

RE: 4619372

JSJ, Magnolia Prime A,B (12-13-24)

Site Information:

Customer: JSJ Builders Project Name: 4619372 Lot/Block: 35 Model: MAGNOLIA PRIME Address: Subdivision: ILAS WAY City: Dunn State: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.6 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 20 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	170941779	A01	1/24/2025
2	170941780	A02	1/24/2025
3	170941781	A03	1/24/2025
4	170941782	A04	1/24/2025
5	170941783	B01	1/24/2025
6	170941784	B02	1/24/2025
7	170941785	C01	1/24/2025
8	170941786	C02	1/24/2025
9	170941787	D01	1/24/2025
10	170941788	E01	1/24/2025
11	170941789	E02	1/24/2025
12	170941790	E03	1/24/2025
13	170941791	G01	1/24/2025
14	170941792	G02	1/24/2025
15	170941793	H01	1/24/2025
16	170941794	H02	1/24/2025
17	170941795	V01	1/24/2025
18	170941796	V02	1/24/2025
19	170941797	V03	1/24/2025
20	170941798	V04	1/24/2025

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Builders FirstSource-Sumter,SC.

Truss Design Engineer's Name: Pace, Adam

My license renewal date for the state of North Carolina is December 31, 2025

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Trenco 818 Soundside Rd Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	JSJ, Magnolia Prime A,B (12-13-24)	
4619372	A01	Common Supported Gable	1	1	Job Reference (optional)	170941779

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 12:49:12 ID:luZzsGLpG9?kIDD8DaJGLkzkzyV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [1:0-3-8,Edge], [33:0-2-4,0-1-8]

						_										
Loading		(psf)	Spacing	2-0-	0		CSI		DEFL	in	(l	oc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15			TC	0.08	Vert(LL)	n/a		-	n/a	999	MT20	244/190
TCDI		10.0	Lumber DOI	1 15			BC	0.08	Vert(CT)	n/a		-	n/a	999		
BCU		0.0*	Ren Stress Incr	YES			WB	0.12	Horz(CT)	0.01		20	n/a	n/a		
BCDI		10.0	Codo		0015/TDI2014	- 1	Motrix MS	0.12	11012(01)	0.01		20	n/a	n/a	Woight: 206 lb	FT - 20%
		10.0	Code	INC	2013/11/2014		Matrix-INIS								Weight. 200 lb	F1 = 2078
						Ma	x Grav 1=172 (L0	C 9), 20	D=156 (LC 1),	2	1)	Unb	alanced	l roof l	ive loads have be	en considered for
TOP CHORD	2x4 SP N	lo.2					22=193 (I	LC 20),	23=94 (LC 20	J),	-	this	design.			
BOT CHORD	2x4 SP N	o.2					24=126 (l	LC 20),	25=119 (LC 2	20),	2)	vvin	d: ASCE	= 7-10	; Vult=130mph (3-	-second gust)
OTHERS	2x4 SP N	lo.3					26=121 (l	LC 20),	27=120 (LC 2	20),		Vas	d=103m	iph; IC	CDL=6.0pst; BCD	L=6.0psf; h=25ft;
WEDGE	Left: 2x4	SP No.3					28=124 (l	LC 20),	29=117 (LC 2	20),		Cat.	. II; Exp	C; End	closed; MWFRS (envelope) exterior
BRACING							30=237 (l	_C 13),	31=126 (LC 1	19),		zon	e and C	-C Ext	erior (2) zone; ca	ntilever left and right
TOP CHORD	Structura	l wood she	athing directly applie	d or			32=120 (l	LC 19),	34=120 (LC 1	19),		exp	osed ; e	nd ver	tical left and right	exposed;C-C for
	6-0-0 oc	purlins.	3				35=121 (l	LC 19),	36=119 (LC 1	19),		mer	nbers a	nd forc	es & MWFRS for	reactions shown;
BOT CHORD	Rigid ceil	ing directly	applied or 10-0-0 oc				37=128 (l	LC 19),	38=88 (LC 1)	,		Lum	nber DO	L=1.60) plate grip DOL=	1.60
	bracing						39=216 (l	LC 19),	40=172 (LC §	9),	3)	Trus	ss desig	ned fo	r wind loads in the	e plane of the truss
WEBS	1 Row at	midpt	10-30				44=156 (l	LC 1)				only	 For st 	uds ex	posed to wind (ne	ormal to the face),
REACTIONS	(size)	1-25-8-0	20-25-8-0 22-25-9	8-0	FORCES	(b) - Maximum Corr	npressi	on/Maximum			see	Standa	rd Indu	stry Gable End D	Details as applicable,
REAGINGING	(3120)	23-25-8-0	20-2000, 22-200	, 0, .8.0		T	ension					or c	onsult q	ualifie	d building designe	er as per ANSI/TPI 1.
		26-25-8-0	27 - 25 - 8 - 0, $23 - 25 - 25 - 0$, $23 - 25 - 25 - 25 - 25 - 25 - 25 - 25 -$	-0-0, -8-0	TOP CHORD	1.	-2=-272/228, 2-3=-	207/18	6, 3-4=-180/1	73,	4)	All p	plates ar	e 2x4	MT20 unless othe	erwise indicated.
		20-25-8-0), 27-25-0-0, 20-25-	-0-0, -8-0		4	-5=-165/158, 5-6=-	149/15	8, 6-7=-134/1	90,	5)	Gab	ole requi	res co	ntinuous bottom o	chord bearing.
		32-25-8-0) 34-25-8-0 35-25	-8-0		7.	-8=-169/221, 8-9=-	219/25	8, 9-10=-245/	286,	6)	Gab	ole studs	space	ed at 1-4-0 oc.	
		36-25-8-0) 37-25-8-0 38-25	-0-0, -8-0		10	0-11=-245/286, 11	-12=-2	19/253,		7)	This	s truss h	as bee	en designed for a	10.0 psf bottom
		20-25.9 ($1, 37 = 25 \cdot 0 \cdot 0, 30 = 25 \cdot 0 \cdot 0, 30 = 25 \cdot 0 \cdot 0$	-0-0, e o		1:	2-13=-169/194, 13	-14=-12	26/142,			cho	rd live lo	ad no	nconcurrent with a	any other live loads.
	Max Hariz	1 202 ((20, 40 = 20 - 0, 44 = 20)	-0-0 \		14	4-16=-82/89, 16-17	7=-67/5	7, 17-18=-79/	67,	8)	* Th	is truss	has be	een designed for a	a live load of 20.0psf
		1=-302 (L	C(0), 40 = -302 (LC(0)))		18	8-19=-121/81, 19-2	20=-19	9/145, 20-21=	0/31		on t	he botto	m cho	rd in all areas wh	ere a rectangle
	Max Uplin	1=-100 (L	LC 10), 20=-16 (LC 9), 10)	BOT CHORD	1.	-39=-156/232, 38-3	39=-14	8/232,			3-06	5-00 tall	by 2-0	0-00 wide will fit I	between the bottom
		22=-115 (LC(13), Z3=-5Z(LC)	13),		3	7-38=-148/232, 36	-37=-14	48/232,			cho	rd and a	ny oth	er members.	
		24=-72 (L	C 13), 25=-08 (LC 1-	3), 2)		3	5-36=-148/232, 34	-35=-14	48/232,							11.
		20=-00 (L	C(13), 27 = -00 (LC 1)	3), 2)		3	2-34=-148/232, 31	-32=-14	48/232,						MILL CA	E III
		28=-81 (L	C 13), 29=-36 (LC 1	3), 0)		3	0-31=-148/232, 29	-30=-14	48/232,						15TH LY	ROUL
		30=-13 (L	C(11), 31=-44 (LC 1)	2), 2)		2	8-29=-148/232, 27	-28=-14	48/232,					N	AT	······································
		32=-78 (L	C 12), 34=-08 (LC 1.	∠), ⊃)		2	6-27=-148/232, 25	-26=-14	48/232,					SI	FERS	ON: Kris
		35=-69 (L	C(12), $30 = -07$ (LC 1.	∠), ⊃)		24	4-25=-148/232, 23	-24=-14	48/232,							7
		37=-76 (L	LC 12), 38=-36 (LC 1.	Z),		2	2-23=-148/232, 20	-22=-14	48/232				-		gour o	
		39=-164 (LC 12), 40=-100 (LC	<i>i</i> 10),	WEBS	10	0-30=-230/158, 9-3	31=-10	0/60.				-	8	CEAL	1 1 1
		44=-16 (L	C 9)			8-	-32=-116/94, 7-34=	=-105/8	4. 6-35=-105/	84.			-	:	SEA	- : =
						5-	-36=-105/84, 4-37=	=-108/8	7. 3-38=-92/7	1.			=	:	0578	87 : =
						2	-39=-151/129, 11-2	29=-90/	/52,	,			-	9 - 9		1 I I
						1:	2-28=-116/97, 13-2	27=-10	5/84.						1	1 2
						1	4-26=-105/84, 16-2	25=-10	5/84,					2	· . En.	-R
						1	7-24=-109/86, 18-2	23=-90/	74,					1	GIN	EF
						1	9-22=-167/118	200	,					1	AD	CEN
					NOTES										AM I	PAULIN
					NULES										1111111	in the second se
															January	24,2025
															January	,_0_0

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and RCSI Building Component Safety (Information, available from the Structural Building Component Association (www.shearcomponent Safety Information, available from the Structural Building Component Association (www.shearcomponent Safety Information, available from the Structural Building Component Association (www.shearcomponent Association). and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Magnolia Prime A,B (12-13-24)	
4619372	A01	Common Supported Gable	1	1	Job Reference (optional)	170941779
Builders FirstSource (Sumter, SO	C), Sumter, SC - 29153,	Run: 8.63 S Sep 26 2	2024 Print: 8.	.630 S Sep 2	6 2024 MiTek Industries, Inc. Wed Jan 22 12:49:12	Page: 2

- All bearings are assumed to be SP No.2 crushing 9) capacity of 565 psi.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint 1, 13 lb uplift at joint 30, 44 lb uplift at joint 31, 78 lb uplift at joint 32, 68 lb uplift at joint 34, 69 lb uplift at joint 35, 67 lb uplift at joint 36, 76 lb uplift at joint 37, 36 lb uplift at joint 38, 164 lb uplift at joint 39, 36 lb uplift at joint 29, 81 lb uplift at joint 28, 68 lb uplift at joint 27, 68 Ib uplift at joint 26, 68 lb uplift at joint 25, 72 lb uplift at joint 24, 52 lb uplift at joint 23, 115 lb uplift at joint 22, 16 Ib uplift at joint 20, 100 lb uplift at joint 1 and 16 lb uplift at joint 20.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 40.

LOAD CASE(S) Standard

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 12:49:12 ID:luZzsGLpG9?kIDD8DaJGLkzkzyV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Magnolia Prime A,B (12-13-24)	
4619372	A02	Common	10	1	Job Reference (optional)	170941780

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 12:49:14 ID:5JJ?mM_c5ELrJmVZ0?ITgczkzyy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.56	Vert(LL)	-0.29	12	>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.91	Vert(CT)	-0.46	12	>672	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.38	Horz(CT)	0.04	6	n/a	n/a			
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS		Wind(LL)	0.12	8-24	>999	240	Weight: 143 lb	FT = 20%	
LUMBER	2x4 SP No 2		 This truss h chord live lo 	as been designe ad nonconcurrer	d for a 10.0 nt with any) psf bottom other live loa	ads.						

2x4 SP No.2 BOT CHORD 2x4 SP No.3 WEBS WEDGE Left: 2x4 SP No.3 BRACING Structural wood sheathing directly applied or TOP CHORD 3-10-10 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. Except: 6-0-0 oc bracing: 10-17 **REACTIONS** (size) 1= Mechanical, 6=0-3-8 Max Horiz 1=-302 (LC 8) Max Uplift 1=-208 (LC 12), 6=-243 (LC 13) Max Grav 1=1164 (LC 19), 6=1218 (LC 20) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-1681/418, 2-3=-1573/506, 3-5=-1615/514, 5-6=-1730/424, 6-7=0/31 BOT CHORD 1-18=-291/1530, 15-18=-27/1073,

13-15=-27/1073, 9-13=-27/1073, 8-9=-27/1073, 6-8=-205/1367, 14-17=-76/0, 12-14=-76/0, 11-12=-76/0, 10-11=-76/0

3-10=-228/890, 8-10=-259/779,

5-8=-483/380, 17-18=-252/700,

12-13=-29/14, 9-11=-83/0

Unbalanced roof live loads have been considered for

Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown;

Lumber DOL=1.60 plate grip DOL=1.60 All plates are 2x4 MT20 unless otherwise indicated.

3-17=-219/820, 2-18=-447/371, 14-15=-41/0,

Scale = 1:68.4

WEBS

NOTES

this design.

1)

2)

3)

- * This truss has been designed for a live load of 20.0psf
- 5) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Bearings are assumed to be: , Joint 6 SP No.2 crushing 6) capacity of 565 psi.
- 7) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to 8) bearing plate capable of withstanding 208 lb uplift at joint 1 and 243 lb uplift at joint 6.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	JSJ, Magnolia Prime A,B (12-13-24)	
4619372	A03	Common	7	1	Job Reference (optional)	170941781

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 12:49:14 ID:?M?x51jFgHK9wGsgCHS8jgzI_1A-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [2:0-6-0,0-0-8], [8:0-6-0,0-0-8]

Scale = 1:63.1

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.58	Vert(LL)	-0.25	10-12	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.73	Vert(CT)	-0.33	10-12	>948	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.50	Horz(CT)	0.04	8	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS		Wind(LL)	0.13	12-15	>999	240	Weight: 131 lb	FT = 20%

LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
BOT CHORD	Rigid ceili bracing.	ing directly applied or 9-3-15 oc
REACTIONS	(size)	2=0-3-8, 8=0-3-8
	Max Horiz	2=-309 (LC 10)
	Max Uplift	2=-290 (LC 12), 8=-290 (LC 13)
	Max Grav	2=1096 (LC 19), 8=1096 (LC 20)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/31,	2-3=-1504/511, 3-5=-1483/600,
	5-7=-1483	3/600, 7-8=-1504/511, 8-9=0/31
BOT CHORD	2-12=-370	0/1391, 10-12=-84/885,
	8-10=-276	6/1186
WEBS	5-10=-278	8/734, 7-10=-489/379,
	5-12=-278	8/733, 3-12=-489/379

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- 5) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to 6)
- bearing plate capable of withstanding 290 lb uplift at
- joint 2 and 290 lb uplift at joint 8.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a fuss system. Derive use, the building designer host verify the applications of design had been and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	JSJ, Magnolia Prime A,B (12-13-24)	
4619372	A04	Common Structural Gable	1	1	Job Reference (optional)	170941782

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 12:49:14

Page: 1

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Magnolia Prime A,B (12-13-24)	
4619372	A04	Common Structural Gable	1	1	Job Reference (optional)	170941782

Vert: 3=-91 (F=-31)-to-4=-92 (F=-32), 4=-92 (F=-32)-to-6=-93 (F=-33), 6=-93 (F=-33)-to-7=-94 (F=-34), 7=-94 (F=-34)-to-9=-95 (F=-35), 9=-95 (F=-35)-to-11=-96 (F=-36), 11=-96 (F=-36)-to-40=-97 (F=-37), 33=-21 (F=-1)-to-32=-24 (F=-4), 32=-24 (F=-4):to-41=-27 (F=-7), 3=-31 (F):to-5--33 (F), 5=-33 (F):to-8=-34 (F), 8=-34 (F):to-10=-35 (F), 10=-35 (F):to-12=-36 (F), 12=-36 (F):to-42=-37 (F)

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 12:49:14 ID:g2J82YQRZt0LqAY_vVaJ4azkzYa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Magnolia Prime A,B (12-13-24)	
4619372	B01	Common	4	1	Job Reference (optional)	170941783

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 12:49:14 ID:Lx2Od7XvxZThgRH9WtbUsczkzwy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [2:0	-1-6,0-1-8],	[4:0-1-6,0)-1-8]

Scale = 1:40.8

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.67	Vert(LL)	-0.08	6-9	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.55	Vert(CT)	-0.15	6-9	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.13	Horz(CT)	0.01	4	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS		Wind(LL)	0.12	6-9	>999	240	Weight: 57 lb	FT = 20%
			6) Provide me	chanical connecti	ion (by oth	ers) of truss	to					

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD 2x4 SP No.3 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 5-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS 2=0-3-8, 4=0-3-8 (size) Max Horiz 2=-177 (LC 10) Max Uplift 2=-171 (LC 12), 4=-171 (LC 13) Max Grav 2=618 (LC 1), 4=618 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/31, 2-3=-688/240, 3-4=-688/240, 4-5=0/31BOT CHORD 2-6=-101/500, 4-6=-65/500 WFBS 3-6=0/337

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 171 lb uplift at joint 2 and 171 lb uplift at joint 4.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second way the approximation of design and the property incorporate this design into the overall building design. Bracing indicated is to prevent building of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	JSJ, Magnolia Prime A,B (12-13-24)	
4619372	B02	Common Supported Gable	1	1	Job Reference (optional)	170941784

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 12:49:14 ID:TRKJMZi3tZ6rkRnfn6KXtLzkzwl-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Magnolia Prime A,B (12-13-24)	
4619372	C01	Common Structural Gable	1	1	Job Reference (optional)	170941785

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 12:49:14 ID:T6ei6rB4dEsroMY?p5B?stzkzV?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:53.7 Plate Offsets (X, Y): [24:0-3-0,0-3-0]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.66	Vert(LL)	0.10	21-37	>999	240	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.54	Vert(CT)	-0.12	21-37	>999	240		
BCLL		0.0*	Rep Stress Incr	NO		WB	0.12	Horz(CT)	0.02	19	n/a	n/a		
BCDL		10.0	Code	IRC20	15/TPI2014	Matrix-MS							Weight: 138 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N	0.2 0.2 0.3 0.3	athing directly applie	E V	OT CHORD	2-27=-47/409, 26-27 25-26=-43/409, 23-2 22-23=-42/408, 21-2 19-21=-46/771 18-21=0/306, 12-13 8-9=-220/123, 7-23= 5-25=-108/84, 4-26=	7=-43/4 25=-43, 22=-42, =-59/14 =-103/7 =-108/8	09, /409, /771, 49, 10-11=-43/ /8, 6-24=-91/8- /6, 3-27=-110/	/46, 4, 78,	10) Loa des corr 11) Gra or t bott 12) In ti	d case(s igner mu rect for the phical p ne orient om chor ne LOAE	s) 1 ha ust rev he inte urlin re tation o d. D CASI	s/have been moo iew loads to verif nded use of this presentation doe of the purlin along E(S) section, load	lified. Building y that they are truss. is not depict the size g the top and/or ds applied to the face
	5-0-15 or	n wood snee		u ui		14-15=-64/53, 16-17	7=-8/13	1		of t	ne truss	are no	ted as front (F) o	r back (B).
BOT CHORD	Rigid ceil	ing directly	applied or 10-0-0 oc	; N	IOTES					LOAD	CASE(S)) Sta	ndard	
JOINTS	bracing. 1 Brace a 9	at Jt(s): 13,		1) Unbalanced this design.) Wind: ASCI	l roof live loads have E 7-10; Vult=130mph	been o	considered for cond gust)		1) De Pl Ur	ead + Ro ate Incre niform Lo	oof Live ase=1 bads (I	e (balanced): Lun .15 b/ft)	iber Increase=1.15,
REACTIONS	(size) Max Horiz Max Uplift Max Grav	2=7-7-8, 1 23=7-7-8, 26=7-7-8, 31=7-7-8 2=-257 (Ll 2=-2 (LC & 22=-148 (Ll 24=-65 (LL 26=-68 (LL 28=-2 (LC 2=305 (LC 2=305 (LC 24=144 (Ll 26=128 (Ll 28=305 (Ll 28=305 (Ll	9=0-3-8, 22=7-7-8, 24=7-7-8, 25=7-7-8, 27=7-7-8, 28=7-7-8, C 10), 28=-257 (LC 3), 19=-190 (LC 13), LC 12), 23=-175 (LC C 12), 25=-68 (LC 12) C 12), 25=-68 (LC 12) C 12), 23=-73 (LC 11 C 1), 23=-38 (LC 9), C 19), 25=114 (LC 12) C 19), 25=114 (LC 12) C 19), 25=114 (LC 12) C 19), 25=138 (LC 9), C 19), 25=93 (LC 15) C 21), 31=885 (LC 15)	, ; 17), ³ 2), ³ 2), ⁴ , 5 19), 6 3), 7	 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right texposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) All plates are 2x4 MT20 unless otherwise indicated. 5) Gable studs spaced at 1-4-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf 									34), 18-20=-60, 1-35=-20, 13-33=-34 (F=-33), 14=-93 -92 (F=-32)-to-18=-91 21 (F=-1), 13=-34 (F)- =-32 (F), 17=-32 (F)-
FORCES	(lb) - Max Tension	kimum Com	pression/Maximum		3-06-00 tall	by 2-00-00 wide will	fit betv	veen the botto	m				10-10	alling in
TOP CHORD	1-2=0/31 4-5=-392 7-8=-322 12-14=-3 16-18=-4 19-20=0/ 10-13=-7 15-17=-7	, 2-3=-444/2 /16, 5-6=-3(/45, 8-11=-3 23/129, 14- 21/110, 18- 31, 9-22=-9 43/332, 13- 38/318, 17-	25, 3-4=-417/20, 54/11, 6-7=-337/21, 367/92, 11-12=-320/ 16=-366/111, 19=-1021/199, 20/391, 9-10=-793/3 15=-799/352, 18=-720/316	8 122, g 352,	 All bearings capacity of Provide me bearing plat 2, 148 lb up uplift at join 26, 73 lb up uplift at join 	are assumed to be 565 psi. chanical connection the capable of withstan lift at joint 22, 175 lb t 24, 68 lb uplift at joi lift at joint 27, 190 lb t 2 and 148 lb uplift at	SP No. (by oth nding 2 uplift a int 25, (uplift a at joint 2	2 crushing ers) of truss to 1 b uplift at joir t joint 23, 65 ll 68 lb uplift at jo t joint 19, 2 lb 22.	o nt b pint			ALL DE LE CONTRACTOR DE LE	SEA 0578 ADAM January	EFER

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY RENCO

Job	Truss	Truss Type	Qty	Ply	JSJ, Magnolia Prime A,B (12-13-24)	
4619372	C02	Common Girder	1	3	Job Reference (optional)	170941786

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 12:49:14 ID:I4bG3KtrCl2m87PyfZiNguzkzU6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:57.8

Plate Offsets (X, Y): [6:0-4-4,0-1-8], [7:0-5-0,0-4-8], [9:0-4-4,0-1-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.52 0.45 0.54	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.08 -0.16 0.04 0.09	(loc) 6-7 6-7 5 6-7	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 378 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2 2x6 SP 2400F 2.0E of 2x4 SP No.2 Structural wood shee 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-8, 5 Max Horiz 1=237 (LC Max Uplift 1=-1352 (Max Grav 1=6733 (L (lb) - Maximum Com Tension 1-2=-9687/1943, 2-3 3-4=-6472/1387, 4-5 1-9=-1666/8145, 7-9 6-7=-1509/7948, 5-6 2-9=-608/3452, 2-7= 3-7=-1373/6839, 4-7 4-6=-604/3426	or 2x6 SP DSS athing directly applied applied or 10-0-0 oc 5=0-3-8 2 5) LC 8), 5=-1269 (LC 9 .C 15), 5=6301 (LC 1 pression/Maximum a=-6473/1387, i=-9615/1938 l=-1666/8145, i=-1509/7948 -:3443/859, i=-3409/853,	4) d or 5) 6) 7) 6) 7) 8) 9) 10	Wind: ASCE Vasd=103mp Cat. II; Exp C zone; cantile and right exp DOL=1.60 This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an All bearing plate joint 1 and 12 Use Simpsor 14-10dx1 1/2 max. starting connect truss) Fill all nail ho DAD CASE(S)	7-10; Vult=130mpl h; TCDL=6.0psf; E ;; Enclosed; MWFF ver left and right ex- osed; Lumber DOI s been designed fr d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide wil y other members. are assumed to be acity of 660 psi. hanical connection capable of withsta 269 lb uplift at joint 1 strong-Tie HTU22 Truss) or equivale at 1-2-12 from the cles where hanger i Standard	h (3-sec 3CDL=6 3C (env cposed =1.60 p or a 10.0 vith any for a liv where I fit betw SP 240 (by oth nding 1 5. 6 (10-16 ent space left enc of bottor s in cor	ond gust) .0psf; h=25ft; elope) exteric; end vertical olate grip) psf bottom other live loa e load of 20.0 a rectangle veen the botto 0F 2.0E or D ers) of truss t 352 lb uplift a 36 Girder, red at 2-0-0 o t to 19-2-12 t n chord. ttact with lum	ds.)psf om SS o at c o ber.					11.
NOTES 1) 3-ply truss (0.131"x3" Top chord oc. Bottom ch staggered Web conn 2) All loads a except if n CASE(S) s provided tr unless oth 3) Unbalance this design	to be connected toget) nails as follows: s connected as follows ords connected as follows at 0-6-0 oc. ected as follows: 2x4 - re considered equally oted as front (F) or bat section. Ply to ply conno o distribute only loads erwise indicated. ed roof live loads have h.	ther with 10d 5: 2x4 - 1 row at 0-9-0 cows: 2x6 - 2 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO/ hections have been noted as (F) or (B), been considered for	1) AD	Dead + Roc Plate Increa Uniform Loa Vert: 1-5= Concentrate Vert: 8=- 16=-1082 19=-1082 22=-1082	ff Live (balanced): ise=1.15 ids (lb/ft) =-20, 1-3=-60, 3-5= id Loads (lb) 1082 (B), 14=-1082 (B), 17=-1082 (B) (B), 20=-1082 (B) (B)	Lumber 60 2 (B), 15 , 18=-10 , 21=-10	Increase=1. 5=-1082 (B), 082 (B), 082 (B),	15,		Contraction of the second s	in the second second	SEAL 05788	B7

818 Soundside Road Edenton, NC 27932

January 24,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Magnolia Prime A,B (12-13-24)	
4619372	D01	Common Supported Gable	1	1	Job Reference (optional)	170941787

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 12:49:15 ID:dzUlbrs04xYE8ilv03DIYAzkzY0-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	JSJ, Magnolia Prime A,B (12-13-24)	
4619372	E01	Common Supported Gable	1	1	Job Reference (optional)	170941788

-0-11-0 0-11-0

3x6 =

3x8 II

22-11-0

Scale = 1:46.3 Plate Offsets (X, Y): [2:0-3-8.Edge], [18:0-3-8.Edge], [29:0-1-8.0-1-8]

	(,,,,), [=:0	o o,=ago],	[::::::::::::::::::::::::::::::::::::::	0 · 0,0 · 0]												
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI20	014	CSI TC BC WB Matrix-N	MS	0.07 0.06 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc 1	:) l/defl - n/a - n/a 8 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 151 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No Left: 2x4 S Structural 6-0-0 oc p Rigid ceilin bracing. (size)	2.2 2.2 3.3 SP No.3 SP No.3 wood sheaver 20=22-11- 20=22-11- 20=22-11- 20=22-11- 22=22-11- 24=22-11- 24=22-11- 33=22-11- 33=22-11- 33=22-11- 33=22-11- 33=22-11- 24=23-11- 24=23-11- 22=59 (L) 24=-54 (L) 23=-54 (L) 30=-60 (L) 32=-57 (L) 36=-37 (L)	athing directly applied applied or 10-0-0 oc 0, 18=22-11-0, -0, 21=22-11-0, -0, 25=22-11-0, -0, 27=22-11-0, -0, 27=22-11-0, -0, 36=22-11-0, -0, 36=22-11-0, -0, 36=22-11-0, -0, 36=22-11-0, -0, 36=22-11-0, -0, 36=22-11-0, -0, 36=22-11-0, -0, 36=-139 (LC 1 13), 18=-13 (LC 9), LC 13), 23=-54 (LC 13) C 13), 28=-61 (LC 12) C 12), 33=-50 (LC 12) C 12), 33=-50 (LC 12) C 12), 33=-50 (LC 12) C 12), 33=-51 (LC 12) C 12), 33=-11 (LC 9)	d or FORCES TOP CHO BOT CHO 3) 3),),),),), 2), WEBS), 2), NOTES 1) Unba this c) DRD DRD alance	(lb) - Maxi Tension 1-2=0/25, 4-5=-72/9 7-8=-68/1 10-11=-97 12-13=-68 14-15=-36 14-15=-36 2-35=-45/ 33-34=-31 28-30=-31 28-30=-31 28-30=-31 28-30=-31 20-21=-31 10-27=-13 7-31=-80/ 4-34=-74/ 12-25=-80 15-22=-81	2=149 (LC 20=148 (LC 22=110 (LC 24=107 (LC 26=110 (LC 33=110 (LC 33=110 (LC 35=148 (LC 35=148 (LC 35=148 (LC 35=148 (LC 35=148 (LC 39=149 (LC imum Comp 2-3=-149/74 5,5-6=-55/1 64, 8-9=-84, 7/245, 11-12 3/164, 13-14 9/79, 15-16= 132, 34-35= 1/132, 27-28 1/132, 27-28 1/132, 27-28 1/132, 27-28 1/132, 27-28 1/132, 23-24 1/132, 23-24 1/132, 23-24 1/132, 16-21= 0ads have b	1), 18 C 24), C 24), C 24), C 24), C 23), C 2), C 2),	B=149 (LC 1), 21=93 (LC 1), 23=106 (LC 2' 25=107 (LC 22' 27=135 (LC 1) 30=107 (LC 22' 12=106 (LC 1) 34=93 (LC 1) 36=149 (LC 1) 36=149 (LC 1) 36=149 (LC 1) 36=149 (LC 1) 134=93 (LC 1) 134=9	,),), 22), 23), ,)), 21, 8, 62, 80, //107	2) V V C Z z enn L 3) T 5) C C 7) T c s o 2 C 7) T c 5) C C 7) T c s o 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2	Vind: ASC asd=103r ast. II; Exp one and C xposed; c nembers a umber DC russ desig nly. For s ee Standa r consult o II plates a sable requ iable stud his truss I hord live I This truss hord live I This truss of 0-00 tal hord and a II bearing apacity of	E 7-10 nph; Tr(C; Ein, nd ver nd ver nd forc VL=1.6 fc tuds e; rd Indi yualifie re 2x4 irres coo s as bere bad no by 2-(any oth s are a 565 ps	; Vult=130mph (CDL=6.0psf; BC closed; MWFRS terior (2) zone; c trical left and right ces & MWFRS fc 0 plate grip DOL or wind loads in t xposed to wind (ustry Gable End d building design MT20 unless ott minuous bottom ed at 1-4-0 oc. en designed for a nconcurrent with een designed for a nconcurrent with een designed for a nconcurrent with een designed for a successful to be Sf si.	3-second gus DL=6.0psf; h= (envelope) e antilever left a t exposed;C- r reactions sl =1.60 re plane of th normal to the Details as ap ier as per AN erwise indic chord bearin a 10.0 psf bot any other liv a live load o here a rectar between the No.2 crushi	it) =25ft; xterior and right C for hown; ne truss face), plicable, ISI/TPI 1. ated. g. tom 'e loads. f 20.0psf igle bottom ng

January 24,2025

3x8 II

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Magnolia Prime A,B (12-13-24)	
4619372	E01	Common Supported Gable	1	1	Job Reference (optional)	170941788

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 37 lb uplift at joint 2, 13 lb uplift at joint 18, 45 lb uplift at joint 28, 60 lb uplift at joint 30, 55 lb uplift at joint 31, 54 lb uplift at joint 32, 60 lb uplift at joint 33, 33 lb uplift at joint 34, 118 lb uplift at joint 35, 41 lb uplift at joint 26, 61 lb uplift at joint 25, 54 lb uplift at joint 24, 54 lb uplift at joint 23, 59 lb uplift at joint 22, 37 lb uplift at joint 21, 105 lb uplift at joint 20, 37 lb uplift at joint 2 and 13 lb uplift at joint 18.

LOAD CASE(S) Standard

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 12:49:15 ID:gfYiWwAy0dXaTZ5WQY7TWSzkzSR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Magnolia Prime A,B (12-13-24)	
4619372	E02	Common	2	1	Job Reference (optional)	170941789

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 12:49:15 ID:rz8b7FhsQLUFgQ1q48P5u0zkzT3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:50.1

Plate Offsets (X, Y): [2:0-3-8,Edge], [6:0-3-8,Edge]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.43 0.61 0.20	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.15 -0.26 0.04 0.07	(loc) 8-10 8-10 6 8-10	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 108 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shea 4-4-5 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 6 Max Horiz 2=-139 (Li Max Uplift 2=-270 (Li Max Grav 2=972 (LC (lb) - Maximum Com Tension	athing directly applie applied or 8-6-1 oc 5=0-3-8 C 13) C 12), 6=-270 (LC 1 C 1), 6=972 (LC 1) pression/Maximum	4) 5) 6) d or LC	* This truss h on the botton 3-06-00 tall b chord and an All bearings a capacity of 56 Provide mech bearing plate joint 2 and 27 PAD CASE(S)	as been designed a chord in all areas y 2-00-00 wide wil y other members, are assumed to be 55 psi. nanical connection capable of withsta '0 lb uplift at joint 6 Standard	for a liv s where I fit betw with BC SP No. (by oth- anding 2 5.	e load of 20.0 a rectangle veen the botto DL = 10.0psf 2 crushing ers) of truss t 70 lb uplift at	opsf om o						
TOP CHORD BOT CHORD	1-2=0/25, 2-3=-1499 4-5=-1333/666, 5-6= 2-10=-471/1279, 8-1 6-8=-474/1279	/667, 3-4=-1333/666 -1499/667, 6-7=0/25 0=-202/872,	5, 5											
WEBS	4-8=-199/487, 5-8=-3 3-10=-315/309	315/309, 4-10=-199/	487,										inin,	
NOTES 1) Unbalance this design 2) Wind: ASG Vasd=102 Cat. II; Ex zone and exposed; members Lumber D 3) This truss chord live	ed roof live loads have n. CE 7-10; Vult=130mph jmph; TCDL=6.0psf; BG p C; Enclosed; MWFRS C-C Exterior (2) zone; end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO has been designed for load nonconcurrent with	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and ric ht exposed;C-C for for reactions shown; L=1.60 a 10.0 psf bottom th any other live load	r ght ds.							. entrumer	THE REAL PROPERTY OF THE PROPE	SEAI 05788	ACE IIIIII	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

January 24,2025

Job	Truss	Truss Type	Qty	Ply	JSJ, Magnolia Prime A,B (12-13-24)	
4619372	E03	Common	5	1	Job Reference (optional)	170941790

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 12:49:15 ID:FdwQ1WYPi9RAhKyTkYBkG?zkzRy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [2:0-3-8,Edge], [6:0-3-8,Edge]

	, , L , J	, [,],],]											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.43	Vert(LL)	-0.15	7-9	>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.61	Vert(CT)	-0.26	7-9	>999	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.20	Horz(CT)	0.04	6	n/a	n/a			
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS		Wind(LL)	0.07	7-9	>999	240	Weight: 107 lb	FT = 20%	
	2×4 SD No 2		5) All bearing	s are assumed to	be SP No.	2 crushing							

BC

W

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3
WEDGE	Left: 2x4 SP No.3
	Right: 2x4 SP No.3
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	4-4-5 oc purlins.
BOT CHORD	Rigid ceiling directly applied or 8-3-4 oc
	bracing.
REACTIONS	(size) 2-0-3-8 6-0-3-8

REACTIONS	(SIZE)	2=0-3-0, 0=0-3-0
	Max Horiz	2=150 (LC 16)
	Max Uplift	2=-271 (LC 12), 6=-240 (LC 13)
	Max Grav	2=973 (LC 1), 6=916 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/25,	2-3=-1501/669, 3-4=-1335/669,
	4-5=-1339	9/671, 5-6=-1506/672
BOT CHORD	2-9=-499/	/1281, 7-9=-228/874, 6-7=-502/1286
	4 7 000	

WEBS 4-7=-202/493, 5-7=-318/311, 4-9=-198/487, 3-9=-315/309

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 4)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

Provide mechanical connection (by others) of truss to 6)

bearing plate capable of withstanding 271 lb uplift at joint 2 and 240 lb uplift at joint 6.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a fuss system. Derive use, the building designer host verify the applications of design had been and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Magnolia Prime A,B (12-13-24)	
4619372	G01	Common Supported Gable	1	1	Job Reference (optional)	170941791

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 12:49:15 ID:h5IYeE1w_eotK4HwuANLCjzkzQ2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [13:Edge,0-0-0]

	(psf) 20.0	Spacing Plate Grip DOI	2-0-0		CSI TC	0.06	DEFL Vert(LL)	in n/a	(loc)	l/defl	L/d 999	PLATES MT20	GRIP 244/190	
	10.0	Lumber DOL	1.15		BC	0.04	Vert(CT)	n/a	-	n/a	999	11120	211/100	
	0.0*	Rep Stress Incr	YES		WB	0.06	Horz(CT)	0.00	13	n/a	n/a			
	10.0	Code	IRC201	5/TPI2014	Matrix-MS		- (-)					Weight: 91 lb	FT = 20%	
2x4 SP N 2x4 SP N 2x4 SP N Left 2x4 S 1-6-0 Structural	0.2 0.2 0.3 SP No.2 1	-6-0, Right 2x4 SP	No.2 Wed or	OT CHORD	1-23=-69/122, 22-2; 21-22=-69/122, 20-2 19-20=-69/122, 18- 17-18=-69/122, 16- 15-16=-69/122, 13-7 7-19=-128/76, 6-20= 4-22=-98/74, 3-23= 9-17=-113/91, 10-16 11-15=-115/117	B=-69/1 21=-69/ 19=-69/ 17=-69/ 15=-69/ -143/13 5=-101/	22, 122, 122, 122, 122, , 5-21=-114/9 1, 8-18=-97/7 77,	1, 3,	10) Pro bea 1, 1 upli join lb u join 11) Bev	vide me ring plat 8 lb upli ft at join t 23, 57 plift at jo t 1 and 1 reled pla	chanica e capa ft at join t 21, 49 lb upliff bint 16, 18 lb up te or sl	al connection (by ble of withstandi nt 13, 60 lb uplift a lb uplift at joint 1 t at joint 18, 77 lb 121 lb uplift at joint 121 lb uplift at joint 13. him required to p board at ioint (13.	others) of truss ong 60 lb uplift at at joint 20, 77 ll 22, 142 lb uplift uplift at joint 11 int 15, 60 lb upl rovide full beari	s to t joint b at 7, 54 lift at
6-0-0 oc p	ourlins.	applied or 10.0.0 or	. N	OTES	11 10- 140/117				LOAD	CASE(S)	Star	ndard	1, 10, 24, 20.	
bracing.	ing directly	applied of 10-0-0 00	; N 1)	Unbalanced	roof live loads have	been o	considered for		-0/10 (, 0.0			
(size) Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-3=-137/ 5-6=-118/ 8-9=-118/ 11-13=-87	$\begin{array}{c} 1=13-11-8\\ 15=13-11-\\ 17=13-11-\\ 23=13-11-\\ 23=13-11-\\ 23=13-11-\\ 23=13-11-\\ 23=13-11-\\ 13=-169 (LC\\ 15=-121 (l)\\ 17=-77 (LC\\ 20=-60 (LC\\ 15=-121 (l)\\ 17=-77 (LC\\ 22=-49 (LC\\ 22=-49 (LC\\ 22=-49 (LC\\ 23=141 (LC\\ 23=144 (LC\\ 23=1$	$ \begin{array}{l} 13=13-11-8,\\ 8, 16=13-11-8,\\ 8, 16=13-11-8,\\ 8, 20=13-11-8,\\ 8, 22=13-11-8,\\ 8, 22=13-11-8,\\ 8, 22=13-11-8,\\ 8, 24=13-11-8,\\ 8, 24=13-11-8,\\ 8, 21-12, 21-22,\\ 10, 10, 24-26, 10,\\ 10, 24, 10,\\ 10, 10,\\ 10, 10,$	2) 10) 3) 13), 3), 2), 4) 12), 4) 5)), 6) 20), 7) 20), 8) 19), 8) 19), 8) 19), 9), 20), 9) 3, 77, 00,	this design. Wind: ASCE Vasd=103m Cat. II; Exp (zone and C- exposed ; er members an Lumber DOI Truss desigr only. For stu see Standar or consult qu All plates are Gable requir Gable studs This truss ha chord live lo * This truss I on the bottor 3-06-00 tall I chord and ai All bearings capacity of 5	7-10; Vult=130mph ph; TCDL=6.0psf; B C; Enclosed; MWFR C Exterior (2) zone; d vertical left and ri d forces & MWFRS =1.60 plate grip DC red for wind loads in uds exposed to wind d Industry Gable En ualified building desi e 2x4 MT20 unless o res continuous botto spaced at 1-4-0 oc. as been designed fo ad nonconcurrent w has been designed fo m chord in all areas by 2-00-00 wide will ny other members. are assumed to be i65 psi.	(3-sect CDL=6 S (envi- cantile ght exp for rea u)_=1.6(the plating inthe plating inth	ond gust) .0psf; h=25ft; elope) exterio ver left and rig osed;C-C for ctions shown; ane of the trus al to the face) Is as applicab g per ANSI/TP se indicated. d bearing.) psf bottom other live loac e load of 20.0 a rectangle veen the botto 2 crushing	r ght ss , ole, le, le, le, le, sf m		. antitution .	the second secon	SEA 0578	ROL NROL NROL NR NR NR NR NR NR NR NR NR NR NR NR NR	and an and a second sec
	2x4 SP N 2x4 SP N 2x4 SP N Left 2x4 S 1-6-0 Structura 6-0-0 oc Rigid ceil bracing. (size) Max Horiz Max Uplift Max Uplift Max Grav (lb) - Max Tension 1-3=-137, 5-6=-118, 8-9=-118, 11-13=-8	$\begin{array}{c} ({\rm psf})\\ 20.0\\ 10.0\\ 0.0^*\\ 10.0\\ 0.0^*\\ 10.0\\ \end{array}$	$\begin{array}{c c} (psf) \\ 20.0 \\ 10.0 \\ 10.0 \\ 0.0^* \\ 10.0 \\ 0.0^* \\ 10.0 \\ 10.0 \\ 0.0^* \\ 10.0 \\ 0.0^* \\ 10.0 \\ 0.0^* \\ 10.0 \\ 0.0^* $	$ \begin{array}{c c} (psf) \\ 20.0 \\ 20.0 \\ 10.0 \\ 0.0^* \\ 10.0 \\ 0.0^* \\ 10.0 \\ 0.0^* \\ 10.0 \\ 0.0^* \\ 10.0 \\ 0.0^* \\ 10.0 \\ 0.0^* \\ 10.0 \\ 0.0^* \\ 10.0 \\ 0.0^* \\ 10.0 \\ 0.0^* \\$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(psf) 20.0 10.0Spacing Plate Grip DOL 1.152-0-0 TC TC TC 0.0610.0Lumber DOL Rep Stress Incr Code1.15 RC2015/TPI2014TC Matrix-MS2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.2 - 1-6-0BOT CHORD 21-22=69/122, 20-21=69/ 22, 20-21=69/ 22, 18-19=69/ 17-18=69/122, 18-19=69/ 17-19=128/76, 6-69/122, 18-19=69/ 17-19=128/76, 6-69/122, 18-19=69/ 17-18=69/122, 18-19=69/ 17-18=69/122, 18-19=69/ 17-19=128/76, 6-69/122, 18-19=69/ 17-18=69/122, 18-19=69/ 17-18=69/122, 18-19=69/ 17-19=128/76, 6-69/122, 18-19=69/ 17-19=128/76, 6-69/122, 18-19=69/ 17-19=128/76, 6-69/122, 18-19=69/ 17-19=128/76, 6-69/122, 18-19-69/ 17-19=128/76, 13-14=0/31Max Grav 1=123 (LC 20), 13=144 (LC 1), 13=137/129, 3-4=102/90, 4-5=-90/103, 23=184 (LC 1), 23=184 (LC	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(psf) 20.0 10.0Spacing Plate Grip DOL 1.1520.0 1.15CSI TC TC C 0.06DEFL with (loc)in (loc)(loc)(loc)(loc)10.0Left EGrip DOL Locde1.15BC UC20.06 Matrix-MSDEFL WB WB0.06 Matrix-MSVert(L) vert(L) n/an/a- n/a - n/a2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.4BOT CHORD 1-23=69/122, 12-13=-69/122, 12-143/13, 16-16=-101/77, 12-13/21, 10-16=-101/77, 12-13/21, 12-13=11-8, 12-13=11-8, 12-13=11-8, 12-13=11-8, 12-13=11-8, 12-13=11-8, 12-13=11-8, 12-13=11-8, 12-13=11-8, 12-13=11-8, 12-13=11-8, 12-13=13-12-16(O to 12), 22-13-12(O to 13), 12-13-13MX HOTZLoc 13, 12-23-13-14<	(psf) Spacing 2-0-0 CSI DEFL in (loc) l/deft L/d 20.0 Plate Grip DOL 1.15 TC 0.06 Vert(C1) n'a - n'a 999 0.0 Rep Stress Incr YES BOT CHORD 1.23-69(122, 22-23-69(122, 23-23-123-123, 22-23-123-11-3, 12, 12-13-11-3, 15-13-16, 15-13-16, 12-13-16, 12-13-11-3, 11-15-13-13-16, 11-15-13-13-16, 12-13-13-16, 12-13-13-16, 12-13-11-3, 13-13-16, 12-13-11-3, 13-13-16, 12-13-11-3, 13-13-13-13-13, 12-13-11-3, 13-13-13-13, 12-13-11-3, 13-13-13, 12-13-11-3, 13-13-13, 12-13-11-3, 13-13-13, 12-13-11-3, 13-13-13, 12-13-11-3, 13-13-13, 12-13-11-3, 13-13-13, 12-13-11-3, 13-13-13, 12-13-11-3, 13-13-13, 12-13-11-3, 13-13-13, 12-13-11-3, 13-13-13-13, 12-13-11-3, 13-13-13-13-13-13-13-13-13-13-13-13-13-1	(psf) Spacing 2-0-0 CSI DEFL in (loc) Viell Lumber DOL 1.15 TC 0.06 Veri(LT) n'a n'a	(ps) 10.0 Spacing Plate Grip DOL Lumber DOL 1.15 20.0 PLATES Plate Grip DOL 1.15 CSI TC 0.06 Vert(L) Vert(L) n/n PLATES n/n GRIP M20 20.0 Plate Grip DOL 1.15 TC 0.06 Vert(L) n/n n/n 998 0.0 Rep Stress Incr VES WB 0.06 Vert(L) n/n n/n 949 2x4 SP No.2 2x4 SP No.2 21-22-e691/12, 22-21-e691/12, 22-23-691/22, 22-1-e691/22, 22-1-

A MITEK ATHIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Magnolia Prime A,B (12-13-24)	
4619372	G02	Common	3	1	Job Reference (optional)	170941792

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 12:49:15 ID:Vu0h2D3NaMr4Lxlki4SpW3zkzRH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:41.9				6-11-12	I		6-1	1-12			I		
Plate Offsets (X, Y):	[1:0-3-8,Edge],	[5:0-5-4,Edge]											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.60	Vert(LL)	0.14	7-10	>999	240	MT20	244/190	
TODI	10.0		4.45		0.50		0.40	7 40	000	040			

TCDL	10.0	Lumber DOL	1.15		BC	0.53	Vert(CT)	-0.12	7-10	>999	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.24	Horz(CT)	-0.04	1	n/a	n/a		
BCDL	10.0	Code	IRC2018	5/TPI2014	Matrix-MS							Weight: 61 lb	FT = 20%
LUMBER TOP CHORD 2x4 BOT CHORD 2x4 WEBS 2x4 SLIDER Left No.2 BRACING TOP CHORD Stru 6-0- BOT CHORD Rigi brac REACTIONS (size) Max I Max 0	SP No.2 SP No.2 SP No.3 2x4 SP No.2 2 1-11-12 ctural wood she 0 oc purlins. d ceiling directly ting. 1= Mecha Horiz 1=-169 (L Jplift 1=-136 (L Grav 1=557 (L)	1-11-12, Right 2x4 S eathing directly applie r applied or 8-2-9 oc anical, 5=0-3-0 .C 10) .C 12), 5=-167 (LC 1) C 1), 5=615 (LC 1)	5) 6) 7) 8) d or LC	Bearings are capacity of 5 Refer to gird Provide mec bearing plate Provide mec bearing plate joint 1 and 10 DAD CASE(S)	assumed to be: 65 psi. er(s) for truss to hanical connecti e at joint(s) 5. hanical connecti capable of with 67 lb uplift at joir Standard	truss conr on (by oth on (by oth standing 1 tt 5.	SP No.2 crush nections. ers) of truss t ers) of truss t 36 lb uplift at	hing to t					
FORCES (lb)	- Maximum Con	npression/Maximum											
TOP CHORD 1-3= BOT CHORD 1-7= WEBS 3-7=	=-523/696, 3-5≕ =-413/436, 5-7≕ =-482/307	523/696, 5-6=0/31 413/436											
NOTES													
 Unbalanced roo this design. Wind: ASCE 7-1 Vasd=103mph;⁻ Cat. II; Exp C; E zone and C-C E exposed ; end v and right expose MWFRS for read drin POI = 1.60 	f live loads have 0; Vult=130mph TCDL=6.0psf; B nclosed; MWFR xterior (2) zone; ertical left and ri td;C-C for memi ttions shown; Lu	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and ric ght exposed; porch le bers and forces & mber DOL=1.60 plat	Jht e								(C)	SEA	ROL NA

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. SEAL 057887

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Magnolia Prime A,B (12-13-24)	
4619372	H01	Monopitch Girder	1	1	Job Reference (optional)	170941793

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 12:49:15 ID:tqdGLtOpMM2qOSQe?PvrIYzkzOH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

HTU26 HTU26

HTU26

Scale = 1:31

Plate Offsets (X, Y): [1:0-2-12,0-0-0], [5:0-3-8,0-2-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.88	Vert(LL)	-0.06	5-7	>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.46	Vert(CT)	-0.12	5-7	>694	240			
BCLL	0.0*	Rep Stress Incr	NO	WB	0.09	Horz(CT)	0.01	4	n/a	n/a			
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS		Wind(LL)	0.07	5-7	>999	240	Weight: 36 lb	FT = 20%	
BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=1037 Cat. II; Exp zone; canti exposed; p DOL=1.60 2) This truss on the bott 3-06-00 tal chord and 4) All bearing pla 6) Provide me bearing pla	0.0* 10.0 2x4 SP No.2 2x8 SP 2400F 2.0E 2x4 SP No.2 Structural wood she 4-7-1 oc purlins, ex Rigid ceiling directly bracing. (size) 1=0-3-0,4 Max Horiz 1=85 (LC Max Uplift 1=-318 (L Max Grav 1=922 (LC (lb) - Maximum Com Tension 1-2=-1479/461, 2-3= 1-5=-504/1387, 4-5= 2-5=-665/286 CE 7-10; Vult=130mph mph; TCDL=6.0psf; B 0 C; Enclosed; MWFR ilever left and right exp plate grip DOL=1.60 has been designed fo com chord in all areas Il by 2-00-00 wide will any other members. s are assumed to be S apacity of 660 psi. echanical connection (ate at joint(s) 1. echanical connection (ate capable of withstal	Rep Stress Incr Code or 2x8 SP DSS athing directly applie cept end verticals. applied or 10-0-0 oc 4=0-3-8 4) C 4), 4=-394 (LC 4) C 1), 4=1206 (LC 1) upression/Maximum a-207/50, 3-5=-8/65 -0/0 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior posed; end vertical to posed; Lumber r a 10.0 psf bottom th any other live load or a live load of 20.0] where a rectangle fit between the bottor SP 2400F 2.0E or DS (by others) of truss to hding 318 lb uplift at	NO IRC2015/TPI2014 7) Use Simpso 14-10dx1 1/ max. starting connect trus 8) Fill all nail h d or 9) In the LOAD of the truss : LOAD CASE(S) 1) Dead + Ro Plate Incre Uniform Lo Vert: 1-3 Concentral Vert: 7=-	WB Matrix-MS n Strong-Tie HTU: 2 Truss) or equiva g at 2-0-12 from th s(es) to front face oles where hanger CASE(S) section. are noted as front Standard of Live (balanced) ase=1.15 ads (lb/ft) =-60, 1-4=-20 ed Loads (lb) 537 (F), 8=-537 (F	0.09 26 (10-16 lent space e left enc of botton is in com, loads aț (F) or bac : Lumber F), 9=-53:	Horz(CT) Wind(LL) Gd Girder, ed at 2-0-0 cd to 6-0-12 tc n chord. ttact with lurr oplied to the ck (B). Increase=1. 9 (F)	0.01 0.07	4 5-7	n/a >999	n/a 240	Weight: 36 lb	FT = 20%	
joint i and	354 ib upint at joint 4.										lanuan	24 2025	
											January	24,2020	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Magnolia Prime A,B (12-13-24)	
4619372	H02	Monopitch	2	1	Job Reference (optional)	170941794

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 12:49:15 ID:Vmoh6Q1Y1LVvXy5XnBpz7WzkzKt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

				8-0-0								
Scale = 1:26.4												
Plate Offsets (X, Y):	[2:0-2-12,Edge]	, [4:Edge,0-2-0]										
Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	

LUMBER			LOAD CASE(S)	Standard									
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS							Weight: 28 lb	FT = 20%	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	2	n/a	n/a			
TCDL	10.0	Lumber DOL	1.15	BC	0.57	Vert(CT)	-0.25	4-7	>373	240			
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.73	Vert(LL)	0.37	4-7	>258	240	MT20	244/190	
Loading	(pst)	Spacing	2-0-0	CSI		DEFL	ın	(loc)	l/defl	L/d	PLATES	GRIP	

LUMBER		_ L
TOP CHORD	2x4 SP No.2	
BOT CHORD	2x4 SP No.1	
WEBS	2x4 SP No.2	
BRACING		
TOP CHORD	Structural wood sheathing directly applied or	
	6-0-0 oc purlins, except end verticals.	
BOT CHORD	Rigid ceiling directly applied or 8-11-13 oc	
	bracing.	
REACTIONS	(size) 2=0-3-0, 4= Mechanical	
	Max Horiz 2=118 (LC 8)	
	Max Uplift 2=-248 (LC 8), 4=-218 (LC 8)	
	Max Grav 2=370 (LC 1), 4=311 (LC 1)	
FORCES	(lb) - Maximum Compression/Maximum	
	Tension	
TOP CHORD	1-2=0/13, 2-3=-213/306, 3-4=-191/212	
BOT CHORD	2-4=-377/217	
NOTES		
1) Wind: AS	CE 7-10: Vult=130mph (3-second gust)	
Vasd=103	mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft;	
0 / II E		

- Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Bearings are assumed to be: Joint 2 SP No.1 crushing capacity of 565 psi.
- Refer to girder(s) for truss to truss connections. 5)
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 218 lb uplift at joint 4 and 248 lb uplift at joint 2.

887 NGINEER January 24,20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Magnolia Prime A,B (12-13-24)	
4619372	V01	Valley	1	1	Job Reference (optional)	170941795

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 12:49:15 ID:kraZGakJrOCCnJUCEvWDDbzl_51-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:44.4

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.26 0.16 0.17	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 68 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No Structural 10-0-0 oc p Rigid ceilin bracing. (size) Max Horiz Max Uplift Max Grav	.2 .2 .3 wood shea ourlins. g directly 1=16-10-0 7=16-10-0 1=183 (LC 1=-20 (LC 9=-253 (L1 1=112 (LC 6=-463 (LC 9=-463 (LC	athing directly applie applied or 6-0-0 oc 9, 5=16-10-0, 6=16-1 9, 9=16-10-0 9) 13), 6=-250 (LC 13) 20), 5=103 (LC 24) 20), 7=465 (LC 19) 3 (9)	5) 6) 7) d or 8) 0-0, 9)), L), L	Gable studs a This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an All bearings a capacity of 5 Provide mech bearing plate 1, 253 lb upli DAD CASE(S)	spaced at 4-0-0 or s been designed f ad nonconcurrent to has been designed in chord in all area by 2-00-00 wide wi by other members, are assumed to be 65 psi. hanical connection c capable of withst ft at joint 9 and 25 Standard	c. or a 10. with any I for a liv s where II fit betv with BC ≥ SP No. a (by oth anding 2 0 Ib upli) psf bottom other live loa e load of 20.0 a rectangle ween the bott DL = 10.0psf 2 crushing ers) of truss t 0 lb uplift at ji t at joint 6.	ds. Opsf om o o					
FORCES	(lb) - Maxir Tension	num Com	pression/Maximum											
TOP CHORD	1-2=-151/2 4-5=-120/1	38, 2-3=-3 82	30/178, 3-4=-24/158	,										
BOT CHORD	4-5=-120/182 RD 1-9=-178/156, 7-9=-178/149, 6-7=-178/149, 5-6=-178/149													
WEBS	3-7=-308/4	2, 2-9=-3	59/279, 4-6=-359/27	8									minin	11111
NOTES													"TH CA	Rollin
1) Unbalance this design	ed roof live lo n.	ads have	been considered for									J.	O FESA	ida Nor

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.

"Human and the

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Magnolia Prime A,B (12-13-24)	
4619372	V02	Valley	1	1	Job Reference (optional)	170941796

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 12:49:16 ID:zr8OjT2djNUWvJTCIN_KG4zI_4d-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scol	<u> - </u>	1.26
SUGIO	_	1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS							Weight: 49 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=12-10- 7=12-10- Max Horiz 1=137 (L Max Uplift 1=-29 (LC (LC 13), i Max Grav 1=95 (LC (LC 20), 19)	Pathing directly applie Papplied or 10-0-0 oc 0, 5=12-10-0, 6=12-1 0, 8=12-10-0 C 9) C 8), 5=-3 (LC 9), 6=- 3=-198 (LC 12) 20), 5=57 (LC 19), 6 7=273 (LC 1), 8=349	 5) Gable stud. 6) This truss chord live. 7) * This truss on the bot 3-06-00 ta chord and 8) All bearing capacity 0 9) Provide m bearing plating the structure of the	Is spaced at 4-0-0 has been designer load nonconcurrer s has been design om chord in all are l by 2-00-00 wide any other member s are assumed to 565 psi. echanical connect ate capable of with f at joint 5, 198 lb ht 6. 5) Standard	oc. d for a 10.1 tt with any ed for a liv aas where will fit betw rs. be SP No. toon (by oth standing 2 uplift at joi	0 psf bottom other live load e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss to 9 lb uplift at jo nt 8 and 192 l	ds. psf m pint b					
FORCES	(lb) - Maximum Con Tension	npression/Maximum										
TOP CHORD	1-2=-130/117, 2-3≕ 4-5=-82/65	124/128, 3-4=-124/1	19,									
BOT CHORD	1-8=-45/98, 7-8=-39 5-6=-39/69	/69, 6-7=-39/69,										
WEBS	3-7=-189/36, 2-8=-3	10/247, 4-6=-309/24	5								minin	1117.
NOTES											"H CA	ROUN
 Unbalance this design 	d roof live loads have	been considered for	r							an'	AV-FSS	in lain
	E 7 40. Viult 400 mm	(2 accord such)								22		Nº A'

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Magnolia Prime A,B (12-13-24)	
4619372	V03	Valley	1	1	Job Reference (optional)	170941797

4-5-0

4-5-0

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 12:49:16 ID:d9swEZB9u3?pL9OVSuC8lczI_4R-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 8-4-14 3-11-14

8-10-0

Page: 1

8-10-0

Scale = 1:29

														_
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.22 0.21 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 31 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORE BOT CHORE OTHERS BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 8-10-0 oc purlins. Rigid ceiling directly bracing. (size) 1=8-10-0, Max Horiz 1=93 (LC Max Uplift 1=-8 (LC 4=-174 (L Max Grav 1=79 (LC (LC 1) 	athing directly applie applied or 6-0-0 oc 3=8-10-0, 4=8-10-0 9) 24), 3=-17 (LC 23), C 12) 23), 3=56 (LC 24), 4	7) 8) 9) 9) 4=610	* This truss h on the botton 3-06-00 tall b chord and an All bearings a capacity of 5 Provide mecl bearing plate 1, 17 lb uplift DAD CASE(S)	as been designe n chord in all are y 2-00-00 wide w y other member are assumed to I 65 psi. nanical connection capable of with at joint 3 and 17 Standard	ed for a liv as where will fit betw s. be SP No. on (by oth standing 8 74 lb uplift	e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss t Ib uplift at joi at joint 4.	Dpsf om oo int						
FORCES TOP CHORE BOT CHORE WEBS NOTES 1) Unbaland this desig	(Ib) - Maximum Com Tension 1-2=-105/263, 2-3=- 1-4=-243/152, 3-4=- 2-4=-494/256 ced roof live loads have gn.	npression/Maximum 104/261 243/152 been considered for	r											
 Wind AS 	SCE 7-10: Vult=130mph	(3-second aust)												

- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

- Gable studs spaced at 4-0-0 oc. 5) 6)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

January 24,20 "The state of the state of the

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Magnolia Prime A,B (12-13-24)	
4619372	V04	Valley	1	1	Job Reference (optional)	170941798

2-5-0

2-5-0

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Run: 8,63 S Sep 26 2024 Print: 8,630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 12:49:16 ID:ICCh5emeqWw8UNUXiGY99WzI_3i-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4x6 =

2

4-4-14

1-11-14

-10-0

3

2x4 💊

0-0-8 4 2x4 🛛 2x4 🍫 4-10-0

8 L

1-3-15

1-7-13

Scale = 1:24.5						-							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.06 0.07 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-10-0 oc purlins. Rigid ceiling directly bracing. (size) 1=4-10-0, Max Horiz 1=-49 (LC Max Uplift 1=-14 (LC Max Grav 1=63 (LC	athing directly applie applied or 6-0-0 oc 3=4-10-0, 4=4-10-0 8) 212), 3=-22 (LC 13). 212) 23), 3=63 (LC 24), 4	7; 8; ed or 9;) L , , 4=283	 * This truss h on the bottor 3-06-00 tall b chord and ar All bearings All bearings Provide mec bearing plate 1, 22 lb uplift DAD CASE(S) 	as been designe n chord in all area by 2-00-00 wide w y other members are assumed to b 65 psi. hanical connectio o capable of withs at joint 3 and 71 Standard	d for a liv as where vill fit betw e SP No. n (by oth tanding 1 lb uplift a	e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss t 4 lb uplift at jo t joint 4.	ipsf om o o oint					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=100 Cat. II; Ex	(LC 1) (Ib) - Maximum Com Tension 1-2=-60/96, 2-3=-60 1-4=-99/73, 3-4=-99 2-4=-174/85 ed roof live loads have n. CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; Bi sp C; Enclosed; MWFR	pression/Maximum /90 /73 been considered fo (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio	r									WTH CA	ROLAIN

members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,

exposed ; end vertical left and right exposed;C-C for

or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc.

5) 6)

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. SEAL 057887 January 24,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

