

RE: 4619341 JSJ, Prestwick Prime Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:Customer: JSJ BuildersProject Name: 4619341Lot/Block: 5Model: PRESTWICK PRIMEAddress:Subdivision: ILAS WAYCity: DunnState: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.8 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 29 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	173037087	A01	4/29/2025	21	173037107	E01	4/29/2025
2	173037088	A02	4/29/2025	22	173037108	E02	4/29/2025
3	173037089	A03	4/29/2025	23	173037109	E03	4/29/2025
4	173037090	A04	4/29/2025	24	173037110	JA1	4/29/2025
5	173037091	A05	4/29/2025	25	173037111	JA2	4/29/2025
6	173037092	A06	4/29/2025	26	173037112	JA3	4/29/2025
7	173037093	A07	4/29/2025	27	173037113	JA4	4/29/2025
8	173037094	A08	4/29/2025	28	173037114	JD1	4/29/2025
9	173037095	A09	4/29/2025	29	173037115	JD2	4/29/2025
10	173037096	B01	4/29/2025				
11	173037097	B02	4/29/2025				
12	173037098	C01	4/29/2025				
13	173037099	CJ1	4/29/2025				
14	173037100	CJ2	4/29/2025				
15	173037101	D01	4/29/2025				
16	173037102	D02	4/29/2025				
17	173037103	D03	4/29/2025				
18	173037104	D04	4/29/2025				
19	173037105	D05	4/29/2025				
20	173037106	D06	4/29/2025				

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision based on the parameters provided by Builders FirstSource-Sumter,SC.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2025

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

Job	Truss	Truss Type	Qty	Ply	JSJ, Prestwick Prime	
4619341	A01	Hip Girder	1	2	Job Reference (optional)	173037087

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Fri Apr 25 12:59:53 ID:34pQ6mUpxBvkiNfpxB_YuHyzCeq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	4-9-12	9-10-10	14-11-8	20-0-6	25-1-4	29-11-0
	4-9-12	5-0-14	5-0-14	5-0-14	5-0-14	4-9-12
Scale = 1:56						

Plate Offsets (X, Y): [2:0-2-0,0-1-9], [3:0-3-0,0-2-0], [8:0-3-0,0-2-0], [9:0-2-0,0-1-9]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.48 0.66 0.28	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.19 -0.38 0.07 0.26	(loc) 13 13 9 13	l/defl >999 >937 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 332 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x6 SP No.2 2x4 SP No.2 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (4-	eathing directly applied cept 11-5 max.): 3-8.	2) d or 3) 4)	All loads are except if note CASE(S) sec provided to d unless otherw Unbalanced this design.	considered equal d as front (F) or b tion. Ply to ply co istribute only load vise indicated. roof live loads hav 7-10; Vult=130mp	ly applied back (B) f nnection is noted a ve been o bh (3-sec	d to all plies, face in the LC s have been as (F) or (B), considered for cond gust)	DAD or		Vert: 6= 5=-67 (E (B), 24= 28=-67 33=-44 37=-44	-67 (B) 3), 8=-6 -67 (B) (B), 30 (B), 34 (B), 38), 16=-44 (B), 3=- 67 (B), 11=-44 (B), 25=-67 (B), 26= =-129 (B), 31=-4 =-44 (B), 35=-44 =-44 (B), 39=-12	67 (B), 13=-44 (B), ;), 22=-67 (B), 23=-67 =-67 (B), 27=-67 (B), 4 (B), 32=-44 (B), (B), 36=-44 (B), 9 (B)
BOT CHORD	Rigid ceiling directly bracing. (size) 2=0-3-8,	/ applied or 10-0-0 oc 9=0-3-8		Vasd=103mp II; Exp C; End cantilever left	h; TCDL=6.0psf; closed; MWFRS (and right expose	BCDL=6 envelope d; end v	.0psf; h=25ft e) exterior zon vertical left an	; Cat. ne; nd					
	Max Horiz 2=-67 (Lu Max Uplift 2=-689 (I Max Grav 2=1990 (C 9) _C 5), 9=-690 (LC 4) LC 1), 9=1990 (LC 1)	5)	Provide adeq	uate drainage to	prevent v	water ponding	g.					
	(lb) - Maximum Cor Tension	npression/Maximum	7)	chord live loa * This truss h	as been designed in a solution of the solution	with any for a liv	other live loa e load of 20.0	ids. Opsf					
	4-5=-5427/2038, 5- 7-8=-5428/2038, 8-	7=-5428/2038, 9=-3910/1424, 9-10=0)/25	3-06-00 tall b chord and an	y 2-00-00 wide wi y other members.	ill fit betv	veen the botto	om					
BOT CHORD	2-16=-1248/3457, 1 13-15=-2261/6188, 11-12=-1211/3436,	5-16=-1247/3436, 12-13=-2261/6188, 9-11=-1211/3457	8)	Provide mech bearing plate 2 and 690 lb	nanical connectior capable of withst uplift at joint 9.	n (by oth anding 6	ers) of truss t 89 lb uplift at	to t joint					10
WEBS	3-16=-28/421, 3-15 4-15=-487/379, 5-1 5-12=-861/330, 7-1 8-12=-861/2265, 8-	=-859/2264, 5=-862/332, 5-13=0/3 2=-488/380, 11=-29/421	9) 66, 10	Graphical put or the orienta bottom chord) "NAILED" inc	rlin representation tion of the purlin a licates 3-10d (0.1	does no along the 48"x3") o	ot depict the s top and/or or 3-12d	size		L	ru'	ORTH CA	ROUVI
NOTES			_	(0.148"x3.25) toe-nails per NL	os guidli	nes.			1	-	:047	1.1
 2-ply truss (0.131"x3" Top chord oc. Bottom ch staggered 	s to be connected toge ") nails as follows: Is connected as follow hords connected as follow I at 0-9-0 oc.	ether with 10d s: 2x4 - 1 row at 0-9-0 lows: 2x6 - 2 rows	L(1)	DAD CASE(S) Dead + Roc Plate Increa Uniform Loa Vert: 1-3= Concentrate	Standard f Live (balanced): se=1.15 ads (lb/ft) =-60, 3-8=-60, 8-1 ed Loads (lb)	Lumber 0=-60, 2	Increase=1. -9=-20	15,		THILL WAS		SEA 0363	L 22

Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

11111111 April 29,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and proposed to component development description. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G

Job	Truss	Truss Type	Qty	Ply	JSJ, Prestwick Prime	
4619341	A02	Hip	1	1	Job Reference (optional)	173037088

Page: 1

	L	6-9-12		12	-2-15	17	7-8-1		23-1	-4		29-11-	0	1
	I	6-9-12		5	-5-3	5	-5-3	I	5-5	-3	1	6-9-12	2	1
Plate Offsets	(X, Y): [2:Edge,0-0-8],	[7:Edge,0-0-8]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.90 0.78 0.72	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.16 -0.34 0.10 0.18	(loc) 10-12 10-12 7 10-12	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 141 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sheat except 2-0-0 oc purlins (3-4 Rigid ceiling directly bracing. (size) 2=0-3-8, 7 Max Horiz 2=-87 (LC Max Uplift 2=-275 (L Max Grav 2=1252 (L	athing directly applied -10 max.): 3-6. applied or 7-1-5 oc 7=0-3-8 : 13) C 9), 7=-275 (LC 8) C 1), 7=1252 (LC 1)	3) 4) 5) d, 6) 7) LO	Provide ader This truss ha chord live loa * This truss h on the bottor 3-06-00 tall t chord and an Provide mec bearing plate 2 and 275 lb Graphical pu or the orients bottom chord PAD CASE(S)	quate drainage as been design ad nonconcurrent has been design n chord in all a by 2-00-00 wide hanical connect e capable of wit uplift at joint 7. Irlin representa ation of the pur d. Standard	to prevent v ed for a 10.0 ant with any ned for a liv reas where e will fit betw ers. ction (by oth- thstanding 2 tion does no lin along the	water pondiir other live lo: e load of 20 a rectangle veen the bot ers) of truss 75 lb uplift a bt depict the e top and/or	ng. ads. .0psf tom to at joint size						
FORCES	(lb) - Maximum Com	pression/Maximum												
TOP CHORD	1-2=0/25, 2-3=-2201 4-5=-2573/829, 5-6= 6-7=-2201/663, 7-8= 2-13=-466/1900, 12-	/662, 3-4=-1877/661 -1877/661, :0/25 -13=-693/2573,	,											
WEBS	10-12=-693/2573, 9- 7-9=-475/1900 3-13=-110/620 6-9=	10=-671/2573, -110/620 4-13=-921	/358									mun	un.	
	5-9=-921/358, 4-12= 5-10=0/205	:0/205, 4-10=-49/49,	,000,								5	"ATH CA	ROUT	Ċ.
NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=100 II; Exp C; and C-C E 6-11-8, E: 22-11-8, E to 30-10-0 vertical le forces & N DOL=1.60	ed roof live loads have n. CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; B(Enclosed; MWFRS (er Exterior (2) 0-11-0 to 2 xterior (2) 0-11-8 to 11- Exterior (2) 20-11-8 to 2 0 zone; cantilever left au ft and right exposed;C- WWFRS for reactions sl 0 plate grip DOL=1.60	been considered for (3-second gust) CDL=6.0psf; h=25ft; (vvelope) exterior zone -1-0, Interior (1) 2-1-(2-7, Interior (1) 11-2- 27-2-7, Interior (1) 27- nd right exposed ; en C for members and hown; Lumber	Cat. 9 0 to 7 to -2-7 d							Aprillin.	K. M.	SEA 0363 VGINI April	E 22 11 11 29,2025	Manun and and and and and and and and and an

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Prestwick Prime	
4619341	A03	Нір	1	1	Job Reference (optional)	173037089

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Fri Apr 25 12:59:55 ID:1NX9ReQAzyUsIFf8zUxg?RyzChU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

			8-9-12		14-11-8		1 2	21-1-4		1		29-11-0	
Scale = 1:63		I	8-9-12	I	6-1-12		1 E	6-1-12				8-9-12	Ι
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.51 0.77 0.60	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.14 -0.31 0.09 0.12	(loc) 10-19 10-19 8 11	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 149 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 3-7-11 oc purlins, ex 2-0-0 oc purlins (3-1 Rigid ceiling directly bracing. (size) 2=0-3-8, 8 Max Horiz 2=-110 (L	athing directly applie ccept 1-11 max.): 4-6. applied or 7-8-2 oc 3=0-3-8 C 13)	4) 5) ed or 6) 7)	This truss ha chord live lo * This truss lo on the botto 3-06-00 tall I chord and an Provide mec bearing plate 2 and 278 lb Graphical pu or the orient bottom chorr	as been designed f ad nonconcurrent has been designed m chord in all area by 2-00-00 wide win ny other members. chanical connectior e capable of withst uplift at joint 8. urlin representation ation of the purlin a d.	for a 10. with any I for a liv s where Il fit betw h (by oth anding 2 does no along the	D psf bottom other live load e load of 20. a rectangle veen the bott ers) of truss 278 lb uplift a bt depict the top and/or	ads. Opsf tom t joint size					
FORCES	Max Uplift 2=-278 (L Max Grav 2=1252 (L (lb) - Maximum Com Tension 1-2=0/25, 2-3=-2231 4-5=-1706/612, 5-6=	C 12), 8=-278 (LC 1 _C 1), 8=1252 (LC 1 pression/Maximum 1/732, 3-4=-1973/62 1706/612.	3)) 9,	AD CASE(S)	Standard								
BOT CHORD	6-7=-1973/629, 7-8= 2-13=-568/1967, 11- 10-11=-494/2077, 8-	2231/732, 8-9=0/2 -13=-494/2077, -10=-576/1967	5										
WEBS	3-13=-284/251, 4-13 5-13=-554/241, 5-11 6-10=-91/566, 7-10=	3=-91/566, =0/200, 5-10=-554/2 =-284/252	241,									mun	117.
NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=102 II; Exp C; and C-C I 8-11-8, E 20-11-8, I to 30-10-0 vertical le forces & I DCL=1.6(3) Provide a	ed roof live loads have n. CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; Bi Enclosed; MWFRS (er Exterior (2) -0-11-0 to 2 xterior (2) 8-11-8 to 13- Exterior (2) 20-11-8 to 2 Jozone; cantilever left a ft and right exposed;C- WWFRS for reactions s 0 plate grip DOL=1.60 dequate drainage to pr	been considered fo (3-second gust) CDL=6.0psf; h=25ft; velope) exterior zor 1-0, Interior (1) 2-1 2-7, Interior (1) 13-2 25-4-2, Interior (1) 2: nd right exposed ; e C for members and hown; Lumber	r Cat. ne -0 to 2-7 to 5-4-2 nd									SEA 0363	ROLL L 22 ERR BELIU

Provide adequate drainage to prevent water ponding. 3)

818 Soundside Road Edenton, NC 27932

GI minin April 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Prestwick Prime	
4619341	A04	Нір	2	1	Job Reference (optional)	173037090

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Fri Apr 25 12:59:55 ID:s_raY35cZMyqyyWmKcQ6sXyzChw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

		6	-4-4	ı 10-9-	-12	19·	-1-4		23-6-	12		29-11-0	
Scale = 1:67.2		6	-4-4	4-5-	-8	8-	3-8	I	4-5-	8		6-4-4	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/	TPI2014	CSI TC BC WB Matrix-MS	0.47 0.78 0.27	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.15 -0.35 0.08 0.10	(loc) 11-13 11-13 8 11-13	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 155 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 3-5-2 oc purlins, exc 2-0-0 oc purlins (4-7 Rigid ceiling directly bracing.	athing directly applic ept -5 max.): 4-6. applied or 8-3-10 or 8-0-3-8	4) 5) ed or 6) c 7)	This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Provide mect bearing plate 2 and 305 lb Graphical pui or the orienta	s been designed i d nonconcurrent as been designed i chord in all area y 2-00-00 wide w y other members nanical connection capable of withst uplift at joint 8. lin representatior tion of the purlin a	for a 10.0 with any d for a liv is where ill fit betw , with BC n (by oth tanding 3 n does no along the	D) psf bottom other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf ers) of truss t 05 lb uplift at ot depict the s	ads. Opsf om f. to t joint size					
REACTIONS	(size) 2=0-3-8, 8 Max Horiz 2=132 (LC Max Uplift 2=-305 (L Max Grav 2=1252 (L	s=0-3-8 C 12) C 12), 8=-305 (LC 1 .C 1), 8=1252 (LC 1	3) LOA	bottom chord AD CASE(S)	Standard	-							
FORCES	(lb) - Maximum Com	pression/Maximum	,										
TOP CHORD	1-2=0/25, 2-3=-2205 4-5=-1535/579, 5-6= 6-7=-1792/597, 7-8=	;/658, 3-4=-1792/59 :-1535/579, :-2205/658, 8-9=0/2;	7, 5										
BOT CHORD	2-14=-483/1908, 13- 11-13=-360/1648, 10 8-10=-492/1908	14=-483/1908, D-11=-492/1908,	-										
WEBS	3-14=0/189, 3-13=-4 6-11=-127/549, 7-11 5-13=-291/173, 5-11	53/282, 4-13=-127/ =-453/283, 7-10=0/ =-291/173	549, 189,									WITH CA	Rout
NOTES											A	R	China In
 Unbalance this design 	ed roof live loads have	been considered fo	r							6	in	10000	No star
2) Wind: ASC Vasd=103 II; Exp C; and C-C E 10-11-8, tc Interior (1) right expo for member Lumber D	CE 7-10; Vult=130mph mph; TCDL=6.0psf; B(Enclosed; MWFRS (er Exterior (2) -0-11-0 to 2 Exterior (2) 10-11-8 to 1 0 18-11-8, Exterior (2) 1) 23-2-7 to 30-10-0 zor sed ; end vertical left a ers and forces & MWFI OL=1.60 plate grip DO	(3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zor -1-0, Interior (1) 2-1 (4-11-8, Interior (1) 18-11-8 to 23-2-7, ie; cantilever left ani dright exposed;C- RS for reactions sho L=1.60	Cat. ne -0 to d C own;							CONTRACTION OF CONTRACT		SEA 0363	ER KIN

Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding.

April 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

mmm

Job	Truss	Truss Type	Qty	Ply	JSJ, Prestwick Prime	
4619341	A05	Нір	2	1	Job Reference (optional)	8037091

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Fri Apr 25 12:59:55 ID:CsXIKWK5P?0muGCf8toLpFyzCiv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1	6-4-4	12-9-12	17-1-4	23-6-12	29-11-0
Scale = 1:71.4	6-4-4	6-5-8	4-3-8	6-5-8	6-4-4

Plate Offsets (X, Y): [4:0-4-0,0-1-15]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.57 0.63 0.62	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.09 -0.22 0.08 0.10	(loc) 10-12 12-13 7 10-12	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 156 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 3-7-6 oc purlins, exc 2-0-0 oc purlins (4-1 Rigid ceiling directly bracing. (size) 2=0-3-8, 7 Max Horiz 2=155 (LC Max Uplift 2=-327 (L	athing directly applie xept 0-13 max.): 4-5. applied or 8-0-14 oc 7=0-3-8 C 16) C 12), 7=-327 (LC 1:	4) 5) ed or 6) 5 7) 3) LC	This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Provide mect bearing plate 2 and 327 lb Graphical put or the orienta bottom chord DAD CASE(S)	s been designed for d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide wil y other members. nanical connection capable of withsta uplift at joint 7. din representation tion of the purlin a Standard	or a 10.0 vith any for a liv where I fit betv (by oth nding 3 does no long the) psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss to 27 lb uplift at t depict the si top and/or	ds. psf o joint ize						
	Max Grav 2=1252 (L (lb) - Maximum Com Tension	LC 1), 7=1252 (LC 1) pression/Maximum)											
TOP CHORD	1-2=0/25, 2-3=-2232 4-5=-1376/562, 5-6= 6-7=-2231/637, 7-8=	2/637, 3-4=-1637/551 1638/551, =0/25	Ι,											
BOT CHORD	2-13=-513/1938, 12- 10-12=-240/1375, 9- 7-9=-479/1937	-13=-513/1938, -10=-479/1937,												
WEBS	3-13=0/272, 3-12=-6 4-10=-146/149, 5-10 6-10=-625/346, 6-9=	626/345, 4-12=-89/41)=-75/413, ⊧0/272	12,								- Mark	WITH CA	ROUT	<u>.</u>
NOTES											~	FESS	Oi P	11
 Unbalance this design 	ed roof live loads have n.	been considered for	r							4			The	7
 Wind: ASC Vasd=103 II; Exp C; I and C-C E 12-11-8, E to 30-10-0 vertical lef forces & M DOL=1.60 Provide ac 	CE 7-10; Vult=130mph mph; TCDL=6.0psf; Bi Enclosed; MWFRS (er xterior (2) -0-11-0 to 2 xterior (2) 12-11-8 to 2 zone; cantilever left a t and right exposed;C- WFRS for reactions s plate grip DOL=1.60 dequate drainage to pr	(3-second gust) CDL=6.0psf; h=25ft; tvelope) exterior zom -1-0, Interior (1) 2-1- 21-2-7, Interior (1) 21 nd right exposed ; er C for members and hown; Lumber event water ponding	Cat. ie -0 to 1-2-7 nd I.							THUR STREET		SEA 0363 CA. G	22 1. BER 1. BER 1. 29,2025	"numun

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com) 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	JSJ, Prestwick Prime	
4619341	A06	Common	4	1	Job Reference (optional)	37092

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Fri Apr 25 12:59:56 ID:7R4E2mkMxxrjWkyEn4QrKvyzCjg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	10-3-0	13-11-8	19-8-0	29-11-0
Scale - 1:75 6	10-3-0	3-8-8	5-8-8	10-3-0

Plate Offsets (X, Y): [2:0-3-0,0-0-15], [8:0-3-0,0-0-15], [10:0-2-0,0-2-0], [12:0-2-0,0-2-0]

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.71	DEFL Vert(LL)	in -0.10	(loc) 10-12	l/defl >999	L/d 360	PLATES MT20	GRIP 244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.70	Vert(CT)	-0.25	10-16	>999	240			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.41	Horz(CT)	0.05	8	n/a	n/a			
BCDL	10.0	Code	IRC2015	/TPI2014	Matrix-MS		Wind(LL)	0.14	12-14	>999	240	Weight: 182 lb	FT = 20%	
LUMBER			4)	* This truss h	as been designed	d for a liv	e load of 20.0	Opsf						
TOP CHORD	2x4 SP No.2			on the bottor	n chord in all area	s where	a rectangle							
BOT CHORD	2x6 SP No.2			3-06-00 tall b	y 2-00-00 wide w	ill fit betw	een the botte	om						
WEBS	2x4 SP No.3			chord and ar	y other members	, with BC	DL = 10.0pst							
BRACING			5)	Provide mec	hanical connection	n (by oth	ers) of truss t	0						
TOP CHORD	Structural wood sheat 2-2-0 oc purlins.	athing directly applie	ed or	2 and 346 lb	uplift at joint 8.	tanding 3	46 Ib uplift at	joint						
BOT CHORD	Rigid ceiling directly bracing.	applied or 9-7-15 or	; LO	AD CASE(S)	Standard									
REACTIONS	(size) 2=0-3-8, 8	3=0-3-8												
	Max Horiz 2=-179 (L	C 13)												
	Max Uplift 2=-346 (L	C 12), 8=-346 (LC 1	3)											
	Max Grav 2=1252 (L	C 1), 8=1252 (LC 1)) ́											
FORCES	(lb) - Maximum Com	pression/Maximum												
	Tension	•												
TOP CHORD	1-2=0/25, 2-3=-2144	/562, 3-5=-1916/57	5,											
	5-7=-1915/575, 7-8=	-2143/561, 8-9=0/2	5											
BOT CHORD	2-12=-539/1846, 10- 8-10=-377/1845	12=-196/1226,												
WEBS	5-12=-275/751, 5-10	=-274/749,												
	3-12=-441/378, 7-10	=-441/378												
NOTES													111.	
 Unbalance 	ed roof live loads have	been considered for	r									White CA	Dalle	
this desigr	۱.											21110/1	10/11	
Wind: ASC	CE 7-10; Vult=130mph	(3-second gust)									N	OTEESS	a. 1/1	
Vasd=103	mph; TCDL=6.0psf; B0	CDL=6.0psf; h=25ft;	Cat.								22	OFF	Ni. Z	1
II; Exp C; I	Enclosed; MWFRS (en	velope) exterior zor	ie								V	:0	12	3
and C-C E	xterior (2) -0-11-0 to 2	-1-0, Interior (1) 2-1	-0 to							-	<			-
14-11-8, E	20 10 0 7000 000 1	(1) or left and right								=	:	SEA	L :	1
exposed :	and vertical left and ric	the and light								=	•	0363	22 :	-
members	and forces & MWFRS	for reactions shown								1		0303		E
Lumber D	OL=1.60 plate grin DO	L=1.60	,							-		•	1	Ξ
3) This truss	has been designed for	a 10.0 psf bottom								5	1 .	·	air	5
chord live	load nonconcurrent wit	th any other live load	ds.								25	S GINI	Et: as	
		,									11	10	DEN	

- 1-0 to xterior (2 -0, interior (1 14-11-8, Exterior (2) 14-11-8 to 17-11-8, Interior (1) 17-11-8 to 30-10-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.

G mmm April 29,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Prestwick Prime	
4619341	A07	Roof Special	1	1	Job Reference (optional)	173037093

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Fri Apr 25 12:59:56 ID:QfmtZLnxk3OY1qKNi9PekryzCd9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

		1	7-7-0	13-1-12	1	21-	1-4		1		29-11-0	1	
Scale = 1:67.6	;	Γ	7-7-0	5-6-12	I	7-1	1-8				8-9-12		
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MS	0.40 0.82 0.55	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.13 -0.31 0.09 0.14	(loc) 11-13 11-13 9 11-13	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 156 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 3-7-9 oc purlins, exc 2-0-0 oc purlins (3-1 Rigid ceiling directly bracing. (size) 2=0-3-8, 9 Max Horiz 2=136 (LC Max Uplift 2=-306 (L Max Grav 2=1252 (L (lb) - Maximum Com	athing directly applie ept 1-12 max.): 5-7. applied or 7-11-2 oc 9=0-3-8 C 16) C 12), 9=-393 (LC 1: .C 1), 9=1252 (LC 1) pression/Maximum	 3) Provide 4) This truschord lix 5) * This truschord lix 5) * This truschord lix 5) * This truschord lix 6) Provide bearing 2 and 32 7) Graphic or the or bottom or 1) 	adequate drainage to as has been designed the load nonconcurrent uss has been designed ottom chord in all area tall by 2-00-00 wide w and any other members mechanical connectio plate capable of withs 3 lb uplift at joint 9. al purlin representation ientation of the purlin chord. E(S) Standard	prevent (for a 10.1 with any d for a liv s where ill fit betv n (by oth tanding 3 n does no along the	water ponding D psf bottom other live loa e load of 20.0 a rectangle veen the bott ers) of truss i 806 lb uplift at bt depict the s e top and/or	g. ads. Opsf om to t joint size						
TOP CHORD	Tension 1-2=0/25, 2-3=-2203 4-5=-2213/732, 5-6= 6-7=-1702/577, 7-8= 8-9=-2237/716, 9-10	/629, 3-4=-2044/637 1985/639, 1975/600, =0/25	7,										
BOT CHORD WEBS	2-14=-476/1931, 13- 11-13=-448/1984, 9- 3-14=-335/283, 4-14 4-13=-447/1335, 5-1 7-11=-120/634, 8-11 6-13=-104/125, 6-11	14=-263/1494, 11=-544/1972 =-204/501, 3=-1131/422, =-294/244, =-294/241									WITH CA	Rojin	
NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=100 II; Exp C; and C-C I	cet roof live loads have in. CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; Bt Enclosed; MWFRS (er Exterior (2) -0-11-0 to 2	been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zon -1-0. Interior (1) 2-1-	Cat. Ne 0 to						Contraction of the second seco	À	ON FESS SEA 0363	L 22	

and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 11-1-8, Exterior (2) 11-1-8 to 13-3-8, Interior (1) 13-3-8 to 20-11-8, Exterior (2) 20-11-8 to 23-11-8, Interior (1) 23-11-8 to 30-10-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Prestwick Prime		
4619341	A08	Roof Special	1	1	Job Reference (optional)	173037094	

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Fri Apr 25 12:59:56 ID:B0qAyXVxrBpBcuLjf2yTdlyzCcE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

		1	7-7-0	15-1-12		23-1-4	1	29-11-0	1
Scale = 1:67.6			7-7-0	7-6-12	I	7-11-8	I	6-9-12	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC 0.88 BC 0.86 WB 0.75 Matrix-MS 0.75	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.20 11-13 -0.38 11-13 0.09 8 0.19 11-13	l/defl L >999 3 >935 2 n/a r >999 2	L/d PLATES 360 MT20 240 n/a 240 Weight: 145 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she except 2-0-0 oc purlins (3-4 Rigid ceiling directly bracing. (size) 2=0-3-8, 8 Max Horiz 2=-136 (L Max Uplift 2=-306 (L Max Grav 2=1252 (L (lb) - Maximum Com Tension 1-2=0/25, 2-3=-2224	athing directly applied -13 max.): 5-7. applied or 7-6-12 oc 3=0-3-8 C 13) C 12), 8=-393 (LC 13 .C 1), 8=-393 (LC 1) pression/Maximum /630, 3-4=-2051/638	 4) This truss h chord live lo 5) * This truss on the botto 3-06-00 tall chord and a 6) Provide me bearing pla 2 and 393 I 7) Graphical p or the orien bottom cho LOAD CASE(S 	as been designed for a 1 boad nonconcurrent with ar has been designed for a om chord in all areas when by 2-00-00 wide will fit be nay other members, with E chanical connection (by te capable of withstanding b uplift at joint 8. urlin representation does tation of the purlin along t rd.) Standard	0.0 psf bottom y other live loa ive load of 20. e a rectangle tween the bott (CDL = 10.0ps thers) of truss 306 lb uplift a not depict the ne top and/or	ads. Opsf f. to t joint size			
BOT CHORD WEBS NOTES 1) Unbalance	4-5=-2911/917, 5-6= 6-7=-1880/631, 7-8= 2-13=-473/1936, 11 10-11=-594/2411, 8- 3-13=-334/285, 4-13 4-11=-586/1810, 5-1 7-10=-88/642, 6-11= ed roof live loads have	-2605/775, -2207/635, 8-9=0/25, 13=-261/1488, 10=-443/1905 =-189/529, 1=-1494/545, -55/289, 6-10=-702/2 been considered for	240					with CA	ROLIN
this design 2) Wind: ASG Vasd=103 II; Exp C; and C-C E 11-1-8, Ex 22-11-8, Ex 22-11-8, Ex 25-11-8 to exposed ; members Lumber D	n. CE 7-10; Vult=130mph Bmph; TCDL=6.0psf; Bf Enclosed; MWFRS (er Exterior (2) -0-11-0 to 2 xterior (2) 10-11-0 to 2 xterior (2) 22-11-8 to 2 o 30-10-0 zone; cantile end vertical left and ric and forces & MWFRS JOL=1.60 plate grip DO	(3-second gust) CDL=6.0psf; h=25ft; i vvelope) exterior zonu -1-0, Interior (1) 2-1-1 1-8, Interior (1) 14-1- 25-11-8, Interior (1) ver left and right ht exposed;C-C for for reactions shown; L=1.60	Cat. e 0 to 8 to				Winning	SEA 0363	L 22

Provide adequate drainage to prevent water ponding. 3)

April 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G mmm

Job	Truss	Truss Type	Qty	Ply	JSJ, Prestwick Prime	
4619341	A09	Roof Special Girder	1	2	Job Reference (optional)	173037095

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Fri Apr 25 12:59:56 ID:onoA9ZUNXO9YSVcUTGRixayzCay-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	7-7-0	14-8-0	17-1-12	21-1-8	25-1-4	29-11-0
Scale = 1:67.6	7-7-0	7-1-0	2-5-12	3-11-12	3-11-12	4-9-12

Plate Offsets (X, Y): [7:0-3-0,0-2-0], [8:0-9-4,0-1-15]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.67 0.45 0.38	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.17 -0.34 0.06 0.20	(loc) 12 12 8 11-12	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 344 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x6 SP No.2 *Excep 2.0E or 2x6 SP DSS 2x4 SP No.2 Structural wood she 4-9-13 oc purlins, ex 2-0-0 oc purlins (4-4 Rigid ceiling directly bracing.	athing directly applied ccept -4 max.): 5-7. applied or 10-0-0 oc	2) F d or 4)	All loads are except if note CASE(S) sec provided to d unless other Unbalanced this design. Wind: ASCE Vasd=103mp II; Exp C; Enc cantilever left	considered equally ad as front (F) or bi- tion. Ply to ply cor istribute only loads vise indicated. roof live loads have 7-10; Vult=130mp ph; TCDL=6.0psf; E closed; MWFRS (¢ t and right exposed	y applied ack (B) t innection s noted t e been d h (3-sed BCDL=6 envelope d ; end v	d to all plies, face in the LC s have been as (F) or (B), considered fo cond gust) .0psf; h=25ft; e) exterior zor vertical left an	DAD rr ; Cat. ne; id		Vert: 7= (F), 23=	-67 (F) -44 (F)), 10=-44 (F), 20=), 24=-129 (F)	e-67 (F), 22=-1583	
REACTIONS FORCES TOP CHORD BOT CHORD WEBS	(size) 2=0-3-8, 8 Max Horiz 2=136 (LC Max Uplift 2=-473 (L Max Grav 2=1708 (L (lb) - Maximum Com Tension 1-2=0/25, 2-3=-3282 4-5=-4636/1407, 5-6 6-7=-6999/2257, 7-8 2-15=-809/2866, 13 12-13=-1929/6624, - 10-11=-1540/4967, 8 5-12=-175/79, 5-11= 7-11=-673/2418, 7-1 4-15=-190/553, 3-15	B=0-3-8 C 12) C 8), 8=-921 (LC 9) LC 1), 8=2730 (LC 1) apression/Maximum 2/877, 3-4=-3116/875 B=-6999/2257, B=-5676/1859, 8-9=0/. 15=-557/2429, 11-12=-1934/6634, 8-10=-1553/5019 384/672, 6-11=-246 10=-216/877, B=-317/278, 13=-3494/1257	5) 6) 7) , 25 8) /211, 9) 10	right exposed Provide adec This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Provide mecl bearing plate 2 and 921 lb Graphical pu or the orienta bottom chord 0) Use Simpsor	d; Lumber DOL=1. Juate drainage to p s been designed for d nonconcurrent v as been designed n chord in all areas y 2-00-00 wide wil y other members. nanical connection capable of withsta uplift at joint 8. rlin representation tion of the purlin a b strong-Tie HTU2	60 plate prevent v or a 10.0 vith any for a liv s where I fit betw (by oth anding 4 does no long the 6-2 (20-	grip DOL=1. water ponding of psf bottom other live loa e load of 20.0 a rectangle ween the botto ers) of truss t .73 lb uplift at bt depict the s top and/or 10d Girder, rom the loft of	60 g. Opsf om joint size		4		OR LESS	RO	
NOTES 1) 2-ply truss (0.131"x3" Top chord oc. Bottom ch staggered Web conn	to be connected toget) nails as follows: s connected as follows ords connected as follows at 0-6-0 oc. ected as follows: 2x4 -	ther with 10d s: 2x4 - 1 row at 0-9-0 ows: 2x6 - 2 rows - 1 row at 0-9-0 oc.	11 12) LC 1)	 i) Fill all nail ho ii) Fill all nail ho ii) NAILED" inc (0.148"x3.25 DAD CASE(S) Dead + Roc Plate Increa Uniform Loa Vert: 1-4- Concentrate 	(es) to front face of les where hanger ticates 3-10d (0.14 toe-nails per ND Standard of Live (balanced): ads (lb/ft) =-60, 4-5=-60, 5-7= ad Loads (lb)	22-4-0 in of botton is in cor 8"x3") c S guidlin Lumber =-60, 7-5	n chord. ntact with lum or 3-12d nes. Increase=1. ⁻	ber. 15, 20		A THURSDAY		SEA 0363	L 22 ILBERT	CANTER 1111

April 29,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Prestwick Prime	
4619341	B01	Common Structural Gable	1	1	Job Reference (optional)	173037096

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Fri Apr 25 12:59:57 ID:ihAhte2AgELRKNqW7OQFBcyzCIr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-8	-12	
7-7-0	14-8-0	22-3-0
7-7-0	5-11-4	7-7-0
1_1	-12	

Scale = 1:69.5					1-1-12									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.42 0.53 0.41	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.07 -0.16 0.01 0.06	(loc) 15-35 15-35 13 15-35	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 146 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD JOINTS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Brace at Jt(s): 25.	eathing directly applied v applied or 6-0-0 oc	d or 1)	EBS D TES Unbalanced	9-28=-211/544, 28 15-29=-199/552, 1 21-26=-633/112, 2 9-25=-661/116, 5- 21-27=-165/132, 9 19-25=-61/53, 7-21 6-27=-39/48, 5-22: 3-24=-164/134, 10 16-28=-110/76, 11 d roof live loads have	9-29=-23 2-15=-3 25-26=-6 27=-135 0-17=-43 6=-151/9 =-44/76, 0-28=-74 -29=-26 ve been (3/574, 09/241, 28/101, '92, '143, 8-25=-3 '1, 20-26=-15 4-23=-33/33, '52, '44 considered fo	1/53, 2/93,	9) Loa des for t 10) In tt of tt LOAD (1) De Pla Ur	d case (s igner mu the inten he LOAE he truss CASE(S) ead + Ro ate Increa hiform Lo Vert: 1-3 14-39=-	s) 1 has ust revi ded us D CASE are no O Star oof Live ase=1 bads (Ik 38=-60 60, 30-	s/have been mod ew loads to verify ee of this truss. E(S) section, load ted as front (F) or ndard e (balanced): Lurr .15 ./ft) , 9-38=-64 (F=-4) .41=-20, 15-41=-	ified. Building / that they ard s applied to t back (B). ber Increase 1, 9-39=-64 (f 24 (F=-4), 15	} e correct the face ⇒=1.15, ==-4), -33=-20
REACTIONS	28 (size) 2=8-10-8 21=8-10- 24=8-10- 24=8-10- 24=8-10- 24=8-10- 24=-135 (L 20=-93 (L 22=-31 (L 24=-128 Max Grav 2=156 (L 22=54 (L 24=247 (, 13=0-3-8, 20=8-10-8 8, 22=8-10-8, 23=8-10 8 C 17) C 8), 13=-191 (LC 13) LC 12), 21=-171 (LC 12 LC 24), 23=-11 (LC 12 (LC 12) C 23), 13=602 (LC 1), LC 1), 21=636 (LC 1), C 13), 23=29 (LC 23), LC 1)	3, 2) 0-8, (3), (2), (3), (3), (3), (3), (3), (3), (3), (3	this design. Wind: ASC Vasd=103m II; Exp C; E and C-C E> 11-0-6, Ext 23-2-0 zone vertical left forces & M DOL=1.60 Truss desig only. For s see Standa	E 7-10; Vult=130mp nph; TCDL=6.0psf; inclosed; MWFRS (terior (2) -0-11-0 to erior (2) 11-0-6 to 1 e; cantilever left and and right exposed; WFRS for reactions plate grip DOL=1.60 gned for wind loads tuds exposed to win rd Industry Gable E	bh (3-sec BCDL=6 envelope 2-1-0, li 3-9-8, ln d right ex C-C for n shown; 0 in the pl d (norm end Deta	cond gust) .0psf; h=25ft a) exterior zon terior (1) 2-1 terior (1) 13-5 posed ; end nembers and Lumber ane of the tru al to the face ils as applica	; Cat. ne -0 to Э-8 to ss), ble,					111.	
FORCES	(lb) - Maximum Con Tension 1-2=0/25, 2-3=-98/1	npression/Maximum 26, 3-4=-24/98,	4) 5)	or consult of All plates a Gable stude	qualified building de re 2x4 () MT20 un s spaced at 1-4-0 o	signer as iless oth c.	s per ANSI/11 erwise indica	PI 1. ted.			mi	OR FSS	ROUN	17
BOT CHORD	4-5=-2/121, 5-6=-12 7-8=0/169, 8-9=0/19 10-11=-558/260, 11 12-13=-783/242, 13 2-24=-88/154, 23-2 22-23=-88/154, 21-2 19-20=0/218, 17-19 15-16=0/220, 13-15	2/171, 6-7=0/195, 94, 9-10=-555/292, -12=-626/232, i-14=0/25 4=-88/154, 22=-87/153, 20-21=0/ i=0/218, 16-17=0/220, i=-105/663	6) 7) 218, 8)	* This truss f chord live le * This truss on the botto 3-06-00 tall chord and a Provide me bearing pla	tas been designed i oad nonconcurrent i has been designed om chord in all area l by 2-00-00 wide wi any other members. chanical connection te capable of withst	with any d for a liv s where ill fit betv n (by oth anding 2	other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 44 lb uplift at j	ds. Dpsf om oint		Contraction of the	t A	SEA 0363	L 22	

b) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 2, 171 lb uplift at joint 21, 191 lb uplift at joint 13, 93 lb uplift at joint 20, 31 lb uplift at joint 22, 11 lb uplift at joint 23, 128 lb uplift at joint 24 and 24 lb uplift at joint 2.

A. GILP

Page: 1

ENGINEERING BY A Mittek Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road Edenton, NC 27932

C

Job	Truss	Truss Type	Qty	Ply	JSJ, Prestwick Prime	
4619341	B02	Common	3	1	Job Reference (optional)	173037097

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Fri Apr 25 12:59:57 ID:VbDqJXfzIPOXayhTXptpAryzCox-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x6=

Page: 1

3x4=

3x6=

3x6=

3x4=

				7-7-0		14-8	8-0	1	22	-3-0		1		
				7-7-0) 1	7-1	-0		7.	-7-0				
Scale = 1:67.6														
Loading	((psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	:	20.0	Plate Grip DOL	1.15	TC	0.41	Vert(LL)	-0.09	7-9	>999	360	MT20	244/190	
TCDL		10.0	Lumber DOL	1.15	BC	0.59	Vert(CT)	-0.18	7-12	>999	240			
BCLL		0.0*	Rep Stress Incr	YES	WB	0.22	Horz(CT)	0.04	6	n/a	n/a			
BCDL		10.0	Code	IRC2015/TPI2014	Matrix-MS		Wind(LL)	0.08	7-12	>999	240	Weight: 101 lb	FT = 20%	
				6) Provide n	echanical connect	ion (by oth	ere) of truce t							
	2v4 SD No 2			bearing n	late canable of with	ion (by our standing 2	234 lb unlift at	ioint						
	2x4 SF N0.2			6 and 265	5 lb unlift at joint 2	istantaning z	-04 10 upint at	John						
WERS	2x4 SF N0.2				(S) Standard									
WEBS	2X4 SF N0.5			LUAD CASE	(3) Stanuaru									
BRACING	0		de la se alla se adh e se an Ris											
TOP CHORD	4-3-10 oc pur	od snea rlins	atning directly applie	a or										
BOT CHORD	Rigid ceiling	directly	applied or 9-1-10 oc											
	bracing.	unoony												
REACTIONS	(size) 2=	0-3-8, 6	= Mechanical											
	Max Horiz 2=	146 (LC	12)											
	Max Uplift 2=	-265 (LC	C 12), 6=-234 (LC 13	3)										
	Max Grav 2=	946 (LC	1), 6=889 (LC 1)											
FORCES	(lb) - Maximu	m Com	pression/Maximum											
	Tension													
TOP CHORD	1-2=0/25, 2-3	8=-1539/	426, 3-4=-1379/434	,										
	4-5=-1384/45	6, 5-6≕	-1544/448											
BOICHORD	2-9=-403/133	39, 7-9≕	-148/886, 6-7=-309/	1345										
WEBS	4-7=-196/535	o, 5-7=-3	345/288, 4-9=-192/5	29,										
NOTES	3-9=-342/200)												
1) Unbalance	nd roof live load	ls have l	heen considered for											
this design		Shave												
2) Wind ASC	 CF 7-10 [,] Vult=1	30mph	(3-second gust)									minin	1111	
Vasd=103	mph: TCDL=6.0	0psf: BC	DL=6.0psf: h=25ft:	Cat.								"TH CA	Rolly	
II; Exp C; I	Enclosed; MWF	RS (en	velope) exterior zon	e							- 5	R	Dela!	1
and C-C E	xterior (2) -0-1	1-0 to 2-	1-0, Interior (1) 2-1-	0 to							1	1 to	DZ.	20
11-1-8, Ex	terior (2) 11-1-8	8 to 14-'	1-8, Interior (1) 14-1-	-8 to						~	C R	.04	1.1	
22-3-0 zor	ne; cantilever le	ft and ri	ght exposed ; end							1		.2	× :	-
vertical lef	t and right expo	osed;C-0	C for members and							-		CEA	r 1.	1
forces & N	IWFRS for read	ctions sh	iown; Lumber								:	SLA	- :	
DOL=1.60	plate grip DOL	.=1.60									. :	0363	22 :	-
3) This truss	has been desig	ined for	a 10.0 pst bottom	1-						-				
 cnora live true 	ioad nonconcul	irent wit	n any other live load	IS.								Sec. 1		-
4) THIS (FUS	s has been des	areas v	vhere a rectangle	psi							10	N. SNOW	-ER. X	2
3-06-00 ta	ll by 2-00-00 wi	ide will f	it between the botto	m							1	A. GIN	F.F. R	~
chord and	any other mem	bers w	ith BCDI = 10.0 nsf								1	CAO	II BEIN	
5) Refer to gi	rder(s) for truss	s to trus	s connections.									1, 7. 6	in the second	
,	(1) 11 11 11 11 11 11 11 11 11 11 11 11 1												111.	
												Apri	1 29,2025	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Prestwick Prime	
4619341	C01	Common Supported Gable	1	1	Job Reference (optional)	173037098

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Fri Apr 25 12:59:57 ID:wXX5ndjAaRU28TQNhHSSkPyzCnZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-11-0 14-7-0 6-10-0 13-8-0

Scale =	1:44.8
---------	--------

Loading

TCLL (roof)

TCDL BCLL BCDL		10.0 0.0* 10.0	Lumber DOL Rep Stress Incr Code	1.15 YES IRC2	015/TPI2014
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc Rigid ceil bracing. (size) Max Horiz	0.2 0.2 0.3 I wood shea purlins. ing directly 2=13-8-0, 13=13-8-0 16=13-8-0 2=-87 (LC	athing directly applied applied or 10-0-0 oc 10=13-8-0, 12=13-8 , 14=13-8-0, 15=13- , 17=13-8-0, 18=13- 17)	d or -0, 8-0, 8-0,	 Wind: ASCE Vasd=103m II; Exp C; Er and C-C Coi 6-10-0, Corrr to 14-7-0 zoi vertical left a forces & MW DOL=1.60 p Truss design only. For stu see Standar or consult q All plates are
	Max Uplift Max Grav	2=-36 (LC 12=-107 (l 14=-56 (Lu 17=-34 (Lu 2=167 (LC 12=211 (L 14=121 (L 16=121 (L 18=211 (L	12), 10=-53 (LC 13) LC 13), 13=-36 (LC 1 C 13), 16=-58 (LC 12 C 12), 18=-109 (LC 1 C 1), 10=167 (LC 1), C 24), 13=63 (LC 24 C 24), 15=101 (LC 2 C 23), 17=63 (LC 23 C 23)	, 3), 2), 2)), 2),),	 All plates and Gable requir Gable studs This truss ha chord live lo. * This truss l on the botton 3-06-00 tall l chord and an
FORCES	(lb) - Max Tension	imum Com	pression/Maximum		9) Provide med bearing plate
TOP CHORD	1-2=0/25 4-5=-50/1 7-8=-50/1	2-3=-70/58 45, 5-6=-68 50, 8-9=-43	3, 3-4=-49/111, 8/190, 6-7=-68/195, 3/116, 9-10=-42/32,		at joint 17, 1 36 lb uplift a at joint 2 and
BOT CHORD	10-11=0/2 2-18=-19 16-17=-1 14-15=-1	25 /106, 17-18 9/106, 15-1 9/106, 13-1	=-19/106, 6=-19/106, 4=-19/106,		LOAD CASE(S)
WEBS	12-13=-1 6-15=-77, 3-18=-14 9-12=-14	9/106, 10-1 /1, 5-16=-89 1/173, 7-14 1/173	2=-19/106 9/147, 4-17=-56/112, =-89/147, 8-13=-56/ ⁻	112,	

(psf)

20.0

Spacing

Plate Grip DOL

2-0-0

1.15

NOTES

Unbalanced roof live loads have been considered for 1) this design.

7-10; Vult=130mph (3-second gust) ph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. nclosed; MWFRS (envelope) exterior zone rner (3) -0-11-0 to 2-1-0, Exterior (2) 2-1-0 to ner (3) 6-10-0 to 9-10-0, Exterior (2) 9-10-0 ne; cantilever left and right exposed ; end and right exposed;C-C for members and VFRS for reactions shown; Lumber late grip DOL=1.60

13-8-0

0.08

0.07

0.05

DEFL

Vert(LL)

Vert(CT)

Horz(CT)

in

n/a

n/a

0.00

(loc)

10

l/defl

n/a 999

n/a

n/a n/a

L/d

999

PLATES

Weight: 68 lb

MT20

GRIP

244/190

FT = 20%

ned for wind loads in the plane of the truss uds exposed to wind (normal to the face), rd Industry Gable End Details as applicable, ualified building designer as per ANSI/TPI 1.

- e 2x4 (||) MT20 unless otherwise indicated.
- res continuous bottom chord bearing.
- spaced at 1-4-0 oc.

CSI

тс

BC

WB

Matrix-MS

as been designed for a 10.0 psf bottom ad nonconcurrent with any other live loads. has been designed for a live load of 20.0psf

m chord in all areas where a rectangle by 2-00-00 wide will fit between the bottom ny other members.

chanical connection (by others) of truss to e capable of withstanding 36 lb uplift at joint ft at joint 10, 58 lb uplift at joint 16, 34 lb uplift 09 lb uplift at joint 18, 56 lb uplift at joint 14, t joint 13, 107 lb uplift at joint 12, 36 lb uplift d 53 lb uplift at joint 10.

Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Prestwick Prime	
4619341	CJ1	Diagonal Hip Girder	3	1	Job Reference (optional)	173037099

2-2-7

0-4-7

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Fri Apr 25 12:59:58

4-0-11

Scale =	1:26.2
---------	--------

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015/TPI20	014	CSI TC BC WB Matrix-MP	0.13 0.11 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.02 0.00	(loc) 4-7 4-7 3	l/defl >999 >999 n/a	L/d 240 240 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORI BOT CHORI BRACING TOP CHORI REACTIONS FORCES TOP CHORI BOT CHORI BOT CHORI NOTES 1) Wind: At Vasd=1(II; Exp C cantileve right exp	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 4-0-11 oc purlins. Rigid ceiling directly bracing. (size) 2=0-4-9, Mechanic Max Horiz 2=102 (Li Max Uplift 2=-126 (L Max Grav 2=144 (Li (LC 3) (lb) - Maximum Con Tension 1-2=0/26, 2-3=-82/4 2-4=-53/61 SCE 7-10; Vult=130mph 3mph; TCDL=6.0psf; B ; Enclosed; MWFRS (er r left and right exposed osed; Lumber DOL=1.6 	athing directly applie applied or 10-0-0 or 3= Mechanical, 4= c 6) c 6), 3=-60 (LC 6) c 1), 3=68 (LC 1), 4= apression/Maximum 2 a (3-second gust) CDL=6.0psf; h=25ft; nvelope) exterior zor ; end vertical left an- 0 plate grip DOL=1.6	1) Dea Plat Uni V ed or Tra V c 6 ((f =58	ad + Roo te Increa form Loa /ert: 1-2= pezoidal /ert: 2=0 5=-10 (Fe- 3=10)-to- F=0, B=0	f Live (balanced): se=1.15 ids (lb/ft) 60 Loads (lb/ft) (F=30, B=30)-to-6 -25, B=25)-to-3=-6 7=-3 (F=8, B=8), 7))	_umber =-10 (F 1 (F=0, =-3 (F=	Increase=1. ⁴ =25, B=25), B=0), 5=0 (F 8, B=8)-to-4=	15, ==10, 20					Rout	
 This trus chord liv * This tru on the bi 3-06-00 chord ar Refer to Provide bearing 1 3 and 12 In the LO of the tru 	s has been designed fo e load nonconcurrent w iss has been designed f bottom chord in all areas tall by 2-00-00 wide will d any other members. girder(s) for truss to tru mechanical connection olate capable of withsta 6 lb uplift at joint 2. DAD CASE(S) section, I iss are noted as front (F :(S) Standard	r a 10.0 psf bottom ith any other live load for a live load of 20.0 where a rectangle fit between the botto iss connections. (by others) of truss to nding 60 lb uplift at jo oads applied to the fit o back (B).	ds. ipsf om o bint ace							Withhere		SEA 0363		and annundan

April 29,2025

Job	Truss	Truss Type	Qty	Ply	JSJ, Prestwick Prime	
4619341	CJ2	Diagonal Hip Girder	2	1	Job Reference (optional)	173037100

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Fri Apr 25 12:59:58 $ID:iOaqeDjUorkct8XO616_aWyzCzB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff$ -1-3-9 4-6-6 4-6-6 1-3-9 4-6-6

4-6-6

Scale = 1

Scale = 1:24.9				1					1			
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.17 0.15 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.02 0.00	(loc) 4-7 4-7 3	l/defl >999 >999 n/a	L/d 240 240 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 Structural wood she 4-6-6 oc purlins. Rigid ceiling directly bracing	athing directly applie	1) Dead + F Plate Inci Uniform I Vert: 1 ed or Trapezoi Vert: 2 c 6=-16 (F=10.	Roof Live (balanced) cease=1.15 .oads (lb/ft) -2=-60 dal Loads (lb/ft) =0 (F=30, B=30)-to (F=22, B=22)-to-3= B=10)-to-7=-5 (F=2)): Lumber -6=-16 (F -68 (F=-4 7. B=7), 7	=22, B=22), , B=-4), 5=0 =-5 (F=7, B=	7)-					
REACTIONS	(size) 2=0-4-9, 3 Mechanical Max Horiz 2=71 (LC Max Uplift 2=-134 (L Max Grav 2=157 (LC (LC 3)	3= Mechanical, 4= al 6) C 6), 3=-54 (LC 8) C 1), 3=85 (LC 1), 4=	to-4=-2	23 (F=́-1, B=-1) `	. ,		,					
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASI Vasd=100 II; Exp C; cantilever right expo	(Ib) - Maximum Com Tension 1-2=0/18, 2-3=-60/3 2-4=-51/45 CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; B4 Enclosed; MWFRS (er left and right exposed used; Lumber DOL=1.60	pression/Maximum 1 (3-second gust) CDL=6.0psf; h=25ft; tvelope) exterior zor ; end vertical left and 0 plate grip DOL=1.6	Cat. ne; d 60									
 2) This truss chord live 3) * This trus on the bot 3-06-00 tz chord and 4) Refer to g 5) Provide m bearing pl 3 and 134 6) In the LO/ of the truss LOAD CASE(has been designed for load nonconcurrent wi ss has been designed f ttom chord in all areas all by 2-00-00 wide will d any other members. jirder(s) for truss to tru- techanical connection (late capable of withstar l bupift at joint 2. AD CASE(S) section, lo ss are noted as front (F (S) Standard	r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto ss connections. (by others) of truss to hding 54 lb uplift at jo pads applied to the fit) or back (B).	ds. Jpsf om o pint ace						Contraction of the second seco	A MARTINE AND A	SEA 0363	L 22 EER. KIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

A. GIL

Page: 1

1-5-0

$\hat{\boldsymbol{\Lambda}}$	WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
[Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
á	a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
t	puilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
i	s always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
f	abrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org)
1	and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

SINEEDING 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	JSJ, Prestwick Prime			
4619341	D01	Half Hip Girder	1	1	Job Reference (optional)	173037101		

-0-11-0

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

-5-6

(psf)

20.0

1-8-8

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Fri Apr 25 12:59:58 ID:F5iRPa8V?5ct1GZ30pDfMOyzCxL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-3-8 7-3-8 3-3-8 4-0-0 0-11-0 7-3-8 4x6 = 2x4 🛛 12 4 Г 3 0 -2-0 2 DO 5 6 11 2x4 II 3x6 = 2x4 = 3-1-12 7-3-8 3-1-12 4-1-12 Spacing 2-0-0 CSI DEFL in (loc) l/defl L/d PLATES GRIP Plate Grip DOL 1.15 тс 0.25 Vert(LL) -0.01 5-6 >999 360 MT20 244/190 вс 0.26 Vert(CT) 240 Lumber DOL 1.15 -0.03 >999 5-6 FT = 20%

> SEAL 036322 April 29,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Scale = 1:25.9

Loading

TCLL (roof)

TCDL	10.0	Lumber DOL	1.15		BC	0.26	Vert(CT)	-0.03	5-6	>999	240	
BCLL	0.0*	Rep Stress Incr	NO		WB	0.16	Horz(CT)	0.01	5	n/a	n/a	
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS		Wind(LL)	0.01	6-9	>999	240	Weight: 32 lb
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanc	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-C Rigid ceiling directly bracing. (size) 2=0-3-8, 1 Max Horiz 2=79 (LC Max Uplift 2=-172 (L Max Grav 2=385 (L1 (Ib) - Maximum Com Tension 1-2=0/17, 2-3=-640/ 4-5=-133/86 2-6=-217/S92, 5-6=- 3-6=0/189, 3-5=-528 ed roof live loads have	athing directly appli cept end verticals, a -0 max.): 3-4. • applied or 10-0-0 o 5= Mechanical 4) C 4), 5=-123 (LC 4) C 1), 5=-338 (LC 1) pression/Maximum 208, 3-4=-74/25, 224/577 3/212 been considered fo	8) 9) c 1(L(1)	Graphical p or the orien bottom choi Hanger(s) o provided su down and 9 up at 5-4-4 22 lb down selection of responsibili 0) In the LOAL of the truss DAD CASE(S Dead + Re Plate Incre Uniform Lu Vert: 1- Concentra Vert: 6=	urlin representat tation of the purli 'd. or other connection fficient to support 9 lb up at 3-3-8, on top chord, ar at 5-4-4 on botto such connection ty of others. O CASE(S) section are noted as from O CASE(S) section are noted as from O Standard of Live (balance base=1.15 bads (lb/ft) 3=-60, 3-4=-60, § ted Loads (lb) -32 (B), 3=-23 (E	ion does n n along the on device(s t concentra and 37 lb do om chord. of device(s) on, loads a ht (F) or ba d): Lumber 5-7=-20 3), 10=-19	ot depict the e top and/or s) shall be ated load(s) i down and 36 wn at 3-3-8, The design/ is the pplied to the ck (B). r Increase=1. (B), 11=-22 (size 79 lb 5 lb and face .15, B)				
2) Wind: AS	Ո. CE 7₋10։ \/ult–130mph	(3-second quet)										mm

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 172 lb uplift at joint 2 and 123 lb uplift at joint 5.

Job	Truss	Truss Type	Qty	Ply	JSJ, Prestwick Prime	
4619341	D02	Half Hip	1	1	Job Reference (optional)	173037102

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Fri Apr 25 12:59:58

ID:4Wb8ERQxbAVclppUs882oFyzCx_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Scale = 1:28.7											-		
oading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
CLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.30	Vert(LL)	-0.02	6-9	>999	360	MT20	244/190	
CDL	10.0	Lumber DOL	1.15	BC	0.33	Vert(CT)	-0.05	6-9	>999	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.09	Horz(CT)	0.00	5	n/a	n/a			
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS		Wind(LL)	0.03	6-9	>999	240	Weight: 32 lb	FT = 20%	
UMBER OP CHORD	2x4 SP No.2	 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 145 lb uplift at joint 2 and 109 lb uplift at joint 5 											

BOT CH 2x4 SP No.2 2x4 SP No.3 *Except* 4-5:2x4 SP No.2 WEBS BRACING

TOP CHORD	Structura	l wood sheathing directly applied o
	6-0-0 oc p	ourlins, except end verticals, and
	2-0-0 oc p	ourlins (6-0-0 max.): 3-4.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	2=0-3-8, 5= Mechanical
	Max Horiz	2=114 (LC 8)
	Max Uplift	2=-145 (LC 8), 5=-109 (LC 8)

Max Grav 2=344 (LC 1), 5=282 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/17, 2-3=-343/161, 3-4=-3/4, 4-5=-43/38

BOT CHORD 2-6=-201/296, 5-6=-200/284 WEBS 3-6=-11/198, 3-5=-403/283

NOTES

- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 5-3-8, Exterior (2) 5-3-8 to 7-1-12 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom 4) chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf
- 5) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.

at joint c

Graphical purlin representation does not depict the size 8) or the orientation of the purlin along the top and/or

bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a fuss system. Derive use, the building designer host verify the applications of design had been and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	JSJ, Prestwick Prime	
4619341	D03	Monopitch	1	1	Job Reference (optional)	173037103

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Fri Apr 25 12:59:58

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Scale = 1:30.5			I						1				
Plate Offsets (X, Y):	late Offsets (X, Y): [2:0-2-0,Edge], [3:0-0-13,0-1-8]												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.62	Vert(LL)	-0.08	4-7	>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.52	Vert(CT)	-0.19	4-7	>457	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a			
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS		Wind(LL)	0.12	4-7	>730	240	Weight: 27 lb	FT = 20%	

LUMBER			LOAD CASE(S)	Standard
TOP CHORD	2x4 SP N	0.2		
BOT CHORD	2x4 SP N	0.2		
WEBS	2x4 SP N	0.2		
BRACING				
TOP CHORD	Structura	wood sheathing directly applied or		
	6-0-0 oc p	ourlins, except end verticals.		
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc		
REACTIONS	(size)	2=0-3-8, 4= Mechanical		
	Max Horiz	2=145 (LC 8)		
	Max Uplift	2=-135 (LC 8), 4=-120 (LC 12)		
	Max Grav	2=344 (LC 1), 4=282 (LC 1)		
FORCES	(lb) - Max Tension	imum Compression/Maximum		
TOP CHORD	1-2=0/17,	2-3=-147/0, 3-4=-177/175		
BOT CHORD	2-4=-72/1	51		
NOTES				
1) Unbalance this design	ed roof live l n.	oads have been considered for		
2) Wind: AS	CE 7-10; Vu	It=130mph (3-second gust)		
Vasd=103	8mph; TCDL	=6.0psf; BCDL=6.0psf; h=25ft; Cat.		
II; Exp C;	Enclosed; N	IWFRS (envelope) exterior zone		
and C-C E	Exterior (2) -	0-11-0 to 2-1-0, Interior (1) 2-1-0 to		
7-1-12 zoi	ne; cantileve	er left and right exposed ; end		

vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.
4) * This truss has been designed for a live load of 20.0psf

(4) This trass has been besigned for a live load of 200ps on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 120 lb uplift at joint 4 and 135 lb uplift at joint 2. SEAL 036322 April 29,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Prestwick Prime	
4619341	D04	Half Hip	5	1	Job Reference (optional)	173037104

2-8-11

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Fri Apr 25 12:59:59 ID:MTjUAsAhi5aGYMQ5qqPDovyzCWB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:35.4

Plate Offsets (X, Y): [5:0-2-0,0-2-8]

Loading FCLL (roof) FCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.21 0.28 0.11	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.03 0.01 0.02	(loc) 9-12 9-12 7 9-12	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 35 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 30T CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Except Structural wood shea 6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0-	t* 4-8,6-7:2x4 SP No athing directly applie cept end verticals, a -0 max.): 5-8, 5-6.	5) c.2 ed or 7) nd	* This truss h on the bottor 3-06-00 tall b chord and an Refer to gird Provide mec bearing plate 2.	has been designed in chord in all areas by 2-00-00 wide will by other members. er(s) for truss to tru hanical connection capable of withsta	for a liv where fit betw ss conr (by oth nding 1	e load of 20.0 a rectangle veen the both nections. ers) of truss t 17 lb uplift at	Opsf om to t joint						
BOT CHORD	Rigid ceiling directly bracing. (size) 2=0-3-8, 7 Max Horiz 2=186 (LC Max Uplift 2=-117 (LC Max Grav 2=379 (LC	applied or 10-0-0 or = Mechanical : 12) : 8) : 1), 7=670 (LC 1)	9)	designer mus for the intend Graphical pu or the orienta bottom chorc	st review loads to v led use of this truss rlin representation ttion of the purlin al l. Standard	erify that does no ong the	at they are co ot depict the s top and/or	orrect size						
FORCES	(lb) - Maximum Com Tension 1-2=0/17, 2-3=-521/4 5-8=-81/15, 4-5=-12/ 6-7=-216/0 2-9=-191/473, 8-9=0	pression/Maximum 49, 3-4=-50/17, 16, 5-6=-54/0, /457, 7-8=0/481	1)	Dead + Roo Plate Increa Uniform Loa Vert: 1-4: Concentrate	of Live (balanced): I ase=1.15 ads (lb/ft) =-60, 5-6=-60, 7-10 ed Loads (lb)	₋umber =-20	Increase=1.	15,						
VEBS	5-7=-579/0, 3-9=0/17 5-9=-229/50	79, 3-5=-508/171,		vert: 14=	-422							mm	1111,	

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 7-1-12 zone; cantilever left and right exposed; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ERENCO A MiTek Atfiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	JSJ, Prestwick Prime		
4619341	D05	Roof Special	1	1	I7303710 Job Reference (optional)	05

4-4-8

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Fri Apr 25 12:59:59 ID:nAXHKghbbtROFvcHYtaZXqyzBqw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-4-0

Page: 1

7-3-8

0-11-8

2x4 ı

5x8 =

2x4 u

4

5 14 ⊳\$

2x4 🛛

-0-11-0

Scale = 1:35

Plate Offsets (X, Y): [5:0-1-12,0-2-8]

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.22	DEFL Vert(LL)	in -0.01	(loc) 9-12	l/defl >999	L/d 360	PLATES MT20	GRIP 244/190
TCDL BCLL BCDI	10.0 0.0* 10.0	Lumber DOL Rep Stress Incr Code	1.15 NO IRC2015	/TPI2014	BC WB Matrix-MS	0.29 0.11	Vert(CT) Horz(CT) Wind(LL)	-0.03 0.01 0.02	9-12 7 9-12	>999 n/a >999	240 n/a 240	Weight [,] 35 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Structural wood shea 6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 2=0-3-8, 7 Max Horiz 2=124 (LC Max Uplift 2=-121 (LC Max Grav 2=379 (LC	t* 4-8,6-7:2x4 SP No athing directly applied cept end verticals, an -0 max.): 3-4, 5-8, 5- applied or 10-0-0 oc (= Mechanical C 12) C 8) C 1), 7=670 (LC 1)	5) .2 6) d or 7) d 6. 8) 9)	* This truss h on the botton 3-06-00 tall b chord and an Refer to girde Provide mech bearing plate 2. Load case(s) designer mus for the intend Graphical pu or the orienta bottom chord AD CASE(S)	as been designed in chord in all areas y 2-00-00 wide will y other members. er(s) for truss to tru- nanical connection capable of withsta 1 has/have been r st review loads to v led use of this truss rlin representation tion of the purlin al Standard	for a liv where fit betw ss conr (by oth nding 1 nodified erify tha 3. does no ong the	e load of 20.0 a rectangle veen the bott ections. ers) of truss t 21 lb uplift at 1. Building at they are cc ot depict the s top and/or	Dpsf om i joint prrect size					
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=0/17, 2-3=-526/4 5-8=-57/12, 4-5=-53/ 6-7=-224/0 2 0= 0/075 & 8 0=0//	pression/Maximum 40, 3-4=-67/12, 48, 5-6=-54/0,	1)	Dead + Roc Plate Increa Uniform Loa Vert: 1-3= Concentrate	of Live (balanced): I Ise=1.15 ads (Ib/ft) =-60, 3-4=-60, 5-6= ed Loads (Ib)	Lumber ∺-60, 7- ⁻	Increase=1.	15,					
WEBS	3-9=0/162, 3-5=-421 5-7=-576/0	/66, 5-9=-202/48,		Vert: 14=	-422							mmm	un.

NOT

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 7-1-12 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding. 3)
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Prestwick Prime			
4619341	D06	Roof Special Girder	1	1	I7 Job Reference (optional)	73037106		

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Fri Apr 25 12:59:59 ID:wl_IT?4jWCx3YavNnW8Xh4yzBp7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:45.1

Plate Offsets (X, Y): [2:0-2-12,Edge], [9:0-2-12,0-2-12]

1-11-0

Loa	ading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCI	LL (roof)	20.0	Plate Grip DOL	1.15		TC	0.36	Vert(LL)	-0.01	11	>999	360	MT20	244/190	
TCI	DL	10.0	Lumber DOL	1.15		BC	0.35	Vert(CT)	-0.03	11	>999	240			
BC	LL	0.0*	Rep Stress Incr	NO		WB	0.12	Horz(CT)	0.01	8	n/a	n/a			
BC	DL	10.0	Code	IRC201	5/TPI2014	Matrix-MS		Wind(LL)	0.01	11	>999	240	Weight: 41 lb	FT = 20%	
	MBER			6)	Refer to gird	er(s) for truss to tr	uss conr	nections							
TO		2x4 SP No 2		7)	Provide mec	hanical connection	n (by oth	ers) of truss	to						
BO		2x6 SP No 2		• • • •	bearing plate	capable of withst	tanding 7	9 lb uplift at	ioint						
WF	BS	2x4 SP No 2			2.		5								
RP				8)	Load case(s)	1 has/have been	modified	d. Building							
TO		Structural wood she	athing directly appli	od or	designer mu	st review loads to	verify that	at they are co	orrect						
10		5-6-15 oc purlins	atiling unectly appli-	and	for the intended use of this truss.										
		2-0-0 oc purlins (6-0)-0 max): 3-4 6-9 6	3-7 9)	Graphical pu	rlin representatior	n does no	ot depict the	size						
BO	T CHORD	Rigid ceiling directly	applied or 10-0-0 o	c	or the orienta	ation of the purlin	along the	e top and/or							
		bracing.		-	bottom chord	l.									
RE	ACTIONS	(size) 2=0-3-8 8	8= Mechanical	10) Hanger(s) or	other connection	device(s) shall be							
		Max Horiz 2=129 (L0	C 8)		provided suff	icient to support of	concentra	ated load(s)	57 lb						
		Max Uplift 2=-79 (LC	C 4)		down and 64	Ib up at 3-3-8 or	top cho	rd, and 292 I	D ion of						
		Max Grav 2=544 (L0	C 1). 8=800 (LC 1)		ution a 5-5-6 on bottom choid. The design/selection of										
FO	RCES	(lb) - Maximum Com	noression/Maximum	11	such commercial device(s) is the responsibility of others.										
		Tension			of the truss of one tool as front (F) or back (R)										
то	P CHORD	1-2=0/17, 2-3=-1085	5/0. 3-4=-782/0.	10	LOAD CASE(S) Standard										
		4-5=-304/0, 6-9=-19	6/0, 5-6=0/45,	1)		of Live (balanced)	· Lumbor	Increase-1	15						
		6-7=-475/0, 7-8=-58	4/0	1)	Plate Increa		. Lumber	Increase=1	.15,						
BO	T CHORD	2-11=-9/1013, 10-11	1=-22/969, 9-10=0/8	26,	Uniform I or	ads (lb/ft)									
		8-9=0/98			Vert: 1-3	=-60 3-4=-60 4-5	5=-60 6-3	7=-60 2-8=-	20						
WE	BS	3-11=0/329, 3-10=-2	223/76, 4-10=0/324,		Concentrate	ed Loads (lb)	, .	,						111.	
		4-9=-699/0, 7-9=0/4	90		Vert: 11=	-292 (F) 3=-3 (F)	14=-42	2					IN CA	DUL	
NO	TES					(.), (.)	,	_					TH UN	TO 11	
1)	Unbalance	ed roof live loads have	been considered fo	r								- 5	OF FSS	A.	
	this desigr	٦.									/	Se	in the	the star	
2)	Wind: ASC	CE 7-10; Vult=130mph	(3-second gust)								4		:0	1	
	Vasd=103	mph; TCDL=6.0psf; B	CDL=6.0psf; h=25ft	; Cat.							-	<			
	II; Exp C; I	Enclosed; MWFRS (er	nvelope) exterior zoi	ne;							=	:	SEA	L t t	
	cantilever	left and right exposed							=	:	0262	22 : =			
2)	Exposed; I	Lumber DOL=1.60 pla	ite grip DOL=1.60	-										~~ : :	
3) 4)	This trues	has been designed to	J.												
- †)	chord live	load nonconcurrent wi	sh								-	·	airs		
5) * This truss has been designed for a live load of 20 0nsf				Dosf								15	A VGINI	EFICAN	
-,	on the bottom chord in all areas where a rectangle											11	710	allin	
	on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom												IL A. G	ILDIN	
	مممم ممم												111.		

- Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 5) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

G mmm

April 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Prestwick Prime	
4619341	E01	Monopitch Supported Gable	1	1	Job Reference (optional)	173037107

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Fri Apr 25 13:00:00 ID:XMWOcjPENMwXDvOLxVdMOXyzCyI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:31

Loading TCLL (roof) TCDL	(psf) 20.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.32 0.73	DEFL Vert(LL) Vert(CT)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
BCLI	0.0*	Rep Stress Incr	YES		WB	0.09	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS	0.00		0.00	_			Weight: 30 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, ext Rigid ceiling directly	athing directly applie cept end verticals. applied or 6-0-0 oc	6) 7) ed or ⁸⁾	This truss ha chord live loa * This truss l on the bottor 3-06-00 tall l chord and an Provide mec bearing plate 2, 49 lb uplif uplift at joint	as been designed ad nonconcurren has been designe n chord in all are by 2-00-00 wide t y other member hanical connection e capable of with t at joint 6, 166 lb 2	I for a 10.0 t with any ed for a live as where will fit betw s. on (by othe standing 8 o uplift at jo) psf bottom other live loa e load of 20.1 a rectangle reen the bott ers) of truss t 1 lb uplift at j init 8 and 81	ids. Opsf om to oint Ib					
REACTIONS	bracing. (size) 2=7-0-0, 6	6=7-0-0, 7=7-0-0, 8=	₇₋₀₋₀ LC	DAD CASE(S)	Standard								
	Max Horiz 2=140 (LC Max Uplift 2=-81 (LC	C 8) C 8), 6=-49 (LC 12),											
	8=-166 (L Max Grav 2=214 (LC (LC 3), 8=	.C 12) C 1), 6=20 (LC 1), 7⊧ ⊧283 (LC 1)	=378										
FORCES	(lb) - Maximum Com Tension												
TOP CHORD	1-2=0/17, 2-3=-157/0 4-5=-22/15, 5-6=-51/	68, 3-4=-49/0, /69											
BOT CHORD	2-8=-55/76, 7-8=-5/1	1, 6-7=-5/1											
WEBS	4-7=0/72, 3-8=-297/2	298											
-													

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) -0-11-0 to 2-1-0, Exterior (2) 2-1-0 to 6-10-4 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 1-4-0 oc.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Qty Ply JSJ, Prestwick Prime		
4619341	E02	Monopitch	3	1	Job Reference (optional)	173037108

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Fri Apr 25 13:00:00 ID:ixdhnr7pnl1oyM8w5AjyyhyzCyf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:34.3

Plate Offsets (X, Y): [2:0-1-12,Edge]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.52	Vert(LL)	0.19	4-7	>421	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.47	Vert(CT)	-0.14	4-7	>579	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code	IRC2015/T	PI2014	Matrix-MS							Weight: 28 lb	FT = 20%
LUMBER			6) F	Provide mec	hanical connectio	n (by oth	ers) of truss	to					
TOP CHORD	2x4 SP No.2		b	earing plate	e at joint(s) 4.								
BOT CHORD	2x4 SP No.2		7) F	Provide mec	hanical connectio	n (by oth	ers) of truss	to					
WEBS	2x6 SP No.2		b	pearing plate	capable of withs	tanding 2	15 lb uplift a	t joint					
BRACING			2	2 and 196 lb	uplift at joint 4.								
TOP CHORD	Structural wood she	athing directly appli	ed or LOA	D CASE(S)	Standard								
	6-0-0 oc purlins, ex	cept end verticals.											
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	С										
	bracing.												
REACTIONS	(size) 2=0-3-0, 4	4=0-1-8											
	Max Horiz 2=139 (LC	C 8)											
	Max Uplift 2=-215 (L	C 8), 4=-196 (LC 8)											
	Max Grav 2=330 (LC	C 1), 4=267 (LC 1)											
FORCES	(lb) - Maximum Com	pression/Maximum											
	Tension												
TOP CHORD	1-2=0/17, 2-3=-153/	161, 3-4=-167/180											
BOT CHORD	2-4=-201/123												
NOTES													
1) Unbalance	ed roof live loads have	been considered fo	or										
2) Wind: AS(∩. ∩E 7 10: \/ult_120mph	(2 second quist)											
2) Wind. ASC Vasd-103	Se 7-10, Vuit=130mph Smoh: TCDI –6 Opsf: Bi	CDI -6 Onsf: h-25ft	Cat										11
	Enclosed: MWERS (er	velope) exterior zo	ne									11111 01	
and C-C E	Exterior (2) -0-11-0 to 2	-1-0. Interior (1) 2-1	-0 to									TH UF	NRO '''
6-9-4 zone	e; cantilever left and ric	aht exposed ; end									1	A SERG	IN IN I
vertical lef	ft exposed; porch left a	nd right exposed;C-	-C							/	22	A	H. MA
for membe	ers and forces & MWFI	RS for reactions sho	own;							9		<u> </u>	NU
Lumber D	OL=1.60 plate grip DO	0L=1.60									6 1		1 1 1 E
3) This truss	has been designed for	r a 10.0 psf bottom										SEA	L E
chord live	load nonconcurrent wi	th any other live loa	ds.							=	:	0202	
4) * This trus	s has been designed f	or a live load of 20.0	Upsf							=		0363	22 : 2
on the bot	tom chord in all areas	where a rectangle									3		1 - Z
3-06-00 ta	all by 2-00-00 wide will	nt between the botto	om								2	1. A.	all S
5) Rearing of	i any other members.	arallal to grain value									3.5	NGIN	FERINA
	$1 \text{ joint(S)} + 0 \text{ considers } p_2$	formula Duilding									11	710	The for the second

- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G

mmm April 29,2025

Job	Truss	Truss Type	Qty	Ply	JSJ, Prestwick Prime	
4619341	E03	Half Hip	2	1	Job Reference (optional)	173037109

Page: 1

3x8 II

2x4 II

3x6 =

Scale = 1:36.1

Plate Offsets (X, Y): [1:0-2-0,0-0-11]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.28 0.13 0.08	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 -0.01 0.00 0.00	(loc) 7-10 7-10 1 7-10	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Excep Left 2x6 SP No.2 : Structural wood she 5-8-0 oc purlins, ex 2-0-0 oc purlins: 4-7	t* 6-4:2x4 SP No.3 2-6-0 athing directly applied cept end verticals, an , 4-5.	6) 7) 8) d LC 1)	Refer to girde Load case(s) designer mus for the intend Graphical pu or the orienta bottom chord DAD CASE(S) Dead + Roco	er(s) for truss to tru 1 has/have been r st review loads to v ed use of this truss rlin representation tion of the purlin al Standard of Live (balanced): 1	ss conr modified erify tha s. does no long the Lumber	ections. J. Building at they are co ot depict the s top and/or Increase=1.1	rrect size 15,					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc		Plate Increa Uniform Loa	ise=1.15 ads (lb/ft)								
REACTIONS	(size) 1= Mecha Max Horiz 1=84 (LC Max Grav 1=215 (L)	anical, 6= Mechanical 12) C 1) 6=505 (I C 1)		Vert: 1-3= Concentrate Vert: 12=	=-60, 4-5=-60, 6-8= ed Loads (lb) -422	-20							
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-3=-174/114, 4-7=- 4-5=0/0, 5-6=-194/0 1-7=-90/169, 6-7=0/ 4-6=-411/0	38/35, 3-4=-13/119,											
NOTES													
 Unbalance this design Wind: ASC Vasd=103 II; Exp C; I and C-C E to 5-6-4 zc vertical left MWFRS fc grip DOL= Provide ac This truss chord live * This truss on the bott 3-06-00 ta chord and 	ed roof live loads have b. CE 7-10; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er xterior (2) 1-9-8 to 4-6 one; cantilever left and t exposed;C-C for mer or reactions shown; Lu 1.60 lequate drainage to pr has been designed fo load nonconcurrent w s has been designed for load nonconcurrent w s has been designed hor	been considered for (3-second gust) CDL=6.0psf; h=25ft; C pvelope) exterior zone i-12, Interior (1) 4-6-12 right exposed ; end mbers and forces & imber DOL=1.60 plate event water ponding. r a 10.0 psf bottom th any other live loads or a live load of 20.0p where a rectangle fit between the bottom	Sat. 2 5. Sf							Manna and		SEA O363	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org)

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

April 29,2025

Job	Truss	Truss Type	Qty	Ply	JSJ, Prestwick Prime	
4619341	JA1	Jack-Closed Girder	1	2	Job Reference (optional)	173037110

4-11-8

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Fri Apr 25 13:00:00 ID:KIdyjC83uhQsN5l9tCbCoHyzCoJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4-11-8

Scale = 1:34.7

Plate Offsets (X, Y): [1:0-2-1,0-1-8]

Loading (psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof) 20.0	Plate Grip DOL	1.15	TC	0.47	Vert(LL)	-0.05	3-5	>999	360	MT20	244/190	
FCDL 10.0	Lumber DOL	1.15	BC	0.94	Vert(CT)	-0.11	3-5	>549	240			
BCLL 0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	3	n/a	n/a			
BCDL 10.0	Code	IRC2015/TPI2014	Matrix-MP		Wind(LL)	0.06	3-5	>924	240	Weight: 46 lb	FT = 20%	
JUMBER IOP CHORD 2x4 SP No.2 3OT CHORD 2x6 SP No.2 WEBS 2x4 SP No.2 SRACING FOP CHORD STO CHORD Structural wood she 4-11-8 oc purlins, e 3OT CHORD STO CHORD Rigid ceiling directly bracing. REACTIONS (size) 1=0-3-8, i Max Horiz 1=125 (Li Max Horiz Max Uplift 1=-375 (Li Max Grav Max Uplift 1=-375 (Li Max Uplift Max Uplift 1=-375 (Li Max Uplift STORCES (Ib) - Maximum Com Tension FOP CHORD 1-2=-238/74, 2-3=-1 3OT CHORD 3OT CHORD 1-2=-238/74, 2-3=-1 3OT CHORD 1-3=-30/11 NOTES 1) 2-ply truss to be connected toge To chords connected with 10d follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected	athing directly applie xcept end verticals. applied or 10-0-0 oc 3= Mechanical C 8), 3=-495 (LC 8) _C 1), 3=1603 (LC 1) pression/Maximum 89/113 ther as follows: (0.131"x3") nails as 0d (0.131"x3") nails as 10-9-0 oc. applied to all plies, ck (B) face in the LO, nections have been noted as (F) or (B), been considered for (3-second gust) CDL=6.0psf; h=25ft; vivelope) exterior zonn ; end vertical left te grip DOL=1.60 r a 10.0 psf bottom th any other live load	 6) * This truss on the bott 3-06-00 tall chord and a 7) Refer to gin 8) Provide me bearing plat 1 and 495 I 9) Use Simps 14-10dx1 1, spaced at 2 end to 4-2-chord. 10) Fill all nail r LOAD CASE(S 1) Dead + Rt Plate Increased at 2 Plate Incre	has been designed m chord in all areas by 2-00-00 wide wil ny other members. der(s) for truss to tru chanical connection e capable of withsta o uplift at joint 3. on Strong-Tie HTU2! '2 Truss, Single Ply -0-0 oc max. starting 2 to connect truss(e oles where hanger i) Standard of Live (balanced): ease=1.15 pads (lb/ft) 22=-60, 1-3=-20 ted Loads (lb) -872 (B), 6=-869 (B)	for a liv swhere I fit betw ss conr (by oth anding 3 6 (20-10 Girder) g at 0-8 es) to ba s in cor Lumber), 7=-87	e load of 20.0 a rectangle veen the botto nections. ers) of truss t 75 lb uplift at 0dx1 1/2 Gird or equivalent 12 from the I ack face of bc ttact with lumi Increase=1. ⁻ 3 (B)	Dpsf om joint er, eft ottom ber. 15,		With the second s		SEA 0363	ROLL 22 LBERTIN	

April 29,2025

Job	Truss	Truss Type	Qty	Ply	JSJ, Prestwick Prime	
4619341	JA2	Jack-Open	13	1	Job Reference (optional)	173037111

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Fri Apr 25 13:00:00 ID:Gbe?seLfQP6ESyiT0LPj6MyzCpL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:28.9

Plate Offsets (X, Y): [2:0-1-12,0-1-0]

Loading	(psf)	Spacing	2-0-0	CSI	-	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.35	Vert(LL)	-0.02	4-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.30	Vert(CT)	-0.06	4-7	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MP		Wind(LL)	0.05	4-7	>999	240	Weight: 17 lb	FT = 20%

4-11-8

LOWIDER	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	4-11-8 oc purlins.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.

REACTIONS (size) 2=0-3-8, 3= Mechanical, 4= Mechanical Max Horiz 2=148 (LC 12) Max Uplift 2=-69 (LC 12), 3=-103 (LC 12) Max Grav 2=256 (LC 1), 3=127 (LC 1), 4=91 (LC 3)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/25, 2-3=-100/50 2-4=-84/82

BOT CHORD

NOTES

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 4-10-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 4)
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 103 lb uplift at joint 3 and 69 lb uplift at joint 2.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss Truss Type Qty Ply JSJ,		JSJ, Prestwick Prime			
4619341	JA3	Jack-Open Girder	3	1	I73037112 Job Reference (optional)	

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Fri Apr 25 13:00:00 ID:JPxzkWiQv7Rlbp9HPjyITByzCqA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:32.9

Plate Offsets (X, Y): [3:0-3-0,0-2-0], [5:Edge,0-1-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.11 0.12 0.05	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 -0.01 0.00 0.01	(loc) 6-9 6-9 5 6-9	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%	
LUMBER FOP CHORD 30T CHORD WEBS 3RACING FOP CHORD 30T CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 4-11-8 oc purlins, ex 2-0-0 oc purlins: 3-4 Rigid ceiling directly bracing. (size) 2=0-3-8, 4 Machanic Max Horiz 2=98 (LC Max Uplift 2=-113 (L (LC 8)	athing directly applie c- applied or 10-0-0 oc 4= Mechanical, 5= al 8) C 8), 4=-39 (LC 4), 5	6) 7) 8) d or 9) 5 5 5 73	Refer to gird Provide mec bearing plate 4, 113 lb upli Graphical pu or the orient bottom chorc Hanger(s) or provided suff down and 11 down at 2-1 of such conn others.) In the LOAD of the truss a	er(s) for truss to t hanical connection capable of withst ft at joint 2 and 73 rlin representation ation of the purlin a other connection ficient to support of 1 lb up at 2-11-8 1-8 on bottom cho ection device(s) is CASE(S) section, are noted as front	russ con n (by oth anding 3 b uplift n does no along the device(s concentra on top c ord. The s the resp , loads a (F) or ba	nections. ers) of truss : 9 lb uplift at j at joint 5. bt depict the : • top and/or) shall be tted load(s) 5 hord, and 36 design/selec ponsibility of opplied to the ck (B).	to joint size 55 lb lb tion face						
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=103 II; Exp C; cantilever right expc 3) Provide a 4) This truss	(LC 1) (LC 1) (LC 1) (LC 1) (LC 1) (LC 1) (LC 1) (LC 1) 1-2=0/25, 2-3=-241/2 2-6=-108/183, 5-6=- 3-5=-221/139, 3-6=0 ed roof live loads have n. CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed used; Lumber DOL=1.60 dequate drainage to pro- has been designed for	pression/Maximum 93, 3-4=0/0 110/174 //132 been considered for (3-second gust) CDL=6.0psf; h=25ft; twelope) exterior zom ; end vertical left and 0 plate grip DOL=1.6 event water ponding ; a 10.0 psf bottom	Cat. e; j i0	Dead + Roo Plate Increa Uniform Loa Vert: 1-3a Concentrate Vert: 3=-	of Live (balanced): ase=1.15 ads (lb/ft) =-60, 3-4=-60, 5-7 ed Loads (lb) 11 (F), 6=-19 (F)	: Lumber	Increase=1.	15,		Mannu.	ALL	SEA 0363	ROLIN L 22	Mannin

- I his truss has been designed for a 10.0 psr bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

4. GILD

April 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Prestwick Prime	
4619341	JA4	Jack-Open	3	1	Job Reference (optional)	173037113

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Fri Apr 25 13:00:01 ID:ERQbJ8hMSd_X83IK2nzqchyzCrT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale =	= 1.26 4
ocale -	- 1.20.7

Leading	(nof)	Cussing	2.0.0	0.01		DEEL		(10.0)	l/defi	1 /al		
Loading	(psi)	Spacing	2-0-0	1031		DEFL	IN	(100)	i/deli	L/a	PLAIES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	0.00	4-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	-0.01	4-7	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MP		Wind(LL)	0.01	4-7	>999	240	Weight: 11 lb	FT = 20%

2-11-8

TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
BRACING		
TOP CHORD	Structura 2-11-8 oc	I wood sheathing directly applied or purlins.
BOT CHORD	Rigid ceil bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(size)	2=0-3-8, 3= Mechanical, 4= Mechanical
	Max Horiz	2=96 (LC 12)
	Max Uplift	2=-56 (LC 12), 3=-57 (LC 12)
	Max Grav	2=180 (LC 1), 3=71 (LC 1), 4=52 (LC 3)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD	1-2=0/25,	2-3=-60/29
BOT CHORD	2-4=-19/4	6

2-3-3

NOTES

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 2-10-12 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf
- This truss has been designed for a live load of 20.0ps on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 57 lb uplift at joint 3 and 56 lb uplift at joint 2.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Prestwick Prime	
4619341	JD1	Jack-Open	2	1	Job Reference (optional)	173037114

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Fri Apr 25 13:00:01 ID:LdBgu41M_ehZ9XFdqH5sJiyzD_3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:25

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.12	Vert(LL)	0.00	4-7	>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.11	Vert(CT)	-0.01	4-7	>999	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a			
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MP		Wind(LL)	0.01	4-7	>999	240	Weight: 12 lb	FT = 20%	

3-3-8

LUMBEF	2
--------	---

TOP CHORD	2x4 SP N	0.2					
BOT CHORD	2x4 SP N	0.2					
BRACING							
TOP CHORD	Structural wood sheathing directly applied or 3-3-8 oc purlins.						
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.						
REACTIONS	(size)	2=0-3-8, 3= Mechanical, 4= Mechanical					
	Max Horiz	2=77 (LC 8)					
	Max Uplift	2=-96 (LC 8), 3=-53 (LC 12)					
	Max Grav	2=192 (LC 1), 3=79 (LC 1), 4=57 (LC 3)					
FORCES	(lb) - Max Tension	imum Compression/Maximum					
TOP CHORD	1-2=0/17,	2-3=-54/21					
BOT CHORD	2-4=-29/6	3					
NOTES							

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 3-2-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf
- This truss has been designed for a live load of 20.0ps on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 53 lb uplift at joint 3 and 96 lb uplift at joint 2.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty Ply		JSJ, Prestwick Prime		
4619341	JD2	Jack-Closed Girder	1	1	Job Reference (optional)	173037115	

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Fri Apr 25 13:00:01 ID:Pn7mc0QRRTj0?Sini?gMcSyzCzZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

7

2x4 🛛

HTU26 HTU26

3x4 =

3-3-8

Scale = 1:29.4

Plate Offsets (X, Y): [1:0-2-12,Edge]

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015/	TPI2014	CSI TC BC WB Matrix-MP	0.12 0.18 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.01 0.00 0.00	(loc) 3-5 3-5 3 3-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORE BOT CHORE WEBS BRACING TOP CHORE BOT CHORE	 2x4 SP No.: 2x6 SP No.: 2x4 SP No.: 3x4 SP No.: Structural w 3-3-8 oc pu Rigid ceiling bracing. 	2 2 2 vood shea rlins, exc g directly	athing directly applie sept end verticals. applied or 10-0-0 oc	LO/ 1) d or	AD CASE(S) Dead + Roo Plate Increa Uniform Loa Vert: 1-2= Concentrate Vert: 6=-2	Standard of Live (balanced): I se=1.15 ads (lb/ft) =-60, 1-3=-20 ed Loads (lb) 201 (F), 7=-198 (F)	Lumber	Increase=1.1	15,					
REACTIONS	(EACTIONS (size) 1=0-3-8, 3= Mechanical Max Horiz 1=55 (LC 4) Max Grav 1=349 (LC 1), 3=302 (LC 1)													
TOP CHORD BOT CHORD	ORCES (lb) - Maximum Compression/Maximum Tension ToP CHORD TOP CHORD 1-2=-53/20, 2-3=-75/33 3OT CHORD 1-3=-8/1													
NOTES 1) Unbalance this design 2) Wind: AS Vasd=10 II; Exp C; cantileve exposed; 3) This trus; chord live 4) * This tru on the boc 3-06-00 t chord and 5) Refer to 9 6) Use Simp 11-10dx1 max. star connect t 7) Fill all na 8) In the LC of the tru	ced roof live loa gr. CCE 7-10; Vult= 3mph; TCDL=6 Enclosed; MW r left and right of Lumber DOL= s has been des load nonconc ss has been des load nonconc shas been des load nonconc load nonc	ads have ads ha	(3-second gust) CDL=6.0psf; h=25ft; velope) exterior zon end vertical left e grip DOL=1.60 a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle it between the botto s connections. (20-10d Girder, t spaced at 2-0-0 oc eft end to 2-4-12 to bottom chord. in contact with lumb ads applied to the fa-	Cat. e; ds. psf m c per. ace							Within the		SEAL 03632	RO 22 E.R. H. M. 14 14 14 14 14 14 14 14 14 14 14 14 14

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

