

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: HH Hunt Homes Raleigh Durham

Model: Chatham FA MNR SP 3FL SL GLH

THE PLACEMENT PLAN NOTES:

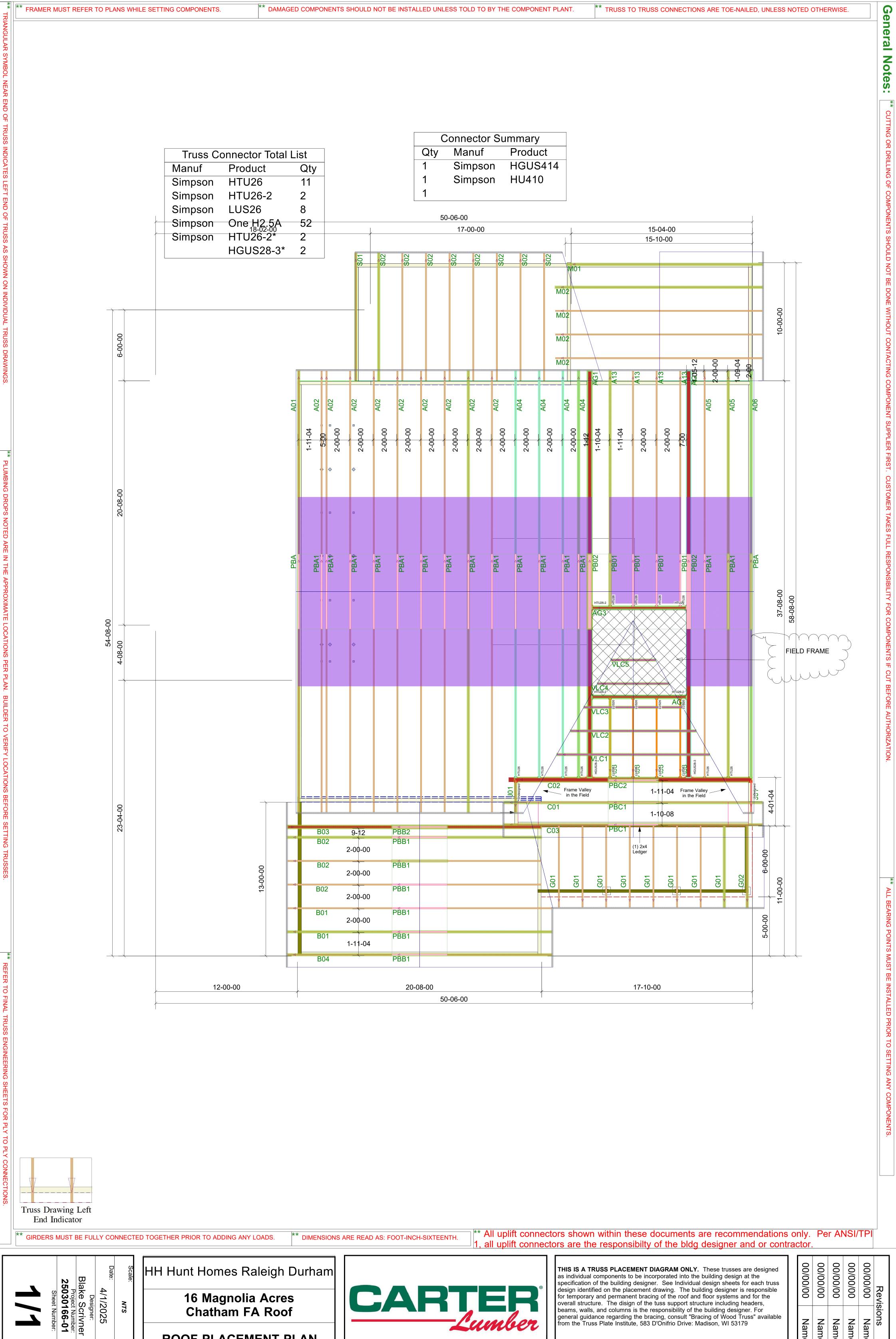
1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.


6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death. 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

IMBING DROPS NOTED ARE IN THE APPROXIMATE LOCATIONS PER PLAN. BUILDER TO VERIFY LOCATIONS BEFORE SETTING TRUSSES

design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The disign of the tuss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing of Wood Truss" available from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179

00/00/00	00/00/00	00/00/00	00/00/00	00/00/00	Revisions
Name	Name	Name	Name	Name	sions

4/1/2025

NTS

Designer

16 Magnolia Acres

Chatham FA Roof

ROOF PLACEMENT PLAN

Trenco 818 Soundside Rd Edenton, NC 27932

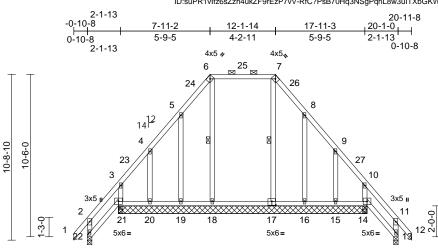
Re: 25030166-01 Install 34 Magnolia Acres-Roof-Chatham FA MNR SP 3FL SL GLH

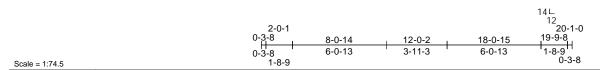
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I72384807 thru I72384843

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844


April 1,2025


Tony Miller

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Install 34 Magnolia Acres-Roof-Chatham FA MNR SP 3FL
25030166-01	C03	Piggyback Base Structural Gable	1	1	Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Sun Mar 30 12:17:31 ID:suPR1vlfz6sZzh4ukZF9rEzP7vV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [17:0-3-0,0-3-0]

					-								
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	()	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0		1.15		TC	0.43	Vert(LL)	-0.01	21-22	>999	240	MT20	244/190
Snow (Pf)	20.0		1.15		BC	0.17	Vert(CT)	-0.01	17-18	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.17	Horz(CT)	-0.01	13	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2	014	Matrix-MR								
BCDL	10.0											Weight: 138 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD		athing directly applied cept end verticals, and	or ⁽ this 2) Win	alanced design. I: ASCE	3-21=-283/212, 6-1 7-17=-314/111, 10- 5-19=-261/149, 4-2 8-16=-261/148, 9-1 roof live loads have 57-16; Vult=130mp ph; TCDL=6.0psf; E	-14=-27 20=-265 5=-265 e been h (3-sec	3/209, /149, /150 considered fo cond gust)		on t 3-0 cho 13) Bea valu	he botto 6-00 tall rd and a uring at ju ue using igner sh	om cho by 2-0 iny oth oint(s) ANSI/	rd in all areas wh 0-00 wide will fit er members, with 22, 13 considers	between the bottom n BCDL = 10.0psf. n parallel to grain ain formula. Building
BOT CHORD	Rigid ceiling directly		II; E	φB; Er	iclosed; MWFRS (e erior(2E) -0-10-8 to	envelope	e) exterior zor						
WEBS	bracing.	6 10 7 17			8-4, Exterior(2R) 3-			or.					
	1 Row at midpt (size) 13=0-3-8,	6-18, 7-17 14=16-0-14, 15=16-0-	(4)		to 17-11-3, Exterior								es not depict the size
	16=16-0- 18=16-0- 20=16-0- 20=293 (Max Uplift 13=-114 (15=-114 (19=-134 (21=-299 (Max Grav 13=154 (I 15=288 (I 17=470 (I 19=262 (I 21=458 (I	$\begin{array}{ll} \text{I4, 17=16-0-14,} \\ \text{I4, 19=16-0-14,} \\ \text{I4, 21=16-0-14, 22=0-3} \\ \text{LC 12)} \\ \text{LC 14), 14=-103 (LC 1 \\ \text{LC 15), 16=-132 (LC 1 \\ \text{LC 14), 20=-114 (LC 1 \\ \text{LC 14), 20=-114 (LC 1 \\ \text{LC 11), 22=-365 (LC 1 \\ \text{LC 25), 14=214 (LC 53 \\ \text{C 53), 16=264 (LC 53 \\ \text{C 54), 18=479 (LC 56 \\ \text{C 51), 20=287 (LC 51 \\ \text{.C 51), 22=421 (LC 13 \\ \end{array}} \end{array}$	1-7, zonimer mer Lum 3) Trus 5), only 5), see 4), or c 0) 4) TCL 1, Plat 1, Cs= 1, Cs= 1, Cs=	; end ve bers ar ber DOI s design For str Standar onsult qu : ASCE > DOL= =1.15); I.00; Ct alanced gn.	ertical left and right d forces & MWFRS =1.60 plate grip D need for wind loads i uds exposed to win d Industry Gable Er alified building des 5 7-16; Pr=20.0 psf 1.15); Pf=20.0 psf (ls=1.0; Rough Cat	expose S for rea OL=1.6(n the pl d (norm nd Deta signer a (roof LI Lum DC B; Fully been cor	d;C-C for ctions shown) ane of the tru: al to the face; ils as applical s per ANSI/TF .: Lum DOL=: DL=1.15 Plate Exp.; Ce=0.9 asidered for th	; ss), ble, Pl 1. 1.15); his		om chor	d.	of the purlin along	g the top and/or
FORCES	(lb) - Maximum Com	pression/Maximum			psf or 1.00 times fla					3		.Q.	1 N N E
TOP CHORD	6-7=-259/304, 7-8=-	265/315, 5-6=-358/420 357/415, 8-9=-264/302 1=-209/220, 11-12=0/4 -21=-139/142, -19=-139/142, -16=-138/141,	ove 7) Prov 8) All p 7, 9) Trus 17, brac 10) Gab 11) This	hangs n ide ade lates ar s to be ed again e studs truss ha	on-concurrent with quate drainage to p e 2x4 MT20 unless fully sheathed from nst lateral movemen spaced at 2-0-0 oc as been designed fr ad nonconcurrent v	other lin orevent otherwi one fac nt (i.e. c c. or a 10.1	ve loads. water ponding se indicated. e or securely liagonal web) 0 psf bottom] .		THE TAXAN		SEA 0235 ONY R.	94 EER. FR. MILLER

April 1,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 34 Magnolia Acres-Roof-Chatham FA MNR SP 3FL
25030166-01	C01	Piggyback Base	1	1	I72384782 Job Reference (optional)

Scale = 1:69

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD BOT CHORD

TCDL

BCLL

BCDL

WEBS

WEBS

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

this design.

1)

BRACING

TOP CHORD

BOT CHORD

REACTIONS

bracing.

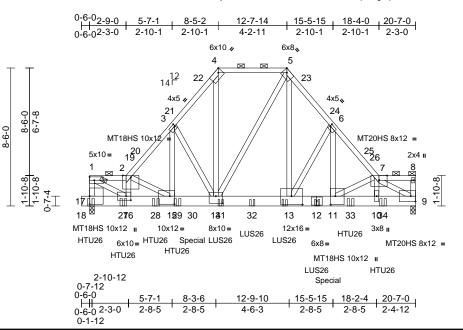
Tension

(size)

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries, Inc. Sun Mar 30 12:17:30

Page: 1

ID:suPR1vIfz6sZzh4ukZF9rEzP7vV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 2-1-13 -0-10-8 ू⊣___ 20-11-8 20-1-0 17-11-3 7-11-2 12-1-14 J-10-8 5-9-5 4-2-11 5-9-5 2-1-13 0-10-8 2-1-13 6x8 🅢 4x5、 17 5 4 16 18 12 14 10-6-0 3x6 🕢 0-8-10 3x6. 15 19 3 6 2-0-0 13 12 11 10 1-3-0 5x8= 5x8 4x5= 5x8= 14L 12 2x4 II 2x4 ı 2 - 0 - 120-1-0 0 -8 19-9-8 1-8-9 8-0-14 12-0-2 18-0-15 6-0-13 3-11-3 6-0-13 0-3-8 0-3-8 1-8-9 Plate Offsets (X, Y): [2:0-1-12,0-1-8], [4:0-4-12,0-1-8], [7:0-1-12,0-1-8], [11:0-3-4,0-3-0] Spacing 2-0-0 CSI DEFL in (loc) l/defl L/d PLATES GRIP (psf) 20.0 Plate Grip DOL 1.15 тс 0.89 Vert(LL) -0.06 12-13 >999 240 MT20 244/190 20.0 Lumber DOL 1.15 BC 0.52 Vert(CT) -0.14 12-13 >999 180 10.0 Rep Stress Incr WB Horz(CT) YES 0.79 0.21 9 n/a n/a 0.0 Code IRC2021/TPI2014 Matrix-MSH Weight: 149 lb 10.0 FT = 20% 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. 2x4 SP No 2 II; Exp B; Enclosed; MWFRS (envelope) exterior zone 2x4 SP No 2 and C-C Exterior(2E) -0-10-8 to 2-1-13, Interior (1) 2x4 SP No.3 2-1-13 to 3-8-4, Exterior(2R) 3-8-4 to 16-4-12, Interior (1) 16-4-12 to 17-11-3, Exterior(2E) 17-11-3 to 20-11-8 Structural wood sheathing directly applied or zone; end vertical left and right exposed;C-C for 1-7-8 oc purlins, except end verticals, and members and forces & MWFRS for reactions shown: 2-0-0 oc purlins (6-0-0 max.): 4-5. Lumber DOL=1.60 plate grip DOL=1.60 Rigid ceiling directly applied or 6-0-0 oc 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 1 Row at midpt 4-11 DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 9=0-3-8. 14=0-3-8 Cs=1.00; Ct=1.10 Max Horiz 14=-293 (LC 12) 4) Unbalanced snow loads have been considered for this Max Uplift 9=-65 (LC 15), 14=-65 (LC 14) design. Max Grav 9=1044 (LC 41), 14=1044 (LC 41) This truss has been designed for greater of min roof live 5) (lb) - Maximum Compression/Maximum load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 2-14=-1029/161, 1-2=0/47, 2-3=-2566/431, 6) Provide adequate drainage to prevent water ponding. 3-4=-1186/124, 4-5=-715/159, 5-6=-1180/136, This truss has been designed for a 10.0 psf bottom 7) 6-7=-2535/105, 7-8=0/47, 7-9=-1002/20 chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 8) The second secon 13-14=-416/387, 12-13=-464/1665, on the bottom chord in all areas where a rectangle 10-12=-105/1648, 9-10=-132/115 3-06-00 tall by 2-00-00 wide will fit between the bottom 2-13=-351/2001, 3-13=-339/1053, chord and any other members. 3-12=-1142/439, 4-12=-41/370, Bearing at joint(s) 14, 9 considers parallel to grain value 9) 4-11=-133/137, 5-11=-47/367, using ANSI/TPI 1 angle to grain formula. Building MANAN INTERNET 6-11=-1126/283, 6-10=0/922, 7-10=-113/2007 designer should verify capacity of bearing surface. 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to Unbalanced roof live loads have been considered for 3594 UPLIFT at jt(s) 14 and 9. This connection is for uplift only and does not consider lateral forces. 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard munn April 1,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 34 Magnolia Acres-Roof-Chatham FA MNR SP 3FL
25030166-01	C02	Piggyback Base Girder	1	3	I72384783 Job Reference (optional)

Run; 8,73 S Feb 19 2025 Print; 8,730 S Feb 19 2025 MiTek Industries, Inc. Sun Mar 30 12;17:30 ID:eELW_iMjR57zrwvMG8u8FkzP6oP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:7	1
-------------	---

Continued on page 2

	[3:0-0-8,0-1-12], [4:0-2-11,Edge], [5:0-2-11,Edge], [6:0-0-8,0-1-12], [11:0-6-4,0-3-8], [13:0-8-0,0-6-4], [14:0-5-0,0-5-4], [15:0-3-8,0-6-0], [16:0-3-8,0-3-0],
Plate Offsets (X, Y):	: [17:0-6-0,Edge]

- 1010 0110010 (7	(, ,): [::::::::::::::::::::::::::::::::	1	_											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.81 0.48 0.93	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.14 -0.24 0.03	(loc) 14-15 14-15 9	l/defl >999 >973 n/a	L/d 240 180 n/a	PLATES MT18HS MT20 MT20HS Weight: 561 lb	GRIP 244/190 244/190 187/143 FT = 20%	
	16-1,9-7:2x4 SP No. Structural wood she 4-8-11 oc purlins, e 2-0-0 oc purlins, (5-2 Rigid ceiling directly bracing. (size) 9=0-3-8, 7 Max Horiz 17=199 (I Max Grav 9=11270 55) (Ib) - Maximum Com Tension 1-17=-9557/0, 1-2=- 3-4=-11153/0, 4-5=- 6-7=-14567/0, 7-8=- 17-18=0/0, 16-17=-1 14-15=0/10313, 13- 11-13=0/9614, 10-1: 3-15=0/8169, 3-14=- 5-14=0/1447, 5-13=1	3-5,6-11:2x4 SP No.2 1 athing directly applied xcept end verticals, ar 2-9 max.): 1-2, 4-5, 7-6 applied or 10-0-0 oc 17=0-3-8, (req. 0-3-13 _C 11) (LC 53), 17=13847 (L pression/Maximum 15222/0, 2-3=-15495/ 6993/0, 5-6=-10103/0 400/0, 8-9=-254/15 19/672, 15-16=0/143	2, 1 or 2) nd 2) 3. () 3) C 4) (0, 5) 66, (), 5) 66, (), 5) 66, (), 7) (), 8) (), 9) 10	Top chords of follows: 2x4 Bottom chord follows: 2x8 Web chords follows: 2x8 Meb chords follows: 2x4 member 5-11 All loads are except if not CASE(S) se provided to of unless other Unbalanced this design. Wind: ASCE Vasd=103m II; Exp B; En end vertical I DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15); CS=1.00; Ct: Unbalanced design. Provide aded All plates are This truss ha chord live loa 0) * This truss ha on the botto 3-06-00 tall I	snow loads have I quate drainage to p MT20 plates unle is been designed nas been designed n chord in all area by 2-00-00 wide wi y other members, Required bearing s	d (0.131 ⁺ 10d (0.1 1 at 0-4-(9-0 oc. y applied ack (B) nnection s noted re been of the been of the been of the been of the been of the been of the been of the been of the been of the been of the been of the been of the been of th	'x3") nails as 48"x3") nails as 48"x3") nails) oc. "x3") nails as) oc, Except d to all plies, face in the LC s have been as (F) or (B), considered for considered for considered for the DCL=: L=1.60 plate Exp.; Ce=0.5 asidered for the water ponding wise indicate 0 psf bottom other live loae e load of 20.0 a rectangle ween the bottom DL = 10.0psf	pAD r ; Cat. ne; grip 1.15 ; ; ; d. ds.)psf pm ;	or t bot 13) Use 14) Use cho 14) Use Tru oc 1 cor 15) Fill 16) Han pro lb c 602 sele res LOAD 0	he orien tom chore Simpso 10dx1 1, loced at 1 I to 18-1 ord. Simpso ss, Sing max. sta annect trus all nail h ngger(s) c vided su lown and 2 lb up at	tation of d. on Stroo /2 Truss 0-8-0 0-8-0 0-8-0 -0 to co on Stroo le Ply (de Ply (de Ply (de Ply (de Ply (de V) oles w or othel fifcient de 02 II t 14-8- such of ty of ot) Sta	SEA 0235	the top and/ D-10d Girder, er) or equiva t 0-1-0 from t o back face o 10d Girder, 3 ent spaced at fif end to 14-0 totom chord. contact with bce(s) shall be mrrated load(d 4819 lb dow ord. The desi (s) is the	or hent f bottom -10d 2-0-0 -4 to umber. s) 4819 m and
												An	ril 1 2025	

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 1/2/2023 BEFORE USE WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

April 1,2025

Job Truss		Truss Type	Qty	Ply	Install 34 Magnolia Acres-Roof-Chatham FA MNR SP 3FL	
25030166-01	C02	Piggyback Base Girder	1	3	Job Reference (optional)	
Carter Components (Sanford, NC	Run: 8.73 S Feb 19 2	2025 Print: 8.	730 S Feb 19	9 2025 MiTek Industries, Inc. Sun Mar 30 12:17:30 Page: 2	2	

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Sun Mar 30 12:17:30 ID:eELW_iMjR57zrwvMG8u8FkzP6oP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

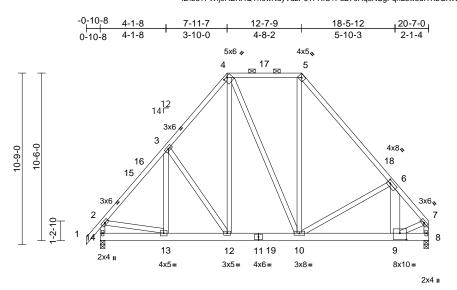
1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-2=-60, 2-4=-60, 4-5=-60, 5-7=-60, 7-8=-60, 9-18=-20

Concentrated Loads (lb)

Vert: 17=-1847 (B), 12=-295 (B), 13=-295 (B), 11=-3968 (B), 27=-1843 (B), 28=-1843 (B), 29=-1843 (B), 30=-3968 (B), 31=-295 (B), 32=-295 (B), 33=-1727 (B), 34=-1727 (B)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 34 Magnolia Acres-Roof-Chatham FA MNR SP 3FL
25030166-01	B03	Piggyback Base Girder	1	2	I72384784 Job Reference (optional)

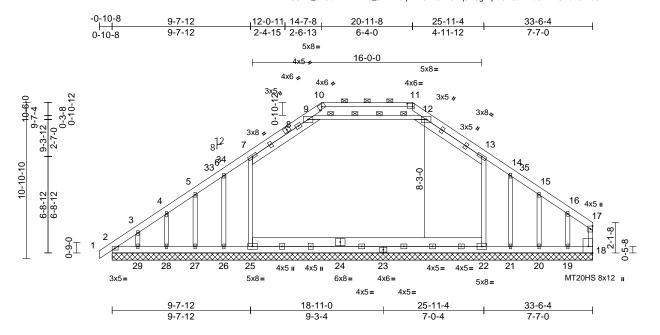
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Sun Mar 30 12:17:30 ID:b8TFWfj9HBKHQYh0wNdyVdzP6TI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	4-1-8	8-1-3	12-5-13	18-5-12	20-7-0
	4-1-8	3-11-12	4-4-10	5-11-15	2-1-4
Scale = 1:72.2	-		-		- · ·
					,

	()												
Loading	(psf)	Spacing	2-0-0	CSI TC	0.44	DEFL Vert(LL)	in		l/defl >999	L/d 240	PLATES MT20	GRIP	
TCLL (roof)	20.0		1.15	-	0.41		-0.01				M120	244/190	
Snow (Pf)	20.0		1.15	BC	0.18	Vert(CT)	-0.03		>999	180			
TCDL	10.0	Rep Stress Incr	NO	WB	0.31	Horz(CT)	0.01	8	n/a	n/a			
BCLL	0.0*	Code	IRC2021/TPI20	014 Matrix-MS	н								
BCDL	10.0										Weight: 371	lb FT = 20%)
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP No.2 2x4 SP No.3 *Excep 6-9:2x8 SP 2400F 2 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 8=0-3-8, i Max Horiz 14=262 (I	athing directly applied cept end verticals, and -0 max.): 4-5. applied or 10-0-0 oc 14=0-3-8 _C 9)	excep CASE provic unles 3) Unba this d this d Vasd I; Exj end v DOL= 5) TCLL	ads are considered of if noted as front (E(S) section. Ply to ded to distribute on s otherwise indicate lanced roof live loa esign. : ASCE 7-16; Vult= =103mph; TCDL=6 p B; Enclosed; MW ertical left exposed =1.60 :: ASCE 7-16; Pr=2 DOL=1.15); Pf=20	F) or back (B) ply connection y loads noted ad. ds have been 130mph (3-se 0psf; BCDL=1 FRS (envelop Lumber DOL 0.0 psf (roof L	face in the LC hs have been as (F) or (B), considered for cond gust) 5.0psf; h=25ft e) exterior zoi .=1.60 plate g L: Lum DOL=	or ;; Cat. ne; irip 1.15	pro lb d des res LOAD (1) De In Ur	vided su lown and sign/sele ponsibili CASE(S ead + Sr crease= niform L Vert: 1-	ifficien d 199 l ction c ty of o) Sta now (b 1.15 oads (l 2=-60, ited Lo	t to support cc b up at 18-5- of such connect thers. andard alanced): Lum lb/ft) 2-4=-60, 4-5= bads (lb)	device(s) shall b procentrated loa 12 on bottom c ction device(s) hber Increase= =-60, 5-7=-60, 8	d(s) 1436 hord. The is the I.15, Plate
FORCES		.C 13), 14=-88 (LC 12) _C 46), 14=1179 (LC 4 pression/Maximum	6) Cs=1	=1.15); ls=1.0; Rou .00; Ct=1.10 lanced snow loads n.		•							
TOP CHORD	1-2=0/47, 2-3=-1150 4-5=-647/212, 5-6=- 6-7=-2089/217, 2-14 7-8=-2213/215		7) This t load o overh	russ has been desi of 12.0 psf or 1.00 t langs non-concurre de adequate draina	mes flat roof nt with other li	oad of 20.0 p ve loads.	sf on					1000	
BOT CHORD		-13=-145/829,)=-155/1393, 8-9=-16/5	9) This t	russ has been desi	gned for a 10.	0 psf bottom					WH H	ARO	
WEBS	4-10=-134/271, 5-10	307/199, 4-12=-113/4()=-75/530, 3=-8/653, 6-9=-116/977	07, 10) * This on the 7, 3-06-	truss has been de bottom chord in a 00 tall by 2-00-00 v and any other mer	signed for a liv I areas where ride will fit bet	ve load of 20. a rectangle ween the bott	0psf om		1	10	OF OF	Sight	A_
(0.131"x3 Top chord oc. Bottom ch staggered Web conn	s to be connected toge ") nails as follows: Is connected as follows nords connected as foll I at 0-9-0 oc. nected as follows: 2x4 - aggered at 0-9-0 oc.	s: 2x4 - 1 row at 0-9-0 ows: 2x6 - 2 rows	11) One F recon UPLII and d 12) Graph or the botton	H2.5A Simpson Str nmended to connec FT at jt(s) 8 and 14 loes not consider la hical purlin represe e orientation of the p m chord.	ong-Tie conne t truss to bea This connect teral forces. ntation does n	ctors ring walls due ion is for uplif ot depict the s	to t only		THURS.	A A A A A A A A A A A A A A A A A A A	The R	EAL 3594	A STATE STATE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



April 1,2025

Job	Truss	Truss Type	Qty	Ply	Install 34 Magnolia Acres-Roof-Chatham FA MNR SP 3FL
25030166-01	A06	Attic Supported Gable	1	1	I72384811 Job Reference (optional)

Run; 8,73 S Feb 19 2025 Print; 8,730 S Feb 19 2025 MiTek Industries, Inc. Sun Mar 30 12;19:52 ID:O3YH_JP5bKizP1XEn6_9hZzP6qx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:80.4

Plate Offsets (X, Y): [2:0-2-11,0-1-8], [10:0-3-0,0-1-13], [11:0-4-8,0-2-8], [18:Edge,0-3-8]

	(^, 1). [2.0	-2-11,0-1-0], [10.0-3-0,0-1-13],	[11.0-4-0	,0-2-0j, [10.Eu	ye,0-3-0]							•		
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC20	21/TPI2014	CSI TC BC WB Matrix-MSH	0.12 0.32 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01		- n/a - n/a	L/d 999 999 n/a	PLATES MT20 MT20HS Weight: 311 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	No.2 2x6 SP 2 SP 2400f 2x4 SP N 2x4 SP N Structura 6-0-0 oc 2-0-0 oc Rigid ceil bracing.	400F 2.0E = 2.0E lo.3 *Excep lo.3 Il wood she purlins, ex purlins (6-0 ling directly 2=33-6-4, 20=33-6-4	t* 10-11,9-12:2x4 SF *Except* 25-24,24-2 t* 18-17:2x4 SP No. athing directly applie cept end verticals, ar I-0 max.): 10-11, 9-1: applied or 6-0-0 oc 18=33-6-4, 19=33-6 4, 21=33-6-4, 22=33 4, 26=33-6-4, 27=33-	P 22:2x8 .1 Eed or nd 2. V 6-4, -6-4, -6-4,	TOP CHORD	$\begin{array}{c} 1-2=0/28, 2-3=-20;\\ 4-5=-94/95, 5-6=-5\\ 7-9=-29/62, 9-10=-\\ 11-12=-88/45, 12-\\ 14-15=-28/48, 15-\\ 16-17=-146/102, 1\\ 9-12=-91/183\\ 2-29=-80/105, 28-\\ 27-28=-62/105, 26\\ 25-26=-62/105, 20\\ 19-20=-62/105, 18\\ 14-21=-184/135, 1\\ 16-19=-169/143, 6\\ 5-27=-143/80, 4-22\\ 13-22=-107/11, 7-\\ \end{array}$	57/84, 6- -88/45, 1 13=-28/5 16=-57/6 7-18=-1 29=-62/1 -27=-62 -25=-69 -21=-62 -19=-62 5-20=-1 -26=-18 3=-139/7	7=-57/107, 0-11=-112/58, 99, 13-14=-57/9 33, 06/48, 05, 1105, 1105, 1105, 1105, 1105, 12/73, 42/73, 4/125, 78, 3-29=-133/8	99,	 P D C C<	Plate DOL: DOL=1.15 Cs=1.00; C Unbalance lesign. his truss pad of 12. verhangs Provide ad ull plates a Gable requ Gable stud his truss	=1.15); i; Is=1.(ct=1.10 d snow has bee 0 psf or non-co equate ure MT2 ure 2x4 uires co is space has bee	Fr=20.0 psf (ror Pf=20.0 psf (Lun); Pr=20.0 psf (Lun); Rough Cat B; F loads have beer en designed for g 1.00 times flat ror incurrent with oth drainage to prev 20 plates unless oth MT20 unless oth mtinuous bottom ed at 2-0-0 oc. en designed for a nconcurrent with the designed	n DOL=1.15 Fully Exp.; C n considered reater of mir oof load of 2 er live loads ent water po otherwise indic crwise indic chord bearin 10.0 psf bo	Plate e=0.9; I for this n roof live 0.0 psf on 0.0 pnding. dicated. ated. ng. ttom
FORCES	Max Uplift Max Grav	2=151 (LC 2=-27 (LC 19=-219 (26=-614 (28=-58 (L 2=145 (LC 19=208 (L 21=-46 (L 25=1119 27=347 (L 29=215 (L	2 10), 18=-47 (LC 13 LC 15), 21=-614 (LC LC 21), 27=-21 (LC C 14), 29=-87 (LC 1. C 28), 18=190 (LC 1. C 54), 20=337 (LC 1. C 42), 22=1119 (LC (LC 21), 26=-46 (LC LC 52), 28=150 (LC 2.	1 2 21), 2 14), 4 5), 5 54), 5 21), 5 42),) Unbalance this design Wind: ASC Vasd=103r II; Exp B; E and C-C C. 2-5-12 to 1 (2N) 24-3-1 zone; C-C f reactions s DOL=1.60) Truss desig only. For s 	d roof live loads hav E 7-16; Vult=130mp nph; TCDL=6.0psf; inclosed; MWFRS (i orner(3E) -0-10-8 to 1-3-4, Corner(3R) 1 12 to 29-9-8, Corner or members and for hown; Lumber DOL gned for wind loads tuds exposed to wir ard Industry Gable E	bh (3-sec BCDL=6 envelope 2-5-12, 1-3-4 to (3E) 29- ces & M =1.60 pl in the pl in the pl in (norm	cond gust) .0psf; h=25ft; (e) exterior zone Exterior(2N) 24-3-12, Exter 9-8 to 33-4-8 WFRS for ate grip ane of the trus al to the face),	Cat. e rior s				SEA 0235		

see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 1/2/2023 BEFORE USE. WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 34 Magnolia Acres-Roof-Chatham FA MNR SP 3FL
25030166-01	A06	Attic Supported Gable	1	1	I72384811 Job Reference (optional)

- 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 14) Ceiling dead load (5.0 psf) on member(s). 7-9, 9-10, 10-11, 11-12, 12-13, 9-12; Wall dead load (5.0psf) on member(s).13-22, 7-25
- 15) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 614 lb uplift at joint 21, 219 lb uplift at joint 19 and 614 lb uplift at joint 26.
- 16) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 18, 25, 20, 27, 28, 29, and 2. This connection is for uplift only and does not consider lateral forces.
- Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2, 30.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 19) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Sun Mar 30 12:19:52 ID:O3YH_JP5bKizP1XEn6_9hZzP6qx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Job	Truss	Truss Type	Qty	Ply	Install 34 Magnolia Acres-Roof-Chatham FA MNR SP 3FL
25030166-01	A01	Attic Supported Gable	1	1	I72384786 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Sun Mar 30 12:17:27 ID:8hGu09xSr2GTgL21F0zrGfzP73I-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

	, [38:0-4-0,0-2-8], [39:0-4-0,0-2-8], [42:0-4-0,0-2-8]

	(, , , , , , , , , , , , , , , , , , ,	.,	- <u></u>	, <u>, , , , , , , , , , , , , , , , , , </u>	. ,],[-,],		-1, [-=	,-	- 4			
Loading TCLL (roof) Snow (Pf) TCDL		(psf) 20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	1-11-4 1.15 1.15 YES	CSI TC BC WB	0.20 0.33 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 24	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL		0.0* 10.0	Code	IRC2021/TPI2014	Matrix-MSH	0.11	11012(01)	0.01	24	11/a	n/a	Weight: 346 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	2x6 SP 24 2400F 2.0 2x4 SP Nc 2x4 SP Nc Structural 6-0-0 oc p 2-0-0 oc p Rigid ceilin bracing. 1 Brace at 40, 43 (size) Max Horiz Max Uplift Max Grav	00F 2.0E E .3 *Excep .3 *Excep .3 wood she urlins, exc urlins, exc urlins, exc urlins, exc urlins, exc urlins, exc urlins, exc 2=35-7-0, 27=35-7-0, 30=35-7-0, 28=35-7-0, 28=35-7-0, 28=35-7-0, 29=-640 (28=390 (L 28=390 (L) 28=390 (L 28=390 (L))))))))))))))))))))))))))))))))))))	-0 max.): 11-15. applied or 10-0-0 o 24=35-7-0, 26=35-), 28=35-7-0, 29=35), 33=35-7-0, 34=35), 36=35-7-0, 37=35	.2 ed or c BOT CHORD 7-0, -7-0, WEBS -7-0), 0), 0, 0, 0, 2 21), 4) 3), 23), 1), C 21), 4) 5), NOTES	4-5=-469/136, 5-6 7-8=-527/159, 8-1 10-11=-701/169, 1 12-13=-652/159, 1 14-15=-652/159, 1 16-18=-541/157, 1 19-20=-573/160, 2 21-22=-469/115, 2 23-24=-419/113, 2	=-499/15 0=-541/1 11-12=-6 13-14=-6 13-14=-6 13-14=-6 13-14=-6 13-14=-6 13-14=-6 13-14=-5 13-29=-82 13-29=-82 1-41=-59 3-27=-82 44=-35/1 33=-13(6 -40=-62 1-41=-59 3-42=-39 39=-13/2 -41=-20 2-27=-22 -42=-13 44=-202	i6, 6-7=-573/ 57, 52/159, 52/159, 52/159, 10/176, 27/152, 99/146, 11/102, 28 99/327, 19/327, 35/450, '323, 60, '38, 108, 1/168, 1/168, 1/168, 1/168, 1/202, 1/20	6/81, 5/77,	Va II; I and to 24- car rigi for DC 3) Tru onl see or 4) TC Pla DC Cs 5) Un	sd=103n Exp B; E d C-C Cc 11-0-13, -6-3 to 3, thet expose reaction DL=1.60 uss desig y. For si e Standa consult q LL: ASC tte DOL= DL=1.10; C balanced sign.	nph; T(nclose prner(3 Corne 2-10-1; eft and ed;C-C s show ned fo tuds ep rd Indu jualifier E 7-16 :1.15); ; Is=1.0 t=1.10 d snow	d; MWFRS (enve E) -0-10-8 to 2-8 (r(3R) 11-0-13 to 3, Corner(3E) 32 right exposed; e C for members an vn; Lumber DOL= or wind loads in th xposed to wind (r ustry Gable End I d building design 6; Pr=20.0 psf (Lun 0; Rough Cat B; I 0;	DL=6.0psf; h=25ft; C lope) exterior zone -3, Exterior(2N) 2-8- 24-6-3, Exterior(2N) -10-13 to 36-5-8 zor end vertical left and d forces & MWFRS -1.60 plate grip the plane of the truss formal to the face), Details as applicable er as per ANSI/TPI of LL: Lum DOL=1.15 n DOL=1.15 Plate Fully Exp.; Ce=0.9; in considered for this
FORCES (Ib) - Maximum Compression/Maximum 1) Unbalance Tension this design					ed roof live loads hav n.	ve been	considered fo	r		1111	A A A A A A A A A A A A A A A A A A A		

Continued on page 2

Scale = 1:82.5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)

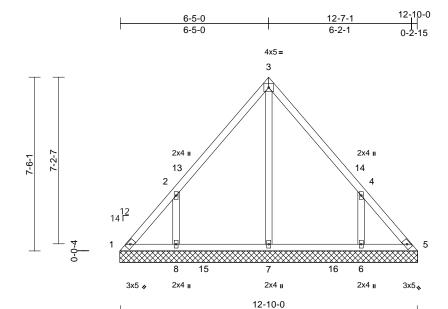
April 1,2025

Page: 1

Job	Truss	Truss Type	Qty Ply		Install 34 Magnolia Acres-Roof-Chatham FA MNR SP 3FL
25030166-01	A01	Attic Supported Gable	1	1	I72384786 Job Reference (optional)

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf.
 13) Ceiling dead load (5.0 psf) on member(s). 8-10, 16-18, 10-42, 38-42, 38-39, 16-39; Wall dead load (5.0psf) on member(s).8-33, 18-30
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 73 lb uplift at joint 2, 53 lb uplift at joint 24, 640 lb uplift at joint 29, 15 lb uplift at joint 27, 79 lb uplift at joint 26, 639 lb uplift at joint 34, 30 lb uplift at joint 36, 81 lb uplift at joint 37, 73 lb uplift at joint 2 and 53 lb uplift at joint 24.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 16) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard


Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Sun Mar 30 12:17:27 ID:8hGu09xSr2GTgL21F0zrGfzP73I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 34 Magnolia Acres-Roof-Chatham FA MNR SP 3FL
25030166-01	VLC1	Valley	1	1	I72384787 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Sun Mar 30 12:17:32 ID:Bo?piOOb2z9YER9vyOC9j3zOulm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

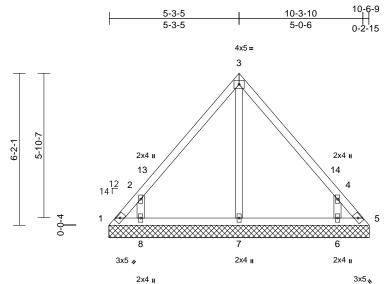
Scale = 1:49.8

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	2	psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2027	1/TPI2014	CSI TC BC WB Matrix-MSH	0.34 0.18 0.15	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 64 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	6-0-0 oc purlii Rigid ceiling o bracing.	ns. directly a	thing directly applie	5)	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct=	ed for wind loads ds exposed to wind lalified building de 7-16; Pr=20.0 ps 15); Pf=20.0 ps s=1.0; Rough Ca -1.10 snow loads have	nd (norm End Deta signer as f (roof LL (Lum DC t B; Fully	al to the face ils as applica s per ANSI/TI :: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9), ble, PI 1. 1.15 9;					
	7=' Max Horiz 1=- Max Uplift 1=- 6=- Max Grav 1=' 6=4	12-10-7 -179 (LC -64 (LC -222 (LC 154 (LC	10), 5=-24 (LC 11), C 15), 8=-228 (LC 14) 30), 5=130 (LC 27) 21), 7=355 (LC 27)	4) 9),	Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b	es continuous bot spaced at 4-0-0 o s been designed ad nonconcurrent las been designed n chord in all area by 2-00-00 wide w	c. for a 10.0 with any d for a liv is where ill fit betv) psf bottom other live loa e load of 20.0 a rectangle veen the botto)psf om					
FORCES	Tension		pression/Maximum) Provide mec bearing plate	y other members hanical connectio capable of withs	n (by oth anding 6	ers) of truss t 4 lb uplift at j	o oint					
TOP CHORD BOT CHORD WEBS	4-5=-171/122 1-8=-78/139, 5-6=-78/139	7-8=-78	247/140, 3-4=-247/1 5/139, 6-7=-78/139, 5/281, 4-6=-395/279	11	uplift at joint) Beveled plat	e or shim required truss chord at joir	l to provi						WITH CA	Politi

NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-00 to 3-0-0, Interior (1) 3-0-0 to 3-5-3, Exterior(2R) 3-5-3 to 9-5-3, Interior (1) 9-5-3 to 9-10-7, Exterior(2E) 9-10-7 to 12-10-7 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

LOAD CASE(S) Standard



Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 34 Magnolia Acres-Roof-Chatham FA MNR SP 3FL
25030166-01	VLC2	Valley	1	1	I72384788 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Sun Mar 30 12:17:32 ID:f_ZBvkPEpHHPsbk5W6jOFGzOull-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-6-9

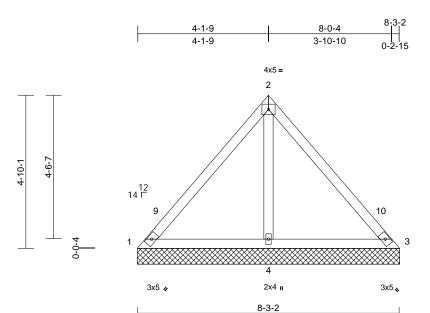
Scale = 1:46.8

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0 10.0		2-0-0 1.15 1.15 YES IRC2	021/TPI2014	CSI TC BC WB Matrix-MSH	0.36 0.13 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 50 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	6-0-0 oc purlins.	heathing directly applied or 10-0-0 o	ed or c	 only. For sti see Standar or consult qu TCLL: ASCE Plate DOL=² DOL=1.15); Cs=1.00; Ct: Unbalanced 	ed for wind loads uds exposed to wi d Industry Gable lailified building d 57-16; Pr=20.0 ps I.15); Pf=20.0 ps I.s=1.0; Rough Ca =1.10 snow loads have	ind (norm End Deta esigner as sf (roof LL (Lum DC at B; Fully	al to the face ils as applica s per ANSI/TI :: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9), ble, PI 1. 1.15 9;					
REACTIONS	7=10-7 Max Horiz 1=-146 Max Uplift 1=-108 6=-211 Max Grav 1=148 6=466	-0, 5=10-7-0, 6=10-7-(-0, 8=10-7-0 (LC 10) (LC 12), 5=-73 (LC 13 (LC 15), 8=-219 (LC 1 (LC 14), 5=125 (LC 15 (LC 21), 7=218 (LC 21 (LC 20)	3), 14) 5),	 Gable studs This truss hat chord live los * This truss loss has truss loss on the bottor 3-06-00 tall loss 	es continuous bo spaced at 4-0-0 d as been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w	oc. for a 10.0 with any d for a liv as where vill fit betv) psf bottom other live loa e load of 20.0 a rectangle	Opsf					
FORCES	(lb) - Maximum C Tension	ompression/Maximum		10) Provide med	ny other members hanical connection	on (by oth	,						
TOP CHORD		3=-266/116, 3-4=-266/	101,		e capable of withs t at joint 5, 219 lb								
BOT CHORD WEBS NOTES	5-6=-84/121 3-7=-130/0, 2-8=-	50/106, 6-7=-50/106, 492/344, 4-6=-492/34	1	11) Beveled plat	e or shim require truss chord at joir		de full bearin	g				WITH CA	ROL

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-16; Vult=130mph (3-second gust)
- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 7-7-0, Exterior(2E) 7-7-0 to 10-7-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

SEAL 023594 *April* 1,2025

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affiliate

Job	Truss	Truss Type	Qty	Ply	Install 34 Magnolia Acres-Roof-Chatham FA MNR SP 3FL
25030166-01	VLC3	Valley	1	1	I72384789 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Sun Mar 30 12:17:32 ID:f_ZBvkPEpHHPsbk5W6jOFGzOull-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:36.4

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/T	PI2014	CSI TC BC WB Matrix-MP	0.39 0.38 0.22	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 36 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 8-3-2 oc purlins. Rigid ceiling directly bracing. (size) 1=8-3-9, 3 Max Horiz 1=-113 (L Max Uplift 1=-35 (LC 4=-170 (L Max Grav 1=85 (LC (LC 21) (lb) - Maximum Com Tension 1-2=-137/283, 2-3=- 1-4=-229/164, 3-4=- 2-4=-591/210	applied or 6-0-0 oc 3=8-3-9, 4=8-3-9 C 10) C 11, 3=-35 (LC 20), C 14) 20), 3=85 (LC 21), 4 pression/Maximum 137/283	dor =658 =658 	Plate DOL=1 DOL=1.15); I CS=1.00; Ct= Jnbalanced s lesign. Bable require Bable studs s This truss ha this truss ha on the botton B-06-00 tall b thord and an Provide mect bearing plate i, 35 lb uplift Beveled plate	snow loads have to spaced at 4-0-0 or s been designed fi ad nonconcurrent v has been designed n chord in all areas by 2-00-00 wide wi y other members. hanical connection capable of withsta at joint 3 and 170 e or shim required truss chord at joint	Lum DC B; Fully been cor om chor c. or a 10.0 with any l for a liv s where ll fit betw h (by oth anding 3 lb uplift to provi	DL=1.15 Plate Exp.; Ce=0.9 insidered for th d bearing. D psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss to 5 lb uplift at jo at joint 4.); ds.)psf om o					
this design	ed roof live loads have											TH CA	ROUL

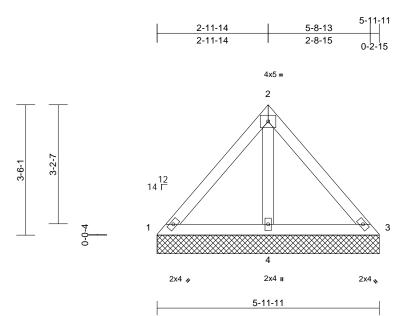
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 5-3-9, Exterior(2E) 5-3-9 to 8-3-9 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

11111111111

EAL


023594

CHILLIAN WARNER

The second se

Job	Truss	Truss Type	Qty	Ply	Install 34 Magnolia Acres-Roof-Chatham FA MNR SP 3FL
25030166-01	VLC4	Valley	1	1	I72384790 Job Reference (optional)

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Sun Mar 30 12:17:32 ID:haVf2rEAkVmZYM0IYf5hEazOXJh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

S

Scale = 1:31												
_oading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.17	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.20	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 26 lb	FT = 20%
	2x4 SP No.2 2x4 SP No.2		design.	d snow loads hav			his					
	2x4 SP No.3		, , ,	s spaced at 4-0-0								

BRACING TOP CHORD Structural wood sheathing directly applied or 5-11-11 oc purlins. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. **REACTIONS** (size) 1=5-11-11, 3=5-11-11, 4=5-11-11 Max Horiz 1=81 (LC 11) Max Uplift 4=-87 (LC 14) Max Grav 1=112 (LC 20), 3=112 (LC 21),

4=401 (LC 20) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-83/145, 2-3=-83/145

BOT CHORD 1-4=-128/100, 3-4=-128/100 WEBS 2-4=-317/102 NOTES

1) Unbalanced roof live loads have been considered for this design.

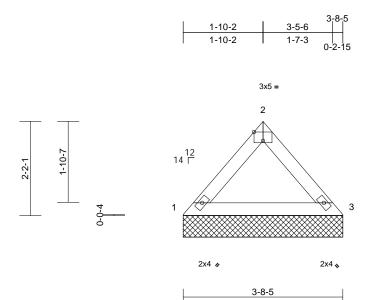
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 8) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 87 lb uplift at joint 4

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members on the permanent bracing temporary and permanent bracing temporary and permanent bracing temporary and permanent bracing tempora and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Edenton, NC 27932

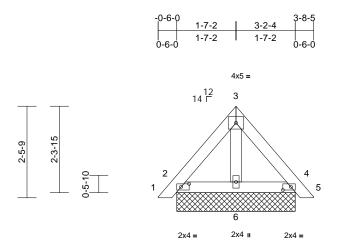
Job	Truss	Truss Type	Qty	Ply	Install 34 Magnolia Acres-Roof-Chatham FA MNR SP 3FL
25030166-01	VLC5	Valley	1	1	I72384791 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Sun Mar 30 12:17:32 ID:9m21FAFoVpuQAVbU6NdwnnzOXJg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:26.6

Plate Offsets (X, Y): [2:Edge,0-2-7]


	.). [g.,]	1		1							-	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.09	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0				-						Weight: 13 lb	FT = 20%
LUMBER				uds spaced at 4-0-0								
	2x4 SP No.2			s has been designed								
	2x4 SP No.2			e load nonconcurrer iss has been design								
	Otm	a da la condicación de la consella	,	ottom chord in all are			оры					
	Structural wood she 3-8-5 oc purlins.	athing directly appli		all by 2-00-00 wide			om					
		applied or 10-0-0 o		d any other member								
I	bracing.			mechanical connecti plate capable of with								
REACTIONS (s				Ib uplift at joint 3.	istanung	io ib upilit at j	oint					
	lax Horiz 1=-48 (LC			(S) Standard								
		C 15), 3=-10 (LC 14) C 20), 3=181 (LC 21										
		pression/Maximum	,									
	Tension	ipression/waximum										
	1-2=-204/27, 2-3=-2	204/28										
BOT CHORD	1-3=-24/126											
NOTES												
,	roof live loads have	been considered fo	r									
this design.	7.40. \/	(0,										
	7-16; Vult=130mph	CDL=6.0psf; h=25ft;	Cat									11.
		velope) exterior zor									and CI	Dille
	erior(2E) zone; cant										"aTH UP	10/11
		ght exposed;C-C for								1 St	C	ica N'M
		for reactions shown	ı;							Xa		White .
	=1.60 plate grip DC	DL=1.60 In the plane of the tru	2 2								A. I	n aque -
		I (normal to the face							-		SEA	
		d Details as applica							=	:	SEP	·L : =
		gner as per ANSI/TI									0235	94 : =
		roof LL: Lum DOL=										1 E -
		um DOL=1.15 Plate								5		a: 3
DOL=1.15); Cs=1.00; Ct=	, 0	3; Fully Exp.; Ce=0.9	9;								NGIN	EENAN
,		een considered for th	his							11	AN	in LEnn
design.											11. R.	MILTIN
•	es continuous botto	m chord bearing.									in min	Inne
											Ap	oril 1,2025
											•	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 34 Magnolia Acres-Roof-Chatham FA MNR SP 3FL
25030166-01	PBC2	Piggyback	1	2	I72384792 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Sun Mar 30 12:17:32 ID:1R8zpxOVuBVwllkwucZH_bzOX07-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

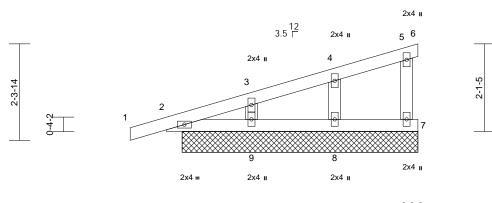
3-2-4

Scale = 1:31 Plate Offsets (X, Y): [2:0-2-10,0-1-0], [4:0-2-10,0-1-0]

	(X, Y): [2:0-2-10,0-1-0], [4:0-2-10,0-1-0]					-					1	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	21/TPI2014	CSI TC BC WB Matrix-MP	0.02 0.02 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
	10.0											Weight: 33 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD DTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 4-2-11 oc purlins. Rigid ceiling directly bracing.	4=3-2-4, 6=3-2-4 ; 12) ; 15), 4=-15 (LC 15), C 21), 4=138 (LC 22),	d or 5 6=-1	Vasd=103mp II; Exp B; En and C-C Ext exposed ; en members an Lumber DOL) Truss design only. For stu see Standard or consult qu) TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct=		BCDL=6 envelope ntilever I right exp S for rea OOL=1.6 in the pl nd (norm End Deta signer at f (roof LL (Lum DC t B; Fully	6.0psf; h=25ft; a) exterior zor eft and right oosed;C-C for octions shown ane of the tru: al to the face; ils as applicat s per ANSI/TF .: Lum DOL=' DL=1.15 Plate Exp.; Ce=0.9	ne ; ss), ble, Pl 1. 1.15);					
ORCES	(lb) - Maximum Com	,	7) Unbalanced design.	snow loads have	been cor	nsidered for th	nis					
Top chord follows: 22 Bottom ch follows: 22) All loads a except if n CASE(S) provided t	Tension 1-2=0/23, 2-3=-81/3	8, 3-4=-81/34, 4-5=0/ /44 ther as follows: (0.131"x3") nails as 0d (0.131"x3") nails a applied to all plies, ck (B) face in the LO/ nections have been	/23 9 1 1 1 s	 This truss has load of 12.0 overhangs n Gable requir Gable studs This truss has chord live load * This truss for on the bottor 3-06-00 tall b 	s been designed opsf or 1.00 times f on-concurrent with es continuous bet spaced at 4-0-0 o s been designed ad nonconcurrent nas been designed n chord in all area by 2-00-00 wide w by other members	lat roof le n other li tom chor c. for a 10. with any d for a liv is where ill fit betw	bad of 20.0 ps ve loads. d bearing. 0 psf bottom other live load re load of 20.0 a rectangle	sf on ds.)psf			and the second s	SEA 0235	
	ed roof live loads have	been considered for		Detail for Co	d Industry Piggyb nnection to base t fied building desig Standard	russ as a					and the second s	NY R.	EER. EA

April 1,2025

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

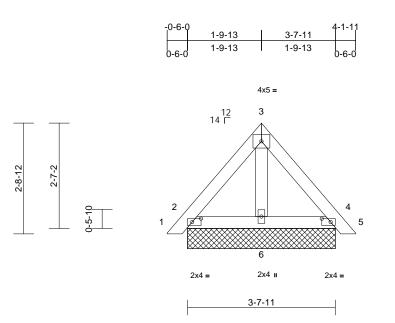
Jo	b	Truss	Truss Type	Qty	Ply	Install 34 Magnolia Acres-Roof-Chatham FA MNR SP 3FL
25	5030166-01	G02	Monopitch Supported Gable	1	1	I72384793 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Sun Mar 30 12:17:31 ID:ud5Ki4AAT7isPlt4Oz_Au3zOUR9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:27.7

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	1-11-4 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.14 0.15 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=5-8-0, 6 9=5-8-0 Max Horiz 2=75 (LC Max Uplift 2=-60 (LC 9=-22 (LC Max Grav 2=336 (LC	applied or 10-0-0 oc S=5-8-0, 7=5-8-0, 8=5- 10) 2 10), 6=-15 (LC 21), 2 14), 8=-35 (LC 10),	Plate DOL= DOL=1.15) Cs=1.00; C 4) Unbalanced design. or 5) This truss h load of 12.C (able stud: -8-0, 7) This truss h chord live lt 8) * This truss on the botto 3-06-00 tall chord and a 9) Provide me bearing pla	E 7-16; Pr=20.0 psf 1.15); Pf=20.0 psf (I Is=1.0; Rough Cat I=1.10 Is now loads have b as been designed for psf or 1.00 times fit non-concurrent with as been designed for bad nonconcurrent with has been designed for bad nonconcurrent with has been designed m chord in all areas by 2-00-00 wide will hy other members. chanical connection te capable of withsta ft at joint 7, 60 lb up o uplift at joint 9 and	Lum DC B; Fully een cor or great at roof l other lin or a 10. <i>i</i> th any for a liv s where l fit betw (by oth anding 1 lift at joi	DL=1.15 Plate Exp.; Ce=0.9 asidered for the or of min roof or do f 20.0 pi ve loads. D psf bottom other live load e load of 20.0 a rectangle veen the botthe ers) of truss the 5 lb uplift at j nt 2, 35 lb uplift at j	e filve filve sfon ds. Opsf om io oint					
Vasd=100 II; Exp B; and C-C to 6-0-8 z for reactin DOL=1.6 2) Truss des only. For see Stand	4-5=-29/16, 5-6=-11. 2-9=-116/155, 8-9=0 4-8=-183/177, 3-9=- CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Bi Enclosed; MWFRS (er Corner(3E) -0-10-8 to 2 cone; C-C for members a cons shown; Lumber DO	135, 3-4=-85/32, /4, 5-7=-96/95 //0, 7-8=0/0 87/93 (3-second gust) CDL=6.0psf; h=25ft; C ivelope) exterior zone -0-8, Exterior(2N) 2-0- and forces & MWFRS L=1.60 plate grip the plane of the truss (normal to the face), d Details as applicable	-8 9,) Standard							SEA 0235	94 EER. A.

April 1,2025


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 34 Magnolia Acres-Roof-Chatham FA MNR SP 3FL
25030166-01	PBB2	Piggyback	1	2	I72384794 Job Reference (optional)

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Sun Mar 30 12:17:31 ID:DQvM4golvBEItvkNaF4WrdzOWL?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

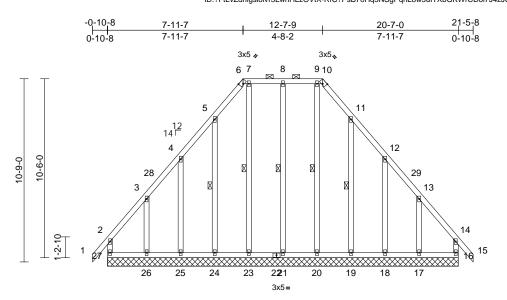
Scale = 1:28.4

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.03	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf) FCDL	20.0	Lumber DOL	1.15 YES		BC WB	0.03	Vert(CT)	n/a	-	n/a	999		
	10.0	Rep Stress Incr				0.00	Horz(CT)	0.00	4	n/a	n/a		
BCLL BCDL	0.0* 10.0	Code	IRC2021/TF	-12014	Matrix-MP							Weight: 38 lb	FT = 20%
LUMBER TOP CHORD SOT CHORD DTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-8-2 oc purlins. Rigid ceiling directly bracing. (size) 2=3-7-11. Max Horiz 2=-61 (LC Max Uplift 2=-19 (LC Max Grav 2=157 (LC 6=112 (LC (lb) - Maximum Com Tension	C 15), 4=-18 (LC 15) C 21), 4=157 (LC 22), C 21) pression/Maximum	V: II; ar ev for Lu 5) Tr or se or 6) T(Pi D; C; 7) Ui de	asd=103mp ; Exp B; Enc and C-C Exté xposed ; en iembers and umber DOL russ design nly. For stu ce Standarc r consult qu CLL: ASCE late DOL=1 OL=1.15); I s=1.00; Ct= nbalanced : esign.	snow loads have	BCDL=6 (envelope intilever li right exp S for rea DOL=1.60 in the pla nd (norm End Deta ssigner as if (roof LL (Lum DC t B; Fully been cor	6.0psf; h=25ft; a) exterior zor eft and right boosed;C-C for cictions shown ane of the true al to the face ils as applical is per ANSI/TF L: Lum DOL= DL=1.15 Plate Exp.; Ce=0.5 asidered for th	ne ; sss), oble, PI 1. 1.15); nis				O'gnic. Oo lu	
OP CHORD	2-6=-30/50, 4-6=-19	4, 3-4=-98/40, 4-5=0/ /47	lo	ad of 12.0 p	s been designed osf or 1.00 times	flat roof lo	oad of 20.0 ps						
VEBS	3-6=-38/0				on-concurrent wit es continuous bot								
Top chord follows: 22 Bottom ch follows: 22 2) All loads a except if r CASE(S) provided t	to be connected toge is connected with 10d (4 - 1 row at 0-9-0 oc. ords connected with 1 (4 - 1 row at 0-9-0 oc. are considered equally oted as front (F) or ba section. Ply to ply con o distribute only loads ierwise indicated.	(0.131"x3") nails as 0d (0.131"x3") nails a applied to all plies, ck (B) face in the LO/ nections have been	10) G 11) Th ch s 12) * - or 3-	able studs a his truss ha nord live loa This truss h n the botton -06-00 tall b nord and an	s been designed d nonconcurrent as been designed o chord in all area y 2-00-00 wide w y other members	oc. for a 10.0 with any d for a liv as where vill fit betw	0 psf bottom other live loa e load of 20.0 a rectangle)psf				SEA 0235	
	ed roof live loads have	been considered for	Di	etail for Cor	I Industry Piggyb nection to base ied building desig Standard	truss as a				11.00	A A A A A A A A A A A A A A A A A A A	NY R.	EER. ER. 1

April 1,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	Install 34 Magnolia Acres-Roof-Chatham FA MNR SP 3FL
25030166-01	B04	Piggyback Base Supported Gable	1	1	I72384795 Job Reference (optional)

Scale = 1:67.6

Continued on page 2

Run; 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Sun Mar 30 12:17:30 ID:?FtLvZdnlgsi8lvr3LwnHLzOVtX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets	(X, Y): [6:0-2-5,Edge	e], [10:0-2-5,Edge]										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MR	0.22 0.14 0.17	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 176 lb	GRIP 244/190
BODL	10.0											
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood sh	eathing directly applie		3-4=-142/182, 4- 6-7=-211/272, 7- 9-10=-211/272, 1 11-12=-216/270, 13-14=-181/172,	5=-215/27 8=-211/27 0-11=-28 12-13=-1 14-15=0/	71, 5-6=-286/3 72, 8-9=-211/2 6/358, 35/171, 45, 14-16=-19	58, 72, 5/117	6) Thi: load ove 7) Pro 8) All	sign. s truss h d of 12.0 erhangs vide ade plates a	as bee) psf or non-co equate re 2x4	en designed for g 1.00 times flat r ncurrent with oth drainage to pre- MT20 unless oth	vent water ponding. nerwise indicated.
BOT CHORD	2-0-0 oc purlins (6	except end verticals, ar -0-0 max.): 6-10. ly applied or 6-0-0 oc	d BOT CHOKE	24-25=-136/147, 24-25=-136/147, 21-23=-136/147, 19-20=-136/147,	23-24=-1 20-21=-1	36/147, 36/147,		 Gable requires continuous bottom chord bearing. Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). Gable studs spaced at 2-0-0 oc. 				
WEBS	1 Row at midpt	8-21, 7-23, 5-24, 9-2 11-19	^{0,} WEBS	17-18=-136/147, 8-21=-237/81, 7-3								a 10.0 psf bottom any other live loads.
REACTIONS	19=20-7 23=20-7	7-0, 17=20-7-0, 18=20- 7-0, 20=20-7-0, 21=20- 7-0, 24=20-7-0, 25=20-	7-0,	4-25=-264/145, 3 9-20=-230/116, 1 12-18=-266/145,	1-19=-23	5/113,		13) * Th on 1 3-0	his truss the botto 6-00 tall	has be om cho by 2-0	een designed for ord in all areas w	a live load of 20.0ps here a rectangle between the bottom
	Max Horiz 27=-281		NOTES									
	18=-106 21=-42 24=-95 26=-223 Max Grav 16=241 18=245 20=245 23=251	; (LC 11), 17=-218 (LC ; (LC 15), 19=-93 (LC $^{\prime}$ (LC 10), 23=-3 (LC 13) (LC 14), 25=-107 (LC $^{\prime}$ (LC 14), 27=-161 (LC (LC 51), 17=291 (LC 5 (LC 41), 19=251 (LC 5 (LC 54), 21=258 (LC 4 (LC 56), 24=254 (LC 5 (LC 41), 26=301 (LC 5)	10, this desit, 5), 2) Wind: AS 4), Vasd=10 10) II; Exp B 3), and C-C 3), to 4-11-7 0), 15-7-9 tc 1), cantileve 1), right exp 1), for reacti	SCE 7-16; Vult=130m 3mph; TCDL=6.0psf Enclosed; MWFRS Corner(3E) -0-10-8 t Corner(3R) 4-11-7 18-3-8, Corner(3E) 18-3-8, Corner(3E) 1943-40, corner(3E) 1945-40, corner(3E	nph (3-sed ; BCDL=((envelop to 2-3-8, E to 15-7-9 18-3-8 to sed ; end fo	cond gust) 6.0psf; h=25ft; e) exterior zon Exterior(2N) 2- , Exterior(2N) 21-5-8 zone; vertical left and rces & MWFR	Cat. e 3-8				SEA	AROJUNI
FORCES		mpression/Maximum	only. Fo see Star or consu 4) TCLL: A Plate DC DOL=1.1	i0 signed for wind loads r studs exposed to w dard Industry Gable It qualified building d SCE 7-16; Pr=20.0 ps 0L=1.15; Is=1.0; Rough Ca 5); Is=1.10;	ind (norm End Deta esigner a sf (roof Ll f (Lum DC	al to the face) ils as applicat s per ANSI/TF .: Lum DOL=1 DL=1.15 Plate	, ble, rl 1. .15		1110.	A A A A A A A A A A A A A A A A A A A	0235	EER.ER

Annun Millin

April 1,2025

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

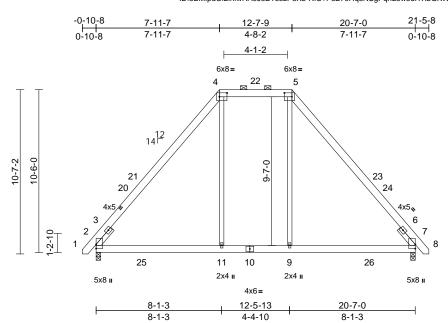
Job	Truss	Truss Type	Qty Ply		Install 34 Magnolia Acres-Roof-Chatham FA MNR SP 3	
25030166-01	B04	Piggyback Base Supported Gable	1	1	Job Reference (optional)	.5
Carter Components (Sanford, NC	c), Sanford, NC - 27332,	Run: 8.73 S Feb 19 2	9 2025 MiTek Industries, Inc. Sun Mar 30 12:17:30 Pa	age: 2		

14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 161 lb uplift at joint 27, 136 lb uplift at joint 16, 42 lb uplift at joint 21, 3 lb uplift at joint 25, 95 lb uplift at joint 24, 107 lb uplift at joint 25, 223 lb uplift at joint 26, 203 lb uplift at joint 26, 93 lb uplift at joint 19, 94 lb uplift at joint 108 lb uplift at joint 18 and 218 lb uplift at joint 17.

15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

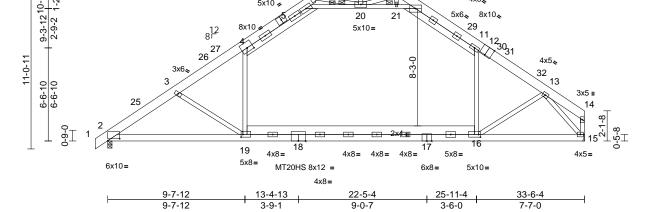
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Sun Mar 30 12:17:30 ID:?FtLvZdnlgsi8lvr3LwnHLzOVtX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 34 Magnolia Acres-Roof-Chatham FA MNR SP 3FL
25030166-01	B01	Piggyback Base	2	1	I72384796 Job Reference (optional)

Run; 8,73 S Feb 19 2025 Print; 8,730 S Feb 19 2025 MiTek Industries, Inc. Sun Mar 30 12:17:29 ID:8EMIpdOf2ihIwHA9J6BTsezP6Xb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1


30ale = 1.74.3													
Plate Offsets	(X, Y): [4:0-5-14,0-3-0)], [5:0-5-14,0-3-0]				<u>.</u>							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI20	CSI TC BC WB Matrix-MSH	0.59 0.48 0.16	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 11-14 11-14 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 156 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	 2x6 SP No.2 2x4 SP No.3 Left 2x4 SP No.2 1-6-0 Structural wood she 5-1-4 oc purlins, exit 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing.)-0 max.): 4-5. v applied or 10-0-0 oc 7=0-3-8 .C 12) C 14), 7=-65 (LC 15)	Plate I DOL= Cs=1. No.2 4) Unbala design 5) This tr load o overha 6) Provid chord 8) * This on the 3-06-0	ASCE 7-16; Pr=20.0 p DOL=1.15); Pf=20.0 ps 1.15); Is=1.0; Rough C 20; Ct=1.10 anced snow loads have the start of the start uss has been designed f 12.0 psf or 1.00 times angs non-concurrent wi e adequate drainage to tag non-concurrent wise has been designed live load nonconcurrent truss has been designed bottom chord in all are to tall by 2-00-00 wide v and any other members 2.5A Simpson Strong-1	f (Lum DC at B; Fully been could for great flat roof I th other Ii prevent for a 10. t with any ed for a liv as where will fit bett s, with BC	DL=1.15 Plate Exp.; Ce=0.1 nsidered for t er of min rool oad of 20.0 p ve loads. water pondin 0 psf bottom other live loa re load of 20. a rectangle ween the bott CDL = 10.0ps	e 9; his f live sf on g. g. ads. 0psf						
this desig 2) Wind: AS Vasd=103 II; Exp B; and C-C B to 3-8-9, B 16-10-7 to cantilever right expo	5-7=-1318/271, 7-8: 2-11=-248/645, 9-1: 4-11=-42/414, 5-9=- ed roof live loads have m. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed; MWFRS (er Exterior(2E) -0-8-6 to 2 Exterior(2E) -0-8	3/271, 4-5=-824/215, =0/32 1=-45/649, 7-9=-108/ .42/414 been considered for (3-second gust) CDL=6.0psf; h=-25ft; tyelope) exterior zon -3-10, Interior (1) 2-3 5-10-7, Interior (1) 18-3-6 to 21-3-6 zone ; end vertical left anc and forces & MWFR:	Cat. e 10 c c c c c c c c c c c c c c c c c c c	mended to connect trus T at jt(s) 2 and 7. This bees not consider lateral ical purlin representatic orientation of the purlin n chord. SE(S) Standard	ss to bear connectio forces. on does n	ing walls due n is for uplift ot depict the s	only				SEA 0235		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

11111111111 April 1,2025

Job	Truss	Truss Type		Qty	Ply	Install 34 Magnolia Acres-Roof-Chatham F	
25030166-01	A05	Attic		2	1	Job Reference (optional)	172384801
Carter Components (Sanfor	rd, NC), Sanford, NC - 27332, -0-10-8 4-11-4 0-10-8 4-11-4	<u>9-7-12</u> 4-8-8		:I5iCHYd9H 3 _ 20-11	zP76I-RfC?P 21-5-3 -8 25	19 2025 MiTek Industries, Inc. Sun Mar 30 12:17:29 sB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 5-11-4 26-10-4 30-7-12 33-6-4 4-6-1 0-11-0 3-9-8 2-10-9	Page: 1
T	-6		5x10 ≠ 5x10 ≠ 6x8 ≠ 7 5x10 ≠	6-0-0 2x4 II 8	6x10 = 6x10 = 928 $5x10$	6 ₅ 4x8 ₅	

Scale =	1:81
---------	------

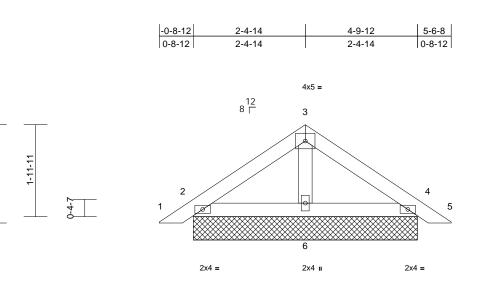
Plate Offsets (X, Y): [2:0-10-0,0-1-1	1], [4:0-5-0,0-3-4], [7:0-5-8,0-2-8], [9:0-4-0,0-2	2-12], [12:0-5-0,Edge], [16	:0-1-8,0-2-4], [19:0-1-8,0-2-4]

		1					· · · · ·					-	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.72	Vert(LL)	-0.49	16-19	>812	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.60	Vert(CT)	-0.75	16-19	>531	180	MT20HS	187/143
TCDL	10.0	Rep Stress Incr	YES		WB	0.92	Horz(CT)	0.04	15	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MSH		Attic	-0.33	16-19	>586	360		
BCDL	10.0											Weight: 336 lb	FT = 20%
LUMBER			2)	Wind: ASCE	7-16; Vult=130mp	h (3-se	cond aust)						
TOP CHORD	2x8 SP 2400F 2.0E	*Excent* 7-9:2x4 SP			oh; TCDL=6.0psf;			: Cat.					
	No.2, 4-6,10-11:2x6				closed; MWFRS (e								
BOT CHORD		*Except* 19-16:2x8 SI	P	and C-C Exte	erior(2E) -0-10-8 to	o 2-5-12	, Interior (1)						
	2400F 2.0E	·			'-8, Exterior(2R) 9-			or					
WEBS	2x4 SP No.3 *Excep	ot* 6-10:2x4 SP No.2			o 30-0-5, Exterior(
BRACING					members and for								
TOP CHORD	Structural wood she	athing directly applied	or		own; Lumber DOL	=1.60 pl	ate grip						
		except end verticals, a	and	DOL=1.60	740 0 00 0								
	2-0-0 oc purlins (6-0		3)		7-16; Pr=20.0 psf .15); Pf=20.0 psf (
BOT CHORD	Rigid ceiling directly	applied or 9-2-5 oc			ls=1.0; Rough Cat								
	bracing.	0.00, 40, 00		Cs=1.00; Ct=		D, r any	Елр., 00-0.0	σ,					
WEBS JOINTS	1 Row at midpt 1 Brace at Jt(s): 20	6-20, 10-20	4)		snow loads have b	been coi	nsidered for th	his					
JUINTS		both edges of the botto	,	design.									
	chord be sheathed i		^{///} 5)		is been designed f								
REACTIONS		15= Mechanical			psf or 1.00 times fl			sf on					
	Max Horiz 2=239 (L0				on-concurrent with								
	Max Grav 2=205 (LC		18) <u>6)</u>		quate drainage to p								
FORCES	(lb) - Maximum Com		· ()		MT20 plates unle			ed.					
TOROLO	Tension	pression/maximum	8)		is been designed f ad nonconcurrent v			de					
TOP CHORD		3/0, 3-4=-3016/0,	9)		as been designed							and the second s	in the second se
		0/1339, 7-8=-86/1582,	3)		n chord in all areas			opsi				WITH CA	Roit
	8-9=-86/1582, 9-10=	=0/1454, 10-11=-2194/	/87,		y 2-00-00 wide wi			om			1	A. Ali	A. MATI
		14=-75/80, 14-15=-77/			y other members.						52	and so	Phille !!
BOT CHORD		19=0/2090, 15-16=0/17) Ceiling dead	load (5.0 psf) on r	member	(s). 4-6, 10-1 ⁻	1,					ALL S
WEBS	,	19=0/1395, 11-16=0/10	016,		10-21; Wall dead	load (5.	0psf) on men	nber				:	N 1 2
	13-16=-121/528, 6-2			(s).4-19, 11-								SEA	1 E E
	20-21=-3925/62, 10-		11		d live load (40.0 ps					E			• -
	13-15=-2867/0, 8-20	J=-251/82, I=-6/391, 9-20=-272/72	21 10		oad (5.0 psf) appli			9		=		0235	94 : =
NOTEO	7-20=-345/715, 9-21	1=-0/391, 9-20=-272/7			er(s) for truss to tru					1			1 2
NOTES	ed roof live loads have	been considered for	13		rlin representation ation of the purlin a			size				A.	a: 3
this design		been considered for		bottom chord		along the	e top anu/or				2.	NGIN	FERRAS
uns design	1.		14		necked for L/360 d	eflection	1.				11	UNA	1. V.N
				DAD CASE(S)								B	MIL
					Clandara							min	in the second se
												۸n	ril 1 2025

April 1,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932


GINEERING B

Job	Truss	Truss Type	Qty	Ply	Install 34 Magnolia Acres-Roof-Chatham FA MNR SP 3FL
25030166-01	РВА	Piggyback	2	1	I72384797 Job Reference (optional)

2-1-5

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Sun Mar 30 12:17:31 ID:CI88bTvCJR0IR1ve7bxNBEzP73n-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4-9-12

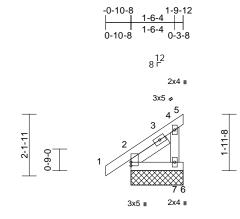
Scal	e =	1.24	7

		i		· · · · · ·								
Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.17	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 20 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins. Rigid ceiling directly bracing.	C 14), 4=-32 (LC 15) C 21), 4=185 (LC 22),	design. 6) This truss ha load of 12.0 overhangs n 7) Gable requir 8) Gable studs 9) This truss ha chord live lo 10) * This truss l on the botton 3-06-00 tall chord and an	snow loads have t as been designed f psf or 1.00 times fl on-concurrent with es continuous bott spaced at 2-0-0 or as been designed f ad nonconcurrent v has been designed n chord in all areas by 2-00-00 wide wi hy other members.	or greate at roof le other liv om chor c. or a 10.0 with any l for a liv s where Il fit betv	er of min roof bad of 20.0 ps ve loads. d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle	live sf on ds. Dpsf					
FORCES	(lb) - Maximum Corr	,										
TORGES	Tension											
TOP CHORD BOT CHORD WEBS		6, 3-4=-86/86, 4-5=0/2)	Detail for Co consult qual	12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.								
NOTES			LOAD CASE(S)	Standard								
1) Unbalance	ed roof live loads have	been considered for										
Vasd=103 II; Exp B; I and C-C C exposed ; members Lumber D 3) Truss desi only. For see Stand or consult 4) TCLL: ASI Plate DOL	CE 7-16; Vult=130mph imph; TCDL=6.0psf; B Enclosed; MWFRS (er corner(3E) zone; cantil end vertical left and ri, and forces & MWFRS OL=1.60 plate grip DC igned for wind loads in studs exposed to wind ard Industry Gable En qualified building desi CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L i); Is=1.0; Rough Cat E	CDL=6.0psf; h=25ft; C ivelope) exterior zone ever left and right ght exposed;C-C for for reactions shown; uL=1.60 the plane of the truss (normal to the face), d Details as applicabl gner as per ANSI/TPI roof LL: Lum DOL=1. um DOL=1.15 Plate	e, 1.							and the second s	SEA 0235	· ·

- and C-C Corner(3E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 3)
- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 4) DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A. MILLIN


April 1,2025

Job	Truss	Truss Type	Qty	Ply	Install 34 Magnolia Acres-Roof-Chatham FA MNR SP 3FL
25030166-01	J01	Jack-Open Supported Gable	2	1	I72384798 Job Reference (optional)

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Sun Mar 30 12:17:31 ID:p?T59M0F7sjLFpEcsyzC_RzOsqI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

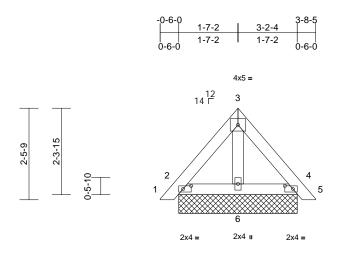
Page: 1

Scale - 1:40

Scale = 1:40													
Loading TCLL (roof) Snow (Pf)	(psf) 20.0 20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.08 0.03	DEFL Vert(LL) Vert(CT)	in n/a n/a	(loc) -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
TCDL	10.0	Rep Stress Incr	YES		WB	0.03	Horz(CT)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC202	21/TPI2014	Matrix-MP		,						
BCDL	10.0					-						Weight: 12 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 Structural wood she 1-9-12 oc purlins. Rigid ceiling directly bracing. (size) 2=1-9-12 7=1-9-12 Max Horiz 2=63 (LC Max Uplift 2=63 (LC (LC 14) Max Grav 2=179 (LI	athing directly applie applied or 10-0-0 or 5=1-9-12, 6=1-9-12 14) 12), 6=-20 (LC 25), C 21), 5=9 (LC 14), 6	8 c 9 2, 7=-66 ¹	 design. This truss ha load of 120 overhangs n Gable requir Gable studs This truss ha chord live loo * This truss loon the bottoo 3-06-00 tall lochord and a Provide mee bearing plate 	snow loads have snow loads have psf or 1.00 times on-concurrent wit es continuous be spaced at 2-0-0 c is been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w y other members hanical connectio e capable of withs at joint 5 and 66 Standard	for great flat roof le h other li ttom chor c. for a 10.1 with any d for a liv as where vill fit betw s. on (by oth tanding 2	er of min roof oad of 20.0 p ve loads. d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the bott ers) of truss i 20 lb uplift at j	f live sf on ads. Opsf om to					
FORCES	(lb) - Maximum Con Tension	7=119 (LC 21) npression/Maximum											
TOP CHORD	1-2=0/44, 2-4=-74/3	9, 4-5=-15/11											
BOT CHORD													
WEBS	4-7=-97/144												10.
Vasd=103 II; Exp B; and C-C 0 for memb	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed; MWFRS (er Corner(3E) zone; end v ers and forces & MWF iOL=1.60 plate grip DC	CDL=6.0psf; h=25ft; nvelope) exterior zor vertical left exposed; RS for reactions sho	ne C-C									SEA	ROL
only. For see Stand or consult 3) TCLL: AS Plate DOI	igned for wind loads ir studs exposed to wind lard Industry Gable En qualified building desi CE 7-16; Pr=20.0 psf (=1.15); Pf=20.0 psf (=1.15); Pf=20.0 psf (=1.25); Is=10, Paugh Cat F	I (normal to the face) d Details as applical gner as per ANSI/TF roof LL: Lum DOL= um DOL=1.15 Plate), ble, PI 1. 1.15							11110			• •

Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

April 1,2025


Million Million

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 34 Magnolia Acres-Roof-Chatham FA MNR SP 3FL
25030166-01	PBC1	Piggyback	2	1	I72384799 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Sun Mar 30 12:17:31 ID:j3GnlCnmpE9zehxvSH2DGgzOXTJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

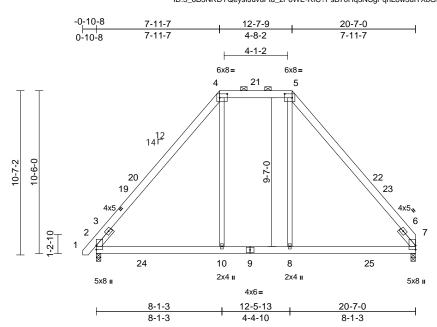
I	3-2-4	
ſ		

Scale = 1:31 Plate Offsets (X, Y): [2:0-2-10.0-1-0]. [4:0-2-10.0-1-0]

Plate Offsets ((X, Y): [2:0-2-10,0-1-0], [4:0-2-10,0-1-0]									-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.04 0.05 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3 Structural wood she 4-2-11 oc purlins. Rigid ceiling directly bracing.	applied or 10-0-0 oc 4=3-2-4, 6=3-2-4 ; 12) ; 15), 4=-14 (LC 15), ; 21), 4=139 (LC 22) 21) pression/Maximum 7, 3-4=-82/33, 4-5=0	Plate DOL DOL=1.15 Cs=1.00; (5) Unbalance design. 6) This truss load of 12. overhangs 7) Gable requ 8) Gable stud 9) This truss chord live 10) * This trus on the bott 3-06-00 ta chord and 11) N/A	CE 7-16; Pr=20.0 ps =1.15); Pf=20.0 ps =1.15); Pf=20.0 ps); Is=1.0; Rough Ca Ct=1.10 d snow loads have has been designed 0 psf or 1.00 times non-concurrent wit uires continuous bol is spaced at 4-0-0 c has been designed load nonconcurrent s has been designe om chord in all area Il by 2-00-00 wide w any other members	f (Lum DC at B; Fully been cou- for great flat roof I th other li ttom chor oc. for a 10. with any d for a liv as where vill fit betw	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the er of min roof oad of 20.0 prove loads. d bearing. 0 psf bottom other live loa er load of 20.0 a rectangle	e 9; 1 live sf on ds. 0psf					
this design 2) Wind: ASC Vasd=103 II; Exp B; I and C-C E exposed ; members : Lumber Du 3) Truss desi only. For see Stand	ed roof live loads have n. CE 7-16; Vult=130mph Imph; TCDL=6.0psf; Bi Enclosed; MWFRS (er Exterior(2E) zone; canti end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO OL=1.60 plate grip DO igned for wind loads in studs exposed to wind lard Industry Gable En- qualified building desig	(3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zond lever left and right ght exposed;C-C for for reactions shown; L=1.60 the plane of the trus (normal to the face), d Details as applicab	Detail for (consult qu LOAD CASE(Cat. e	ard Industry Piggyb Connection to base alified building desig 5) Standard	truss as					and the second s	SEA 0235	EER.ER

April 1,2025

Page: 1

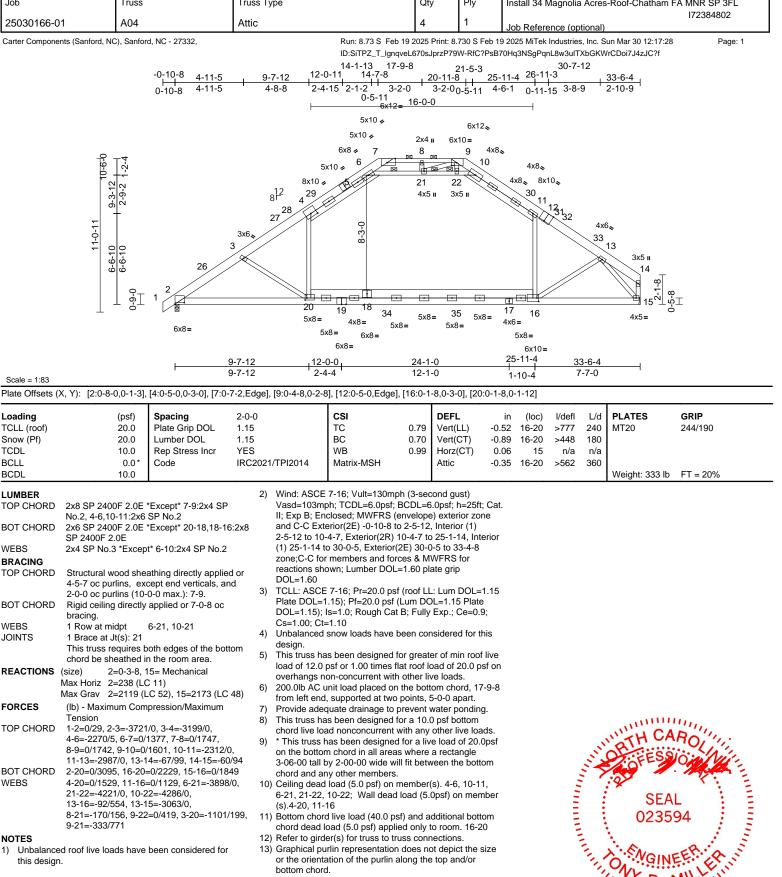

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 34 Magnolia Acres-Roof-Chatham FA MNR SP 3FL
25030166-01	B02	Piggyback Base	3	1	I72384800 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Sun Mar 30 12:17:29 ID:5_6B3NRDYQeysfJuvuFtu_zP6WE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:74	4.3
--------------	-----


Plate Offsets ((X, Y): [4:0-5-14,0-3-0], [5:0-5-14,0-3-0]										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.59 0.48 0.17	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 10-17 10-17 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 154 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1 1-6-0 Structural wood she 5-1-0 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing.)-Ó max.): 4-5. ∙ applied or 10-0-0 oc 7=0-3-8 C 13) C 13) C 14), 7=-51 (LC 15) _C 47), 7=1116 (LC 4	 Plate DOL= DOL=1.15); Cs=1.00; C Unbalanced design. This truss h load of 12.0 overhangs i Provide ade This truss h chord live ld * This truss on the botto: 3-06-00 tall chord and a 9) One H2.5A 	a show loads have as been designed psf or 1.00 times f non-concurrent with quate drainage to as been designed bad nonconcurrent has been designed or chord in all area by 2-00-00 wide w iny other members Simpson Strong-Ti	(Lum DC t B; Fully been cor for great lat roof lin other lin prevent for a 10. with any d for a liv is where ill fit betw with BC ie conne	DL=1.15 Plate Exp.; Ce=0.9 hisidered for the er of min roof bad of 20.0 ps ve loads. water ponding 0 psf bottom other live loav e load of 20.0 a rectangle veen the botto: DL = 10.0psf. ctors); live sf on j. ds. opsf om					
TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASG Vasd=103 II; Exp B; and C-C E to 3-8-9, E 16-10-7 tc end vertic	Tension 1-2=0/32, 2-4=-1319 5-7=-1319/321 2-10=-260/636, 8-10 4-10=-42/415, 5-8=- ed roof live loads have n. CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; Bi Enclosed; MWFRS (er Exterior(2E) -0-8-6 to 2 Exterior(2E) -0-8-6 to 2 Exterior(2E) 3-8-9 to 16 to 17-7-0, Exterior(2E) 1 al left exposed; C-C for for reactions shown; Lu	-)/265, 4-5=-825/215,)=-51/640, 7-8=-113/4 42/414 been considered for (3-second gust) CDL=6.0psf; h=25ft; invelope) exterior zone -3-10, Interior (1) 2-3 5-10-7, Interior (1) 17-7-0 to 20-7-0 zone members and forces	UPLIFT at j and does nu 10) Graphical p 534 or the orien bottom chor LOAD CASE(S) Cat.		onnectio orces. n does no	n is for uplift o ot depict the s	only		A Summer		SEA 0235	94

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Unuminitian and a second April 1,2025

Job		Truss	Truss Type	Qty	Ply	Install 34 Magnolia Acres-Roof-Chatham FA MNR SP 3FL
25030	0166-01	A04	Attic	4	1	I72384802 Job Reference (optional)

NOTES

WEBS

Scale = 1:83

Loading

TCLL (roof)

Snow (Pf)

TCDL

BCLL

BCDL

LUMBER

WFBS

WEBS

JOINTS

FORCES

TOP CHORD

BOT CHORD

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

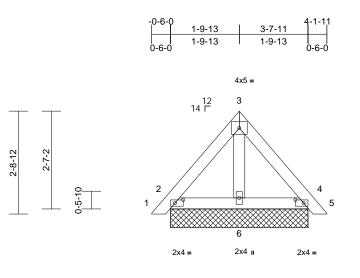
BOT CHORD

1) Unbalanced roof live loads have been considered for this design

9-21=-333/771

- 11) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 16-20 Refer to girder(s) for truss to truss connections.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 14) Attic room checked for L/360 deflection.

3594 munn April 1,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Install 34 Magnolia Acres-Roof-Chatham FA MNR SP 3FL
25030166-01	PBB1	Piggyback	6	1	I72384803 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Sun Mar 30 12:17:31 ID:9XVhwYcLRaLRac4UBbJ_kSzOWLE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	3-7-11	
Scale = 1:30.5	1	
Plate Offsets (X, Y): [2:0-2-10,0-1-0], [4:0-2-10,0-1-0]		

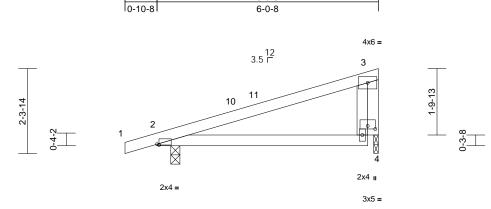
Plate Offsets	(X, Y): [2:0-2-10,0-1-0], [4:0-2-10,0-1-0]									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr Y	-0-0 .15 .15 /ES RC2021/TPI2014	CSI TC 0.06 BC 0.06 WB 0.01 Matrix-MP	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-8-2 oc purlins. Rigid ceiling directly bracing. (size) 2=3-7-11, Max Horiz 2=-61 (LC Max Uplift 2=-18 (LC (LC 14)) Max Grav 2=157 (LC 6=111 (LC (lb) - Maximum Com Tension 1-2=0/23, 2-3=-99/43 	4=3-7-11, 6=3-7-11 12) 15), 4=-17 (LC 15), 6= 21), 4=157 (LC 22), 21) pression/Maximum 3, 3-4=-99/40, 4-5=0/23	Plate DOL= DOL=1.15); Cs=1.00; Ct 5) Unbalanced design. 6) This truss h load of 12.0 overhangs r 7) Gable requi 8) Gable studs 9) This truss h chord live lo 10) * This truss on the botto 3-06-00 tall chord and a 11) N/A	E 7-16; Pr=20.0 psf (roof L 1.15); Pf=20.0 psf (Lum D Is=1.0; Rough Cat B; Full =1.10 snow loads have been co as been designed for grea psf or 1.00 times flat roof non-concurrent with other I res continuous bottom cho spaced at 4-0-0 oc. as been designed for a 10 ad nonconcurrent with any has been designed for a li m chord in all areas where by 2-00-00 wide will fit bet ny other members.	DL=1.15 Plate v Exp.; Ce=0.9 Insidered for th ter of min roof load of 20.0 ps vive loads. rd bearing. 0 psf bottom v other live loav ve load of 20.0 a rectangle); live sf on ds. 0psf					
NOTES 1) Unbalance this desig 2) Wind: AS Vasd=100 II; Exp B; and C-C exposed members Lumber 3) Truss des only. For see Stand	ced roof live loads have	(3-second gust) CDL=6.0psf; h=25ft; Cai welope) exterior zone lever left and right ght exposed;C-C for for reactions shown; L=1.60 the plane of the truss (normal to the face), d Details as applicable,	Detail for Co consult qual LOAD CASE(S) t.	rd Industry Piggyback Trus onnection to base truss as ified building designer.) Standard						SEA 0235	94 EER. P. M.

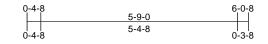
April 1,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 34 Magnolia Acres-Roof-Chatham FA MNR SP 3FL
25030166-01	G01	Monopitch	8	1	I72384805 Job Reference (optional)


6-0-8


-0-10-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Sun Mar 30 12:17:31 ID: JHuAcM1 ilx fnQCok2NlpG1zOUQ2-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?ff

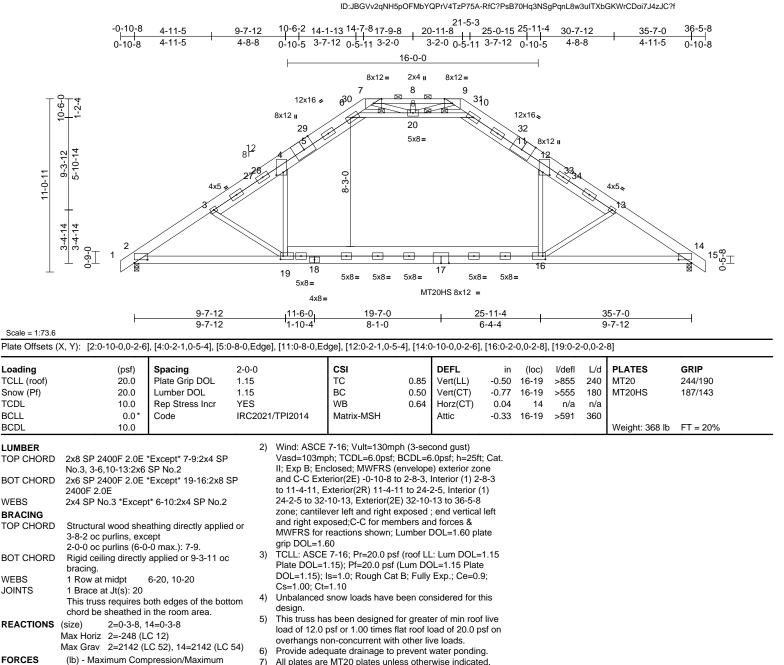
Page: 1

Scale = 1:31.4

Plate Offsets (X, Y): [2:0-0-10,0-0-4], [4:0-2-8,0-1-0]

Plate Offsets	S (X, Y): [2:0-0-10,0-0-4	ij, [4:0-2-8,0-1-0]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TP	12014	CSI TC BC WB Matrix-MP	0.59 0.39 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.08 -0.10 0.00	(loc) 4-9 4-9 2	l/defl >873 >696 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORE BOT CHORE WEBS OTHERS BRACING TOP CHORE BOT CHORE FORCES TOP CHORE BOT CHORE	 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-3-0, 4 Max Horiz 2=74 (LC Max Uplift 2=-120 (L Max Grav 2=417 (LC (Ib) - Maximum Com Tension 1-2=0/21, 2-3=-117/ 	cept end verticals. v applied or 10-0-0 oc 4=0-1-8 10) .C 10), 4=-86 (LC 10 C 21), 4=275 (LC 21) spression/Maximum	cha 6) * T on 3-CC ed or 7) Be usi c de: 5 8) Pra be: 9) On rec 9) UP) UP	ord live loa his truss h the bottor 06-00 tall b ord and ar aring at jo signer sho ovide mec aring plate he H2.5A S commende PLIFT at jt(d does not	is been designed fr ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide will by other members. int(s) 4 considers p FPI 1 angle to grain uld verify capacity hanical connection e at joint(s) 4. Simpson Strong-Tie ed to connect truss s) 2 and 4. This co t consider lateral for Standard	with any for a live s where Il fit betw parallel of bear of bear of bear of bear to bear ponnectio	other live load e load of 20. a rectangle veen the bott to grain value a. Building ing surface. ers) of truss ctors ing walls due	0psf tom e to ≥ to					
Vasd=10 II; Exp B and C-C to 2-9-0, right exp for reacti DOL=1.6 2) TCLL: A Plate DC DOL=1.1 Cs=1.00 3) Unbaland design.	SCE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B ; Enclosed; MWFRS (er Exterior(2E) -0-10-8 to Exterior(2E) 2-9-0 to 5- iosed;C-C for members ions shown; Lumber DC 30 SCE 7-16; Pr=20.0 psf (L 15); Is=1.0; Rough Cat E ; Ct=1.10 ced snow loads have be is has been designed fo	CDL=6.0psf; h=25ft; twelope) exterior zon 2-1.8, Interior (1) 2-1 9-0 zone; porch left; and forces & MWFR 0L=1.60 plate grip (roof LL: Lum DOL=1 .um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9 seen considered for th	e I-8 and S I.15 ; is							1 minutes		SEA 0235	• -

load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.


R. MILLIN April 1,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 34 Magnolia Acres-Roof-Chatham FA MNR SP 3FL
25030166-01	A02	Attic	9	1	I72384804 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Sun Mar 30 12:17:28

Tension TOP CHORD 1-2=0/29, 2-3=-3838/0, 3-4=-3338/0, 4-6=-2445/117, 6-7=-21/1531, 7-8=-46/1385, 8-9=-46/1385, 9-10=-21/1531, 10-12=-2445/117, 12-13=-3338/0, 13-14=-3838/0, 14-15=0/29 BOT CHORD 2-19=-41/3114, 16-19=0/2400, 14-16=0/3114 WEBS 3-19=-875/240, 4-19=0/1336, 12-16=0/1336, 13-16=-879/243, 6-20=-4408/87, 10-20=-4408/87.8-20=-231/81.

NOTES

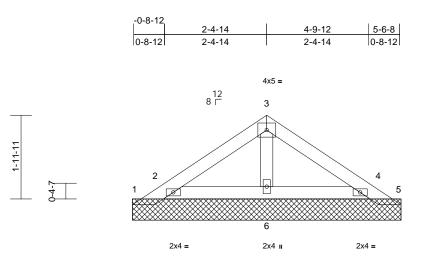
Unbalanced roof live loads have been considered for 1) this design.

7-20=-315/929, 9-20=-315/929

- All plates are MT20 plates unless otherwise indicated.
- All plates are 5x10 MT20 unless otherwise indicated. 8) 9) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Ceiling dead load (5.0 psf) on member(s). 4-6, 10-12, 6-20, 10-20; Wall dead load (5.0psf) on member (s).4-19. 12-16
- 12) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 16-19 13) Graphical purlin representation does not depict the size
- or the orientation of the purlin along the top and/or 14) Attic room checked for L/360 deflection.
- LOAD CASE(S) Standard

bottom chord.

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 34 Magnolia Acres-Roof-Chatham FA MNR SP 3FL
25030166-01	PBA1	Piggyback	15	1	I72384806 Job Reference (optional)

2-1-5

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Sun Mar 30 12:17:31 ID:616w0a5_SydQxmWUHwLu??zP7Dt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

4-9-12

Scale = 1:27.2

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP		
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190		
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.23	Vert(TL)	n/a	-	n/a	999				
TCDL	10.0	Rep Stress Incr	YES	WB	0.05	Horiz(TL)	0.00	5	n/a	n/a				
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP										
BCDL	10.0							-			Weight: 20 lb	FT = 20%		
LUMBER			4) TCLL: ASCE	7-16; Pr=20.0 psf	(roof LL	.: Lum DOL=	1.15							
TOP CHORD	2x4 SP No.2		Plate DOL=1	I.15); Pf=20.0 psf (L	um DC	L=1.15 Plate	•							
BOT CHORD	2x4 SP No.3		DOL=1.15);	DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;										
OTHERS	2x4 SP No.3		Cs=1.00; Ct=											
BRACING			,	snow loads have b	een cor	sidered for the	nis							
TOP CHORD	Structural wood she	athing directly applie	ed or design.											
	6-0-0 oc purlins.	0 , 11	Gable requir	es continuous botto		d bearing.								
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc		spaced at 4-0-0 oc										
	bracing.			as been designed fo			-1							
REACTIONS	(size) 1=6-4-0, 2	2=6-4-0, 4=6-4-0, 5=		ad nonconcurrent w nas been designed										
	6=6-4-0			nas been designed n chord in all areas			Jpsi							
	Max Horiz 1=45 (LC	11)		by 2-00-00 wide will			h							
	Max Uplift 1=-82 (LC		, 4=-1 chord and ar	ny other members.	III Detw	veen the bott	5111							
	· · · ·	5=-11 (LC 15), 6=-19		hanical connection	(by oth	ers) of truss t	o.							
	15)		, bearing plate	e capable of withsta										
	Max Grav 1=46 (LC	,, ,, ,,	4=3 1 11 lb unlift	t at joint 5 and 19 lb										
		5=107 (LC 22), 6=34		Simpson Strong-Tie										
	22)		recommende	ed to connect truss	to beari	ng walls due	to							
FORCES	(lb) - Maximum Com	npression/Maximum	UPLIFT at jt	(s) 2 and 4. This co	nnectio	n is for uplift	only							
TOP CHORD	Tension 1-2=-59/92, 2-3=-44	107 2 4 40/126		t consider lateral fo										
TOP CHORD	1-2=-59/92, 2-3=-44 4-5=-56/27	/107, 3-4=-40/136,		d Industry Piggyba										
BOT CHORD	2-6=-83/80, 4-6=-83	2/80		nnection to base tru		applicable, or						111.		
WEBS	3-6=-225/85	00		consult qualified building designer.							White CA	DUL		
NOTES	0 0- 220/00		LOAD CASE(S)	Standard							"aTH UT	10/ (I)	÷	
	ed roof live loads have	been considered for								5	OFFESS	in A	11	
this design		been considered for								Ň		NIG-	12	
	CE 7-16; Vult=130mph	(3-second quist)										un		
	mph; TCDL=6.0psf; B		Cat								*	. <u> </u>	-	
	Enclosed; MWFRS (er								=		SEA	Li	=	
	xterior(2E) zone; cant								=	:	0235		=	
	end vertical left and right								=		0235	54	=	
	and forces & MWFRS												-	
	OL=1.60 plate grip DC									-	. A.	ai	3	
	gned for wind loads in								111111 March	21	VGIN	EE	5	
	studs exposed to wind									11	A	The second		
see Standa	ard Industry Gable En	d Details as applicat	ole,								IL R	MIL		

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

