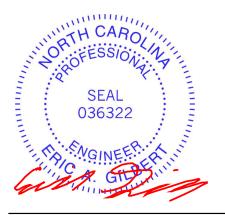


Trenco 818 Soundside Rd Edenton, NC 27932

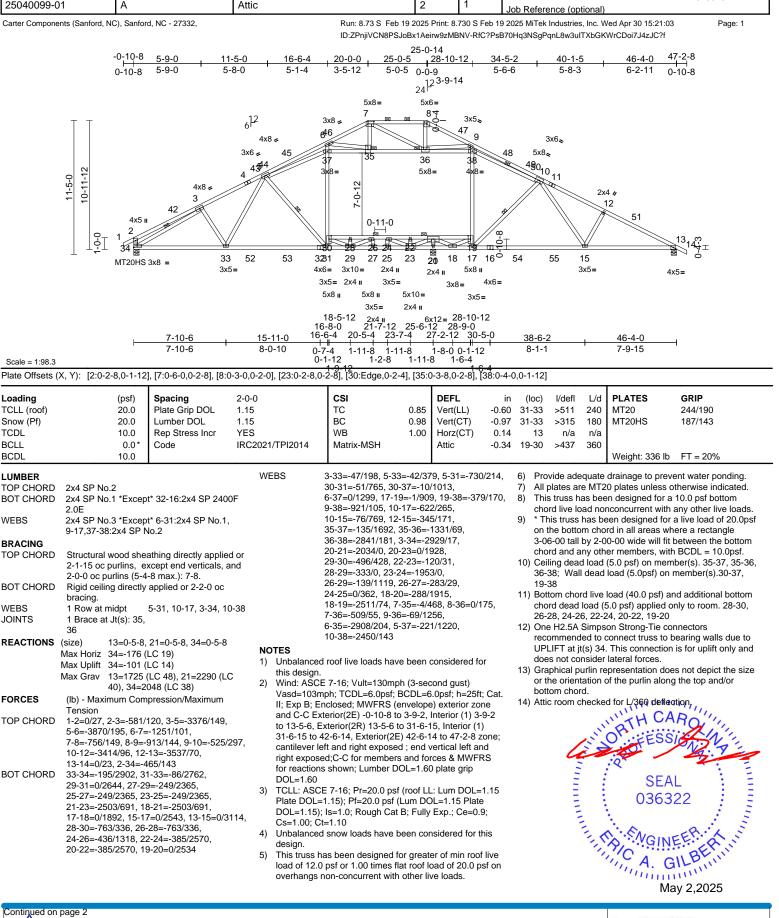

Re: 25040099-01 1001 Serenity-Roof-B329 B RH CP

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I73150287 thru I73150329

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844



May 2,2025

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

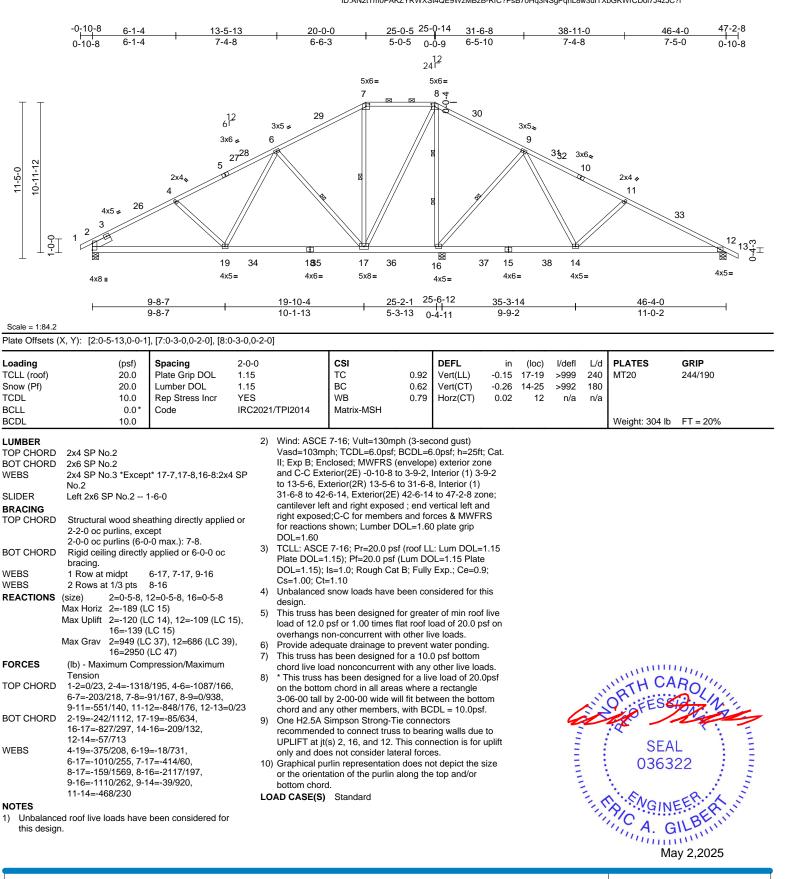
Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	A	Attic	2	1	Job Reference (optional)	173150287

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	A	Attic	2	1	Job Reference (optional)	173150287
Carter Components (Sanford, NC	C), Sanford, NC - 27332,	Run: 8.73 S F	eb 19 2025 Print: 8	.730 S Feb 1	9 2025 MiTek Industries, Inc. Wed Apr 30 15:21:03	Page: 2

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 15:21:03 ID:ZPnjiVCN8PSJoBx1Aeirw9zMBNV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	A1	Piggyback Base	1	1	Job Reference (optional)	173150288

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 15:21:05 ID:AN2tTm0PAKZYRWXSt4QE9WzMBzB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	A2	Piggyback Base	2	1	Job Reference (optional)	173150289

25040099-01		A2		Pi	ggyba	ack Base		2	1		Job Refei	rence (c	otional)		17315	50289
arter Componen	ts (Sanford,	NC), Sanfor	d, NC - 27332,								2025 MiTel	k Industri	es, Inc. V	Ved Apr 30 15:2 (WrCDoi7J4zJ0		Page: 1
	-0-10-8	6-1-4		13-5-13		20-	0-0	25-0-5	25-0-14	31-6-8		38	8-11-0		46-4-0	1
	0-10-8	6-1-4	I	7-4-8		6-6	6-3	5-0-5	0-0-9	6-5-10	I	7	'-4-8	Ţ	7-5-0	1
							5x6=		12 24 Γ 5x6=							
							7		8 4							
				6 ¹²		2	8			29	0.5					
				3x6 ≠		3x5 = 6			/		3x5 ≈ 9					
12				26 ²⁷ 5		×.			⊠		X	3031	3x6 ≈ ∖ 10			
<u>11-0-0</u> 10-11-12			^{2x4} ,	m) //	⊠					$\langle \rangle$	10	2x4 /		
~	4	x5 25	4	1		/*			⊠	\$				11	32	
	2 3															
		<u> </u>											¥⁄			12 m
,	8			18 4x5=	33	1 7 84 4x6=	16 5x8=	35	⊠ 15	36	14 4x6=	37	13 4x5=			ن 4x5=
	4x8			470-			5,0=		4x5=				47.0=			
	H		<u>9-8-7</u> 9-8-7	-+		<u>19-10-4</u> 10-1-13		<u>25-2-1</u> 5-3-13	25-9-8 0-7-7		<u>85-3-14</u> 9-6-6				<u>-4-0</u> -0-2	
Scale = 1:82.9 ate Offsets (X	(Y): [2:0-	5-13,0-0-1], [7:0-3-0,0-2-0]	, [8:0-3-0,	.0-2-0], [12:0-1-4,0-	0-1]									
oading		(psf)	Spacing	2-0	-0		csi		DEFL	i	in (loc)	l/def	L/d	PLATES	GRIP	
CLL (roof) now (Pf)		20.0 20.0	Plate Grip DO Lumber DOL		5		TC BC	0.91 0.61	Vert(LL)	-0.1	5 16-18	>999	240	MT20	244/19	0
CDL		10.0 0.0*	Rep Stress Ind Code	r YE	S	/TPI2014	WB Matrix-MSH	0.78	· · · ·					-		
		10.0	Code		52021	/1112014	Wath A-Wish							Weight: 30	3 lb FT = 20	0%
IEBS RACING OP CHORD OT CHORD IEBS EACTIONS (N ORCES OP CHORD	No.2 Left 2x6 S Structural 2-2-0 oc p 2-0-0 oc p 2-0-0 oc p Rigid ceili bracing. 1 Row at 2 Rows at size) Max Horiz Max Uplift Max Grav (lb) - Maxi Tension 1-2=0/23, 6-7=-207/ 9-11=-572 2-18=-247	b.3 *Excep P No.2 1 wood sheat purlins, excourtins (6-0 ng directly midpt 1/3 pts 2=0-5-8, 1 2=-174 (Li 2=-174 (Li 2=-174 (Li 2=-174 (Li 2=-1326 (Li 15=-2931 (imum Com 2-4=-1336 201, 7-8= 1/138, 11-1 7/1125, 16- 06/285, 13-	athing directly a ept -0 max.): 7-8. applied or 6-0-0 6-16, 7-16, 9-15 8-15 12= Mechanical, C 15) C 14), 12=-90 (I LC 15) C 37), 12=648 (L	opplied or 0 oc 15=0-5-8 .C 15), C 39), um i/163,	4) 5) 6) 7) 8) 9)	and C-C Ext to 13-5-6, Ex 31-6-8 to 41- right expose for reactions DOL=1-60 TCLL: ASCEE Plate DOL= ⁴ DOL=1.15); Cs=1.00; Ct- Unbalanced design. This truss ha load of 12.0 overhangs n Provide ader This truss ha on the bottor 3-06-00 tall H chord and ar Refer to gird Provide mec	snow loads ha is been design psf or 1.00 tim on-concurrent quate drainage is been design ad nonconcurr aas been desig n chord in all a by 2-00-00 wid hy other memb er(s) for truss i hanical conner	-8 to 3-9-2 -6 to 31-6 (2E) 41-7 ossed; enc bers and f er DOL=1.) psf (roof I psf (Lum E Cat B; Ful ve been c ed for greater ed for a fue ed for a 10 ent with an ined for a 11 ere swher e will fit be ers, with E to truss con to truss con cot truss con cot truss con	, Interior (1) -8, Interior (1) -9, Inte) 3-9-2 (1) zone; and VFRS o DL=1.15 late =0.9; or this oof live 0 psf on ding. m loads. 20.0psf le oottom)psf. ss to		C a		NINTH CORTE	CAR	
/EBS OTES) Unbalancec	4-18=-374 6-16=-100 8-16=-162 9-15=-110 11-13=-46	1/208, 6-18)9/255, 7-1 2/1558, 8-1)8/263, 9-1 36/229	=-18/729, 6=-404/63, 5=-2096/206, 3=-40/916, been considere	d for		12. One H2.5A S recommende UPLIFT at jt(and does no Graphical pu	e capable of wi Simpson Stron ed to connect t (s) 2 and 15. T t consider late rlin representa ation of the put	g-Tie conn russ to bea his connec ral forces. ition does	ectors aring walls of tion is for u	lue to plift only ne size			A A A A A A A A A A A A A A A A A A A	03	EAL 6322 INEER	A LING
this design.					LO	bottom choro AD CASE(S)	ł.	ç	-					A.	GILBL May 2,20	25
Design va	lid for use onl	y with MiTek®	ers and READ NOTES To connectors. This d ing designer must ve	esign is base	ed only	upon parameters	shown, and is for	an individual	building compo	onent, not						n

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSE-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	A4	Piggyback Base	3	1	Job Reference (optional)	173150290

11-0-0

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 15:21:05 Page: 1 ID:SHDhqqFqYTAFw4NPKQp_EkzMC?T-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 25-0-5 25-0-14 31-6-8 6-1-4 13-5-13 20-0-0 38-11-0 46-4-0 6-1-4 7-4-8 6-6-3 5 - 0 - 50-0-9 6-5-10 7-4-8 7-5-0 12 24 5x6= 5x6= 7 4 6 28 27 12 6 3x5 ≠ 3x5. 5 8 3x6 🞜 42⁵²⁶ 29 3x6 I0-11-12 9 2x4. 2x4 🥠 3 10 24 30 4x5 🞜 2 ¥ 31 1632 15 33 13 35 17 34 12 14 4x5= 4x5= 4x6= 5x8= 4x6 =4x5= 4x8 II 4x5= 25-9-8 9-8-7 19-10-4 25-2-1 35-3-14 46-4-0 9-8-7 10-1-13 5-3-13 0-7-7 9-6-6 11-0-2 Scale = 1:81.5 Plate Offsets (X, Y): [1:0-6-1,0-0-5], [6:0-3-0,0-2-0], [7:0-3-0,0-2-0], [11:0-1-4,0-0-1] 2-0-0 CSI DEFL in (loc) l/defl L/d PLATES GRIP Loading (psf) Spacing TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.92 Vert(LL) -0.15 15-17 >999 240 MT20 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.61 Vert(CT) -0.25 12-23 >999 180 TCDL 10.0 Rep Stress Incr WB Horz(CT) YES 0.78 0.02 11 n/a n/a BCLL 0.0 IRC2021/TPI2014 Matrix-MSH Code BCDL 10.0 Weight: 302 lb FT = 20% LUMBER 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. TOP CHORD 2x4 SP No.2 II; Exp B; Enclosed; MWFRS (envelope) exterior zone BOT CHORD 2x6 SP No.2 and C-C Exterior(2E) 0-0-0 to 4-7-10, Interior (1) 4-7-10 WEBS 2x4 SP No.3 *Except* 15-6,15-7,14-7:2x4 SP to 13-5-6, Exterior(2R) 13-5-6 to 31-6-8, Interior (1) No.2 31-6-8 to 41-7-10, Exterior(2E) 41-7-10 to 46-3-4 zone; SLIDER Left 2x6 SP No.2 -- 1-6-0 cantilever left and right exposed ; end vertical left and BRACING right exposed C-C for members and forces & MWERS TOP CHORD Structural wood sheathing directly applied or for reactions shown; Lumber DOL=1.60 plate grip 2-2-0 oc purlins, except DOL=1.60 2-0-0 oc purlins (6-0-0 max.): 6-7. 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 BOT CHORD Rigid ceiling directly applied or 6-0-0 oc Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate bracing. DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; WEBS 1 Row at midpt 5-15, 6-15, 8-14 Cs=1.00; Ct=1.10 WEBS 2 Rows at 1/3 pts 7-14 Unbalanced snow loads have been considered for this 4) **REACTIONS** (size) 1=0-5-8, 11= Mechanical, 14=0-5-8 desian. Max Horiz 1=-181 (LC 15) Provide adequate drainage to prevent water ponding. 5) Max Uplift 1=-101 (LC 14), 11=-90 (LC 15), 6) This truss has been designed for a 10.0 psf bottom 14=-142 (LC 15) chord live load nonconcurrent with any other live loads. Max Grav 1=909 (LC 36), 11=647 (LC 38), 7) * This truss has been designed for a live load of 20.0psf 14=2932 (LC 46) on the bottom chord in all areas where a rectangle FORCES (lb) - Maximum Compression/Maximum 3-06-00 tall by 2-00-00 wide will fit between the bottom Tension RTH chord and any other members, with BCDL = 10.0psf. TOP CHORD 1-3=-1341/192, 3-5=-1110/163, 5-6=-211/196, 8) Refer to girder(s) for truss to truss connections. 6-7=-100/162, 7-8=0/909, 8-10=-571/138, 9) Provide mechanical connection (by others) of truss to O 10-11=-864/173 bearing plate capable of withstanding 90 lb uplift at joint 1-17=-247/1130, 15-17=-89/640, BOT CHORD 11

- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1 and 14. This connection is for uplift only and does not consider lateral forces.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord

LOAD CASE(S) Standard

Unbalanced roof live loads have been considered for 1) this design.

11-12=-69/726

10-12=-466/229

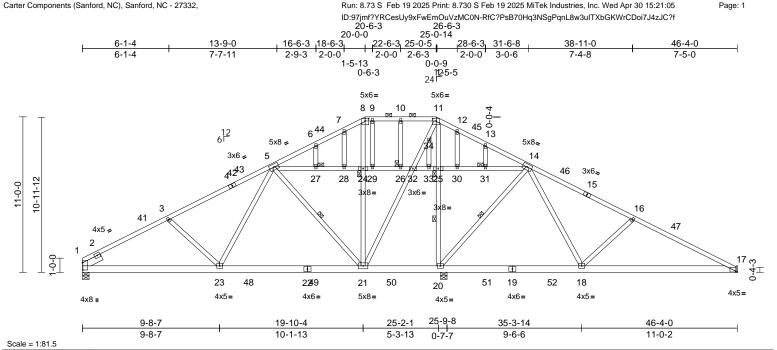
WEBS

NOTES

14-15=-804/285, 12-14=-190/126,

3-17=-375/208, 5-17=-19/732

5-15=-1011/255, 6-15=-402/62,


8-14=-1112/263, 8-12=-40/916,

7-15=-161/1557, 7-14=-2094/205,

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

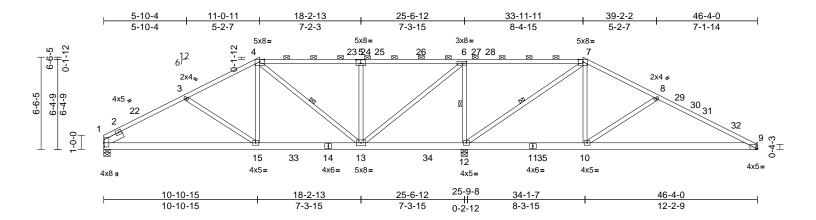
Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	A4SE	Piggyback Base Structural Gable	1	1	Job Reference (optional)	173150291
Cartes Components (Cartesd NC	S Cantard NG 07222	Burn 0 72 C Esh 40 2		700 C Eab 44	2005 MiTali Industrian Inc. Wed And 20 45:04:05	Dama: 4

Plate Offsets (X, Y): [1:0-6-1,0-0-5], [8:0-3-0,0-2-0], [11:0-3-0,0-2-0], [17:0-1-4,0-0-1]

	A, T). [1.0-6-1,0-0-5],	[0.0-3-0,0-2-0], [11.0	-3-0,0-2-0], [17.0-	-4,0-0-1]			_	-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI201	BC 0 WB 0		15 21-23 > 25 18-40 >	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 Weight: 352 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS JOINTS REACTIONS	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 *Excep SP No.2 Left 2x6 SP No.2	athing directly applied sept -0 max.): 8-11. applied or 6-0-0 oc 5-21, 20-25, 14-20 17= Mechanical, 20=0 C 15) C 14), 17=-92 (LC 15 LC 15) C 36), 17=632 (LC 38 (LC 46) pression/Maximum s-1071/163, 256/148, 7-8=-221/16 s-227/179, -12=0/715, 12-13=0/7 s-536/143, -23=-88/603,	NOTES)-5-8 1) Unbala this de:), 2) Wind: / Vasd='), 2) Vind: / Vasd='), 1]; Exp and C- to 13-5 31-7-1 cantiler right ex for rear 06, 3) Truss c or cons 4) TCLL: Plate E DOL=1 Cs=1.0	SCE 7-16; Vult=130mph (3 103mph; TCDL=6.0psf; BCI B; Enclosed; MWFRS (enve C Exterior(2E) 0-0-0 to 4-7- -4, Exterior(2R) 13-5-4 to 3 to 41-7-10, Exterior(2E) 41- rer left and right exposed; e posed; C-C for members an stions shown; Lumber DOL=	4=-311/59, -166/1588, 34=-157/1535, 25=-1934/175, 18=-42/917, =-24/339, =-23/336, =-25/347, =-17/318, =-18/321, -50/16, 7-28=-75/31, 94/31, 13-31=-46/15, =-24/385, 33-34=-49/5 een considered for 3-second gust) DL=6.0psf; h=25ft; Cat. elope) exterior zone 10, Interior (1) 4-7-10 1-7-1, Interior (1) -7-10 to 46-3-4 zone; end vertical left and d forces & MWFRS =1.60 plate grip the plane of the truss normal to the face), Details as applicable, ter as per ANSI/TPI 1. of LL: Lum DOL=1.15 n DOL=1.15 Plate Fully Exp.; Ce=0.9;	 8) Gable 9) This tr chord 10) * This on the 3-06-C chord 11) Refer 12) Provid bearin 17. 13) One H recom UPLIF and do 14) Graph or the botton LOAD CA 	e studs space russ has bee live load noi truss has bee e bottom cho 00 tall by 2-0 and any oth to girder(s) i de mechanic de mechanic to giptate cape 42.5A Simps mended to (-T at jt(s) 1 a oes not cons nical purlin re orientation d NSE(S) Sta	MT20 unless oth ed at 2-0-0 oc. en designed for a nconcurrent with een designed for rd in all areas wf 00-00 wide will fit for truss to truss al connection (by able of withstandi constrong-Tie co connect truss to I and 20. This conr sider lateral force expresentation doe of the purlin along	erwise indicated. 10.0 psf bottom any other live loads. a live load of 20.0psf here a rectangle between the bottom n BCDL = 10.0psf. connections. r others) of truss to ing 92 lb uplift at joint nnectors bearing walls due to heretion is for uplift only s. as not depict the size g the top and/or
			design 6) Provide	adequate drainage to prev	vent water ponding.			Marin Marine	2 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCB Building Component Scietu Information available from the Structural Building Component Section Component Scietul Information available from the Structural Building Component Scietul Information** and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road


Edenton, NC 27932

May 2,2025

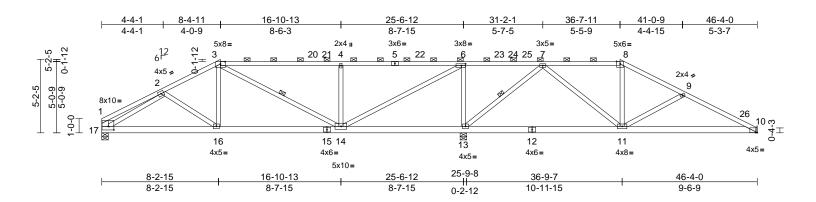
Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	A5	Нір	1	1	Job Reference (optional)	173150292

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 15:21:05 ID:E9GQhRE8mtRqfkVPk9TW5qzMCB5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:81.7

oading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.94	Vert(LL)		10-21	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.78	Vert(CT)	-0.42	10-21	>596	180		
CDL	10.0	Rep Stress Incr	YES		WB	0.85	Horz(CT)	0.03	9	n/a	n/a		
SCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MSH								
SCDL	10.0											Weight: 278 lb	FT = 20%
UMBER			2)		7-16; Vult=130m								
OP CHORD		pt* 5-7:2x4 SP 2400F			ph; TCDL=6.0psf;								
	2.0E				closed; MWFRS (ne					
OT CHORD	2x6 SP No.2				erior(2E) 0-0-0 to -7-5, Interior (1) 1		. ,	or					
/EBS LIDER	2x4 SP No.3	1.0.0			to 40-6-5, Interior		,						
	Left 2x6 SP No.2	1-0-0			41-7-10 to 46-3-4								
OP CHORD	Structurel wood ob	eathing directly applie	dor		d ; end vertical lef								
OF CHORD	4-1-7 oc purlins, ex		0.01	for members	and forces & MV	FRS for	reactions she	own;					
	2-0-0 oc purlins (2-				.=1.60 plate grip D								
OT CHORD		y applied or 10-0-0 oc	3)	TCLL: ASCE	7-16; Pr=20.0 ps	f (roof LL	: Lum DOL=	1.15					
	bracing, Except:	,			.15); Pf=20.0 psf								
	6-0-0 oc bracing: 1	2-13.			Is=1.0; Rough Ca	t B; Fully	Exp.; Ce=0.9	9;					
/EBS	1 Row at midpt	6-12, 4-13, 7-12	4	Cs=1.00; Ct				h:e					
EACTIONS	(size) 1=0-5-8,	9= Mechanical, 12=0	-5-8 ⁴⁾	design.	snow loads have	been cor	isidered for t	nis					
	Max Horiz 1=-108 (LC 15)	5)		quate drainage to	nrevent	vater nondin	a					
	Max Uplift 1=-123 (LC 14), 9=-106 (LC 1	5), 6)		as been designed			g.					
	12=-212		-,		ad nonconcurrent			ids.					
	12=2583	· · · ·	3), 7)	* This truss I	nas been designed m chord in all area	d for a liv	e load of 20.						
ORCES	(lb) - Maximum Co Tension	mpression/Maximum		3-06-00 tall I	by 2-00-00 wide w	ill fit betv	een the bott						11111
OP CHORD	1-3=-1498/241, 3-4	=-1166/182,	8)		er(s) for truss to tr							ITH UA	ROUL
		-43/827, 7-8=-668/14	4, g)		hanical connectio			to			N	ON SECO	to In 1
	8-9=-1198/218			bearing plate	e capable of withs	anding 1	06 lb uplift a	t joint		/	22	OFE	PN: 2'
OT CHORD	1-15=-214/1266, 13	,		9.							V	:0	1201
	12-13=-890/239, 10 9-10=-109/1002)-12=0/484,	10		Simpson Strong-T						() j		
VEBS		5=0/592, 6-12=-1747	212		ed to connect trus							SEA	
LDS		657/204, 5-13=-585/1			(s) 1 and 12. This		on is for uplif	t only		=	:	0363	
	4-13=-721/75, 6-13	,	,		t consider lateral f Irlin representatior		t donict the			1		0303	~~ : :
	7-12=-1566/158				ation of the purlin			SIZE			e	N	
OTES				bottom chore		along are	.00 010/01				-	·	air S
	ed roof live loads hav	e been considered for	1.	DAD CASE(S)							15	S GINI	EFICAN
this design			_								11	10	BEN
0												. A. G	ILPIN
												1111111	innin.
													av 2 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org)


May 2,2025

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

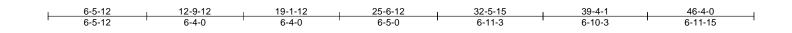
Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	A6	Нір	1	1	Job Reference (optional)	173150293

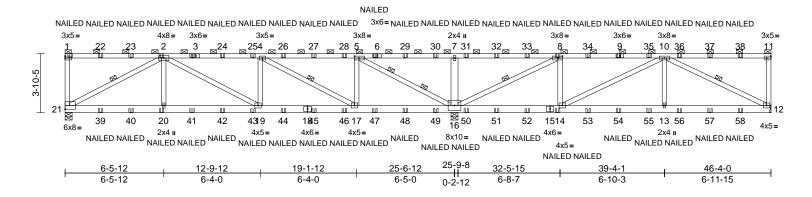
Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 15:21:06 ID:aIU11ihHbkeL8g_Z2VekD8zMCBp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:81.4

oading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof) now (Pf)		20.0 20.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC	0.77 0.47	Vert(LL) Vert(CT)		11-13 11-13	>999 >999	240 180	MT20	244/190
CDL		20.0	Rep Stress Incr	YES		WB	0.47	Horz(CT)	-0.14	11-13	>999 n/a	n/a		
CLL		0.0*	Code		21/TPI2014	Matrix-MSH	0.01	11012(01)	0.02	10	n/a	n/a		
CDL		10.0	Code	11(020	21/11/2014	Matrix Mort							Weight: 277 lb	FT = 20%
UMBER				2) Wind: ASCI	E 7-16; Vult=130m	oh (3-seo	ond gust)						
OP CHORD		o.2 *Excep	ot* 3-5:2x4 SP 2400F	-		ph; TCDL=6.0psf;								
	2.0E					nclosed; MWFRS (
OT CHORD	2x6 SP N		11 47 4.0.0 OD N- 0			terior(2E) 0-2-12 to -11-5, Interior (1)								
/EBS	2X4 SP N	0.3 "Excep	ot* 17-1:2x6 SP No.2			to 41-7-10, Exterio								
OP CHORD	Ctructure	woodate	athing directly applie	ad or		ever left and right e								
			except end verticals,		and right ex	posed;C-C for me	nbers an	d forces &						
			2-3 max.): 3-8.			reactions shown;	Lumber I	DOL=1.60 pl	ate					
OT CHORD			applied or 10-0-0 or	c ,	grip DOL=1		.,							
	bracing,			3		E 7-16; Pr=20.0 ps 1.15); Pf=20.0 psf								
		pracing: 13				Is=1.0; Rough Ca								
/EBS	1 Row at	-	7-13, 3-14		Cs=1.00; C		U, Tuny	LAP., 00-0.	.0,					
EACTIONS	(size)		nanical, 13=0-5-8,	4	,	snow loads have	been cor	sidered for t	this					
17=0-5-8 Max Horiz 17=-77 (LC 15)					design.									
			(LC 15), 13=-251 (LC	C 10) 5		quate drainage to								
		17=-141 (<i>5</i> 10), 6		as been designed								
			LC 44), 13=2384 (LC	C 39), 7) * This truss	ad nonconcurrent has been designed	d for a liv	e load of 20.						
ORCES	(lb) - Max Tension		npression/Maximum		3-06-00 tall	m chord in all area by 2-00-00 wide w	ill fit betv		tom				mmm	1117
OP CHORD		53. 2-3=-1	174/226, 3-4=-944/2	232, 8		ny other members							WAH CA	ROUL
		,	-31/779, 7-8=-668/18	~ [′]		der(s) for truss to to to the trust to the termination of terminatio of termination of termination of term			to			N	R	
	8-9=-854/	175, 9-10=	=-1329/247, 1-17=-3	01/65		e capable of withs						5.	FEST	Di Vi
OT CHORD		,	4-16=-133/1043,		10.		.a.raing i	io io apine a	, joint			ÛĎ		Las/
			-13=-15/222,	1		Simpson Strong-T							:2	
/EBS	10-11=-15		6=0/337, 8-11=-4/15	2		ed to connect trus					Ξ		SEA	
VED3		,	7=-1086/207,	з,		(s) 17 and 13. Thi			lift		=		0262	
		,	11=-14/718,			es not consider lat urlin representation			0.70		=		0363	22 : :
		,	14=-724/240,			ation of the purlin			SIZE		-	2		
	3-14=-372	2/31, 6-14=	=-281/1955		bottom choi		along are					1	Nº En	Airs
OTES				L	OAD CASE(S							15	SEA 0363	E AN
Unbalance	ed roof live l	oads have	been considered for		(-,							11	A. G.	BEN
this design														


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



May 2,2025

Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	A7GR	Flat Girder	1	1	Job Reference (optional)	173150294

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 15:21:07 ID:MzC3fFp7GD?OvuFJV4QSxMzMCI5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:75.6

Plate Offsets (X, Y): [5:0-3-8,0-1-8], [8:0-3-8,0-1-8], [11:Edge,0-1-8]

Loading TCLL (roof) Snow (Pf)	(psf) 20.0 20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.97 0.68	DEFL Vert(LL) Vert(CT)	in -0.13 -0.21	(loc) 19 17-19	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 244/190
TCDL	10.0	Rep Stress Incr	NO		WB	1.00	Horz(CT)	0.08	12	n/a	n/a		
BCLL	0.0*	Code		1/TPI2014	Matrix-MSH	1.00	11012(01)	0.00	12	n/a	n#u		
BCDL	10.0	0000										Weight: 290 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP No.1 *Excep 2.0E 2x6 SP No.2 2x4 SP No.3 *Excep		1) DOF	Vasd=103m II; Exp B; En cantilever lef	7-16; Vult=130m oh; TCDL=6.0psf; closed; MWFRS (it and right expose d; Lumber DOL=1	BCDL=6 envelope ed ; end v	6.0psf; h=25ft e) exterior zo vertical left ar	ne; nd	1) De In Ui	crease= niform Lo	, now (ba 1.15 pads (ll 11=-60	alanced): Lumber b/ft) I, 12-21=-20	Increase=1.15, Plate
BRACING TOP CHORD	2-0-0 oc purlins (3-4 end verticals.	-7 max.): 1-11, exce	pt 2)	Plate DOL=1	7-16; Pr=20.0 ps .15); Pf=20.0 psf	(Lum DC	DL=1.15 Plate)		Vert: 1= 20=-29	-133 (I (F), 2=	F), 3=-109 (F), 8= -109 (F), 6=-109	
BOT CHORD	Rigid ceiling directly bracing.	applied or 9-3-11 oc		Cs=1.00; Ct=			•						109 (F), 25=-109 (F), 109 (F), 29=-109 (F),
WEBS WEBS		8-16, 10-12, 2-21, 4- 5-16	17 3) 4)	design.	snow loads have quate drainage to					30=-109 34=-109	9 (F), 3 9 (F), 3	1=-109 (F), 32=- 5=-109 (F), 36=-	109 (F), 33=-109 (F), 109 (F), 37=-109 (F),
REACTIONS (size) 12= Mechanical, 16=0-5-8, 21=0-5-8 Max Horiz 21=-120 (LC 10) Max Uplift 12=-250 (LC 9), 16=-953 (LC 9), 21=-410 (LC 8) Max Grav 12=1112 (LC 1), 16=4089 (LC 1), 21=1645 (LC 1)				Provide adequate drainage to prevent water ponding.38=-109 (F), 39=-29 (F), 40=-29 (F), 41=-29 (F), 42=-29 (F), 43=-29 (F), 44=-29 (F), 45=-29 (F), 42=-29 (F), 43=-29 (F), 45=-29 (F), 45=-29 (F), 46=-29 (F), 45=-29 (F), 45=-29 (F), 45=-29 (F), 50=-29 (F), 51=-29 (F), 52=-29 (F), 52=-29 (F), 55=-29 (F), 55=-29 (F), 55=-29 (F), 55=-29 (F), 58=-29 (F),and any other members.Refer to girder(s) for truss to truss connections.						(F), 45=-29 (F), (F), 49=-29 (F), (F), 53=-29 (F),			
FORCES	(lb) - Maximum Com Tension	pression/Maximum	7) 8)	Provide mec	hanical connectio	n (by oth	ers) of truss						1.1.2
TOP CHORD	1-21=-388/174, 1-2= 4-5=-1090/262, 5-7= 7-8=-480/1934, 8-10 10-11=-87/52, 11-12	-480/1934,)=-720/193, 2=-296/131	75, 9)	12. One H2.5A S recommende	Simpson Strong-T ed to connect truss (s) 21. This conne	ie conne s to bear	ctors ing walls due	to			Tri	OR SESS	ROUT
BOT CHORD	20-21=-566/2170, 19 17-19=-626/2492, 10 14-16=-186/720, 13- 12-13=-360/1471	6-17=-285/1090,	10	does not cor) H10A Simps connect trus	sider lateral force on Strong-Tie cor s to bearing walls	s. inectors due to U	recommende IPLIFT at jt(s)	d to) 16.				SEA	L
WEBS NOTES		-20=0/383, 9=-102/367, 4-19=0/	11 257, 12	 lateral forces Graphical pu or the orienta bottom chore "NAILED" ind (0.148"x3.25 In the LOAD 	Irlin representation ation of the purlin	n does no along the 48"x3") o DS guidli , loads a	ot depict the s top and/or or 3-12d nes. pplied to the	size		CONTRACTOR OF CONTRACTOR	A MARTINE AND A	0363	22 EERCHUU

May 2,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	В	Common	7	1	Job Reference (optional)	173150295

Scale = 1:61

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TCDL

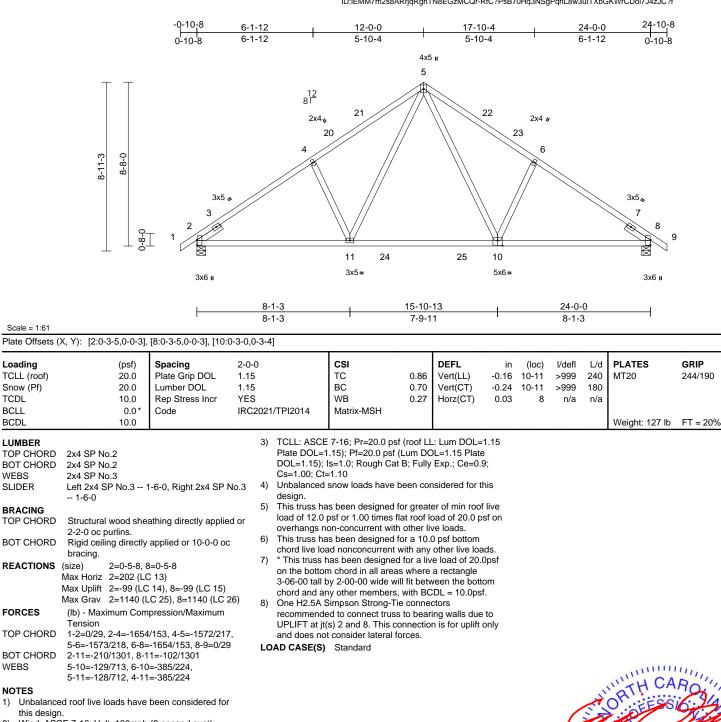
BCLL

BCDL

WEBS

SLIDER

BRACING


FORCES

WEBS

NOTES

Run; 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 15:21:08 ID:IEMM7m2s8ARrjqRghTN8EGzMCQr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 9-0-0, Exterior(2R) 9-0-0 to 15-0-0, Interior (1) 15-0-0 to 21-10-8. Exterior(2E) 21-10-8 to 24-10-8 zone: cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	B1	Нір	1	1	Job Reference (optional)	173150296

Loading

Snow (Pf)

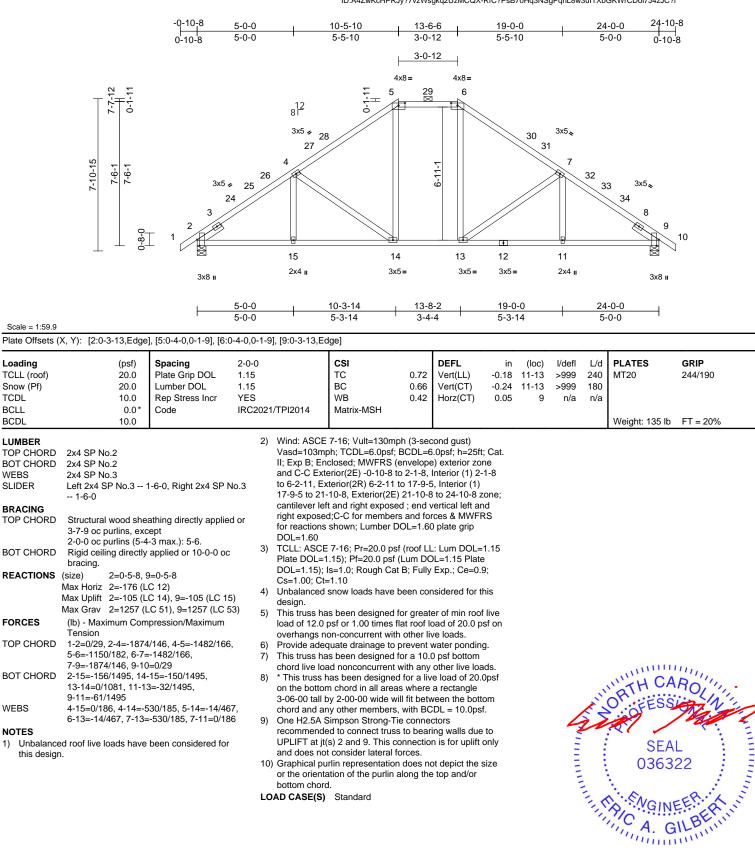
LUMBER

TCDL

BCLL

BCDL

WEBS


SLIDER

FORCES

WEBS

NOTES

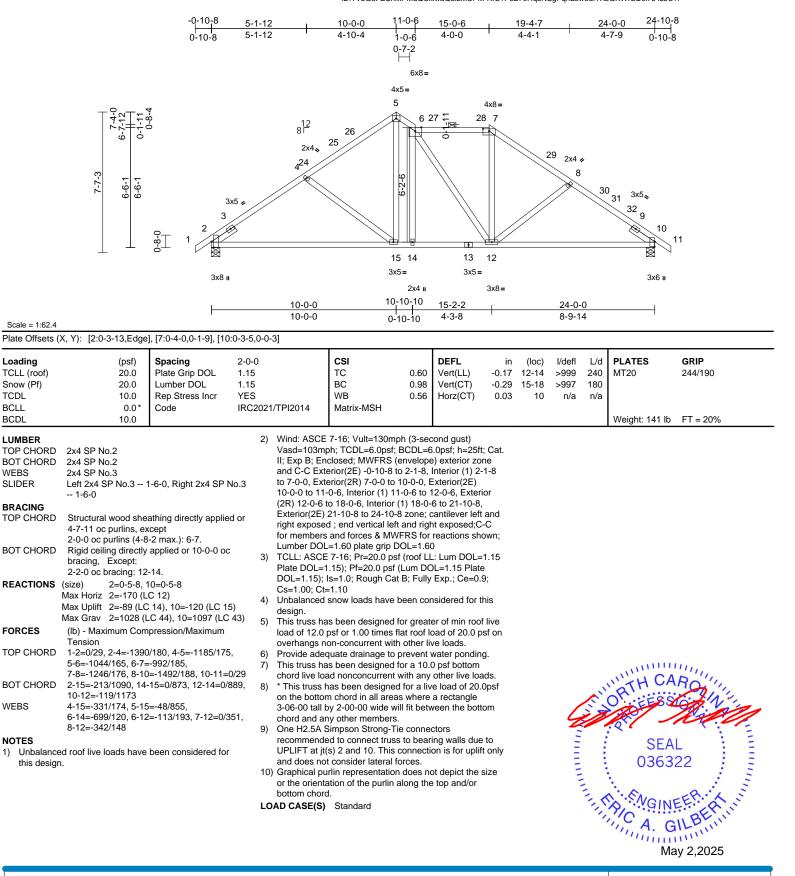
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 15:21:08 ID:A4ZwKcHPRJy?7vzWsgkq2UzMCQX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

May 2,2025

Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	B2	Roof Special	1	1	Job Reference (optional)	173150297

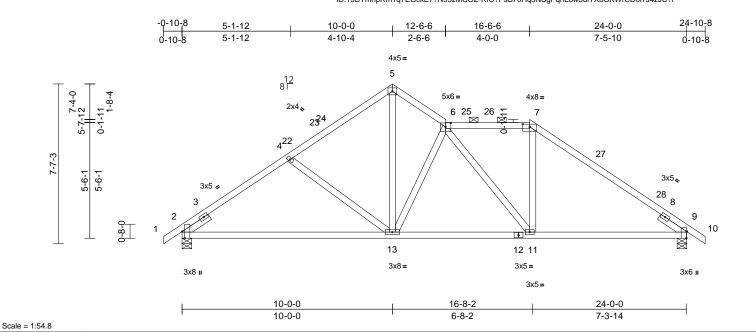

TCDL

BCLL

BCDL

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Wed Apr 30 15:21:08 ID:TVbG3FBSnMPMdQCxlwaQalzMCPM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	B3	Roof Special	1	1	Job Reference (optional)	173150298

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 15:21:08 ID:TJBYmhpRm1q7EGckE7?N93zMCOZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

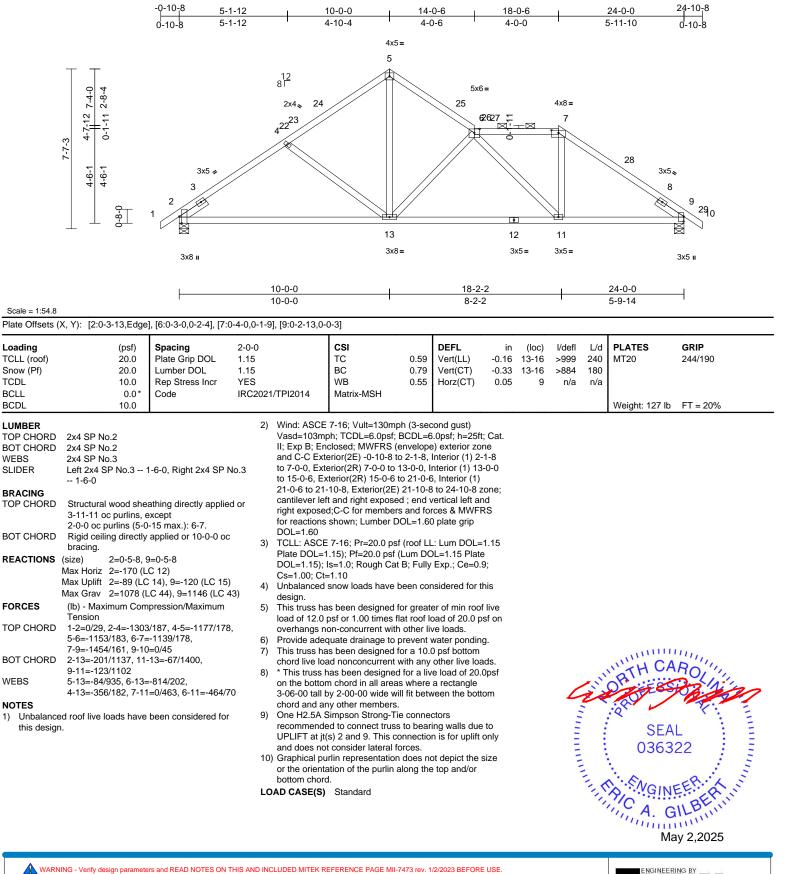
Plate Offsets (X, Y): [2:0-3-13,Edge], [6:0-3-0,0-2-4], [7:0-4-0,0-1-9], [9:0-3-13,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.87 0.73 0.51	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.36 0.04	(loc) 13-16 13-16 9	l/defl >999 >805 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 130 lb	GRIP 244/190
BUDL	10.0					-						weight. 130 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER	2x4 SP No.2 *Excep 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1-6-0		2) No.3	Vasd=103m II; Exp B; En and C-C Ext to 7-0-0, Ext	7-16; Vult=130m ph; TCDL=6.0psf; closed; MWFRS (erior(2E) -0-10-8 erior(2R) 7-0-0 to -6-6, Interior (1) 1	BCDL=6 (envelope to 2-1-8, 10-0-0, I	6.0psf; h=25ft e) exterior zo Interior (1) 2- Exterior(2E)	ne -1-8					
1-6-0 BRACING TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except 2-0-0 oc purlins (5-4-2 max.): 6-7.				directly applied or b 6-7 (2R) 13-6-6 to 19-6-6, Interior (1) 19-6-6 to 21-10-8, Exterior(2E) 21-10-8 to 24-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown;									
BOT CHORD	Rigid ceiling directly bracing.	,	3)	Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate									
REACTIONS	Max Horiz 2=-170 (L	C 12)	,		ls=1.0; Rough Ca								
	Max Uplift 2=-89 (LC Max Grav 2=1052 (L	<i>.</i>	· 4/	Unbalanced design.	snow loads have	been co	nsidered for t	his					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	5)	This truss ha	as been designed psf or 1.00 times								
TOP CHORD	5-6=-1131/185, 6-7=	-1087/191,	3, 6)	overhangs n Provide ade	, on-concurrent wit quate drainage to	h other li prevent	ve loads. water pondin						
BOT CHORD	7-9=-1399/160, 9-10 2-13=-206/1095, 11-		7)		as been designed ad nonconcurrent			ads.				N'IL CA	Dille
WEBS	9-11=-192/1033 5-13=-101/979, 6-13 6-11=-281/59, 4-13=		8) 367,	on the botto	nas been designe m chord in all area by 2-00-00 wide w	as where	a rectangle				I.I.	ORTHOR	No.
NOTES					ny other members							· PY	m.
 Unbalance this design 	ed roof live loads have n.	been considered for	r 9)	recommende UPLIFT at jt	Simpson Strong-T ed to connect trus (s) 2 and 9. This c t consider lateral f	s to bear connectio	ing walls due					SEA	• -

and does not consider lateral forces.10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	B4	Roof Special	1	1	Job Reference (optional)	173150299

1)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 15:21:08 ID:MMyUAt3cpTU9GVinz1tIVUzMCOE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	B5GR	Roof Special Girder	1	2	Job Reference (optional)	173150300

Loading

TCDL

BCLL

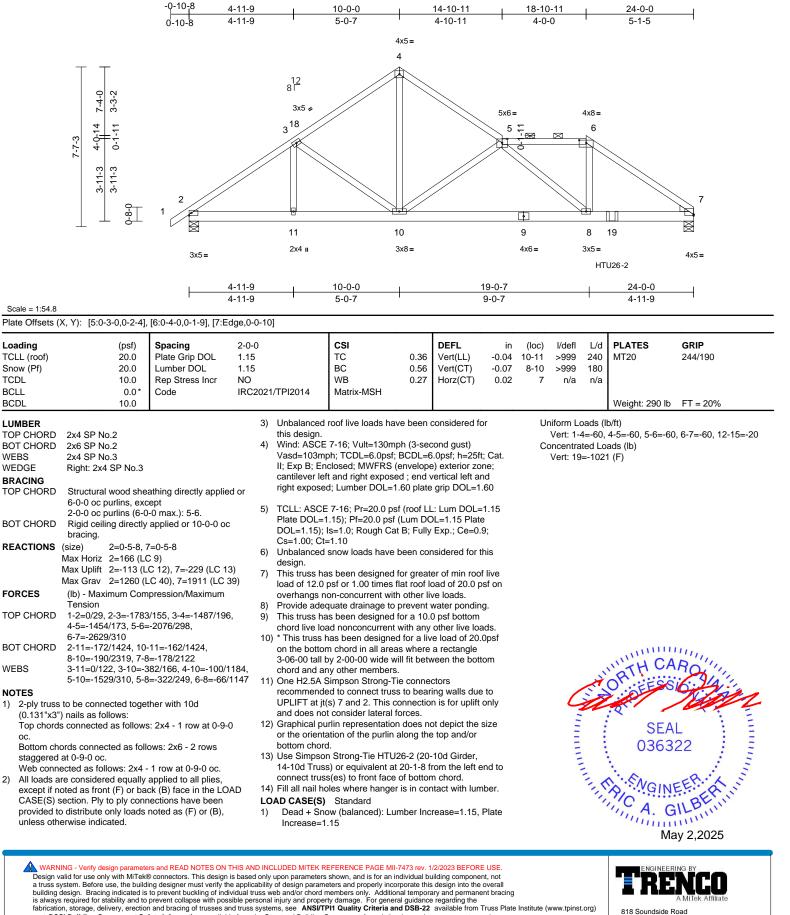
BCDL

WEBS

WEBS

NOTES

OC

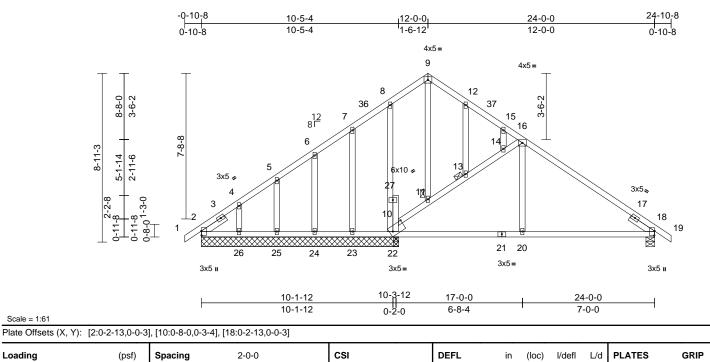

2)

WEDGE

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 15:21:09 ID:BbQTiAy1ODof8sM?JaCfV5zMCN4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Edenton, NC 27932


and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	BSE	Common Structural Gable	1	1	Job Reference (optional)	173150301

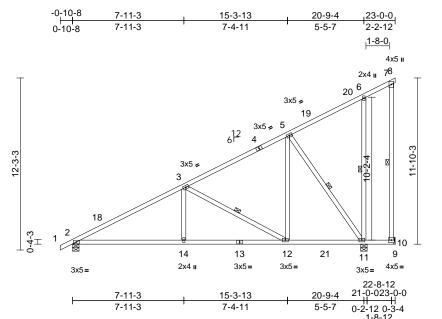
Scale = 1:61

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 15:21:09 ID:PsmVvbhMaAB85kbfL?kTkHzMCsP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

			-			-								
Loading		(psf)	Spacing	2-0-0		CSI TC	0.40	DEFL	in	(loc)	l/defl	L/d 240	PLATES	GRIP 244/190
TCLL (roof)		20.0	Plate Grip DOL	1.15		BC	0.49	Vert(LL)	0.07	20-30 20-30	>999 >999	240 180	MT20	244/190
Snow (Pf) TCDL		20.0	Lumber DOL	1.15 YES		WB	0.42 0.11	Vert(CT)	-0.10 0.02	20-30 18		n/a		
BCLL		10.0 0.0*	Rep Stress Incr Code			1	0.11	Horz(CT)	0.02	18	n/a	n/a		
BCLL		10.0	Code	IRC20	21/TPI2014	Matrix-MSH							Waisht 450 lb	FT 200/
BCDL		10.0											Weight: 156 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER	2x4 SP N 2x4 SP N 2x4 SP N	lo.2 lo.3 lo.3	1-6-0, Right 2x4 SP №	١	BOT CHORD	2-26=-23/215, 25-2 24-25=-23/215, 23- 22-23=-23/215, 20- 18-20=-127/552 9-11=-50/54, 7-23= 5-25=-146/77, 4-26	24=-23 22=0/5 -141/89	/215, 52,), 6-24=-142/8	2,	on t 3-06	he botto 6-00 tall rd and a	m cho by 2-0	rd in all areas wh	a live load of 20.0psf ere a rectangle between the bottom
OLIDEIX	1-6-0	01 110.0		10.0		14-15=-16/6, 16-20		,	,					
BRACING				I	NOTES									
TOP CHORD			athing directly applie	d or í	 Unbalance this design. 	d roof live loads have	e been	considered for		12) Gra	phical p	urlin re	presentation doe	es not depict the size
BOT CHORD			cept end verticals. applied or 10-0-0 oc	2	2) Wind: ASC	E 7-16; Vult=130mpl nph; TCDL=6.0psf; E				or th		ation o	of the purlin along	
JOINTS	1 Brace a	1 Brace at Jt(s): 11, 13			II; Exp B; E	I; Exp B; Enclosed; MWFRS (envelope) exterior zone LOAD CASE(S) Standard								
					and C-C Exterior(2E) -0-10-8 to 2-0-0, Interior (1) 2-0-0 to 9-0-0, Exterior(2R) 9-0-0 to 15-0-0, Interior (1) 15-0-0									
REACTIONS					Exterior(2E) 21-10-8			0-0						
			3, 24=10-5-8, 25=10-	5-8,		eft and right exposed			4					
	M	26=10-5-8				ed;C-C for members								
		2=-202 (L				s shown; Lumber D0			0					
	wax upiin		C 10), 18=-81 (LC 15) C 14), 24=-52 (LC 14		DOL=1.60	,		1						
			C 14), 24=-52 (LC 12 C 14), 26=-112 (LC 2		 Truss desig 	ned for wind loads in	n the pl	ane of the trus	s					
	Max Grav		C 26), 18=685 (LC 1)			tuds exposed to win							mmm	1111
			_C 1), 23=210 (LC 1)			rd Industry Gable Er							WAH CA	ROUL
		24=160 (L	_C 25), 25=171 (LC 1),		ualified building des						N	R	
		26=167 (L	_C 25)			E 7-16; Pr=20.0 psf			.15			John .	O. FESS	Oil .
FORCES	(lb) - Max Tension	kimum Com	pression/Maximum		DOL=1.15)	=1.15); Pf=20.0 psf (l ; Is=1.0; Rough Cat			;		4	V		They
TOP CHORD	1-2=0/29	, 2-4=-278/	99, 4-5=-260/73,		Cs=1.00; C						-		0.54	· · · · · · · · · · · · · · · · · · ·
	5-6=-252	/71, 6-7=-2	38/70, 7-8=-224/108	, t		d snow loads have b	een cor	nsidered for th	IS				SEA	
			-208/111, 12-15=-22		design. 3) This truss h	as been designed fo	or areat	er of min roof	livo		- 8		0363	22 : 3
			8=-757/93, 18-19=0/	29,		psf or 1.00 times fla					-	:	. 0000	: :
			-13=-596/199,			non-concurrent with					-		N	1. 2
			-16=-544/168,	-		re 2x4 MT20 unless						2. 1	N. En	Rix S
	10-22=-4	25/86, 8-10	130/01			s spaced at 2-0-0 oc						31		EF. AN
				ç		as been designed fo		0 psf bottom				1	C A	IL BEIN
					chord live le	bad nonconcurrent w	ith any	other live load	ds.				11, A. G	IL III
													- minin	

May 2,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	С	Monopitch	1	1	Job Reference (optional)	173150302

Run; 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 15:21:09 ID:BtC6klK9j1Q8nN87NoP6J5z2Qj3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale - 1.82 1

Scale = 1.02.1						1-0	5-12					
Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.80	Vert(LL)	-0.14	14-17	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.81	Vert(CT)	-0.27	14-17	>909	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.43	Horz(CT)	0.03	11	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 148 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2	•	E 7-16; Pr=20.0 p 1.15); Pf=20.0 ps ; Is=1.0; Rough Ca	f (Lum DC	DL=1.15 Plate	е				•		

BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3 *Except* 7-10,6-11:2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	4-0-1 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing, Except:
	6-0-0 oc bracing: 10-11.
WEBS	1 Row at midpt 7-10, 3-12, 5-11, 6-11
REACTIONS	(size) 2=0-5-8, 10= Mechanical, 11=0-5-8
	Max Horiz 2=422 (LC 13)
	Max Uplift 2=-80 (LC 14), 10=-72 (LC 13),
	11=-264 (LC 14)
	Max Grav 2=904 (LC 5), 10=58 (LC 10),
	11=1231 (LC 5)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/23, 2-3=-1393/152, 3-5=-727/135,
	5-6=-215/203, 6-7=-134/150, 7-8=-12/0,
	7-10=-30/39
BOT CHORD	2-14=-200/1447, 12-14=-200/1447,
	11-12=-106/651, 10-11=-142/190, 9-10=0/0
WEBS	3-14=0/329, 3-12=-906/204, 5-12=-9/670,

NOTES

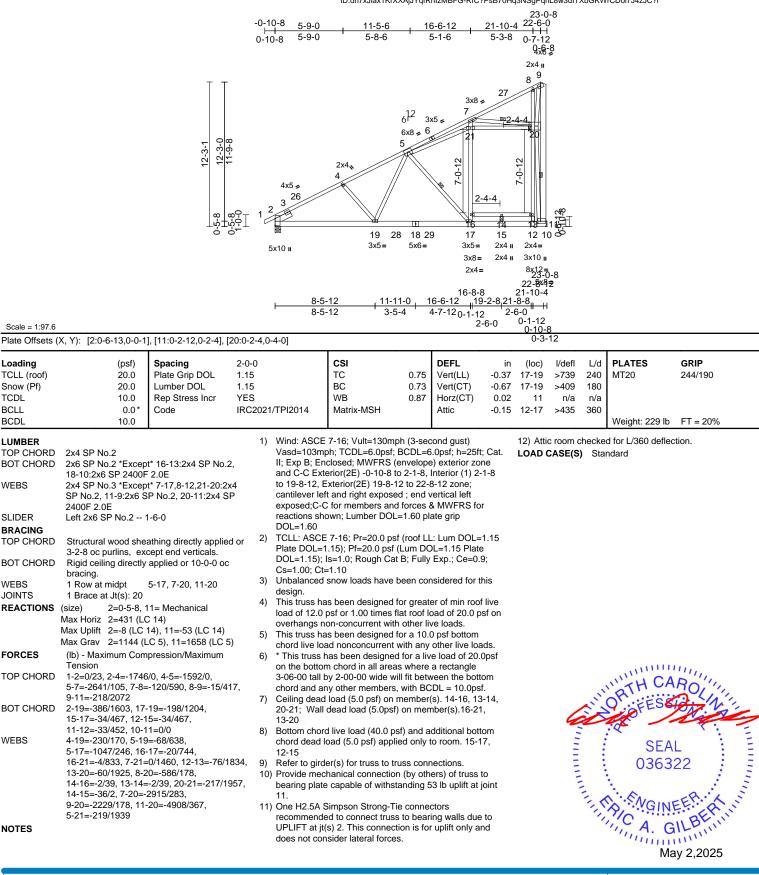
1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 20-0-0, Exterior(2E) 20-0-0 to 23-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

5-11=-959/208, 6-11=-429/120

- Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this desian.
- This truss has been designed for greater of min roof live 4) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to 8) bearing plate capable of withstanding 72 lb uplift at joint 10.

9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 11. This connection is for uplift only and does not consider lateral forces.

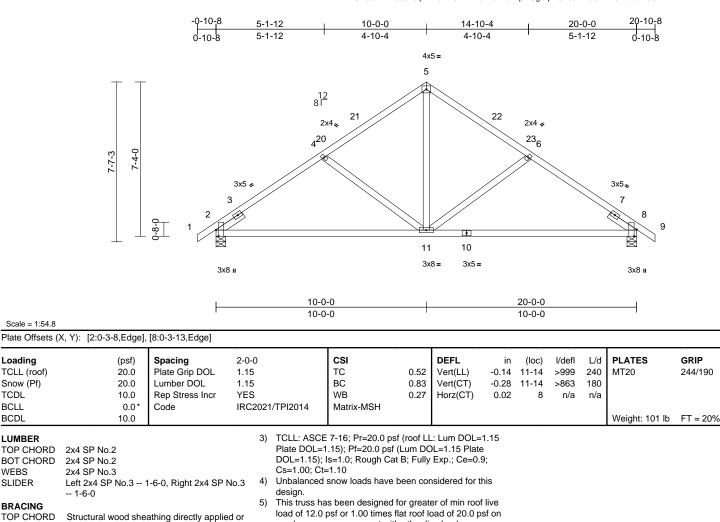
LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	C1	Attic	3	1	Job Reference (optional)	173150303

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 15:21:09 ID:dn7xJiax1KrXXAjJYqfRnIzMBFG-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	D	Common	9	1	Job Reference (optional)	173150304

Run; 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 15:21:09 ID:hUF6be1I7ILO98xsq?mlx9zMCKP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

overhangs non-concurrent with other live loads.

6)

7)

8)

This truss has been designed for a 10.0 psf bottom

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

One H2.5A Simpson Strong-Tie connectors

chord and any other members.

LOAD CASE(S) Standard

and does not consider lateral forces.

chord live load nonconcurrent with any other live loads.

recommended to connect truss to bearing walls due to

UPLIFT at jt(s) 2 and 8. This connection is for uplift only

* This truss has been designed for a live load of 20.0psf

REACTIONS	(size)	2=0-5-8, 8=0-5-8
	Max Horiz	2=-170 (LC 12)
	Max Uplift	2=-85 (LC 14), 8=-85 (LC 15)
	Max Grav	2=900 (LC 21), 8=900 (LC 22)

Rigid ceiling directly applied or 10-0-0 oc

5-3-13 oc purlins.

bracing.

FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/29. 2-4=-1010/148. 4-5=-879/138. 5-6=-879/138, 6-8=-1010/148, 8-9=0/29 BOT CHORD 2-11=-194/901, 8-11=-102/901

WEBS 5-11=-29/596, 6-11=-367/184, 4-11=-367/183

NOTES

Scale = 1:54.8

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD BOT CHORD

TCDL

BCLL

BCDL

WEBS

SLIDER

BRACING

TOP CHORD

BOT CHORD

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 7-0-0, Exterior(2R) 7-0-0 to 13-0-0, Interior (1) 13-0-0 to 17-10-8. Exterior(2E) 17-10-8 to 20-10-8 zone: cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

OR Vermanneer VIIIIIIIIIII SEAL 036322 G mm May 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	D1	Common	2	1	Job Reference (optional)	173150305

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TCDL

BCLL

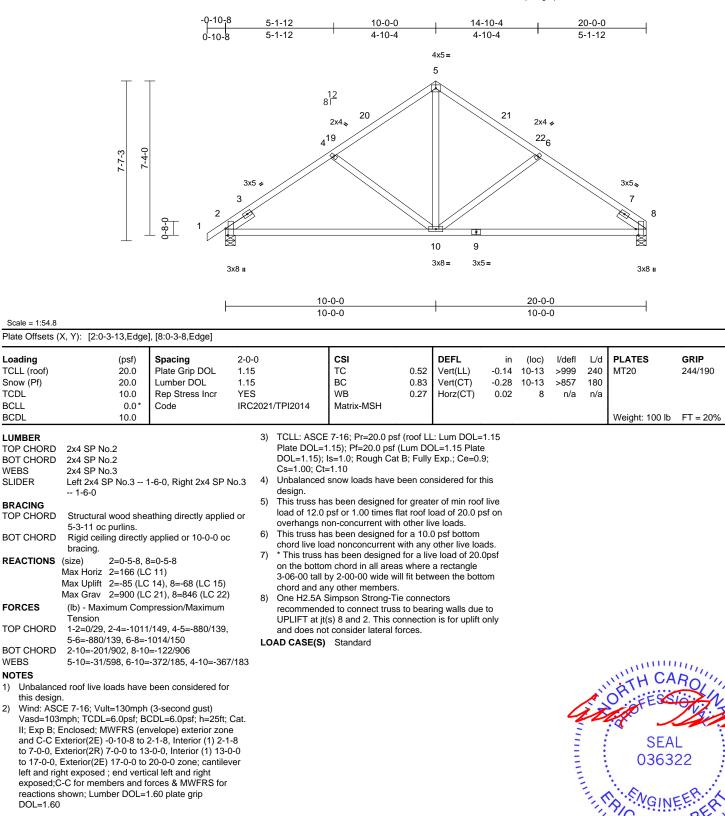
BCDL

WEBS

SLIDER

BRACING

FORCES


WEBS

NOTES 1)

2)

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Wed Apr 30 15:21:09 ID:Z_zCtCt8BmiE58RMZm1ivPzMCKc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

and C-C Exterior(2E) -0-10-8 to 2-1-8. Interior (1) 2-1-8 to 7-0-0, Exterior(2R) 7-0-0 to 13-0-0, Interior (1) 13-0-0 to 17-0-0. Exterior(2E) 17-0-0 to 20-0-0 zone: cantilever left and right exposed ; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

G mm May 2,2025

036322

Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	D1A	Common	2	1	Job Reference (optional)	173150306

Loading

TCLL (roof)

Snow (Pf)

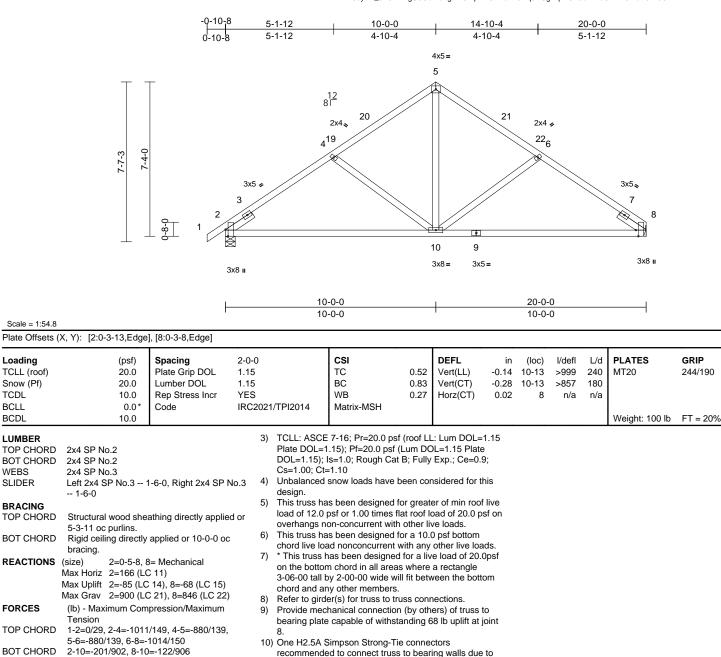
LUMBER

TCDL

BCLL

BCDL

WEBS


SLIDER

BRACING

FORCES

Run; 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 15:21:10 ID:CsyuH_9hORxEgU9Gof?ehgzMCMp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

UPLIFT at jt(s) 2. This connection is for uplift only and

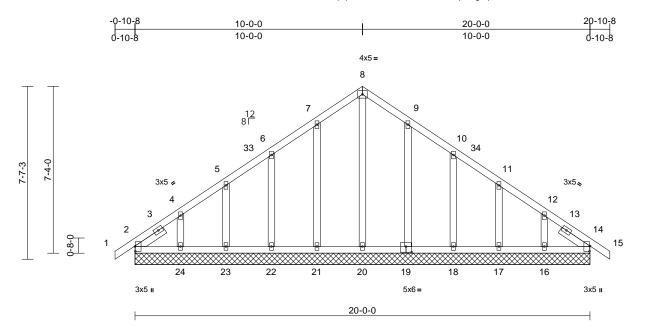
WEBS 5-10=-31/598, 6-10=-372/185, 4-10=-367/183 NOTES 1)

Unbalanced roof live loads have been considered for this design. 2)

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II: Exp B: Enclosed: MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8. Interior (1) 2-1-8 to 7-0-0, Exterior(2R) 7-0-0 to 13-0-0, Interior (1) 13-0-0 to 17-0-0. Exterior(2E) 17-0-0 to 20-0-0 zone: cantilever left and right exposed ; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

LOAD CASE(S) Standard

does not consider lateral forces.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

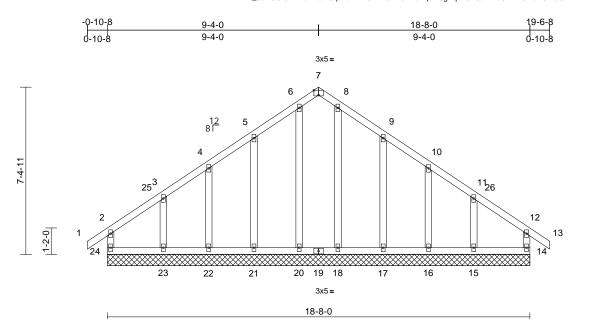
Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	DSE	Common Supported Gable	1	1	Job Reference (optional)	173150307

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 15:21:10 ID:scQGvP9BX7kqzqHzzoTKtTzMCKE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:50.6 Plate Offsets (X, Y): [2:0-2-8,0-0-3], [14:0-2-13,0-0-3], [19:0-3-0,0-3-0]

	A, T). [2.0-2-0,0-0-3]	, [14:0-2-13,0-0-3], [19:	0-3-0,0-3-0]									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2021/TPI:	CSI TC BC WB Matrix-MSH	0.08 0.04 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 125 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD	1-6-0 Structural wood she 6-0-0 oc purlins.	1-6-0, Right 2x4 SP No eathing directly applied / applied or 10-0-0 oc	WEBS or NOTES	ORD 2-24=-56/128, 23- 22-23=-56/128, 2 20-21=-56/128, 1 17-18=-54/127, 10 14-16=-54/127 8-20=-142/29, 7-2 5-23=-142/85, 4-2 10-18=-181/91, 1 12-16=-147/103 alanced roof live loads ha	1-22=-56 3-20=-56 5-17=-54 21=-219/8 24=-147/ ⁷ 1-17=-14	/128, /128, /127, 33, 6-22=-182 03, 9-19=-21 3/85,	7/83,	choi 11) * Th on t 3-06 choi 12) Prov bea 2, 2 at jc 56 ll	rd live lo is truss he botto 5-00 tall rd and a vide me ring plat lb uplift pint 22, { b uplift a	bad noi has be om cho by 2-0 any oth chanic te capa t at join 50 lb u at joint	een designed for rd in all areas wh 0-00 wide will fit er members. al connection (by able of withstandii t 14, 58 lb uplift at plift at joint 23, 95 19, 61 lb uplift at	any other live loads. a live load of 20.0psf ere a rectangle between the bottom others) of truss to ng 42 lb uplift at joint t joint 21, 61 lb uplift ib uplift at joint 24, joint 18, 51 lb uplift at
	17=20-0- 20=20-0- 23=20-0- Max Horiz 2=170 (LI Max Uplift 2=-42 (LC 16=-87 (L 21=-58 (L 23=-50 (L 18=181 (L) 16=181 (L) 18=223 (L) 18=223 (L) 20=166 (L)	C 10), 14=-2 (LC 11), LC 15), 17=-51 (LC 15), LC 15), 19=-56 (LC 15), LC 14), 22=-61 (LC 14), LC 14), 24=-95 (LC 14), C 26), 14=150 (LC 22), LC 26), 17=165 (LC 26), LC 28), 21=259 (LC 21), LC 28), 21=259 (LC 21), LC 21), 23=164 (LC 25)	, 0, 2) Win 0, Vas 11; E and to 7 to 1 can righ for DO), 3) Tru), see), or c 4) TCl	design. d: ASCE 7-16; Vult=130m d=103mph; TCDL=6.0psf; xp B; Enclosed; MWFRS (C-C Corner(3E) -0-10-8 tr -0-0, Corner(3R) 7-0-0 to 7-10-8, Corner(3E) 17-10- ilever left and right expose exposed;C-C for member eactions shown; Lumber D =1.60 is designed for wind loads . For studs exposed to win Standard Industry Gable I onsult qualified building de L: ASCE 7-16; Pr=20.0 ps	BCDL=((envelop) 5 2-0-0, F 13-0-0, E 8 to 20-1 ed ; end ' rs and fo DOL=1.6 in the pl nd (norm End Deta esigner a sf (roof Ll	6.0psf; h=25ft; a) exterior zor Exterior(2N) 2- xterior(2N) 3- vertical left an rces & MWFR D plate grip ane of the true and of the true and of the face ills as applicad s per ANSI/TF .: Lum DOL= ⁻	ne -0-0 3-0-0 d SS ss), pble, PI 1. 1.15		plift at jc	bint 14.		ROLUUT
FORCES TOP CHORD	8-9=-114/185, 9-10=		DO Cs= 5) Unb des 6) This load ove 7) All 8) Gat	e DOL=1.15); Pf=20.0 psf =1.15); Is=1.0; Rough Ca 1.00; Ct=1.10 alanced snow loads have gn. truss has been designed of 12.0 psf or 1.00 times ⁻ hangs non-concurrent wit lates are 2x4 MT20 unles le requires continuous bol le studs spaced at 2-0-0 c	t B; Fully been co for great flat roof I h other li s otherw tom cho	Exp.; Ce=0.9 nsidered for the er of min roof bad of 20.0 ps ve loads. se indicated.); nis live			In The State	SEA 0363	L 22 ILBERTUUT



May 2,2025

Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	EGE	Common Supported Gable	1	1	Job Reference (optional)	173150308

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 15:21:10 ID:_esNCUIUPIWo4zacA9qaZdzMD57-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:50.9

Plate Offsets (X, Y): [7:0-2-8,Edge]

Loading	(psf)	Spacing 2	-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0		.15		тс	0.16	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0		.15		BC	0.09	Vert(CT)	n/a		n/a	999		
TCDL	10.0		'ES		WB	0.14	Horz(CT)	0.00	14	n/a	n/a		
BCLL	0.0*			/TPI2014	Matrix-MR	0.11	11012(01)	0.00		n/a	n/a		
BCDL	10.0		102021	/11/2014								Weight: 118 lb	ET - 20%
BODL	10.0											weight. The ib	F1 = 2078
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD		athing directly applied or	NC 1) r	2 T ES Unbalanced this design.	5-20=-168/3, 8-18= 1-22=-158/79, 3-23 1-7=-214/129, 10- 1-15=-162/129 roof live loads have	=-170/1 16=-15 e been o	22, 8/76, considered fo		on 1 3-0 cho 13) Pro bea 24,	the botto 6-00 tall ord and a vide me uring plat 42 lb up	om cho by 2-0 iny oth chanic te capa lift at jo	rd in all areas wh 0-00 wide will fit er members. al connection (by able of withstandi pint 14, 86 lb upli	a live load of 20.0psf here a rectangle between the bottom r others) of truss to ng 57 lb uplift at joint ft at joint 21, 36 lb t 23, 86 lb uplift at
BOT CHORD	6-0-0 oc purlins, exe Rigid ceiling directly		2)	Vasd=103mp	7-16; Vult=130mph bh; TCDL=6.0psf; B closed; MWFRS (e	CDL=6	.0psf; h=25ft;						116 lb uplift at joint 15.
	17=18-8-0 21=18-8-0 24=18-8-0 Max Horiz 24=192 (L Max Uplift 14=-42 (L 16=-37 (L 21=-86 (L 23=-119 (Max Grav 14=176 (L 16=196 (L 18=204 (L 21=255 (L), 3) 4)	and C-C Cor to 6-4-0, Cor to 16-6-8, Cc left and right exposed;C-C reactions shc DOL=1.60 Truss design only. For stu see Standarc or consult qu TCLL: ASCE Plate DOL=1	ner(3E) -0-10-8 to 2 ner(3R) 6-4-0 to 12 orner(3E) 16-6-8 to exposed; end vert for members and 1 own; Lumber DOL= ed for wind loads ir ds exposed to wind d Industry Gable Er alified building desi 7-16; Pr=20.0 psf (15); Pf=20.0 psf (L s=1.0; Rough Cat f	2-1-8, E -2-4, E 19-6-8 ical left forces & 1.60 pl the pl d (norm d Deta igner as (roof LL Lum DC	xterior(2N) 2 xterior(2N) 12 zone; cantiler and right & MWFRS for ane of the tru al to the face ils as applical s per ANSI/TF .: Lum DOL= DL=1.15 Plate	-1-8 2-2-4 ver r), ble, PI 1. 1.15	LOAD	CASE(S)) Star	ndard	ROLIN
FORCES	(lb) - Maximum Com Tension	pression/Maximum	5)	Unbalanced	snow loads have be	een cor	nsidered for th	his		4	22	CFE?	Nin
TOP CHORD	2-24=-150/105, 1-2= 3-4=-83/109, 4-5=-7 6-7=-98/198, 7-8=-9	9/166, 5-6=-118/249, 8/198, 8-9=-117/249, =-72/111, 11-12=-103/8 :141/96 :3=-89/103, 1:=-89/103, 8=-89/103,	7) 8) 9) 10)	load of 12.0 p overhangs no All plates are Gable require Truss to be fi braced again Gable studs	s been designed for opport 1.00 times fla on-concurrent with 2x4 MT20 unless es continuous botto ully sheathed from st lateral movemer spaced at 2-0-0 oc. s been designed for ad nonconcurrent w	at roof lo other liv otherwi om chor one fac nt (i.e. d or a 10.0	bad of 20.0 ps ve loads. se indicated. d bearing. e or securely iagonal web) 0 psf bottom	sf on ,		Contraction of the second		in min	EER.KI

May 2,2025

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	EGR	Common Girder	1	2	Job Reference (optional)	173150309

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 15:21:10 ID:Ws_ekb?PSj8j0DmtCOLcX6zMBu1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

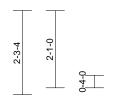
Scale = 1:58.7

Plate Offsets (X, Y): [9:0-3-8,0-4-4], [10:0-5-0,0-4-8], [11:0-3-8,0-4-4]

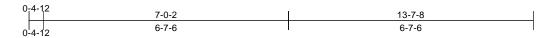
	(, .). [[-1									
Loading TCLL (roof) Snow (Pf)	(psf) 20.0 20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.39 0.75	DEFL Vert(LL) Vert(CT)		(loc) 10-11 10-11	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 244/190
TCDL	10.0	Rep Stress Incr	NO		WB	0.78	Horz(CT)	0.02	8	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MSH		- (-)						
BCDL	10.0											Weight: 267 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP No.2 2x4 SP No.3 *Excep Structural wood she 5-6-6 oc purlins, ex Rigid ceiling directly bracing. (size) 8=0-5-8, 1 Max Horiz 12=191 (L	athing directly applie cept end verticals. applied or 10-0-0 oc 12=0-5-8 .C 11)	d or 5)	this design. Wind: ASCE Vasd=103mj II; Exp B; En cantilever lef right expose TCLL: ASCE Plate DOL=1	roof live loads have 7-16; Vult=130mpl bh; TCDL=6.0psf; E closed; MWFRS (et and right exposed d; Lumber DOL=1.4 7-16; Pr=20.0 psf .15); Pf=20.0 psf (I Is=1.0; Rough Cat =1.10	h (3-sed 3CDL=6 nvelope 1 ; end v 60 plate (roof LI Lum DC	cond gust) 6.0psf; h=25ft; e) exterior zor /ertical left an grip DOL=1. .: Lum DOL= DL=1.15 Plate	Cat. ne; d 60 1.15	1) De In Ui	crease= niform Lo Vert: 1-2 oncentra Vert: 10 14=-834	now (ba 1.15 bads (li 2=-60, ited Lo)=-596 4 (B), 1	alanced): Lumber b/ft) 2-4=-60, 4-6=-60 ads (lb) (B), 9=-613 (B), 7	[•] Increase=1.15, Plate 0, 6-7=-60, 8-12=-20 13=-1092 (B), 613 (B), 17=-613 (B),
	Max Uplift 8=-664 (L Max Grav 8=4336 (L			Unbalanced design.	snow loads have b	een cor	nsidered for th	nis					
FORCES	(lb) - Maximum Com Tension		,	This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on									
TOP CHORD	1-2=0/37, 2-3=-4896 4-5=-3810/656, 5-6=	-4640/715, 6-7=0/37		overhangs non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.									
BOT CHORD	2-12=-3601/610, 6-8=-3377/544 30T CHORD 11-12=-227/576, 9-11=-665/4004, 8-9=-123/635				 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 10) LGT2 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 12 							Routin	
 NOTES 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 				consider late) Use Simpson SD9212 True from the left bottom choro P Use Simpson Truss, Single oc max. star connect trus	n Strong-Tie LUS26 ss, Single Ply Girde end to connect trus	6 (4-SD er) or ec ss(es) to 6 (4-10 ivalent ne left e of botton s in cor	9112 Girder, juivalent at 4- b back face of Girder, 3-10 spaced at 2-C nd to 18-1-4 f m chord. htact with lum	4- 1-4 d)-0 ro		C. minutes	S. W. S.	SEA 0363	EER.H.H.

May 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type		Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	F	Common	2	1	Job Reference (optional)	173150310

-0-10-8


Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 15:21:10 ID:jpnH6guj0VTRIsxki5glElzMD1n-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

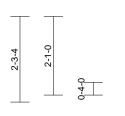
-2---2-

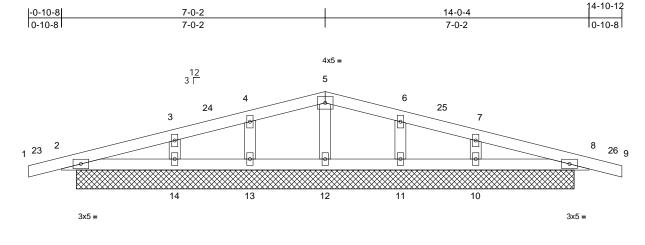
Scale = 1:31.1

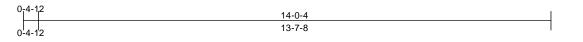
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	021/TPI2014	CSI TC BC WB Matrix-MSH	0.82 0.71 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.17 0.02	(loc) 5-8 5-8 4	l/defl >999 >980 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 45 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalancu this desigu 2) Wind: ASG Vasd=103 II; Exp B; and C-C E to 4-0-2, E to 10-7-8, left and ric exposed; and forces	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 2-5-14 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, / Max Horiz 2=37 (LC Max Uplift 2=-223 (L Max Grav 2=719 (LC (Ib) - Maximum Com Tension 1-2=0/16, 2-3=-1172 2-5=-751/1095, 4-5= 3-5=-127/283 red roof live loads have	Applied or 6-5-14 or 4=0-3-0 14) C 10), 4=-176 (LC 1 C 21), 4=605 (LC 22 pression/Maximum 2/839, 3-4=-1179/834 =-751/1095 been considered fo (3-second gust) CDL=6.0psf; h=25ft; velope) exterior zor 2-1-8, Interior (1) 2- -0-2, Interior (1) 10- 13-7-8 zone; cantile cal left and right posed;C-C for memb	ed or c (11) (1) 6 r (Cat. ne 1-8 -0-2 ever	 load of 12.0 overhangs r This truss hi- chord live lo * This truss on the botto 3-06-00 tall chord and a One H2.5A recommend UPLIFT at jt 	as been designed psf or 1.00 times f ion-concurrent with as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members Simpson Strong-Ti ed to connect truss (s) 4 and 2. This c to consider lateral f Standard	ilat roof I in other li for a 10. with any d for a liv as where ill fit betv ie conne s to bear onnectio	bad of 20.0 p ve loads. 0 psf bottom other live loa re load of 20. a rectangle veen the bott ctors ing walls due	osf on ads. .0psf tom e to		Δ		OR H CA OR ESS SEA 0363	
	CE 7-16; Pr=20.0 psf (=1 15) [.] Pf=20.0 psf (l										0	•	1 3

Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.


EPIC ST GI 1111111 May 2,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

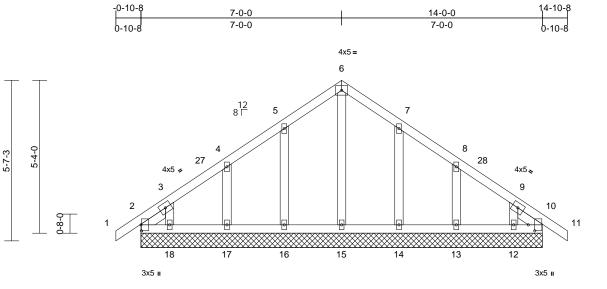

Job	Truss	Truss Type Qty Ply		1001 Serenity-Roof-B329 B RH CP		
25040099-01	FGE	Common Supported Gable	1	1	Job Reference (optional)	173150311

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 15:21:10 $ID:qVUv8gQtzqhqC01RU7_rhkzMD2N-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff$

Scale = 1:30.6

												i	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0		1.15		тс	0.16	Vert(LL)	n/a	()	n/a	999	MT20	244/190
Snow (Pf)	20.0	I '	1.15		BC	0.14	Vert(CT)	n/a	-	n/a	999	11120	210,100
. ,					WB		· · ·						
TCDL	10.0		YES			0.04	Horz(CT)	0.00	8	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MSH								
BCDL	10.0		-									Weight: 52 lb	FT = 20%
			2)		7 40. 1/1.14 420.000	ah (2 aa							
LUMBER			2)		7-16; Vult=130m			Cat					
TOP CHORD					oh; TCDL=6.0psf;								
BOT CHORD					closed; MWFRS (
OTHERS	2x4 SP No.3				ner(3E) -0-10-8 to								
BRACING					ner(3R) 4-0-2 to 1								
TOP CHORD	Structural wood she	athing directly applied	or		Corner(3E) 11-10								
	10-0-0 oc purlins.				t and right expose								
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc			d;C-C for member			(S					
	bracing.				shown; Lumber D	OCL=1.60) plate grip						
REACTIONS	(size) 2=13-2-12	2, 8=13-2-12, 10=13-2-	-12	DOL=1.60									
		12, 12=13-2-12,	'2, 3)		ed for wind loads								
		12, 14=13-2-12			ids exposed to wir								
	Max Horiz 2=31 (LC	,		 see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 									
	Max Uplift 2=-74 (LC												
		C 15), 11=-36 (LC 11)	4)										
		5 10), 13=-42 (LC 10),	,		.15); Pf=20.0 psf								
				DOL=1.15);	ls=1.0; Rough Cat	t B; Fully	Exp.; Ce=0.9	9;					
	14=-16 (L			Cs=1.00; Ct=	=1.10								
	Max Grav 2=334 (LC		, 5)	Unbalanced	snow loads have	been cor	sidered for th	nis					
		_C 22), 11=212 (LC 22		design.									
		_C 21), 13=246 (LC 21	^{),} 6)	This truss ha	s been designed	for great	er of min roof	live					
	14=122 (L	,		load of 12.0	psf or 1.00 times f	lat roof le	ad of 20.0 p	sf on					
FORCES	(lb) - Maximum Com	pression/Maximum		overhangs n	on-concurrent with	h other liv	/e loads.					ORTH CA	
	Tension		7)	All plates are	e 2x4 MT20 unless	s otherwi	se indicated.					minin	in the second se
TOP CHORD	1-2=0/16, 2-3=-99/1	44, 3-4=-16/69,	8)		spaced at 2-0-0 o							WAH CA	ROUL
	4-5=-24/63, 5-6=-24	/53, 6-7=-16/52,	9)		s been designed) psf bottom				1	'a''	
	7-8=-90/114, 8-9=0/	16	-,		ad nonconcurrent			eh			A	O' . EFSS	idente la la
BOT CHORD	2-14=-125/104, 13-1	4=-44/74, 12-13=-44/7	74, 10		has been designed						22	10 -	A start
	11-12=-44/74, 10-11	=-44/74, 8-10=-109/12	11 'č		n chord in all area			poi		1	2		ne la
WEBS	5-12=-126/82, 4-13=	-194/133, 3-14=-126/7	72,		by 2-00-00 wide w			m		2	6 12		
	6-11=-179/126, 7-10				by 2-00-00 wide w					-		SEA	1 1 2
NOTES			11) N/A	iy other members	•				=			• -
	ed roof live loads have) IN/A						THUE T		0363	22 : =	
this design									-	0		1 - E	
uns design											-	1. A.	1 1 S

12) Non Standard bearing condition. Review required. LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

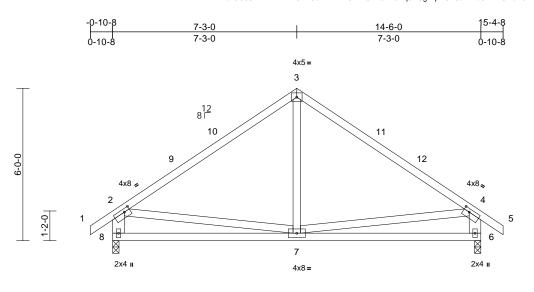
Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	GGE	Common Supported Gable	1	1	Job Reference (optional)	173150312

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 15:21:10 ID:H5y9cKKYeyPOV7lubhBRXyzMCst-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

(, Y): [2:0-2-8,0-0-3 (psf)], [10:0-2-8,0-2-11]	1										
	,, []											
(p3) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.08 0.03 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 79 lb	GRIP 244/190 FT = 20%
1-0-8 Structural wood sh 6-0-0 oc purlins. Rigid ceiling directl bracing. (size) 2=14-0-(13=14-0 16=14-0 Max Horiz 2=-123 (Max Uplift 2=-46 (L 12=-68 (14=-60 (17=-59 (Max Grav 2=130 (I 12=128 14=259 16=259	eathing directly applie y applied or 10-0-0 or 0, 10=14-0-0, 12=14-(-0, 14=14-0-0, 15=14 -0, 17=14-0-0, 18=14 LC 12) C 10), 10=-12 (LC 11 LC 15), 13=-60 (LC 1 LC 15), 16=-61 (LC 1 LC 14), 18=-77 (LC 1 C 26), 10=114 (LC 2 (LC 22), 15=146 (LC LC 21), 17=227 (LC	1) 2) No.3 ed or c 0-0, -0-0, 3)), 5), 4), 4), 2), 22), 22), 5), 5), 4)	Unbalanced this design. Wind: ASCE Vasd=103mj II; Exp B; En and C-C Cor to 4-0-0, Cor to 11-10-8, C cantilever lef right expose for reactions DOL=1.60 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced design. This truss ha	7-16; Vult=130mpt ph; TCDL=6.0psf; E closed; MWFRS (e ner(3E) -0-10-8 to 3 rner(3R) 4-0-0 to 10 Corner(3R) 4-0-0 to 10 Corner(3E) 11-10-8 t and right exposed d;C-C for members shown; Lumber DC ned for wind loads in ds exposed to wind d Industry Gable Er ialified building des 7-16; Pr=20.0 psf (I Is=1.0; Rough Cat I =1.10 snow loads have building des	n (3-sec CDL=6 nvelope 2-1-8, E -0-0, E to 14-1 ; end v and fo DL=1.60 n the pl d (norm d Deta igner as (roof LL Lum DC 3; Fully een cor	cond gust) 0.0psf; h=25ft; e) exterior zon xterior(2N) 2- xterior(2N) 10 0-8 zone; vertical left an- rcces & MWFR 0 plate grip ane of the trus al to the face) ils as applicat is per ANSI/TF L: Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9 hsidered for the er of min roof	Cat. ne 1-1-8 p-0-0 d S S S S S S S S S S S S S S S S S S	bea 2, 1 at jo 60 l join	ring plat 2 lb upli pint 17, 3 b uplift a t 2 and 5	te capa ft at joi 77 lb u at joint 12 lb u	able of withstand int 10, 61 lb uplifi plift at joint 18, 6 13, 68 lb uplift at plift at joint 10.	ing 46 lb uplift at joint t at joint 16, 59 lb uplift 0 lb uplift at joint 14,
Tension 1-2=0/29, 2-3=-69/ 4-5=-82/80, 5-6=-9 7-8=-75/80, 8-9=-6	· 74, 3-4=-93/76, 1/152, 6-7=-91/152,	8) 9)	overhangs n All plates are Gable requir Gable studs) This truss ha	on-concurrent with e 2x4 MT20 unless es continuous botto spaced at 2-0-0 oc as been designed fo	other li otherwi om choi or a 10.	ve loads. se indicated. d bearing. O psf bottom			4		SEA	• -
2-18=-39/118, 17-1 15-16=-39/118, 14 13-14=-39/118, 12 10-12=-39/118 6-15=-106/0, 5-16= 3-18=-114/116, 7-1	15=-39/118, 13=-39/118, -219/106, 4-17=-186/ 4=-219/106,	· 11) * This truss h on the bottor 3-06-00 tall b	nas been designed m chord in all areas by 2-00-00 wide will	for a liv where	e load of 20.0 a rectangle)psf		LIDE	ALL		EEP. KIN
	10.0 0.0* 10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 Left 2x4 SP No.3 Structural wood shi 6-0-0 oc purlins. Rigid ceiling directl bracing. size) 2=14-0-0 13=14-0- 13=14-0- 16=14-0- 16=14-0- 16=14-0- 16=14-0- 16=14-0- 16=14-0- 16=14-0- 12=-68 (14=-60 (17=-59 (14=259 (16=259 (18=138 ((1b) - Maximum Cor Tension 1-2=0/29, 2-3=-69// 4-5=-82/80, 5-6=-9 7-8=-75/80, 8-9=-6 10-11=0/29 2-18=-39/118, 17-1 15-16=-39/118, 12- 10-12=-39/118, 12- 10-12=-39/12	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} 10.0 \\ 0.0^{*} \\ 10.0 \\ \hline \\ \hline \\ 10.0 \\ \hline \\ $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10.0 0.0^* Rep Stress Incr CodeYES IRC2021/TPI2014WB Matrix-MSH $2x4 SP No.2$ $2x4 SP No.3$ $-1-0-8$ NOTES1)Unbalanced roof live loads have this design. $2x4 SP No.2$ $2x4 SP No.3$ $-1-0-8$ 0)WME Matrix-MSHStructural wood sheathing directly applied or $6-0-0$ oc purlins.0)0)Rigid ceiling directly applied or $16=14-0-0$, $14=14-0-0$, $12=14-0-0$, $16=14-0-0$, $17=14-0-0$, $18=14-0-0$ $16=14-0-0$, $17=14-0-0$, $18=14-0-0$ $16=14-0-0$, $17=14-0-0$, $18=14-0-0$ $16=14-0-0$, $17=14-0-0$, $18=14-0-0$ $18=138 (LC 15)$, $13=-60 (LC 15)$, $14=-60 (LC 15)$, $13=-61 (LC 14)$, $17=-59 (LC 24)$, $13=227 (LC 22)$, $14=259 (LC 21)$, $17=227 (LC 21)$, $18=138 (LC 25)$ WB Matrix-MSH(b) - Maximum Compression/Maximum Tension $1-2=0/29$, $2-3=-69/74$, $3-4=-93/76$, $4-5=-82/80$, $5-6=-91/152$, $6-7=-91/152$, $7-8=-75/80$, $8-9=-61/34$, $9-10=-67/56$, $10-11=0/29$ $2-18=-39/118$, $17-18=-39/118$, $16-17=-39/118$, $10-12=-39/118$, $14-15=-39/118$, $10-12=-39/118$, $12-13=-39/118$, $10-12=-39/118$, $14-15=-39/118$, $10-12=-39/118$, $14-15=-39/118$, $10-12=-39/118$, $14-15=-39/118$, $10-12=-39/118$, $14-15=-219/106$, $4-17=-186/119$, $3-18=-114/116$, $7-14=-219/106$,WB Watrix-MSH10) This truss has been designed for chord live load nonconcurrent with 1 This trus has been designed for chord in all areas $3-06-00$ tall by 2-00-00 wide will chord and any other members.	10.0 0.0^* 10.0 Rep Stress Incr CodeYES IRC2021/TPI2014WB Matrix-MSH 10.0 0.0^* CodeIRC2021/TPI2014Matrix-MSH 10.0 10.0 Matrix-MSHMottes $2x4$ SP No.2 $2x4$ SP No.3 $-10-8$ 10.0 NOTES $2x4$ SP No.3 $-10-8$ 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 $6-0 $ oc purlins. Rigid ceiling directly applied or 10-0-0 oc $13=14-0-0$, $14=14-0-0$, $15=14-0-0$, $13=14-0-0$, $14=14-0-0$, $15=14-0-0$, $14=128$ (LC 12), $14=250$ (LC 12), $15=13=-60$ (LC 15), $14=260$ (LC 15), $15=-61$ (LC 14), $12=-68$ (LC 15), $15=-61$ (LC 14), $12=-68$ (LC 15), $13=-60$ (LC 14), $12=-69$ (LC 21), $17=227$ (LC 22), $14=259$ (LC 22), $15=146$ (LC 28), $12=228$ (LC 26) $11-10.2$ $12=0/29$, $2-3=-69/74$, $3-4=-93/76$, $12=0/29$, $2-3=-69/74$, $3-4=-93/76$, $12=0/29$, $2-3=-69/74$, $3-4=-93/76$, $12=0/29$, $2-3=-69/74$, $3-4=-93/76$, $12=0-29/29$, $2-3=-69/74$, $3-4=-93/76$, $12=0-29/29/2, 2-3=-69/74$, $3-4=-93/76$, $12=0-$	10.0 0.0* Rep Stress Incr Code YES IRC2021/TPI2014 WB 0.07 Horz(CT) 2x4 SP No.2 NOTES NOTES NOTES NOTES 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 2x4 SP No.31-0-8, Right 2x4 SP No.3 1-0-8 NOTES 1 Unbalanced roof live loads have been considered fo this design. 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 NOTES 1 Unbalanced roof live loads have been considered fo this design. 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 -1-0-8, Right 2x4 SP No.3 2 Wind: ASCE 7-16; Vult=130mph; TCDL=6.0psf; BCDL=6.0psf; bc2L=6.0psf; bc2L=6.	10.0 0.0.° 10.0Rep Stress Incr CodeYES IRC2021/TPI2014WB Matrix-MSH0.07Horz(CT)0.00Matrix-MSHMatrix-MSHMatrix-MSHMatrix-MSHNotes2x4 SP No.2 2x4 SP No.3 1-0-8NOTESNotesNotes2x4 SP No.3 1-0-8Unbalanced roof live loads have been considered for this design.NotesStructural wood sheathing directly applied or 6-0- 0c purlins.NotesNotesStructural wood sheathing directly applied or 16-14-0-0, 17=14-0-0, 18=14-0-0, 17=14-0-0, 12=268 (LC 15), 13=-61 (LC 14), 17=-68 (LC 15), 13=-61 (LC 14), 17=268 (LC 22), 15=146 (LC 22), 12=128 (LC 22), 15=146 (LC 22), 12=128 (LC 22), 15=146 (LC 22), 12=128 (LC 22), 15=146 (LC 22), 12=269 (LC 22), 15=146 (LC 22), 12	10.0 0.0° 10.0 Rep Stress Incr CodeYES IRC2021/TPI2014WB Matrix-MSH 0.07 Horz(CT) 0.00 10 $2x4$ SP No.2 $2x4$ SP No.3NOTES12) Pro this design.NOTES12) Pro this design. $2, 1$ $2x4$ SP No.3 $-10-8$ 0.07 NOTES12) Wind: ASCE 7-16; Vult=130mph (3-second gust) $3, 2$ $2x4$ SP No.3 $-10-8$ 0.07 Wind: ASCE 7-16; Vult=130mph (3-second gust) $3, 2$ $2x4$ SP No.3 $-10-8$ 0.007 Wind: ASCE 7-16; Vult=130mph (3-second gust) $3, 2$ Structural wood sheathing directly applied or $6-0$ -0 oc purlins. $0.00 \times 11-10.8$ $0.00 \times 11-10.8$ $0.00 \times 11-10.8$ Structural wood sheathing directly applied or $13=14-0.0, 12=140-0, 15=14-0.0, 16=14-0.0, 17=14-0.0, 15=14-0.0, 15=14-0.0, 15=14-0.0, 16=14-0.0, 17=14-0.0, 15=14-0.0, 15=14-0.0, 15=14-0.0, 15=14-0.0, 15=14-0.0, 16=14-0.0, 15=14-0.0, 15=14-0.0, 15=14-0.0, 16=14-0.0, 15=14-0.0, 15=14-0.0, 16=14-0.0, 15=14-0.0, 16=14-0.0, 15=14-0.0, 16=14-0.0, 15=14-0.0, 16=14-0.0, 15=14-0.0, 15=14-0.0, 16=14-0.0, 15=14-0.0, 16=14-0.0, 15=14-0.0, 16=14-0.0, 15=14-0.0, 16=14-0.0, 15=14-0.0, 16=14-0.0, 15=14-0.0, 16=14-0.0, 15=14-0.0, 15=14-0.0, 16=14-0.0, 15=14-0.0, 16=14-0.0, 15=14-0.0, 16=14-0.0, 15=14-0.0, 16=14-0.0, 16=14-0.0, 16=14-0.0, 16=14-0.0, 16=14-0.0, 16=14-0.0, 16=14-0.0, 16=14-0.0, 16=14-0.0, 16=14-0.0, 16=14-0.0, 16=14-0.0, 16=14-0.0, 16=14-0.0, 16=14-0.0, 16=14-0.0, 16=14-$	10.0 0.0° 10.0Rep Stress Incr CodeYES IRC2021/TPI2014WB Matrix-MSHHorz(CT)0.0010n/aNOTES2x4 SP No.2 2x4 SP No.3 $\sim 1-0-8$ NOTES1Unbalanced roof live loads have been considered for this design.12) Provide me bearing plat 2, 12 lb uplit at joint 2 and 10-0-012) Provide me bearing plat 2, 12 lb uplit at joint 2 and 10-0-012) Provide me bearing plat 2, 12 lb uplit at joint 2 and 10-0-012) Provide me bearing plat 2, 12 lb uplit at joint 2 and 10-0-0, 12 11-10-8, Corner(3E) -11-10-8 to 14-10-8 zone; cantilever left and right exposed; C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.6012) Provide me bearing plat 2, 12 lb uplit at joint 2 and 10-0-0 corner(3E) -0.10-8 to 2-1-8, Exterior(2N) 2-1-8 to 4-0, Corner(3E) 11-10-8 to 14-10-8 zone; cantilever left and right exposed; C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.6010AD CASE(S3111012-68 (LC 15), 13=60 (LC 15), 14-69 (LC 15), 16=61 (LC 14), 12-68 (LC 21), 17=27 (LC 22), 12=218 (LC 28), 16=7146 (LC 28), 16=259 (LC 21), 15=277 (LC 21), 16=259 (LC 21), 15=277 (LC 21), 16=259 (LC 21), 15=277 (LC 22), 16=228 (LC 28), 15=448 (LC 28), 16=258 (LC 27), 15=146 (LC 28), 16=259 (LC 21), 17=278 (LT 28), 15=278 (LC 28), 16=258 (LC 21), 17=278 (LC 28), 16=783 (HC 28), 16=258 (LC 21), 17=28 (LC 28), 16=783 (HC 28), 16=258 (LC 21), 17=28 (LC 28), 16=783 (HC 28), 16=258 (LC 21), 17=28 (LC 28), 16=783 (HC 28), 16=283 (HC 28), 16	10.0 0.0° Rep Stress Incr YES Code WB IRC2021/TPI2014 WB Matrix-MSH 0.07 Matrix-MSH Horz(CT) 0.00 10 n/a n/a 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 NOTES 11 Unbalanced roof live loads have been considered for this design. 12 Provide mechanic bearing plate cape 2, 12 lb uplift at joint 17.77 lb u 12 Provide mechanic bearing plate cape 2, 12 lb uplift at joint 17.77 lb u 12 Provide mechanic bearing plate cape 2, 12 lb uplift at joint 17.77 lb u 12 Provide mechanic bearing plate cape 2, 12 lb uplift at joint 17.77 lb u 12 Provide mechanic bearing plate cape 2, 12 lb uplift at joint 17.77 lb u 12 Provide mechanic bearing plate cape 2, 12 lb uplift at joint 17.77 lb u 12 Provide mechanic bearing plate cape 2, 12 lb uplift at joint 17.77 lb u 12 Provide mechanic bearing plate cape 2, 12 lb uplift at joint 12 17 10 10 10 17 10 17 10	10.0 Rep Stress Incr YES WB 0.07 Horz(CT) 0.00 10 n/a Weight: 79 Ib 2.0.0* Code IRC2021/TPI2014 Matrix-MSH More Stress Incr Weight: 79 Ib Weight: 79 Ib 2x4 SP No.2 Structural wood sheathing directly applied or 60-00 cc purlins. NOTES 1) Unbalanced roof live loads have been considered for this design. 10.00 10 n/a n/a 2x4 SP No.3 - 1-0-8 NOTES 1) Unbalanced roof live loads have been considered for this design. 10.00 10 m/a n/a 2.1 Provide mechanical connection (b) bearing plate capable of withstand connection (b) for this design. 10.00 10.00 10.11.0.61 10.01 <

May 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


A MiTek Af 818 Soundside Road Edenton, NC 27932

INFEDING

Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	н	Common	5	1	Job Reference (optional)	173150313

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 15:21:11 ID:bfGOJ8MZD?XWYZ9mx9bVf?zMDGf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	7-3-0	14-6-0	
	7-3-0	7-3-0	
Scale = 1:45.4			
Plate Offsets (X, Y): [2:0-2-12,0-1-8], [4:0-2-12,0-1-8]			

Plate Offsets (X, Y): [2:0-2-12,0-	1-8], [4:0-2-12,0-1-8]							
Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr * Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC 0.97 BC 0.44 WB 0.14 Matrix-MSH	DEFL in Vert(LL) -0.08 Vert(CT) -0.11 Horz(CT) 0.07	5 7-8 0 7-8	>999 >999	L/d PLATES 240 MT20 180 n/a Weight: 83 lb	GRIP 244/190 FT = 20%
BRACING TOP CHORD Structural wood s except end vertic BOT CHORD Rigid ceiling direc bracing. REACTIONS (size) 6=0-3- Max Horiz Max Horiz 8=-161 Max Uplift 6=-66 Max Grav FORCES (lb) - Maximum C Tension TOP CHORD 1-2=0/37, 2-3=-66 4-5=0/37, 2-8=-66 BOT CHORD 7-8=-237/445, 6-	tty applied or 10-0-0 oc (LC 12) (LC 15), 8=-66 (LC 14) (LC 22), 8=706 (LC 21) ompression/Maximum 58/274, 3-4=-658/274, 44/259, 4-6=-644/255 7=-161/445 7=-161/445 7=-145/255, 4-7=-150/25 we been considered for ph (3-second gust) BCDL=6.0psf; h=25ft; ((envelope) exterior zone to 15-48, Interior (1) 2-1- 10-3-0, Interior (1) 2-1- 10-3-0, Interior (1) 10-3 to 15-48 zone; cantilev ertical left and right exposed;C-C for member sion sf (roof LL: Lum DOL=1. (Lum DOL=1.15 Plate	design. 5) This truss hi load of 12.0 overhangs r d, 6) This truss hi chord live lo 7) * This truss on the botto 3-06-00 tall chord and a 8) One H2.5A recommend UPLIFT at ji and does no LOAD CASE(S) 55 Cat. 8 8 15	I snow loads have been cor as been designed for great psf or 1.00 times flat roof I on-concurrent with other Ii as been designed for a 10. ad nonconcurrent with any has been designed for a liv m chord in all areas where by 2-00-00 wide will fib the hy other members. Simpson Strong-Tie conne led to connect truss to bear (s) 8 and 6. This connectio ot consider lateral forces. Standard	ter of min roof live oad of 20.0 psf on ve loads. 0 psf bottom other live loads. ve load of 20.0psf a rectangle ween the bottom ectors ring walls due to		Winning		• -

3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

minim May 2,2025

Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	HGE	Common Supported Gable	1	1	Job Reference (optional)	173150314

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Wed Apr 30 15:21:11 ID:4Z51CcRpxX4FZrkeSa9c43zMDE_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

- **REACTIONS** (size) 14=-56 (LC 15), 15=-59 (LC 15), 17=-59 (LC 14), 18=-55 (LC 14), 19=-98 (LC 14), 20=-95 (LC 10) Max Grav 12=142 (LC 25), 13=171 (LC 26), 14=229 (LC 22), 15=259 (LC 22), 16=180 (LC 28), 17=259 (LC 21), 18=229 (LC 21), 19=182 (LC 25), 20=159 (LC 26) (lb) - Maximum Compression/Maximum FORCES Tension TOP CHORD 2-20=-124/107. 1-2=0/34. 2-3=-97/98. 3-4=-64/95, 4-5=-60/173, 5-6=-96/242. 6-7=-96/242, 7-8=-60/173, 8-9=-52/96. 9-10=-77/80, 10-11=0/34, 10-12=-112/92 BOT CHORD 19-20=-78/90, 18-19=-78/90, 17-18=-78/90, 16-17=-78/90, 15-16=-78/90, 14-15=-78/90, 13-14=-78/90, 12-13=-78/90 WEBS 6-16=-193/16, 5-17=-219/100, 4-18=-188/116, 3-19=-123/89,
 - 7-15=-219/101, 8-14=-188/114, 9-13=-113/101
- NOTES

Loading

TCDL

BCLL

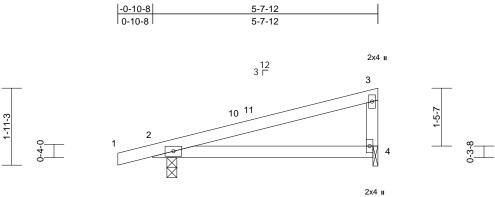
BCDL

WFBS

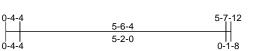
- or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 8)
- Truss to be fully sheathed from one face or securely 9) braced against lateral movement (i.e. diagonal web). 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 95 lb uplift at joint 20, 74 lb uplift at joint 12, 59 lb uplift at joint 17, 55 lb uplift at joint 18, 98 lb uplift at joint 19, 59 lb uplift at joint 15, 56 lb uplift at joint 14 and 92 lb uplift at joint 13.

818 Soundside Road


Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

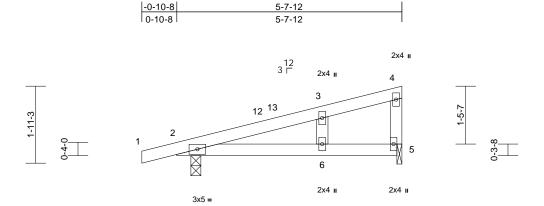

Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	I	Monopitch	5	1	Job Reference (optional)	173150315

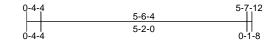
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 15:21:11 ID:nEFoOQTSTYeU8OA94u2Fj5zMD10-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:28.9

TC	LL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.50 0.37 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.07 -0.08 0.00	(loc) 4-9 4-9 2	l/defl >990 >782 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%
LUI TO BO BR TO BO RE TO BO NO 1) 2) 3)	MBER P CHORD 2x4 i BS 2x4 i ACING P CHORD Stru 5-7- T CHORD Stru 5-7- T CHORD Stru 6-7- T CHORD Stru 5-7- T CHORD Stru 6-7- 1000	SP No.2 SP No.2 SP No.3 ctural wood she 12 oc purlins, e d ceiling directly ing. 2=0-3-0, 4 foriz 2=58 (LC Jplift 2=-123 (L Grav 2=395 (LC Maximum Com ion 0/18, 2-3=-101/ -118/127 6; Vult=130mph FCDL=6.0psf; B ed; MWFRS (er (2E) -0-10-8 to (2E) 2-6-0 to 5- d; end vertical ht exposed;C-C S for reactions s grip DOL=1.60 6; Pr=20.0 psf (L .0; Rough Cat E 0 w loads have be sen designed fo or 1.00 times fla	13) C 10), 4=-75 (LC 10) C 21), 4=258 (LC 21) pression/Maximum 118, 3-4=-183/150 (3-second gust) CDL=6.0psf; h=25ft; welope) exterior zone 2-1-8, Interior (1) 2-1 6-0 zone; cantilever I eft and right exposed for members and hown; Lumber roof LL: Lum DOL=1. the considered for thi r greater of min roof I t roof load of 20.0 psl	on the bot 3-06-00 ta chord and 7) Bearings a 8) Bearing at using ANS designers 9) Provide m bearing pl 10) One H2.5, recommer UPLIFT at and does LOAD CASE(Cat. e -8 eft 1; .15 is ive	s has been designed om chord in all area Il by 2-00-00 wide wi any other members. re assumed to be: J joint(s) 4 considers I/TPI 1 angle to grai hould verify capacity echanical connection ate at joint(s) 4. A Simpson Strong-Ti ded to connect truss jt(s) 4 and 2. This co to consider lateral fo 5) Standard	s where ill fit betw loint 4 Sl parallel n formul of bear n (by oth e conne s to bear onnectio	a rectangle veen the bott P No.3 . to grain value a. Building ing surface. ers) of truss ctors ing walls due	to to		Manutan.		ANTH CA	
 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 			ls.								A. C	ILDUN	

May 2,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	ISE	Monopitch Structural Gable	1	1	Job Reference (optional)	173150316

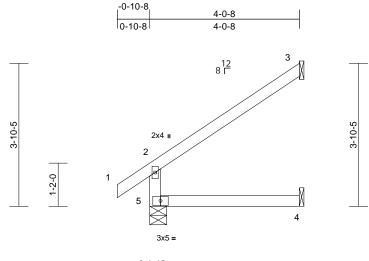
Run; 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 15:21:11 ID:INPZ5e0g9muGd0LDY9HBQAzMCx9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

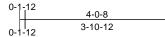
Page: 1

Scale = 1:28.9

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MP	0.38 0.43 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.08 -0.10 0.00	(loc) 6-11 6-11 2	l/defl >879 >670 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea 5-7-12 oc purlins, ea	athing directly applied xcept end verticals. applied or 10-0-0 oc	0)	design. This truss ha load of 12.0 overhangs n Gable studs This truss ha chord live lo * This truss on the botto	snow loads have as been designed psf or 1.00 times on-concurrent wit spaced at 2-0-0 o as been designed ad nonconcurrent has been designe m chord in all arec	for greate flat roof le h other liv oc. for a 10.0 with any d for a liv as where	er of min roof bad of 20.0 p ve loads. 0 psf bottom other live loa e load of 20.0 a rectangle	live sf on ids. Opsf					
REACTIONS	(size) 2=0-3-0, 5 Max Horiz 2=58 (LC Max Uplift 2=-123 (L Max Grav 2=395 (LC	13) .C 10), 5=-75 (LC 10)	- /	 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 9) Bearings are assumed to be: Joint 5 SP No.3 . 10) Bearing at joint(s) 5 considers parallel to grain value 									
FORCES	(lb) - Maximum Com Tension 1-2=0/18, 2-3=-101/			 using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 11) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5. 									
BOT CHORD WEBS NOTES 1) Wind: ASI	4-5=-149/121 2-6=-118/127, 5-6=- 3-6=-83/70 CE 7-16; Vult=130mph			 12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5 and 2. This connection is for uplift only and does not consider lateral forces. LOAD CASE(S) Standard 								min	10

- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 2-6-0, Exterior(2E) 2-6-0 to 5-6-0 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

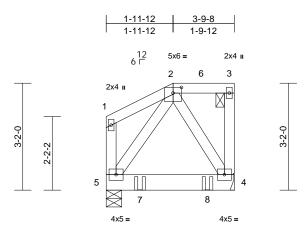
Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	J	Jack-Open	23	1	Job Reference (optional)	173150317

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 15:21:11 ID:PyvlqhZumGu8RvIJPEZ4jQzMCJj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.1

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MR	0.36 0.23 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.02 -0.03	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 4-0-8 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 oc anical, 4= Mechanica C 14) C 14)	on the bol 3-06-00 tr chord and 7) Bearings 8) Refer to g 9) Bearing a using ANS designer 3 10) Provide m bearing pl 3. LOAD CASE(s has been designer tom chord in all area Il by 2-00-00 wide w any other members are assumed to be: , irder(s) for truss to 1 t joint(s) 5 considers SI/TPI 1 angle to gra should verify capacit echanical connectio ate capable of withs S) Standard	as where vill fit betv Joint 5 L truss con parallel t in formula y of bear n (by oth	a rectangle veen the botto Jser Defined nections. o grain value a. Building ng surface. ers) of truss t	om to					
FORCES TOP CHORD BOT CHORD	,											
 NOTES Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 									My trittin.		SEA 0363	EER RUU


May 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	KGR	Half Hip Girder	1	2	Job Reference (optional)	173150318

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 15:21:11 ID:T3jl1iiM2Fv9ehg9GdEVZ1z17hh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LUS26

LUS26

3-9-8

Scale = 1:34.1

Plate Offsets (X, Y): [2:0-3-0,0-2-0]

	(X, T). [2.0-3-0,0-2-0]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC202	1/TPI2014	CSI TC BC WB Matrix-MP	0.05 0.40 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.03 0.00	(loc) 4-5 4-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 59 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	OP CHORD 2x4 SP No.2 Vas SOT CHORD 2x6 SP No.2 II; E SOT CHORD 2x6 SP No.2 II; E WEBS 2x4 SP No.3 right SRACING Structural wood sheathing directly applied or 6-1-12 oc purlins, except end verticals, and 2-0-0 oc purlins: 2-3. 5) TCI SOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 5) TCI REACTIONS (size) 4= Mechanical, 5=0-5-8 6) Und des Max Horiz 5=99 (LC 9) 7) Pro Max Grav 4=1041 (LC 32), 5=946 (LC 33) 8) Thi chc FORCES (lb) - Maximum Compression/Maximum 9) * TI *				Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); ls=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.					Uniform Loads (lb/ft) Vert: 1-2=-60, 2-3=-60, 4-5=-20 Concentrated Loads (lb) Vert: 7=-827 (B), 8=-829 (B)			
FORCES TOP CHORD BOT CHORD WEBS	Tension 1-2=-44/36, 2-3=-36 1-5=-81/25	/27, 3-4=-74/21,		* This truss h on the bottor 3-06-00 tall b chord and an) Refer to gird	This truss has been designed for a live load of 20.0psf n the bottom chord in all areas where a rectangle -06-00 tall by 2-00-00 wide will fit between the bottom hord and any other members. Lefer to girder(s) for truss to truss connections. rovide mechanical connection (by others) of truss to								
 NOTES 2-ply truss to be connected together with 10d (0.131*x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x4 - 1 row at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc. All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. Unbalanced roof live loads have been considered for this design. bearing pla 4. Den H2.5/ recommer UPLIFT at does not of the original bottom chorts. Graphical or the original bottom chorts. Graphical				 bearing plate 4.) One H2.5A S recommende UPLIFT at jt(does not com) Graphical pu or the orienta bottom chorce) Use Simpson Truss, Single oc max. starf connect truss) Fill all nail ho 	e capable of withst Simpson Strong-Ti ed to connect truss s) 5. This connect usider lateral force rlin representation ation of the purlin the strong-Tie LUS2 PIy Girder) or eq ting at 3-4-4 from tis (es) to back face bles where hanger Standard bw (balanced): Lui	ie conne s to bear tion is fo s. n does n along the 26 (4-100 uivalent the left e of botto is in cor	38 lb uplift at ctors ing walls due r uplift only ar ot depict the s e top and/or d Girder, 3-10 spaced at 2-(n d to 5-4-4 tc n chord. ttact with lum	t joint to nd size 0d 0-0 0 0		1 Contraction		SEA 0363	22

- this design.
- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

May 2,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	PB1	Piggyback	9	1	Job Reference (optional)	173150319

-0-11-1

0-11-1

2

Ø

1-6-9

1-6-9

12 6 Г

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Wed Apr 30 15:21:11 ID:ksn03tXTw0Suqz7L58mmLnzMDIQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x5 =

3

3-1-3

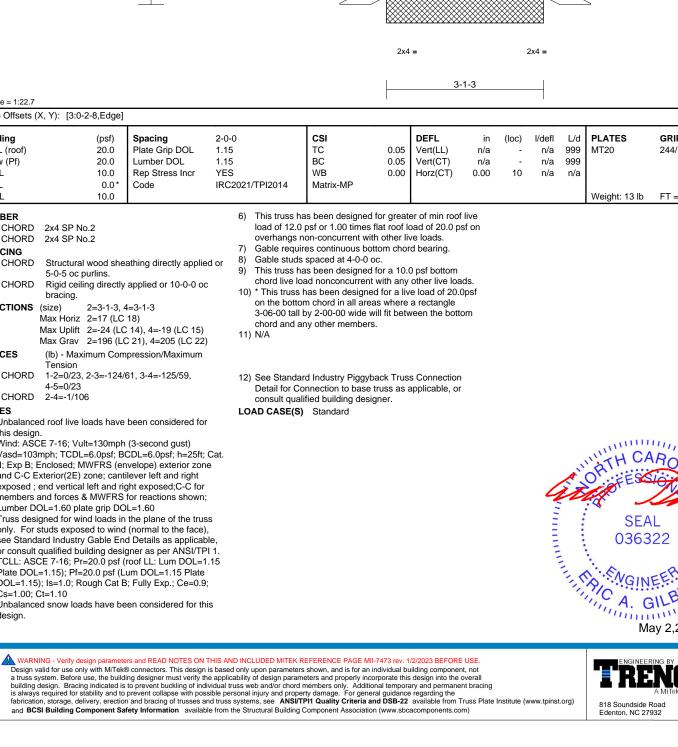
1-6-9

4-0-4

0-11-1

4

Ø


5

Page: 1

GRIP

244/190

FT = 20%

Scale = 1:22.7

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS

BRACING

TCDL

BCLL

BCDL

Plate Offsets (X, Y): [3:0-2-8,Edge]

	10.0				
 5-0-5 oc p Rigid ceili bracing. (size) Max Horiz	0.2 0.2 wood shea ourlins. ng directly 2=3-1-3, 4 2=17 (LC		9) oc 10)	This truss ha load of 12.0 p overhangs no Gable require Gable studs s This truss ha chord live loa * This truss h on the bottom on the bottom 2-06-00 tall b chord and an	osf or on-co es con space s bee id nor as bee n cho y 2-0
	· ·	21), 4=205 (LC 2	· · · · · ·	N/A	

1-1-7

1-3-1

FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/23, 2-3=-124/61, 3-4=-125/59, 4-5=0/23BOT CHORD 2-4=-1/106

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.

G

May 2,2025

Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	V1	Valley	1	1	Job Reference (optional)	173150320

Scale = 1:45 Loading

TCLL (roof)

Snow (Pf)

LUMBER

WFBS

OTHERS

BRACING

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

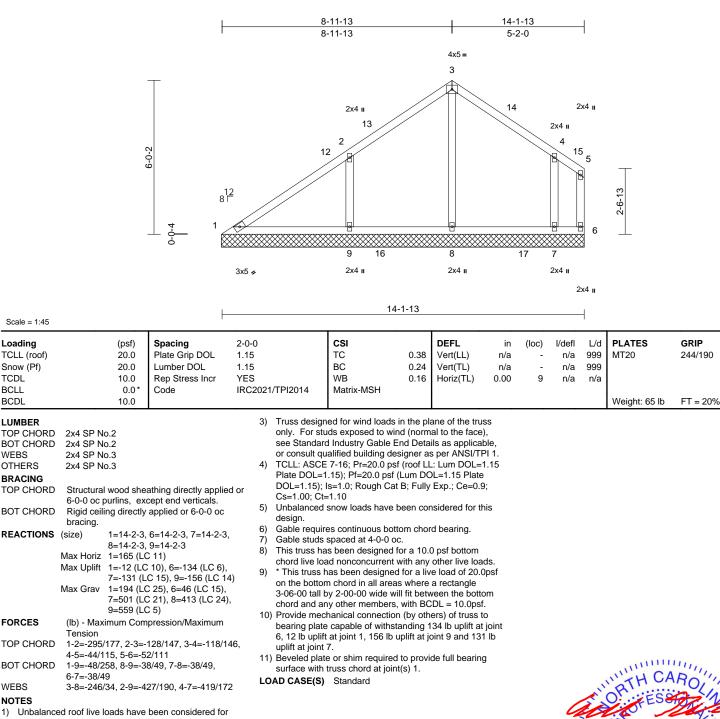
BOT CHORD

WEBS

NOTES

TOP CHORD

BOT CHORD


TCDL

BCLL

BCDL

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Wed Apr 30 15:21:11 ID:?rB5QY9yygQK2QQt7KhNiVzMDAT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

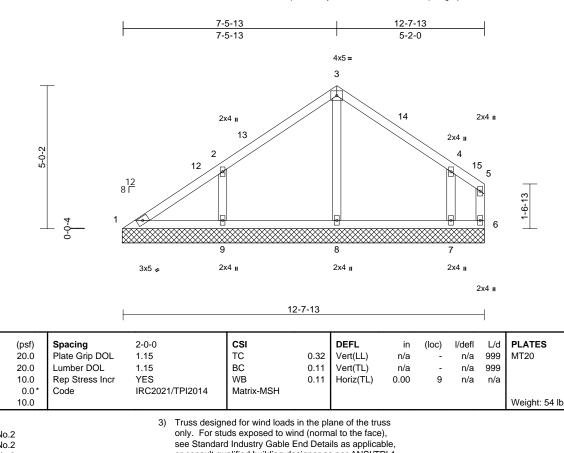
this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.

II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 6-0-3, Exterior(2R) 6-0-3 to 11-0-7, Exterior(2E) 11-0-7 to 14-0-7 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Contra Contra VIVILLE IN THE SEAL 036322 G mm May 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road


Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	V2	Valley	1	1	Job Reference (optional)	173150321

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Wed Apr 30 15:21:11 ID:EaEUJdGbqRZ2eocc9jMUZPzMDAK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

GRIP

244/190

FT = 20%

LOWIDER						
TOP CHORD	2x4 SP N	0.2				
BOT CHORD	2x4 SP N	0.2				
WEBS	2x4 SP N	0.3				
OTHERS	2x4 SP N	0.3				
BRACING						
TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.					
BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing.					
REACTIONS	(size)	1=12-8-3, 6=12-8-3, 7=12-8-3,				
		8=12-8-3, 9=12-8-3				
	Max Horiz	1=130 (LC 11)				
	Max Uplift	1=-18 (LC 10), 6=-120 (LC 21),				
		7=-139 (LC 15), 9=-126 (LC 14)				
	Max Grav	1=124 (LC 25), 6=54 (LC 15),				
		7=488 (LC 21), 8=332 (LC 21),				
		9=476 (LC 20)				
FORCES	(lb) - Max	imum Compression/Maximum				
	Tension					
TOP CHORD	1-2=-179/138, 2-3=-125/123, 3-4=-119/124,					
	4-5=-46/113, 5-6=-55/110					
BOT CHORD	1-9=-31/138, 8-9=-31/36, 7-8=-31/36,					
	6-7=-31/36					
WEBS	3-8=-252/19, 2-9=-389/167, 4-7=-418/175					

Unbalanced roof live loads have been considered for

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone

and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 4-6-3, Exterior(2R) 4-6-3 to 9-6-7, Exterior(2E) 9-6-7 to 12-6-7 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber

Wind: ASCE 7-16; Vult=130mph (3-second gust)

DOL=1.60 plate grip DOL=1.60

Scale = 1:40.4 Loading

TCLL (roof)

Snow (Pf)

LUMBER

NOTES 1)

2)

this design

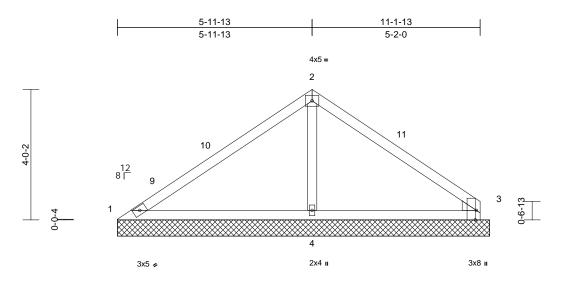
TCDL

BCLL

BCDL

or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

- 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) desian.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 8)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 9)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 120 lb uplift at joint 6, 18 lb uplift at joint 1, 126 lb uplift at joint 9 and 139 lb uplift at joint 7.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1.
- LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	V3	Valley	1	1	Job Reference (optional)	173150322

Run: 8.73 E May 9 2024 Print: 8.730 E May 9 2024 MiTek Industries, Inc. Thu May 01 17:01:48 ID:eQR2VTV87a4C1t8SKwjANdzMDA0-zWfl5NyNOz6Yrssq?7dDpoo7GIxxwFYLGSBUGnzKpt1

Page: 1

11-1-13

Scale = 1:35.4

Plate Offsets (X, Y): [3:0-3-8,Edge]

	(X, 1). [5.0-5-0,Euge]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TP		CSI TC BC WB Matrix-MSH	0.68 0.59 0.24	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 42 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (Ib/size) 1=99/11-5 4=751/11. Max Horiz 1=90 (LC Max Uplift 1=-20 (LC 4=141 (L Max Grav 1=113 (LC 4=984 (LC 	v applied or 6-0-0 oc 5-5, 3=65/11-5-5, -5-5 11) C 15), 3=-113 (LC 20 C 14) C 25), 3=238 (LC 21 C 20)	 Pli D0 C5 Ur ded or 6) G2 7) G2 8) Th 6) * 1 on 3-1 ch 10) Pr be 3 	ate DOL=1.1 OL=1.15); Is S=1.00; Ct=1 nbalanced sr sign. able requires able studs sp nis truss has nord live load nord live load This truss has n the bottom 06-00 tall by oord and any rovide mecha aaring plate of and 20 lb up	now loads have b s continuous botti paced at 4-0-0 oc been designed for d nonconcurrent v is been designed chord in all areas v 2-00-00 wide wil v other members. anical connection capable of withsta	Lum DC B; Fully been cor or a 10.0 or a 10.0 for a liv s where I fit betw (by oth anding 1	DL=1.15 Plate Exp.; Ce=0.9 Insidered for the d bearing. D psf bottom other live loa e load of 20.0 a rectangle ween the botto ers) of truss t 13 lb uplift at	ds. Opsf om joint					
FORCES TOP CHORD BOT CHORD WEBS NOTES	0 1-4=-304/115, 3-4=- 2-4=-768/192	178/421 304/187	co foi 12) Be su LOAD	onnection is f rces. eveled plate	ig walls due to UF for uplift only and or shim required uss chord at joint Standard	does ne to provi	ot consider la					TH CA	ROUT
this desig 2) Wind: AS Vasd=10 II; Exp B; and C-C to 8-5-11 left and ri MWFRS grip DOL 3) Truss der only. For	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Br Enclosed; MWFRS (er Exterior(2E) 0-0-6 to 3 , Exterior(2E) 8-5-11 to ight exposed ;C-C for m for reactions shown; Lu	a (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zor 0-6, Exterior(2R) 3-C 11-5-11 zone; cantil nembers and forces imber DOL=1.60 pla a the plane of the trus d (normal to the face)	Cat. ne)-6 lever & te ss									SEA 0363	• -

- and C-C Exterior(2E) 0-0-6 to 3-0-6, Exterior(2R) 3-0-6 to 8-5-11, Exterior(2É) 8-5-11 to 11-5-11 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G minin May 2,2025

Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	V4	Valley	1	1	Job Reference (optional)	173150323

4-5-13

4-5-13

12 8 Г

2-0-0

1.15

1 15

YES

IRC2021/TPI2014

3x5 🖌

CSI

TC

BC

WB

Matrix-MP

Carter Components (Sanford, NC), Sanford, NC - 27332,

3-0-2

(psf)

20.0

20.0

10.0

10.0

0.0

-9-5-

Spacing

Code

Plate Grip DOL

Rep Stress Incr

Lumber DOL

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 15:21:12 ID:t9USOYco?LCwcFKBMJNHEWzMD9t-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 4x5 = 2

4 2x4 II

8-11-10

DEFL

Vert(LL)

Vert(TL)

Horiz(TL)

0.42

0.39

0.12

in

n/a

n/a

0.00

(loc)

4

8-6-7

4-0-10

3 PLATES GRIP MT20 244/190

FT = 20%

Page: 1

8-11-10

0-5-3

3x5 💊

Weight: 31 lb

l/defl

n/a 999

n/a 999

n/a n/a

L/d

LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 OTHERS BRACING Structural wood sheathing directly applied or TOP CHORD 8-11-10 oc purlins. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 1=8-11-10, 3=8-11-10, 4=8-11-10 Max Horiz 1=-67 (LC 10) Max Uplift 1=-48 (LC 21), 3=-48 (LC 20), 4=-81 (LC 14) Max Grav 1=103 (LC 20), 3=103 (LC 21), 4=712 (LC 21) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-115/359, 2-3=-115/359 1-4=-294/167, 3-4=-294/167 BOT CHORD WFBS 2-4=-574/216

NOTES

Scale = 1:29.1 Loading

TCLL (roof)

Snow (Pf)

TCDL

BCLL

BCDL

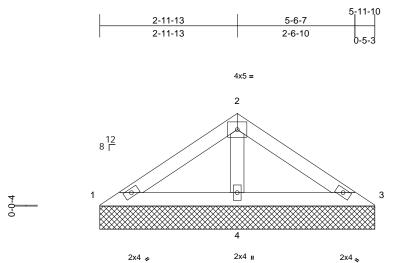
- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 3-0-6, Exterior(2R) 3-0-6 to 6-0-0, Exterior(2E) 6-0-0 to 9-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 5) desian. Gable requires continuous bottom chord bearing. 6) 7) Gable studs spaced at 4-0-0 oc. 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 48 lb uplift at joint 1, 48 lb uplift at joint 3 and 81 lb uplift at joint 4. LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	V5	Valley	1	1	Job Reference (optional)	173150324


1-8-7

2-0-2

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 15:21:12 ID:AVP5sxiBMV5xyKNXGH?w1?zMD9m-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932

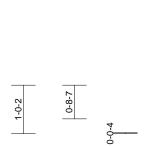
5-11-10

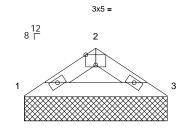
Scale - 1.25

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.14	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.14	Vert(TL)	n/a	-	n/a	999	1 1120	244/100
CDL	10.0	Rep Stress Incr	YES	WB	0.05	Horiz(TL)	0.00	4	n/a	n/a	1	
BCLL	0.0*	Code	IRC2021/TP									
BCDL	10.0										Weight: 20 lb	FT = 20%
UMBER OP CHORD	2x4 SP No.2		,	balanced snow loads hav sign.	ve been coi	nsidered for th	nis					
BOT CHORD	2x4 SP No.2			ble requires continuous b		d bearing.						
DTHERS	2x4 SP No.3		,	ble studs spaced at 4-0-0		0 pof bottom						
OP CHORD	Structural wood sh 5-11-10 oc purlins.	eathing directly appli	ed or ^{ch}	is truss has been designe ord live load nonconcurre his truss has been design	nt with any	other live loa						
BOT CHORD		y applied or 6-0-0 oc	3-0	the bottom chord in all an 06-00 tall by 2-00-00 wide	will fit betw		, om					
REACTIONS	· · ·	10, 3=5-11-10, 4=5-1		ord and any other membe ovide mechanical connec		ers) of truss t	0					
	Max Horiz 1=43 (LC	,	1- 26 be	aring plate capable of wit	hstanding 3	3 lb uplift at jo						
	(LC 14)	C 14), 3=-11 (LC 15),		Ib uplift at joint 3 and 36	lb uplift at j	oint 4.						
	Max Grav 1=97 (L((LC 21)	C 20), 3=97 (LC 21),	4=385 LOAD	CASE(S) Standard								
FORCES	(lb) - Maximum Co Tension	mpression/Maximum										
TOP CHORD	1-2=-95/159, 2-3=-											
BOT CHORD	1-4=-136/103, 3-4= 2-4=-292/129	-136/103										
	2-4=-292/129											
	ed roof live loads hav	e been considered fo	r									
this design		e been considered to	1									11111
	CE 7-16; Vult=130mp										TH UA	Politic
	8mph; TCDL=6.0psf; Enclosed; MWFRS (e									X	ONEES	Sid A L
	Enclosed; MWFRS (e Exterior(2E) zone; car		ie						6	23		Visin
	end vertical left and								~			
	and forces & MWFR		;						-		SEA 0363	0 i i
	OL=1.60 plate grip D								=		SLF	
	igned for wind loads studs exposed to win								Ξ		0363	322 <u>:</u> E
	lard Industry Gable E	·	,,						-		N	1 2
	qualified building des									5	A. A.	airis
	CE 7-16; Pr=20.0 psf									1.5	& VGIN	EFICAN
	=1.15); Pf=20.0 psf (11	0	BEIN
DOL=1.15 Cs=1.00; (5); Is=1.0; Rough Cat	B; Fully Exp.; Ce=0.9);								11, A. C	ALLUN
05=1.00, 0	01-1.10											EER. HILLING
											M	ay 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	V6	Valley	1	1	Job Reference (optional)	173150325


Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 15:21:12 ID:?fmN7_mxxLr4gFqgdY6KGGzMD9g-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


2-6-7

1-0-10

1-5-13 1-5-13 2-11-10

Page: 1

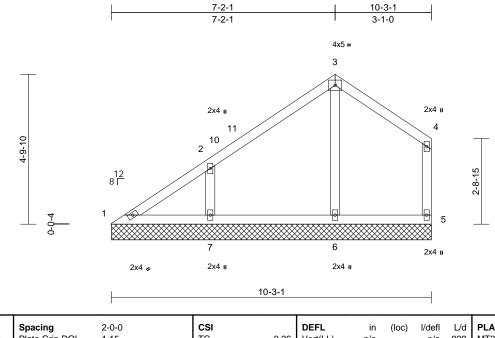
2-11-10

2x4 🍫

2x4 💊

Scale = 1:23.9

Plate Offsets (X, Y): [2:0-2-8,Edge]


		1				· · · ·					1	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.07	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0	-			-						Weight: 8 lb	FT = 20%
				uds spaced at 4-0-0 o s has been designed		0 pcf bottom						
	SP No.2 SP No.2			e load nonconcurrent			she					
BRACING	01 110.2			ss has been designe								
TOP CHORD Struc		athing directly applie	ed or on the b	ottom chord in all are all by 2-00-00 wide v	as where	a rectangle						
	I-10 oc purlins. d ceiling directly	applied or 10-0-0 o	c chord ar	d any other members	5.							
brac	sing.			nechanical connection								
REACTIONS (size)		0, 3=2-11-10		Ib uplift at joint 3.	stanuing	i ib upint at j	joint					
	Horiz 1=-20 (LC			(S) Standard								
		C 14), 3=-11 (LC 15) C 20), 3=133 (LC 21										
		pression/Maximum	,									
Tens												
TOP CHORD 1-2=	-193/70, 2-3=-1	93/70										
BOT CHORD 1-3=	-45/152											
NOTES												
1) Unbalanced roof	f live loads have	been considered fo	r									
this design.	0.)/	(0										
 Wind: ASCE 7-16 Vasd=102mph; T 		(3-second gust) CDL=6.0psf; h=25ft;	Cat								200111	1115
		velope) exterior zor									11'''' C	AD I'II
		ilever left and right									"TH U	ROM
		ght exposed;C-C for								X	ONFESS	in the
		for reactions shown	;							\mathcal{E}		Na 21
Lumber DOL=1.6									U	g ø	5/ -	a.c.
3) Truss designed f									-	()	0.5	
		l (normal to the face d Details as applical							=		SEA	AL : E
		gner as per ANSI/TF									0363	322 : =
 TCLL: ASCE 7-1 												
		um DOL=1.15 Plate								5	1	1 - 1 - S
		3; Fully Exp.; Ce=0.9	Э;							21	S. SNOW	-ERIX S
Cs=1.00; Ct=1.10										1	SGIN	E.F. R.N
 Unbalanced snow 	w loads have be	een considered for the	nis							1	SEA 0363	BEIN
design.6) Gable requires compared to the second second	ontinuous hotto	m chard boaring									Min A. (
Gable requires c	ominuous botto	m choru bearing.										21/2 2025
											IV	ay 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

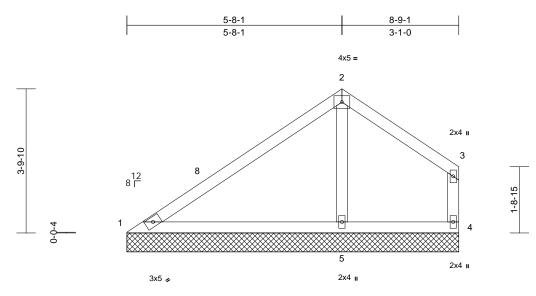
Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	V11	Valley	1	1	Job Reference (optional)	173150326

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 15:21:12 ID:_I7EHwldzD88zBqL8B4OKKzMDB?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale =	1:36.9

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.26 0.10 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 45 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=10-3-1 7=10-3-1 Max Horiz 1=139 (L Max Uplift 1=-18 (L0 7=-119 (I Max Grav 1=122 (L	/ applied or 10-0-0 oc , 5=10-3-1, 6=10-3-1 C 11) C 10), 5=-38 (LC 15), _C 14)	; 5) , 6) , 7) 8) 9)	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requir Gable studs This truss ha chord live loo * This truss ha on the bottor 3-06-00 tall th	ed for wind loads ids exposed to wird d Industry Gable E ialified building de 7-16; Pr=20.0 psf I.15); Pf=20.0 psf Is=1.0; Rough Cat =1.10 snow loads have I es continuous bott spaced at 4-0-0 o is been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w hy other members	nd (norm ind Deta signer as f (roof LL (Lum DC is B; Fully been cor tom chor c. for a 10.1 with any d for a liv s where s where	al to the face ils as applical is per ANSI/TF L=1.15 Plate Exp.; Ce=0.5 asidered for the d bearing. D psf bottom other live loa a rectangle), ble, PI 1. 1.15 d; his ds. Dpsf					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	Tension 1-2=-174/121, 2-3= 4-5=-156/100 1-7=-33/144, 6-7=-3 3-6=-236/47, 2-7=-5 ed roof live loads have	322/191	7, LC) Provide mec bearing plate	hanical connection capable of withst t at joint 1 and 119	n (by oth anding 3	88 lb uplift at j				ALL	NH CA	ROLIN

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 3-2-7, Interior (1) 3-2-7 to 4-2-7, Exterior(2R) 4-2-7 to 7-2-7, Exterior(2E) 7-2-7 to 10-1-11 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	V12	Valley	1	1	Job Reference (optional)	173150327

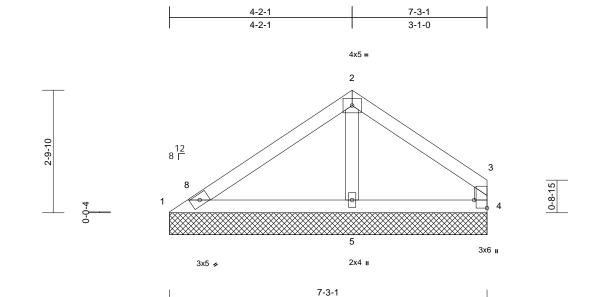
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 15:21:12 ID:Hf3tlJq0JN09JGsh29i26pzMDAu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

8-9-1

Scale	= 1:30.4

Loading TCLL (roof) Snow (Pf) TCDL	(psf) 20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.60 0.62 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0*	Code		21/TPI2014	Matrix-MP	0.07	110112(11)	0.01	4	n/a	n/a	Weight: 35 lb	FT = 20%
	Max Horiz 1=104 (LC Max Uplift 1=-26 (LC 5=-23 (LC Max Grav 1=238 (LC 5=452 (LC	cept end verticals. applied or 10-0-0 oc 4=8-9-1, 5=8-9-1 C 11) (14), 4=-39 (LC 15), (14) C 20), 4=149 (LC 21) C 20)	d or	DOL=1.15); Cs=1.00; Ct: Unbalanced design. 6) Gable requir 7) Gable studs 8) This truss ha chord live loa 9) * This truss h on the bottor 3-06-00 tail l chord and ar 10) Provide mec bearing plate	1.15); Pf=20.0 ps Is=1.0; Rough C =1.10 snow loads have es continuous b spaced at 4-0-0 is been designer ad nonconcurrer has been design no chord in all are by 2-00-00 wide ny other member	of (Lum DC at B; Fully e been cor ottom chor oc. d for a 10.0 tt with any ed for a live sas where will fit betw 's. on (by oth standing 3	DL=1.15 Plate Exp.; Ce=0.1 Insidered for t d bearing. D psf bottom other live loa e load of 20.1 a rectangle veen the bott ers) of truss i 19 lb uplift at j	e); ds. Dpsf om					
FORCES	(lb) - Maximum Com Tension			LOAD CASE(S)	Standard								
TOP CHORD	1-2=-334/108, 2-3=-	,											
BOT CHORD WEBS	1-5=-105/314, 4-5=- 2-5=-265/40	19/29											
NOTES	2-3=-200/40												
 Unbalance this design Wind: ASC Vasd=103 	ed roof live loads have CE 7-16; Vult=130mph mph; TCDL=6.0psf; Bo Enclosed: MWFRS (er	(3-second gust) CDL=6.0psf; h=25ft;	Cat.								- All	ORTH CA	ROIN

- II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 3-0-6, Exterior(2R) 3-0-6 to 5-8-7, Exterior(2E) 5-8-7 to 8-7-11 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.


SEAL 036322 MGINEEP. H

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY AMITEK Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP		
25040099-01	V13	Valley	1	1	Job Reference (optional)	173150328	

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 15:21:12 ID:a?_XDivPgWv9fLu1y7KhuHzMDAn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:26.3

Plate Offsets (X, Y): [4:Edge,0-3-8]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TF	CSI TC BC WB I2014 Matrix-MP	0.30 0.37 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 7-3-1 oc purlins, ex Rigid ceiling directly bracing. (size) 1=7-3-1, Max Horiz 1=68 (LC Max Uplift 1=-24 (LC (LC 14) Max Grav 1=196 (L) 5=354 (L)	xcept end verticals. y applied or 10-0-0 or 4=7-3-1, 5=7-3-1 (11) C 14), 4=-43 (LC 15) C 20), 4=157 (LC 21	PI D0 C3 5) U1 de dor 6) G3 c c 8) Th c cr 9) * - or 9) * - or 5=-9 cr 10) Pr), be	CLL: ASCE 7-16; Pr=20 ate DOL=1.15); Pf=20. DL=1.15); Is=1.0; Roug s=1.00; Ct=1.10 abalanced snow loads sign. able requires continuou able studs spaced at 4- iis truss has been desi ord live load nonconcu This truss has been desi the bottom chord in al D6-00 tall by 2-00-00 w ord and any other mer ovide mechanical conr aring plate capable of 24 lb uplift at joint 1 ar	0 psf (Lum DC h Cat B; Fully have been cou- us bottom choro- 0-0 oc. gned for a 10. I rrent with any signed for a lin. I areas where ide will fit betwn hbers. hection (by oth withstanding 4	DL=1.15 Plate Exp.; Ce=0.9 Insidered for the d bearing. 0 psf bottom other live loa re load of 20.0 a rectangle veen the botto ers) of truss t I3 lb uplift at j	ds.)psf om o					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Con Tension 1-2=-274/111, 2-3=- 1-5=-98/226, 4-5=-7 2-5=-202/38	-64/80, 3-4=-144/97		CASE(S) Standard		jouri er						
NOTES	2 5- 202/50										What C	Della
this design 2) Wind: ASC Vasd=103 II; Exp B; I and C-C E to 4-2-7, E and right e C for mem	ed roof live loads have CE 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er xterior(2E) 0-0-6 to 3- ixterior(2E) 4-2-7 to 7- exposed ; end vertical bers and forces & MW mber DOL=1.60 plate	n (3-second gust) CDL=6.0psf; h=25ft; nvelope) exterior zor 0-6, Exterior(2R) 3-0 -1-11 zone; cantileve left and right expose VFRS for reactions	Cat. le)-6 r left						A	Z	SEA 0363	EER. R. Human
only. For see Stand	gned for wind loads ir studs exposed to wind ard Industry Gable Er qualified building desi	d (normal to the face) Id Details as applical), ple,								A. C	EEF. F. T ALBERTIN ay 2,2025

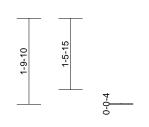
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

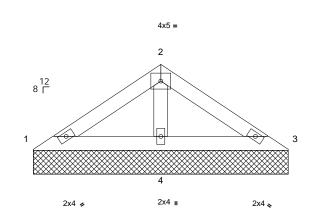
Job	Truss	Truss Type	Qty	Ply	1001 Serenity-Roof-B329 B RH CP	
25040099-01	V14	Valley	1	1	Job Reference (optional)	173150329

2-8-1 2-8-1

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 15:21:12 ID:tLvAh6?o0gnA?QxNt5yKgmzMDAg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


4-10-15


2-2-14

5-4-2

Page: 1

5-4-2

Scale = 1:24.2

Scale = 1:24.2												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI20	CSI TC BC WB Matrix-MP	0.10 0.13 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 5-4-2 oc purlins. Rigid ceiling directly bracing.	applied or 6-0-0 oc 3=5-4-2, 4=5-4-2 2 12) 14), 3=-11 (LC 15),	design 6) Gable 7) Gable 8) This tr chord 9) * This on the 3-06-0 chord 10) Provio bearin 11 lb	anced snow loads ha requires continuous studs spaced at 4-0- uss has been design live load nonconcurre truss has been desig bottom chord in all a 0 tall by 2-00-00 wide and any other memb e mechanical connec g plate capable of wi uplift at joint 3 and 30 SE(S) Standard	bottom chor 0 oc. ed for a 10.0 ent with any ined for a liv ireas where e will fit betw ers. ction (by oth thstanding 5	d bearing.) psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t i b uplift at jo	ds.)psf om o					
FORCES TOP CHORD BOT CHORD WEBS NOTES	(Ib) - Maximum Corr Tension 1-2=-90/128, 2-3=-9 1-4=-110/87, 3-4=-1 2-4=-240/106	0/128 10/87	_									
 this desig Wind: ASS Vasd=103 II; Exp B; and C-C E exposed; members Lumber D Truss des only. For see Stanc or consult TCLL: AS Plate DOI 	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed; MWFRS (er Exterior(2E) zone; cant ; end vertical left and ri, and forces & MWFRS OL=1.60 plate grip DC signed for wind loads in studs exposed to wind dard Industry Gable En t qualified building desi CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E	(3-second gust) CDL=6.0psf; h=25ft; welope) exterior zor ilever left and right ght exposed;C-C for for reactions shown vL=1.60 the plane of the tru: (normal to the face) d Details as applical gner as per ANSI/TF roof LL: Lum DOL=	Cat. ne ; ss), ble, 1.15						CV CHILLION		SEA 0363	EEP. KIN

May 2,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

