n bearing p	echanical connection late capable of with	on (by othe standing 2	ers) of truss t 93 lb uplift at	0						
BOT CHORD	Rigid ceiling directly	applied or 4-4-9 oc	joint 2 and LOAD CASE	d 293 lb uplift at join (S) Standard	t 4.								
DEACTIONS		4 0 2 9		e) etandara									
REACTIONS	(SIZE) Z=0-3-6, 4	4=0-3-0											
	Max Holift 2=-40 (LC	(10)											
	Max Grav 2=530 (L	C 1), 4=530 (LC 9)											
FORCES	(lb) - Maximum Corr	pression/Maximum											
	Tension												
TOP CHORD	1-2=0/15, 2-3=-859/ 4-5=0/15	1828, 3-4=-859/1828	8,										
BOT CHORD	2-6=-1611/759, 4-6=	-1611/759											
WEBS	3-6=-703/281												
NOTES													
1) Unbalanc	ed roof live loads have	been considered for	r								MILLIN	1111.	
this desig	n.									_	WHI CA	Pall	
Wind: AS	CE 7-16; Vult=130mph	(3-second gust)								1	airi	10/14	
Vasd=103	3mph; TCDL=6.0psf; B	CDL=6.0psf; h=15ft;							/	5.	0/100	to: Al	1
Cat. II; Ex	<pre>kp C; Enclosed; MWFR</pre>	S (envelope) exterio	r						4	t /	100 11		1
zone and	C-C Corner(3E) -0-10-	8 to 3-6-5, Exterior(2	2N)									- All	1-
3-6-5 to 6	-0-0, Corner(3R) 6-0-0	to 10-4-13, Exterior((2N)						-				
10-4-13 to	5 12-10-8 zone; porch i	en and right exposed	a;C-								SEA	L :	1
c for men	inders and lorces & www.	arin DOI -1 60							=		0363	22	Ξ.
3) Trues des	amber DOL=1.00 plate	the plane of the true	20						-		. 0505	:	- 5
only For	studs exposed to wind	(normal to the face)									N		-
see Stand	dard Industry Gable En	d Details as applicat	ble.							2.	N. En.	Rick	2
or consult	t qualified building desi	gner as per ANSI/TP	911.							25	GIN	EF. a.	
4) Gable stu	ds spaced at 2-0-0 oc.									11	10	BEN	
5) This truss	has been designed fo	r a 10.0 psf bottom									11, A. G	ILLIN	
chord live	load nonconcurrent wi	ith any other live load	ds.								in the second se	(111) ·	

May 15,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 74 Ducks Landing	
J0325-1577	P2	Common	4	1	Job Reference (optional)	173479975

2-4-1

2-7-3

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed May 14 09:51:51 ID:eo_4ms57ZKhslxK1ijvAQdyiOuh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:27.5

Plate Offsets (X, Y): [2:0-3-3,Edge], [4:0-3-3,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.50	Vert(LL)	0.14	2-6	>995	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.38	Vert(CT)	-0.07	2-6	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.06	Horz(CT)	-0.02	4	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S							Weight: 42 lb	FT = 20%
LUMBER			6) Provide me	chanical connecti	on (by oth	ers) of truss t	to					
TOP CHORD	2x4 SP No.1		bearing pla	te capable of with	standing 2	05 lb uplift at	t					
BOT CHORD	2x4 SP No.1		joint 2 and	205 lb uplift at joir	nt 4.							
WEBS	2x4 SP No.2		LOAD CASE(S	 Standard 								
BRACING				-								
TOP CHORD	Structural wood she	athing directly applie	ed or									
	6-0-0 oc purlins.	• • • •										
BOT CHORD	Rigid ceiling directly bracing.	applied or 5-0-10 o	с									
REACTIONS	(size) 2=0-3-8.4	1=0-3-8										
	Max Horiz 2=-27 (LC	: 13)										
	Max Uplift 2=-205 (L	C 8). 4=-205 (LC 9)										
	Max Grav 2=530 (LC	C 1), 4=530 (LC 1)										
FORCES	(Ib) - Maximum Com	pression/Maximum										
TOP CHORD	1-2=0/15, 2-3=-859/	1410, 3-4=-859/141	0,									
	4-5=0/15											
BOT CHORD	2-6=-1245/759, 4-6=	-1245/759										
WEBS	3-6=-555/281											
NOTES												
 Unbalance this design 	ed roof live loads have n.	been considered fo	r									111.
2) Wind: ASC	CE 7-16; Vult=130mph	(3-second gust)									White CA	Dall
Vasd=103	mph; TCDL=6.0psf; B	CDL=6.0psf; h=15ft;	;								"aTH UF	10/11/
Cat. II; Ex	p C; Enclosed; MWFR	S (envelope) and C-	-C							N	OFFESS	a All
Exterior(2)	E) -0-10-8 to 3-6-5, Inte	erior (1) 3-6-5 to 6-0)-0,							22	OFL	This sin
Exterior(2	R) 6-0-0 to 10-4-13, Int	terior (1) 10-4-13 to							-	V	:0	1201
12-10-8 zo	one; porch left and righ	t exposed;C-C for							2	é ()		
members	and forces & MWFRS	for reactions shown	;						=	:	SEA	L : =
Lumber D	OL=1.60 plate grip DO	L=1.60							=	:	0262	22 : -
3) This truss	has been designed for	a 10.0 psf bottom							1		0363	22 : 2
chord live	load nonconcurrent wi	th any other live loa	ds.							- 8		1 2
4) I his trus	s nas been designed f	or a live load of 20.0	Jpst							5	· •	all S

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

All bearings are assumed to be SP No.1 crushing 5) capacity of 565 psi.

Unuminitien (May 15,2025

GILB

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 74 Ducks Landing	
J0325-1577	P3	Common	2	1	Job Reference (optional)	173479976

6-0-0

Comtech, Inc, Fayetteville, NC - 28314,

-0-10-8

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed May 14 09:51:51 ID:eo_4ms57ZKhsixK1ijvAQdyiOuh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12-0-0

12-10-8

Scale = 1:27.5

Loading TCLL (roof) TCDL BCLL BCDL	(22	psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI	2014	CSI TC BC WB Matrix-S	0.37 0.30 0.06	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.03 -0.07 0.01 0.03	(loc) 4-6 4-6 4 2-6	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 42 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	athing directly applie applied or 10-0-0 oc	6) Pro bea 2 ar LOAD (vide mec ring plate nd 75 lb u CASE(S)	hanical connectio capable of withs plift at joint 4. Standard	n (by oth tanding 7	ers) of truss t 5 lb uplift at j	o oint							
REACTIONS	(size) 2=0 Max Horiz 2=2 Max Uplift 2=- Max Grav 2=5	0-3-8, 4 27 (LC -75 (LC 530 (LC	=0-3-8 16) 8), 4=-75 (LC 9) 2 1), 4=530 (LC 1)											
FORCES	(lb) - Maximur	m Com	pression/Maximum											
TOP CHORD	1-2=0/15, 2-3 4-5=0/15	=-859/4	149, 3-4=-859/449,											
BOT CHORD WEBS	2-6=-334/759 3-6=0/281	, 4-6=-3	334/759											
 NOTES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-10-8 to 3-6-5, Interior (1) 3-6-5 to 6-0-0, Exterior(2E) 6-0-0 to 10-4-13, Interior (1) 10-4-13 to 12-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. All bearings are assumed to be SP No.1 crushing capacity of 565 psi. 				C -0, S ds. psf m							Mannun.		SEA 0363	EER. KIN

May 15,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 74 Ducks Landing	
J0325-1577	V1	Valley	1	1	Job Reference (optional)	173479977

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed May 14 09:51:51 ID:M1s3rW22DwxS1J6eY7_hc2zJFqO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-10-8

-					
Sca	le	= '	1:	41	

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.05	Horiz(TL)	0.00	7	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI20	014 Matrix-S							Weight: 56 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=10-10-6 9=10-10-6 11=-10-10 Max Horiz 1=-123 (L Max Uplift 1=-48 (LC 8=-72 (LC 11=-89 (L Max Grav 1=94 (LC (LC 20), § (LC 22), 1 (LC 19)	athing directly applie applied or 10-0-0 oc 3, 7=10-10-8, 8=10-1 3, 10=10-10-8, -8, 12=10-10-8 C 8) (10), 7=-27 (LC 11), : 13), 9=-88 (LC 13), C 12), 12=-72 (LC 1 9), 7=80 (LC 13), 8= I=198 (LC 20), 10=1; 1=199 (LC 19), 12=	3) Trus: only. see S or co 4) All pl 5) Gabl 6) Gabl 7) This chore 0-8, 8) * Thi on th 0-8, 8) * Thi 0-8, 9) All be capa 10) Provi beari 160 1, 27 159 LOAD C.	a designed for wind load For studs exposed to v Standard Industry Gable nsult qualified building of ates are 2x4 MT20 unle e requires continuous b e studs spaced at 2-0-0 truss has been designe I live load nonconcurrer s truss has been design e bottom chord in all arr 00 tall by 2-00-00 wide and any other membe earings are assumed to city of 565 psi. de mechanical connect ng plate capable of with lb uplift at joint 7, 89 lb th 12, 88 lb uplift at joint ASE(S) Standard	is in the playind (norm End Deta designer as ss otherwi- bttom chor oc. d for a 10.0 tt with any ed for a live as where will fit betw rs. be SP No. on (by oth standing 4 uplift at joi 9 and 72	ane of the tru: al to the face ils as applical s per ANSI/TF se indicated. d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto 1 crushing ers) of truss t 8 lb uplift at joir b uplift at joir	ss ole, ole, ole, ole, ole, ole, ole, ole,					
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-2=-219/104, 2-3=- 4-5=-106/149, 5-6=-	107/73, 3-4=-106/16 85/44, 6-7=-207/92	1,								mm	1111
BOT CHORD	1-12=-68/161, 11-12 10-11=-68/161, 9-10 7-8=-68/161	2=-68/161,)=-68/161, 8-9=-68/1	61,							A	OR EES	ROIN
WEBS	4-10=-121/32, 3-11= 2-12=-144/194, 5-9=	=-176/246, =-176/246, 6-8=-144/	194						4	U	ap .	13 All
NOTES									1			
 Unbalanc this desig Wind: AS Vasd=100 Cat. II; Ex Exterior(2 Exterior(2 10-7-4 zo reactions DOL=1.6(ed roof live loads have n. CE 7-16; Vult=130mph Smph; TCDL=6.0psf; Bi p; C; Enclosed; MWFR E) 0-4-4 to 4-9-0, Inter R) 5-5-12 to 9-10-9, In ne;C-C for members ar shown; Lumber DOL=')	been considered for (3-second gust) CDL=6.0psf; h=15ft; S (envelope) and C- ior (1) 4-9-0 to 5-5-1. terior (1) 9-10-9 to nd forces & MWFRS 1.60 plate grip	C 2, for							A A A A A A A A A A A A A A A A A A A		EER.KIN

DOL=1.60

May 15,2025

Page: 1

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 74 Ducks Landing	
J0325-1577	V2	Valley	1	1	Job Reference (optional)	173479978

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed May 14 09:51:51 ID:0KbcMdBZOcRIT90xFeCV5azJFqC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-3-8

Scale = 1:33.6

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-P	0.36 0.11 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	athing directly applie	7) 8) ed or 9) 5	* This truss h on the bottor 3-06-00 tall b chord and ar All bearings a capacity of 5 Provide mec bearing plate 1 and 33 lb u	has been designin in chord in all are by 2-00-00 wide by other member are assumed to 1 65 psi. hanical connectii c capable of with uplift at joint 3.	ed for a liv eas where will fit betv 's. be SP No. on (by oth standing 3	re load of 20.0 a rectangle veen the botto 1 crushing ers) of truss t 33 lb uplift at j	Opsf om oo oint					
REACTIONS	(size) 1=8-3-8, 3 Max Horiz 1=92 (LC Max Uplift 1=-33 (LC Max Grav 1=187 (LC (LC 1)	3=8-3-8, 4=8-3-8 9) 2 13), 3=-33 (LC 13) C 1), 3=187 (LC 1), 4	L C 4=240	DAD CASE(S)	Standard								
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD BOT CHORD WEBS	1-2=-140/89, 2-3=-1 1-4=-26/63, 3-4=-26 2-4=-144/101	26/114 /63											
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 Cat. II; Exp Exterior(21 MWFRS fd	 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown: Lumber DOL = 1 60 plate 												

- grip DOL=1.60
 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

SEAL 036322 MGINEEPHAL

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 74 Ducks Landing	
J0325-1577	V3	Valley	1	1	Job Reference (optional)	173479979

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed May 14 09:51:51 ID:yjiMnJDqwEiTiTAKN3EzA?zJFqA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-8-8

						_							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20)21/TPI2014	CSI TC BC WB Matrix-P	0.18 0.05 0.01	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 Structural wood she 5-9-8 oc purlins. Rigid ceiling directly bracing. (size) 1=5-8-8, 3 Max Horiz 1=-61 (LC Max Uplift 1=-22 (LC Max Grav 1=124 (LC (LC 1)	athing directly applie applied or 10-0-0 oc 3=5-8-8, 4=5-8-8 2 8) 2 13), 3=-22 (LC 13) C 1), 3=124 (LC 1), 4	d or ====================================	 7) * This truss I on the bottor 3-06-00 tall I chord and ar 8) All bearings capacity of 5 9) Provide mec bearing plate 1 and 22 lb u LOAD CASE(S) 	has been design n chord in all ar by 2-00-00 wide by other membe are assumed to 65 psi. hanical connect capable of with uplift at joint 3. Standard	eed for a liv eas where will fit betv rs. be SP No. ion (by oth istanding 2	e load of 20.1 a rectangle veen the bott 1 crushing ers) of truss 2 lb uplift at j	Opsf om to joint					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103	(Ib) - Maximum Com Tension 1-2=-93/71, 2-3=-83 1-4=-18/48, 3-4=-18 2-4=-96/84 ed roof live loads have CE 7-16; Vult=130mph mph; TCDL=6.0psf; Bi	pression/Maximum /90 /48 been considered for (3-second gust) CDL=6.0psf; h=15ft;											

Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)
- Gable studs spaced at 4-0-0 oc. 5)

This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads. Contraction and the second annun mar SEAL 036322 GI mumm May 15,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss Truss Type Qty		Qty	Ply	Lot 74 Ducks Landing				
J0325-1577	V4	Valley	1	1	Job Reference (optional)	173479980			

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed May 14 09:51:52 ID:u6q6C?E4SryBymKiUUGRFQzJFq8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:23.5

Plate Offsets (X, Y): [2:0-2-0,Edge]

				•												
Load	ling		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	(roof)		20.0	Plate Grip DOL	1.15		TC	0.05	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDI	_ ` `		10.0	Lumber DOL	1.15		BC	0.05	Vert(TL)	n/a	-	n/a	999			
BCLL	_		0.0*	Rep Stress Incr	YES		WB	0.00	Horiz(TL)	0.00	3	n/a	n/a			
BCD	L		10.0	Code	IRC2021	/TPI2014	Matrix-P							Weight: 10 lb	FT = 20%	
	_			1							-	-				
LUM	BER				8)	All bearings a	are assumed to be	SP No.	1 crushing							
TOP	CHORD	2x4 SP N	0.1			capacity of 5	65 psi.									
вот	CHORD	2x4 SP N	0.1		9)	Provide mecl	nanical connection	(by oth	ers) of truss t	0						
BRA	CING					bearing plate	capable of withsta	anding 3	id uplint at joi	nti						
TOP	CHORD	Structural	I wood she	athing directly applie	dor		t at joint 3.									
		3-2-8 oc p	purlins.		LO	AD CASE(S)	Standard									
BOI	CHORD	Rigid ceili bracing.	ing directly	applied or 10-0-0 oc	;											
REA	CTIONS	(size)	1=3-1-8, 3	3=3-1-8												
		Max Horiz	1=-30 (LC	28)												
		Max Uplift	1=-3 (LC	13), 3=-3 (LC 13)												
		Max Grav	1=100 (L0	C 1), 3=100 (LC 1)												
FOR	CES	(lb) - Max	imum Corr	pression/Maximum												
		Tension		·												
IOP	CHORD	1-2=-74/7	0, 2-3=-74	/85												
BOI	CHORD	1-3=-7/43	5													
NOT	ES															
1) L	Inbalance	d roof live l	oads have	been considered for												
tl	his design			(*)												
2) V	Vind: ASC	E 7-16; Vu	It=130mph	(3-second gust)												
v c	asd=103r	mpn; ICDL	=6.0pst; B	CDL=6.0pst; $n=15\pi$;	<u>_</u>											
	vtorior(2E		ed; WWFR	S (envelope) and C-	C										1111	
N	/WERS fo	r reactions	shown: Lu	imber DOI –1 60 plat	le le									IN TH CA	ROUN	
0	rin DOI =	1 60	5110W11, E0										N	A	2-11	1.
3) T	russ desid	aned for wi	nd loads in	the plane of the trus	s							/	25	Y SFEDO	DA V	in the second se
с, . с	nlv. For s	studs expos	sed to wind	(normal to the face)								4	0		C.	
s	ee Standa	ard Industry	Gable En	d Details as applicab	je,							-		- X-	1 N 1	
C	r consult o	qualified bu	ilding desi	gner as per ANSI/TP	11.							-	:	SEA	L i	=
4) (Sable requ	uires continu	uous botto	m chord bearing.								=		000	-	Ξ
5) (Sable stud	ls spaced a	t 4-0-0 oc.									Ξ		0363	22	Ξ
6) T	his truss h	has been d	esigned fo	r a 10.0 psf bottom									8			1
c	hord live I	oad noncoi	ncurrent wi	th any other live load	ds.							-	1	·	a	1
7) *	This truss	s has been	designed f	or a live load of 20.0	psf								2.0	N.SNGINI	EET	3
0	n the bott	om chord ir	n all areas	where a rectangle									12	N/O	- Ett	N
3	-06-00 tal	1 DY 2-00-0		nt between the botto	m									A G	IL BY	

7) This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A. GILB

May 15,2025

A. GILDIN

