

RE: 4619338 JSJ, Smith Prime Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:Customer: JSJ BuildersProject Name: 4619338Lot/Block: 3Model: Smith PrimeAddress:Subdivision: ILAS WAYCity: DunnState: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.8 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 16 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	171906808	A01	3/10/2025
2	171906809	A02	3/10/2025
3	171906810	A03	3/10/2025
4	171906811	A04	3/10/2025
5	171906812	A05	3/10/2025
6	171906813	A06	3/10/2025
7	171906814	A07	3/10/2025
8	171906815	A08	3/10/2025
9	171906816	A09	3/10/2025
10	171906817	B01	3/10/2025
11	171906818	B02	3/10/2025
12	171906819	B03	3/10/2025
13	171906820	B04	3/10/2025
14	171906821	B05	3/10/2025
15	171906822	PB01	3/10/2025
16	171906823	PB02	3/10/2025

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Builders FirstSource-Sumter,SC.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2025

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

Job	Truss	Truss Type	Qty	Ply	JSJ, Smith Prime	
4619338	A01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	171906808

Run; 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Sun Mar 09 16:02:36 ID:rXx7qFxcR9Qpgha4WwwB0UyIhb0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

56-7-8

Scale = 1:101.3	3												
Plate Offsets ([2:Edge,0-0-0], X, Y): [78:0-5-0,0-4-8	[11:0-3-10,Edge], [1]	9:0-5-0,0-3-0], [27:0-	5-0,0-3-0], [35:0-3-10,Edge], [40:0-1-9,0-3-	·12], [47:E	Edge,0-1	1-13], [4	7:0-5-2	2,Edge], [69:0	-5-0,0-4-8],	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix	0.09 0.06 0.09 -MS	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 47	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 651	GRIP 244/190 Ib FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS WEDGE SLIDER BRACING TOP CHORD BOT CHORD WEBS	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 Right: 2x4 SP No.3 Left 2x6 SP No.2 Structural wood she 6-0-0 oc purlins, exc 2-0-0 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt	1-4-7 athing directly applie sept -0 max.): 19-27. applied or 10-0-0 oc 23-71, 24-70, 25-69 26-68, 28-67, 29-66 30-65, 31-64, 22-72 21-73, 20-74, 18-75 17-76, 16-77, 15-78 47=56-7-8, 49=56-7	od or ; ; ; ;	Max Uplift	2=-74 (LC 17), 4 49=-154 (LC 13), 51=-50 (LC 13), 53=-46 (LC 13), 57=-57 (LC 13), 60=-55 (LC 13), 64=-58 (LC 13), 64=-58 (LC 13), 64=-58 (LC 13), 70=-42 (LC 9), 76 77=-60 (LC 12), 74=-2 (LC 9), 76 77=-60 (LC 12), 81=-55 (LC 12), 83=-55 (LC 12), 83=-55 (LC 12),	i7=-48 (LC 9) i7=-48 (LC 9) i, 50=-9 (LC 4) 52=-41 (LC 5) 54=-32 (LC 5) 56=-57 (LC 6) 58=-55 (LC 6) 63=-55 (LC 6) 63=-55 (LC 6) 63=-55 (LC 6) 63=-56 (LC 7) 3=-36 (LC 8) i=-39 (LC 8) i=-41 (LC 12) 78=-57 (LC 7) 80=-55 (LC 8) 82=-55 (LC 8) 84=-55 (LC 8) 84=-55 (LC 8) 86=-54 (LC 7)),)),)),)),)), 13), 13), 13), 13), 13), 13), 13), 13), 12), 12), 12), 12), 12), 12),		P	Max Gr	av 2=256 (L 49=256 (51=118 (53=107 (55=104 (55=104 (60=107 (64=107 (64=107 (64=107 (68=107 (68=107 (70=106 (72=108 (74=109 (76=106 (78=107 (80=107 (82=107 (C 12), 47=157 (LC 24), 50=44 (LC 24), 52=105 LC 24), 54=97 (LC 1), 56=120 (LC 24), 58=106 LC 1), 61=107 (LC 24), 63=107 (LC 24), 63=107 (LC 22), 69=108 LC 22), 71=107 LC 24), 73=108 LC 22), 75=125 LC 23), 77=108 LC 23), 77=108 LC 12, 79=106 (LC 23), 81=107 LC 10, 83=107 (LC 10, 83=107 (LC 10, 90) (LC 1), LC 1), LC 1), LC 1), LC 1), LC 1), LC 1), (LC 24), LC 24), (LC 24), (LC 24), (LC 24), (LC 24), (LC 23), LC 23), LC 23), LC 23),
	(312) 50=56-7-{ 53=56-7-{ 60=56-7-{ 60=56-7-{ 60=56-7-{ 69=56-7-{ 72=56-7-{ 75=56-7-{ 75=56-7-{ 81=56-7-{ 84=56-7-{ 84=56-7-{ 84=56-7-{ 87=5	A, 1-36 - 7-8, 52=56 3, 51=56-7-8, 55=56 3, 61=56-7-8, 65=56 3, 64=56-7-8, 65=56 3, 67=56-7-8, 68=56 3, 70=56-7-8, 71=56 3, 73=56-7-8, 74=56 3, 79=56-7-8, 80=56 3, 82=56-7-8, 83=56 3, 85=56-7-8, 83=56 3, 88=56-7-8, 89=56 C 13)	7-7-8, -7-8, -7-8, -7-8, -7-8, -7-8, -7-8, -7-8, -7-8, -7-8, -7-8, -7-8, -7-8, -7-8, -7-8,		87=-56 (LC 12), 89=-217 (LC 12)	88=-53 (LC ·	12),		Contraction of the second seco	The second se	84=107 (86=106 (88=103 (90) 88=103 (90) 88=103 (90) 88=103 (90) 88=103 (90) 81 81 91 91 91 91 91 91 91 91 91 91 91 91 91	LC 1), 85=107 (LC 1), 87=108 (LC 23), 89=126 AR SAR SAR SAR SAR SAR SAR SAR SAR SAR	LC 23), LC 1), (LC 19)

Continued on page 2

G minimum)

March 10,2025

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Smith Prime	
4619338	A01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	171906808

Run: 8.83 S. Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries. Inc. Sun Mar 09 16:02:36

ID:rXx7qFxcR9Qpgha4WwwB0Uylhb0-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 2

Builders FirstSource (Sumter, SC), Sumter, SC - 29153.

FORCES	(lb) - Maximum Compression/Maximum	9)	* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
TOP CHORD	1-2=0/20, 2-3=-141/54, 3-4=-276/117,		3-06-00 tall by 2-00-00 wide will fit between the bottom
	4-5=-232/127, 5-6=-195/138, 6-7=-160/149,		chord and any other members.
	7-8=-132/170, 8-9=-104/192, 9-10=-77/214,	10)	All bearings are assumed to be SP No.2.
	10-12=-70/236, 12-13=-85/258,	11)	Provide mechanical connection (by others) of truss to
	13-14=-100/280, 14-15=-115/303,		bearing plate capable of withstanding 74 lb uplift at joint
	15-16=-131/348, 16-17=-147/394,		2, 48 lb uplift at joint 47, 39 lb uplift at joint 71, 42 lb upli
	17-18=-157/426, 18-19=-150/400,		at joint 70, 36 lb uplift at joint 69, 35 lb uplift at joint 66,
	19-20=-148/414, 20-21=-148/414,		62 ID UPIIT at joint 65, 58 ID UPIIT at joint 64, 55 ID UPIIT at joint 62. EF lb uplift at joint 61. EF
	21-22=-140/414, 22-23=-140/414, 23-24148/414		Junit 65, 55 ib uplin at joint 62, 55 ib uplin at joint 61, 55
	25-26=-149/414 26-27=-149/414		ioint 57, 57 lb unlift at joint 56, 50 lb unlift at joint 55, 32
	27-28=-150/401, 28-29=-157/427,		Ib uplift at joint 54, 46 lb uplift at joint 53, 41 lb uplift at
	29-30=-147/394, 30-31=-131/349,		joint 52, 50 lb uplift at joint 51, 9 lb uplift at joint 50, 154
	31-32=-116/304, 32-33=-101/261,		Ib uplift at joint 49, 41 lb uplift at joint 72, 36 lb uplift at
	33-34=-86/219, 34-36=-71/176,		joint 73, 2 lb uplift at joint 74, 41 lb uplift at joint 76, 60 lb
	36-37=-56/133, 37-38=-41/108,		uplift at joint 77, 57 lb uplift at joint 78, 56 lb uplift at joint
	38-39=-33/96, 39-40=-52/85, 40-41=-63/70,		79, 55 lb uplift at joint 80, 55 lb uplift at joint 81, 55 lb
	41-42=-76/60, 42-43=-94/47, 43-44=-113/34,		uplift at joint 82, 55 lb uplift at joint 83, 55 lb uplift at joint 84, 55 lb uplift at joint 86, 56 lb
	44-45=-131/35, 45-46=-144/34, 46-47=-178/57, 47-48=-0/8		uplift at joint 87, 53 lb uplift at joint 88, 217 lb uplift at
BOT CHORD	2-89=-63/208 88-89=-63/208		ioint 89 74 lb uplift at joint 2 and 48 lb uplift at joint 47
Bor onone	87-88=-63/208, 86-87=-63/208,		
	85-86=-63/208, 84-85=-63/208,	12)	Graphical purlin representation does not depict the size
	83-84=-63/208, 82-83=-63/208,		or the orientation of the purlin along the top and/or
	81-82=-63/208, 80-81=-63/208,		bottom chord.
	79-80=-63/208, 77-79=-63/208,	LO	AD CASE(S) Standard
	76-77=-62/208, 75-76=-62/208,		
	74-75=-62/208, 73-74=-62/208, 72-7362/208		
	70-71=-62/208 68-70=-62/208		
	67-68=-62/207, 66-67=-62/207,		
	65-66=-62/207, 64-65=-62/207,		
	63-64=-62/207, 62-63=-62/207,		
	61-62=-62/207, 60-61=-62/207,		
	58-60=-62/207, 57-58=-62/207,		
	56-57=-62/207, 55-56=-62/207,		
	54-55=-56/201, 53-54=-56/201, 52 52- 56/201, 51 52- 56/201		
	50-51-56/201 49-50-56/201		
	47-49=-56/201		
WEBS	23-71=-80/59, 24-70=-81/60, 25-69=-81/52,		
	26-68=-78/15, 28-67=-80/0, 29-66=-80/56,		
	30-65=-80/87, 31-64=-80/84, 32-63=-80/80,		
	33-62=-80/80, 34-61=-80/80, 36-60=-80/80,		
	37-58=-79/80, 38-57=-79/81, 39-56=-94/86,		
	40-55=-78/79, 41-54=-71/48, 42-53=-80/68,		
	43-52=-81/67, 44-51=-81/67, 45-50=-55/44,		
	21-73=-81/52 20-74=-82/18 18-75=-98/0		
	17-76=-80/57, 16-77=-80/87, 15-78=-80/83		
	14-79=-80/80, 13-80=-80/80, 12-81=-80/80.		
	10-82=-80/80, 9-83=-80/80, 8-84=-80/80,		
	7-85=-80/80, 6-86=-80/80, 5-87=-80/78,		
	4-88=-80/87, 3-89=-77/174		
NOTES			

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 (||) MT20 unless otherwise indicated.

Gable requires continuous bottom chord bearing. 6)

Gable studs spaced at 1-4-0 oc. 7)

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	JSJ, Smith Prime	
4619338	A02	Piggyback Base	6	1	Job Reference (optional)	171906809

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Sun Mar 09 16:02:38 ID:BJfdlmWam8d4mejibxoNWhylvQ_-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

L	4-11-8	12-7-8	20-5-4	30-1-12	37-11-8	45-9-4	50-5-4	56-7-8
Scale = 1:102.2	4-11-8	7-8-0	7-9-12	9-8-8	7-9-12	7-9-12	4-8-0	6-2-4

Plate Offsets (X, Y):	[2:0-7-3,0-0-4], [14:Edge,0-1-13], [14:0-5-2,Edge], [17:0-3-8,0-2-8], [19:0-3-8,0-2-8], [24:0-3-8,0-2-8]

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC20)15/TPI2	2014	CSI TC BC WB Matrix-MS	0.78 0.76 0.79	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.21 -0.40 0.10 0.15	(loc) 20-22 20-22 16 22	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 442 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE SLIDER BRACING TOP CHORD	2x6 SP No 2x6 SP 24 21-18,23-2 2x4 SP No Right: 2x4 Left 2x6 S Structural 2-11-6 oc	0.2 00F 2.0E (21:2x6 SP 0.3 *Excep SP No.3 P No.2 1 wood shea purlins ex	or 2x6 SP DSS *Exc No.2 ** 13-17:2x4 SP No. -11-12 athing directly applic cent	cept* .2 ed or	WEBS NOTES 1) Unb this	4 6 9 1 1 8 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4-25=-133/180, 4-2 5-22=-731/482, 7-2 5-20=-268/769, 10- 10-19=-53/154, 12- 12-17=-1257/618, 4 3-20=-400/209, 13- 13-17=-1171/3234 roof live loads have	24=-85/1 22=-277/ 20=-516 19=-130 3-22=-28 16=-24 e been o	92, 6-24=0/3 801, 5/392, 0/638, 39/213, 57/1059, considered fo	37, ır						
BOT CHORD WEBS REACTIONS	2-0-0 oc p Rigid ceili bracing. 1 Row at t (size) Max Horiz Max Uplift Max Grav	2=0-3-8, 1 2=-240 (L/ 2=-496 (L/ 2=-2005 (L 2=2005 (L 2=2005 (L 16=-677 ()	1-0 max.): 7-9. applied or 6-0-0 oc 4-24, 6-22, 10-20, 8 8-20 4=0-3-0, 16=0-3-8 C 13) C 12), 14=-328 (LC LC 13) C 1), 14=55 (LC 12 LC 1)	3-22, 20), 2),	2) Win Vas II; E and exp exp reac DOI 3) Pro 4) All p 5) This	d: ASCE d=103mp Exp C; End C-C Exte bosed ; en bosed;C-C ctions sho L=1.60 vide adeq plates are s truss ha	7-10; Vult=130mp bh; TCDL=6.0psf; E closed; MWFRS (e erior (2) zone; cant d vertical left and r for members and bwn; Lumber DOL= uate drainage to p 5x8 (=) MT20 un s been designed for	h (3-sec 3CDL=6 envelope ilever le right exp forces & =1.60 pla prevent v less otho or a 10.0	ond gust) .0psf; h=25ft; e) exterior zor ft and right osed; porch & MWFRS for ate grip water ponding erwise indica) psf bottom	; Cat. ne right g. ted.						
FORCES	(lb) - Maxi Tension 1-2=0/20, 6-7=-2548 8-9=-2144 10-12=-28 13-14=-35	mum Com 2-4=-3116 3/1227, 7-8 1/1157, 9-1 306/1247, 1 39/1213, 14	pression/Maximum /1307, 4-6=-3070/13 =-2198/1179, 0=-2486/1203, 2-13=-1967/861, I-15=0/8	349,	cno 6) * Th on t 3-06 cho 7) All t 8) Pro bea	ord live loa nis truss h the bottom 6-00 tall b ord and an bearings a wide mech aring plate	an onconcurrent v las been designed n chord in all areas by 2-00-00 wide wil y other members, are assumed to be hanical connection canable of withsta	for a liv for a liv where I fit betw with BC SP 240 (by othe anding 4	other live loa e load of 20.(a rectangle veen the botto DL = 10.0psf 0F 2.0E or D ers) of truss t 96 lb unlift at	ds. Opsf om SS . o		6	real and	ORTH CA	ROUNT	
BOT CHORD	2-25=-103 22-24=-92 19-20=-83 16-17=-11	86/2678, 24 26/2694, 20 88/2454, 17 26/393, 14	I-25=-1036/2678, J-22=-601/2222, 7-19=-718/1919, I-16=-1126/393		2, 3 9) Gra or th bott	aphical put he orienta tom chord	ft at joint 14 and 6 rlin representation ttion of the purlin a	does no long the	bit depict the set top and/or	size		THE DAY		SEAI 03632	22	with the

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Smith Prime	
4619338	A03	Piggyback Base	2	1	Job Reference (optional)	171906810

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Sun Mar 09 16:02:38 ID:GYiQkyjJCsDul?NwSxbqZmyIvOQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	4-11-8	12-7-8	20-5-4	30-1-12	37-11-8	42-5-4	45-9-4	50-5-4	56-7-8
Scale = 1:102.2	4-11-8	7-8-0	7-9-12	9-8-8	7-9-12	4-5-12	3-4-0	4-8-0	6-2-4

Plate Offsets (X, Y):	[2:0-7-3,0-0-8],	[15:Edge,0-1-13], [15:0-5-2,Edge], [18:0-3-8	,0-2-8], [19:0-3	-8,0-4-8], [2	1:0-3-8,0-2-8], [26:0-3	3-8,0-2-8	8]			
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.58	Vert(LL)	-0.15	22-24	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.89	Vert(CT)	-0.27	22-24	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.90	Horz(CT)	0.06	19	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS		Wind(LL)	0.12	26-27	>999	240	Weight: 452 lb	FT = 20%

BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS	Wind(LL)	0.12	26-27	>999	240
LUMBER TOP CHORD BOT CHORD WEBS WEDGE SLIDER BRACING TOP CHORD	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 Right: 2x4 SP No.3 Left 2x6 SP No.2 Structural wood she 3-6-10 oc purlins, ex 2-0-0 oc purlins (5-9	1-11-12 athing directly applied ccept -12 max.): 7-9.	or 1)	EBS D TES Unbalanced	4-27=-55/146, 4-26=-128/1 6-24=-754/497, 7-24=-127, 9-22=-47/366, 13-19=-478, 13-18=-413/344, 14-18=-7, 14-17=-189/226, 10-22=-2 10-21=-1215/653, 12-21=- 12-19=-2104/996, 8-24=-11 8-22=-662/302 roof live loads have been of	196, 6-26=0/36 /499, /574, 49/746, 12/775, 762/1802, 62/372, considered for	3,			
BOT CHORD WEBS REACTIONS	Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, Max Horiz 2=-240 (L Max Uplift 2=-448 (L 19=-595 (Max Grav 2=1670 (L 19=2556	applied or 6-0-0 oc 4-26, 6-24, 10-21, 8-2 15=0-3-0, 19=0-3-8 C 13) C 12), 15=-315 (LC 9) LC 13) .C 1), 15=418 (LC 24) (L C 1)	2) 22),	this design. Wind: ASCE Vasd=103m II; Exp C; En and C-C Ext exposed; C-C reactions shi DOL=1.60	7-10; Vult=130mph (3-sec oh; TCDL=6.0psf; BCDL=6 closed; MWFRS (envelope erior (2) zone; cantilever le d vertical left and right exp c for members and forces a pown; Lumber DOL=1.60 pl	cond gust) 5.0psf; h=25ft; + e) exterior zon- eft and right oosed; porch ri & MWFRS for ate grip	Cat. e ght			
FORCES	(lb) - Maximum Com Tension	pression/Maximum	3) 4)	Provide ade All plates are	quate drainage to prevent 5x8 (=) MT20 unless oth	water ponding. erwise indicate	ed.			
TOP CHORD	1-2=0/20, 2-4=-2554 6-7=-1862/888, 7-8= 8-9=-1238/709, 9-10 10-12=-771/287, 12- 13-14=-78/343, 14-1 2-27=-797/2184, 26- 24-26=-634/2097, 2: 21-22=-5/708, 19-21 18-19=-332/176, 17-	H1034, 4-6=-2395/102 1581/874,)=-1472/698, -13=-420/725, 5=-547/614, 15-16=0/ -27=-797/2184, 2-24=-224/1462, =-611/583, 18=-533/509.	24, 5) 6) /8 7) 8)	This truss ha chord live loo * This truss I on the bottor 3-06-00 tall I chord and ar All bearings Provide med bearing plate	is been designed for a 10.1 ad nonconcurrent with any nas been designed for a liv n chord in all areas where by 2-00-00 wide will fit betw ny other members, with BC are assumed to be SP No. hanical connection (by oth a capable of withstanding 4	U psr bottom other live load ve load of 20.0 a rectangle ween the bottou CDL = 10.0psf. .2. uers) of truss to 148 lb uplift at j	is. osf m oint		Contraction of the second seco	Ĩ
	15-17=-533/509		0)						Ξ	l.

Graphical purlin representation does not depict the size 9) or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Smith Prime	
4619338	A04	Piggyback Base Girder	1	2	Job Reference (optional)	171906811

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Sun Mar 09 16:02:38 ID:GYiQkyjJCsDul?NwSxbqZmylvOQ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

	4-11-8	12-7-8	15-11-0 20-5-4	27-10-0	30-1-12	36-1-8	40-8-8 42-5	⁻⁴ 45-9-4	50-11-12	56-7-8
Scale = 1:102.9	4-11-8	7-8-0	3-3-8 4-6-4	7-4-12	2-3-12	5-11-12	4-7-0 1-8-1	2 3-4-0	5-2-8	5-7-12

Plate Offsets (X, Y):): [2:Edge,0-0-0], [15:Edge,0-1-13], [15:0-5-2,Edge], [18:0-3-8,0-	-2-8], [21:0-7-8,0-3-0], [26:0-3-8,0-2-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.41 0.61 0.53	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.07 -0.14 0.05 0.06	(loc) 22-24 26-27 19 26-27	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 963 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x6 SP No.2 2x6 SP No.2 2x4 SP No.2 Right: 2x4 SP No.3 Left 2x6 SP No.2 1 Structural wood shea 6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0- Rigid ceiling directly bracing. (size) 2=0-3-8, 1 Max Horiz 2=-240 (L0 Max Uplift 2=-263 (L0 Max Grav 2=2028 (L 19=5104 ((lb) - Maximum Com Tension 1-2=0/20, 2-4=-3159 6-7=-2576/135, 7-8= 9-10=-2540/0, 10-12 12-13=-100/1171, 13 14-15=-163/591, 15-	-11-12 athing directly applied ept -0 max.): 7-9. applied or 6-0-0 oc 5=0-3-0, 19=0-3-8 C 9) C 8), 15=-352 (LC 5) C 1), 15=269 (LC 20 LC 1) pression/Maximum /354, 4-6=-3118/265 -2204/189, 8-9=-219 =-2864/0, b-14=0/873, 16=0/8	1) d or 2) 3) 4)), 5/0, 6) 7) 8)	2-ply truss to (0.131"x3") n Top chords c staggered at Bottom chord staggered at Web connect All loads are e except if note CASE(S) sec provided to d unless otherw Unbalanced n this design. Wind: ASCE Vasd=103mp II; Exp C; Enc cantilever left right exposed plate grip DO Provide adeq All plates are This truss has chord live loa	be connected toge ails as follows: onnected as follow 0-9-0 oc. is connected as follow 0-7-0 oc. ed as follows: 2x4 considered equally d as front (F) or ba tion. Ply to ply com istribute only loads vise indicated. roof live loads have 7-10; Vult=130mpl h; TCDL=6.0psf; E closed; MWFRS (e and right exposed I; porch right exposed I; porch right exposed [; porch right exposed L=1.60 uate drainage to p 5x8 (=) MT20 unl s been designed for d nonconcurrent w as been designed	ether wi /s: 2x6 - llows: 2: - 1 row / applied ack (B) 1 in action s noted a e been c h (3-sec 3CDL=6 enveloped ; end v sed; Lur vevent v less other or a 10.0 vith any for a 10.0	th 10d 2 rows (6 - 2 rows at 0-9-0 oc. t to all plies, face in the LO s have been as (F) or (B), considered for ond gust) .0psf; h=25ft; e) exterior zon retrical left and mber DOL=1.6 vater ponding erwise indicat 0 psf bottom other live load e load of 20.0	DAD Cat. ne; d 60 J. ed. ds. losf	13) Han prov lb dd sele resp LOAD C 1) De Pla Un	ger(s) o vided sur own at 3 cction of oonsibilit CASE(S) ad + Ro ate Incre iform Lc Vert: 1-7 28-32=-3 Vert: 21	r other fficient 36-1-8 such c y of oth of Live ase=1 of Live ase=1 (I, 20 c =-2750	connection device on bottom chord onnection device hers. dard (balanced): Lun .15 ./ft) 7-9=-60, 9-13=-6 ads (lb) 0 (B)	ce(s) shall be ntrated load(s) 2 . The design/ (s) is the ober Increase=1. 0, 13-16=-60,	2750
BOT CHORD WEBS NOTES	2-27=-459/2703, 26- 2-27=-459/2703, 26- 24-26=-216/2740, 22 21-22=0/2483, 19-21 18-19=-824/0, 17-18 15-17=-515/144 4-27=-111/98, 4-26= 6-24=-736/453, 7-24 13-19=-280/416, 13- 14-18=-897/485, 14- 8-24=-390/486, 8-22= 10-21=-69/817, 12-2 12-19=-4558/0	12-030/2703, 12-24=0/2268, =-1020/249, =-515/144, -44/263, 6-26=-10/35 =0/788, 9-22=0/828, 18=-271/307, 17=-45/241, -226/487, 10-22=-69 1=0/4286,	9) 10 50, 11 6/0, 12	on the bottor 3-06-00 tall b chord and an All bearings a) Provide mect bearing plate 2 and 352 lb) Load case(s) designer mus for the intend) Graphical pur or the orienta bottom chord	as been designed in chord in all areas y 2-00-00 wide will y other members, are assumed to be nanical connection capable of withsta uplift at joint 15. 1 has/have been in the review loads to very ed use of this truss thin representation tion of the purlin a	s where I fit betw with BC SP No. (by oth anding 2 modified verify that s. does no long the	a rectangle veen the botto DL = 10.0psf. 2. ers) of truss to 63 lb uplift at I. Building at they are con tot depict the si top and/or	psi om joint rrect ize		Mannin Maria		SEA 0363	ER RAIN	Norman

March 10,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Smith Prime	
4619338	A05	Piggyback Base	3	1	Job Reference (optional)	171906812

11-3-13

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Sun Mar 09 16:02:39 ID:y?R42VnRJnRMSUUIao5NeQyIvJB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

GI A. GIL March 10,2025

818 Soundside Road Edenton, NC 27932

	-2-1				Re la				/					<u> </u>
	V	⊠ 4x12	II	17 2x4 แ		16 4x6=	15 5x8=	14 4x8=	22		13 23 5x8=	12 4x8=	24	3x8 II
Scale = 1:88.6		⊢	<u>4-11-8</u> 4-11-8		<u>12-7-8</u> 7-8-0		20-5-4 7-9-12			<u>30-1-12</u> 9-8-8			<u>36-0-0</u> 5-10-4	

Plate Offsets (X, Y): [2:0-7-7,0-0-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.49 0.77 0.79	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.12 -0.21 0.05 0.10	(loc) 12-14 12-14 11 16-17	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 314 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 *Excep Left 2x6 SP No.2 1 Structural wood shea 4-0-10 oc purlins, ei 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=464 (LC Max Uplift 2=-390 (L Max Grav 2=1480 (L (Ib) - Maximum Com Tension 1-2=0/20, 2-4=-2229 6-7=-1448/671, 7-8= 8-9=-682/418, 9-10=	t* 11-10:2x4 SP No.2 -11-12 athing directly applied xcept end verticals, a -0 max.): 7-9. applied or 6-11-9 oc 4-16, 6-14, 9-12, 10- 8-12 11= Mechanical C 12), 11=-293 (LC 1 C 1), 11=-293 (LC 2 pression/Maximum //852, 4-6=-2013/815 -1208/679, -808/388,	2) 2 d or 3) 4) 5) 11, (2) 8) (2) 8) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	Wind: ASCE Vasd=103mp II; Exp C; En and C-C Ext exposed ; en and forces & DOL=1.60 pl Provide aded This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar Bearings are Refer to gird Provide mec bearing plate 2 and 293 lb Graphical pu or the orienta bottom chorc DAD CASE(S)	7-10; Vult=130mp h; TCDL=6.0psf; E closed; MWFRS (e erior (2) zone; cant d vertical left expo MWFRS for reacti ate grip DOL=1.60 quate drainage to p is been designed fi ad nonconcurrent w has been designed n chord in all areas y 2-00-00 wide will by other members, assumed to be: Jc er(s) for truss to tru hanical connection capable of withstat uplift at joint 11. rlin representation ation of the purlin at J. Standard	h (3-sec 3CDL=6 envelope ilever les sed;C-C ons sho revent v or a 10.0 vith any for a liv s where l fit betw with BC bint 2 SF uss conr (by oth anding 3 does no long the	ond gust) .0psf; $h=25ft;$ b) exterior zor ft and right ft or members wn; Lumber vater ponding p psf bottom other live loar e load of 20.0 DL = 10.0psf > No.2 . tections. ers) of truss t 90 lb uplift at tot depict the s	Cat. ne ds. opsf om joint joint					1111.	
BOT CHORD WEBS	2-17=-1088/1904, 16 14-16=-893/1746, 12 11-12=-3/5 4-17=-28/146, 4-16= 6-14=-766/506, 7-14 10-12=-439/1171, 8-	5-17=-1088/1904, 2-14=-430/1001, 184/214, 6-16=0/37 =-33/335, 9-12=-55/ 14=-223/548,	7, 145,							G	A. A	OR HERS	ROIN	Maria
NOTES 1) Unbalance this desigr	8-12=-843/426 ed roof live loads have n.	been considered for								111111	A MARINE AND		EP. K	in the second second

Job	Truss	Truss Type	Qty	Ply	JSJ, Smith Prime	
4619338	A06	Piggyback Base	1	1	Job Reference (optional)	171906813

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Sun Mar 09 16:02:39 ID:71VW405hkHFS6kdLkKa0qOylvK4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

icale = 1:88.6		4-11-8	12-7-8	20-5-4	30-1-12	36-3-8	L
	scale = 1:88.6	4-11-8	7-8-0	7-9-12	9-8-8	6-1-12	1

Plate Offsets (X, Y): [2:0-7-7,0-0-4]

Loading FCLL (roof) FCDL BCLL BCDL	(psr) 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2019	5/TPI2014	TC BC WB Matrix-MS	0.50 0.77 0.80	Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.12 -0.21 0.05 0.10	(IOC) 12-14 12-14 11 16-17	//defi >999 >999 n/a >999	L/d 360 240 n/a 240	Weight: 315 lb	244/190 FT = 20%	
LUMBER FOP CHORD 3OT CHORD WEBS SLIDER BRACING FOP CHORD	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 *Except Left 2x6 SP No.2 1 Structural wood shea 4-0-4 oc purlins, exc 2-0-0 oc purlins (6-0-	t* 11-10:2x4 SP No.2 I-11-12 athing directly applied cept end verticals, an -0 max.): 7-9.	2) 2 d or 3) d 4)	Wind: ASCE Vasd=103mp II; Exp C; End and C-C Exte exposed ; en and forces & DOL=1.60 pl Provide adec This truss ha chord live loa	7-10; Vult=130mpj h; TCDL=6.0psf; E closed; MWFRS (e rior (2) zone; cant d vertical left expo- MWFRS for reacti ate grip DOL=1.60 juate drainage to p s been designed for d opproprurent w	n (3-sec 3CDL=6 nvelope ilever le sed;C-0 ons sho revent v or a 10.0 vith any	ond gust) .0psf; h=25ft .0psf; h=25ft .0psf batterior zoid t and right t and right t and right t and right t and right t and right to psf bottom other live loa	; Cat. ne s g.						
WEBS	Rigid ceiling directly bracing. 1 Row at midpt	applied or 6-11-8 oc 4-16, 6-14, 9-12, 10- 8-12	5) 11,	* This truss h on the botton 3-06-00 tall b	as been designed n chord in all areas y 2-00-00 wide wil	for a liv where fit betv	e load of 20.0 a rectangle	Opsf om						
REACTIONS	(size) 2=0-3-8, 1 Max Horiz 2=460 (LC Max Uplift 2=-393 (LC Max Grav 2=1492 (L	(1=0-3-8 (2 12) (C 12), 11=-292 (LC 1 (C 1), 11=1515 (LC 2)	6) 7)	chord and an All bearings a Provide mech bearing plate	y other members, are assumed to be nanical connection capable of withsta	with BC SP No. (by oth inding 3	DL = 10.0psi 2 . ers) of truss t 93 lb uplift at	f. to t joint						
ORCES	(lb) - Maximum Com	pression/Maximum	8)	Graphical pu	rlin representation	does no	t depict the s	size						
FOP CHORD	1-2=0/20, 2-4=-2249 6-7=-1472/685, 7-8= 8-9=-716/438, 9-10= 10-11=-1431/647	/864, 4-6=-2036/829 -1231/692, -848/406,	, LC	bottom chord	Standard	iong ine	top and/or						1111	
BOT CHORD	2-17=-1090/1921, 16 14-16=-897/1768, 12 11-12=-4/5	6-17=-1090/1921, 2-14=-437/1028,									ALL	OR FESS	ROLI	~
WEBS	4-17=-30/144, 4-16= 6-14=-765/505, 7-14 10-12=-438/1175, 8- 8-12=-831/416	-181/213, 6-16=0/37 =-39/343, 9-12=-52/1 14=-220/538,	6, 156,									SEA	-	Ann
NOTES	a di wa a f illi ya da a da d	have southers to								Ξ	- 1	03632	22 :	Ξ
this design	ed roof live loads have n.	been considered for									3			11

ľ

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Smith Prime	
4619338	A07	Piggyback Base	2	1	Job Reference (optional)	171906814

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Sun Mar 09 16:02:39 ID:71VW405hkHFS6kdLkKa0qOyIvK4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	8-9-12	12-7-8	20-5-4	30-1-12	36-3-8	1
Scale = 1:89.6	8-9-12	3-9-12	7-9-12	9-8-8	6-1-12	

Plate Offsets (X, Y): [2:Edge,0-0-0]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		IC	0.33	Vert(LL)	-0.10	12-14	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.44	Vert(CT)	-0.16	12-14	>999	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.67	Horz(CT)	-0.02	2	n/a	n/a		
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS		Wind(LL)	0.09	17-20	>999	240	Weight: 315 lb	FT = 20%
LUMBER			2)	Wind: ASCE	7-10; Vult=130m	ph (3-sec	cond gust)						
TOP CHORD	2x6 SP No.2			Vasd=103mp	oh; TCDL=6.0psf;	BCDL=6	6.0psf; h=25ft	; Cat.					
BOT CHORD	2x6 SP No.2			II; Exp C; En	closed; MWFRS ((envelope	e) exterior zo	ne					
WEBS	2x4 SP No.3 *Excep	t* 11-10:2x4 SP No.:	2	and C-C Exte	erior (2) zone; car	ntilever le	eft and right						
SLIDER	Left 2x6 SP No.2 1	-11-12		exposed ; en	d vertical left exp	osed; po	rch left						
BRACING				exposed;C-C	for members and	d forces a	& MVVFRS to	r					
TOP CHORD	Structural wood shea	athing directly applie	ed or	POL 1 CO	own; Lumber DOL	.= 1.60 pi	ate grip						
	6-0-0 oc purlins, exc	cept end verticals, ar	nd a	DOL=1.60	wata drainaga ta	n rovont v	water pendin	~					
	2-0-0 oc purlins (6-0	-0 max.): 7-9.	3)	This trues he		for a 10	aler portuin	g.					
BOT CHORD	Rigid ceiling directly	applied or 8-1-14 oc	; 4)	chord live los	ad nonconcurrent	with any	other live los	ade					
	bracing.		5)	* This trues h	as been designed	d for a liv	e load of 20	nnef					
WEBS	1 Row at midpt	9-12, 10-11, 8-14, 8	-12 3)	on the hottor	n chord in all area	a ior a iiv as where	a rectandle	opsi					
REACTIONS	(size) 2=0-3-0, 1	1=0-3-8, 17=0-3-8		3-06-00 tall b	v 2-00-00 wide w	ill fit betv	veen the bott	om					
	Max Horiz 2=460 (LC	2 12)		chord and ar	v other members	. with BC	DL = 10.0ps	f.					
	Max Uplift 2=-208 (L	C 9), 11=-229 (LC 12	2), 6)	All bearings	are assumed to be	e SP No.	2.						
	17=-258 (LC 12)	. 7)	Provide mec	hanical connectio	n (by oth	ers) of truss	to					
	Max Grav 2=598 (LC 17=1254 (C 23), 11=1223 (LC 2 (LC 2)	2),	bearing plate	capable of withs	tanding 2	208 lb uplift a	t joint					
FORCES	(lb) - Maximum Com	pression/Maximum		2, 200 ib api			int at joint 11	•					
	Tension		8)	Graphical pu	rlin representation	n does no	ot depict the	size					
TOP CHORD	1-2=0/20, 2-4=-576/4	491, 4-6=-907/595,	- /	or the orienta	ation of the purlin	along the	e top and/or						
	6-7=-998/559, 7-8=-8	813/587, 8-9=-554/3	96,	bottom chord	1.	5							11
	9-10=-668/360, 10-1	1=-1138/572	L	OAD CASE(S)	Standard							11111 00	- 11, m
BOT CHORD	2-17=-711/438, 16-1	7=-711/438,		(-)								TH UA	ROM
	14-16=-619/758, 12-	14=-363/738, 11-12	=-4/5								S	A	in Stalle
WEBS	4-17=-993/271, 4-16	=0/603, 6-16=-381/5	50,								12	10550	N
	6-14=-42/271, 7-14=	0/167, 9-12=-105/11	19,							Z	2		nill
	10-12=-370/909, 8-1	4=-156/246,								-			TT =
	8-12=-526/335									-	:	SEA	L : -
NOTES										=			

1) Unbalanced roof live loads have been considered for this design.

SEAL 036322 MGINEER March 10,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Smith Prime	
4619338	A08	Piggyback Base	4	1	Job Reference (optional)	171906815

11-3-13

(psf)

20.0

10.0

10.0

Left 2x6 SP No.2 -- 1-11-12

2-0-0 oc purlins (6-0-0 max.): 7-9.

0.0*

Ņ

4x6 🞜

3

4x8 II

Spacing

Code

2x4 SP No.3 *Except* 11-10:2x4 SP No.2

Rigid ceiling directly applied or 8-7-10 oc

Max Uplift 2=-215 (LC 9), 11=-270 (LC 13),

17=-283 (LC 12)

17=1405 (LC 2)

9-10=-1048/539, 10-11=-1212/628

2-17=-637/437, 16-17=-637/437 14-16=-588/842, 12-14=-406/965

8-14=-155/146, 8-12=-371/230,

(lb) - Maximum Compression/Maximum

1-2=0/20. 2-4=-575/528. 4-6=-1002/678.

4-17=-1144/323, 4-16=0/738, 6-16=-489/106,

6-14=-34/314, 7-14=-6/222, 9-12=-112/197,

2=0-3-0, 11=0-3-8, 17=0-3-8

2=597 (LC 23), 11=1342 (LC 2),

Plate Grip DOL

Rep Stress Incr

9-12, 10-11, 8-14, 8-12

Lumber DOL

Run: 8.83 S. Feb 18 2025 Print: 8.830 S. Feb 18 2025 MiTek Industries. Inc. Sun Mar 09 16:02:40 ID:uudG?6cYQ5AjG6UHihynzsylvR9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6x8=

9

13 24 12

5x8=

4x8=

5x6.

10

33

6-5, 0

GRIP

244/190

FT = 20%

11

3x8 II

25

6¹²

4

2x4 🛛

22 17

8-9-12

8-9-12

4x6 🚽 5x8 ≠

L I I

15

5x8=

6 5 4x6 🛪

16

4x6 =

6x8=

23

14

4x8=

7

4x6 =

8

LOAD CASE(S) Standard

NOTES

WEBS

Scale = 1:102.2

Loading

TCDL

BCLL

BCDL

WEBS

WEBS

SI IDER

BRACING

TOP CHORD

BOT CHORD

REACTIONS

FORCES

TOP CHORD

BOT CHORD

LUMBER

TOP CHORD

BOT CHORD

TCLL (roof)

Plate Offsets (X, Y): [2:Edge,0-0-0]

2x6 SP No.2

2x6 SP No.2

bracing.

Max Grav

Tension

11-12=-18/27

10-12=-365/993

(size)

1 Row at midpt

Max Horiz 2=406 (LC 12)

1) Unbalanced roof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a futs system: Denote use, the building designer inder very the applications of design had needed an intervent with a policitation of the system of the state of the system of the syste and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	JSJ, Smith Prime	
4619338	A09	Piggyback Base Supported Gable	1	1	Job Reference (optional)	171906816

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Sun Mar 09 16:02:40 ID:e2DrlxJxV4_8Zf_YRNwwQcyIhXz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1.90.7	Scale =	= 1:98.7
----------------	---------	----------

39-11-8

Plate Offsets (2	X, Y): [2:Edge	e,0-0-0],	[11:0-3-10,Edge], [1	9:0-5-0,0-3-0], [27	7:0-5-0,0)-3-0], [4	5:0-5-0,0-4-8], [5	4:0-5-0,0-4-8	3]						
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI20	14	CSI TC BC WB Matrix-I	0.06 0.02 0.10 MS	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 529 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD	2x6 SP No.2 2x6 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x6 SP N Structural wo 6-0-0 oc puril	No.2 1 pod shea lins, exc	-4-7 thing directly applie ept end verticals, ar	d or Id	Ma	ax Uplift	2=-45 (LC 10), ; 37=-53 (LC 13), 39=-56 (LC 13), 41=-60 (LC 13), 44=-18 (LC 9), 46=-41 (LC 9), 46=-41 (LC 9), 48=-41 (LC 8), 50=-22 (LC 9), ; 52=-47 (LC 12), 54=-56 (LC 12).	36=-20 (LC 1: 38=-57 (LC 40=-57 (LC 42=-40 (LC 45=-37 (LC 9) 47=-39 (LC 8) 51=-6 (LC 9), 53=-59 (LC 55=-56 (LC	3), 13), 13), 13), 13),),),), 12), 12),	TOP CH	IORD	1-2=0, 4-5=-3 7-8=-2 10-12: 13-14: 15-16: 17-18: 19-20: 21-22: 23-24:	/20, 2-3=-190/55, 341/91, 5-6=-304/ 226/98, 8-9=-187/ =-116/132, 12-13 =-64/176, 14-15= =-71/221, 16-17= =-100/273, 18-19 =-95/275, 20-21= =-95/275, 24-25=	3-4=-386/107, 92, 6-7=-265/92, 109, 9-10=-148/115 88/154, -56/198, 87/244, =-99/268, 95/275, 95/275, 95/275,	Э,
BOT CHORD	2-0-0 oc purlins (6-0-0 max.): 19-27. Rigid ceiling directly applied or 6-0-0 oc bracing, Except: 10-0-0 oc bracing: 44-45,43-44,42-43,41-42,40-41,39-40,38-39, 37-38,36-37. 1 Row at midpt 23-47, 24-46, 25-45, 26-44, 28-43, 29-42,					56=-55 (LC 12), 57=-55 (LC 12), 25-26=-96/275, 26-27=-96/2 58=-55 (LC 12), 59=-55 (LC 12), 27-28=-100/268, 28-29=-10 60=-55 (LC 12), 61=-55 (LC 12), 29-30=-88/237, 30-31=-72/1 62=-54 (LC 12), 63=-55 (LC 12), 31-32=-57/149, 32-33=-42/1 64=-54 (LC 12), 65=-268 (LC 12), 33-34=-26/61, 34-35=-12/22 Max Grav 2=356 (LC 12), 38=109 (LC 1), 37=102 (LC 24), 38=109 (LC 1), 3							96/275, =-100/274, -72/193, -42/106, 2/22, 35-36=-34/32	2	
			26-44, 28-43, 29-42, 30-41, 31-40, 22-48, 21-49, 20-50, 18-51, 17-52, 16-53, 15-54				39=102 (LC 24) 39=107 (LC 24) 41=107 (LC 24) 43=106 (LC 24)	, 38=109 (LC , 40=107 (LC , 42=107 (LC , 44=109 (LC	1), 1), 24), 1),						
REACTIONS	(size) 2= 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 Max Horiz 2=	=39-11-8 =39-11- =406 (LC	$\begin{array}{l},36=39\text{-}11\text{-}8,\\ 8,38=39\text{-}11\text{-}8,\\ 8,40=39\text{-}11\text{-}8,\\ 8,42=39\text{-}11\text{-}8,\\ 8,44=39\text{-}11\text{-}8,\\ 8,46=39\text{-}11\text{-}8,\\ 8,50=39\text{-}11\text{-}8,\\ 8,50=39\text{-}11\text{-}8,\\ 8,52=39\text{-}11\text{-}8,\\ 8,56=39\text{-}11\text{-}8,\\ 8,56=39\text{-}11\text{-}8,\\ 8,60=39\text{-}11\text{-}8,\\ 8,60=39\text{-}11\text{-}8,\\ 8,60=39\text{-}11\text{-}8,\\ 8,60=39\text{-}11\text{-}8,\\ 8,60=39\text{-}11\text{-}8,\\ 8,64=39\text{-}11\text{-}8,\\ 8,64=39\text{-}11\text{-}8,\\ 8\end{array}$	FORCES	(I T	b) - Max ension	47=107 (LC 24) 47=107 (LC 24) 49=108 (LC 24) 51=115 (LC 22) 53=107 (LC 1), 57=107 (LC 1), 57=107 (LC 1), 61=107 (LC 23) 63=108 (LC 1), 65=122 (LC 19) imum Compress	, 40= 106 (LC , 50=107 (LC , 52=107 (LC 54=107 (LC 56=107 (LC 56=107 (LC 60=107 (LC , 62=106 (LC 64=103 (LC on/Maximum	23), 24), 23), 23), 23), 23), 1), 23), 1), 23),		C. annus		SEA 0363	ROCINE 22 E.R. Kunn	7

March 10,2025

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Smith Prime	
4619338	A09	Piggyback Base Supported Gable	1	1	Job Reference (optional)	171906816

Run: 8.83 S. Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries. Inc. Sun Mar 09 16:02:40

ID:e2DrlxJxV4_8Zf_YRNwwQcyIhXz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

BOT CHORD 2-65=-1/1 64-65=-1/1 63-64=-1/1 62-63=-1/1, 61-62=-1/1, 60-61=-1/1, 59-60=-1/1, 58-59=-1/1, 57-58=-1/1. 56-57=-1/1 55-56=-1/1 53-55=-1/1 52-53=-1/1, 51-52=-1/1, 50-51=-1/1, 49-50=-1/1, 48-49=-1/1, 47-48=-1/1, 46-47=-1/1, 44-46=-1/1, 43-44=0/1, 42-43=0/1, 41-42=0/1, 40-41=0/1, 39-40=0/1, 38-39=0/1, 37-38=0/1, 36-37=0/1 WEBS 23-47=-80/58, 24-46=-81/58, 25-45=-81/53, 26-44=-80/35, 28-43=-80/4, 29-42=-80/64, 30-41=-80/85, 31-40=-80/82, 32-39=-81/81, 33-38=-83/83, 34-37=-75/75, 22-48=-81/59, 21-49=-82/53, 20-50=-80/38, 18-51=-88/22, 17-52=-80/64, 16-53=-80/85, 15-54=-80/82, 14-55=-80/80, 13-56=-80/80, 12-57=-80/80,

14-55=-80/80, 13-56=-80/80, 12-57=-80/8 10-58=-80/80, 9-59=-80/80, 8-60=-80/80, 7-61=-80/80, 6-62=-80/80, 5-63=-80/77, 4-64=-81/92, 3-65=-94/213

NOTES

 Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Provide adequate drainage to prevent water ponding.
 All plates are 2x4 (II) MT20 unless otherwise indicated
- All plates are 2x4 (||) MT20 unless otherwise indicated.
 Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 1-4-0 oc.

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be SP No.2 .
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 20 lb uplift at joint 36, 45 lb uplift at joint 2, 39 lb uplift at joint 47, 41 lb uplift at joint 46, 37 lb uplift at joint 45, 18 lb uplift at joint 44, 40 lb uplift at joint 42, 60 lb uplift at joint 41, 57 lb uplift at joint 40, 56 lb uplift at joint 39, 57 lb uplift at joint 38, 53 lb uplift at joint 37, 41 lb uplift at joint 48, 37 lb uplift at joint 49, 22 lb uplift at joint 50, 6 lb uplift at joint 51, 47 lb uplift at joint 52, 59 lb uplift at joint 53, 56 lb uplift at joint 54, 56 lb uplift at joint 55, 55 lb uplift at joint 56, 55 lb uplift at joint 57, 55 lb uplift at joint 58, 55 lb uplift at joint 59, 55 lb uplift at joint 60, 55 lb uplift at joint 61, 54 lb uplift at joint 62, 55 lb uplift at joint 63, 54 lb uplift at joint 64, 268 lb uplift at joint 65 and 45 lb uplift at joint 2.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	JSJ, Smith Prime	
4619338	B01	Attic Supported Gable	1	1	Job Reference (optional)	171906817

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Sun Mar 09 16:02:41 ID:VjRfOY2J2qaxIXqAEYU96UyIhUQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-1-12	15-5-4	20-7-0
5-1-12	10-3-8	5-1-12

Plate Offsets (X, Y):	[8:0-4-0.0-2-4].	[10:0-4-0.0-2-4]
	[[

Scale = 1:93.1

		-													
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MS	0.07 0.03 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 256 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS JOINTS REACTIONS	2x6 SP Nc 2x10 SP 2 2x4 SP Nc 2x4 SP Nc Left 2x6 S 1-6-0 Structural 6-0-0 oc p Rigid ceili bracing. 1 Row at 1 1 Brace a (size)	2.2 2400F 2.0E 5.2 *Excep 5.3 P No.2 1 wood she burlins. ng directly midpt t Jt(s): 29 2=20-7-0, 19=20-7-(22=20-7-(to r 2x10 SP DSS t* 9-29:2x4 SP No.3 I-6-0, Right 2x6 SP N athing directly applie applied or 10-0-0 oc 8-23, 10-22 16=20-7-0, 18=20-7), 20=20-7-0, 21=20-), 23=20-7-0, 25=20- 0, 27=20-7-0, 28=20	-0, 7-0, 7-0, 7-0,	TOP CHORD BOT CHORD WEBS	1-2=0/34, 2-4=-25 5-6=-193/228, 6-7 8-9=-147/100, 9-1 10-11=-287/302, 12-13=-173/201, 14-16=-251/195, 2-28=-155/248, 2 26-27=-155/248, 2 26-27=-155/248, 2 26-27=-155/248, 2 27-25=-155/249, 3 21-22=-149/244, 16-18=-148/243 12-20=-110/102, 8-29=-209/268, 1 9-29=-50/39, 8-23 5-27=-140/122, 10-22=-166/21, 1 13-19=-140/122,	01/237, 4- =-239/27 10=-147/1 11-12=-2: 13-14=-1: 16-17=0/: 22-23=-1: 22-23=-1: 22-23=-1: 20-21=-1: 18-19=-1: 6-26=-11! 0-29=-20: 3=-181/45 -28=-229, 1-21=-99, 14-18=-2:	5=-224/183, 6, 7-8=-287/3 00, 39/249, 96/147, 34 5/248, 55/249, 53/244, 49/244, 48/244, 48/244, 0/101, 9/268, i, 7-25=-102/8 (242, 80, 30/238	07, 3,	8) * TH on 1 3-0 cho 9) All 1 10) Pro bea 2, 1 upli 25, upli join 11) Bev suri 12) Atti LOAD (his truss the botto 6-00 tall ord and a bearings vide me tring pla 43 lb up ft at join 46 lb up ft at join t 18. veled pla face with c room o CASE(S	has be by 2-0 any oth s are as chanic: te capa blift at jo t 26, 2 blift at jo t 22, 4 ate or s n truss checker) Star	een designed for rd in all areas wi 0-00 wide will fit er members, wit ssumed to be SF al connection (bj bible of withstand bint 16, 124 lb up lb uplift at joint 2 bint 27, 368 lb up 1 lb uplift at joint him required to p chord at joint(s) d for L/360 defle ndard	a live load of 2 iere a rectangle between the bo n BCDL = 10.0p ' DSS or 2400F others) of trus ing 183 lb uplift blift at joint 20, 3, 66 lb uplift a blift at joint 28, 19 and 355 lb i provide full bea 16. ction.	20.0psf e ottom psf. = 2.0E . ss to t at joint 125 lb at joint 64 lb uplift at uring
FORCES	Max Horiz Max Uplift Max Grav (lb) - Maxi Tension	2=366 (L 2=-183 (L 18=-355 (20=-124 (23=-2 (LC 26=-125 (28=-368 (2=353 (LC 2=353 (LC 2=353 (LC 2=318 (L 25=98 (LC 27=114 (L imum Com	C 10) C 8), 16=-143 (LC 9) LC 13), 19=-41 (LC - LC 13), 21=-64 (LC - 9), 25=-66 (LC 12), LC 12), 27=-46 (LC - C 12) C 12), 16=322 (LC 20, C 11), 19=114 (LC 1), C 22), 21=98 (LC 1), C 22), 23=333 (LC 2), 1), 26=131 (LC 20), C 1), 28=310 (LC 10), pression/Maximum	, (2), (3), (3), (3), (3), (3), (3), (3), (3	NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=103mj II; Exp C; En and C-C Ext exposed; er members an Lumber DOL 3) Truss desigr only. For stu see Standar or consult qu 4) All plates are 5) Gable requir 3) Gable stude	roof live loads ha 7-10; Vult=130m ph; TCDL=6.0psf; closed; MWFRS erior (2) zone; can dv vertical left and d forces & MWFF .=1.60 plate grip I ed for wind loads uds exposed to wi d Industry Gable I ualified building de a 3x6 () MT20 u es continuous boi	ve been (ph (3-sec BCDL=6 (envelope ntilever le right exp RS for rea DOL=1.6(s in the pl ind (norm End Deta assigner as nless oth ttom chor Do	considered for cond gust) .0psf; h=25ft; a) exterior zon ft and right oosed;C-C for ctions shown; ane of the trus al to the face) is as applicab s per ANSI/TP erwise indicate d bearing.	Cat. e s , le, I 1. ed.		y minter		ORTH CA ORTEESC SEA 0363	L 22	

- e studs spaced at 2-0-0 or This truss has been designed for a 10.0 psf bottom 7)
 - chord live load nonconcurrent with any other live loads.

A. GILBE

A. GILD March 10,2025

C

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Smith Prime	
4619338	B02	Attic	1	1	Job Reference (optional)	171906818

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Sun Mar 09 16:02:41 ID:sOr8II3xMMnJ9nagn2?ExmylvHX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

10-6-5 8-0-7 10-0-1112-6-9 15-5-4 2-10-11 2-0-4 2-0-4 2-10-11 20-7-0 21-6-0 -0-11-0 5-1-12 -----5-1-12 5-1-12 0-4 2-0 0-5-10 <u>20-7-0</u> 0-11-0 0-11-0 5x6= 6 Æ 4x6 4x6**、** 12¹² 5 7 15 2x4 2x4 II 2x4 u 8 4 11-9-0 8-1-14 10-0-0 4x6 4x6、 9 10 3 2 1-8-5 11 <u>ت</u>ان Ø 14 13 12 6x12 II 6x12 II 3x6 II 3x6 II 6x8=

5-1-12	15-5-4	20-7-0
5-1-12	10-3-8	5-1-12

Scale = 1:93.1

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.86 0.34 0.19	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.18 -0.30 0.03 0.12	(loc) 12-14 12-14 10 12-14	l/defl >999 >815 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 189 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD JOINTS REACTIONS FORCES	2x6 SP No.2 2x10 SP 2400F 2.0E 2x4 SP No.2 *Excep Left 2x6 SP No.2 - 1 1-6-0 Structural wood shea 4-8-11 oc purlins. Rigid ceiling directly bracing. 1 Brace at Jt(s): 15 (size) 2-0-3-8, 1 Max Horiz 2=-366 (LI Max Uplift 2=-69 (LC Max Grav 2=1247 (L (lb) - Maximum Com Tension	i or 2x10 SP DSS t* 6-15:2x4 SP No.3 I-6-0, Right 2x6 SP I athing directly applie applied or 10-0-0 oc 0=0-3-8 C 10) 13), 10=-69 (LC 12; C 21), 10=1247 (LC pression/Maximum	4) No.2 5) 6) d or 7) 5 8) 9) L(* This truss t on the bottor 3-06-00 tall b chord and ar Ceiling dead 7-15; Wall d Bottom chord chord dead l All bearings a Provide mec bearing plate 2 and 69 lb u Attic room ch	as been designe n chord in all area yy 2-00-00 wide w yy other members load (5.0 psf) on ead load (5.0 psf) d live load (40.0 p oad (5.0 psf) appl are assumed to b hanical connectio c capable of withs pplift at joint 10. secked for L/360 of Standard	d for a liv as where "Ill fit betw - member(on memt sf) and a ied only t e SP DS3 n (by oth tanding 6 deflection	e load of 20. a rectangle veen the bott s). 4-5, 7-8, per(s).8-12, 4 dditional bott o room. 12-1 S or 2400F 2 ers) of truss 9 lb uplift at	0psf 5-15, 4-14 tom 2.0E . to joint						
BOT CHORD	1-2=0/34, 2-4=-1452 5-6=-50/204, 6-7=-50 8-10=-1452/262, 10- 2-14=-150/896, 12-1 8-12=-70/684, 4-14= 5 15= 1039/412, 7 1	/262, 4-5=-806/265, 0/204, 7-8=-805/265 11=0/34 4=0/897, 10-12=-23, -71/684, 5= 1028/412, 6 15=	, /895 0/69									UNITH CA	ROUL	
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp C; and C-C E exposed ; members Lumber D 3) This truss chord live	ed roof live loads have n. CE 7-10; Vult=130mph Bmph; TCDL=6.0psf; BC Enclosed; MWFRS (en Exterior (2) zone; cantili end vertical left and rig and forces & MWFRS IOL=1.60 plate grip DO has been designed for load nonconcurrent wit	(3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zon ever left and right ght exposed;C-C for for reactions shown; L=1.60 • a 10.0 psf bottom th any other live load	Cat. e								2 Million Contraction of the second s	SEA 0363		Mannunnin

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G China China March 10,2025

Job	Truss	Truss Type	Qty	Ply	JSJ, Smith Prime	
4619338	B03	Attic	4	1	Job Reference (optional)	171906819

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Sun Mar 09 16:02:41 ID:L6F3uflB4ZlpouYLog_IxaylvE3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

5-1-12	15-5-4	20-7-0	i.
5-1-12	10-3-8	5-1-12	٦

Plate Offsets (X, Y):	[5:0-1-13,0-2-0], [7:0-1-13,0-2-0]

Scale = 1:93.1

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TF	912014	CSI TC BC WB Matrix-MS	0.86 0.34 0.19	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.18 -0.30 -0.03 0.12	(loc) 11-13 11-13 2 11-13	l/defl >999 >814 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 187 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD JOINTS REACTIONS FORCES TOP CHORD	2x6 SP No.2 2x10 SP 2400F 2.0E 2x4 SP No.2 *Excep Left 2x6 SP No.2 - 1 1-6-0 Structural wood shea 4-8-11 oc purlins. Rigid ceiling directly bracing. 1 Brace at Jt(s): 14 (size) 2=0-3-8, 1 Max Horiz 2=357 (LC Max Uplift 2=-68 (LC Max Grav 2=1248 (L (lb) - Maximum Com Tension 1-2=0/34, 2-4=-1454	E or 2x10 SP DSS t* 6-14:2x4 SP No.3 I-6-0, Right 2x6 SP N athing directly applie applied or 10-0-0 oc (0=0-3-8 C 9) 13), 10=-61 (LC 12) C 21), 10=1219 (LC pression/Maximum //262, 4-5=-806/264,	4) *- or 3- ct 40.2 5) Cr 7, 6) Br cd or 7) Al 8) Pr be 10 9) Al LOAD	This truss han of the bottom ord and any eiling dead lo 14; Wall dea ottom chord I hord dead loa 11 bearings ar rovide mecha earing plate o 0 and 68 lb u ttic room che 0 CASE(S)	as been designed chord in all areas y 2-00-00 wide will y other members. oad (5.0 psf) on m ad load (5.0psf) o live load (40.0 psf ad (5.0 psf) applie re assumed to be anical connection capable of withsta uplift at joint 2. ecked for L/360 de Standard	for a liv where I fit betw nember(n memb of and a d only t SP DS3 (by oth nding 6	e load of 20.0 a rectangle veen the botti s). 4-5, 7-8, 5 ver(s).8-11, 4 dditional bott o room. 11-1 S or 2400F 2 ers) of truss i 1 lb uplift at j	00000000000000000000000000000000000000						
BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp C; and C-C E exposed ; members Lumber Dr 3) This truss chord live	5-6=-49/205, 6-7=-49 8-10=-1453/249 2-13=-166/884, 11-1 8-11=-70/685, 4-13= 7-14=-1039/411, 6-1 ed roof live loads have n. CE 7-10; Vult=130mph Bmph; TCDL=6.0psf; BC Enclosed; MWFRS (en Exterior (2) zone; cantil end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO has been designed for load nonconcurrent wit	9/205, 7-8=-806/264, 3=-4/885, 10-11=-33 -70/685, 5-14=-1038 4=0/69 been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zone ever left and right pht exposed;C-C for for reactions shown; L=1.60 a 10.0 psf bottom th any other live load	y/883 //411, Cat. e							Willing		SEA O3633	ROLLA 22 ERICK	and an an an an an

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO AMITEK Affiliate

818 Soundside Road Edenton, NC 27932

March 10,2025

Job	Truss	Truss Type	Qty	Ply	JSJ, Smith Prime	
4619338	B04	Attic	3	1	Job Reference (optional)	171906820

Run; 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Sun Mar 09 16:02:42 ID:yL9Dy3KImJo0YGDZcmrZtiyIvDJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-1-12	15-5-4	20-7-0
5-1-12	10-3-8	5-1-12

Scale = 1:93.1

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.86	Vert(LL)	-0.18	10-12	>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.34	Vert(CT)	-0.30	10-12	>814	240			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.19	Horz(CT)	-0.03	1	n/a	n/a			
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS		Wind(LL)	0.12	10-12	>999	240	Weight: 184 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD JOINTS REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASI Vasd=103 II; Exp C; and C-C E exposed ; members Lumber D 3) This truss chord live	2x6 SP No.2 2x10 SP 2400F 2.0E 2x4 SP No.2 *Excep Left 2x6 SP No.2 - 1 1-6-0 Structural wood shea 4-8-7 oc purlins. Rigid ceiling directly bracing. 1 Brace at Jt(s): 13 (size) 1=0-3-8, 9 Max Horiz 1=340 (LC Max Uplift 1=-60 (LC Max Grav 1=1220 (L (lb) - Maximum Com Tension 1-3=-1456/249, 3-4= 5-6=-49/206, 6-7=-8 1-12=-151/885, 10-1 7-10=-69/686, 3-12= 4-13=-1040/409, 6-1 ed roof live loads have n. CE 7-10; Vult=130mph Bmph; TCDL=6.0psf; BC Enclosed; MWFRS (en Exterior (2) zone; cantili, end vertical left and rig and forces & MWFRS ' OL=1.60 plate grip DO has been designed for load nonconcurrent wit	i or 2x10 SP DSS t* 5-13:2x4 SP No.3 I-6-0, Right 2x6 SP N athing directly applie applied or 10-0-0 oc 9=0-3-8 C 9) 13), 9=-60 (LC 12) C 21), 9=1220 (LC 2 pression/Maximum -807/264, 4-5=-49/2/ 07/264, 7-9=-1455/2 2=-4/886, 9-10=-32/ -70/686, 3=-1040/409, 5-13=(been considered for (3-second gust) CDL=6.0psf; h=25ft; velope) exterior zon ever left and right pht exposed;C-C for for reactions shown; L=1.60 • a 10.0 psf bottom th any other live load	4 No.2 5 6 d or 7 8 9 L 20) 05, 49 884 0/69 Cat. e	 * This truss h on the botton 3-06-00 tall b chord and an Ceiling dead 6-13; Wall d Bottom chord chord dead la Provide med bearing plate 1 and 60 lb u Attic room ch OAD CASE(S) 	has been designed in chord in all areas by 2-00-00 wide wi yo other members. load (5.0 psf) on r ead load (5.0 psf) appli are assumed to be hanical connection or capable of withsta plift at joint 9. uecked for L/360 de Standard	for a liv s where Il fit betw nember(on memb f) and a ed only t SP DS3 (by oth anding 6 eflection	e load of 20.0 a rectangle veen the botto s). 3-4, 6-7, 4 ber(s).7-10, 3 dditional botto o room. 10-1: S or 2400F 2. ers) of truss t 0 lb uplift at j	Dpsf pm 4-13, -12 om 2 0E . o oint				SEAL 03632	ROUL 22 EREAL	Manunna

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G mmm March 10,2025

Job	Truss	Truss Type	Qty	Ply	JSJ, Smith Prime	
4619338	B05	Attic	1	2	Job Reference (optional)	171906821

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Sun Mar 09 16:02:42 ID:yL9Dy3KImJo0YGDZcmrZtiylvDJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

5-1-12	15-5-4	20-7-0
5-1-12	10-3-8	5-1-12

|--|

Scale = 1:93.1

-																
Loading	(psf)	Spacing	2-6-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP				
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.61	Vert(LL)	-0.11	10-12	>999	360	MT20	244/190				
TCDL	10.0	Lumber DOL	1.15	BC	0.24	Vert(CT)	-0.19	10-12	>999	240						
BCLL	0.0*	Rep Stress Incr	NO	WB	0.12	Horz(CT)	-0.02	1	n/a	n/a						
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS		Wind(LL)	0.07	10-12	>999	240	Weight: 368 lb	FT = 20%				
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD JOINTS REACTIONS FORCES TOP CHORD	2x6 SP No.2 2x10 SP 2400F 2.0E 2x4 SP No.2 *Excep Left 2x6 SP No.2 1-6-0 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Brace at Jt(s): 13 (size) 1=0-3-8, 9 Max Horiz 1=424 (L0 Max Uplift 1=-75 (L0 Max Grav 1=1525 (I (lb) - Maximum Com Tension 1-3=-1818/237, 3-4= 5-6=-63/255, 6-7=-1	E or 2x10 SP DSS t* 5-13:2x4 SP No.3 1-6-0, Right 2x6 SP N athing directly applied applied or 10-0-0 oc 9=0-3-8 C 9) C 13), 9=-75 (LC 12) LC 21), 9=1525 (LC 2 upression/Maximum =-1007/330, 4-5=-63/2 007/330, 7-9=-1818/2 42 = 5(405)	 3) Unbalanced this design. 4) Wind: ASCE Vasd=103m lo.2 II; Exp C; Er and C-C Ex exposed; e d or Lumber DO 5) This truss h chord live lo 6) * This truss on the bottoo 3-06-00 tall chord and a 7) Ceiling deaa 6-13; Wall 6 8) Bottom choi chord dead 255, 9) All bearings 237 10) Provide med 	 22015/TPI2014 Matrix-MS Wind(LL) 0.07 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 5) This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 7) Ceiling dead load (5.0 psf) on member(s). 7-10, 3-12 8) Bottom chord live load (5.0 psf) and additional bottom chord dead load (5.0 psf) and ad												
WEBS	9-10=-36/1103 7-10=-90/858, 3-12= 4-13=-1300/516, 6-1	91/859, 3=-1300/516, 5-13=0	1 and 75 lb 11) Attic room c	1 and 75 lb uplift at joint 9. 11) Attic room checked for L/360 deflection.								BO				
NOTES			LUAD CASE(S)	Sidiluaru						1.1	R	+··· - / / / /				
 2-ply truss (0.131"x3" Top chord staggered Bottom ch staggered Web conn All loads a except if n CASE(S) s provided tu unless oth 	s to be connected toge ') nails as follows: Is connected as follows: at 0-9-0 oc. words connected as foll at 0-9-0 oc. weeted as follows: 2x4 - are considered equally toted as front (F) or ba section. Ply to ply conr o distribute only loads herwise indicated.	ther with 10d s: 2x6 - 2 rows ows: 2x10 - 2 rows - 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LOA nections have been noted as (F) or (B),	λD						M. COLUMN		SEA 0363	L 22 L L BERNIN				

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO

818 Soundside Road Edenton, NC 27932

March 10,2025

Job	Truss	Truss Type	Qty	Ply	JSJ, Smith Prime	
4619338	PB01	Piggyback	2	1	Job Reference (optional)	171906822

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Sun Mar 09 16:02:42 ID:oluU2EyA?oaoUSFCNBWQbhylvUa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.4

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.06 0.06 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No. 2x4 SP No. 2x4 SP No. Structural v 6-0-0 oc pu Rigid ceilin bracing. (size) 2 Max Horiz 2 Max Uplift 2 Max Grav 2	2 2 3 vood shea rifins. g directly 2=8-0-6, 6 0=8-0-6 2=52 (LC 2=-42 (LC 3=-108 (LC 2=137 (LC LC 1), 9=	athing directly applied applied or 10-0-0 oc =8-0-6, 8=8-0-6, 9=8 12) 12), 6=-52 (LC 13), C 13), 10=-109 (LC 1 : 1), 6=137 (LC 1), 8= 58 (LC 13), 10=215 (5) 6) 7) d or 8) 9) 3-0-6, 2) 10 =215 (LC LC	 5) Gable studs spaced at 1-4-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 8) All bearings are assumed to be SP No.2. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 42 lb uplift at joint 2, 52 lb uplift at joint 6, 109 lb uplift at joint 10, 108 lb uplift at joint 6. 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer. LOAD CASE(5) Standard 									
FORCES TOP CHORD BOT CHORD	(lb) - Maxin Tension 1-2=0/17, 2 4-5=-50/10 2-10=-13/6	num Com 2-3=-37/47 3, 5-6=-29 1, 9-10=-1	pression/Maximum 7, 3-4=-50/103, 9/30, 6-7=0/17 13/61, 8-9=-13/61,											
WEBS NOTES 1) Unbalance this design 2) Wind: ASG Vasd=103 II; Exp C; and C-C E exposed ; members Lumber D 3) Truss des only. For see Stand or consult	ed roof live loa n. CE 7-10; Vult= mph; TCDL= Enclosed; MV staterior (2) zo end vertical li and forces & OL=1.60 plate igned for winc studs expose lard Industry (qualified build	, 3-10=-14 ads have =130mph 6.0psf; BC VFRS (en ne; cantili eft and rig MWFRS i a grip DO I loads in d to wind Sable Enc ding desig	11/153, 5-8=-141/154 been considered for (3-second gust) DL=6.0psf; h=25ft; (velope) exterior zone wer left and right ht exposed;C-C for for reactions shown; _=1.60 the plane of the truss (normal to the face), I Details as applicabl pner as per ANSI/TPI	4 Cat. e s le, 1.							Contraction of the second		SEAL SEAL SEAL SEAL	

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.

March 10,2025

G١ A. GILIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	JSJ, Smith Prime	
4619338	PB02	Piggyback	19	1	Job Reference (optional)	171906823

Run; 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Sun Mar 09 16:02:42 ID:hFcZJno03pyeQSli6ynNZxyIvUn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:30.7

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.17	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL		10.0	Lumber DOL	1.15		BC	0.18	Vert(CT)	n/a	-	n/a	999			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.04	Horz(CT)	0.00	11	n/a	n/a			
BCDL		10.0	Code	IRC20	15/TPI2014	Matrix-MS							Weight: 31 lb	FT = 20%	
LUMBER FOP CHOR 30T CHOR OTHERS BRACING FOP CHOR 30T CHOR REACTION	D 2x4 SP N D 2x4 SP N 2x4 SP N 6-0-0 oc p D Rigid ceili bracing. S (size) Max Horiz Max Uplift Max Grav	b.2 b.2 b.3 wood shea purlins. ng directly 2=8-0-6, 4 2=-52 (LC 2=-80 (LC 6=-52 (LC 2=201 (LC (LC 1)	athing directly applie applied or 10-0-0 oc 4=8-0-6, 6=8-0-6 : 17) : 12), 4=-90 (LC 13), : 12) C 1), 4=201 (LC 1), 6	ed or 5 5 5)=318	 * This truss h on the bottor 3-06-00 tall h chord and ar All bearings Provide mec bearing plate 2, 90 lb uplifi joint 2 and 9 See Standar Detail for Co consult quali CAD CASE(S) 	has been design in chord in all a by 2-00-00 wide by other member are assumed to hanical connecc e capable of wit to at joint 4, 52 lt 0 lb uplift at joint d Industry Pigg nnection to bas fied building de Standard	ned for a live reas where e will fit betw ers. b be SP No tition (by othe chistanding 8 b uplift at join ht 4. hyback Truss se truss as a ssigner.	e load of 20. a rectangle reen the bott 2. ers) of truss : 0 lb uplift at j nt 6, 80 lb up s Connection upplicable, or	Opsf om to joint plift at						
FORCES	(lb) - Maxi Tension	imum Com	pression/Maximum												
TOP CHOR	D 1-2=0/17, 4-5=0/17	2-3=-95/10	04, 3-4=-95/105,												
BOT CHOR	D 2-6=-26/6	2, 4-6=-19/	/62												
WEBS	3-6=-175/	118													
NOTES															
 Unbalar this design in the second seco	nced roof live l	oads have	been considered for	r									mm	1111	
2) Wind: A	SCE 7-10: Vu	lt=130mph	(3-second aust)										"'TH CA	Rollin	
, , , , , , ,				a .								1	011		

- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

0-11-5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

