

RE: 4619364 JSJ Builders Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:Customer: JSJ BuildersProject Name: 4619364Lot/Block: 34Model: Cypress Prime AAddress:Subdivision: ILAS WAYCity: DunnState: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.8 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 52 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. 1 2 3 4 5 6 7 8 9 10 11 23 14 15 16	Seal# I73111721 I73111722 I73111723 I73111724 I73111725 I73111726 I73111726 I73111727 I73111728 I73111729 I73111730 I73111731 I73111732 I73111733 I73111734 I73111735 I73111736	Truss Name A01 A02 A03 A04 A05 A06 A07 A08 A09 A10 A11 A12 A13 B01 B02 B03	Date 4/30/2025 4/30/2025 4/30/2025 4/30/2025 4/30/2025 4/30/2025 4/30/2025 4/30/2025 4/30/2025 4/30/2025 4/30/2025 4/30/2025 4/30/2025 4/30/2025 4/30/2025 4/30/2025	No. 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	Seal# I73111741 I73111742 I73111743 I73111744 I73111745 I73111746 I73111746 I73111747 I73111748 I73111750 I73111750 I73111751 I73111753 I73111754 I73111755 I73111756	Truss Name C02 C03 C04 C05 C06 CJ1 D01 D02 E01 E02 E03 JA1 JB1 JB2 JB3 V01	Date 4/30/2025 4/30/2025 4/30/2025 4/30/2025 4/30/2025 4/30/2025 4/30/2025 4/30/2025 4/30/2025 4/30/2025 4/30/2025 4/30/2025 4/30/2025
14	I73111734	B01	4/30/2025	34	I73111754	JB2	4/30/2025
15	I73111735	B02	4/30/2025	35	I73111755	JB3	4/30/2025
16	I73111736	B03	4/30/2025	36	I73111756	V01	4/30/2025
17	I73111737	B04	4/30/2025	37	I73111757	V02	4/30/2025
18	I73111738	B05	4/30/2025	38	I73111758	V03	4/30/2025
19	I73111739	B06	4/30/2025	39	I73111759	V04	4/30/2025
20	I73111740	C01	4/30/2025	40	I73111760	V05	4/30/2025

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Builders FirstSource-Sumter,SC.

Truss Design Engineer's Name: Galinski, John

My license renewal date for the state of North Carolina is December 31, 2025

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Galinski, John

RE: 4619364 - JSJ Builders

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Project Customer: JSJ Builders Project Name: 4619364 Lot/Block: 34 Subdivision: ILAS WAY Address: City, County: Dunn State: NC

NO.	Seal#	Truss Name	Date
41	173111761	V06	4/30/2025
42	173111762	V07	4/30/2025
43	173111763	V08	4/30/2025
44	173111764	V09	4/30/2025
45	173111765	V10	4/30/2025
46	173111766	V11	4/30/2025
47	173111767	VA1	4/30/2025
48	173111768	VA2	4/30/2025
49	173111769	VA3	4/30/2025
50	173111770	VA4	4/30/2025
51	173111771	VA5	4/30/2025
52	173111772	VA6	4/30/2025

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	A01	Flat Girder	1	2	Job Reference (optional)	173111721

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:22:55 ID:gJvp3UuIHVaNSrZ96uhBERzbzQV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

L	5-1-9	10-1-6	15-1-3	20-1-0	25-0-13	30-0-10	35-0-7	40-2-0
Seele - 1:67.0	5-1-9	4-11-13	4-11-13	4-11-13	4-11-13	4-11-13	4-11-13	5-1-9

Plate Offsets (X, Y): [12:0-4-4,0-1-8], [13:0-2-12,0-2-0], [21:0-5-12,0-2-0], [22:0-4-4,0-1-8]

		-													
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRI	P	
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.38	Vert(LL)	-0.24	16-17	>999	360	MT20	244/	/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.35	Vert(CT)	-0.46	16-17	>999	240				
BCLL	0.0*	Rep Stress Incr	NO		WB	0.62	Horz(CT)	0.09	12	n/a	n/a				
BCDL	10.0	Code	IRC20	15/TPI2014	Matrix-MS		Wind(LL)	0.42	16-17	>999	240	Weight: 603	lb FT =	= 20%	
				 2-ply truss to 	be connected tog	ether wi	th 10d		1) De	ead + Ro	of Liv	e (balanced): I	Lumber Ir	ocrease=1.15.	
TOP CHORD	2x6 SP No 2			(0.131"x3") n	ails as follows:				PI	ate Incre	ase=1	1.15		,	
BOT CHORD	2x6 SP 2400F 2 0F	or 2x6 SP DSS		Top chords o	connected as follow	ws: 2x4 -	1 row at 0-9	-0	Ur	niform Lo	bads (I	b/ft)			
WEBS	2x4 SP No.2	0. 2.00 0. 2000		oc, 2x6 - 2 rc	ows staggered at 0	-9-0 oc.				Vert: 1-	11=-60), 12-22=-20			
BRACING				Bottom chore	ds connected as fo	ollows: 2	x6 - 2 rows		Co	oncentra	ted Lo	ads (lb)			
TOP CHORD	2-0-0 oc purlins (5-3	3-13 max): 1-11 exc	cept	staggered at	0-9-0 oc.					Vert: 20	=-179	(F), 17=-179 ((F), 14=-1	i79 (F), 19=-179	
	end verticals.		0001	Web connec	ted as follows: 2x4	l - 1 row	at 0-9-0 oc.			(F), 15=	-179 (F), 23=-179 (F	-), 24=-17	79 (F), 25=-179	
BOT CHORD	Rigid ceiling directly	applied or 7-10-5 oc	c :	All loads are	considered equall	y applie	d to all plies,			(F), 26=	-179 (F), 27=-179 (F	-), 28=-17	79 (F), 29=-179	
	bracing.			except if note	ed as front (F) or b	ack (B)	face in the LO	DAD		(F), 30=	-179 (F), 31=-179 (F	²), 32=-17	′9 (F), 33=-179	
REACTIONS	(size) 12= Mech	nanical. 22= Mechani	ical	CASE(S) sec	ction. Ply to ply co	nnection	s have been			(F), 34=	-179 (F), 35=-179 (F	⁻), 36=-17	′9 (F), 37=-179	
	Max Uplift 12=-2172	(LC 4), 22=-2091 (L	C 4)	provided to d	listribute only load	s noted	as (F) or (B),			(F)					
	Max Grav 12=3435	(LC 1), 22=3343 (LC	(1) (1)	unless other	wise indicated.			_							
FORCES	(lb) - Maximum Com	nression/Maximum	,	 Unbalanced this design 	root live loads hav	e been o	considered to	or							
IONOLO	Tension	ipression/maximum		1) Wind ASCE	7 10: \/ult_120mm	b (2 coc	and quet)								
TOP CHORD	1-22=-3143/1984 1-	-2=-3943/2483		Vasd=103mr	T = 10, $V = 130 mp$		Ond gust)	·Cat							
	2-3=-3943/2483, 3-5	5=-8397/5300,		II: Exp C: En	closed: MWFRS (envelope	e) exterior zo	ne [.]							
	5-6=-8397/5300, 6-7	7=-8458/5353,		cantilever lef	t and right expose	d : Lumb	per DOL= 1.60))							
	7-9=-8458/5353, 9-1	10=-4063/2588,		plate grip DC)L=1.60	a , 2011.									
	10-11=-4063/2588, 1	11-12=-3236/2065		5) Provide adec	uate drainage to r	orevent v	water pondine	a.							
BOT CHORD	21-22=-23/36, 20-21	I=-4248/6736,		 This truss hat 	s been designed f	or a 10.0) psf bottom	5							
	18-20=-4248/6736, ⁻	17-18=-5691/9006,		chord live loa	ad nonconcurrent v	with any	other live loa	ids.							
	16-17=-5691/9006,	14-16=-4374/6880,	-	* This truss h	as been designed	l for a liv	e load of 20.0	0psf					111111	12	
	13-14=-4374/6880,	12-13=-23/36		on the bottor	n chord in all area	s where	a rectangle					"HULL	AD	111	
WEBS	1-21=-3100/4923, 2-	-21=-299/231,		3-06-00 tall b	y 2-00-00 wide wi	ll fit betv	veen the bott	om			~	alli		1.11	
	3-21=-3520/2224, 3-	-20=-337/625,		chord and ar	y other members.						S.	0' .:: FS	Sic	Miles .	
	3-18=-1326/2093, 5-	-18=-273/206,	:	Refer to girde	er(s) for truss to tru	uss conr	nections.				25	P/	111	5. 7 ·	
	6 16- 600/493, 0-17	(=-343/038, S= 272/205	9	 Provide mec 	hanical connectior	ו (by oth	ers) of truss t	to			2	11-	M	K	
	0.16-1224/1099 0	14 - 400/722		bearing plate	capable of withst	anding 2	1091 lb uplift	at		-				: =	
	9-13-3550/2250 10	-14403/723, 0-13208/232		Joint 22 and 2	2172 ID UPIIT at joi	nt 12.						SE	:AL	· · · ·	
	11-13=-3232/5074	0 10- 200/202,		IO) Graphical pu or the oriente	riin representation	does no	ot depict the s	size		=		28	677	- E - E -	
NOTES				bottom chore	alion of the putility	along the	top anu/or			-		: 20	0//	1 E	
				1) Use Simpsor	n Strong-Tie LUS2	4 (4-10c	Girder 2-10	b(2	1. Contract (1997)		1 2	
				Truss) or equ	ivalent spaced at	2-0-0 00	max. startin	a at			20	E.EAL	-cP	NNS .	
				1-9-12 from t	he left end to 38-5	5-12 to c	onnect truss(es)			27	O, GI	NEE	ST.S	
				to front face	of bottom chord.		(,			1	NN	1100	12.11	
				2) Fill all nail ho	les where hanger	is in cor	tact with lum	ber.				Min L.	GAL	111	
				OAD CASE(S)	Standard								mm	13	

April 30,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	A02	Нір	1	1	Job Reference (optional)	173111722

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:22:57 ID:yzTAmFPWC0On_4svWYYkrizbzXb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	L	8-8-0	1	15-10-8	1	23-1-0	1	3	0-3-8			40-2-0		
Casla 4:70.0		8-8-0	I	7-2-8	I	7-2-8	1	7	7-2-8			9-10-8		
Plate Offsets (X, Y): [1:Edge,0-0-0]													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.99 0.79 0.60	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.21 -0.43 0.11 0.24	(loc) 13-14 13-14 10 13-14	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 246 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD	2x4 SP No.2 *Excep 2x6 SP No.2 2x4 SP No.3 2x4 SPF No.2(flat) Left 2x8 SP 2400F 2 Structural wood shee 2-1-8 oc purlins, exc 2-0-0 oc purlins, (2-2	t* 1-4:2x4 SP No.1 .0E or DSS 2-6-0 athing directly applie .op max): 4-8	2) d or	Wind: ASCE Vasd=103m II; Exp C; En and C-C Ext 8-9-12, Exte 14-5-14 to 3 Interior (1) 3 right expose for members Lumber DOL	7-10; Vult=13; ph; TCDL=6.0; closed; MWFF erior (2) 0-0-0 rior (2) 8-9-12 0-1-12, Exterio 5-9-14 to 40-2- d; end vertical ; and forces & =1.60 plate gr	Omph (3-sec osf; BCDL=6 tS (envelope to 4-2-9, Inte to 14-5-14, I r (2) 30-1-12 0 zone; can left and righ WWFRS for ip DOL=1.6(cond gust) .0psf; h=25ft e) exterior zoo erior (1) 4-2-9 nterior (1) 2 to 35-9-14, tilever left an at exposed;C reactions sho	i; Cat. ne 9 to 1d -C own;						
BOT CHORD WEBS REACTIONS	Rigid ceiling directly bracing. T-Brace: Fasten (2X) T and I web with 10d (0.131 3in minimum end dis Brace must cover 9 (size) 1= Mecha Max Horiz 1=-129 (Li	-0 max.): 4-8. applied or 7-11-11 o 2x4 SPF No.2 - 5-16 5-13, 7-11 braces to narrow ed "x3") nails, 6in o.c.,w stance. 30% of web length. nical, 10= Mechanic: C 13)	c 3) 4) 5, 5) ge of rith 6) al 7)	Provide aded This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar Refer to gird Provide mec bearing plate	quate drainage as been design ad nonconcurri m chord in all a by 2-00-00 wid by other memb er(s) for truss t thanical connece e capable of unlift at joint 1	to prevent v ed for a 10.0 ent with any ned for a liv reas where e will fit betw ers. o truss conr ction (by oth thstanding 3 o	vater ponding opsf bottom other live loa e load of 20.1 a rectangle veen the bott nections. ers) of truss to 55 lb uplift at	g. ads. Opsf com to t joint						
FORCES	Max Uplift 1=-355 (L Max Grav 1=1607 (L (lb) - Maximum Com Tension 1-3=-2430/821, 3-4=	C 9), 10=-347 (LC 8) .C 1), 10=1607 (LC 1 pression/Maximum 2421/791,) 8) 9)	Graphical pu or the orienta bottom choro Warning: Ad truss system	diplication ation of the pur d. ditional perman (not part of th	tion does no lin along the nent and sta	ot depict the s top and/or bility bracing nt design) is	size I for				ORTH CA	ROUT	1
BOT CHORD	4-5=-2142/766, 5-7= 7-8=-2363/831, 8-9= 9-10=-2956/971 1-16=-628/2049, 14- 13-14=-845/3102, 11 10-11=-793/2574	3162/1060, 2706/872, -16=-845/3102, 1-13=-825/3162,	LC	always requi	red. Standard						in the second se	SEA 2867	L	annan m
WEBS NOTES	3-16=-91/269, 4-16= 8-11=-177/839, 9-11 5-16=-1239/454, 5-1 7-11=-1066/428	132/672, =-229/268, 5-14=0/3 3=-67/141, 7-13=0/2	06, 36,								anna ann	OF SNGIN	EERINS	innin.
1) Unbalance this design	ed roof live loads have	been considered for										C.G	in the second second	

April 30,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	A03	Нір	1	1	Job Reference (optional)	173111723

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:22:57 ID:?u49gRJdiAjBLeisRQSOtQzbzaH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	L	5-0-1	11-4-0		19-5-12		27-7-8	}		33-11	1-6	40-2-	0
Scale = 1:79.1	· ·	5-0-1	6-3-14	I	8-1-12	1	8-1-12	2		6-3-1	14	6-2-1	0
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	5/TDI2014	CSI TC BC WB Matrix-MS	0.92 0.55 0.52	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.15 -0.31 0.08 0.15	(loc) 10-12 10-12 8 10-12	l/defl >999 >999 n/a ⊳999	L/d 360 240 n/a 240	PLATES MT20	GRIP 244/190
	10.0	Code	IRC201	0/1112014	IVIALITX-IVIS		WIND(LL)	0.15	10-12	>999	240	Weight. 252 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD	2x4 SP No.1 *Excep 2x6 SP 2400F 2.0E 13-11:2x6 SP No.2 2x4 SP No.3 2x4 SPF No.2(flat) Left 2x8 SP 2400F 2 Structural wood she 2-2-0 oc purlins, exc	ot* 6-8:2x4 SP No.2 or 2x6 SP DSS *Exc 2.0E or DSS 2-6-0 eathing directly applie cept	2) cept* ed or 3)	Wind: ASCE Vasd=103mp II; Exp C; En and C-C Extr 11-5-12, Extr 17-1-14 to 27 Interior (1) 33 right exposer for members Lumber DOL Provide adec	7-10; Vult=130 h; TCDL=6.0pc closed; MWFR3 erior (2) 0-0-0 tc erior (2) 11-5-12 7-5-12, Exterior 3-1-14 to 40-2-(d; end vertical and forces & =1.60 plate grig yuate drainage	mph (3-sec sf; BCDL=6 S (envelope o 4-0-3, Inte 2 to 17-1-12 (2) 27-5-12 D zone; can left and righ WFRS for o DOL=1.60 to prevent (cond gust) .0psf; h=25ft exterior zon prior (1) 4-0-3 4, Interior (1) 2 to 33-1-14, tilever left an nt exposed;C- reactions sho) water pondind	; Cat. ne 3 to d -C own; g.					
BOT CHORD	Rigid ceiling directly	applied or 9-3-2 oc	4)	This truss ha	s been designe ad nonconcurre	ed for a 10.0 nt with anv) psf bottom other live loa	ds.					
WEBS REACTIONS	bracing. T-Brace: Fasten (2X) T and I web with 10d (0.131 3in minimum end dii Brace must cover ((size) 1= Mecha Max Horiz 1=-159 (L	2x4 SPF No.2 - 5-1 5-10 I braces to narrow et "x3") nails, 6in o.c., stance. 90% of web length. anical, 8= Mechanica LC 13)	4, 5) dge of with 6) 7) al 8)	* This truss h on the bottor 3-06-00 tall b chord and an Refer to gird Provide mec bearing plate 1 and 341 lb Graphical pu	as been design n chord in all ar by 2-00-00 wide by other membe er(s) for truss to hanical connect e capable of witt uplift at joint 8.	ined for a liv reas where will fit betw ers, with BC o truss conr tion (by oth hstanding 3 ion does no	e load of 20.0 a rectangle ween the botto DL = 10.0pst hections. ers) of truss t i23 lb uplift at bt depict the s	om f. to t joint					
	Max Uplift 1=-323 (L Max Grav 1=1607 (I	₋ C 12), 8=-341 (LC 1 LC 1), 8=1607 (LC 1	13)	or the orienta	ation of the purli	in along the	top and/or						
FORCES	(lb) - Maximum Com Tension	npression/Maximum	9)	Warning: Ad	ditional perman	ent and sta	bility bracing	for				UNITH CA	Rout
TOP CHORD	1-3=-2361/747, 3-4= 4-5=-2074/785, 5-6= 6-7=-2537/839, 7-8-	=-2400/796, =-2186/821, 2946/899	LC	always requi	red. Standard	scomponer	it design) is				N.V.	ORIFESS	Philips
BOT CHORD	1-15=-588/2048, 14 12-14=-634/2581, 10 9-10=-730/2565, 8-0	-15=-588/2048, 0-12=-634/2581, 0730/2565								1111		SEA	L
WEBS	3-14=-127/219, 4-14 5-14=-795/297, 5-12 6-10=-126/716, 7-10 3-15=-222/171	4=-103/641, 2=0/379, 5-10=-676/ 0=-423/317, 7-9=0/1	276, 62,							1111		2867	7
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered fo	r									OLYN L. G	ALINSTIN

April 30,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	A04	Нір	1	1	Job Reference (optional)	173111724

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:22:57 ID:J3V4mmVTaaMFurO4I_nlwIzbzdw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

		7-0-1		14-0-0	24	4-11-8		-	<u>31-11-6</u>			40-2-0	
Scale - 1.8/ 7		7-0-1	1	6-11-15	10	0-11-8		1	6-11-14		I	8-2-10	Ι
00016 - 1.04.7		1			ı							1	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.93	Vert(LL)	-0.22	12-13	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.71	Vert(CT)	-0.43	12-13	>999	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.78	Horz(CT)	0.08	9	n/a	n/a		
BCDL	10.0	Code	IRC2015	5/TPI2014	Matrix-MS		Wind(LL)	0.13	13-15	>999	240	Weight: 251 lb	FT = 20%
												Ű	
LUMBER			2)	Wind: ASCE	7-10; Vult=130mpl	h (3-seo	cond gust)						
TOP CHORD	2x4 SP No.2 *Exce	pt* 1-4:2x4 SP No.1		Vasd=103m	ph; TCDL=6.0psf; E	BCDL=6	.0psf; h=25ft	t; Cat.					
BOT CHORD	2x6 SP No.2 *Exce	pt* 1-14:2x6 SP 2400	F	II; Exp C; Er	closed; MWFRS (e	envelope	e) exterior zo	ne					
	2.0E or 2x6 SP DS	S		and C-C Ext	erior (2) 0-0-0 to 4-	0-3, Inte	erior (1) 4-0-3	3 to					
WEBS	2x4 SP No.3			14-1-12, Ext	erior (2) 14-1-12 to	19-9-14	4, Interior (1)						
OTHERS	2x4 SPF No.2(flat)			19-9-14 to 2	4-9-12, Exterior (2)	24-9-12	2 to 30-5-14,						
SLIDER	Left 2x8 SP 2400F	2.0E or DSS 2-6-0		Interior (1) 3	0-5-14 to 40-2-0 zo	one; can	tilever left an	nd					
BRACING				right expose	d ; end vertical left	and righ	nt exposed;C	-C					
TOP CHORD	Structural wood sh	eathing directly applie	d.	for members	and forces & MWF	-RS for	reactions sh	own;					
	except	0 7 11	,	Lumber DOL	_=1.60 plate grip D0	OL=1.60)						
	2-0-0 oc purlins (3-	10-9 max.): 4-6.	3)	Provide ade	quate drainage to p	revent	water pondin	g.					
BOT CHORD	Rigid ceiling direct	y applied or 8-10-14 o	ic 4)	This truss ha	as been designed fo	or a 10.0) psf bottom						
	bracing.	, ,,		chord live lo	ad nonconcurrent w	vith any	other live loa	ads.					
WEBS	T-Brace:	2x4 SPF No.2 - 5-13	_{3,} 5)	* This truss I	has been designed	for a liv	e load of 20.	0psf					
		5-12		on the botto	m chord in all areas	s where	a rectangle						
	Fasten (2X) T and	I braces to narrow ed	ge of	3-06-00 tall I	by 2-00-00 wide will	I fit betv	veen the bott	tom					
	web with 10d (0.13	31"x3") nails, 6in o.c.,w	/ith	chord and a	ny other members,	with BC	DL = 10.0ps	it.					
	3in minimum end c	listance.	6)	Refer to gird	er(s) for truss to tru	iss conr	ections.						
	Brace must cover	90% of web length.	7)	Provide med	hanical connection	(by oth	ers) of truss	to					
REACTIONS	(size) 1= Mech	anical, 9= Mechanical		bearing plate	e capable of withsta	anding 3	59 Ib uplift a	t joint					
	Max Horiz 1=-189 (LC 13)	•	1 and 375 lb	uplift at joint 9.								
	Max Uplift 1=-359 (LC 12), 9=-375 (LC 1)	3) 8)	Graphical pu	Irlin representation	does no	ot depict the	size					
	Max Grav 1=1607	(I C 1) 9=1607 (I C 1)	-)	or the orient	ation of the purlin al	long the	e top and/or						
FORCES	(lb) - Maximum Co	moression/Maximum	0)	Dottom chore	D. Hitianal narmanant		hilitu (haq qiq q					, minin	1111.
TOROLO	(ib) - Maximum Co		9)	truce eveter	unional permanent	and sta	bility bracing	lor				IN'LY CA	ROUL
	1_32//8/767 3_/	122/18/761		liuss system	i (not part or trus co	mponer	it design) is				~	all	0111
	4-51924/758 5-6	1980/777		always requ								0	in the
	$6_8 = 2324/787$ 8-0		LC	DAD CASE(S)	Standard						22		11: 7 -
	1-15-578/2118 1	3-15578/2118									2	AL X	1
BOT ONORD	12-13-482/2081	10-12675/2500										147 2	1.1.2
	9-10=-675/2500	10 12- 013/2000,										SEA	
WEBS	3-15=-139/138 3-1	3=-258/306								-	:	2007	- : =
	4-13=-128/620 5-1	3=-411/230										286/	/ : :
	5-12=-330/220 6-1	2=-147/671									1		1 2
	8-12=-612/395 8-1	0=0/252									-	N	A 1. 2
NOTES	5 . <u>L</u> = 0. <u>L</u> /000, 0	0 0,202									50	O'SNOW	Ent
1) Unbalance	od roof live loade bev	a boon considered for									11	YA	
this design	eu roor rive roaus nav										1	INI G	ALIMAN
1113 083191												1. 5.17	

NOTES

mmm April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	A05	Нір	1	1	Job Reference (optional)	173111725

Builders FirstSource (Sumt

9-7-6

Scale = 1:90.3 Plate Offsets (X, Y): [7

Loading TCLL (roof)

LUMBER

TCDL BCLL BCDL

Page: 1

A05		нір				1		I	Job	Refer	ence (op	tional)		
er, SC), Sum	ter, SC - 29153,	•		Run: 8.8 ID:GfyX	33 S A PVOC	Apr 11 2025 Ce6WU5bPjN	Print: 8.8 ag18bzb	30 S Apr ´ zjE-RfC?F	11 202 PsB70F	5 MiTek Iq3NSgF	Industries PqnL8w3u	, Inc. Tu IITXbGK	ie Apr 29 13:22:58 (WrCDoi7J4zJC?f	
	5-0-7	10-11-1	. 16	6-9-12		22-1-12		28-0-6		. 3	3-11-0		40-2-0	
	5-0-7	5-10-10	5-	-10-11	-	5-4-0 40-2-0	-	5-10-10)	5-	10-10	-	6-3-0	
9-5-9 9-5-9 1-2-8 0-1-13	2x4 5x6 = 25 3 2 6x12 II	6 ¹² 3x6 = 4 * 17 4x6=	4x6 ≠ 5 27 28	EL-+ H-H 816 5x8=	5x6= 6 11 15 4x8=	29	6x8= 7 14 14 4x6=	11 13 30 5x8=	4:	×6≈ 8 31	3x6 \$ 9 9 12 4x6=	2x4 #	26 4xt	11 7 777
	7-11-13		8-8-3	<u>0</u> }	-	<u>22-3-8</u> 5-7-8		<u> </u>	-8-3		-	4 9)-2-5	
:0-4-6,Edge	2]													
(psf) 20.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15 YES		CSI TC BC WB		0.89 0.62 0.31	DEFL Vert(L Vert(C Horz(C	L) T) CT)	in 0.18 0.35 0.08	(loc) 12-14 12-14 11	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190
10.0	Code	IRC2015/T	PI2014	Matrix-M	IS	0.01	Wind(I	_L)	0.16	15-17	>999	240	Weight: 265 lb	FT = 20%
No.2 *Exce No.2 *Exce 2x6 SP DS No.3 F No.2(flat)	ept* 1-4:2x4 SP No.1 ept* 1-16:2x6 SP 2400F SS	1) U th 2) V V II a	Inbalanced r his design. Vind: ASCE asd=103mp ; Exp C; End nd C-C Exte	7-10; Vulta 7-10; Vulta bh; TCDL= closed; MV erior (2) 0-1	ads h =130i 6.0ps WFRS 0-0 to	mph (3-sec sf; BCDL=6 S (envelope o 4-0-3, Inte	consider cond gus .0psf; h e) exteri erior (1)	red for st) =25ft; Ca or zone 4-0-3 to	at.					

TOP CHORD	2x4 SP No.2 *E>	cept* 1-4:2x4 SP No.1		this design.
BOT CHORD	2x6 SP No.2 *E>	cept* 1-16:2x6 SP 2400F	2)	Wind: ASCE 7-10; Vult=13
	2.0E or 2x6 SP I	DSS		Vasd=103mph; TCDL=6.0
WEBS	2x4 SP No.3			II; Exp C; Enclosed; MVVFF
OTHERS	2x4 SPF No.2(fla	at)		and C-C Exterior (2) 0-0-0
SLIDER	Left 2x8 SP 240	JF 2.0E or DSS 2-6-0		28-0-6 to 40-2-0 zone: can
BRACING	o			end vertical left and right e
TOP CHORD	Structural wood	sheathing directly applied or		forces & MWFRS for react
	2-2-0 oc purlins,	(3-9-12 max): 6-7		DOL=1.60 plate grip DOL=
	Rigid ceiling dire	ctly applied or 8-10-12 oc	3)	Provide adequate drainage
BOT ONORD	bracing.		4)	This truss has been design
WEBS	T-Brace:	2x4 SPF No.2 - 5-15,		chord live load nonconcurr
		7-15, 8-14	5)	* This truss has been desig
	Fasten (2X) T a	nd I braces to narrow edge of		2 06 00 tall by 2 00 00 wid
	web with 10d (0	131"x3") nails, 6in o.c.,with		chord and any other memb
	3in minimum en	d distance.	6)	Refer to girder(s) for truss
	Brace must co	/er 90% of web length.	7)	Provide mechanical conne
REACTIONS	(SIZE) 1= Me	echanical, 11= Mechanical		bearing plate capable of wi
	Max Horiz 1=-21	9 (LC 13)		1 and 404 lb uplift at joint 1
	Max Opint 1=-38	9 (LC 12), 11=-404 (LC 13)	8)	Graphical purlin representa
FORCES				or the orientation of the put
FURCES	(ID) - Maximum (Tonsion	Compression/Maximum	2	bottom chord.
	1-32479/767	3-52359/755	9)	truce evetem (net pert of th
	5-6=-2035/751	6-7=-1741/736		always required
	7-8=-2058/760,	8-10=-2711/839,	10	AD CASE(S) Standard
	10-11=-2953/87	1	20	AD CASE(S) Standard
BOT CHORD	1-17=-638/2124	, 15-17=-513/2039,		
	14-15=-330/177	1, 12-14=-538/2181,		
	11-12=-678/256	6		
WEBS	3-17=-106/210,	5-17=-19/219,		
	5 - 15 = -456/339,	0-15=-142/594, 7 14- 107/666		
	8-14-614/380	8-12101/476		
	10-12=-311/285	0 12- 10-7710,		
NOTES				

12 to 28-0-6, Interior (1) tilever left and right exposed ; exposed;C-C for members and ions shown; Lumber =1.60

- e to prevent water ponding. ned for a 10.0 psf bottom
- rent with any other live loads.
- gned for a live load of 20.0psf areas where a rectangle de will fit between the bottom pers, with BCDL = 10.0psf.
- to truss connections.
- ection (by others) of truss to ithstanding 389 lb uplift at joint 1.
- ation does not depict the size rlin along the top and/or
- anent and stability bracing for nis component design) is

April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	A06	Common	1	1	Job Reference (optional)	173111726

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:22:58 ID:aCDu6yK3YBJ1P6ILFkAT3yzbzoT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	7-0-2	11-11-0 13-5-12	25-5-12	27-10-0 31-11-7	40-2-0
Scale = 1:96.6	7-0-2	4-10-14 1-6-12	12-0-0	2-4-4 4-1-7	8-2-9

Plate Offsets (X, Y): [13:0-5-4,0-2-0], [14:0-2-8,0-2-0]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.85 0.68 0.67	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.19 -0.37 0.06 0.16	(loc) 13-14 13-14 10 13	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 285 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 *Excep 2x6 SP No.2 *Excep 2.0E or 2x6 SP DSS 2x4 SP No.3 Left 2x8 SP 2400F 2 Structural wood shea Rigid ceiling directly bracing. 1 Row at midpt (size) 1=0-3-8, 1 Max Horiz 1=-251 (L Max Uplift 1=-414 (L Max Grav 1=1607 (L	t* 1-4:2x4 SP No.1 t* 1-15:2x6 SP 24001 .0E or DSS 2-6-0 athing directly applied applied or 9-0-0 oc 6-14, 6-13 10= Mechanical C 13) C 12), 10=-427 (LC 1 .C 1), 10=1607 (LC 1	2) = d. 3) 4) 3) 5) 5)	Wind: ASCE Vasd=103m II; Exp C; En and C-C Ext 23-5-15 to 44 exposed ; er members an Lumber DOL This truss ha chord live loa * This truss h on the bottor 3-06-00 tall t chord and ar Refer to gird	7-10; Vult=130mpl bh; TCDL=6.0psf; E closed; MWFRS (e erior (2) 0-0-0 to 4- erior (2) 19-5-12 to 0-2-0 zone; cantilev d vertical left and r d forces & MWFRS =1.60 plate grip DC is been designed for ad nonconcurrent w has been designed n chord in all areas by 2-00-00 wide will by other members, er(s) for truss to tru	n (3-sec SCDL=6 nvelope 0-3, Inte 23-5-15 ver left a ight exp for rea DL=1.60 or a 10.0 vith any for a liv where fit betw with BC ss conr	cond gust) .0psf; h=25fi e) exterior zo prior (1) 4-0-3 5, Interior (1) nod right loosed;C-C for ctions shown) p sf bottom other live loz e load of 20. a rectangle veen the bott DL = 10.0ps lections.	t; Cat. ine 3 to ir n; ads. 0psf tom if.						
FORCES	(lb) - Maximum Com Tension 1-3=-2439/680, 3-5= 5-6=-2283/813, 6-7= 7-9=-2349/687, 9-10	pression/Maximum 2270/667, 2345/826, =-2896/759	6) LC	Provide mec bearing plate 10 and 414 I DAD CASE(S)	hanical connection capable of withsta b uplift at joint 1. Standard	(by oth Inding 4	ers) of truss 27 lb uplift a	to it joint						
BOT CHORD	1-16=-662/2104, 14- 13-14=-244/1516, 1 10-11=-543/2493	16=-662/2104, 1-13=-543/2493,										UNIT CA	Della	
NEBS	3-16=-142/103, 3-14 5-14=-422/359, 6-14 6-13=-468/1031, 7-1 9-13=-587/349, 9-11	=-242/244, =-435/933, 3=-387/341, =0/254									A.C.	ORTESS	A A A A	

NOTES

1) Unbalanced roof live loads have been considered for this design.

April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	A07	Common	3	1	Job Reference (optional)	173111727

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:22:59 ID:z4dm2sJJttHjtR1Fz9glokzbzr4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	7-0-2	11-11-0 13-5-12	25-5-12	27-10-0 31-11-7	40-2-0
Scale - 1:101 1	7-0-2	4-10-14 1-6-12	12-0-0	2-4-4 4-1-7	8-2-9

Plate Offsets (X, Y): [10:Edge,0-0-11], [14:0-5-4,0-2-0], [15:0-2-8,0-2-0]

Loading (psf) TCLL (roof) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/	/TPI2014	CSI TC BC WB Matrix-MS	0.85 0.68 0.66	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.19 -0.37 0.06 0.16	(loc) 14-15 14-15 10 14	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 287 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 *Excep BOT CHORD 2x6 SP No.2 *Excep 2.0E or 2x6 SP No.3 SLIDER Left 2x8 SP 2400F 2 BRACING TOP CHORD Structural wood she BOT CHORD Rigid ceiling directly bracing. WEBS 1 Row at midpt REACTIONS (size) 1=0-3-8, 1 Max Horiz 1=-271 (L Max Uplift 1=-414 (L Max Grav 1=1606 (L FORCES (lb) - Maximum Com Tension TOP CHORD 1-3=-2438/680, 3-5= 5-6=-2282/812, 6-7= 7-9=-2347/678, 9-10 BOT CHORD 1-17=-652/2103, 15- 14-15=-234/1515, 1: 10-12=-519/2487 WEBS 5-15=-422/359, 6-15 3-15=-2422/244, 6-14 7-14=-388/341, 9-14	t* 1-4:2x4 SP No.1 t* 1-16:2x6 SP 2400F :.0E or DSS 2-6-0 athing directly applied applied or 9-0-13 oc 6-15, 6-14 10=0-3-8 C 12), 10=-458 (LC 13 C 12), 10=-458 (LC 13 C 12), 10=-458 (LC 13 C 1), 10=1662 (LC 1) pression/Maximum 2268/667, 2343/821, =-2889/750, 10-11=0/ -17=-652/2103, 2-14=-519/2487, =-435/932, =-467/1030, =-582/346,	2) 3) 4) 5) LO /25	Wind: ASCE Vasd=103mg II; Exp C; En and C-C Ext 19-5-12, Ext 23-5-15 to 4' exposed ; en members an Lumber DOL This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 1 and 458 lb AD CASE(S)	7-10; Vult=130m; b; TCDL=6.0psf; closed; MWFRS (erior (2) 0-0-0 to 4 erior (2) 19-5-12 to 1-1-0 zone; cantile d vertical left and d forces & MWFR =1.60 plate grip E is been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w by other members hanical connection e capable of withst uplift at joint 10. Standard	bh (3-sec BCDL=6 envelope -0-3, Inte o 23-5-15 wore left a right exp S for rea IOL=1.60 for a 10.0 with any d for a liv s where ill fit betw, with BC n (by oth anding 4	ond gust) .0psf; h=25ft .0 exterior zo rior (1) 4-0-3 .0 nd right osed;C-C for ctions showr .0 psf bottom other live load e load of 20.1 a rectangle reen the bottt DL = 10.0psi 14 lb uplift al	; Cat. ne b to r r r; dds. Opsf f ro t joint			A	ORTH CA	ROUNTIN

NOTES

1) Unbalanced roof live loads have been considered for this design.

April 30,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Affil 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	A08	Common	4	1	Job Reference (optional)	173111728

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:22:59 ID:EsaZS7Vvi_XGY0C_RbPDVPzbzmy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:105.6

Plate Offsets (X, Y): [1:0-10-1,0-0-4], [10:Edge,0-0-11], [14:0-5-12,0-2-0], [15:0-3-0,0-2-0]

Loading TCLL (roof) TCDL BCLL	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.71 0.64 0.67	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.31 0.04	(loc) 14-15 14-15 10	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS		Wind(LL)	0.12	14-15	>999	240	Weight: 287 lb	FT = 20%	
LUMBER			2) Wind: ASCE	7-10; Vult=130mph	(3-sec	ond gust)							

TOP CHORD	2x4 SP No	0.2							
BOT CHORD	2x6 SP N	0.2 *Except* 1-16:2x6 SP 2400F							
WEBS	2.0E 0I 27	0 3F D33							
SLIDER	Left 2x8 S	P 2400F 2.0E or DSS 2-6-0							
BRACING									
TOP CHORD	Structural	wood sheathing directly applied or							
	2-8-3 oc p	ourlins.							
BOT CHORD	Rigid ceili	Rigid ceiling directly applied or 10-0-0 oc							
WEBS	1 Row at	midpt 6-15, 6-14							
REACTIONS	(size)	1= Mechanical, 10=0-3-8, 17=0-3-8							
	Max Horiz	1=-271 (LC 13)							
	Max Uplift	1=-255 (LC 12), 10=-408 (LC 13),							
		17=-219 (LC 12)							
	Max Grav	1=891 (LC 1), 10=1397 (LC 1),							
		17=981 (LC 1)							
FORCES	(lb) - Max	imum Compression/Maximum							
	Tension								
TOP CHORD	1-3=-1115	5/397, 3-5=-1144/421,							
	5-6=-1148	3/565, 6-7=-1779/715,							
	7-9=-1783	3/547, 9-10=-2330/645, 10-11=0/25							
BOT CHORD	1-18=-393	3/1000, 17-18=-393/1000,							
	15-17=-39	93/1000, 14-15=-111/976,							
	12-14=-42	25/1987, 10-12=-425/1987							
WEBS	3-18=-349/149, 3-15=-122/210,								
	5-15=-408/356, 6-15=-245/181,								
	6-14=-484	4/1108, 7-14=-386/341,							
	9-14=-587	7/348, 9-12=0/253							

NOTES

 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-0 to 4-0-3, Interior (1) 4-0-3 to 19-5-12, Exterior (2) 19-5-12 to 23-5-15, Interior (1) 23-5-15 to 41-1-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 This truss has been designed for a 10.0 psf bottom

- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 255 lb uplift at joint 1, 408 lb uplift at joint 10 and 219 lb uplift at joint 17.

LOAD CASE(S) Standard

April 30,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	A09	Hip	1	1	Job Reference (optional)	173111729

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:00 ID:UHzF6qBk0OlaxF8JzJrRYWzbzfc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-11-13	-11-13 <u>9-0-8</u> 16-8-0	22-3-8	30-11-11	40-2-0
7-11-13	11-13 1 0 11 7-7-8	5-7-8	8-8-3	9-2-5

Plate Offsets (X, Y): [1:0-10-1,0-0-4], [7:0-4-6,Edge]

Scale = 1:96.9

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.45 0.79 0.84	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.12 -0.23 0.05 0.10	(loc) 13-15 13-15 11 13-15	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 267 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 2x4 SPF No.2(flat) Left 2x8 SP 2400F 2 Structural wood shea 3-6-4 oc purlins, exc 2-0-0 oc purlins (5-2 Rigid ceiling directly bracing. T-Brace: Fasten (2X) T and I web with 10d (0.131 3in minimum end dis Brace must cover 9 (size) 1= Mecha Max Horiz 1=-240 (LI Max Uplift 1=-194 (LI 18=-252 (I Max Grav 1=660 (LC) 18=1264 (.0E or DSS 2-6-0 athing directly applie ept -4 max.): 6-7. applied or 10-0-0 oc 2x4 SPF No.2 - 7-16 8-15 braces to narrow ed "x3") nails, 6in o.c.,w tance. 10% of web length. nical, 11=0-3-8, 18=1 C 12), 11=-394 (LC -1 LC 12) C 12, 11=1387 (LC 1) LC 2)	1) 2) d or 3) 3, 4) 13), 0-3-8 6) 7) 13), 8)	Unbalanced I this design. Wind: ASCE Vasd=103mp II; Exp C; End and C-C Exte 16-9-12, Exte 28-0-6 to 41- end vertical Ik forces & MW DOL=1.60 pla Provide adeq This truss ha chord live loa * This truss ha chord and an Refer to girde Provide mect bearing plate 1, 394 Ib uplit	roof live loads have 7-10; Vult=130mp h; TCDL=6.0psf; E closed; MWFRS (e rior (2) 0-0-0 to 4- erior (2) 16-9-12 to 1-0 zone; cantileve eft and right expos FRS for reactions ate grip DOL=1.60 juate drainage to p s been designed for d nonconcurrent v as been d noncon	e been of h (3-sec BCDL=6 envelope 0-3, Intte 28-0-6, er left ar ed;C-C shown; brevent to for a liv s where s where s where 1 fit betw with BC uss conr (boy oth andig 1 52 lb up does no	considered fo ond gust) .0psf; h=25ft; e) exterior zor rrior (1) 4-0-3 Interior (1) ad right expos for members Lumber water ponding 0 psf bottom other live loa e load of 20.0 DL = 10.0psf lections. ers) of truss t 94 lb uplift at lift at joint 18.	r Cat. ne to sed ; and ds. Opsf om joint				WH CA	""" Ro: 44	
FORCES	(lb) - Maximum Com Tension 1-3=-691/336, 3-5=-{	pression/Maximum 585/310, 5-6=-1204/9	9) 541,	bottom chord Warning: Add	litional permanent	and sta	bility bracing	for			N.V.		in's	
	6-7=-1003/534, 7-8= 8-10=-2125/683, 10- 11-12=0/25	-1460/611, 11=-2369/706,	Ĺ	always requir	ed. Standard	mponer				1111		SEA		11111
BOT CHORD	1-19=-324/653, 18-1 16-18=-230/842, 15- 13-15=-390/1651, 11	9=-230/842, 16=-181/1225, I-13=-533/2047								LUL .		2867	7	inn,
WEBS	5-16=-49/393, 6-16= 7-15=-209/733, 8-15 8-13=-104/487, 10-1 5-19=-915/333, 3-19	-69/261, 7-16=-524/ =-622/381, 3=-317/285, =-289/253	198,									OHN L. G	EPREN	
NOTES													THE.	

April 30,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	A10	Нір	1	1	Job Reference (optional)	173111730

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:00 ID:K8cn20K7ZTwb2lb8HG?ihdzbzcs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

		7-0-2	9-0-8	14-0-0	24	4-11-8		31-	11-6		4	0-2-0	
Scale = 1:89.4		7-0-2	2-0-6	4-11-8	10)-11-8	I	6-1	1-14	1	8	-2-10	
Plate Offsets ((X, Y): [1:0-5-0,0-0-4],	[9:Edge,0-0-11]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	/TPI2014	CSI TC BC WB Matrix-MS	0.73 0.87 0.78	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.22 -0.42 0.06 0.12	(loc) 13-14 13-14 9 13-14	l/defl >999 >895 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 253 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 2x4 SPF No.2(flat) Left 2x8 SP 2400F 2 Structural wood she: 2-2-0 oc purlins, exc 2-0-0 oc purlins (4-4 Rigid ceiling directly	2.0E or DSS 2-6-0 athing directly applied cept -0 max.): 4-6. applied or 9-8-1 oc	2) I or 3)	Wind: ASCE Vasd=103mp II; Exp C; En and C-C Exte 14-1-12, Exte 19-9-14 to 24 Interior (1) 30 right exposed for members Lumber DOL Provide adec	7-10; Vult=130m oh; TCDL=6.0psf; closed; MWFRS erior (2) 0-0-0 to 4 erior (2) 14-1-12 t 4-9-12, Exterior (2) 0-5-14 to 41-1-02 3; end vertical lef and forces & MW =1.60 plate grip I quate drainage to	ph (3-sec BCDL=6 (envelope 4-0-3, Inte to 19-9-1 2) 24-9-1 zone; can ft and righ VFRS for DOL=1.60 prevent	cond gust) .0psf; h=25ff a) exterior zo erior (1) 4-0 4, Interior (1) 2 to 30-5-14, tilever left ar t exposed;C reactions sh water pondin	t; Cat. one 3 to 				-	
WERS	bracing.	2x4 SPE No 2 5 14	4)	This truss ha chord live loa	s been designed ad nonconcurrent	for a 10. with any) psf bottom other live loa	ads.					
REACTIONS	 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 6) Refer to girder(s) for truss to truss to truss to truss to truss to girder(s) for truss to truss to truss to pearing plate capable of withstanding 265 lb uplift at joint 1, 384 lb uplift at joint 9 and 121 lb uplift at joint 16. 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 								Route				
FORCES	(lb) - Maximum Com Tension	pression/Maximum	9)	truss system	(not part of this of	componei	nt design) is	101			11	OPLEESS	Giller .
TOP CHORD	1-3=-1218/485, 3-4= 4-5=-1257/573, 5-6= 6-8=-1923/695, 8-9=	=-1505/586, =-1623/696, =-2497/775_9-10=0/25	LO	AD CASE(S)	Standard						7		Dr. Y
BOT CHORD	1-17=-360/1041, 16- 14-16=-360/1041, 13 11-13=-576/2140, 9-	-17=-360/1041, 3-14=-339/1567, -11=-576/2140	-									2867	7
WEBS	4-14=-56/364, 5-14= 6-13=-89/512, 8-13= 3-17=-651/294, 3-14	628/258, 5-13=-91/2 611/393, 8-11=0/249 4=-114/418	20, 9,									OK SNGINI	ERGY
NOTES											1	NIC	1112
1) Unbalance this design	ed roof live loads have n.	been considered for										China L. G.	111111

April 30,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	A11	Нір	1	1	Job Reference (optional)	173111731

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:00 ID:MfTKQa?IWNmF3F_cjBTX8EzbzZP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

	5-0-1	9-0-8	11-4-0	19-5-12	27-7-8	33-11-6	40-2-0
Scolo - 1:92 9	5-0-1	4-0-7	2-3-8	8-1-12	8-1-12	6-3-14	6-2-10

Plate Offsets (X, Y): [1:0-5-0,0-0-4]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.71 0.66 0.79	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.12 -0.26 0.06 0.12	(loc) 13-15 13-15 8 13-15	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 253 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD	2x4 SP No.2 *Excep 2x6 SP No.2 *Excep 2.0E or 2x6 SP DSS 2x4 SP No.3 2x4 SPF No.2(flat) Left 2x8 SP 2400F 2 Structural wood shea 3-2-10 oc purlins, ex 2-0-0 oc purlins (3-8	t* 4-6:2x4 SP No.1 t* 1-14:2x6 SP 2400F .0E or DSS 2-6-0 athing directly applied cept -8 max.): 4-6.	1) - 2)	Unbalanced I this design. Wind: ASCE Vasd=103mp II; Exp C; End and C-C Exte 11-5-12, Exte 17-1-14 to 27 Interior (1) 33 right exposed for members	roof live loads have 7-10; Vult=130mpl h; TCDL=6.0psf; E closed; MWFRS (e rior (2) 0-0-0 to 4- rior (2) 11-5-12 to -5-12, Exterior (2) i-1-14 to 41-1-0 zo l; end vertical left and vertical left	e been o 3CDL=6 nvelope 0-3, Inte 17-1-14 27-5-12 ne; can and righ	considered fo cond gust) .0psf; h=25ft; e) exterior zor erior (1) 4-0-3 4, Interior (1) 2 to 33-1-14, tilever left and t exposed;C-	r Cat. to d C					
BOT CHORD WEBS	Rigid ceiling directly bracing. T-Brace: Fasten (2X) T and I web with 10d (0.131 3in minimum end dis Brace must cover 9 (size) 1= Mecha	applied or 9-6-0 oc 2x4 SPF No.2 - 5-15, 5-12 braces to narrow edg "x3") nails, 6in o.c.,wi tance. 10% of web length. nical. 8=0-3-8, 16=0-	, 3) 9e of 1th 5) 3-8	for members Lumber DOL Provide adeq This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an	and forces & MWF =1.60 plate grip DC uate drainage to p s been designed fc d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members,	DL=1.60 revent v or a 10.0 vith any for a liv where l fit betw with BC	reactions sho water ponding 0 psf bottom other live load e load of 20.0 a rectangle veen the botto DL = 10.0psf	own; g. ds. Opsf om					
FORCES	Max Horiz 1=-180 (Ll Max Uplift 1=-196 (Ll 16=-198 (I Max Grav 1=793 (LC 16=1049 ((lb) - Maximum Com Tension	C 13) C 12), 8=-347 (LC 13 LC 9) C 1), 8=1426 (LC 1), LC 1) pression/Maximum	6), 7), 8)	Refer to girde Provide mech bearing plate 1, 347 lb uplit Graphical put or the orienta bottom chord Warping: Adr	er(s) for truss to tru nanical connection capable of withsta it at joint 8 and 198 ilin representation tion of the purlin al	ss conr (by oth inding 1 Ib uplif does no long the	nections. ers) of truss to 96 lb uplift at ft at joint 16. bt depict the s top and/or bility bracing	o joint size for			And And	ORTH CA	ROUTIN
TOP CHORD BOT CHORD	1-3=-845/358, 3-4=- 5-6=-1719/697, 6-7= 7-8=-2464/770, 8-9= 1-17=-259/788, 16-1 15-16=-259/788, 13- 12-13=-411/1843, 10	1137/449, 4-5=-944/4 -2011/700, 0/25 7=-259/788, 15=-411/1843,)-12=-599/2134,	151, ⁵⁷ LC	truss system always requir DAD CASE(S)	(not part of this co ed. Standard	mponer	nt design) is			THILL WAS		SEA 2867	
WEBS	4-15=0/215, 5-15=-1 5-12=-367/209, 6-12 7-12=-463/319, 7-10 3-15=-132/329	208/373, 5-13=0/440 =-53/511, =0/193, 3-17=-487/2	, 52,								in the	NGINE	ALINGUIN

April 30,2025

ENGINEERING BY RENCO A MITEK Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	A12	Нір	1	1	Job Reference (optional)	173111732

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:01 ID:vRieTBFQjWCsNrCMcFo8gSzbzWV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f _____

Page: 1

1	8-8-0	9-0-8	23-1-0	30-3-8	40-2-0	
	8-8-0	6-10-0 0-4-8	7-2-8	7-2-8	9-10-8	
Scale = 1:80.1		0 1 0				

Plate Offsets (X, Y): [1:0-5-0,0-0-4]

5-7-6

5-9-9

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.77 0.45 0.90	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.09 -0.17 0.04 0.10	(loc) 12-14 12-14 10 12-14	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 247 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 2x4 SPF No.2(flat) Left 2x8 SP 2400F 2 Structural wood shea 3-11-5 oc purlins, ex 2-0-0 oc purlins (3-7 Rigid ceiling directly bracina. Except:	.0E or DSS 2-6-0 athing directly applied cept -9 max.): 4-8. applied or 10-0-0 oc	1) 2) d or	Unbalanced i this design. Wind: ASCE Vasd=103mp II; Exp C; End and C-C Exte 8-9-12, Exter 14-5-14 to 30 Interior (1) 38 right exposed for members Lumber DOL	roof live loads hav 7-10; Vult=130m h; TCDL=6.0psf; closed; MWFRS (ior (2) 0-0-0 to 4 ior (2) 8-9-12 to 1)-1-12, Exterior (2 5-9-14 to 41-1-0 z 4; end vertical lef and forces & MW =1.60 plate grip E	ve been of BCDL=6 (envelope I-2-9, Inte (4-5-14, I 2) 30-1-12 cone; can t and righ /FRS for DOL=1.60	considered fc cond gust) .0ps; h=25ft e) exterior zo erior (1) 4-2-5 nterior (1) 2 to 35-9-14, tilever left an t exposed;C- reactions sho	; Cat. ne) to d -C own;						
WEBS REACTIONS	6-0-0 oc bracing: 1-1 T-Brace: Fasten (2X) T and I web with 10d (0.131' 3in minimum end dis Brace must cover 9 (size) 1= Mecha Max Horiz 1=-150 (Ld Max Uplift 1=-203 (Ld 17=-570 (I Max Grav 1=149 (LC	7. 2x4 SPF No.2 - 5-17 7-12 braces to narrow edi "x3") nails, 6in o.c.,w tance. 10% of web length. nical, 10=0-3-8, 17=(C 13) C 24), 10=-285 (LC 1 LC 9) 28, 10=1212 (LC 24	3) 4) ge of 5) vith 7) 0-3-8 6) 7) 13), 4), 8)	Provide adeq This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Refer to girde Provide mech bearing plate 1, 570 lb uplit Graphical put	juate drainage to s been designed id nonconcurrent as been designed n chord in all area y 2-00-00 wide w y other members er(s) for truss to tr nanical connectio capable of withs ft at joint 17 and 2 rlin representation	prevent v for a 10.0 with any d for a liv as where iill fit betw russ conr n (by oth tanding 2 285 lb up n does no	water ponding 0 psf bottom other live load e load of 20.0 a rectangle veen the botti- nections. ers) of truss to 103 lb uplift at lift at joint 10 bt depict the s	g. ads. Opsf om to t joint size				WITH CA	Roha	
FORCES	(lb) - Maximum Com Tension 1-3=-400/531, 3-4=-2 5-7=-1653/599, 7-8= 8-9=-1739/576, 9-10	pression/Maximum 213/740, 4-5=-144/6(-1502/568, =-2009/682, 10-11=(9) 01,	or the orienta bottom chord Warning: Add truss system always requir	ition of the purlin ditional permanen (not part of this c red.	along the at and sta componer	e top and/or bility bracing ht design) is	for			N.	O SEA	L	Constantine of the
BOT CHORD	1-17=-423/288, 15-1 14-15=-240/944, 12- 10-12=-520/1732 3-17=-380/276, 4-17	7=-240/944, 14=-404/1653, =-615/293	"_o L(JAD CASE(S)	Standard					THE .		2867	7	num,
NOTES	8-12=-43/474, 9-12= 5-17=-1857/622, 5-1 7-14=-361/239, 7-12	-264/271, 5-15=0/26 4=-279/878, =-309/211	3,								1111	OLYN L. G	ALINST	11

April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	A13	Roof Special Girder	1	2	Job Reference (optional)	173111733

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:01 ID:Q?hFMD99r9Oe8iJm5I_CNAzbzJi-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

41-1-0

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	B01	Common Supported Gable	1	1	Job Reference (optional)	173111734

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:02 ID:allIuQnGkqksg2PTJqO5gxzbzGJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

21-3-0

Scale = 1:72.9

Plate Offsets (X, Y): [18:Edge,0-3-14], [28:0-3-0,0-3-0]

Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(lo	oc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.07	Vert(LL)	n/a		-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.05	Vert(CT)	n/a		-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.20	Horz(CT)	0.01		18	n/a	n/a		
BCDL		10.0	Code	IRC20)15/TPI2014	Matrix-MS		()			-			Weight: 167 lb	FT = 20%
						1 2 0/21 2 2 72/2	70 0 4	404/400		E)	Cable			-	
LUMBER	0 4 0 D N				TOP CHORD	1-2=0/31, 2-3=-73/7	120/12	-184/188,	12	5) C)	Gable	e requi	res cor		chord bearing.
TOP CHORD	2x4 SP N	0.2				4-5=-155/149, 5-6=	172/01	04, 0-7 = -122/1	40, 220	(0) (7)	Gable	studs	space	al 1-4-0 oc.	10.0 molthettern
BOICHORD	2x4 SP N	0.2				10 11 - 202/229 11	-173/21 1 19_ 1	0, 9-10=-203/.	230,	()	I NIS L	russ na	as bee	in designed for a	10.0 psi bollom
OTHERS	2x4 SP N	0.3				10-11=-203/230, 11	0 1 4 0	72/200,		0)	* This		ad nor	iconcurrent with a	any other live loads.
SLIDER	Left 2x4 S	SP No.2 1	-5-7, Right 2x4 SP f	N0.2		12-13=-124/142, 13	6 67/5	0/90, 0 16 17 117	7/00	8)	I NIS		nas be	en designed for a	
	1-5-7					17 19 52/46 19 1	0=-07/0	6, 10-17=-117	/60,					o oo wida will fit h	ere a rectangle
BRACING						2 24- 122/40, 10-1	3=0/31	2/100			3-00-	uu tali	Dy 2-0	0-00 wide will lit t	between the bottom
TOP CHORD	Structura	l wood shea	athing directly applie	ed or		2-34=-122/180, 33-	04=-12. 1 22_ 1	2/130,		0)	Drout	anu a		el mempers.	othere) of truce to
	6-0-0 oc	ourlins.				30-31-122/190, 31	1-32=-1. 2-301	22/190,		9)	hoori			al connection (by	ouners) or truss to
BOT CHORD	Rigid ceil	ing directly	applied or 10-0-0 oc	>		27 20- 122/190, 28	-30=-1. 27- 1	22/190,			Deall	ig plat	e capa ti ot ici		ig i to ib uplit at joint
	bracing.					25-26-122/190, 20	1-251	22/190,			z, JO at ioir	ט upili 1 28 די	75 lh	ni 10, 3 ib upilit a	1 Joint 27, 31 is upill
REACTIONS	(size)	2=21-3-0,	18=21-3-0, 20=21-3	3-0,		23-24=-122/190, 24	23=-1	22/190,			ai juli 68 lh	n 20, 7 unlift a	u ioint	31 70 lb unlift at	ioint 32 61 lb unlift at
		21=21-3-0), 22=21-3-0, 23=21-	-3-0,		21-22-122/190, 22	- 20- 1	22/190,			ioint ?	upint a	ll joint i Llb unl	ift at joint 34 44 I	b unlift at joint 26,79
		24=21-3-0), 25=21-3-0, 26=21-	-3-0,		18-20=-122/190, 20	21-1	22/100,			lh unl	ift at io	int 25	68 lb unlift at ioir	at 24, 68 lb unlift at
		27=21-3-0), 28=21-3-0, 29=21-	-3-0,	WEBS	10-27-186/119 9-	2810	7/67 8-2911	14/92		ioint 2	23 70	lh unlif	t at ioint 22 62 lb	1124,0010 uplift at joint 21, 132
		30=21-3-0), 31=21-3-0, 32=21-	-3-0,	WEBO	7-30=-105/84 6-31	=-105/8	4 5-32=-105/	84	·	lh unl	ift at io	int 20	110 lb unlift at in	int 2 and 35 lb unlift
		33=21-3-0), 34=21-3-0			4-33-106/83 3-34	140/0	42 11-2692	2/60		at ioir	nt 18	an 20,	i to ib upint at jo	
	Max Horiz	2=-257 (L0	C 10)			12-25=-114/95 13-	24=-10	5/84	.,00,	104		ELCO.	Stor	adard	
	Max Uplift	2=-110 (L0	C 8), 18=-35 (LC 9),			14-23=-105/84 15-	22=-10	5/84		LUA	AD CA	13E(3)	Star	ndard	
		20=-132 (l	LC 13), 21=-62 (LC ⁻	13),		16-21=-106/84 17-	20=-14	4/126							
		22=-70 (L0	C 13), 23=-68 (LC 13	3),		10 21 - 100/01, 11	20- 11	1/120							
		24=-68 (L0	C 13), 25=-79 (LC 13	3),	NOTES										11.
		26=-44 (L0	C 13), 27=-3 (LC 11)),		d reaf live leads have		a a a a i d a wa d f a w						WILL CA	E. M.
		28=-51 (L0	C 12), 29=-75 (LC 12	2),	1) Unbalance	a root live loads have	e been (considered for						TH UA	ROUL
		30=-68 (L0	C 12), 31=-68 (LC 12	2),	a) Mindu ACC		. (2						1	A STREET	it in a
		32=-70 (L	C 12), 33=-61 (LC 12	2),	 Vood 102n 	E 7-10; Vuit=130mpr		Ond gust)	Cat				52	·······································	Phillip .
		34=-153 (l	LC 12)			npn; TCDL=6.0psi; E		0.0psi; n=25ii;	Cal.					21 17	2: 1 -
	Max Grav	2=199 (LC	C 20), 18=142 (LC 22	2),		ncioseu, ivivieros (e		(torior (2) 2.1)	e 0 to			2		ig w J	W i z
		20=131 (L	.C 20), 21=120 (LC 2	20),		(3) - 0 - 1 - 0 + 0 - 2	70 EV	torior (2) 2-1-	010			=	:	SEA	1 1 1
		22=121 (L	.C 20), 23=120 (LC 2	20),	to 22 2 0 7	ner (3) 10-7-8 to 13-	od right	ovposod : op	-0			=	:	SLA	- : =
		24=120 (L	.C 20), 25=123 (LC 2	20),	vertical left	and right exposed C	-C for n	exposed, end				=		2867	7 ; =
		26=119 (L	.C 20), 27=196 (LC 1	13),	forces & M	WERS for reactions	shown:	l umber				-			1 - E - E - E - E - E - E - E - E - E -
		28=127 (L	.C 19), 29=121 (LC 1	19),	DOI = 1.60	nlate arin $DOI = 1.60$	5110 1111,	Lambol				1		1	1 5
		30=120 (L	C 19), 31=120 (LC 1	19),	 Truss designed 	ined for wind loads in	n the nl	ane of the trus	s				20	S. SNO.	- CRILIS
		32=121 (L	.C 19), 33=118 (LC 1	19),	only Fors	tuds exposed to wind	d (norm	al to the face)					1	GIN	Et. GT
		34=154 (L	.0 19)		see Standa	rd Industry Gable Fr	nd Deta	ils as applicab	, le				1	NI	111111
FORCES	(lb) - Max	imum Com	pression/Maximum		or consult of	ualified building des	igner a	s per ANSI/TP	11.					111. L. G.	ALIN
	lension				 All plates a 	re 2x4 () MT20 unl	ess oth	erwise indicate	ed.					111111	nin.
					, , ,,,									April	l 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	B02	Common	2	1	Job Reference (optional)	173111735

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:02 ID:d0YPegkiD5mCkgFli3KheazbzHg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

	7-2-3	14-0-13	21-3-0	
Scale = 1:74.8	7-2-3	6-10-11	7-2-3	

Plate Olisets	(X, Y): [2:0-5-2,Edge],	[8:0-5-2,Edge]									-	
Loading TCLL (roof) TCDL BCLL	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.32 0.50 0.30	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.17 0.03	(loc) 9-11 9-11 8	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS		Wind(LL)	0.03	11-18	>999	240	Weight: 115 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.2 2 2-6-0	2-6-0, Right 2x4 SP	 4) * This trus on the bott 3-06-00 ta chord and No.2 5) Provide m bearing pla 8 and 240 	s has been designe om chord in all are I by 2-00-00 wide v any other member echanical connection the capable of with Ib uplift at joint 2.	ed for a liv as where will fit betw s, with BC on (by oth standing 2	e load of 20. a rectangle veen the bott DL = 10.0ps ers) of truss 209 lb uplift at	Opsf om f. to t joint				-	
TOP CHORD	Structural wood she 5-2-11 oc purlins.	athing directly applie	ed or LOAD CASE(5) Standard								
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.											
REACTIONS	(size) 2=0-3-8, 8 Max Horiz 2=250 (LC Max Uplift 2=-240 (L Max Grav 2=906 (LC	3=0-3-8 C 9) C 12), 8=-209 (LC 1 C 1), 8=849 (LC 1)	3)									
	(lb) - Maximum Com Tension	pression/Maximum										
	5-6=-1125/390, 6-8=	-1092/317	9, 									
WEBS	2-11=-295/1009, 9-1 5-9=-224/523, 6-9=- 4-11=-348/303	1=-81/674, 8-9=-164 348/304, 5-11=-221/	4/868 /517,									un.
NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=100 II; Exp C; and C-C I 10-7-8. E	ed roof live loads have n. CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; Br Enclosed; MWFRS (er Exterior (2) -0-11-0 to 2 xterior (2) 10-7-8 to 13-	been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zon -1-0, Interior (1) 2-1- 7-8. Interior (1) 13-7	Cat. e -0 to -8							New York	ORTH CA	

DOL=1.60 plate grip DOL=1.603) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

to 21-3-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber

SEAL 28677 April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	B03	Roof Special	1	1	Job Reference (optional)	173111736

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:02 ID:f4So9tpfASu0qsFm86PUTMzbzDh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 5

	7-2-3	14-0-13	20-3-10	23-6-0
Scale = 1:74.8	7-2-3	6-10-10	6-2-13	3-2-6

Plate Offsets (X, Y): [2:0-5-2, Edge]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.43 0.60 0.63	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.14 -0.28 0.03 0.15	(loc) 11-13 10-11 9 10-11	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 133 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Left 2x4 SP No.2 - 2 Structural wood shea 3-2-0 oc purlins, exc 2-0-0 oc purlins (3-5 Rigid ceiling directly bracing. size) 2=0-3-8, 9 Aax Horiz 2=246 (LC Aax Uplift 2=-253 (LI Aax Grav 2=990 (LC (Lb) Maximum 2-200)	t* 8-9,10-8:2x4 SP N 2-6-0 athing directly applie- cept end verticals, ar -11 max.): 7-8. applied or 10-0-0 oc 0=0-3-8 2 9) C 12), 9=-247 (LC 13 C 1), 9=933 (LC 1)	3) 4) (0.2 5) d or nd 6) 7) 3) LC	Provide adec This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Provide mecl bearing plate 9 and 253 lb Graphical pu or the orienta bottom chorc DAD CASE(S)	uate drainage to p s been designed for d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide wil y other members, nanical connection capable of withsta uplift at joint 2. rlin representation tion of the purlin a Standard	revent v or a 10.0 vith any for a live where I fit betw with BC (by othe unding 2 does not long the	vater ponding other live loa e load of 20.1 a rectangle veen the botto DL = 10.0psf ers) of truss t 47 lb uplift at to depict the s top and/or	g. ds. Dpsf f. to to tjoint size						
TOP CHORD	(Ib) - Maximum Com Tension 1-2=0/31, 2-4=-1221 5-6=-1396/446, 6-7=	pression/Maximum /337, 4-5=-1252/408 -2684/721,	,											
BOT CHORD	7-8=-2640/662, 8-9= 2-13=-325/1102, 11-	-857/243 13=-113/777,												
WEBS	10-11=-268/1215, 9- 4-13=-342/302, 5-13 5-11=-284/777, 6-11 6-10=-372/1337, 7-1 8-10=-640/2578	10=-4//157 =-217/497, =-587/365, 0=-1658/531,									and a	ORTH CA	ROUNT	
NOTES											:)	HAN I	112: 2	
 Unbalanced this design. Wind: ASCE Vasd=103m II; Exp C; Er and C-C Exi 10-7-8, Exte to 23-4-4 zo vertical left d MWFRS for grip DOL=1. 	I roof live loads have E 7-10; Vult=130mph iph; TCDL=6.0psf; BC nclosed; MWFRS (en terior (2) -0-11-0 to 2 rior (2) 10-7-8 to 13- ine; cantilever left and exposed; C-C for men reactions shown; Lu .60	been considered for (3-second gust) CDL=6.0psf; h=25ft; velope) exterior zone -1-0, Interior (1) 2-1- 7-8, Interior (1) 13-7- d right exposed ; end nbers and forces & mber DOL=1.60 plat	Cat. e 0 to -8 I e							COULT WAS	S MARINE S	SEA 2867	7 EP. Chin	

April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	B04	Roof Special	1	1	Job Reference (optional)	173111737

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:03 ID:0Ouq2ev6z6EFdi73Q00b7LzbzCH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

	7-2-3	14-0-13	19-6-10	23-6-0
Scale = 1:74.8	7-2-3	6-10-10	5-5-13	3-11-6

Plate Offsets (X, Y): [2:0-5-2,Edge], [10:0-4-0,0-2-0]	Plate Offsets	(X, Y):	[2:0-5-2,Edge], [10:0-4-0,0-2-0]
--	---------------	---------	----------------------------------

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TP	12014	CSI TC BC WB Matrix-MS	0.37 0.56 0.87	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.13 -0.23 0.03 0.11	(loc) 11-13 11-13 9 10-11	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 135 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Left 2x4 SP No.2 2 Structural wood she 3-6-14 oc purlins, e 2-0-0 oc purlins (3-1	t* 8-9:2x4 SP No.2 2-6-0 athing directly applie xcept end verticals, a 0-1 max.): 7-8.	3) Pro 4) All 5) Th cho 6) * T on d or 3-0 cho 7) Pro Pro	ovide adeq plates are is truss has ord live loa This truss has the bottom 06-00 tall b ord and an ovide mech aring plate	uate drainage to p MT20 plates unless s been designed for d nonconcurrent w as been designed o chord in all areas y 2-00-00 wide will y other members, nanical connection capable of withste	revent v ss other or a 10.0 vith any for a liv where l fit betw with BC (by other nding 2	vater ponding wise indicate) psf bottom other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf ers) of truss t 49 lb uplift at	g. d. ds. Dpsf om f. oo						
REACTIONS	Rigid ceiling directly bracing. (size) 2=0-3-8, § Max Horiz 2=244 (LC Max Uplift 2=-252 (L Max Gray 2=990 ()	applied or 9-11-12 c 9=0-3-8 C 9) C 12), 9=-249 (LC 1: C 1), 9=933 (I C 1)	8) Gra 8) Gra 0 r 3) LOAD	and 252 lb i aphical pur the orienta ttom chord.	uplift at joint 2. lin representation tion of the purlin a Standard	does no	ot depict the s top and/or	size						
FORCES	(lb) - Maximum Com	pression/Maximum												
TOP CHORD	Tension 1-2=0/31, 2-4=-1222 5-6=-1372/441, 6-7= 7-8=-2053/508, 8-9=	2/336, 4-5=-1247/407 =-2334/631, =-873/260	,											
BOT CHORD	2-13=-339/1097, 11-	-13=-127/771, -10=-27/81												
WEBS	6-10=-293/1034, 7-1 8-10=-511/2098, 5-1 4-13=-340/302, 5-11 6-11=-579/353	0=-1448/465, 3=-216/500, =-274/748,									and a	OR TH CA	ROUNT	
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp C; and C-C E 10-7-8, Ex to 23-4-4 z vertical lef MWFRS fo grip DOL=	ed roof live loads have CE 7-10; Vult=130mph mph; TCDL=6.0psf; Bd Enclosed; MWFRS (er Exterior (2) -0-11-0 to 2 terior (2) 10-7-8 to 13- zone; cantilever left an- t exposed;C-C for mer pr reactions shown; Lu 1.60	been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zon -1-0, Interior (1) 2-1- 7-8, Interior (1) 13-7- d right exposed ; enc nbers and forces & mber DOL=1.60 plat	Cat. e 0 to -8 i e							. ATTUMAS	S. S	SEA 2867	EP. 54	Manuning.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	B05	Roof Special	1	1	Job Reference (optional)	173111738

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:03 ID:VO1UyQXjk4ntsh62TxynEIzbzBT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	7-2-3	14-0-13	18-9-10	23-6-0	I
Scale = 1:74.8	7-2-3	6-10-10	4-8-13	4-8-6	

Plate Offsets (X, Y): [2:0-5-2,Edge]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.39	Vert(LL)	-0.13	11-13	>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.53	Vert(CT)	-0.22	11-13	>999	240			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.77	Horz(CT)	0.03	9	n/a	n/a			
BCDL	10.0	Code	IRC2015	/TPI2014	Matrix-MS		Wind(LL)	0.09	10-11	>999	240	Weight: 137 lb	FT = 20%	
ICDL GCLL GCDL LUMBER TOP CHORD SOT CHORD WEBS SLIDER BRACING TOP CHORD GOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp C; I and C-C E	10.0 0.0* 10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Left 2x4 SP No.2 2 Structural wood sheir 3-10-7 oc purlins, e: 2-0-0 oc purlins, (3-1 Rigid ceiling directly bracing. (size) 2=0-3-8, S Max Horiz 2=243 (LC Max Uplift 2=-251 (L Max Grav 2=990 (LC (lb) - Maximum Com Tension 1-2=0/31, 2-4=-1223 5-6=-1354/440, 6-7= 7-8=-1777/446, 8-9= 2-13=-352/1093, 11- 10-11=-288/1191, 9- 4-13=-341/302, 5-13 6-10=-234/819, 7-10 8-10=-460/1857, 5-1 6-11=-567/341 ed roof live loads have L CE 7-10; Vult=130mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er	Lumber DOL Rep Stress Incr Code t* 8-9:2x4 SP No.2 2-6-0 athing directly applie xcept end verticals, a 1-8 max.): 7-8. applied or 9-9-7 oc 3-9 C 12), 9=-251 (LC 1: C 1), 9=933 (LC 1) pression/Maximum 3/334, 4-5=-1241/406 -2056/555, -874/274 -13=-141/766, -10=-21/61 =-216/502, ==-1317/427, 1=-272/729, been considered for (3-second gust) CDL=6.0pst; h=25ft; ivelope) exterior zon -1-0, Interior (1) 2-1	1.15 YES IRC2015 3) 4) 5) d or 6) 7) 3) LO 3) 5, Cat. e 0 to	ATPI2014 Provide adec This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Provide mecl bearing plate 9 and 251 lb Graphical pu or the orienta bottom chord AD CASE(S)	BC WB Matrix-MS uate drainage to p s been designed for d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide wil y other members, nanical connection capable of withsta uplift at joint 2. rlin representation tion of the purlin a Standard	0.53 0.77 revent v or a 10.0 ith any for a liv with BCC (by oth- unding 2 does no long the	Ver(CT) Horz(CT) Wind(LL) vater ponding 0 psf bottom other live loa e load of 20.0 a rectangle recen the botth DL = 10.0psf ers) of truss t 51 lb uplift at t depict the s top and/or	-0.22 0.03 0.09 g. dds. Dpsf om f. to to to size	11-13 9 10-11	>999 n/a >999	240 n/a 240	Weight: 137 lb	FT = 20%	
and C-C E 10-7-8. Fx	xterior (2) -0-11-0 to 2 terior (2) 10-7-8 to 13-	-1-0, Interior (1) 2-1- 7-8. Interior (1) 13-7	0 to -8										ERINS	
10-7-8, EX	terior (2) 10-7-8 to 13- zone: cantilever left and	d right exposed : end	4 -0								(O, GINF	E. at .	
vertical lef	t exposed:C-C for men	nbers and forces &	4								11	N	IN IN	
MWFRS fo	or reactions shown: Lu	mber DOL=1.60 plat	te									11, L. G.	AL	
grip DOL=	1.60											in the second se	mu.	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

April 30,2025

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	B06	Roof Special Girder	1	2	Job Reference (optional)	173111739

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:03 ID:OEOi32PumCsfVlcuh3Eg8UzbzAL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1	5-5-8	10-7-8	15-9-8	18-4-8	23-6-0	_
Scale - 1:7/ 8	5-5-8	5-2-0	5-2-0	2-7-0	5-1-8	

Plate Offsets (X, Y): [2:Edge,0-0-9], [9:0-3-8,0-2-0], [10:0-3-8,0-4-4], [11:0-5-0,0-4-4]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP			
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.85	Vert(LL)	-0.15	10-11	>999	360	MT20	244/190			
TCDL	10.0	Lumber DOL	1.15		BC	0.85	Vert(CT)	-0.29	10-11	>960	240	MT20HS	187/143			
BCLL	0.0	* Rep Stress Incr	NO		WB	0.76	Horz(CT)	0.04	8	n/a	n/a					
BCDL	10.0	Code	IRC20 ²	5/TPI2014	Matrix-MS		Wind(LL)	0.17	10-11	>999	240	Weight: 312 lb	FT = 20%			
										0.4.05/0	01-	- 				
LUMBER	0.40D.N. 0		2) All loads are	considered equally	/ applie	to all plies,		LUAD	CASE(S	Sta	ndard Except:				
TOP CHORD	2x4 SP No.2		0 -		tion Ply to ply con	ack (D)		AD	1) D	ead + Ro	OF LIV	e (balanced): Lurr	iber increase=1.15,			
BOT CHORD	2x6 SP No.2 *Exc	ept* 12-8:2x6 SP 2400	0F	Drovided to c	listribute only loads	nection	s liave beell		PI	ale incre	ase=	l. I D h/f+)				
					vise indicated	noteu	as (i) oi (b),		0	Vort: 1			0 14 - 20			
WEBS	ZX4 SP NO.2 EXC	ept 9-7:2x4 SP No.1	3	Unbalanced	roof live loads have	e heen i	considered for	r	0	ven. 1-4	+=-00, tod Lo	4-0=-00, 0-7=-00	, 0-14=-20			
WEDGE	Leit. 284 SP 100.5		0	this design		0 00011				Vorte 12		aus (ID)	071 (D) 17 772			
BRACING	Otras a transferra a di a	h a adhla a allac adh a an alla	4) Wind: ASCE	7-10: Vult=130mp	h (3-seo	ond aust)			(D) 10_	=20 (E	D), 13=312 (D), 9=	-0/ I (D), I/=-//3			
TOP CHORD	Structural wood s	neathing directly applie	ed or ·	Vasd=103m	oh: TCDL=6.0psf: E	BCDL=6	.0psf: h=25ft:	Cat.		(B), 10=	-939 (-871 (B), 19=-040 (B), 2	20=-071 (D), 21=-071			
	4-3-7 oc purlins,	except end verticals, a	ina	II; Exp C; En	closed; MWFRS (e	envelope	e) exterior zor	ne;	36) 11	er defin	ed (1)	Umber Increase	-1 15 Plate			
	2-0-0 00 putitits (3	the applied of 10.0.0	<u>_</u>	cantilever lef	t and right exposed	: end א	ertical left		In	crease=	1 15		-1.10, 1 late			
BOT CHORD	bracing	iny applied of 10-0-0 of	C C	exposed; Lu	mber DOL=1.60 pla	ate grip	DOL=1.60		Ü	niform I d	nads (l	b/ft)				
DEACTIONS		0 0 0 0 0	5) Provide adeo	uate drainage to p	revent	vater ponding	J.		Vert: 1-4	1=-60.	4-6=-60. 6-7=-60	. 8-14=-20			
REACTIONS	(SIZE) 2=0-3-0 Max Horiz 2=247	$(1 \cap 9)$	6) All plates are	MT20 plates unle	ss other	wise indicated	d.	C	oncentra	ted Lo	ads (lb)	,			
	Max Holiz $2=247$	(100)	0) 7) This truss ha	s been designed for	or a 10.0) psf bottom			Vert: 9=	-871 (B), 17=-773 (B), 1	8=-939 (B), 19=-640			
	Max Opint $2=122$	4(10.36), 0=1017(10.00)	3)	chord live loa	ad nonconcurrent w	vith any	other live load	ds.		(B), 20=	-871 (B), 21=-871 (B), 2	22=-871 (B)			
		(LC 30), 8=4704 (LC	30) 8) * This truss h	as been designed	for a liv	e load of 20.0)psf		()/	,					
FORCES	(Ib) - Maximum Co	ompression/Maximum		on the bottor	n chord in all areas	where	a rectangle									
		00/4057 0 4 4405/4	c	3-06-00 tall b	by 2-00-00 wide wil	I fit betv	een the botto	om								
TOP CHORD	1-2=0/31, 2-3=-40	5 6- 7042/2600	023,	chord and ar	ly other members.	/I		_								
	4-3=-4300/1015, 5 6-78401/2696	7-84185/1394	9) Provide mec	nanical connection	(by oth	ers) of truss to	0								
BOT CHORD	2-13=-1643/3703	11-13=-1643/3703		ioint 9 and 1	224 lb unlift at joint	anaing i o	517 ib upilit a	IL	AMULTIC.							
Der enerte	10-11=-2149/664	3 9-10=-2752/8557	1		224 ID upint at joint	Z. modifi	d Building						1111			
	8-9=-61/164	5, 6 16 2162, 6661,	1	designer mu	st review loads to y	erify the	at they are co	rrect				TH UA	Rollin			
WEBS	3-13=-755/338. 3-	11=-418/586.		for the intend	led use of this trus	s	at they are co	neot			1	A	is Male			
	4-11=-1613/4573	5-11=-3759/1292,	1	1) Graphical pu	rlin representation	does no	ot depict the s	ize			32		Qui Var			
	5-10=-1149/3927	6-10=-2694/849,		or the orient	ation of the purlin a	long the	top and/or	.20			2	A M	17: 2			
	6-9=-2595/930, 7-	9=-2929/9154		bottom chord	l.	iong in	top and of			-		:4/10	1 N. 2			
NOTES			1	2) Hanger(s) or	other connection of	device(s) shall be					SEA	1 : =			
1) 2-plv truss	s to be connected to	aether with 10d		provided suff	icient to support co	oncentra	ted load(s) 3	50		=			<u>-</u>			
(0.131"x3") nails as follows:			lb down and	640 lb up at 5-4-9	, 137 lb	down and 22	3 lb		Ξ		286/	1 : E			
Top chord	s connected as follo	ws: 2x4 - 1 row at 0-9-	-0	up at 7-3-13	, 773 lb down and	208 lb ι	p at 9-3-13,	939				1	1 3			
oc.				lb down and	277 lb up at 11-3-	13, 640	lb down and	206			-	·	A 1. 5			
Bottom ch	ords connected as f	ollows: 2x6 - 2 rows		lb up at 13-3	3-13, 871 lb down a	and 267	lb up at 15-3	-13,			5,0	6 SNGINI	Ent			
staggered	staggered at 0-9-0 oc.				and 267 lb up at 1	6-7-3, a	ind 871 lb dov	wn			11	Y GIN	SI			
Web conn	ected as follows: 2x	4 - 1 row at 0-9-0 oc.		and 267 lb u	p at 18-7-3, and 8	/1 lb do	wn and 267 lt	o up			-	1, VI G	ALIM			
				at 20-7-3 on	bottom chord. Th	e desigi	n/selection of					1112.0	in the second se			
				such connec	tion device(s) is the	e respoi	nsibility of oth	ers.					11.			

April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	C01	Common Supported Gable	1	1	Job Reference (optional)	173111740

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:04 ID:oirqIGPxW5u3YDhGNI8WOazbz3u-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	-	
Scale = 1:48.8		
Plate Offsets (X, Y): [10:Edge,0-3-14]		

Loading TCLL (roof) TCDL BCLL	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.06 0.05 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0	Code	IRC2015	5/TPI2014	Matrix-MS		-					Weight: 83 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.2 2 No.2 2-7-13 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=12-7-0, 13=12-7-0 (size) 2=12-7-0, 13=12-7-0 Max Horiz 2=160 (LC Max Uplift 2=-40 (LC 12=-129 (14=-63 (L 17=-54 (L) Max Grav 2=165 (LC 12=189 (L) 14=-127 (L) 16=131 (L) 18=199 (L)	2-7-13, Right 2x4 SP athing directly applied applied or 10-0-0 oc 10=12-7-0, 12=12-7 0, 14=12-7-0, 15=12-7 0, 17=12-7-0, 18=12-7 13), 10=-12 (LC 13) LC 13), 13=-56 (LC 12 C 12), 13=-56 (LC 12 C 12), 18=-137 (LC 13) 20), 13=100 (LC 2 C 20), 15=124 (LC 1 LC 19), 17=97 (LC 19 .C 19)	1) 2) d or 7-0, 7-0 , 3), 6) 2) 7) 8) 3), 3), 3), 9)	Unbalanced i this design. Wind: ASCE Vasd=103mp II; Exp C; End and C-C Corri 6-3-8, Cornel 13-6-0 zone; vertical left ai forces & MW DOL=1.60 pl Truss design only. For stu see Standard or consult qu All plates are Gable require Gable studs a This truss ha on the bottom 3-06-00 tall b chord and an Provide med	roof live loads have 7-10; Vult=130mph bh; TCDL=6.0psf; B closed; MWFRS (en- ner (3) -0-11-0 to 2- r (3) 6-3-8 to 9-3-8, cantilever left and in dright exposed; C- FRS for reactions s the grip DDL=1.60 ed for wind loads in ds exposed to wind lindustry Gable En- alified building desi 2x4 () MT20 unle so continuous botto spaced at 1-4-0 oc. s been designed fo di nonconcurrent w ias been designed fo in chord in all areas y 2-00-00 wide will y other members. nanical connection	been of (3-sect CDL=6 velopp3-8, E) Exterior ight ex C for n hown; the pla (norm d Detai gner as ses oth m chor r a 10.0 th apply to r a liv where fit betw (by oth	considered for ond gust) .0psf; h=25ft; s) exterior zon tterior (2) 2-3- r (2) 9-3-8 to posed ; end hembers and Lumber ane of the trus al to the face) Is as applicat b per ANSI/TF arwise indicat d bearing. 0 psf bottom other live load e load of 20.0 a rectangle yeen the botto ers) of truss to	Cat. ne 8 to ss , ole, 11. ed. ds. psf om				WITH CA	ROUTE	
FORCES	(lb) - Maximum Com Tension	pression/Maximum	3)	bearing plate	capable of withsta at joint 10, 66 lb up	nding 4	0 lb uplift at jo pint 16, 54 lb u	oint Joint			11	OF	ANS	
TOP CHORD	1-2=0/31, 2-3=-107/5 4-5=-110/123, 5-6=- 7-8=-110/114, 8-9=- 10-11=0/31	53, 3-4=-94/92, 152/164, 6-7=-152/16 71/62, 9-10=-103/51,	64,	at joint 17, 13 56 lb uplift at at joint 2 and	37 lb uplift at joint 1 joint 13, 129 lb upli 12 lb uplift at joint	8, 63 lb ift at joi 10.	uplift at joint nt 12, 40 lb up	14, plift				SEA	L	
BOT CHORD	2-18=-57/109, 17-18 16-17=-57/109, 15-1 14-15=-57/109, 13-1 12-13=-57/109, 10-1	=-57/109, 6=-57/109, 4=-57/109, 2=-57/109	LC	Surface with t	truss chord at joint(Standard	s) 10, 2	3.	,		1111		2867		
WEBS	6-15=-115/72, 5-16= 3-18=-173/140, 7-14 9-12=-175/133	-103/81, 4-17=-97/78 =-103/77, 8-13=-98/7	3, 79,								in the	OLYN L. G	ALINSTIT	
NOTES												in an	in the	

April 30,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	C02	Common	2	1	Job Reference (optional)	173111741

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:04 ID:daggRVH25jVcjXL9EUSxRGzbz43-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-3-8	ı 12-7-0 ı
6-3-8	6-3-8

Scale = 1:50

Loading TCLL (roof) TCDL BCLL	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.46 0.39 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.08 -0.03	(loc) 7-10 7-10 1	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS		Wind(LL)	0.07	7-10	>999	240	Weight: 57 lb	FT = 20%	
LUMBER TOP CHORD 3OT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.2 2 2-6-0 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly	2-6-0, Right 2x4 SP N athing directly applied applied or 10-0-0 oc	5) Provide mecl bearing plate 1 and 153 lb LOAD CASE(S) lo.2	nanical connection capable of withsta uplift at joint 5. Standard	(by othond in the second secon	ers) of truss to 22 lb uplift at	o joint						
REACTIONS	bracing. (size) 1=0-3-8, 5 Max Horiz 1=-153 (L Max Uplift 1=-122 (L Max Grav 1=501 (LC	5=0-3-8 C 8) C 12), 5=-153 (LC 13 C 1), 5=560 (LC 1)))										
FORCES TOP CHORD BOT CHORD WEBS	Max Grav 1=501 (LC 1), 5=560 (LC 1) RCEs (lb) - Maximum Compression/Maximum Tension 1-3=-528/201, 3-5=-524/198, 5-6=0/31 T CHORD 1-7=-281/409, 5-7=-188/409 BS 3-7=0/275												
NOTES													
1) Unbalance	d roof live loads have	been considered for										in the second se	
 this design this design twind: ASC Vasd=103r II; Exp C; E and C-C E: 6-3-8, Exte 13-6-0 zon vertical left forces & M DOL=1.60 This truss on the bott 3-06-00 tal chord and 	The provide an end of the provided and t	(3-second gust) CDL=6.0psf; h=25ft; (ivelope) exterior zone -0, Interior (1) 3-0-0 t Interior (1) 9-3-8 to ight exposed ; end C for members and hown; Lumber r a 10.0 psf bottom th any other live load: or a live load of 20.0p where a rectangle fit between the bottor	Cat. o o s. sf n						. annuna.	And	SEA 2867	EP. 64.111 30,2025	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	C03	Roof Special	1	1	Job Reference (optional)	173111742

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:04 ID:5apKMHvfsh3EzWJ8HPO8YDzbz3F-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-1-14	8-9-8	15-1-0
3-1-14	5-7-10	6-3-8

Plate Offsets (X, Y): [2:0-2-8,0-2-4], [5:0-5-2,Edge]

Scale = 1:50

Loading TCLL (roof) TCDL BCLL BCDL	(psi 20. 10. 0. 10.) Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.49 0.58 0.69	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.06 -0.13 0.02 0.08	(loc) 7-8 7-8 5 7-12	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 75 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Ex Right 2x4 SP No Structural wood 5-9-9 oc purlins, 2-0-0 oc purlins Rigid ceiling dire	cept* 9-1:2x4 SP No. .2 2-6-0 sheathing directly app except end verticals (4-8-9 max.): 1-2. ctly applied or 8-3-10	2 2 plied or , and 7	 * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 9 and 168 lb Graphical pu or the orienta bottom chore 	as been designe n chord in all are by 2-00-00 wide v by other member- hanical connectic o capable of withs uplift at joint 5. rlin representatic tition of the purlin t. Standard	ed for a live as where a will fit betw s. on (by othe standing 1 on does no a along the	e load of 20.0 a rectangle een the bott ers) of truss t 65 lb uplift at t depict the s top and/or	Opsf com to t joint size						
REACTIONS	bracing. (size) 5=0-3 Max Horiz 9=-15 Max Uplift 5=-16 Max Grav 5=654	-8, 9=0-3-8 0 (LC 8) 8 (LC 13), 9=-165 (LC 4 (LC 1), 9=596 (LC 1)	C 12)		Stanuaru									
FORCES	(lb) - Maximum (Tension 1-9=-536/182, 1-	Compression/Maximu 2=-1527/432, 2-3=-70	m 02/223,											
BOT CHORD WEBS	3-5=-652/217, 5 8-9=-110/160, 7 1-8=-411/1493, 2 2-7=-1093/431, 5	·6=0/31 ·8=-499/1588, 5-7=-19 2-8=-399/207, 3-7=-28/405	90/510									mun		
NOTES 1) Unbalance this design	ed roof live loads h	ave been considered	for								and a	HTH CA	ROUM	

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-1-12 to 3-3-10, Interior (1) 3-3-10 to 8-9-8, Exterior (2) 8-9-8 to 11-9-8, Interior (1) 11-9-8 to 16-0-0 zone; cantilever left and right exposed; end vertical right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Provide adequate drainage to prevent water ponding.
 This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.

April 30,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	C04	Roof Special	1	1	Job Reference (optional)	173111743

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:04 ID:WFcAFZmC8V?9_RFoxp9nwCzbz28-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

			J3-	10-14	8-9-8		1	15-1-0					
Scale = 1:50			3-	10-14	4-10-10		I	6-3-8		I			
Plate Offsets	(X, Y): [2:0-3-0,0-2-4],	[5:0-5-2,Edge]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.43 0.46 0.50	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.07 -0.08 0.02	(loc) 7-12 7-12 5	l/defl >999 >999 n/a	L/d 240 240 n/a	PLATES MT20 Weight: 76 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Right 2x4 SP No.3 Structural wood sheat 6-0-0 oc purlins, exit 2-0-0 oc purlins (5-1 Rigid ceiling directly bracing. (size) 5=0-3-8, 9 Max Horiz 9=-149 (L) Max Uplift 5=-167 (L) Max Grav 5=654 (LO (lb) - Maximum Com 	t* 9-1:2x4 SP No.2 - 2-6-0 athing directly applic cept end verticals, a -14 max.): 1-2. applied or 9-9-15 or 9=0-3-8 C 13), 9=-167 (LC 1 C 1), 9=596 (LC 1) pression/Maximum	5) 6) ed or 7) c L(2)	* This truss I on the bottoo 3-06-00 tall I chord and an Provide mec bearing plate 9 and 167 lb Graphical pu or the orient bottom chorr DAD CASE(S)	has been designed in chord in all areas by 2-00-00 wide will by other members. thanical connection e capable of withsta uplift at joint 5. urlin representation ation of the purlin al d. Standard	for a liv where I fit betv (by oth nding 1 does no long the	e load of 20. a rectangle veen the bott ers) of truss 67 lb uplift a ot depict the top and/or	0psf com to t joint size					
TOP CHORD BOT CHORD WEBS	Tension 1-9=-545/200, 1-2=- 3-5=-635/215, 5-6=0 8-9=-108/147, 7-8=- 1-8=-329/1198, 2-8= 3-7=-44/407	1183/335, 2-3=-684,)/31 359/1219, 5-7=-193, :-366/191, 2-7=-747,	/229, /504 /303,										
NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=10: and C-C I to 8-9-8, I 16-0-0 zo vertical rig MWFRS grip DOL: 3) Provide a 4) This truss chord live	ced roof live loads have in. CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; B(Enclosed; MWFRS (er Exterior (2) 0-1-12 to 3- Exterior (2) 0-1-12 to 3- Exterior (2) 8-9-8 to 11- one; cantilever left and r ght exposed;C-C for me for reactions shown; Lu =1.60 idequate drainage to pris s has been designed for load nonconcurrent wi	been considered fo (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zor 1-12, Interior (1) 3-1 9-8, Interior (1) 11-9 ight exposed ; end embers and forces 8 mber DOL=1.60 pla event water ponding r a 10.0 psf bottom th any other live load	r Cat. -12 D-8 to te J.								and Street	SEA 2867	EER. Chunning

April 30,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust structure Bucking Component Advancement and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	C05	Roof Special	1	1	Job Reference (optional)	173111744

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:05 ID:tITwRuEfyUwd9QkHjVMx?Qzbz1X-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	4-7-14	8-9-8	15-1-0	1	
Seela - 1:50	4-7-14	4-1-10	6-3-8		
Plate Olisets (X, Y): [2:0-3-0,0-2-4], [5:0-5-2,Edge]					

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.43 0.40 0.42	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.07 -0.08 0.03	(loc) 7-12 7-12 5	l/defl >999 >999 n/a	L/d 240 240 n/a	PLATES MT20 Weight: 78 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Right 2x4 SP No.2 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (5-4 Rigid ceiling directly bracing. (size) 5=0-3-8, § Max Horiz 9=-164 (L Max Uplift 5=-165 (L	t* 9-1:2x4 SP No.2 - 2-6-0 athing directly applie cept end verticals, ar -9 max.): 1-2. applied or 10-0-0 oc 9=0-3-8 C 13), 9=-170 (LC 1: C 1), 9=596 (LC 1)	5; d or 7; d or 7;	 * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 9 and 165 lb Graphical pu or the orienta bottom chorc OAD CASE(S) 	as been designe n chord in all area by 2-00-00 wide w y other members hanical connection acapable of withs uplift at joint 5. rlin representatio ation of the purlin d. Standard	d for a liv as where vill fit betv s. on (by oth tanding 1 n does no along the	e load of 20.0 a rectangle veen the botto ers) of truss t 70 lb uplift at ot depict the s top and/or	Opsf om i joint size					
FORCES TOP CHORD BOT CHORD WEBS NOTES	(lb) - Maximum Com Tension 1-9=-543/213, 1-2=- 3-5=-620/213, 5-6=(8-9=-107/155, 7-8=- 1-8=-283/1013, 2-8= 3-7=-61/410	apression/Maximum 987/285, 2-3=-668/2)/31 271/1011, 5-7=-195/ 335/184, 2-7=-567/ been considered for	36, 500 231,									WITH CA	Rollin

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 8-9-8, Exterior (2) 8-9-8 to 11-9-8, Interior (1) 11-9-8 to 16-0-0 zone; cantilever left and right exposed ; end vertical right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding.
 This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	C06	Roof Special Girder	1	3	Job Reference (optional)	173111745

Scale = 1:50

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries. Inc. Tue Apr 29 13:23:05 ID:tHWmaWe_xxCpEfKqjezvObzbz1?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [3:0-5-4,0-2-8], [6:Edge,0-0-7], [9:0-5-0,0-5-12], [11:0-5-0,0-5-4]

Loading	(p:	sf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20	D.O	Plate Grip DOL	1.15		тс	0.31	Vert(LL)	-0.06	9-10	>999	360	MT20	244/190	
TCDL	10	0.0	Lumber DOL	1.15		BC	0.29	Vert(CT)	-0.12	9-10	>999	240			
BCLL	C	0.0*	Rep Stress Incr	NO		WB	0.66	Horz(CT)	0.02	6	n/a	n/a			
BCDL	10	0.0	Code	IRC2015	5/TPI2014	Matrix-MS		Wind(LL)	0.08	9-10	>999	240	Weight: 334 lb	FT = 20%	
							. onnlin	ممالع الم	-	0		مالمه	ada (lb)		—
	0.400 NL 0			2)	All loads are	considered equally	applie	to all plies,	חאר	C	oncentra	ted Lo			
TOP CHORD	2x4 SP No.2	0 0F -				tion Ply to ply con	ack (D)		JAD		Vert: 16	=-158/	' (B), 17=-1587 (E	3), 18=-1587 (B),	
	2X8 SP 2400F 2	2.0E C	01 2X8 SP DSS		provided to d	istribute only loads	noted	as (F) or (B)			19=-150	ы (В),	20=-3323 (D)		
	ZX4 SP INU.Z Diabt: 2x4 SP N				unless other	vise indicated	noted	us (i) oi (b),							
	Ngnt. 2x4 01 1	NU.5		3)	Unbalanced	roof live loads have	e been o	considered fo	r						
	Structural waa	dahaa	thing directly opplied		this design.										
IOF CHORD			aming unectly applied	d 4)	Wind: ASCE	7-10; Vult=130mpl	h (3-sec	ond gust)							
	2-0-0 oc purling	s, e.c. s (6-0-	0 max 1.3	u	Vasd=103mp	h; TCDL=6.0psf; E	BCDL=6	.0psf; h=25ft	; Cat.						
BOT CHORD	Rigid ceiling di	rectly	applied or 10-0-0 oc		II; Exp C; En	closed; MWFRS (e	nvelope	e) exterior zoi	ne;						
	bracing.				cantilever left	and right exposed	; end \	ertical right							
REACTIONS	(size) 6=0-	3-8.1	2=0-3-8	_	exposed; Lur	nber DOL=1.60 pla	ate grip	DOL=1.60							
	Max Horiz 12=-	181 (L	_C 9)	5)	Provide adec	uate drainage to p	revent	vater ponding	g.						
	Max Uplift 6=-1	957 (L	_C 9). 12=-1959 (LC	8) 6)	I his truss ha	s been designed fo	ora 10.0) pst bottom	da						
	Max Grav 6=47	743 (L	C 1), 12=6177 (LC 1) 7)	* This truce h	a nonconcurrent w	for a liv	other live loa	us. Joct						
FORCES	(lb) - Maximum		oression/Maximum	, ()	on the botton	as been designed	where	e ioau oi 20.0	Jhai						
	Tension				3-06-00 tall b	v 2-00-00 wide will	l fit betv	leen the bott	om						
TOP CHORD	1-12=-5382/17	54, 1-2	2=-6165/1983,		chord and an	v other members.									
	2-3=-6165/1983	3, 3-4	=-7000/2827,	8)	Provide mech	nanical connection	(by oth	ers) of truss t	0						
	4-5=-7022/284	4, 5-6	=-6777/2865, 6-7=0/3	31 (bearing plate	capable of withsta	inding 1	959 lb uplift a	at						
BOT CHORD	11-12=-102/21	1, 10-	11=-3267/9773,		joint 12 and 1	957 lb uplift at join	nt 6.								
	9-10=-3256/96	58, 8-9	9=-2299/5537,	9)	Graphical pu	rlin representation	does no	ot depict the s	size				, minin	1111	
	6-8=-2299/553	7	~~~~		or the orienta	tion of the purlin a	long the	top and/or					I'' H CA	ROUL	
WEBS	3-10=-196/1830	6, 4-9	=-2985/7423,		bottom chord								R 1.1.	. Antik	
	3-9=-4665/1200	8, 5-9	=-72/431, 5-8=-362/3 11 _ 117/140	^{89,} 10) Use Simpsor	Strong-Tie HTU2	6 (20-10	d Girder,				22	O'. FESS	S. Min	
	1-11-2570/80	39, Z- 20	11=-117/149,		11-10dx1 1/2	I russ) or equivale	ent spac	ed at 2-0-0 o	C			22		14.7 2	
NOTES	1-11=-2373/002	20			max. starting	at 1-9-3 nom the i	ert end	10 7-9-3 10 n chord					ter s	U.S.	
		140 004	har oo followa	11		Strong-Tie HTI 12	8-2 (26-	10d Girder			-		CEA	- 1 E	
Top chord	s to be connected				26-10d Truss	Single Ply Girder) or eau	ivalent at 9-8	3-7		=	:	SEA	- : :	
follows: 2)	$x_4 = 1$ row at 0-9-0		0.131 x3 / 11alis as		from the left e	end to connect trus	s(es) to	back face of			=	:	2867	7 : 2	
Bottom ch	ords connected w	vith 10)d (0 148"x3") nails a	s	bottom chord	•	- ()							1 - E	
follows: 2)	x8 - 4 rows stadde	ered a	t 0-6-0 oc.	12) Fill all nail ho	les where hanger i	s in cor	tact with lum	ber.			-	N	1 A. S.	
Web chor	ds connected with	h 10d	(0.131"x3") nails as	LC	AD CASE(S)	Standard						20	S. SNOW	FRILS	
follows: 2x	x4 - 1 row at 0-9-0	0 oc.	. , .	1)	Dead + Roc	f Live (balanced):	Lumber	Increase=1.	15,			11	J. GIN	S. S.	
				,	Plate Increa	se=1.15						1	NI C	AL IN IN	
					Uniform Loa	ads (lb/ft)							111 L. GI		
					Vert: 1-3=	-60. 3-4=-60. 4-7=	-60, 12	-13=-20						11.	

Vert: 1-3=-60, 3-4=-60, 4-7=-60, 12-13=-20

April 30,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	CJ1	Jack-Open Girder	1	1	Job Reference (optional)	173111746

-1-6-5

1-6-5

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:05 ID:rN206iNq4w2dawflC4_4rozc_4U-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-7-9

3-7-9

JC?f

0-0-8

Scale =	1:29.8
---------	--------

Plate Offsets (X, Y): [2:0-1-12,0-0-2]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015/TPI	CSI TC BC WB 2014 Matrix-MP	0.18 0.11 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 0.00	(loc) 5-8 5-8 2	l/defl >999 >999 n/a	L/d 240 240 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Left 2x6 SP No.2 2 Structural wood she 3-7-9 oc purlins. Rigid ceiling directly bracing. (size) 2=0-4-13, Mechanic Max Horiz 2=114 (LC Max Uplift 2=-116 (L 5=-1 (LC Max Grav 2=154 (LC (LC 3)	2-6-0 athing directly applie applied or 10-0-0 oc 4= Mechanical, 5= al C 12) C 12), 4=-72 (LC 12) 2), 4=-72 (LC 1), 5=	6) In t of t LOAD (1) Dr Pl d or Ur c Tr),	the LOAD CASE(S) see the truss are noted as CASE(S) Standard ad + Roof Live (balar ate Increase=1.15 hiform Loads (lb/ft) Vert: 1-2=-60 apezoidal Loads (lb/ft) Vert: 2=0 (F=30, B=3 7=-12 (F=24, B=24)-t (F=14, B=14)-to-4=-5 B=10)-to-8=-4 (F=8, B (F=1, B=1)	ection, loads a front (F) or ba nced): Lumber 0)-to-7=-12 (F o-3=-32 (F=1 4 (F=3, B=3), 3=8), 8=-4 (F=	 applied to the ck (B). Increase=1. applied to the ck (B). applied to the characteristic structure of the characteristic st	face .15, .32 =-18						
TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=103 II; Exp C; I cantilever right expos	(Ib) - Maximum Com Tension 1-2=0/34, 2-4=-101/ 2-5=-87/18 CE 7-10; Vult=130mph mph; TCDL=6.0psf; Bf Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6	(3-second gust) (3-second gust) CDL=6.0pst; h=25ft; ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6	Cat. e; d 50							and a second	OR THES	ROUNT	
 I his truss chord live this trus on the bot 3-06-00 ta chord and Refer to gi Provide m bearing pla 4, 116 lb u 	has been designed foi load nonconcurrent wi is has been designed f tom chord in all areas Il by 2-00-00 wide will any other members. rder(s) for truss to tru echanical connection (ate capable of withstar plift at joint 2 and 1 lb	r a 10.0 pst bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto ss connections. (by others) of truss to ading 72 lb uplift at jo uplift at joint 5.	ds. psf m o pint							J. M.	SEA 2867 CKN GINI	EP. China	

April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	D01	Common Supported Gable	1	1	Job Reference (optional)	173111747

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:05 ID:D2_yPArfDYwZN_MWY0hHymzbyxa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

16-2-0

Scale = 1:53.7 Plate Offsets (X, Y): [14:Edge.0-3-14]

	(,,,,,). [11.6	ugo,o o 1	.]												
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.06 0.04 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 114 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD DTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No Left 2x4 SI 1-7-4 Structural 6-0-0 oc p Rigid ceilir bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Maxii Tension	0.2 0.2 0.3 P No.2 1 wood sheat urlins. ng directly . 2=16-2-0, 17=16-2-0 20=16-2-0 22=200 (LC 22=-77 (LC 16=-116 (L 18=-69 (LC 20=-54 (LC 26=-61 (LC 26=-61 (LC 26=-61 (LC 26=-61 (LC 26=-61 (LC 26=-61 (LC 26=-61 (LC 26=-112 (L 20=121 (L) (L) (L 20=121 (L)	-7-4, Right 2x4 SP N athing directly applied applied or 10-0-0 oc 14=16-2-0, 16=16-2- , 18=16-2-0, 22=16-2 , 25=16-2-0, 26=16-2 ; 25=16-2-0, 26=16-2 ; 11) 8), 14=-22 (LC 9), LC 13), 19=-75 (LC 13 C 13), 25=-69 (LC 12 C 12), 25=-69 (LC 12 C 12), 25=-69 (LC 12 C 12), 25=-69 (LC 12 C 12), 14=132 (LC 1), C 20), 17=119 (LC 2 C 20), 19=122 (LC 2 C 20), 19=122 (LC 2 C 20), 21=149 (LC 1 C 19), 26=117 (LC 1 C 19), 26=117 (LC 1 C 19)	BC lo.2 W d or N(0, 1) 2-0, 2) 2-0, 2) 2-0, 2) 2-0, 3),),), 2), 3) 0), 4) 9), 5) 9), 6) 7) 8)	OT CHORD EBS Unbalanced this design. Wind: ASCE Vasd=103my II; Exp C; En and C-C Cor 8-1-0, Corne 17-1-0 zone; vertical left a forces & MW DOL=1.60 pl Truss design only. For stu- se Standard or consult qu All plates are Gable requir Gable requir Gable studs This truss ha chord live loa * This truss f	2-27=-92/146, 26-2 25-26=-92/146, 21- 22-24=-92/146, 19- 18-19=-92/146, 17- 16-17=-92/146, 14- 3-21=-138/80, 7-22 5-25=-105/84, 4-26 9-20=-95/70, 10-19 12-17=-106/83, 13- roof live loads have 7-10; Vult=130mpt bh; TCDL=6.0psf; E closed; MWFRS (e ner (3) -0-11-0 to 2 r (3) 8-1-0 to 11-1-0 cantilever left and nd right exposed; C VFRS for reactions s ate grip DOL=1.60 red for wind loads in ds exposed to wind d Industry Gable Er alified building des e 2x4 () MT20 unle es continuous botto spaced at 1-4-0 oc is been designed for ad nonconcurrent w has been designed	7=-92/1 25=-92/ 20=-92/ 20=-92/ 20=-92/ 16=-92/ =-100/7 =-105/8 =-112/9 16=-13% a been of (3-sec CDL=6 nvelope -1-0, Exter right ex -C for n shown; n the pla d (norm a gener as gener as con corr a 10.0 with any for a liv	46, (146	/90, /126, 5/84, r Cat. ne -0 to to to ss , , ole, ?1 1. ed. ds.)psf	9) Probe bec 2, 2 at j 13' 116 upl 10) Be sur LOAD	vvide met aring plat 22 lb uplit oint 24, { l lb uplift oint 19, { 3 lb uplift ift at joint veled plat face with CASE(S)	chanici e capa §9 lb ur at join 99 lb ur at join t 14. te or si truss) Star	al connection (by ble of withstandir nt 14, 59 lb uplift olift at joint 25, 61 t 27, 54 lb uplift a olift at joint 18, 63 t 16, 77 lb uplift a him required to pichord at joint(s) 1 him required to a chord at joint(s) 1 hdard	others) of tru g 77 lb uplift at joint 22, 75 lb uplift at joint 20, 75 lb uplift at joint 2 and 2 rovide full be: 4.	iss to at joint 3 lb uplift int 26, lb uplift int 17, 22 lb aring
TOP CHORD	1-2=0/31, 4-5=-108/1 7-8=-162/1 10-11=-78 13-14=-33	2-3=-49/52 104, 5-6=-9 187, 8-9=-1 /86, 11-12 /35, 14-15	2, 3-4=-125/120, 94/119, 6-7=-125/154 162/187, 9-10=-125/1 =-49/41, 12-13=-60/5 =0/31	4, 142, 50,	on the bottor 3-06-00 tall t chord and ar	n chord in all areas by 2-00-00 wide will by other members.	where fit betw	a rectangle veen the botto	om			A A A A A A A A A A A A A A A A A A A	SNGINE	ER.S.	

April 30,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	D02	Common Girder	1	3	Job Reference (optional)	173111748

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:06 ID:Da1pYoF_D?CISCy2X9IFKxzbyx2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

	4-0-13	8-1-0	12-1-3	16-2-0	
	4-0-13	4-0-3	4-0-3	4-0-13	
Scale = 1:55					
Plate Offsets (X, Y): [1:Edge,0-3-15], [5:Edge,0-1-3], [8:0-6-0,	,0-6-4]				

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.37	Vert(LL)	-0.06	7-8	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.42	Vert(CT)	-0.12	7-8	>999	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.59	Horz(CT)	0.02	5	n/a	n/a		
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS		Wind(LL)	0.09	7-8	>999	240	Weight: 340 lb	FT = 20%
LUMBER			3)	Unbalanced	roof live loads hav	e been o	considered fo	r					
TOP CHORE	2x4 SP No.2		4	this design.	7 40. 16.16 400	h (0							
BOT CHORE	2x8 SP 2400F 2.0E	or 2x8 SP DSS	4)	Vocd-102mr	7-10; Vult=130mp		ond gust)	Cat					
WEBS	2x4 SP No.2				closed: MW/ERS ($\frac{1}{2}$, Oal.					
WEDGE	Dight: 2x8 SP 2400F A	2.0E OF D55		cantilever lef	t and right expose	d · end v	ertical left an	id,					
	Right. 284 SP 10.5			right exposed	t umber DOI =1	60 plate	arin DOI =1	60					
BRACING		منامهم والتممنان مممالم		ingin expected	., 2011001 002 11	oo plato	9.1p 202 11						
TOP CHURL	6 0 0 co purlino	athing directly applied	J Or 5)	This truss ha	s been designed f	or a 10.0) psf bottom						
	 Bigid ceiling directly 	applied or 10-0-0 oc	,	chord live loa	ad nonconcurrent v	with any	other live loa	ds.					
BOT CHOILE	hracing		6)	* This truss h	as been designed	for a liv	e load of 20.0	Opsf					
REACTIONS	(size) 1-0-3-8 F	5-0-3-8		on the bottor	n chord in all area	s where	a rectangle						
READING	Max Horiz 1193 (I	(4)		3-06-00 tall b	y 2-00-00 wide wi	ll fit betv	veen the botte	om					
	Max Inlift 12281 (UC8) 52206 (LCG	N	chord and ar	y other members.								
	Max Grav 1=7338 (I	$(1) = 5361 (1 \times 1)$	" 7)	Provide mec	hanical connection	۱ (by oth	ers) of truss t	0					
FORCES	(lb) - Maximum Com	pression/Maximum		bearing plate	capable of withst	anding ∠		at					
IONOLO	(ib) - Maximum Com Tension	pression/maximum	0)		Strong Tio UTU2	1 D. 06 (20-1)	d Girdor						
TOP CHORE) 1-2=-8821/2826. 2-3	=-6771/2527.	0)	11-10dx1 1/2	Truss) or equival	ent spar	red at 2-0-0 o	c					
	3-4=-6763/2523, 4-5	=-8288/3492, 5-6=0/	31	max starting	at 0-10-3 from the	e left end	to 8-10-3 to	0					
BOT CHORE	0 1-10=-2366/7293, 8-	10=-2366/7293,		connect truss	s(es) to front face	of bottor	n chord.						
	7-8=-2799/6794, 5-7	/=-2799/6794	9)	Use Simpsor	Strong-Tie HTU2	8-2 (26-	16d Girder,						
WEBS	2-10=-346/2244, 2-8	=-2132/501,		26-10d Truss	s, Single Ply Girde	r) or equ	ivalent at 10	-9-7				, mmm	111.
	3-8=-2640/7155, 4-8	=-1510/1182,		from the left	end to connect tru	ss(es) to	front face of					UNCA CA	Pall
	4-7=-1158/1628			bottom chord	l.						1	all	10/11
NOTES			10)) Fill all nail ho	les where hanger	is in cor	tact with lum	ber.			5.	O'ASS	K: NY
1) 3-ply true	ss to be connected toget	ther as follows:	LO	DAD CASE(S)	Standard						5 2	ZIT N	N. 7 3
Top chor	ds connected with 10d ((0.131"x3") nails as	1)	Dead + Roo	of Live (balanced):	Lumber	Increase=1.	15,				ガトノノ	VK: =
follows: 2	2x4 - 1 row at 0-4-0 oc.			Plate Increa	ise=1.15					-		054	. : =
Bottom c	hords connected with 1	0d (0.148"x3") nails a	IS	Uniform Loa	ads (lb/ft)					=		SEA	L : E
TOIIOWS: 2	2x8 - 3 rows staggered a	at 0-4-0 oc.		Vert: 1-3	=-60, 3-6=-60, 11-	14=-20						2867	17 : E
followe:	rds connected with Tod	(0.131 x3) halls as		Concentrate	ed Loads (lb)	~ ~ .				-		. 2007	1 1 5
2) All loads	are considered equally	applied to all plice		Vert: 17=	-1588 (F), 18=-15	87 (F), 1	9=-1587 (F),				2	N	1. 2.
2) All loads except if	noted as front (F) or bar	ck (B) face in the I O	AD	20=-158	(F), 21=-1587 (F), 22=-34	415 (F)				- 0	. En	RINS
CASE(S	section. Ply to ply conr	ections have been									27	OL GINF	ST. ST.
provided	to distribute only loads	noted as (F) or (B).									1	NI	111111
unless of	herwise indicated.											111. L. GI	ALIN
												in the second se	III.

April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	E01	Monopitch	3	1	Job Reference (optional)	173111749

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:06 ID:oG6K_SbF1rphFvxXJ1CdgBzbzyS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:42.9

Plate Offsets (X, Y): [2:0-2-12,Edge]

		1										
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.36	Vert(LL)	0.10	7-10	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.43	Vert(CT)	-0.08	7-10	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.32	Horz(CT)	-0.01	5	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS							Weight: 43 lb	FT = 20%
LUMBER			5) Provide med	hanical connection	n (bv oth	ers) of truss	to					
TOP CHORD	2x4 SP No.2		bearing plate	e capable of withsta	anding 3	09 lb uplift a	t joint					
BOT CHORD	2x4 SP No.2		2 and 267 lb	uplift at joint 5.			•					
WEBS	2x4 SP No.3 *Exce	ept* 6-4:2x4 SP No.2	LOAD CASE(S)	Standard								
BRACING		'	()									
TOP CHORD	Structural wood sh	eathing directly applie	ed or									
	5-10-8 oc purlins,	except end verticals.										
BOT CHORD	Rigid ceiling direct	ly applied or 5-5-10 o	с									
	bracing.											
REACTIONS	(size) 2=0-3-0	, 5=0-3-8										
	Max Horiz 2=143 (LC 8)										
	Max Uplift 2=-309	(LC 8), 5=-267 (LC 8)										
	Max Grav 2=464 (LC 1), 5=381 (LC 1)										
FORCES	(lb) - Maximum Co	mpression/Maximum										
	Tension											
TOP CHORD	1-2=0/13, 2-3=-87	5/988, 3-4=-86/50,										
DOTOUDDD	4-6=-88/90											
BOICHORD	2-7=-1055/829, 6-	/=-1055/829, 5-6=0/0										
WEBS	3-7=-348/239, 3-6	=-828/1042										
NOTES												
1) Unbalance	ed roof live loads hav	e been considered to	r									LL .
2) Wind: AS	□. ○E 7 10· \/ult_120mr	b (2 second quet)									""IL CA	DUN
2) Wind. AS	Se $7-10$, $Vuit=13011\mu$	RCDI –6 Opsf: h–25ft:	Cat								THUM	ROIL
II: Exp C:	Enclosed: MWFRS (envelope) exterior zor	ne							5	Onicials	ik MAN
and C-C E	Exterior (2) -0-11-0 to	2-1-0. Interior (1) 2-1	-0 to							22	· · · ·	91. A.L
9-9-4 zone	e; cantilever left and	right exposed ; end									STAN	Marine -
vertical lef	ft exposed; porch left	and right exposed;C-	С								1	1 1 1 1
for membe	ers and forces & MW	FRS for reactions sho	own;						=		SEA	L : =
Lumber D	OL=1.60 plate grip D	OL=1.60							=		286	77 : =
3) This truss	has been designed f	or a 10.0 psf bottom							-		2007	1 E E
chord live	load nonconcurrent	with any other live loa	dS.							2	N	1 8
4) This trus	tom chord in all area	rior a live load of 20.0	hei							20	. En	RINS
3-06-00 ta	all by 2-00-00 wide wi	s where a rectangle Il fit between the botto	m							27	O, GIN	EFICI
chord and	any other members									11	NI.	111111
0	, earer memberer										11. L.G.	AL

- Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 4)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) 818 Soundside Road Edenton, NC 27932 and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GA mm April 30,2025

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	E02	Monopitch	1	1	Job Reference (optional)	173111750

-0-11-0

0-11-0

2 8

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

1-4-14

0-4-2

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:06 ID:uobYTzV6?OuNNAe57U4pdVzc_?A-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 3-6-0 3-6-0

3-6-0

Page: 1

Scale = 1:24.6	
Plate Offsets (X, Y):	[2:0-2-12,Edge]

Loading TCLL (root) (psf) Spacing 20.0 (10.0) 2-0-0 (1.15) CSI TC 0.15 (Vert(L) in (loc) Udel Lub Lob MT20 244/190 BCLL 10.0 0.0* Rep Stress Incr 11.5 BC 0.15 Vert(L) 0.00 4.7 >999 240 BCDL 10.0 Code IRC2015/TP1/2014 Matrix-MP Vert(C) 0.00 2 n/n n/n LUMBER TOP CHORD 2x4 SP No.2 Code IRC2015/TP1/2014 Matrix-MP Vert(S) Structural wood sheating directly applied or 36-00 or purines, except end verticals. 0 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding the tip joint 2. Vert is 10.8 FT = 20% BTOP CHORD Structural wood sheating directly applied or 36-00 or purines, except end verticals. Vert is 10.8 Structural wood sheating directly applied or 36-00 or purines, except end verticals. Vert is 10.8 Vert is 10	
BCLL 0.0* Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 2 n/a Weight: 13 lb FT = 20% LUMBER 60 Frovide mechanical connection (by others) of truss to bearing plate capable of withstanding 87 lb uplift at joint 2. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 87 lb uplift at joint 4 and 143 lb uplift at joint 2. 6) Dearing plate capable of withstanding 87 lb uplift at joint 4 and 143 lb uplift at joint 2. 6) Dearing plate capable of withstanding 87 lb uplift at joint 4 and 143 lb uplift at joint 2. COAD CASE(S) Standard BRACING TOP CHORD Structural wood sheathing directly applied or -3-6-0 cc purlins, except end verticals. DOAD CASE(S) Standard BRACING (size) 2=0-3-0, 4=0-3-8 Max Horiz 2=60 (LC 8) Max Horiz 2=60 (LC 1, 4=127 (LC 1) FORCES (b) - Maximum Compression/Maximum Tension Tension Top CHORD 2.4=-131/66 Standard NOTES 1) Unbalanced roof live loads have been considered for this design. (b) -Maximum (3-second gust) Vaad=130mph (3-second gust) <th>in (loc) l/defl L/d PLATES GRIP .02 4-7 >999 240 MT20 244/190 .01 4-7 >999 240</th>	in (loc) l/defl L/d PLATES GRIP .02 4-7 >999 240 MT20 244/190 .01 4-7 >999 240
BCDL 10.0 Code IRC2015/TPI2014 Matrix-MP Weight: 13 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 87 lb uplift at joint 2. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 87 lb uplift at joint 2. BRACING TOP CHORD Structural wood sheathing directly applied or -3-6-0 co purlins, except end verticals. Standard BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. FT = 20% And 143 lb uplift at joint 2. REACTIONS (size) 2=0-3-0, 4=0-3-8 Max Uplift 2=-143 (LC 8), 4=-87 (LC 8) Max Grav 2=197 (LC 1), 4=127 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension Maximum Compression/Maximum Tension TOP CHORD 1.2=0/13, 2.3=-67/112, 3-4=-81/112 BOT CHORD Second gust) Vasiel for 30mph; TCDL=6.0psf; hc2bit, Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0.11-0 to 2-1-0, Interior (1) 2-1-0 to 3-4-4 zone; cantilever left and right exposed; end	.00 2 n/a n/a
LUMBER TOP CHORD DY CHORD Structural wood sheathing directly applied or 3-6-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc braining. REACTIONS Size) DY CHORD Size) DY CHORD Size) DY CHORD DY CHORD	Weight: 13 lb FT = 20%
BRACING TOP CHORD Structural wood sheathing directly applied or 3-6-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 2=0-3-0, 4=0-3-8 Max Horiz 2=60 (LC 8) Max Uplift 2=-143 (LC 8), 4=-87 (LC 8) Max Grav 2=197 (LC 1), 4=127 (LC 1) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/13, 2-3=-67/112, 3-4=-81/112 BOT CHORD 2-4=-131/66 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II, Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 (1) terior (1) 2-1-0 to 3-4-4 zone; cantilever left and right exposed ; end	
bracing. REACTIONS (size) 2=0-3-0, 4=0-3-8 Max Horiz 2=60 (LC 8) Max Uplit 2=-143 (LC 8), 4=-87 (LC 8) Max Grav 2=197 (LC 1), 4=127 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/13, 2-3=-67/112, 3-4=-81/112 BOT CHORD 2-4=-131/66 NOTES 1) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 3-4-4 zone; cantilever left and right exposed ; end	
FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/13, 2-3=-67/112, 3-4=-81/112 BOT CHORD 2-4=-131/66 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; bEDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 3-4-4 zone; cantilever left and right exposed ; end	
 TOP CHORD 1-2=0/13, 2-3=-67/112, 3-4=-81/112 BOT CHORD 2-4=-131/66 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 3-4-4 zone; cantilever left and right exposed ; end 	
 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 3-4-4 zone; cantilever left and right exposed ; end 	
 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 3-4-4 zone; cantilever left and right exposed ; end 	
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 3-4-4 zone; cantilever left and right exposed ; end	
vertical left exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle	SEAL 28677

chord and any other members.

Provide mechanical connection (by others) of truss to 5) bearing plate at joint(s) 2.

L. GA 111111111 April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	E03	Monopitch	1	1	Job Reference (optional)	173111751

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:06 ID:3Nise5DgQK_e6dOgH9AQBfzc_?X-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 🛛

Page: 1

9-4-2

Scale = 1:24.5 Plate Offsets (X, Y): [2:0-2-12,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.12	Vert(LL)	0.01	4-7	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.13	Vert(CT)	-0.01	4-7	>999	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a			
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MP							Weight: 12 lb	FT = 20%	

3x4 =

LOWIDER	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	3-3-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(size) 2=0-3-0, 4=0-3-8
	Max Horiz 2=56 (LC 8)
	Max Uplift 2=-137 (LC 8), 4=-80 (LC 8)
	Max Grav 2=187 (LC 1), 4=116 (LC 1)
FORCES	(Ib) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/13, 2-3=-59/103, 3-4=-74/104
BOT CHORD	2-4=-120/60
NOTES	

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 3-1-4 zone; cantilever left and right exposed; end vertical left exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 80 lb uplift at joint 4 and 137 lb uplift at joint 2.

LOAD CASE(S) Standard

April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	JA1	Jack-Open	2	1	Job Reference (optional)	173111752

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:06 ID:4a1Zs949yFvA44ExEK1DKXzc_4t-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3-4-4

Scale = 1:27.5 Plate Offsets (X, Y): [2:0-3-8,Edge]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.13 0.14 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 0.00	(loc) 4-7 4-7 3	l/defl >999 >999 n/a	L/d 240 240 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEDGE BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 Left: 2x4 SP No.3 Structural wood she 3-4-4 oc purlins. Rigid ceiling directly bracing.	athing directly applie applied or 10-0-0 or	5) Provide bearing 3, 51 lb LOAD CAS	mechanical connectic plate capable of withs uplift at joint 2 and 3 II E (S) Standard	on (by oth standing 6 b uplift at	ers) of truss t 9 lb uplift at j joint 4.	io oint					
REACTIONS	(size) 2=0-3-8, 3 Mechanic Max Horiz 2=106 (LC Max Uplift 2=-51 (LC (LC 12) Max Grav 2=194 (LC (LC 2)	3= Mechanical, 4= al C 12) C 12), 3=-69 (LC 12), C 1), 3=81 (LC 1), 4=	4=-3 -59									
FORCES	(Ib) - Maximum Com Tension 1-2=0/25, 2-3=-63/3- 2-4=-89/61	pression/Maximum 4										
NOTES 1) Wind: AS(Vasd=103 II; Exp C; and C-C C 3-3-8 zon vertical lef forces & M DOL=1.6C 2) This truss chord live 3) * This trus on the bot 3-06-00 tz chord and 4) Refer to g	CE 7-10; Vult=130mph Bmph; TCDL=6.0psf; Bd Enclosed; MWFRS (er Exterior (2) -0-11-0 to 2 e; cantilever left and rig ft and right exposed;C- MWFRS for reactions s 0 plate grip DOL=1.60 has been designed fo load nonconcurrent wi shas been designed fi ttom chord in all areas all by 2-00-00 wide will d any other members. jirder(s) for truss to tru	(3-second gust) CDL=6.0psf; h=25ft; tvelope) exterior zor 2-1-0, Interior (1) 2-1- fht exposed ; end C for members and hown; Lumber r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto ss connections.	Cat. e -0 to ds. psf							ANN STREET	SEA 286	EER. St.

April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	JB1	Jack-Closed	37	1	Job Reference (optional)	173111753

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:06 ID:Jr8pusb7qSJ3lh1CGsIIZbzc_4C-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:36.3

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL * Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.46 0.35 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.07 -0.07 0.03	(loc) 5-8 5-8 2	l/defl >879 >901 n/a	L/d 240 240 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2 Structural wood sl 5-3-1 oc purlins, o Rigid ceiling direc bracing. (size) 2=0-3-8 Max Horiz 2=205 (Max Uplift 2=-29 (2-6-0 heathing directly appli except end verticals. tly applied or 10-0-0 c 3, 5= Mechanical LC 12) LC 12), 5=-145 (LC 12)	LOAD CASE(S) ied or oc 2)	Standard									
FORCES TOP CHORD BOT CHORD	Max Grav 2=264 ((lb) - Maximum Co Tension 1-2=0/31, 2-4=-31 2-5=-280/250	(LC 1), 5=230 (LC 19) pmpression/Maximum 1/150, 4-5=-199/156											
 Unbalanced this design. Wind: ASC Vasd=103m II; Exp C; E and C-C Ex 5-1-5 zone; vertical left MWFRS fo grip DOL=1 This truss F chord live le 1 * This truss on the botto 3-06-00 tall chord and a 5) Refer to gir 6) Provide me bearing pla 5 and 29 lb 	d roof live loads have E 7-10; Vult=130m, nph; TCDL=6.0psf; inclosed; MWFRS (terior (2) -0-11-0 tt cantilever left and exposed;C-C for m r reactions shown; .60 has been designed bad nonconcurrent has been designed has been designed has bad nonconcurrent has been designed has bad nonconcurrent has been designed has bad nonconcurrent has bad nonconcurrent has been designed has bad nonconcurrent has bad nonconcurent has bad nonconcurrent has bad nonc	ve been considered for ph (3-second gust) BCDL=6.0psf; h=25ft (envelope) exterior zo 0 2-1-0, Interior (1) 2-1 right exposed ; end lembers and forces & Lumber DOL=1.60 pla for a 10.0 psf bottom with any other live loa d for a live load of 20. Is where a rectangle ill fit between the bott russ connections. n (by others) of truss tanding 145 lb uplift a	or ;; Cat. ne I-0 to ate ads. 0psf om to t joint						"THUMP		SEA 2867	ROLLA 7 E.P. St.	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	JB2	Jack-Closed	1	1	Job Reference (optional)	173111754

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:07

Page: 1

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

ID:g4T8WOswfD5yO3iRYUiTSEzc_3s-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-11-0 3-9-1 5-3-1 3-9-1 1-6-0 0-11-0 5-3-1 4x6 = 2x4 🛛 12 8 Г 4 5 3x6 🖌 3 3-3-6 3-5-9 2 0-9-5 11 6 Ŕ 3x6 II 3x6 =

5-3-1

Scale = 1:32.7

Plate Offsets (X, Y): [4:0-3-12,0-2-0]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.27	Vert(LL)	-0.02	6-9	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.23	Vert(CT)	-0.05	6-9	>999	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.04	Horz(CT)	0.01	2	n/a	n/a		
BCDL	10.0	Code	IRC2015/	TPI2014	Matrix-MP		Wind(LL)	0.03	6-9	>999	240	Weight: 31 lb	FT = 20%
			E)	* This trues b	aa baan daalanad	l for o liv	a load of 20	Onof					
	Over CD Ne O		5)	on the botton	as been designed	s whore	e iuau ui 20. a rectangle	opsi					
	2X4 SP N0.2			3-06-00 tall h	v 2-00-00 wide wi	Il fit hetu	a rectangle	om					
WERS	2x4 SF NU.2 2x4 SP No 2 *Excon	+* 6 1.2v1 SD No 2		chord and an	v other members	ii iii botu		.0111					
SLIDER	2X4 SP N0.2 EXCEPT 6-4.2X4 SP N0.3 Given and any other memory of the mem												
BRACING	7) Provide mechanical connection (by others) of truss to												
	ING												
TOP CHORD		auting directly applied		2 and 88 lb u	plift at joint 6.	0		,					
	2-0-0 oc purlins; 4-5	cept enu verticais, an	8)	Graphical pu	rlin representation	does no	t depict the	size					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc		or the orienta	tion of the purlin a	along the	top and/or						
BOT ONORD	bracing.			bottom chord									
REACTIONS	(size) 2=0-3-8, 6	6= Mechanical	LOA	AD CASE(S)	Standard								
	Max Horiz 2=159 (LC	C 12)											
	Max Uplift 2=-55 (LC	C 12), 6=-88 (LC 12)											
	Max Grav 2=264 (LC	C 1), 6=199 (LC 1)											
FORCES	(lb) - Maximum Com	pression/Maximum											
	l ension												
TOP CHORD	1-2=0/31, 2-4=-318/	60, 4-5=0/0, 5-6=-41/	47										
BOLCHORD	2-6=-184/122												
WEBS	4-6=-157/137												
NOTES													11.
1) Unbalance	ed roof live loads have	been considered for										UNU CA	
this design]. 25 7 40,) (ult 420mmh	(2 accord such)										TH UA	ROIL
2) Wind: ASC	DE 7-10; Vuit=130mpn	CDI _6 Opef: b_25ft: (Cat								5	n	it MANY
II: Exp C: I	Enclosed: MW/ERS (er	velope) exterior zon	5al.								22		11: 2%
and C-C E	Enclosed, www.rco.(e) Exterior (2) $_{-}0_{-}11_{-}0$ to 2	-1-0 Interior (1) 2-1-0	o to									TA M	191. 2
3-9-1 Exte	erior (2) 3-9-1 to 5-1-5	zone: cantilever left a	and										N 1 E
right expos	sed : end vertical left e	exposed:C-C for								=	1	SEA	L 1 E
members	and forces & MWFRS	for reactions shown;							=	:	0007		
Lumber D	OL=1.60 plate grip DO	L=1.60								-		2867	1 : :
													1 - E - E - E - E - E - E - E - E - E -
3) Provide ad	dequate drainage to pr	event water ponding.									2	·	als S
4) This truss	has been designed for	r a 10.0 psf bottom									1,4	O. NGINE	Entra
chord live	load nonconcurrent wi	th any other live load	s.								11	YA,	INS IN
												LG	AL
												1, UI	

L. GA minin April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust structure Bucking Component Advancement and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders						
4619364	JB3	Jack-Closed Girder	1	1	Job Reference (optional)	173111755					

2-5-9

0-9-5

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:07 ID:6RXF5on5uGSIo5dIAbW_k3zc_05-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.5

Plate Offsets (X, Y): [3:0-6-8,0-1-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.20 0.14 0.06	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 -0.01 0.00 0.00	(loc) 5-6 5-6 5 5-6	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Left 2x4 SP No.3 *Excep 5-3-1 oc purlins, exc 2-0-0 oc purlins; 3-4 Rigid ceiling directly bracing.	t* 4-5:2x4 SP No.2 -5-3 athing directly applie cept end verticals, ar applied or 10-0-0 oc	7) 8) d or 9) id	Provide mect bearing plate 2 and 161 lb Graphical pu or the orienta bottom choro Hanger(s) or provided suff down and 14 up at 3-3-13 at 2-3-1, and bottom choro	nanical connectio capable of withs: uplift at joint 5. flin representation tion of the purlin other connection icient to support of 5 lb up at 2-3-1, on top chord, ann 23 lb down and . The design/sel	n (by oth tanding 1 n does no along the device(s concentra and 39 lb d 34 lb do 15 lb up a ection of	ers) of truss f 72 lb uplift at pt depict the s top and/or) shall be ated load(s) 1 o down and 5 own and 34 ll at 3-3-13 on such connec	io ; joint size 14 lb 1 lb 5 up tion						
REACTIONS FORCES TOP CHORD BOT CHORD WEBS	(size) 2=0-3-8, 5 Max Horiz 2=107 (LC Max Uplift 2=-172 (LI Max Grav 2=306 (LC (lb) - Maximum Com Tension 1-2=0/31, 2-3=-137/ 2-6=-165/181, 5-6=- 3-6=-12/153, 3-5=-2	= Mechanical 5 8) C 8), 5=-161 (LC 5) C 1), 5=247 (LC 1) pression/Maximum 126, 3-4=-1/0, 4-5=-9 164/174 12/200	10 L(1) 94/68	device(s) is t device(s) is t) In the LOAD of the truss a DAD CASE(S) Dead + Roo Plate Increa Uniform Loc Vert: 1-3: Concentrate	re responsibility of CASE(S) section re noted as front Standard of Live (balanced) ise=1.15 ads (lb/ft) =-60, 3-4=-60, 5-7 ed Loads (lb)	of others. , loads a (F) or ba : Lumber 7=-20	pplied to the t ck (B).	face 15,						
NOTES 1) Unbalanc this desig 2) Wind: ASi Vasd=103 II; Exp C; cantilever exposed; 3) Provide a 4) This truss chord live 5) * This trus	ed roof live loads have n. CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; BG Enclosed; MWFRS (en left and right exposed Lumber DOL=1.60 plat dequate drainage to pro- has been designed for load nonconcurrent wi ss has been designed for	been considered for (3-second gust) CDL=6.0psf; h=25ft; (velope) exterior zono; end vertical left e grip DOL=1.60 event water ponding. a 10.0 psf bottom th any other live load or a live load of 20.0p	Cat. e; s.	Vert: 3=-:	21 (B), 6=-24 (B),	11=-21 (B), 12=-23 (f	3)		, and the second s	A. A.	SEA 2867	ROJN SIN L	ATT THE REAL PROPERTY OF
on the bot 3-06-00 ta chord and 6) Refer to g	ttom chord in all areas v all by 2-00-00 wide will f any other members. jirder(s) for truss to trus	where a rectangle fit between the botton s connections.	m									OLYN L. G	ALINST	Survey State

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

April 30,2025

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	V01	Valley	1	1	Job Reference (optional)	173111756

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries. Inc. Tue Apr 29 13:23:07 ID:O23KCVbhj2835VDI7Fgr?UzbzxA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale	=	1.51.1	
oouic	_	1.01.1	

12-10-9

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-S	0.24 0.17 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 56 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 4=12-10-5 7=12-10-5 Max Horiz 7=-225 (L Max Uplift 4=-51 (LC 6=-15 (LC Max Grav 4=193 (LC 6=426 (LC	athing directly applic cept end verticals. applied or 10-0-0 or 9, 5=12-10-9, 6=12- C 10) 2 9), 5=-253 (LC 13) 2 8), 7=-108 (LC 12) C 19), 5=-445 (LC 20 C 20), 7=238 (LC 19	4) 5) 6) 7) ed or c 8) 10-9, LO ,),	Gable requirt Gable studs This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and ar Provide meci bearing plate 7, 51 lb uplift uplift at joint AD CASE(S)	es continuous bo spaced at 4-0-0 d s been designed da nonconcurrent nas been designed n chord in all are by 2-00-00 wide v y other members hanical connection capable of withs at joint 4, 15 lb o 5. Standard	ttom chor pc. I for a 10.0 with any sd for a live as where will fit betw s, with BC on (by other standing 1 uplift at join	d bearing.) psf bottom other live load e load of 20.0 a rectangle reen the botto DL = 10.0psf ers) of truss t 08 lb uplift at ht 6 and 253	ds. Dpsf om joint Ib					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-7=-224/168, 1-2=- 3-4=-232/186	193/183, 2-3=-206/2	206,										
BOT CHORD WEBS	6-7=-152/203, 5-6=- 2-6=-227/80, 3-5=-3	152/203, 4-5=-152/2 71/295	203										

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 4-4-7, Exterior (2) 4-4-7 to 7-4-7, Interior (1) 7-4-7 to 12-5-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

HOW THE SEA OR MANDER DA PARTICIPALITA SEAL 28677 GA mm

April 30,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	V02	Valley	1	1	Job Reference (optional)	173111757

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:07 ID:dn6k5aiKbpHnguP08eKysOzbzx1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale =	1:47
---------	------

11-4-9

TCLL (roof) TCDL BCLL BCDL		20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr Code	1.15 1.15 YES IRC201	5/TPI2014	TC BC WB Matrix-S	0.23 0.14 0.08	Vert(LL) Vert(TL) Horiz(TL)	n/a n/a 0.00	- 4	n/a n/a n/a	999 999 n/a	MT20 Weight: 47 lb	244/190 FT = 20%
TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p Rigid ceilir bracing.	.2 .2 .3 wood shea urlins, exa ng directly	athing directly applied sept end verticals. applied or 10-0-0 oc	4) 5) 6) 7) d or 8)	Gable Hequin Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 7_66 b unlift	spaced at 4-0- is been design ad nonconcurre has been design n chord in all a by 2-00-00 wide hanical connec e capable of wit e tight 4.9 lb	0 oc. ed for a 10.0 ent with any ned for a liv reas where e will fit betw ers. ction (by oth thstanding 1 uplift at join) psf bottom other live loa e load of 20. a rectangle veen the bot ers) of truss 21 lb uplift a 6 and 211	ads. .0psf tom to at joint					
REACTIONS	(size) Max Horiz Max Uplift Max Grav	4=11-4-9, 7=11-4-9 7=-174 (Lu 4=-66 (LC (LC 8), 7= 4=148 (LC 6=305 (LC	5=11-4-9, 6=11-4-9, 9), 5=-211 (LC 13), -121 (LC 12) 19), 5=352 (LC 20), 20), 7=227 (LC 19)	L0 6=-9	uplift at joint	5. Standard	upint at join	u and 2111	U					

 FORCES
 (lb) - Maximum Compression/Maximum Tension

 TOP CHORD
 1-7=-223/161, 1-2=-192/168, 2-3=-199/187, 3-4=-207/166

 BOT CHORD
 6-7=-128/173, 5-6=-128/173, 4-5=-128/173

WEBS 2-6=-217/66, 3-5=-311/250

NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 4-4-7, Exterior (2) 4-4-7 to 7-4-7, Interior (1) 7-4-7 to 10-11-2 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

SEAL 28677

April 30,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	V03	Valley	1	1	Job Reference (optional)	173111758

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries. Inc. Tue Apr 29 13:23:08 ID:ouGuOLqE?BfDUak8IS1Xoizbzws-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale =	1:35.6
---------	--------

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.37	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL Rep Stress Incr	1.15 VES		BC	0.22	Vert(TL)	n/a	- 3	n/a n/a	999 n/a		
BCDL	10.0	Code	IRC2015/TPI2	2014	Matrix-S	0.00	TION2(TE)	0.00		n/a	Π/a	Weight: 37 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	athing directly applie cept end verticals. applied or 10-0-0 oc	6) This chor 7) * Th 3-0č dor 8) Prov bear 5, 90 LOAD C	truss has rd live loa is truss ha he bottom of and an vide mech ring plate 8 lb uplift CASE(S)	s been design d nonconcurre as been desig n chord in all a y 2-00-00 wid y other memb nanical connee capable of wi at joint 3 and Standard	ed for a 10.0 ent with any gned for a liv areas where e will fit betw ers. ction (by oth thstanding 1 43 lb uplift a) psf bottom other live loa e load of 20. a rectangle veen the bott ers) of truss 32 lb uplift a t joint 4.	ads. .0psf tom to at joint					
REACTIONS	(size) 3=9-10-9,	4=9-10-9, 5=9-10-9											

ILE AO HONO	(3120)	0-3 10 3 , -3 10 3 , $0-3$ 10 3
	Max Horiz	5=-123 (LC 10)
	Max Uplift	3=-98 (LC 12), 4=-43 (LC 13),
		5=-132 (LC 12)
	Max Grav	3=227 (LC 1), 4=363 (LC 20),
		5=230 (LC 19)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-5=-225/	157, 1-2=-207/158, 2-3=-226/178
BOT CHORD	4-5=-113/	(164, 3-4=-113/164

WEBS

NOTES

1) Unbalanced roof live loads have been considered for this design.

2-4=-234/92

- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 4-4-7, Exterior (2) 4-4-7 to 7-4-7, Interior (1) 7-4-7 to 9-5-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

April 30,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	V04	Valley	1	1	Job Reference (optional)	173111759

2-8-9

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:08

ID:hfWPEitk3Q9fzC2vXI6TzYzbzwo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 4-0-2 8-0-3 4-0-2 4-0-2 8-0-3 4x6 = 2 9 10 12 8 Г 3 4 2x4 👟

2x4 🛛 8-0-3

2x4 🍫

Scale = 1:27.9

														_
Loading TCLL (roof) TCDL BCLL	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.17 0.17 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0	Code	IRC2015/1	FPI2014	Matrix-MS							Weight: 28 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 8-0-3 oc purlins. Rigid ceiling directly bracing. (size) 1=8-0-3, 3 Max Horiz 1=-85 (LC Max Uplift 1=-8 (LC 4=-147 (L Max Grav 1=79 (LC	athing directly applie applied or 6-0-0 oc 3=8-0-3, 4=8-0-3 8) 12), 3=-22 (LC 13), C 12) 23), 3=79 (LC 24), 4	6) - 7) - 6 - 2 - - - - - - - - - - - - - - - -	This truss has chord live load of This truss hims on the bottom 3-06-00 tall by chord and an Provide mech bearing plate 22 lb uplift at D CASE(S)	s been designed f d nonconcurrent v as been designed o chord in all area: y 2-00-00 wide wi y other members. nanical connection capable of withst joint 3 and 147 lb Standard	or a 10.0 with any for a live s where Il fit betw I (by othe anding 8 uplift at) psf bottom other live load e load of 20.0 a rectangle reen the botto ers) of truss to b uplift at joir joint 4.	ls. psf m ht 1,						
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-82/224, 2-3=-8 1-4=-210/135, 3-4=-2 2-4=-421/208	pression/Maximum 1/220 210/135												
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103r II; Exp C; E and C-C E: to 4-0-14, I to 8-0-15 z vertical left forces & M DOL=1.60 3) Truss design or consult of 4) Gable requ 5) Gable stud	d roof live loads have E 7-10; Vult=130mph mph; TCDL=6.0psf; BG Enclosed; MWFRS (er xterior (2) 0-0-12 to 3- Exterior (3) 0-	been considered for (3-second gust) CDL=6.0psf; h=25ft; (velope) exterior zon- 0-12, Interior (1) 3-0- -2-2, Interior (1) 7-2- d right exposed; enc C for members and hown; Lumber the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP n chord bearing.	Cat. 9 12 2 1 s le, 1.								And	SEA 2867	EEP. St.	

. GA mm April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	V05	Valley	1	1	Job Reference (optional)	173111760

1-8-9

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries. Inc. Tue Apr 29 13:23:08 ID:5EBXskwdMLYDqfnUCQfAbBzbzwl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-0-3

Scale - 1.23.9

00010 - 1.20.0												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.06 0.08 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-0-3 oc purlins. Rigid ceiling directly bracing.	eathing directly applie	7) * This tru on the bo 3-06-00 t chord an 8) Provide r bearing p 1, 22 lb u LOAD CASE	ss has been design titom chord in all are all by 2-00-00 wide d any other member nechanical connecti late capable of with plift at joint 3 and 75 (S) Standard	ed for a liv eas where will fit betw rs. on (by oth standing 1 5 lb uplift a	e load of 20.0 a rectangle veen the botto ers) of truss to 3 lb uplift at jo t joint 4.	Dpsf om o oint					
REACTIONS	(size) 1=5-0-3, 1 Max Horiz 1=-51 (LC Max Uplift 1=-13 (LC 4=-75 (LC Max Grav 1=64 (LC (LC 1)	3=5-0-3, 4=5-0-3 C 10) C 12), 3=-22 (LC 13) C 12) C 12) 23), 3=64 (LC 24), 4	, 4=297									
FORCES	(lb) - Maximum Com Tension	npression/Maximum										
TOP CHORD BOT CHORD WEBS	1-2=-61/103, 2-3=-6 1-4=-107/78, 3-4=-1 2-4=-186/92	1/97 07/78										
NOTES												
 Unbalanc this desig Wind: AS Vasd=103 II; Exp C; and C-C I exposed ; 	ed roof live loads have n. CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed; MWFRS (ei Exterior (2) zone; cantil ; end vertical left and ri	been considered fo (3-second gust) CDL=6.0psf; h=25ft; hvelope) exterior zor lever left and right ght exposed;C-C for	r ; Cat. ne							View	OR. HESS	ROMATIN

Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

members and forces & MWFRS for reactions shown;

4) Gable requires continuous bottom chord bearing.

Gable studs spaced at 4-0-0 oc. 5)

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	V06	Valley	1	1	Job Reference (optional)	173111761

4-3-4

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:08 ID:HMMhAV2WmjwgeL6bLEMmXVzbzwa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4-3-4

Scale = 1:31.6

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.23	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.23	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MP							Weight: 17 lb	FT = 20%
LUMBER			7) * This trus	s has been designe	ed for a liv	e load of 20.	0psf					
TOP CHORD	2x4 SP No.2		on the bot	tom chord in all are	as where	a rectangle						
BOT CHORD	2x4 SP No.2		3-06-00 ta	II by 2-00-00 wide v	will fit betw	veen the bott	om					
WEBS	2x4 SP No.2		chord and	any other members	s.							
BRACING			Provide m	echanical connection	on (by oth	ers) of truss	to					
TOP CHORD	Structural wood she	athing directly applie	ed or bearing pl 3 and 36 l	ate capable of withs b uplift at joint 1.	standing 8	0 lb uplift at j	joint					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 or	C LOAD CASE(S) Standard								
REACTIONS	(size) 1=4-3-4, 3 Max Horiz 1=130 (LC Max Uplift 1=-36 (LC Max Grav 1=165 (LC	3=4-3-4 C 9) C 12), 3=-80 (LC 12) C 1), 3=193 (LC 19)										
FORCES	(lb) - Maximum Com											
TOROLO	Tension	pression/waximum										
TOP CHORD BOT CHORD	1-2=-230/133, 2-3=- 1-3=-188/294	174/136										
NOTES												
1) Unbalance	ed roof live loads have	been considered fo	r									
this desig	n.											
2) Wind: AS	CE 7-10; Vult=130mph	(3-second gust)										
Vasd=103	Bmph; TCDL=6.0psf; B	CDL=6.0psf; h=25ft;	Cat.									
II; Exp C;	Enclosed; MWFRS (er	velope) exterior zor	ne								MILLI	1111.
and C-C E	Exterior (2) 0-0-12 to 3-	0-12, Interior (1) 3-0)-12								WHY CA	Pall
to 4-2-4 z	one; cantilever left and	right exposed ; end								1	all	19111
vertical le	ft and right exposed;C-	C for members and								51	0 S	id AN's
torces & N	WWFRS for reactions s	nown; Lumber								24	IN I	13.7%
2) Truce dee	vigned for wind loads in	the plane of the true									TO N	my: =
only For	stude exposed to wind	(normal to the face)	55 						-		054	1 1 5
see Stand	ard Industry Gable En	d Details as applical	n nle						Ξ		SEA	L : 5
											2005	77 : -

or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing.

Gable studs spaced at 4-0-0 oc. 5)

This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads. OTTOM BUTTO Inn' 286// GA mmm

April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	V07	Valley	1	1	Job Reference (optional)	173111762

2-9-4

2-9-4

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:08 ID:2urjsE8XtAxXcak7pvVesBzbzwS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 II

1-10-10

2

= 20%

818 Soundside Road Edenton, NC 27932

			89 		3 <u> </u>							
				2x4		2x4 u						
Scale = 1:27.7					2-9-4							
Loading TCLL (roof) TCDL BCLL	(psf) Sp 20.0 Pla 10.0 Lu 0.0* Re	Dacing2-0-ate Grip DOL1.15Imber DOL1.15op Stress IncrYES	0 5 5	CSI TC BC WB	0.08 0.09 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0 Co	de IRC	2015/TPI2014	Matrix-MP							Weight: 10 lb	FT = 209
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood sheathir 2-9-4 oc purlins, except Rigid ceiling directly app bracing. (size) 1=2-9-4, 3=2-1 Max Horiz, 1=70, (LC 0)	ng directly applied or end verticals. lied or 10-0-0 oc 9-4	 Provide med bearing plate 3 and 24 lb t LOAD CASE(S) 	thanical connect e capable of with uplift at joint 1. Standard	ion (by oth istanding 5	ers) of truss to 0 lb uplift at jo	o bint					
FORCES TOP CHORD BOT CHORD NOTES 1) Unbalanc this desig 2) Wind: ASI Vasd=103	Max Horiz 1=-79 (LC 9) Max Uplift 1=-24 (LC 12) Max Grav 1=105 (LC 1), (lb) - Maximum Compres Tension 1-2=-133/80, 2-3=-105/7 1-3=-110/170 ed roof live loads have bee n. CE 7-10; Vult=130mph (3-s Smph: TCDI =6 0nsf; BCDI	a, 3=-50 (LC 12) 3=122 (LC 19) ssion/Maximum '9 an considered for second gust) =6 0psf: b=25ft: Cat										

12 8 Г

1-10-10

2 II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown;

- Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.
- 4) 5) Gable studs spaced at 4-0-0 oc.
- 6)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

April 30,2025

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	V08	Valley	1	1	Job Reference (optional)	173111763

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries. Inc. Tue Apr 29 13:23:08

8-9-9

Scale = 1:35.9

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	/TPI2014	CSI TC BC WB Matrix-MS	0.20 0.10 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 41 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=8-9-9, 5 Max Horiz 1=207 (LC Max Uplift 1=-31 (LC (LC 9), 7=	athing directly appli cept end verticals. applied or 6-0-0 oc 5=8-9-9, 6=8-9-9, 7= C 9) S 8), 5=-55 (LC 8), 6 =-204 (LC 12)	5) 6) 7) ed or 8) =8-9-9 LO =-56	Gable studs i This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Provide meci bearing plate 5, 31 lb uplift at joint AD CASE(S)	spaced at 4-0-0 c s been designed d nonconcurrent has been designe n chord in all area y 2-00-00 wide w y other members hanical connectio c capable of withs at joint 1, 56 lb u 7. Standard	oc. for a 10.0 with any d for a liv as where will fit betw 3. n (by oth- standing 5 uplift at joi) psf bottom other live loa e load of 20.1 a rectangle een the bott ers) of truss t 5 lb uplift at j nt 6 and 204	lds. Dpsf om ioint Ib					
FORCES	Max Grav 1=126 (LC 6=277 (LC (lb) - Maximum Com Tension 1-2=-219/229, 2-3=-	C 20), 5=79 (LC 20), C 19), 7=371 (LC 19 ppression/Maximum 149/116, 3-4=-118/′) 136.										

4-5=-102/103 BOT CHORD 1-7=-107/170, 6-7=-75/82, 5-6=-75/82 3-6=-261/187, 2-7=-331/247 WEBS

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-12 to 3-0-6, Interior (1) 3-0-6 to 7-0-6, Exterior (2) 7-0-6 to 8-8-9 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.

April 30,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	V09	Valley	1	1	Job Reference (optional)	173111764

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:09 ID:pirA6nSD?s4_6Q8xnfSVNSzbzw3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.9

Loading FCLL (roof) FCDL BCLL BCDL	(ps 20. 10. 0. 10.	f) 0 0 0* 0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2	015/TPI2014	CSI TC BC WB Matrix-MS	0.32 0.36 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 31 lb	GRIP 244/190 FT = 20%
COP CHORD 30T CHORD VEBS DTHERS 3RACING TOP CHORD 30T CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood 6-0-0 oc purlins Rigid ceiling dire bracing.	sheat , exce ectly a	hing directly applied opt end verticals. pplied or 6-0-0 oc	d or	 This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and ar Provide mecl bearing plate 4, 34 lb uplift LOAD CASE(S) 	s been designe ad nonconcurre has been design in chord in all al by 2-00-00 wide y other membe hanical connec capable of wit at joint 1 and Standard	ed for a 10.0 ent with any ned for a liv reas where e will fit betw ers. ttion (by oth hstanding 1 173 lb uplift) psf bottom other live loa e load of 20. a rectangle veen the bott ers) of truss 18 lb uplift a at joint 5.	ads. .0psf tom to at joint					
REACTIONS	(size) 1=7-3 Max Horiz 1=150 Max Uplift 1=-34 5=-17 Max Grav 1=179 (LC 1	8-9, 4= 6 (LC 5 1 (LC 1 73 (LC 5 (LC 9)	7-3-9, 5=7-3-9 9) 2), 4=-118 (LC 19) 12) 1), 4=64 (LC 9), 5=	, 526										

FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-244/147, 2-3=-63/99, 3-4=-60/70 BOT CHORD 1-5=-164/299, 4-5=-75/68

2-5=-366/233

WEBS

NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-12 to 3-0-12, Interior (1) 3-0-12 to 5-6-6, Exterior (2) 5-6-6 to 7-2-9 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	V10	Valley	1	1	Job Reference (optional)	173111765

2-8-4

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries. Inc. Tue Apr 29 13:23:09 ID:S0aidtbIAYbHYG3FUBfJs_zbzvt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-9-9

Scale = 1:27.8

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.18 0.23 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No Structural 5-9-9 oc p Rigid ceilir bracing. (size) Max Horiz Max Uplift	1.2 .2 .3 wood shea urlins, exin g directly 1=5-9-9, 4 1=105 (LC 1=-40 (LC (LC 12)	athing directly applied cept end verticals. applied or 10-0-0 oc 4=5-9-9, 5=5-9-9 C 9) : 12), 4=-41 (LC 8), 5=	6, 7, or 8, L	 This truss ha chord live loa * This truss h on the bottor 3-06-00 tall t chord and ar Provide mec bearing plate 4, 40 lb uplift OAD CASE(S) 	as been design ad nonconcurr has been desig n chord in all a by 2-00-00 wid hy other memb hanical conne- e capable of wi at joint 1 and Standard	ted for a 10.0 ent with any ned for a liv areas where e will fit betw pers. ction (by oth ithstanding 4 69 lb uplift a) psf bottom other live loz e load of 20. a rectangle veen the bott ers) of truss 1 lb uplift at t joint 5.	ads. Opsf om to joint						

5=304 (LC 19) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-211/100, 2-3=-74/83, 3-4=-91/81 1-5=-134/227, 4-5=-30/33 BOT CHORD WEBS 2-5=-165/102

Max Grav 1=143 (LC 23), 4=60 (LC 20),

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-12 to 3-0-12, Interior (1) 3-0-12 to 4-0-6, Exterior (2) 4-0-6 to 5-8-9 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	V11	Valley	1	1	Job Reference (optional)	173111766

Run: 8.83 E Dec 4 2024 Print: 8.830 E Dec 4 2024 MiTek Industries, Inc. Wed Apr 30 08:24:20 ID:HRTOSItAlcV0ooJfKWailrzbzvW-C2k6drJPHhXVZYYLhLltjqa8TjN_kxwR49mMG0zLalw

G0zLalw

Scale = 1:16

Plate Offsets (X, Y): [3:0-1-9,Edge]

- 1410 0110010 (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2090]												
Loading	(nsf)	Spacing	2-0-0		CSI		DEFL	in	(loc	c) l/de	h I l	PLATES	GRIP
TCLL (roof)	2		Plate Grin DOI	1 15		TC	0.06	Vert(LL)	n/a	(- n/:	- <u> </u>	MT20	244/190
				1.15		PC	0.00	Vort(TL)	n/a		n/-	- 000	101120	244/130
PCU	'	0.0	Bon Stroop Inor	VEC			0.00		0.00		- 1/0 2 n/0	a 333		
BOLL		0.0	Rep Stress Incr	TES		VVB	0.04	HONZ(IL)	0.00		3 n/a	a n/a		
BCDL	1	0.0	Code	IRC201	5/TPI2014	Matrix-MP						-	Weight: 15 lb	FI = 20%
TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp C; and C-CE exposed ; members Lumber D 3) Truss des only. For see Stand or consult 4) Gable req 5) Gable strue	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural woo 4-3-9 oc purlin Rigid ceiling of bracing. (Ib/size) 1=4 4=2 Max Horiz 1=4 Max Uplift 1=- Max Grav 1=7 (Ib) - Max. Co (Ib) or less ex ad roof live loads 1. CE 7-10; Vult=13 mph; TCDL=6.0 Enclosed; MWF Exterior (2) zone: end vertical left and forces & MW OL=1.60 plate g signed for wind l studs exposed t ard Industry Gal qualified buildin uires continuous ds spaced at 4-C	0.0 ° 0.0 ° 10.0 °	Lumber DOL Rep Stress Incr Code applied or 6-0-0 oc 5, 3=0/4-4-15, -15 a) 12), 4=-68 (LC 13) 23), 4=299 (LC 1) x. Ten All forces 25 en shown. been considered for (3-second gust) DL=6.0psf; h=25ft; C velope) exterior zone ver left and right ht exposed;C-C for or reactions shown; _=1.60 the plane of the truss (normal to the face), D betails as applicable ner as per ANSI/TPI in chord bearing.	1.15 YES IRC201! 8) 9) or LC 1) 2) 50 3) 4) 50 3) 4) 50 3) 4) 50 5) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5/TPI2014 Provide mect bearing plate 1 and 68 lb u This truss is of International R802.10.2 ar DAD CASE(5) Dead + Roo Plate Increas Uniform Loa Vert: 1-2: Dead + 0.75 Increase=1. Uniform Loa Vert: 1-2: Dead + 0.61 Increase=1. Uniform Loa Vert: 1-2: Vert: 1-2: Dead + 0.61 Increase=1. Uniform Loa Vert: 1-2: Vert: 1-2: Vert: 1-2: Dead + 0.61 Increase=1. Uniform Loa Vert: 1-2: Dead + 0.61 Increase=1. Uniform Loa Vert: 1-2: Dead + 0.61 Increase=1. Vert: 1-2: Dead + 0.61 Increase=1. Vert: 1-2: Dead + 0.61 Increase=1. Vert: 1-2: Vert: 1-2: Dead + 0.61 Increase=1. Vert: 1-2: Vert: 1-2: Dead + 0.61 Increase=1. Vert: 1-2: Vert: 1-2: Dead + 0.61 Increase=1. Vert: 1-2: Norder Vert: 1-2: Dead + 0.61 Increase=1. Vert: 1-2: Norder Vert: 1-2: Dead + 0.61 Increase=1. Vert: 1-2: Norder Vert: 1-2: Norder Ve	BC WB Matrix-MP hanical connection capable of withsta plift at joint 4. designed in accord Residential Code s d referenced stand f Live (balanced): I see-1.15 ads (lb/ft) =-60, 2-3=-60, 1-5= 5 Roof Live (balanc 15, Plate Increase: ads (lb/ft) =-20, 2-3=-50, 1-5= C-C Wind (Pos. Int 60, Plate Increase: ads (lb/ft) =-22, 2-3=-20, 1-5= C-C Wind (Pos. Int 60, Plate Increase: ads (lb/ft) =-58, 2-3=58 C-C Wind (Pos. Int 60, Plate Increase: ads (lb/ft) =-58, 2-3=58 C-C Wind (Neg. Int 60, Plate Increase: ads (lb/ft) =-58, 2-3=58 C-C Wind (Neg. Int 60, Plate Increase: ads (lb/ft) =-58, 2-3=65, 1-5=-	0.08 0.04 (by oth nding 2 ance we vections fard AN -20 ed): Lu =1.15 -20 hout SI =1.25 -40 ernal) (=1.60 12 ernal) (=1.60 12 ernal) (=1.60	Vert(TL) Horiz(TL) ers) of truss to 0 lb uplift at joi ith the 2015 .R502.11.1 an ISI/TPI 1. Increase=1.15 mber orage: Lumber Case 1: Lumbe Case 2: Lumbe	n/a 0.00	8) 9) 10) 11)	- n/i 3 n/i Horz: Dead + Increase Uniform Vert: Horz: Dead + Increase Uniform Vert: Horz: Dead + Increase Uniform Vert: Horz:	a 999 a n/a 1-2=45 0.6 MW =1.60, 1-2=-16 1-2=4, 0.6 MW =1.60, 1-2=18, 1-2=-30 1-2=18, 1-2=-30 1-2=19 0.6 MW Increas 1-2=-5, 1-2=-15	Weight: 15 lb ,2-3=-45 FRS Wind (Pos.) Plate Increase=1 [b/ft] ,2-3=18, 1-5=-12 2-3=30 FRS Wind (Pos.) Plate Increase=1 [b/ft] ,2-3=-16, 1-5=-12 0, 2-3=-4 FRS Wind (Neg. Plate Increase=1 [b/ft] ,2-3=-5, 1-5=-20 ,2-3=-15 FRS Wind (Neg. e=1.60, Plate Inc [b/ft] 2-3=-39, 1-5=-20 5, 2-3=-19 SEA 286	FT = 20% Internal) Left: Lumber .60 2 Internal) Right: Lumber .60 2 Internal) Left: Lumber .60 Internal) Right: rease=1.60
chord live 7) * This trus on the bot 3-06-00 ta chord and	load nonconcur s has been desi tom chord in all Il by 2-00-00 wid any other memi	rent wit gned fo areas v de will f bers.	h any other live loads or a live load of 20.0ps where a rectangle it between the bottom	s. sf 7) n	Horz: 1-2 Dead + 0.6 Increase=1. Uniform Loa Vert: 1-2	=45, 2-3=-45 C-C Wind (Neg. Int 60, Plate Increase ads (Ib/ft) =-65, 2-3=-65, 1-5=	ternal) =1.60 :-20	Case 2: Lumbe	er			in the	Apr	EEP. St.
Continued on	page 2													

tinued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	V11	Valley	1	1	Job Reference (optional)	173111766
Builders FirstSource (Sumter, SC	c), Sumter, SC - 29153,	Run: 8.83 E Dec 4 2 ID:HRTOSItAlcV0ooJ	024 Print: 8.8 fKWailrzbzvV	330 E Dec 4 V-C2k6drJPł	2024 MiTek Industries, Inc. Wed Apr 30 08:24:20 hXVZYYLhLltjqa8TjN_kxwR49mMG0zLalw	Page: 2
12) Dead + 0.6 MWFRS W Lumber Increase=1.60, Uniform Loads (lb/ft) Vert: 1-2=40, 2-3=18 Horz: 1-2=-52, 2-3=3	ind (Pos. Internal) 1st Paralle Plate Increase=1.60 5, 1-5=-12 50	l:				

- Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (lb/ft)
 - Vert: 1-2=18, 2-3=40, 1-5=-12
 - Horz: 1-2=-30, 2-3=52
- 14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60
 - Uniform Loads (lb/ft)
 - Vert: 1-2=40, 2-3=18, 1-5=-12
 - Horz: 1-2=-52, 2-3=30
- 15) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60
 - Uniform Loads (lb/ft) Vert: 1-2=18, 2-3=40, 1-5=-12
 - Horz: 1-2=-30, 2-3=52
- Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (lb/ft) Vert: 1-2=17, 2-3=-5, 1-5=-20
 - Horz: 1-2=-37, 2-3=15
- 17) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (lb/ft)
 - Vert: 1-2=-5, 2-3=17, 1-5=-20
- Horz: 1-2=-15, 2-3=37 18) Dead: Lumber Increase=0.90, Plate Increase=0.90
- Uniform Loads (lb/ft) Vert: 2-5=-20, 2-3=-20
- 19) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (lb/ft)
 - Vert: 1-2=-64, 2-3=-39, 1-5=-20 Horz: 1-2=14, 2-3=11
- 20) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (lb/ft)
 - Vert: 1-2=-39, 2-3=-64, 1-5=-20
 - Horz: 1-2=-11, 2-3=-14
- 21) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (lb/ft)
 - Vert: 1-2=-22, 2-3=-39, 1-5=-20 Horz: 1-2=-28, 2-3=11
- 22) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (lb/ft)
 - Vert: 1-2=-39, 2-3=-22, 1-5=-20 Horz: 1-2=-11, 2-3=28
- 23) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)
- Vert: 1-2=-60, 2-3=-20, 1-5=-20
- 24) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)
 - Vert: 2-5=-20, 2-3=-60
- 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)
- Vert: 1-2=-50, 2-3=-20, 1-5=-20
- 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)
 - Vert: 2-5=-20, 2-3=-50

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	VA1	Valley	1	1	Job Reference (optional)	173111767

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:09 ID:67tWrQMGKvXLcxNLgvI4vHzbzuu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

19-0-11

Scale = 1:50.2

Plate Offsets (X, Y): [21:0-2-6,0-1-8]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc) l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.08	Vert(LL)	n/a		- n/a	999	MT20	244/190	
TCDL		10.0	Lumber DOL	1.15		BC	0.09	Vert(TL)	n/a		- n/a	999			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.10	Horiz(TL)	0.00	13	3 n/a	n/a			
BCDL		10.0	Code	IRC2015	5/TPI2014	Matrix-MS							Weight: 117 lb	FT = 20%	
3CDL LUMBER TOP CHORD 3OT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structura 10-0-0 oc Rigid ceil bracing. (size)	10.0 0.2 0.2 0.3 I wood sheat purlins. ing directly 1=19-2-3, 15=19-2-3	Code athing directly applied applied or 6-0-0 oc 13=19-2-3, 14=19-2- 3, 16=19-2-3, 17=19-2	IRC2015 BC	DTES	Matrix-MS 1-25=-129/155, 24-2 23-24=-129/155, 22 20-22=-129/155, 19 18-19=-129/155, 17 16-17=-129/155, 13 7-19=-148/51, 6-20= 4-23=-109/86, 3-24= 3-18=-98/69, 9-17=- 11-15=-80/73, 12-14	25=-129 -23=-12 -20=-12 -18=-12 -16=-12 -16=-12 -16=-12 -16=-12 -16=-12 -104/7 =-80/72 110/92 4=-174/	9/155, 29/155, 29/155, 29/155, 29/155 4, 5-22=-110, , 2-25=-174/1 , 10-16=-109, 118	/90, 20, /85,	9) P be 1, at 5: jo 10) B st LOAE	rovide mer earing plat 58 lb uplit joint 23, 4 3 lb uplift a int 16, 52 eveled pla urface with D CASE(S)	chanic e capa ft at joi l9 lb u at joint lb uplif lb uplif te or s truss) Star	Weight: 117 lb al connection (by able of withstandii nt 20, 73 lb uplift plift at joint 24, 11 18, 75 lb uplift at t at joint 15 and 1 him required to p chord at joint(s) 1 ndard	FT = 20% others) of truss to 1g 35 lb uplift at jo at joint 22, 72 lb u 8 lb uplift at joint 2 joint 17, 71 lb upli 13 lb uplift at joint rovide full bearing , 13.) bint ıplift 25, ift at t 14.
FORCES TOP CHORD	Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-2=-180, 4-5=-78/1 7-8=-134, 10-11=-1-	18=19-2-3 22=19-2-3 25=19-2-3 1=208 (LC 15=-52 (LC 15=-52 (LC 17=-75 (L 20=-58 (LC 23=-72 (LC 23=-7	 (1) (1) (2) (3) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2),),),),),),),),),),	Unbalanced this design. Wind: ASCE Vasd=103m II; Exp C; En and C-C Ext 9-7-2, Exteri- 19-2-3 zone; vertical left a forces & MW DOL=1.60 p Truss design only. For stus see Standard or consult qu All plates are Gable requir Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar	roof live loads have 7-10; Vult=130mph bh; TCDL=6.0psf; B closed; MWFRS (er erior (2) 0-0-0 to 2-1 or (2) 9-7-2 to 12-7- cantilever left and ind right exposed;C- FRS for reactions s ate grip DOL=1.60 ed for wind loads in dis exposed to wind dis exposed to wind dis exposed to wind dis exposed to wind es continuous botto spaced at 1-4-0 oc. s been designed fo ad nonconcurrent wind has been designed for an chord in all areas by 2-00-00 wide will by other members.	been of (G-secc CDL=6 nvelope 1-2, In 2, Inter ight exc C for n hown; i the plai (norm d Deta gner as so thh m chor r a 10.0 ith any iv where fit betw	considered for ond gust) .0psf; h=25ft; e) exterior zor terior (1) 2-11 ior (1) 12-7-2 posed ; end hembers and Lumber ane of the trus al to the face) ils as applicat s per ANSI/TF erwise indicat d bearing. D psf bottom other live load a rectangle ween the botto	r Cat. ne -2 to to ss), ole, ole, ole, 1 1. ed. ds. opsf				SEA 2867	ROUTER L T ALINSTITUTE	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

April 30,2025

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	VA2	Valley	1	1	Job Reference (optional)	173111768

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:10 ID:q2UIxrUXzzowoU8GF0TRJOzbzuk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scal	<u> </u>	. 1./	16
SCA	ie =	: 1.4	۰n

16-0-11

Scale = 1.40															
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.24	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL		10.0	Lumber DOL	1.15		BC	0.13	Vert(TL)	n/a	-	n/a	999			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.14	Horiz(TL)	0.00	5	n/a	n/a			
BCDL		10.0	Code	IRC2015	5/TPI2014	Matrix-MS							Weight: 65 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav	5.2 5.2 5.3 wood she burlins. ng directly 1=16-0-1' 1=-174 (L 1=-174 (L 9=-240 (L 9=-240 (L	athing directly applie applied or 6-0-0 oc I, 5=16-0-11, 6=16-0 I, 9=16-0-11 C 8) i 3), 6=-237 (LC 13) C 12) C 20), 5=101 (LC 24) C 20), 5=101 (LC 24)	4) 5) 6) 7) d or 8) -11, LC	Gable requir Gable studs This truss ha chord live loa * This truss f on the bottor 3-06-00 tall t chord and ar Provide mec bearing plate 1, 240 lb upli AD CASE(S)	es continuous bott spaced at 4-0-0 or is been designed nad nonconcurrent has been designed n chord in all area by 2-00-00 wide wi hy other members. hanical connectior e capable of withst fit at joint 9 and 23 Standard	tom chor c. for a 10.0 with any d for a liv s where ill fit betw h n (by oth anding 2 7 Ib uplit	d bearing.) psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss t 3 lb uplift at jo t at joint 6.	ds.)psf om o						
FORCES	(lb) - Maxi	9=426 (L0 imum Com	C 19)												
0	Tension														
TOP CHORD	1-2=-151/ 4-5=-119/	207, 2-3=- 155	51/162, 3-4=-51/141	,											
BOT CHORD	1-9=-144/ 5-6=-144/	152, 7-9=- 133	144/133, 6-7=-144/1	33,											
WEBS	3-7=-280/	38, 2-9=-3	44/268, 4-6=-344/26	6										1111	
NOTES													TH UA	RO	,
 Unbalanci this design Wind: ASI Vasd=103 II; Exp C; and C-C E to 8-1-2, E 16-1-7 zoi vertical lef forces & N DOL=1.60 Truss des only. For see Stand or consult 	ed roof live le n. CE 7-10; Vul Smph; TCDL- Enclosed; M Exterior (2) 0 Exterior (2) 8 ne; cantileve ft and right e MWFRS for r 0 plate grip E signed for wir studs expos adard Industry qualified bu	eads have t=130mph =6.0psf; BI WFRS (er -0-12 to 3- -1-2 to 11- or left and r xposed;C- eactions s OOL=1.60 nd loads in ed to wind Gable En ilding desig	been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zon 0-12, Interior (1) 3-0- 1-2, Interior (1) 11-1: ight exposed ; end C for members and hown; Lumber the plane of the trus (normal to the face) d Details as applicab gner as per ANSI/TP	Cat. e -12 -2 to s , le, I 1.								and Street	SEA 2867	L T7 EEER ALINS	

818 Soundside Road Edenton, NC 27932

April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ Builders	
4619364	VA3	Valley	1	1	Job Reference (optional)	173111769

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:10 ID:A0HB_YYgoWQDvF0E2Z3c0Rzbzuf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = $1:42$

13-0-11

Loading		(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.19	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
CDL		10.0	Lumber DOL	1.15		BC	0.12	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.07	Horiz(TL)	0.00	5	n/a	n/a		
BCDL		10.0	Code	IRC201	5/TPI2014	Matrix-MS							Weight: 50 lb	FT = 20%
UMBER OP CHORD OT CHORD OT HERS BRACING OP CHORD	2x4 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p Rigid ceilir	0.2 0.2 0.3 wood she urlins. ng directly	athing directly applie applied or 10-0-0 oc	4) 5) 6) 7) d or	Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar	es continuous bott spaced at 4-0-0 or s been designed f ad nonconcurrent t has been designed n chord in all area by 2-00-00 wide wi by other members.	tom chor c. for a 10. with any d for a liv s where ill fit betv	d bearing. 0 psf bottom other live load e load of 20.0 a rectangle veen the botto	ds.)psf om					
EACTIONS	bracing. (size) Max Horiz Max Uplift Max Grav	1=13-0-11 7=13-0-11 1=-141 (L 1=-29 (LC (LC 13), 8 1=98 (LC (LC 20), 7 19)	I, 5=13-0-11, 6=13-0 I, 8=13-0-11 C 8) : 8), 5=-4 (LC 12), 6= i=-200 (LC 12) 20), 5=74 (LC 1), 6= i=278 (LC 1), 8=353	8) 11, 196 LC -350 (LC	Provide mec bearing plate 1, 4 lb uplift a uplift at joint DAD CASE(S)	hanical connectior e capable of withst at joint 5, 200 lb up 6. Standard	n (by oth anding 2 olift at joi	ers) of truss to 29 lb uplift at jr nt 8 and 196	o oint Ib					
ORCES	(lb) - Maxii Tension	mum Com	pression/Maximum											
OP CHORD	1-2=-134/1 4-5=-96/67	21, 2-3=- 7	123/132, 3-4=-123/1	17,										
SOT CHORD	1-8=-49/10 5-6=-45/81	06, 7-8=-4 I	5/81, 6-7=-45/81,											
VEBS	3-7=-195/3	33, 2-8=-3	10/246, 4-6=-310/24	4									, mining	1111
OTES													TH CA	ROUL
) Unbalance this design	ed roof live lo n.	ads have	been considered for										oniess	C. La

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-12 to 3-0-12, Interior (1) 3-0-12 to 6-7-2, Exterior (2) 6-7-2 to 9-7-2, Interior (1) 9-7-2 to 13-1-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DDL=1.60 plate grip DDL=1.60

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. SEAL 28677

April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type		Ply	JSJ Builders		
4619364	VA4	Valley	1	1	Job Reference (optional)	173111770	

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:10 ID:bbzKdaaY5RonmilpjhcJe4zbzuc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

10-0-11

Ocale = 1.57.3													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.29 0.27 0.14	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 35 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shee 10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=10-0-11 Max Horiz 1=-107 (L Max Uplift 1=-25 (LC 4=-214 (L Max Grav 1=75 (LC	athing directly applie applied or 6-0-0 oc I, 3=10-0-11, 4=10-0 C 8) : 24), 3=-28 (LC 8), C 12) 23), 3=75 (LC 24), 4	6) 7) ed or 8) D-11 LO	This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Provide mecl bearing plate 1, 28 lb uplift DAD CASE(S)	s been designed for d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide wil y other members. nanical connection capable of withsta at joint 3 and 214 Standard	or a 10.0 vith any for a liv s where Il fit betw (by oth anding 2 Ib uplift) psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss t 5 lb uplift at jo at joint 4.	ds. Ipsf om o bint					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this desigr 2) Wind: ASC Vasd=103 II; Exp C; I and C-C E to 5-1-2, E 10-1-7 zor vertical lef forces & M DOL=1.60 3) Truss desi only. For see Stand or consult 4) Gable requ	(b) - Maximum Com Tension 1-2=-133/337, 2-3=- 1-4=-323/187, 3-4=- 2-4=-612/286 ed roof live loads have m. CE 7-10; Vult=130mph Bmph; TCDL=6.0psf; B(Enclosed; MWFRS (er Exterior (2) 0-0-12 to 3- Exterior (2) 5-1-2 to 8- Exterior (2) 5-1-2 to 8- E	pression/Maximum 132/337 323/187 been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zon 0-12, Interior (1) 3-0 -2, Interior (1) 8-1-2 ight exposed ; end C for members and hown; Lumber the plane of the trus (normal to the face) d Details as applicat gner as per ANSI/TF n chord bearing.							The second se	A A A A A A A A A A A A A A A A A A A	SEA 2867	ROMAR LAT	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

April 30,2025

Job	Truss	Truss Type	Qty		JSJ Builders			
4619364	VA5	Valley	1	1	Job Reference (optional)	173111771		

2-0-13

0-0-8

2-4-12

7-0-11 3-6-6 6-7-9 3-6-6 3-1-4 0-5-2 7-0-11 4x6 = 2 10 11 12 8 Г 12 g 3 4 2x4 2x4 💊 2x4 II

7-0-11

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:10

ID:X_542Gbpd22V?0vBr6fnjVzbzua-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:29.9

Loading TCLL (roof) TCDL BCLL BCDL	(i 2 1 1	psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0- 1.15 1.15 YES IRC	0 2015/TPI2014	CSI TC BC WB Matrix-MS	0.13 0.14 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	 D 2x4 SP No.2 D 2x4 SP No.2 2x4 SP No.3 D Structural wood sheathing directly applied or 7-0-11 oc purlins. D Rigid ceiling directly applied or 6-0-0 oc broging 			 6) This truss his chord live lo chord live lo 7) * This truss on the botto 3-06-00 tall chord and a 8) Provide mete bearing plat 1, 24 lb uplit 	 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 1.20 H uplift at joint 4. 									
REACTIONS FORCES TOP CHORD	(isize) 1=7-0-11, 3=7-0-11, 4=7-0-11 Max Horiz 1=-74 (LC 8) Max Uplift 1=-12 (LC 12), 3=-24 (LC 13), 4=-120 (LC 12) Max Grav 1=77 (LC 23), 3=77 (LC 24), 4=452 (LC 1) (Ib) - Maximum Compression/Maximum Tension 1.276(178, 2-376/174)			LOAD CASE(S)	Standard									

т BOT CHORD 1-4=-166/111, 3-4=-166/111 2-4=-341/172

WEBS

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-12 to 3-0-12, Interior (1) 3-0-12 to 3-7-2, Exterior (2) 3-7-2 to 6-7-2, Interior (1) 6-7-2 to 7-1-7 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

April 30,2025

Page: 1

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type		Ply	JSJ Builders		
4619364	VA6	Valley	1	1	Job Reference (optional)	173111772	

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 13:23:10 ID:xZmDgHehwzR4sUdmWFCUL7zbzuX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	4-0-11	
Scale = 1:22		
Plate Offsets (X, Y): [2:0-3-0,Edge]		

Loa TCL TCC BCL BCC	ding L (roof) L L DL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI201	4	CSI TC BC WB Matrix-MP	0.12 0.10 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%
LUMBER 8) Pr TOP CHORD 2x4 SP No.2 be BOT CHORD 2x4 SP No.2 1a BRACING LOAD TOP CHORD Structural wood sheathing directly applied or 4-0-11 oc purlins. LOAD BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS REACTIONS (size) 1=4-0-11, 3=4-0-11 Max Horiz							anical connection capable of withsta Jlift at joint 3. Standard	(by oth anding 4	ers) of truss t 2 lb uplift at ju	o bint					
FOF TOF BOT	Max Uplift 1=-42 (LC 12), 3=-42 (LC 13) Max Grav 1=162 (LC 1), 3=-162 (LC 1) *ORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-246/97, 2-3=-246/97 3OT CHORD 1-3=-67/202														
1) 2) 3)	NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,											ROUNT			
4) 5) 6) 7)	 Solar and an observe of a field and a applicable, or consult qualified building designer as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 										E.P				

TRENGINEERING BY A MITEK Atfiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

