

RE: 4619374

JSJ, Maplewood Prime B (12-26-24)

Site Information:

Customer:JSJ BuildersProject Name:4619374Lot/Block:32Model:Maplewood Prime BAddress:Subdivision:ILAS WAYCity:DunnState:NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.6 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 18 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	170935384	A01	1/23/2025
2	170935385	A02	1/23/2025
3	170935386	A03	1/23/2025
4	170935387	A04	1/23/2025
5	170935388	A05	1/23/2025
6	170935389	B01	1/23/2025
7	170935390	B02	1/23/2025
8	170935391	C01	1/23/2025
9	170935392	C02	1/23/2025
10	170935393	C03	1/23/2025
11	170935394	C04	1/23/2025
12	170935395	V01	1/23/2025
13	170935396	V02	1/23/2025
14	170935397	V03	1/23/2025
15	170935398	V04	1/23/2025
16	170935399	V05	1/23/2025
17	170935400	V06	1/23/2025
18	170935401	V07	1/23/2025

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Builders FirstSource-Sumter,SC.

based on the parameters provided by Builders FirstSource-Sumter,S

Truss Design Engineer's Name: Tony Miller My license renewal date for the state of North Carolina is December 31, 2025

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Trenco 818 Soundside Rd Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	JSJ, Maplewood Prime B (12-26-24)	
4619374	A01	Common Supported Gable	1	1	Job Reference (optional)	170935384

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 10:14:25 ID:YFAsy9mqBrEqN0MGY4iGStzmvGV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

		20.0		1.15			0.10		170			n/a	555	101120		244/100	
TCDL		10.0	Lumber DOL	1.15	BC		0.18	Vert(CT)	n/a	1	-	n/a	999				
BCLL		0.0*	Rep Stress Incr	YES	WB		0.12	Horz(CT)	0.02		24	n/a	n/a				
BCDL		10.0	Code	IRC2015/TPI2014	Matrix	-MS		- (-)						Weight: 286	lb	FT = 20%	
BCDL LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No 2x6 SP No 2x4 SP No Structural 10-0-0 cc Rigid ceilir bracing. 1 Row at r (size)	10.0 10.0 10.2 10.2 10.2 10.3 wood sheat purlins. ng directly 10.2 28-31-11- 28-31-11- 28-31-11- 30-31-11- 36-31-11- 36-31-11- 36-31-11- 46-31-11- 28-38 (LC 2864 (LC 3056 (LC 32=-64 (LC 34=-72 (LC 37=-29 (LC 34=-72 (LC 37=-29 (LC 45=-217 (LC) 45=-217	Code athing directly applied a applied or 6-0-0 oc 13-36, 12-37, 14-35 , 24=31-11-0, 0, 27=31-11-0, 0, 33=31-11-0, 0, 35=31-11-0, 0, 35=31-11-0, 0, 35=31-11-0, 0, 37=31-11-0, 0, 43=31-11-0, 0, 43=31-11-0, 0, 43=31-11-0, 0, 43=31-11-0, 0, 43=31-11-0, 0, 43=31-11-0, 0, 43=31-11-0, 0, 43=31-11-0, 0, 43=31-11-0, 10, 49=-328 (LC 10), 13), 27=-48 (LC 13), 13), 33=-62 (LC 13), 13), 33=-62 (LC 13), 13), 33=-62 (LC 13), 13), 35=-32 (LC 13), 13), 35=-32 (LC 12), 12), 42=-53 (LC 12), 12), 44=-36 (LC 12), C 20), 46=-59 (LC 13) 20)	IRC2015/TPI2014 or FORCES TOP CHORD	Matrix Max Grav (lb) - Ma Tension 1-2=0/24 4-5=-100 10-11=- 12-13=- 14-15=- 16-17=- 19-20=- 21-22=- 23-24=- 24-6=-2 42-43=- 38-39=- 33-34=- 33-34=- 33-34=- 27-28=- 24-26=-	-MS 2=0 (LC 26=210 28=127 30=112 32=122 34=114 36=260 38=115 40=124 42=117 44=175 46=460 ximum Cc 3, 2-3=-20 3/220, 5-6 3/196, 9-11 177/230, 1 241/306, 1 103/220, 2 156/247, 2 236/284, 2 11/273, 4 241/273, 4 242/274, 3 242/274, 3 24	 a), 24= (LC 20), (LC 20), (LC 20), (LC 20), (LC 19), (LC 19), (LC 19), (LC 19), (LC 1), (LC 1)	125 (LC 24 27=83 (LC 29=118 (L 31=120 (L 33=118 (L 33=117 (L 37=133 (L 37=133 (L 37=133 (L 37=133 (L 39=117 (L 41=116 (L 43=109 (LC 8 on/Maximu 4=-154/211 04, 19/280, 41/306, 77/235, 03/215, 29/233, 81/254, 28 1/273, 41/273, 41/273, 41/273, 41/273, 41/273, 42/274, 42/274, 42/274, 42/274, 42/274, 42/274, 40/272, 40/27), C 20), C 20), C 20), C 20), C 19), C 19), C 19), C 19), C 19), S 8),) m 3, 92,	WE NO 1) 2) 3)	EBS TTES Unbaa this d Wind: Vasd- Cat. 1 zone expos memt Lumb Truss or cor	lanced esign. : ASCE =103m I; Exp and C: sed ; e bers ar er DO desig tandan sult q	13-36: 11-38: 8-41= 14-35: 16-33: 18-31: 20-29: 22-27: 1 roof li 5 7-10; c; Enc C C; Enc tond veri nd forc L=1.6C ned foi ualifiec	Weight: 286 =-234/130, 12 =-110/89, 10-3 -100/80, 7-42= -105/75, 4-45= =-110/48, 15-3 -101/78, 19-3 =-101/78, 19-3 =-100/78, 21-3 =-87/70, 23-26 ive loads have ive loads have ivult=130mpf DL=6.0psf; B closed; MWFR D plate grip DC r wind loads in the & MWFRS D plate grip DC r wind loads in stry Gable End d building desi SEE 023 023 023 023 023 023 024 025 025 025 025 025 025 025 025	Ib -37= 39=.5 =-95/ 34=-7 28=-12 bee (3-55) CCD(e) cant (13-55) (14) (15) (15) (16) (17) (16) (17) (16) (17) (16) (17) (16) (17) <th>FT = 20% -107/45, 99/77, 9-40 71, 6-43=- 87, 3-46=- 110/88, 04/80, 94/72, 102/78, 44/102 In consider second gus =6.0psf; h= nvelope) e tilever left a exposed;C- reactions sl .60 plane of thr rmal to the etails as ap aş per AN</th> <th>ed for t) =-105/79, 100/79, 158/96, ed for t) =25ft; xterior and right C for hown; e truss face), plicable, SI/TPI 1.</th>	FT = 20% -107/45, 99/77, 9-40 71, 6-43=- 87, 3-46=- 110/88, 04/80, 94/72, 102/78, 44/102 In consider second gus =6.0psf; h= nvelope) e tilever left a exposed;C- reactions sl .60 plane of thr rmal to the etails as ap aş per AN	ed for t) =-105/79, 100/79, 158/96, ed for t) =25ft; xterior and right C for hown; e truss face), plicable, SI/TPI 1.

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com) TRENCO

January 23,2025

Page: 1

Job	Truss	Truss Type	Qty	Ply	JSJ, Maplewood Prime B (12-26-24)	
4619374	A01	Common Supported Gable	1	1	Job Reference (optional)	170935384
Builders FirstSource (Sumter, SC	C), Sumter, SC - 29153,	Run: 8.63 S Sep 26 2	2024 Print: 8.	630 S Sep 2	6 2024 MiTek Industries, Inc. Wed Jan 22 10:14:25	Page: 2

- All plates are 2x4 MT20 unless otherwise indicated. 4)
- 5) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 1-4-0 oc. 6)
- This truss has been designed for a 10.0 psf bottom 7)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 9) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1 lb uplift at joint 2, 62 lb uplift at joint 24, 29 lb uplift at joint 37, 73 lb uplift at joint 38, 61 lb uplift at joint 39, 62 lb uplift at joint 40, 64 lb uplift at joint 41, 53 lb uplift at joint 42, 69 lb uplift at joint 43, 36 lb uplift at joint 44, 217 lb uplift at joint 45, 59 lb uplift at joint 46, 32 lb uplift at joint 35, 72 Ib uplift at joint 34, 61 lb uplift at joint 33, 64 lb uplift at joint 32, 62 lb uplift at joint 31, 56 lb uplift at joint 30, 62 Ib uplift at joint 29, 64 lb uplift at joint 28, 48 lb uplift at joint 27, 99 lb uplift at joint 26 and 1 lb uplift at joint 2.

LOAD CASE(S) Standard

Run; 8.63 S Sep 26 2024 Print; 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 10:14:25 ID:YFAsy9mqBrEqN0MGY4iGStzmvGV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Maplewood Prime B (12-26-24)	
4619374	A02	Common	5	1	Job Reference (optional)	170935385

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 10:14:26 ID:xL?soJkaydZlkQQImzbAl2zmvBN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [10:0-5-0,0-4-8], [12:0-5-0,0-4-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.84	Vert(LL)	-0.13	10-16	>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.72	Vert(CT)	-0.33	10-16	>584	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.73	Horz(CT)	0.05	8	n/a	n/a			
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS		Wind(LL)	0.19	12-14	>999	240	Weight: 179 lb	FT = 20%	

LUMBER

	2V4 CD N	<u> </u>
TOP CHORD	2X4 3P IN	0.2
BOT CHORD	2x6 SP N	0.2
WEBS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structura	wood sheathing directly applied.
BOT CHORD	Rigid ceil	ing directly applied or 9-10-6 oc
	bracing.	
REACTIONS	(size)	2=0-3-8, 8=0-3-8, 11=0-3-8
	Max Horiz	2=328 (LC 11)
	Max Uplift	2=-359 (LC 12), 8=-362 (LC 13)
	Max Grav	2=1246 (LC 1), 8=1246 (LC 1),
		11=318 (LC 19)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/28,	2-3=-1854/673, 3-5=-1804/750,
	5-7=-1803	3/749, 7-8=-1854/673, 8-9=0/28
BOT CHORD	2-11=-504	4/1630, 8-11=-418/1519
WEBS	5-12=-328	8/790, 3-12=-563/428,

NOTES

1) Unbalanced roof live loads have been considered for this design.

5-10=-332/789, 7-10=-563/428

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

6) Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 359 lb uplift at

joint 2 and 362 lb uplift at joint 8.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Maplewood Prime B (12-26-24)	
4619374	A03	Common	6	1	Job Reference (optional)	170935386

18

17

Plate Offsets (X, Y): [1:Edge,0-0-4], [11:0-3-4,0-3-8]

_oading FCLL (roof) FCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.83 0.66 0.61	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.12 -0.29 0.04 0.16	(loc) 9-16 9-16 7 9-16	l/defl >999 >660 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 200 lb	GRIP 244/190 FT = 20%	
LUMBER FOP CHORD 30T CHORD WEBS BRACING FOP CHORD 30T CHORD	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Structural wood she 2-2-0 oc purlins. Rigid ceiling directly bracing.	athing directly applie applied or 10-0-0 o	5) 6) 7) ed or c LO	Bearings are crushing cap capacity of 5/ Refer to girde Provide mecl bearing plate joint 1, 317 lb AD CASE(S)	assumed to be: , , acity of 565 psi, Jc 65 psi. er(s) for truss to tru- hanical connection capable of withsta o uplift at joint 7 an Standard	Joint 10 bint 7 SF uss conr (by oth anding 2 d 92 lb	SP No.2 No.2 crushin nections. ers) of truss to 77 lb uplift at uplift at joint 1	ng D 0.						
REACTIONS	(size) 1= Mecha Max Horiz 1=-322 (L Max Uplift 1=-277 (L 10=-92 (L Max Grav 1=1035 (L 10=565 (L	nical, 7=0-3-8, 10=(C 8) C 12), 7=-317 (LC 1 C 12) _C 1), 7=1097 (LC 1 _C 19))-3-8 3),),											
ORCES	(lb) - Maximum Com Tension	pression/Maximum												
FOP CHORD	1-2=-1579/550, 2-4= 4-6=-1526/616, 6-7=	1479/604, 1620/562, 7-8=0/2	8											
BOT CHORD WEBS	1-10=-430/1412, 7-1 4-11=-259/579, 2-11 4-9=-275/648, 6-9=-	0=-324/1320 =-547/422, 559/426											<u>ц</u> .,	
NOTES I) Unbalance	ed roof live loads have	been considered fo	r								S	"TH CA	RO	

- this design. Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

"monore and and annun nun SEAL 023594 R. MI munn January 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Maplewood Prime B (12-26-24)	
4619374	A04	Common	6	1	Job Reference (optional)	170935387

Run; 8.63 S Sep 26 2024 Print; 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 10:14:27

Page: 1 ID:a?RYE_QyarRFH35tUSY9Utzmv5J-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 32-6-8 8-0-9 15-8-0 23-3-7 31-7-8 0-11-0 8-0-9 7-7-7 7-7-7 8-4-1 4x6 **I** 4 12 71 2x4 / 3x6 🖌 3x6 2x4 " 5 3 2 6 10-2-3 8-4 6-9--4-9 ∏ 8 • 11 17 10 18 9 3x6= 3x8= 4x6= 4x6= 4x6 =10-3-12 21-0-4 31-7-8 10-3-12 10-8-8 10-7-4 Scale = 1:62.6 Loading 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) Spacing (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.90 Vert(LL) -0.20 9-11 >999 360 MT20 244/190

BCDL 11

TCDI

BCLL

LUWBER	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x6 SP No.2
WEBS	2v4 SP No 3

V BRACING TOP CHORD Structural wood sheathing directly applied. Rigid ceiling directly applied or 10-0-0 oc BOT CHORD bracing. REACTIONS (size) 1= Mechanical, 7=0-3-8 Max Horiz 1=-322 (LC 8) Max Uplift 1=-323 (LC 12), 7=-357 (LC 13) Max Grav 1=1287 (LC 19), 7=1344 (LC 20) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-2025/668, 2-4=-1927/744, 4-6=-1973/756, 6-7=-2068/679, 7-8=0/28 BOT CHORD 1-11=-490/1881, 9-11=-148/1205, 7-9=-424/1678 WEBS 4-11=-314/914 2-11=-543/423

10.0

10.0

0.0*

Lumber DOL

Code

Rep Stress Incr

4-9=-329/984, 6-9=-558/428

NOTES

Unbalanced roof live loads have been considered for 1) this design.

- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Bearings are assumed to be: , Joint 7 SP No.2 crushing capacity of 565 psi.
- 6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 323 lb uplift at joint 1 and 357 lb uplift at joint 7. LOAD CASE(S) Standard

0.71

0.72

Vert(CT)

Horz(CT)

Wind(LL)

-0.30

0.05

0.16

9-11

9-16

7

>999

>999

240

n/a n/a

240

Weight: 176 lb

FT = 20%

BC

WB

Matrix-MS

1 15

YES

IRC2015/TPI2014

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Maplewood Prime B (12-26-24)	
4619374	A05	Common Supported Gable	1	1	Job Reference (optional)	170935388

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 10:14:27 ID:8W9RimTznmkG21WMuR4oqWzmv2g-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:61.5

Plate Offsets (X, Y): [7:0-3-0,0-3-0], [17:0-3-0,0-3-0], [35:0-5-0,0-4-8]

Loading TCLL (roof) (psf) Spacing Plate Grip DOL 2-0-0 Flate Grip DOL CSI DEFL in (loc) //deft L/d PLATES GRIP TCDL 10.0 Rep Stress Incr YES BC 0.05 Vert(CT) n/a 999 MT20 244/190 BCDL 10.0 Rep Stress Incr YES BC 0.05 Vert(CT) n/a 999 MT20 244/190 LUMBER 10.0 Code IRC2015/TPI2014 Matrix-MS Matrix-MS Veright: 283 Ib FT = 20% LUMBER 526216 (LC 20), 28-810 (LC 20), 38-118 (LC 19), 33-1122 (LC 19, 34-114 (LC 20), 31-1122 (LC 19), 34-114 (LC 20), 31-1122 (LC 19), 44-114 (LC 10), 31-1122 (LC 19), 44-114 (LC 19), 31-1122 (LC 19), 44-114 (LC 19), 31-1122 (LC 19), 44-114 (LC 19), 31-112 (LC 19), 41-114 (LC 19), 31-112 (LC 19), 41-114 (LC 19),														
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Loading TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORD	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MS Max Grav 1=152 25=21	0.08 0.05 0.12 2 (LC 20), 2 4 (LC 20),	DEFL Vert(LL) Vert(CT) Horz(CT) 23=161 (LC 1 26=80 (LC 2	in n/a n/a 0.01 1), 20),	(loc) - 23 WEBS	l/defl n/a n/a n/a	L/d 999 999 n/a 12-35 10-37	PLATES MT20 Weight: 283 lt =-199/130, 11-3 =-110/86, 9-38=	GRIP 244/190 • FT = 20% 36=-97/54, =-99/77, 8-39:	=-104/80,
Webs 1 Row at midpt 12-35, 11-36, 13-34 39=123 (LC 19), 40=118 (LC 19), 41=114 (LC 19), 41=112 (LC 19), 41=114 (LC 19), 41=114 (LC 19), 41=114 (LC 19), 41=112 (LC 19), 41=114 (LC 19), 41=114 (LC 19), 41=112 (LC	BOT CHORD OTHERS BRACING TOP CHORD	 2x6 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Bigid coiling directly 	eathing directly applied	d or	27=12 29=11 31=12 33=12 35=20 37=11	8 (LC 20), 4 (LC 20), 2 (LC 20), 1 (LC 20), 6 (LC 13), 8 (LC 19),	28=117 (LC 30=119 (LC 32=118 (LC 34=116 (LC 36=124 (LC 38=118 (LC	20), 20), 20), 20), 19), 19),			7-40= 4-43= 13-34 16-31 18-29 20-27	-100/78, 6-41=- -102/79, 3-44=- =-89/46, 14-33= =-104/80, 17-30 =-94/72, 19-28= =-102/78, 21-26	94/72, 5-42=- 87/67, 2-45=- -110/89, 15-3)=-100/78, -100/78, 5=-87/70,	·100/78, ·140/108, 32=-99/77,
1201 F 201 F 7-8, 22 = 31 - 7-8, 28 = 31 - 7-8, 28 = 31 - 7-8, 30 = 31 - 7-8, 31 = 31 - 7-8, 32 = 31 - 7-8, 33 = 31 - 7-8, 32 = 31 - 7-8, 33 = 31 - 7-8, 33 = 31 - 7-8, 33 = 31 - 7-8, 34 = 31 - 7-8, 35 = 31 - 7-8, 36 = 31 - 7-8, 46 = 31 - 7-8, 45 = 31 - 7-8, 45 = 31 - 7-8, 45 = 31 - 7-8, 45 = 31 - 7-8, 45 = 31 - 7-8, 45 = 31 - 7-8, 45 = 31 - 7-8, 45 = 31 - 7-8, 45 = 31 - 7-8, 45 = 31 - 7-8, 45 = 31 - 7-8, 45 = 31 - 7-8, 45 = 31 - 7-8, 46 = 31 - 7-8, 45 = 31 - 7-8, 46 = 31 - 7-8, 45	WEBS	 Rigid ceiling directly bracing. 1 Row at midpt (size) 1-31-7-8 	2 applied or 10-0-0 oc 12-35, 11-36, 13-34 23-31-7-8, 25-31-7-	-8	39=12 41=11 43=12	23 (LC 19), 4 (LC 19), 9 (LC 19),	40=118 (LC 42=117 (LC 44=75 (LC 1	19), 19), 19), I),	NOTE: 1) Ur	S Ibalanced	22-25 d roof li	=-144/102	been conside	red for
31=-64 (LC 13), 32=-61 (LC 13), 43-44=-170/261, 42-43=-170/261, 33=-73 (LC 13), 34=-30 (LC 13), 43-44=-170/261, 42-43=-170/261, 36=-38 (LC 12), 37=-70 (LC 12), 41-42=-170/261, 40-41=-170/261, 38=-61 (LC 12), 39=-64 (LC 12), 39-40=-172/261, 38-39=-172/261, 40=-62 (LC 12), 41=-56 (LC 12), 37-38=-172/261, 36-37=-172/261, 42=-60 (LC 12), 43=-69 (LC 12), 32-33=-172/261, 31-32=-172/261, 44=-28 (LC 12), 45=-145 (LC 12), 30-31=-172/261, 29-30=-170/260, 46=-69 (LC 10) 28-29=-170/260, 28-29=-170/260, 27-28=-170/260, 023594		(size) 1=31-7-8 26=31-7- 29=31-7- 32=31-7- 35=31-7- 35=31-7- 35=31-7- 41=31-7- 41=31-7- 41=31-7- 41=31-7- 41=31-7- 41=31-7- 41=31-7- (12599 (L) 27=-64 (L) 27=-64 (L) 29=-56 (L) 29=-56 (L) 31=-64 (L) 33=-73 (L) 36=-38 (L) 36=-38 (L) 36=-38 (L) 36=-38 (L) 36=-38 (L) 36=-38 (L) 36=-69 (L) 36=-76 ((2) = 31-7-6, 22=31-7-8, 28=31-7-8, 28=31-7-8, 31=31-7-8, 31=31-7-8, 33=31-7-8, 33=31-7-8, 33=31-7-8, 33=31-7-8, 33=31-7-8, 33=31-7-8, 46=31-7-8, 46=31-7-8, 46=-322 (LC 8) $(2) = 22 + 22 + 22 + 22 + 22 + 22 + 22 + $	 -7-8, 7-8, 7-8, 7-8, 7-8, 7-8, 7-8, 8), 9), 8), 80, 80,<td colspan="5">$\begin{array}{r} 45=\!229(LC19),46=\!152(LC20)\\ (lb) - Maximum Compression/Maximum Tension\\ D1-2=-287/224,2-3=-221/193,3-4=-195/181,4-5=-169/163,5-6=-155/151,6-8=-143/170,8-9=-140/198,9-10=-177/224,10-11=-218/256,11-12=-240/284,12-13=-240/284,13-14=-218/2566,14-15=-177/207,15-16=-140/163,16-18=-102/117,18-19=-60/611,19-20=-78/69,20-21=-115/86,21-22=-158/99,22-23=-221/156,23-24=0/28\\ D1-45=-170/261,44-45=-170/261,43-44=-170/261,43-44=-170/261,42-43=-170/261,43-44=-170/261,33-34=-172/261,33-34=-172/261,37-38=-172/261,33-34=-172/261,33-34=-172/261,33-34=-172/261,33-34=-172/261,33-34=-172/261,33-34=-172/261,33-34=-172/261,33-34=-172/261,30-31=-172/261,31-32=-172/261,30-31=-172/261,31-32=-172/261,30-31=-172/261,30-31=-172/261,30-31=-170/260,28-29=-170/$</td><td>s design. ind: ASCI isd=103m at. II; Exp ne and C posed ; e embers ai mber DO uss desig ly. For st e Standa consult q</td><td>E 7-10; hph; TC C; Enc -C Exte- nd veri- nd forc L=1.60 ned for tuds ex rd Indu jualified</td><td>Vult=130mph (DL=6.0psf; BC closed; MWFRS erior (2) zone; c tical left and rigi es & MWFRS fr) plate grip DOL r wind loads in t sposed to wind (isstry Gable End d building tlesig</td><td>3-second gus DL=6.0psf; h: (envelope) e antilever left : the exposed;C- pr reactions s =1.60 he plane of th normal to the Details as ap her as per AN</td><td>st) =25ft; exterior and right -C for hown; he truss face), pplicable, tSI/TPI 1.</td>	$\begin{array}{r} 45=\!229(LC19),46=\!152(LC20)\\ (lb) - Maximum Compression/Maximum Tension\\ D1-2=-287/224,2-3=-221/193,3-4=-195/181,4-5=-169/163,5-6=-155/151,6-8=-143/170,8-9=-140/198,9-10=-177/224,10-11=-218/256,11-12=-240/284,12-13=-240/284,13-14=-218/2566,14-15=-177/207,15-16=-140/163,16-18=-102/117,18-19=-60/611,19-20=-78/69,20-21=-115/86,21-22=-158/99,22-23=-221/156,23-24=0/28\\ D1-45=-170/261,44-45=-170/261,43-44=-170/261,43-44=-170/261,42-43=-170/261,43-44=-170/261,33-34=-172/261,33-34=-172/261,37-38=-172/261,33-34=-172/261,33-34=-172/261,33-34=-172/261,33-34=-172/261,33-34=-172/261,33-34=-172/261,33-34=-172/261,33-34=-172/261,30-31=-172/261,31-32=-172/261,30-31=-172/261,31-32=-172/261,30-31=-172/261,30-31=-172/261,30-31=-170/260,28-29=-170/$					s design. ind: ASCI isd=103m at. II; Exp ne and C posed ; e embers ai mber DO uss desig ly. For st e Standa consult q	E 7-10; hph; TC C; Enc -C Exte- nd veri- nd forc L=1.60 ned for tuds ex rd Indu jualified	Vult=130mph (DL=6.0psf; BC closed; MWFRS erior (2) zone; c tical left and rigi es & MWFRS fr) plate grip DOL r wind loads in t sposed to wind (isstry Gable End d building tlesig	3-second gus DL=6.0psf; h: (envelope) e antilever left : the exposed;C- pr reactions s =1.60 he plane of th normal to the Details as ap her as per AN	st) =25ft; exterior and right -C for hown; he truss face), pplicable, tSI/TPI 1.

January 23,2025

Page: 1

ontinued.	on	nage	2	

tinued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	JSJ, Maplewood Prime B (12-26-24)	
4619374	A05	05 Common Supported Gable 1		1	Job Reference (optional)	170935388
Builders FirstSource (Sumter, SO	C), Sumter, SC - 29153.	Run: 8.63 S Sep 26 2	2024 Print: 8	630 S Sep 2	6 2024 MiTek Industries, Inc. Wed Jan 22 10:14:27	Page: 2

ID:8W9RimTznmkG21WMuR4oqWzmv2g-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

All plates are 2x4 MT20 unless otherwise indicated. 4)

Gable requires continuous bottom chord bearing. 5)

- Gable studs spaced at 1-4-0 oc. 6)
- This truss has been designed for a 10.0 psf bottom 7)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 9) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 69 lb uplift at joint 1, 38 lb uplift at joint 36, 70 lb uplift at joint 37, 61 lb uplift at joint 38, 64 lb uplift at joint 39, 62 lb uplift at joint 40, 56 lb uplift at joint 41, 60 lb uplift at joint 42, 69 lb uplift at joint 43, 28 lb uplift at joint 44, 145 lb uplift at joint 45, 30 lb uplift at joint 34, 73 lb uplift at joint 33, 61 Ib uplift at joint 32, 64 lb uplift at joint 31, 62 lb uplift at joint 30, 56 lb uplift at joint 29, 62 lb uplift at joint 28, 64 Ib uplift at joint 27, 48 lb uplift at joint 26, 99 lb uplift at joint 25, 9 lb uplift at joint 23 and 69 lb uplift at joint 1.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 46.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Maplewood Prime B (12-26-24)	
4619374	B01	Common Supported Gable	1	1	Job Reference (optional)	170935389

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 10:14:27 ID:d2LxIAWvWBZ3NF4twVdzJezmv1K-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:61.3

Plate Offsets (X, Y): [7:0-3-0,0-3-0], [15:0-3-0,0-3-0], [33:0-1-8,0-2-0]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(lc	bc) I	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.08	Vert(LL)	n/a		-	n/a	999	MT20	244/190	
TCDL		10.0	Lumber DOL	1.15		BC	0.05	Vert(CT)	n/a		-	n/a	999			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.12	Horz(CT)	0.01	:	20	n/a	n/a			
BCDL		10.0	Code	IRC20	015/TPI2014	Matrix-MS								Weight: 224 lb	FT = 20%	
										a)	-					
LUMBER		_			FORCES	(Ib) - Maximum Co	ompressi	on/Maximum		3)	Iruss	desigr	ned to	r wind loads in th	e plane of th	e truss
TOP CHORD	2x4 SP N	0.2					0/007 0	4 070/000			oniy.	For st	uas ex	kposed to wind (r	formal to the	tace),
BOICHORD	2x6 SP N	0.2			TOP CHORD	1-2=0/33, 2-3=-33	0/227, 3 167/16	-4 = -276/203	20		see 5	anuar	a mat	d building decign	Jetalis as ap	
OTHERS	2x4 SP N	0.3				4-5=-211/179, 5-0 8-9-129/177 9-1		00, 0-0=-144/1 220	39,	4)		isuit yi		MT20 unless oth	er as per AN	SI/TFTT.
BRACING	_					10-11-218/254 1	1-122	.20, 18/254		4) 5)	Cable		- 214	ntinuous bottom	chord bearin	a.eu. a
TOP CHORD	Structura	l wood shea	athing directly applied	d or		12-13=-186/213 1	3-14=-1	29/145		6)	Gable	s etude	snace	ad at 1-4-0 oc	chord bearing	y.
	6-0-0 oc p	purlins.				14-16=-75/87 16-	17=-95/7	'9		7)	This ti	ruse ha	space	n designed for a	10 0 nef hot	tom
BOICHORD	Rigid cell	ing directly	applied of 10-0-0 oc			17-18=-159/103.1	8-19=-2	24/148.		• /	chord	live lo	ad no	nconcurrent with	any other liv	e loads
WEDO	1 Pow of	midnt	11 20 10 21 12 20			19-20=-287/202, 2	20-21=0/	33		8)	* This	truss	has be	een designed for	a live load of	f 20.0psf
	I ROW at		11-30, 10-31, 12-29	0	BOT CHORD	2-39=-192/291, 38	8-39=-19	2/291,		-,	on the	e botto	m cho	rd in all areas wh	nere a rectan	ale
REACTIONS	(size)	2=24-3-0,	20=24-3-0, 22=24-3-	-0,		37-38=-192/291, 3	86-37=-1	92/291,			3-06-0	00 tall	by 2-0	0-00 wide will fit	between the	bottom
		23=24-3-0), 24=24-3-0, 25=24-	3-0,		35-36=-192/291, 3	84-35=-1	96/293,			chord	and a	ny oth	er members.		
		20=24-3-0), 27=24-3-0, 20=24-3	3-0, 3-0		32-34=-196/293, 3	31-32=-1	96/293,		9)	All be	arings	are as	ssumed to be SP	No.2 crushir	ng
		32=24-3-0) 34=24-3-0 35=24-	3-0, 3-0		30-31=-196/293, 2	29-30=-1	96/293,			capac	city of 5	65 ps	si.		
		36=24-3-0), 37=24-3-0, 38=24-3	3-0.		28-29=-196/293, 2	27-28=-1	96/293,								
		39=24-3-0	, 40=24-3-0, 43=24-3	3-0		26-27=-196/293, 2	25-26=-1	92/289,								
	Max Horiz	2=-326 (L	C 10), 40=-326 (LC 1	0)		24-25=-192/289, 2	23-24=-1	92/289,								
	Max Uplift	2=-92 (LC	8), 20=-42 (LC 9),	,	WEDO	22-23=-192/289, 2	0.21 1	92/289								
		22=-109 (LC 13), 23=-68 (LC 1	3),	WED3	$0_{32} = 122/102 8^{-1}$	34-120	01/00, /00 7-3511'	2/01							
		24=-81 (L	C 13), 25=-64 (LC 13	5),		6-3699/81 5-37	114/9F	33,7-33112/0 4-38112/0	2/34,							
		26=-78 (L	C 13), 27=-82 (LC 13	5),		3-39=-116/92 12-	29=-93/6	5, 4 00= 112/3 51	· ∠ ,							
		28=-88 (L	C 13), 29=-45 (LC 13	5),		13-28=-122/104.1	4-27=-1	20/99.							1111	
		31=-52 (L	C 12), 32=-86 (LC 12	2),		15-26=-112/94, 16	6-25=-99	/81,						WITH UA	ROU	
		34=-83 (L)	C 12), 35=-78 (LC 12	<u>?),</u>		17-24=-114/95, 18	8-23=-11	2/93,					N	A	in La	11.
		36=-64 (L	C 12), 37=-81 (LC 12	<u>(),</u>		19-22=-116/91							32	U if ESS	ON	12
		30=-00 (L)	C = 12, $39 = -110$ (LC = 1 C = 12, $39 = -12$ (LC = 1)	2),	NOTES							-	: >	12. 1	11.2	
	Max Gray	40=-92 (L)	C 0), 43=-42 (LC 9)	`	1) Unbalanced	d roof live loads hav	/e been	considered for	r			-	1	A . /	man.	
	wax Grav	2=194 (LC 22=132 /I	C 20) 23-120 (LC 22), ())	this design.							=	:	SEA	a 1	
		24=125 (L	C 20), 25=120 (LC 2	0)	2) Wind: ASC	E 7-10; Vult=130mp	oh (3-seo	cond gust)				=			.L.	
		26=123 (L	.C 20), 27=130 (LC 2	0).	Vasd=103n	nph; TCDL=6.0psf;	BCDL=6	0.0psf; h=25ft;				Ξ		0235	94	
		28=124 (L	.C 20), 29=120 (LC 2	0),	Cat. II; Exp	C; Enclosed; MWF	RS (env	elope) exterio	r			-		:		
		30=222 (L	.C 13), 31=128 (LC 1	9),	zone and C	-C Exterior (2) zone	e; cantile	ver left and right	ght					N	· ·	-
		32=122 (L	.C 19), 34=130 (LC 1	9),	exposed ; e	end vertical left and	right exp	osed;C-C for					2.	X SNOW	EEK. O	5
		35=123 (L	.C 19), 36=112 (LC 1	9),	members a	na torces & MWFR	S for rea	ctions snown;	;				11	OA	1. 8	5
		37=126 (L	.C 19), 38=118 (LC 1	9),	Lumber DC	L=1.60 plate grip L	UL=1.60	J						INY P	MILLIN	
		39=139 (L	.C 19), 40=194 (LC 2	1),										The star	in the second	
		43=167 (L	.C 22)											lonuar	102 2025	
														January	y 23,2025	1

Continued on page 2 WARNING - Verify

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Maplewood Prime B (12-26-24)	
4619374	B01	Common Supported Gable	1	1	Job Reference (optional)	170935389

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 92 lb uplift at joint 2, 42 lb uplift at joint 20, 52 lb uplift at joint 31, 86 lb uplift at joint 32, 83 lb uplift at joint 34, 78 lb uplift at joint 35, 64 lb uplift at joint 36, 81 lb uplift at joint 37, 66 lb uplift at joint 38, 116 lb uplift at joint 39, 45 lb uplift at joint 29, 88 lb uplift at joint 28, 82 lb uplift at joint 27, 78 lb uplift at joint 26, 64 lb uplift at joint 25, 81 lb uplift at joint 24, 68 lb uplift at joint 23, 109 lb uplift at joint 22, 92 lb uplift at joint 2 and 42 lb uplift at joint 20.

LOAD CASE(S) Standard

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 10:14:27 ID:d2LxIAWvWBZ3NF4twVdzJezmv1K-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Maplewood Prime B (12-26-24)	
4619374	B02	Common Girder	1	3	Job Reference (optional)	170935390

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 10:14:27 ID:9xuGp5Kxkm0ZvYimM4KgXnzmv0H-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:65.6

Plate Offsets (X, Y): [6:0-4-12,0-1-8], [7:0-5-0,0-4-4], [9:0-4-12,0-1-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.67 0.45 0.63	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.10 -0.20 0.04 0.11	(loc) 7-9 7-9 5 7-9	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 451 lb	GRIP 244/190 FT = 20%
LUMBER 4) Wind: ASCE 7-10; Vult=130mph (3-second gust) TOP CHORD 2x4 SP No.2 SP 2400F 2.0E or 2x6 SP DSS BOT CHORD 2x4 SP No.2 Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior BRACING TOP CHORD Structural wood sheathing directly applied or 06-0-0 oc bracing. Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. This truss has been designed for a 10.0 psf bottom BOT CHORD (size) 1=0-3.8, 5=0-3.8 Solo-0.0 cot. III b; 2-00-00 wide will fit between the bottom Max Horiz 1=303 (LC 24) Max Uplift 1=2056 (LC 8), 5=-2152 (LC 9) Max Grav 1=7658 (LC 1), 5=-7841 (LC 1) 7) FORCES (lb) - Maximum Compression/Maximum Tension 7) TOP CHORD 1-2=-10256/2765, 2-3=-6803/1967, 3-4=-6803/1967, 4-5=-9271/2865 9) BOT CHORD 1-9=-2281/8286, 7-9=										1			
NOTES 1) 3-ply truss (0.131"x3" Top chord oc. Bottom ch staggered Web conn 2) All loads a except if r CASE(S) provided t unless ott 3) Unbalance this design	s to be connected toge ") nails as follows: Is connected as follows: nords connected as follows nords connected as foll at 0-5-0 oc. Nected as follows: 2x4 - are considered equally noted as front (F) or ba section. Ply to ply conr o distribute only loads nerwise indicated. ed roof live loads have n.	ther with 10d s: 2x4 - 1 row at 0-9-0 ows: 2x6 - 2 rows - 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LOA nections have been noted as (F) or (B), been considered for	1) \D	Dead + Roc Plate Increa Uniform Loc Vert: 1-3 Concentrate Vert: 7=- 16=-1244 19=-1244 22=-1015	of Live (balanced): Ise=1.15 ads (lb/ft) =-60, 10-13=-20, 3 ad Loads (lb) 1244 (B), 6=-1015 4 (B), 17=-1244 (B 5 (B), 23=-1015 (B	Lumber 3-5=-60 i (B), 15= i), 18=-1 i), 21=-1 i), 24=-1	Increase=1.1 1021 (B), 244 (B), 015 (B), 015 (B)	15,		CONTRACTOR OF CONTRACTOR	and the second s	SEA 0235	ROLL 94

January 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Maplewood Prime B (12-26-24)	
4619374	C01	Monopitch Supported Gable	1	1	Job Reference (optional)	170935391

5-11-8

-0-11-0

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 10:14:27 ID:ZsIYMgvgUDmntnAb2AdYOizmuwM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:28.7

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.10 0.08 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-11-8 oc purlins, e Rigid ceiling directly bracing. (size) 2=5-11-8, 8=5-11-8, Max Horiz 2=122 (LC Max Uplift 2=-73 (LC (LC 8), 8= 8) Max Grav 2=172 (LC	athing directly applier xcept end verticals. applied or 10-0-0 oc 6=5-11-8, 7=5-11-8, 9=5-11-8 28), 6=-22 (LC 8) 3, 6=-21 (LC 12), 7= -108 (LC 12), 9=-73 C1), 6=49 (LC 1), 7=	5) 6) d or 7) 8) =-23 (LC 43	This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an All bearings a capacity of 5 Provide mecl bearing plate 2, 21 lb uplift at joint 8 and DAD CASE(S)	s been designed fo d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members. tre assumed to be 55 psi. hanical connection capable of withsta at joint 6, 23 lb upl 73 lb uplift at joint Standard	r a 10.1 ith any for a liv where fit betv SP No. (by oth nding 7 ift at joi 2.	0 psf bottom other live load e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss to 3 lb uplift at jo nt 7, 108 lb up	ds. ipsf om oint olift					
FORCES	(LC 1), 8= (Ib) - Maximum Com	=255 (LC 1), 9=172 (L pression/Maximum	_C 1)										
TOP CHORD BOT CHORD WEBS	Tension 1-2=0/17, 2-3=-111/ 4-5=-17/9, 5-6=-34/4 2-8=-30/54, 7-8=0/0 4-7=-46/67, 3-8=-16	52, 3-4=-44/13, 11 , 6-7=0/0 7/185											un.
NOTES	11-10/01,00-10	1/100										I'L'H CA	ROUL
 Wind: ASC Vasd=103 Cat. II; Ex, zone and exposed; and forces DOL=1.60 Truss desi only. For see Stand or consult Gable req Gable stud 	CE 7-10; Vult=130mph mph; TCDL=6.0psf; Bi p C; Enclosed; MWFR C-C Exterior (2) zone; end vertical left expos & MWFRS for reaction plate grip DOL=1.60 igned for wind loads in studs exposed to wind ard Industry Gable En qualified building design uires continuous bottoo ds spaced at 1-4-0 oc.	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and rig ed;C-C for members ns shown; Lumber the plane of the truss (normal to the face), d Details as applicabl gner as per ANSI/TPI m chord bearing.	s le, 11.							1. minutes		SEA 0235 OVY R.	L 94 MILLERING

- Gable requires continuous bottom chord bearing. 3)
- 4) Gable studs spaced at 1-4-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

January 23,2025

Job	Truss	Truss Type	Qty	Ply	JSJ, Maplewood Prime B (12-26-24)	
4619374	C02	Monopitch	5	1	Job Reference (optional)	170935392

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 10:14:27 ID:G2QI0vEc7W9ycxIn8Lct_Ozmuvx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

3x4 =

Scale = 1:28.7

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.53 0.53 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.18 -0.12 0.00	(loc) 4-7 4-7 2	l/defl >385 >591 n/a	L/d 240 240 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING	2x4 SP No.: 2x4 SP No.: 2x4 SP No.:	2 2 2		 Provide mec bearing plate joint 2 and 10 LOAD CASE(S) 	hanical connection capable of withsta 37 lb uplift at joint 4 Standard	(by oth Inding 1	ers) of truss to 93 lb uplift at	0					
BOT CHORD	Structural w 5-11-8 oc p Rigid ceiling bracing.	vood shea urlins, ex g directly	athing directly applied applied or 10-0-0 oc	d or									
REACTIONS	(size) 2 Max Horiz 2 Max Uplift 2 Max Gray 2	=0-3-0, 4 =122 (LC =-193 (L0 =292 (L0	=0-1-8 5 8) C 8), 4=-167 (LC 8) 5 1) 4=228 (I C 1)										
FORCES	(lb) - Maxim	um Com	pression/Maximum										
TOP CHORD BOT CHORD	1-2=0/17, 2 2-4=-190/10	-3=-100/1)1	36, 3-4=-152/203										
NOTES													
 Wind: ASC Vasd=103i Cat. II; Exp zone and (exposed; c reactions s DOL=1.60 	E 7-10; Vult= mph; TCDL=6 o C; Enclosed C-C Exterior (end vertical le c-C for membe shown; Lumbe	130mph 5.0psf; BC ; MWFRS 2) zone; (2) zone; (eft expose ers and fo er DOL=1	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and rig d; porch left and rig proces & MWFRS for .60 plate grip	ht It								WITH CA	ROL
2) This truss	has been des	igned for	a 10.0 psf bottom	_							is	OFESS	Dir Main
 cnord live 3) * This truss on the bott 3-06-00 tal chord and 	ioad nonconc s has been de tom chord in a Il by 2-00-00 v any other me	urrent wit esigned fo all areas v wide will f mbers	n any other live load or a live load of 20.0p where a rectangle it between the bottor	s. osf n						ALL DATE	0	SEAI	uide
4) All bearing	Is are assume	ed to be S	P No.2 crushing							1		0235	⁷⁴ ? ?
5) Bearing at using ANS	joint(s) 4 con i/TPI 1 angle	siders pa to grain f	rallel to grain value ormula. Building									NGINE	EPIA
designer s6) Provide me bearing plat	nould verify c echanical con ate at joint(s)	apacity o nection (4.	bearing surface. by others) of truss to								11	WY R. N	MILLINN

January 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Maplewood Prime B (12-26-24)	
4619374	C03	Monopitch	12	1	Job Reference (optional)	170935393

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 10:14:27 ID:Zgtq37XfTuBYVdaPYO1WySzmuvZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-0-11-0

4-11-8

Scale = 1:27.4

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.32 0.26 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.02 -0.05 0.00 0.04	(loc) 4-7 4-7 2 4-7	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 4-11-8 oc purlins, e Rigid ceiling directly bracing. (size) 2=0-3-8, 4 Max Horiz 2=105 (LC Max Uplift 2=-111 (L Max 0 2 2 2 2 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1	athing directly applie xcept end verticals. applied or 10-0-0 oc 4=0-1-8 C 8), 4=-79 (LC 12)	7) Provide med bearing plate 2 and 79 lb t LOAD CASE(S) ed or	hanical connectii e capable of with: uplift at joint 4. Standard	on (by oth standing 1	ers) of truss t 11 lb uplift at	o joint						
FORCES TOP CHORD BOT CHORD	(Ib) - Maximum Com Tension 1-2=0/17, 2-3=-81/3 2-4=-65/98	2, 3-4=-124/140											
 Wind: AS Vasd=10 Cat. II; E: zone and exposed and force DOL=1.6 This truss chord live 3 * This tru on the boc 3 * 06-00 t chord ann All bearin capacity Bearing a using AN designer Provide r bearing p 	CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; Br qp C; Enclosed; MWFR C-C Exterior (2) zone; ; end vertical left expos s & MWFRS for reactio 0 plate grip DOL=1.60 s has been designed for e load nonconcurrent wi ss has been designed f ttom chord in all areas all by 2-00-00 wide will d any other members. gs are assumed to be so of 565 psi. tt joint(s) 4 considers pa SI/TPI 1 angle to grain should verify capacity of nechanical connection (late at joint(s) 4.	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and ri- ed;C-C for members ins shown; Lumber r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto SP No.2 crushing arallel to grain value formula. Building of bearing surface. 'by others) of truss to	r ght 5 ds. psf om						Walthur		SEA 0235	ROLL 94	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

January 23,2025

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	JSJ, Maplewood Prime B (12-26-24)	
4619374	C04	Monopitch Supported Gable	1	1	Job Reference (optional)	170935394

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 10:14:28 ID:wvC8geoSleyQ8?Gdq?Rgr5zmuvD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:27.4

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.12	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.10	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.06	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MP							Weight: 20 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 4-11-8 oc purlins, ex Rigid ceiling directly bracing. (size) 2=4-11-8, 7=4-11-8 Max Horiz 2=105 (LC Max Uplift 2=-83 (LC (LC 12), 7 Max Grav 2=182 (LC	athing directly applied ccept end verticals. applied or 10-0-0 oc 5=4-11-8, 6=4-11-8, 8), 7=105 (LC 8) 8), 5=-29 (LC 1), 6=- =-83 (LC 8) 1), 5=12 (LC 12), 6=	 6) * This truss h on the botton 3-06-00 tall b chord and an 7) All bearings a capacity of 50 8) Provide med bearing plate 2, 29 lb uplift uplift at joint 1 LOAD CASE(S) 121 2287 	as been designed a chord in all areas y 2-00-00 wide will y other members. are assumed to be 55 psi. nanical connection capable of withsta at joint 5, 121 lb up 2. Standard	for a liv where fit betw SP No. (by oth nding 8 bilft at jo	e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss to 3 lb uplift at jo bint 6 and 83 l	psf om o bint b					
FORCES	(LC 1), 7= (Ib) - Maximum Com	182 (LC 1) pression/Maximum										
TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=1030 Cat. II; Exp zone and C exposed; and forces DOL=1.60 2) Truss desii only. For s see Standa or consult 3) Gable requ 4) Gable stud 5) This truss i chord live I	Tension 1-2=0/17, 2-3=-82/43 2-6=-31/59, 5-6=0/0 3-6=-189/215 CE 7-10; Vult=130mph mph; TCDL=6.0psf; BG 0-C; Enclosed; MWFRS C-C Exterior (2) zone; end vertical left expose & MWFRS for reaction plate grip DOL=1.60 gned for wind loads in studs exposed to wind ard Industry Gable End qualified building desigu- ties socition us bottor has been designed for load nonconcurrent with	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and rigl ad;C-C for members ns shown; Lumber the plane of the truss (normal to the face), d Details as applicable gner as per ANSI/TPI n chord bearing. a 10.0 psf bottom h any other live loads	3 nt 9, 1.						1 Million		SEA 0235	ROSEL 194

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com) January 23,2025

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	JSJ, Maplewood Prime B (12-26-24)	
4619374	V01	Valley	1	1	Job Reference (optional)	170935395

1)

2)

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 10:14:28 ID:9V??y3pPQBcJjgHZpYrH6ezmvKI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Maplewood Prime B (12-26-24)	
4619374	V02	Valley	1	1	Job Reference (optional)	170935396

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 10:14:28 ID:hay2JX0Sf5d2e8Velv71m0zmvK2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

18-3-12

Scale = 1:50]	
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.32	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.23	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.31	Horiz(TL)	0.00	5	n/a	n/a		
BCDL		10.0	Code	IRC20	15/TPI2014	Matrix-MS							Weight: 79 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N 2x4 SP N Structural 10-0-0 oc Rigid ceili	o.2 o.2 o.3 I wood she purlins. ing directly	athing directly appli	ed or	 Gable studs This truss ha chord live load * This truss ha on the bottoon 3-06-00 tall h chord and an All bearings 	spaced at 4-0-0 or as been designed ad nonconcurrent has been designed m chord in all are by 2-00-00 wide w hy other members are assumed to b	oc. for a 10. with any ed for a liv as where vill fit betw s, with BC be SP No.	0 psf bottom other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf 2 crushing	ads. Opsf om f.					
	bracing.	4 40 0 44		o 40 9) Provide med	65 psi. hanical connectio	on (by oth	ers) of truss t	to					
REACTIONS	(Size) Max Horiz Max Uplift Max Grav	7=18-3-12 7=18-3-12 1=-225 (L 1=-30 (LC 9=-313 (L 1=116 (LC 6=550 (LC 9=554 (LC	2, 5=18-3-12, 6=18- 2, 9=18-3-12 C 8) S 8, 6=-309 (LC 13) C 20), 5=103 (LC 24 C 20), 5=103 (LC 24 C 20), 7=532 (LC 19)	3-12, , L 1), 9),	bearing plate 1, 313 lb upl OAD CASE(S)	e capable of withs ift at joint 9 and 3 Standard	standing 3 09 lb upli	i0 lb uplift at j it at joint 6.	joint					
FORCES	(lb) - Max Tension	imum Corr	pression/Maximum											
TOP CHORD	1-2=-215/ 4-5=-157/	/318, 2-3=- /270	25/218, 3-4=0/205,											
BOT CHORD	1-9=-264/ 5-6=-264/	/214, 7-9=- /214	264/214, 6-7=-264/2	214,										
WEBS NOTES	3-7=-368/	/39, 2-9=-4	17/334, 4-6=-417/3	33									WITH CA	Bolly

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.

January 23,2025

MI

SEAL

023594

VIIIIII

The manual of

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Maplewood Prime B (12-26-24)	
4619374	V03	Valley	1	1	Job Reference (optional)	170935397

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 10:14:28 ID:P2dhYaY2IdAowus5K8wLYIzmvJM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:42.2

Loading ICLL (roof) ICDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.21 0.11 0.14	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 64 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD	2x4 SP No 2x4 SP No 2x4 SP No Structural 10-0-0 oc	o.2 o.2 o.3 wood she purlins.	athing directly applied	5) 6) 7) d or	Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and an	spaced at 4-0-0 s been designed ad nonconcurre has been design n chord in all ar by 2-00-00 wide by other membe) oc. ed for a 10.0 nt with any ned for a live eas where will fit betw ers.) psf bottom other live loa e load of 20.0 a rectangle een the botto	ds. Opsf om						
BOT CHORD	Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav	ng directly 1=15-2-7, 7=15-2-7, 1=-186 (L 1=-33 (LC 8=-252 (L 1=125 (LC 6=406 (LC 8=410 (LC	applied or 6-0-0 oc 5=15-2-7, 6=15-2-7, 8=15-2-7 C 8) 8 8), 6=-249 (LC 13), C 12) C 20), 5=96 (LC 24), C 20), 7=317 (LC 1), C 19)	9) LC	All bearings 4 capacity of 5 Provide mec bearing plate 1, 252 lb upli DAD CASE(S)	65 psi. hanical conneci capable of with ft at joint 8 and Standard	tion (by oth hstanding 3 249 lb uplif	ers) of truss t 3 lb uplift at j t at joint 6.	o oint						
	(lb) - Max Tension	imum Com	pression/Maximum												
SOT CHORD	4-5=-115/ 1-8=-119/ 5-6=-119/ 3-7=-245/	131 149, 7-8=- 138 20, 2-8=-3	119/138, 6-7=-119/1: 49/282, 4-6=-349/28	, 38, 1										200.	
VOTES I) Unbalance	ed roof live l	oads have	been considered for									N	TH CA	ROUT	•

- Unbalanced root live loads have been considered this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.

818 Soundside Road Edenton, NC 27932

A. MILIN

January 23,2025

SEAL

023594

Annuments.

Sommunities

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Maplewood Prime B (12-26-24)	
4619374	V04	Valley	1	1	Job Reference (optional)	170935398

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 10:14:28 ID:LIGsX4nzpSZ6ipplxemoplzmvJ3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:37.1

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.18 0.12 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 48 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=12-1-2, 7=12-1-2, Max Horiz 1=-147 (L Max Uplift 1=-45 (LC (LC 13), 8 Max Grav 1=97 (LC (LC 20), 7 19)	athing directly applied applied or 10-0-0 oc 5=12-1-2, 6=12-1-2, 8=12-1-2 C 8) 8), 5=-9 (LC 9), 6=-2 =-213 (LC 12) 20), 5=69 (LC 19), 6= =253 (LC 1), 8=347 (5) 6) 7) d or 8) 9) 209 LC =342	Gable studs : This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an All bearings a capacity of 5 Provide meci bearing plate 1, 9 lb uplift a uplift at joint i DAD CASE(S)	spaced at 4-0-0 or s been designed f ad nonconcurrent has been designed n chord in all area y 2-00-00 wide wi y 2-00-00 wide wi y other members. are assumed to be 65 psi. hanical connection capable of withst at joint 5, 213 lb up 6. Standard	c. for a 10.0 with any f for a liv s where ill fit betw SP No. a (by oth anding 4 olift at joi	D psf bottom other live load e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss to 5 lb uplift at jc nt 8 and 209 l	ls. psf m vint b					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=-140/127, 2-3=- 4-5=-98/74	146/139, 3-4=-146/13	32,										
BOT CHORD	1-8=-46/85, 7-8=-42 5-6=-42/85	/85, 6-7=-42/85,											
WEBS NOTES 1) Unbalance	3-7=-167/20, 2-8=-3 ed roof live loads have	32/276, 4-6=-332/274 been considered for	1								and a	H CA	ROLA

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.

SEAL

023594

The manual star

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

"THILL WARNING

Job	Truss	Truss Type	Qty	Ply	JSJ, Maplewood Prime B (12-26-24)	
4619374	V05	Valley	1	1	Job Reference (optional)	170935399

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 10:14:28 ID:3dteeVuESXqhvMagXkx8DPzmvIv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1.50.7					-									
Loading TCLL (roof) TCDL SCLL SCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.23 0.22 0.12	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 33 lb	GRIP 244/190 FT = 20%	
UMBER OP CHORD SOT CHORD DTHERS SRACING OP CHORD SOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 8-11-12 oc purlins. Rigid ceiling directly bracing. (size) 1=8-11-12 Max Horiz 1=-108 (L Max Uplift 1=-13 (LC 4=-194 (L Max Grav 1=76 (LC (LC 1)	athing directly applie applied or 6-0-0 oc 2, 3=8-11-12, 4=8-11 C 10) : 24), 3=-20 (LC 8), C 12) 23), 3=76 (LC 24), 4	7) 8) 9) 1-12 LC	* This truss h on the bottor 3-06-00 tall b chord and ar All bearings capacity of 5 Provide mec bearing plate 1, 20 lb uplift AD CASE(S)	as been design n chord in all are by 2-00-00 wide ny other member are assumed to 65 psi. hanical connecti e capable of with at joint 3 and 19 Standard	ed for a livv as where will fit betw 's. be SP No on (by oth standing 1 94 lb uplift	e load of 20.0 a rectangle reen the botto 2 crushing ers) of truss t 3 lb uplift at jr at joint 4.)psf om o oint						
ORCES	(lb) - Maximum Com Tension	pression/Maximum												
OP CHORD SOT CHORD VEBS	1-2=-112/271, 2-3=- 1-4=-257/178, 3-4=- 2-4=-523/277	112/264 257/178												
OTES														
) Unbalance this design this design Wind: ASC Vasd=103 Cat. II; Ex zone and exposed ; 	ed roof live loads have n. CE 7-10; Vult=130mph imph; TCDL=6.0psf; B p C; Enclosed; MWFR C-C Exterior (2) zone; end vertical left and ri	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio cantilever left and rig th exposed;C-C for	r ght									OFTH CA	ROLIN	2

members and forces & MWFRS for reactions shown;

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 4-0-0 oc. 6)

2

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Quana www. The manual of the second T. MILTON R. MI January 23,2025

SEAL

023594

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	JSJ, Maplewood Prime B (12-26-24)		
4619374	V06	Valley	1	1	Job Reference (optional)	170935400	

2-11-4

2-11-4

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 10:14:28 ID:IMw2Wa?tLIzPUkmOY7bF4IzmvIm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 4x6 = 2

5-5-15

2-6-11

3

2x4 💊

0-0-8 Λ 2x4 u 2x4 🍫 5-10-7

9 Г

1-11-0

2-2-15

Scale = 1:25.9														
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	5/TPI2014	CSI TC BC WB Matrix-MP	0.10 0.11 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-10-7 oc purlins. Rigid ceiling directly bracing. (size) 1=5-10-7, Max Horiz 1=69 (LC Max Uplift 1=-5 (LC 4=-105 (LC Max Grav 1=67 (LC (LC 1)	athing directly applie applied or 6-0-0 oc 3=5-10-7, 4=5-10-7 9) 12), 3=-18 (LC 13), C 12) 23), 3=67 (LC 24), 4	7) 8) d or 9) LC =367	* This truss h on the bottor 3-06-00 tall b chord and ar All bearings a capacity of 5 Provide mec bearing plate 1, 18 lb uplift DAD CASE(S)	as been designe n chord in all are by 2-00-00 wide by other member are assumed to 1 65 psi. nanical connecti capable of with at joint 3 and 10 Standard	ed for a liv as where will fit betv s. be SP No. on (by oth standing 5 55 lb uplift	e load of 20.0 a rectangle veen the botto 2 crushing ers) of truss to 5 lb uplift at joi at joint 4.	opsf om o nt						
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103	(lb) - Maximum Com Tension 1-2=-61/135, 2-3=-6 1-4=-143/109, 3-4=- 2-4=-257/135 ed roof live loads have n. CE 7-10; Vult=130mph mph; TCDL=6.0psf; Bt p C: Epsed MWE	pression/Maximum 1/127 143/109 been considered for (3-second gust) CDL=6.0psf; h=25ft;										TH CA	NRO/ March	

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing.

Gable studs spaced at 3-0-0 oc. 5)

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Jummun Contraction of the Million Million January 23,2025

SEAL

023594

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Maplewood Prime B (12-26-24)	
4619374	V07	Valley	1	1	Job Reference (optional)	170935401

Run; 8.63 S Sep 26 2024 Print; 8.630 S Sep 26 2024 MiTek Industries, Inc. Wed Jan 22 10:14:28 ID:7WHJnd4ew8jZCfDYvOifKZzmvIg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-4-9 1-0-0

1-4-9 1-4-9

Page: 1

1-0-15

2-9-2

3x6 =

2x4 💊 2x4 🧀

Scale = 1:25.1

Plate Offsets (X, Y): [2:0-3-0,Edge]

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	/TPI2014	CSI TC BC WB Matrix-MP	0.05 0.05 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 Structural wood sheathing directly applied or 2-9-2 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.				All bearings a capacity of 5 Provide mecl bearing plate 1 and 28 lb u AD CASE(S)	are assumed to 65 psi. hanical connec capable of wit plift at joint 3. Standard	o be SP No. ction (by oth thstanding 2	2 crushing ers) of truss 8 lb uplift at j	to joint						
REACTIONS	(size) Max Horiz Max Uplift	1=2-9-2, 3 1=-30 (LC 1=-28 (LC	3=2-9-2 5 10) 5 12), 3=-28 (LC 13))											

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-146/58, 2-3=-146/58 BOT CHORD 1-3=-34/118

NOTES

1) Unbalanced roof live loads have been considered for this design.

Max Grav 1=110 (LC 1), 3=110 (LC 1)

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc. 5)
- This truss has been designed for a 10.0 psf bottom 6)
- chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

