

RE: 25040098-01 918 Serenity-Roof-B326 B CP GRH

Site Information:

Customer: David Weekley Homes Project Name: 25040098-01 Lot/Block: 918 Model: Address: 1116 Serenity Walk Parkway City: Fuguay-Varina State: NC

Subdivision: Serenity

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2021/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.7 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 38 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	173103576	A01	4/30/2025	21	173103596	PBA	4/30/2025
2	173103577	A03	4/30/2025	22	173103597	PBA1	4/30/2025
3	173103578	A04	4/30/2025	23	173103598	PBA2	4/30/2025
4	173103579	A05	4/30/2025	24	173103599	VLB1	4/30/2025
5	173103580	A06	4/30/2025	25	173103600	VLB2	4/30/2025
6	173103581	A07	4/30/2025	26	173103601	VLB3	4/30/2025
7	173103582	A08	4/30/2025	27	173103602	VLB4	4/30/2025
8	173103583	A09	4/30/2025	28	173103603	VLB5	4/30/2025
9	173103584	B01	4/30/2025	29	173103604	VLB6	4/30/2025
10	173103585	B02	4/30/2025	30	173103605	VLB7	4/30/2025
11	173103586	B03	4/30/2025	31	173103606	VLB8	4/30/2025
12	173103587	C01	4/30/2025	32	173103607	VLD1	4/30/2025
13	173103588	C02	4/30/2025	33	173103608	VLD2	4/30/2025
14	173103589	D01	4/30/2025	34	173103609	VLD3	4/30/2025
15	173103590	D02	4/30/2025	35	173103610	VLD4	4/30/2025
16	173103591	E01	4/30/2025	36	173103611	VLD5	4/30/2025
17	173103592	G01	4/30/2025	37	173103612	VLD6	4/30/2025
18	173103593	H01	4/30/2025	38	173103613	VLD7	4/30/2025
19	173103594	H02	4/30/2025				
20	173103595	J01	4/30/2025				

The truss drawing(s) referenced above have been prepared by

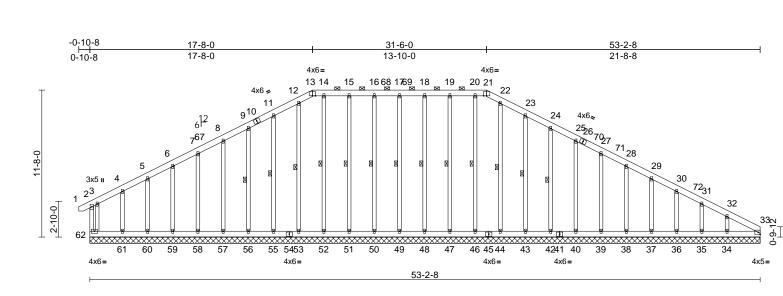
Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2025

North Carolina COA: C-0844


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Trenco 818 Soundside Rd Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH	
25040098-01	A01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	173103576

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 10:42:12 ID:HvYYHe4LpHmiz2Dld9nw5TzRQov-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:91.4

Scale = 1:91.4												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-M	0.12 0.21	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 33	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 546 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 2x4 SP No.3 *Excej 49-17,48-18,47-19, 52-14,53-12:2x4 SF	46-20,44-22,50-16,51-			34=413 (LC 25), 36=196 (LC 41), 38=174 (LC 45), 40=230 (LC 45), 43=230 (LC 45), 46=199 (LC 40), 48=217 (LC 40), 50=217 (LC 40),	37=153 (LC 39=221 (LC 42=229 (LC 44=217 (LC 47=220 (LC 49=216 (LC	59), 45), 45), 45), 45), 40),	BOT CH	IORD	59-60 57-58 55-56 52-53 50-51 48-49	=-80/149, 60-61= =-80/149, 58-59= =-80/149, 56-57= =-80/149, 53-55= =-80/149, 51-52= =-80/149, 49-50- =-80/149, 47-48= =-80/149, 44-46=	80/149, 80/149, 80/149, 80/149, 80/149, 80/149,
BRACING TOP CHORD	6-0-0 oc purlins, ex 2-0-0 oc purlins (10			5 5 5	50=217 (LC 40), 52=199 (LC 40), 55=234 (LC 43), 57=233 (LC 43), 59=199 (LC 43),	53=217 (LC 56=233 (LC 58=233 (LC	43), 43), 43),			43-44 40-42 38-39	=-80/149, 44-46= =-80/149, 42-43= =-80/149, 39-40= =-80/149, 37-38= =-80/149, 35-36=	=-80/149, =-80/149, =-80/149,
BOT CHORD	Rigid ceiling directly bracing.	y applied or 6-0-0 oc		(61=255 (LC 51),	62=134 (LC	58)				=-80/149, 33-34= =-80/149, 33-34=	
WEBS	1 Row at midpt	17-49, 18-48, 19-47, 20-46, 22-44, 23-43, 24-42, 16-50, 15-51, 14-52, 12-53, 11-55,	FORCES TOP CHORD 9-56	Tension 2-62=-243/ 3-4=-75/12	num Compressio (191, 1-2=0/23, 2 20, 4-5=-49/115,	2-3=-100/92, 5-6=-59/156,						
			2-8, 2-8, 2-8, 2-8, 2-8, 2-8, 2-8, 2-8,	9-11=-125/ 12-13=-147 14-15=-140 16-17=-140 18-19=-140 20-21=-140 22-23=-148 24-25=-107 27-28=-75/ 29-30=-64/	11, 7-8=-91/246, (338, 11-12=-14 (7)384, 13-14=-14 (7)380, 15-16=-14 (7)380, 17-18=-14 (7)380, 19-20=-14 (7)380, 21-22=-14 (7)380, 21-22=-14 (7)291, 25-27=-9 (201, 28-29=-60) (136, 30-31=-72) (5)100, 32-33=-13 (100, 32-33=-13) (100,	5/387, 10/380, 10/380, 10/380, 10/380, 10/380, 17/384, 25/338, 1/246, 160, 111,	1,		Contraction of the second seco		SEA 0363	22 EERER HUU

April 30,2025

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, recetion and bracing of trusses and truss systems, see **ANSI/TP1 Quility Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH	
25040098-01	A01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	173103576
Carter Components (Sanford N	C) Sanford NC - 27332	Bun: 8 73 S Eeb 19 2	025 Print: 8	730 S Feb 19	2025 MiTek Industries Inc. Tue Apr 29 10:42:12	Page: 2

ID:HvYYHe4LpHmiz2Dld9nw5TzRQov-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Carter Components (Sanford, NC), Sanford, NC - 27332,

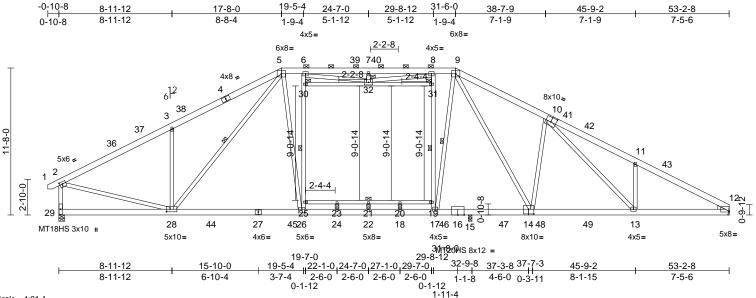
WEBS 17-49=-176/57, 18-48=-177/62, 19-47=-180/61, 20-46=-159/6, 22-44=-177/2, 23-43=-190/87, 24-42=-189/81, 25-40=-190/77, 27-39=-181/77, 28-38=-132/77, 29-37=-125/77, 30-36=-138/78, 31-35=-67/120, 32-34=-241/136, 16-50=-177/62, 15-51=-180/61, 14-52=-159/1, 12-53=-177/0, 11-55=-194/87, 9-56=-193/81, 8-57=-193/77, 7-58=-194/77. 6-59=-157/77. 5-60=-116/91. 4-61=-185/158, 3-62=-226/261

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-8-6 to 4-7-0, Exterior(2N) 4-7-0 to 12-4-2, Corner(3R) 12-4-2 to 22-11-14, Exterior(2N) 22-11-14 to 26-2-2, Corner(3R) 26-2-2 to 36-7-0, Exterior(2N) 36-7-0 to 47-10-10, Corner(3E) 47-10-10 to 53-2-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated. 8)
- 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 12) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) N/A
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Page: 2

Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH	
25040098-01	A03	Piggyback Base	8	1	Job Reference (optional)	173103577

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 29 10:42:13 ID:OFJFx3IDTxFbWWzrBXohbzzRCTM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

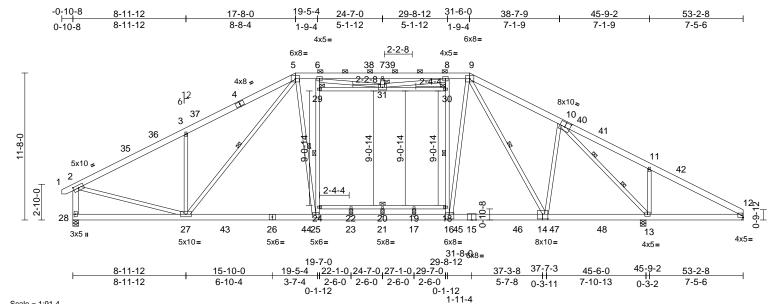
Scale = 1:91.4

			-					-					
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.93 0.64 0.99	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 22-24 22-24 12		L/d 240 180 n/a	PLATES MT20 MT18HS MT20HS Weight: 470 lb	GRIP 244/190 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD	2x6 SP 2400F 2.0E No.2 2x4 SP No.3 *Excep 28-2,6-26,8-17,17-9, No.2 Right: 2x4 SP No.3 Structural wood she 3-0-6 oc purlins, ex	,14-9,26-5,28-5:2x4 S athing directly applied cept end verticals, an	SP SP W	DT CHORD	28-29=-120/230, 2 24-26=-74/3065, 2 18-22=-74/3065, 1 15-17=-47/2883, 1 12-13=-140/3993, 2 2-28=-127/3075, 2 2-28=-127/3075, 2 25-30=-483/245, 6 17-19=-927/203, 1 8-31=-823/219, 9-1 10-14=-910/320, 9 10-13=-221/767, 1	2-24=-7 7-18=-7 3-15=-1 23-25=- 1=-74/3 5-26=-5 -30=-46 9-31=-8 7=-129 -14=-16	4/3065, 4/3065, 01/3496, 74/35, 15, 19-20=-74, 21/205, 9/250, 42/223, (1185, 8/879,	/35	 All All Thi cho Thi cho 10) * Ti on 3-0 cho 11) Rei 12) Pro 	plates an plates an s truss h bis truss the botto 6-00 tall ord and a fer to gire ovide me	re MT2 re 2x4 as bee bad not has be om cho by 2-0 any oth der(s) f chanic	10 plates unless of MT20 unless oth en designed for a nconcurrent with een designed for rd in all areas wh 10-00 wide will fit er members, with for truss to truss o al connection (by	10.0 psf bottom any other live load a live load of 20.0 here a rectangle between the botto n BCDL = 10.0psf.
BOT CHORD WEBS JOINTS	bracing, Except: 6-0-0 oc bracing: 23	-0 max.): 5-9. applied or 10-0-0 oc -25,21-23,20-21,19-2 26-30, 17-31, 9-17, 5	5-28	OTES	10-13=-22/1/107, 1 5-26=-36/1179, 3-2 5-28=-253/512, 21 31-32=-139/25, 7-3 6-32=-289/705, 8-3 23-24=-191/0, 18-2	8=-842 22=-70 2=-255 2=-276	/342, /0, 30-32=-12, /87, /815,	/43,	12. 13) On rec UP onl	e H2.5A commenc LIFT at j y and do	Simps led to d t(s) 29 les not	on Strong-Tie co connect truss to b and 15. This con consider lateral f	nnectors bearing walls due
REACTIONS	,	C 14), 15=-210 (LC 1 LC 14) (LC 47), 15=887 (LC	1) 2) 5),	Unbalanced this design. Wind: ASC Vasd=103n II; Exp B; E and C-C Ex	d roof live loads hav E T-16; Vult=130mp nph; TCDL=6.0psf; nclosed; MWFRS (kterior(2E) -0-8-6 to kterior(2R) 10-1-11 t	h (3-seo 3CDL=6 envelope 4-7-8, Ir	cond gust) .0psf; h=25ft; e) exterior zor iterior (1) 4-7-	; Cat. ne -8 to	or t		tation o rd.	of the purlin along	g the top and/or
FORCES TOP CHORD	(lb) - Maximum Com Tension	pression/Maximum 1/268, 3-5=-3716/468 3623/491, 3135/291,	3)	zone; end v forces & MV DOL=1.60 TCLL: ASC Plate DOL= DOL=1.15) Cs=1.00; C	47-10-10, Exterior(2 vertical left exposed; WFRS for reactions plate grip DOL=1.60 E 7-16; Pf=20.0 psf =1.15); Pf=20.0 psf (; Is=1.0; Rough Cat t=1.10 d spow loads have b	C-C for shown; (roof Ll Lum DC B; Fully	members and Lumber .: Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9	d 1.15 9;			20	SEA 0363	•

- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

Unin GILDIN April 30,2025

GILB

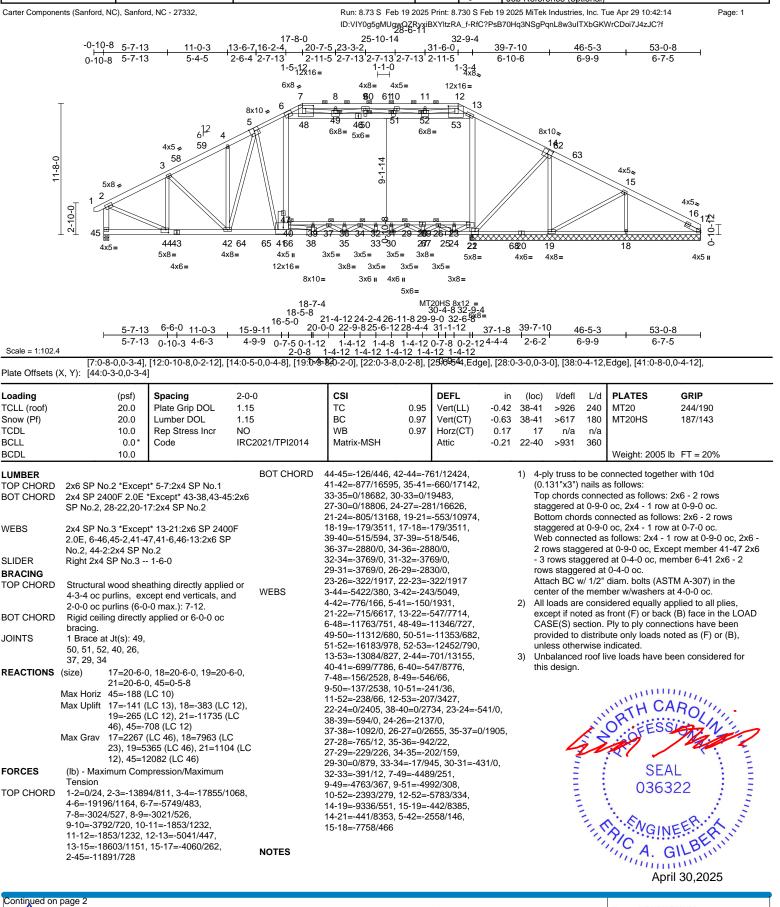

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH	
25040098-01	A04	Piggyback Base	3	1	Job Reference (optional)	173103578

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 29 10:42:14 ID:DGN6a6f8caCKWpHw1clz1BzRCZx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:91.4


Scale = 1:91.4												
Plate Offsets (X, Y): [2:0-4-14,0-2-8], [10	0:0-5-0,0-4-8], [14:0-5-0	,0-4-8], [16:0-3-8	,0-4-8], [25:0-3-0,0)-3-8]								
TCLL (roof) 20.0 Pla Snow (Pf) 20.0 Lui TCDL 10.0 Re	pacing 2-0-0 late Grip DOL 1.15 umber DOL 1.15 ep Stress Incr YES ode IRC2	021/TPI2014	CSI TC BC WB Matrix-MSH	0.70 0.89 0.92			(loc) 25-27 22-24 12	>999 >999	L/d 240 180 n/a	PLATES MT20 Weight: 471 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD $2x6$ SP 2400F 2.0E *Exc No.2, 14-12,15-14:2x6 SI BOT CHORD $2x6$ SP 2400F 2.0E *Exc No.2, 14-12,15-14:2x6 SI WEBS $2x4$ SP No.3 *Except* 28 27-2,6-25,8-16,27-5,25-5 4 SP No.2 BRACING Structural wood sheathin 3-1-0 oc purlins, except 2-0-0 oc purlins (3-6-7 m BOT CHORD Rigid ceiling directly appl bracing. WEBS 1 Row at midpt 25-2 9-14 WEBS 2 Rows at 1/3 pts 10-1 JOINTS 1 Brace at Jt(s): 29, 30, 31 10-1 REACTIONS (size) 12= Mechanic 28=0-5-8 Max Horiz 28=-187 (LC 1 Max Grav 12=876 (LC 3) 28=2524 (LC 3) TOP CHORD 1-2=0/25, 2-3=-3470/240 5-6=-3020/294, 6-7=-354 7-8=-3544/494, 8-9=-299 9-11=-3120/512, 11-12=- 2-28=-2579/244	cept* 24-18:2x4 SP SP No.2 8-2:2x6 SP No.2, 5,16-9,14-9,13-10:2x ng directly applied or t end verticals, and nax.): 5-9. blied or 6-0-0 oc 29, 16-30, 5-27, 5-25, 4 13 cal, 13=0-5-8, 12) 14), 13=-414 (LC 15), 14) 37), 13=2647 (LC 39), 37) ssion/Maximum 0, 3-5=-3585/434, 44/494, 97/293, 1458/442,	 WEBS NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=103m II; Exp B; Er and C-C Ext 10-1-11, Ext 39-1-13 to 4 zone; cantile and right ext MWFRS for grip DOL=1. 3) TCLL: ASCE Plate DOL=: DOL=1.15); Cs=1.00; Ct 4) Unbalanced design. 5) This truss ha load of 12.0 	E 7-16; Pr=20.0 ps 1.15); Pf=20.0 psf Is=1.0; Rough Cat	1-23=-2(6-17=-2: 12-13=-: 22=-71/3 -25=-51: -29=-46: 8-30=-8: 27=-817, 25=-91/1 14=-451: 11-13= 14=-302/7 -23=-18 // e been (bh (3-sec BCDL=6 envelope 4-7-8, Ir to 39-11 22) 47-11 (Lum DC is B; Fully been cor for great lat roof k	6/2939, 6/2939, 334/1258, 5/7, 19-20=-71/3 5/251, 5/319, 35/250, '328, 106, '6, 10-14=0/661 456/259, 2, 30-31=-173/4 '31, 7/0, 17-19=-200 considered for cond gust) 0.0psf; h=25ft; C e) exterior zone terior (1) 4-7-8 13, Interior (1) 0-10 to 53-2-8 ; end vertical lei di forces & DOL=1.60 plate Exp.; Ce=0.9; hidred for this er of min roof lik pad of 20.0 psf	7, , 4, //0 kat. to it 5	7) All 8) Th ch 9) * T on 3-(ch 10) Re 11) Pr be 12 12) Or re UF on 13) Gr or bo LOAD	plates ar is truss h ord live lc 'his truss the botto 06-00 tall ord and a efer to girc oovide me aring plat	e 2x4 as bee aad noo has ba m choo by 2-0 ny oth der(s) 1 c chanic e capa Simps ecta to to s 28 es not urlin re tation of d.	ORTH CA	herwise indicate a 10.0 psf botto any other live r a live load of 2 here a rectangl t between the b th BCDL = 10.0 connections. y others) of trus ling 199 lb uplif onnectors bearing walls of nnection is for forces. es not depict th ng the top and/o	ed. om loads. 20.0psf le pottom opsf. ss to ft at joint due to uplift he size or

April 30,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH	
25040098-01	A05	Attic Girder	1	4	Job Reference (optional)	173103579

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH	
25040098-01	A05	Attic Girder	1	4	Job Reference (optional)	173103579

Run: 8 73 S. Feb 19 2025 Print: 8 730 S. Feb 19 2025 MiTek Industries. Inc. Tue Apr 29 10:42:14

ID:VIY0g5gMUgwQZRyxiBXYItzRA_f-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Carter Components (Sanford, NC), Sanford, NC - 27332,

- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 8) Provide adequate drainage to prevent water ponding.
- 9) All plates are MT20 plates unless otherwise indicated.
- 10) All plates are 2x4 MT20 unless otherwise indicated.11) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf.
 13) Ceiling dead load (5.0 psf) on member(s). 6-48, 48-49, 49-50, 50-51, 51-52, 52-53, 13-53; Wall dead load (5.0psf) on member(s).13-22, 6-40
- 14) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 39-40, 37-39, 36-37, 34-36, 32-34, 31-32, 29-31, 28-29, 26-28, 23-26, 22-23
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 11735 lb uplift at joint 21.
- 16) N/A

17) N/A

- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 19) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.
- 20) LGT4 Hurricane ties must have four studs in line below the truss.
- 21) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 608 lb down and 52 lb up at 28-8-4, and 9100 lb down and 774 lb up at 16-1-4 on bottom chord. The design/ selection of such connection device(s) is the responsibility of others.
- 22) Attic room checked for L/360 deflection.
- LOAD CASE(S) Standard
- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft) Vert: 1-2=-60, 2-7=-60, 7-12=-60, 12-17=-60, 45-54=-20, 22-40=-30, 6-48=-10, 48-49=-10, 46-49=-10, 46-50=-10, 50-51=-10, 51-52=-10, 52-53=-10, 13-53=-10

- Drag: 13-22=-10, 40-47=-10, 6-47=-10
- Concentrated Loads (lb)
- Vert: 41=-4881 (F), 67=-326 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-	B326 B CP GRH	
25040098-01	A06	Attic Girder	1	4	Job Reference (opt	tional)	173103580
arter Components (Sanford	NC), Sanford, NC - 27332,	Run: 8.73	S Feb 19 2025 Print:	8.730 S Feb	19 2025 MiTek Industries	, Inc. Tue Apr 29 10:	:42:15 Page: 1
		ID:pGeZv	t1?lwruiNEY_xH4fkzR	Ap7-RfC?Ps	B70Hq3NSgPqnL8w3uIT>	(bGKWrCDoi7J4zJC	?f
-0-10-8 5-7	13 . 11-0-3 .13-	17-8-0 25-10	-14 :	32-9-4		46-5-3	
-0-10-8 5-7 H		<u>-7 16-2-4 20-7-5 23-3-2</u> -4 2-7-13 2-11-5 2-7-13 2-7-	<u>31-6-0</u> 13 2-7-13 2-11-5			46-5-3 6-9-9	<u>53-5-8</u> 7-0-5
0-10-8 5-7	10 0- 4 -0 2-0	1-5-12 12x16 12x16=	4x5= 12	2x16=	0-10-0	0-3-3	7-0-5
т				12 ⊐⊳⊾ 13 ^{4:}	<8 ≈		
		8x10 =					
	6 ¹² 4	5 49 51 52	53 54 <u>5</u> 4x6 6x8=	50	8x10 x		
	~ //				11162		
	47.3 2	// \\				63	
11-8-0	3 59	// //				4x5.	
÷		/ // 5				16	
5x8 =							
							4x5 🚬 🚽
5-10-0				_ //			17 O 18 U
図 3x6=	4645 44 64	65 4366 41 38 36 34	31 29 27 =2 5x6 WB =2	5 22	67 21 20	19	(
0.0-	6x8= 4x8=	$4x5 \parallel 3x5 = 3x8 = 3x5 $	= 3x5= 5x6=	5x8= 6x8=	MT20HS 3x8 =		6x8=
DD()		12x16= 6x8= 3x5= TO BEARING PLATE AT JOINT 22 CAPAE	3x8= 3x8= ^{3x3=} 3x	<8=	3x5=		
REAG	TION DUE TO GRAVITY LOAD	NG APPLIED TO THE TRUSS. IT IS THE I	RESPONSIBILITY OF	THE PROJ	ECT		
		THE CONNECTION OF THE TRUSS TO 1 FINUOUS LOAD PATH FROM THE TRUSS					
		SUCH UPLIFT. FAILURE TO DO SO WILL	VOID THIS CONSTR	RUCTION.			
0-5-8 5-7	-13 6-6-0 11-0-3	18-5-820-1-1222-11-425-6 5-9-11 16-5-0 18-7-421-6-8 24-0-4	6-12 28-4-4 31-1-1 26-11-8 29-6-0		7-7-0 39-7-10	40 5 0	F0 F 0
-	2-5 0-10-3 4-6-3	4-9-9 0-7-5 0-1-121-4-12 1-1-0				46-5-3 6-9-9	53-5-8 7-0-5
Scale = 1:93.9		2-0-81-6-8 1-4-12 1-6	-8 1-4-12 1-0-12 1	2 ₀₋₂₋₁₂	2-0-10	000	
ate Offsets (X, Y): [7:0	·8-0,0-3-4], [9:0-8-0,0-2-4], [1	2:0-10-8,0-2-12], [18:Edge,0-2-0], [23:0			43:0-8-0,0-4-12], [46:0	-3-8,0-3-0]	
	(pof) Specing	2-0-0 CSI	DE				GRIP
cl L (roof)	(psf) Spacing 20.0 Plate Grip DOI	2-0-0 CSI 1 15 TC	0.99 Ver		in (loc) l/defl -0.49 41-43 >800	L/d PLATES	244/190

		1													
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP			
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.99	Vert(LL)	-0.49	41-43		240	MT20	244/190			
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.73	Vert(CT)	-0.74	41-43	>530	180	MT20HS	187/143			
TCDL	10.0	Rep Stress Incr	NO	WB	0.87	Horz(CT)	0.21	18	n/a	n/a					
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH		Attic	-0.24	23-42	>809	360					
BCDL	10.0							-			Weight: 2020	lb FT = 20%			
LUMBER			BOT CHORD	46-47=-124/440, 4	4-46=-7	31/12075, 1) 4-ply truss to be connected together with						her with 10d			
TOP CHORD	2x6 SP No.2 *Excer	ot* 5-7:2x4 SP 2400F		43-44=-832/16083		,					s follows:				
	2.0E			36-38=0/17735, 34	-36=0/1	8049,		Ťo	, p chords	conne	cted as follows	: 2x6 - 2 rows			
BOT CHORD	2x4 SP 2400F 2.0E	*Except* 47-45:2x6 S	SP .	31-34=0/18049, 29	9-31=0/1	6737,		sta	ggered a	at 0-9-0) oc, 2x4 - 1 rov	v at 0-9-0 oc.			
	No.2, 42-28,28-23:2	2x4 SP No.2, 45-41:2>	6	25-29=-154/14351								ows: 2x6 - 2 rows			
	SP 2400F 2.0E			20-22=-780/16080) oc, 2x4 - 1 rov				
WEBS	2x4 SP No.3 *Exce		18-19=-737/15458								1 row at 0-9-0 oc, 2x				
		8,52-13:2x6 SP No.2		39-40=-2303/0, 37								cept member 43-48 2			
		F 2.0E, 46-2:2x4 SP N	lo.2	35-37=-3084/0, 33								ember 13-22 2x6 - 2			
OTHERS	2x4 SP No.3			32-33=-2967/0, 30							0-9-0 oc.				
SLIDER	Right 2x4 SP No.3 -	1-6-0		26-30=-1186/728, 23-24=-366/3070	24-20=-	300/3070,						STM A-307) in the			
BRACING	.		d or WEBS		-1123	8/4030			center of the member w/washers at 4-0-0 oc. 2) All loads are considered equally applied to all plies,						
TOP CHORD	Structural wood she														
	4-4-5 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 7-12.										except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been				
				22-23=-712/6597, 13-23=-513/7232, provided to distribute only loads noted as (F) or (
BOT CHORD	bracing.	/ applied or 6-0-0 oc		6-49=-10641/684, 49-51=-10263/662, unless otherwise indicated.											
JOINTS	1 Brace at Jt(s): 42.			51-53=-11084/660	, 53-54=	-15528/928,		3) Un	balanced	d roof li	ive loads have	been considered for			
301113	51, 52, 53, 54, 26,	1		50-54=-12362/771	, 13-50=	-12999/808,		this	s design.						
	30, 37			2-46=-673/12779,		,									
REACTIONS		hanical, 22=0-5-8,		12-50=-204/3452,											
	47=0-5-8			8-51=-469/63, 9-51							unu	11111			
	Max Horiz 47=-190	(LC 10)		9-52=-120/2270, 9							I'L'HC	ARO			
	Max Uplift 18=-421	(LC 12), 22=-5383 (L0	0	10-53=-108/93, 10 11-54=-269/67, 12						1	a				
		683 (LC 12)		23-25=0/1635, 24-2			727/0			A.	O'.EES	Sig Viz.			
		(LC 46), 22=793 (LC	12),	26-29=0/2288, 38-						11	1P	The SI			
	47=1174	8 (LC 46)		38-39=-499/9, 29-3		,	00/20,				- 10:	Selle			
FORCES	(lb) - Maximum Con	npression/Maximum		37-38=-363/251, 3			0/559.				OF.	A1	2		
	Tension			31-32=-542/0, 35-3					=		SE		-		
TOP CHORD		98/782, 3-4=-17368/1	033,	33-34=-22/125, 41	-42=0/2	662, 40-41=-8	885/0,				036	322 :	-		
	4-6=-18572/1120, 6			15-22=-629/212, 1					-			: :	-		
	7-8=-3098/528, 8-9			16-20=-135/835, 1	6-19=-3	4/151,				5	N	1 1 2	5		
	9-10=-3730/713, 10			5-44=-2270/112						2.1	N. ENG	-cRik S			
	11-12=-1716/1437,		NOTES							31	A, GI	VEFR			
	13-15=-17758/1088	, 15-16=-17909/1006 2-4711551/702	,							1	C	BEIN			
	10-10=-17023/090,	2-47=11001/702									A.	GILLIN			
												IIIII.			
											٨٣	ril 20 2025			

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek@ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

April 30,2025

Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH	
25040098-01	A06	Attic Girder	1	4	Job Reference (optional)	173103580

Run: 8 73 S. Feb 19 2025 Print: 8 730 S. Feb 19 2025 MiTek Industries. Inc. Tue Apr 29 10:42:15

ID:pGeZvt1?lwruiNEY_xH4fkzRAp7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Carter Components (Sanford, NC), Sanford, NC - 27332,

- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 8) Provide adequate drainage to prevent water ponding.
- 9) All plates are MT20 plates unless otherwise indicated.
- 10) All plates are 2x4 MT20 unless otherwise indicated.11) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf.
 13) Ceiling dead load (5.0 psf) on member(s). 6-49, 49-51, 51-52, 52-53, 53-54, 50-54, 13-50; Wall dead load (5.0psf) on member(s).6-42, 13-23
- (3.053) of member (3.0-42, 13-23)
 14) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 40-42, 39-40, 37-39, 35-37, 33-35, 32-33, 30-32, 28-30, 26-28, 24-26, 23-24
- 15) Refer to girder(s) for truss to truss connections.
- 16) Bearing at joint(s) 47 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 17) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 5383 lb uplift at joint 22 and 421 lb uplift at joint 18.
- LGT4-SDS3 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 47. This connection is for uplift only and does not consider lateral forces.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 20) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.
- 21) LGT4 Hurricane ties must have four studs in line below the truss.
- 22) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 9100 lb down and 774 lb up at 16-1-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 23) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (lb/ft) Vert: 1-2=-60, 2-7=-60, 7-12=-60, 12-18=-60, 47-55=-20, 23-42=-30, 6-49=-10, 49-51=-10, 51-52=-10, 52-53=-10, 53-54=-10, 50-54=-10,
 - 13-50=-10 Drag: 42-48=-10, 6-48=-10, 13-23=-10
 - Concentrated Loads (lb)
 - Vert: 43=-4881 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job		Truss		Truss Type		Qty	Ply	918 Serenity-Roof-B326 B CP GRH				
25040098-0	1	A07		Attic		1	1	-	173103581			
		_	d NC 27222	Auto	Dune 0 70 0 E-1		720 8 5-5 4	Job Reference (optional)	12:16 Dere: 4			
Carter Compone	nus (Santord,	INC), Santor	a, ing - 27332,					9 2025 MiTek Industries, Inc. Tue Apr 29 10:4 70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC				
	-0-10-8	0 4 0	40.0	47.0.0	0-7-5 25-10-14	32	-10-7					
	0-10-8	<u>8-4-0</u> 8-4-0	<u> </u>		23-3-2 2-7-13 2-7-13 2-7-	<u>31-6-0</u> 13 2-11-51		- <u>4-14 46-3-13</u> -6-7 6-10-14	<u>53-5-8</u> 7-1-11			
				6x 8	<u>∎</u> 11-5		6x8👟					
			12	4x8 ≠ 6	4x8= 4x5= 7 8 56579	6x8 10 1						
Т			6 ¹²	5	1-10-8							
			4x6 ≠ 4x5 ≠	43	45 46 47	48 44		8x10				
			354\$5		5x8=	5x8= 3x6	3 u	58359				
ę			53		4			60				
11-8-0		52			9-1-14			4x5.				
	5x8 =			,	0				1			
٩	1	_							т //			
2-10-0												
	42	0	 41 62	40 39 36	35`54`32`50 29`27 33 31 28	26 24 22 25 23 20	2119	18 17 16				
	MT18HS 3x1	U =	5x8=	4x6= 4x6=	3x5= 3x5= 3x8=	5x6=	12x16=	3x6=	5x8=			
				5x8 II 5x8	3x10= 3x5= 4x5 II = 5x6 II 3x8	4x8= 8= 6x10)=	8x10=				
						5x10=						
				17-9-12 16-5-0	20-7-4 23-4-12 26-11-8	29- <u>10-</u> 0 3 29-9-0 32-	6-8					
	H	<u>8-4-0</u> 8-4-0	<u>13-11-0</u> 5-7-0	16-2-4 19- 2-3-4	2-8 22-0-0 25-6-12 28	-4-4 31-1-12	37-6		53-5-8 7-1-11			
Scale = 1:97.7				0-2-12	1-4-12 2-2-0 1-4	1-4-12 1-4 4-120-1-0 ()-2-12	1100				
Plate Offsets ([2:0- X, Y): [38:E	2-12,0-2-0 dge,0-2-4], [6:0-5-8,0-3-0], [11], [41:0-3-8,0-2-8]	:0-5-8,0-3-0]; [13	0-5-0,0-4-8], [15:Edge,0-0	-9], [17:8-24	2,0-3-4], [19	0:0-6-8,0-3-0], [26:0-3-0,0-3-0], [28:0-3-	8,0-1-8],			
Loading		(psf)	Spacing	2-0-0	CSI	DEF		in (loc) I/defl L/d PLATES	GRIP			
TCLL (roof) Snow (Pf)		20.0 20.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC BC	0.97 Vert 0.95 Vert	· · /	47 31-33 >832 240 MT20 77 31-33 >509 180 MT18HS	244/190 244/190			
TCDL		10.0	Rep Stress Incr	YES	WB	0.94 Horz	(CT) 0	15 15 n/a n/a				
BCLL BCDL		0.0* 10.0	Code	IRC2021/TPI20	14 Matrix-MSH	Attic	-0	32 21-38 >604 360 Weight: 45	54 lb FT = 20%			
LUMBER				BOT CHO	DRD 41-42=-107/219, 39	-41=-18/343 ⁻	1.	2) Wind: ASCE 7-16; Vult=130m				
TOP CHORD					36-39=0/3348, 33-3	6=0/5184, 31	-33=0/6301	, Vasd=103mph; TCDL=6.0psf;	BCDL=6.0psf; h=25ft; Cat.			
BOT CHORD			t* 38-26,23-18:2x4 S x4 SP 2400F 2.0E	SP	28-31=0/6096, 25-2 19-20=-2308/0, 17-		J-25=0/1815	II; Exp B; Enclosed; MWFRS (and C-C Exterior(2E) -0-8-2 to				
WEBS	2x4 SP No		t* 5-39,12-19:2x6 SF	0	16-17=0/4042, 15-1 37-38=-1137/0, 35-3	6=-63/4042,		10-1-4, Exterior(2R) 10-1-4 to	39-0-12, Interior (1)			
	No.2, 5-46,41-2	,20-21,36-3	38,20-24,36-35,25-2	4,33-	34-35=-3123/0, 32-	34=-3123/0,		39-0-12 to 48-1-6, Exterior(2E cantilever left and right expose	ed ; end vertical left and			
		33-32,28-2 17:2x4 SP	7,31-32,46-12:2x4 S	P	30-32=-3174/0, 29-3 27-29=-3174/0, 24-3			right exposed;C-C for member for reactions shown; Lumber E				
WEDGE	Right: 2x4				22-24=0/3308, 21-2	2=0/3308		DOL=1.60				
BRACING TOP CHORD	Structural	wood sho	athing directly applie	WEBS	3-41=-681/78, 3-39 38-39=-27/336, 5-3			 TCLL: ASCE 7-16; Pr=20.0 ps Plate DOL=1.15); Pf=20.0 psf 				
	2-9-9 oc p	ourlins, ex	cept end verticals, ar		19-21=-1401/162, 1 13-21=-575/314, 13			DOL=1.15); Is=1.0; Rough Ca Cs=1.00; Ct=1.10	t B; Fully Exp.; Ce=0.9;			
BOT CHORD			-8 max.): 6-11. applied or 2-2-0 oc		14-17=-554/207, 14	-16=0/243,		4) Unbalanced snow loads have	been considered for this			
WEBS	bracing. 1 Row at	• •	3-39, 13-21, 12-48		5-43=-2080/21, 43- 45-47=-1596/1329,			design. 5) This truss has been designed	for greater of min roof live			
JOINTS	1 Brace a	t Jt(s): 45,	5-53, 15-21, 12-48		44-48=-2469/25, 12	-44=-2566/25	5,	load of 12.0 psf or 1.00 times	flat roof load of 20.0 psf on			
	46, 47, 48 27, 32	8, 24, 35,			2-41=0/3475, 6-43= 6-45=-342/1277, 7-4	45=-138/122,		overhangs non-concurrent wit6) Provide adequate drainage to	prevent water ponding.			
REACTIONS			anical, 19=0-5-8,		8-45=-874/122, 8-4 9-47=-6/131, 9-48=			7) All plates are MT20 plates up	ess otherwise indicated.			
	Max Horiz	42=0-5-8 42=-190 (LC 12)		11-48=-314/1439, 2	0-21=0/2701	,	I''TH	CARO			
	Max Uplift	19=-53 (L	C 15), 42=-29 (LC 1	,	36-38=0/1559, 20-2 20-24=-2166/0, 35-3		-37=-230/0,	FES TON WIT				
	Max Grav		(LC 48), 19=1791 (L0 001 (LC 38)	C	24-25=0/2106, 33-3	5=0/1051, 25	5-26=-320/0	all.	1000			
FORCES			pression/Maximum		33-34=-185/0, 25-2 32-33=-302/182, 27	-28=0/1531,						
TOP CHORD	Tension 1-2=0/22,	2-3=-3960	0/13, 3-5=-4083/4,		31-32=-365/27, 28- 17-21=0/5333	29=-534/0, 30	0-31=-6/96,		EAL			
	5-6=-2145	5/100, 6-7=	-2982/360,	NOTES	17 21-0/0000			Ξ : 03	6322			
			3607/504, -11=-2740/396,	,	lanced roof live loads have	been consid	lered for	03	01.3			
			2-14=-4107/52, 2=-2998/72	unis d	esign.			T A SNG	INEEL			
	1	JU 1/ 1 1, Z-4	rL=-LJJ0/1L					ILC A	GILBE			
								2011	GILD			
									April 20 2025			

April 30,2025

CO

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

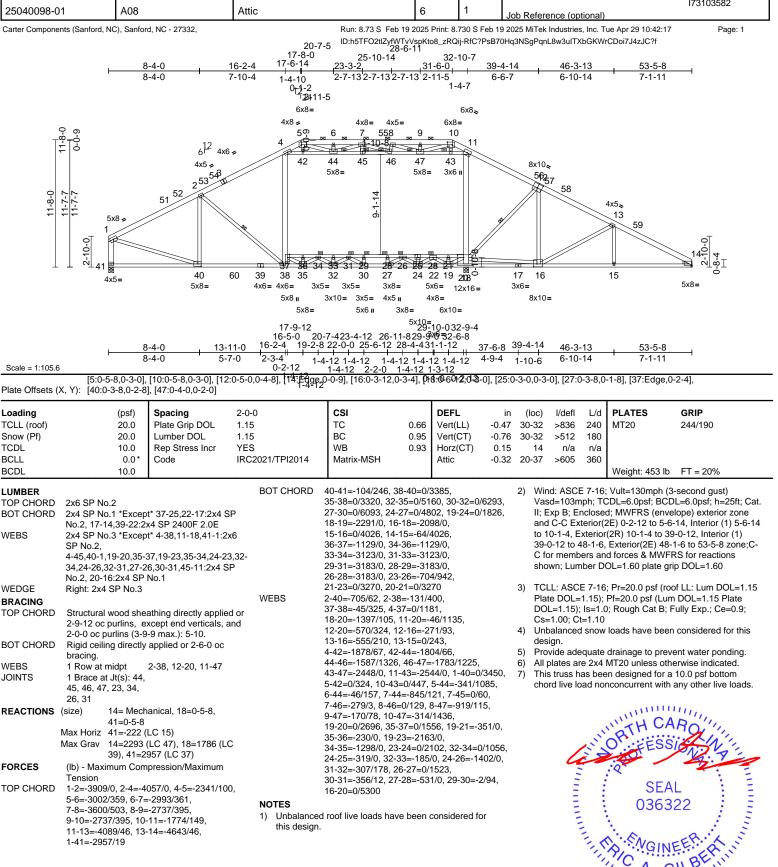
818 Soundside Road Edenton, NC 27932

ENGINEERING BY

Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH	
25040098-01	A07	Attic	1	1	Job Reference (optional)	173103581

- 8) All plates are 2x4 MT20 unless otherwise indicated.
- 9) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf. 11) Ceiling dead load (5.0 psf) on member(s). 5-43, 43-45, 45-46, 46-47, 47-48, 44-48, 12-44; Wall dead load (5.0psf) on member(s).5-38, 12-21
- 12) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 37-38, 35-37, 34-35, 32-34, 30-32, 29-30, 27-29, 26-27, 24-26, 22-24, 21-22
- 13) Refer to girder(s) for truss to truss connections.
- 14) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 42 and 19. This connection is for uplift only and does not consider lateral forces.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

16) Attic room checked for L/360 deflection.


LOAD CASE(S) Standard

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 10:42:16 ID:1d5INYb_SnpjqifH0e1reGzRBHO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH	
25040098-01	A08	Attic	6	1	Job Reference (optional)	173103582

1-41 = -2957/19

ontinued on page 2

BCLL

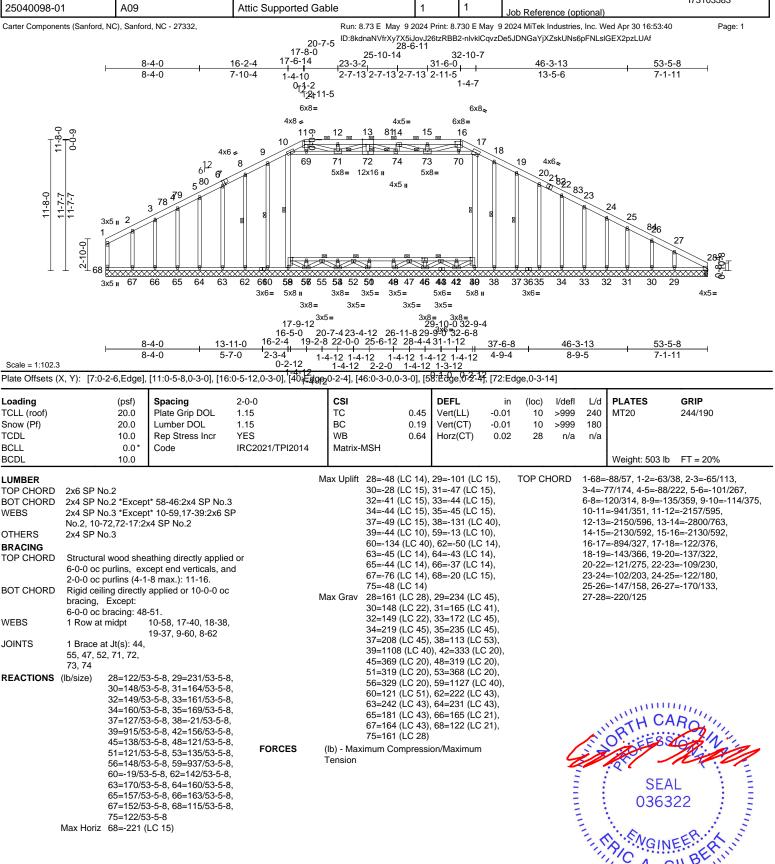
April 30,2025

GI minim

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply 918 Serenity-Roof-B326 B CP GRH		
25040098-01	A08	Attic	6	1	Job Reference (optional)	173103582

- * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Ceiling dead load (5.0 psf) on member(s). 4-42, 42-44, 9) 44-45, 45-46, 46-47, 43-47, 11-43; Wall dead load (5.0psf) on member(s).4-37, 11-20
- 10) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 36-37, 34-36, 33-34, 31-33, 29-31, 28-29, 26-28, 25-26, 23-25, 21-23, 20-21
- 11) Refer to girder(s) for truss to truss connections.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 13) Attic room checked for L/360 deflection. LOAD CASE(S) Standard


Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 29 10:42:17 ID:h5TFO2tlZyfWTvVspKto8_zRQij-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH	
25040098-01	A09	Attic Supported Gable	1	1	Job Reference (optional)	173103583

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

RENCO

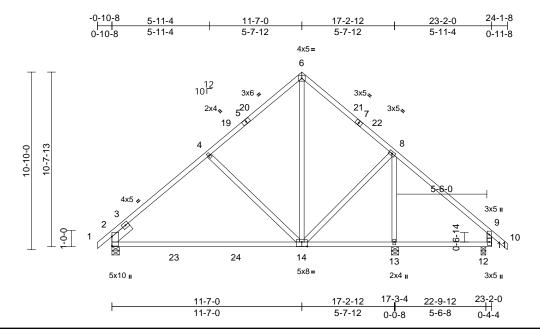
818 Soundside Road

Edenton, NC 27932

4. GILP

lah		Truco		Oti	DIV		
Job		Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH	173103583
25040098-0		A09	Attic Supported Gable	1	1	Job Reference (optional)	
Carter Compone	ents (Sanford, NC	C), Sanford, NC - 27332,	-		•	9 2024 MiTek Industries, Inc. Wed Apr 30 16:53:40 De5JDNGaYjXZskUNs6pFNLsIGEX2pzLUAf	Page: 2
BOT CHORD 67-68=94/211, 66-67=-94/211, 65-66=-94/211, 64-65=-94/211, 63-64=-94/211, 62-63=-94/211, 60-62=-94/211, 59-60=-94/211, 56-59=-102/212, 53-56=-51/143, 51-53=-32/130, 48-51=-57/107, 45-48=-32/129, 42-45=-48/140, 39-42=-82/199, 38-39=-86/211, 37-38=-86/211, 35-37=-86/211, 34-35=-86/211, 31-33=-86/211, 32-33=-86/211, 31-33=-86/211, 30-31=-86/211, 29-30=-86/211, 28-29=-86/211, 57-58=-11/89, 54-55=-28/110, 52-54=-28/110, 50-52=-36/104, 44-47=-30/13, 41-44=-11/84 40-41=-11/84 WEBS 5-64=-191/76, 58-59=-1098/31,			LOAD CASE(S) Standard	only to roon , 47-49, 46- es not depir ng the top ar	n. 57-58, 47, 44-46, ct the size		
WEBS	$\begin{array}{c} 5\text{-}64\text{=-}191/7\\ 10\text{-}58\text{=-}1102\\ 17\text{-}40\text{=-}1091\\ 10\text{-}69\text{=-}55/7\\ 71\text{-}74\text{=-}439\\ 70\text{-}73\text{=-}40/6\\ 18\text{-}38\text{=-}74/1\\ 20\text{-}35\text{=-}195\\ 23\text{-}33\text{=-}131/2\\ 23\text{-}33\text{=-}131/2\\ 26\text{-}30\text{=-}117/\\ 9\text{-}60\text{=-}81/17\\ 4\text{-}65\text{=-}142/8\\ 2\text{-}67\text{=-}134/1\\ 56\text{-}58\text{=-}88/1\\ 42\text{-}44\text{=-}112/\\ 53\text{-}55\text{=-}120/\\ 45\text{-}47\text{=-}118/\\ 51\text{-}52\text{=-}101/\\ 11\text{-}69\text{=-}32/1\\ 13\text{-}72\text{=-}1/25\\ 11\text{-}71\text{=-}290/\\ \end{array}$	$\begin{array}{l} 6, 58-59=-1098/31, \\ 1/111, 39-40=-1081/60, \\ 1/149, 25-31=-129/79, \\ 13, 69-71=-52/703, \\ 2717, 73-74=-445/2770, \\ 28, 17-70=-43/635, \\ 70, 19-37=-168/77, \\ 80, 22-34=-179/77, \\ 78, 24-32=-118/72, \\ 95, 27-29=-186/180, \\ 4, 8-62=-182/80, 6-63=-201/8 \\ 3, 3-66=-126/114, \\ 43, 40-42=-103/10, \\ 4, 41-42=-202/0, 56-57=-202/ \\ 19, 55-56=-118/21, 44-45=-12 \\ 0, 45-46=-180/0, 53-54=-180/ \\ 0, 52-53=-121/0, 47-48=-100/ \\ 0, 48-49=-218/0, 50-51=-218/ \\ 8, 16-70=-27/19, 12-71=-180/ \\ 15-73=-236/67, 14-74=-23/5 \\ 1476, 13-71=-643/185, \\ 55, 14-73=-713/182, \\ \end{array}$	0, 24/0, 0, 0, 52,				
 this design Wind: ASC Vasd=1033 II; Exp B; E and C-C C 5-5-14 to 1 Exterior(2N 36-10-2, E 48-1-6 to 5 MWFRS fc grip DOL= 3) Truss designing only. For sissee Standa or consult 1 4) TCLL: ASC Plate DOL- DOL=1.15 Cs=1.00; C Unbalance design. 6) Provide ad 7) All plates a 8) Gable stud 9) This truss is chord live if 	n. CE 7-16; Vult= mph; TCDL=6 Enclosed; MW corner(3E) 0-1. 12-3-14, Corner N) 23-3-2 to 25 ixterior(2N) 36 53-5-8 zone;C- or reactions sh 1.60 gned for wind studs exposed ard Industry G qualified build CE 7-16; Pr=21 =1.15); Pf=20 y; Is=1.0; Roug Ct=1.10 ed snow loads dequate draina are 2x4 MT200 ds spaced at 2 has been desi load nonconcu	ds have been considered for 130mph (3-second gust) .0psf; BCDL=6.0psf; h=25ft; C FRS (envelope) exterior zone 12 to 5-5-14, Exterior(2N) tr(3R) 12-3-14 to 23-3-2, 5-10-14, Corner(3R) 25-10-14 -10-2 to 48-1-6, Corner(3E) C for members and forces & own; Lumber DOL=1.60 plate loads in the plane of the truss to wind (normal to the face), able End Details as applicable ing designer as per ANSI/TPI 0.0 psf (Lum DOL=1.15 Plate gh Cat B; Fully Exp.; Ce=0.9; have been considered for this ge to prevent water ponding. unless otherwise indicated. -0-0 oc. gned for a 10.0 psf bottom urrent with any other live loads signed for a live load of 20.0p	to 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9				

- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Ceiling dead load (5.0 psf) on member(s). 10-69, 69-71, 71-72, 72-74, 73-74, 70-73, 17-70; Wall dead load (5.0psf) on member(s).10-58, 17-40


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

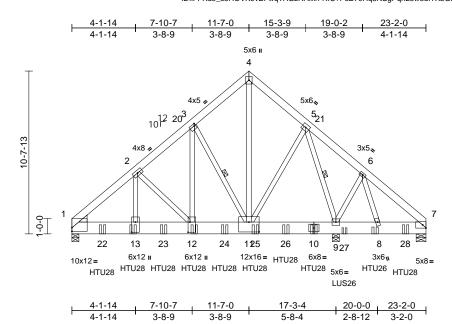
Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH	
25040098-01	B01	Common	1	1	Job Reference (optional)	173103584

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 29 10:42:17 ID:Nseaq6A9EjNfxKX1O6yXnly7LSU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:70.3 Plate Offsets (X, Y): [14:0-4-0,0-3-4]

Flate Olisets (A, f). [14.0-4-0,0-3-4												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code			CSI TC BC WB Matrix-MSH			-0.76 0.07 1.15	(loc) 14-17 14-17 2	l/defl >439 >271 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 133 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD		athing directly applie cept end verticals.	d or ⁵⁾	DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha	snow loads have b as been designed fo psf or 1.00 times fla on-concurrent with as been designed fo	B; Fully been con or great at roof l other li or a 10.	Exp.; Ce=0.9 nsidered for the er of min root bad of 20.0 p ve loads. 0 psf bottom	9; his f live sf on					
	(size) 2=0-5-8, 1 Max Horiz 2=264 (LC Max Uplifi 2=-75 (LC 13=-25 (LC Max Grav 2=895 (LC 13=894 (L	* This truss h on the bottor 3-06-00 tall h chord and ar One H2.5A \$	ad nonconcurrent v nas been designed m chord in all areas by 2-00-00 wide wil ny other members, Simpson Strong-Tie ed to connect truss	for a lives where fit betw with BC conne	e load of 20. a rectangle veen the bott DL = 10.0ps ctors	0psf om f.							
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=0/34, 2-4=-1149 6-8=-721/180, 8-9=-3 9-11=-394/143 2-13=-251/724, 12-1	UPLIFT at jt(and does no H10A Simps connect trus: This connect lateral forces	(s) 2 and 13. This c t consider lateral fc on Strong-Tie conr s to bearing walls c tion is for uplift only s.	connecti orces. nectors lue to U	on is for uplif recommende PLIFT at jt(s)	t only d to) 12.				TH CA	Rollin		
 WEBS 6-14=-104/474, 8-14=-48/407, 8-13=-824/78, 4-14=-398/238 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 8-7-0, Exterior(2E) 21-1-8 to 24-1-8 zone; catilever left and right exposed; end vertical left and right exposed; cond were catility and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 					Standard					C C C C C C C C C C C C C C C C C C C		SEA 0363	22 EERER III


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH	
25040098-01	B02	Common Girder	1	2	Job Reference (optional)	173103585

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 10:42:18 ID:iFFKd9_s5HOVK9vBFwqTAGzRAMn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:75.4		4-1-14	•	3-8-9	•	3-8-9	•	
Plate Offsets (X, Y): [1:Edge,0-2-13], [3:0-0-12,0-1-8],	[11:0	-8-0,0-7-12], [12	2:0-8-0,0-1	I-8],	[13:0-8-0,	0-3-0]	

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.33	DEFL Vert(LL)		12-13	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190	
now (Pf)	20.0	Lumber DOL	1.15		BC	0.38	Vert(CT)		12-13	>999	180			
CDL	10.0	Rep Stress Incr	NO		WB	0.75	Horz(CT)	0.02	9	n/a	n/a			
BCLL BCDL	0.0* 10.0	Code	IRC202	1/TPI2014	Matrix-MSH							Weight: 482 lb	FT = 20%	
UMBER OP CHORD OT CHORD VEBS VEDGE BRACING OP CHORD OT CHORD VEBS REACTIONS		athing directly applie applied or 6-0-0 oc 3-11, 5-9 7=0-7-12, 9=0-5-8 C 35) C 12), 7=-190 (LC 12 C 13) .C 5), 7=639 (LC 19)	d or 2) ^{2),} 3)	(0.131"x3") n Top chords of staggered at Bottom chord staggered at Web connect Except mem 3-12 2x4 - 1 All loads are except if note CASE(S) see provided to of unless othern Unbalanced this design.	is connected as f	ws: 2x6 - bllows: 2 4 - 1 row bw at 0-3 ly applie back (B) nnection ls noted ve been o bh (3-sec	2 rows x10 - 3 rows at 0-9-0 oc, -0 oc, membe d to all plies, face in the LC s have been as (F) or (B), considered fo cond gust)	DAD r	con This late 11) Use 26- spa end bott 12) Use Tru con 13) Use 14- left cho 14) Use	anect trus s connect ral forces e Simpson 10dx1 1. toced at 2 d to 15-1 tom choice Simpson e Simpson 10dx1 1. e Simpson 10dx1 1. e Anot o connect trus e Simpson 10dx1 1. Simpson end to connect rot. e Simpson	ss to be ction is as. on Stro /2 Trus 2-0-0 oc 0-0 to o rd. on Stro puivale ss(es) f on Stro /2 Trus connect	earing walls due for uplift only an ing-Tie HTU28 (2 is, Single Ply Giric c max. starting at connect truss(es) ing-Tie LUS26 (4 int at 17-10-0 fror to back face of bi ing-Tie HTU26 (1 is) or equivalent at t truss(es) to back ing-Tie HTU28 (2	der) or equivalent 2-0-0 from the left to back face of -10d Girder, 3-10d n the left end to ottom chord. 0-16d Girder, at 19-10-0 from the k face of bottom	
ORCES	(lb) - Maximum Com Tension 1-2=-10863/356, 2-3 3-4=-5131/267, 4-5=	B=-8108/309,	179,	cantilever lef	closed; MWFRS (t and right expose d; Lumber DOL=1	d;end\	ertical left an	d	21-10-0 from the left end to connect truss(es) to back face of bottom chord.15) Fill all nail holes where hanger is in contact with lumber of the second second					
BOT CHORD	6-7=-150/560 1-13=-347/8235, 12- 11-12=-219/6214, 9- 8-9=-182/82, 7-8=-3	-13=-347/8235, -11=-48/1902,	5)	Plate DOL=1	7-16; Pr=20.0 ps .15); Pf=20.0 psf s=1.0; Rough Ca -1.10	(Lum DC	L=1.15 Plate				- All	OR TH CA	ROUN	
WEBS	2-13=-94/3732, 2-12 3-12=-220/5944, 3-1 4-11=-266/6114, 5-1 5-9=-7328/323, 6-9=	1=-4828/324, 1=-155/4320,	6) 7)	Unbalanced design. This truss ha	snow loads have s been designed	for a 10.0) psf bottom					SEA	L	
NOTES			8) 9)	* This truss h on the bottor 3-06-00 tall b chord and ar One H2.5A S recommende UPLIFT at jt(ta honconcurrent las been designed in chord in all area y 2-00-00 wide w y other members Simpson Strong-T ed to connect truss s) 1 and 7. This c consider lateral f	d for a liv s where ill fit betv , with BC e conne s to bear onnectio	e load of 20.0 a rectangle veen the botto DL = 10.0psf ctors ng walls due)psf om to		11000			EER C	

April 30,2025

Continued on page 2

 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeR% connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the Section of the prevent collapse and truss contervers building Company the prevent on the prevent of the prevent for the Section of the prevent of the p and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type		Qty	Ply	918 Serenity-Roof-B326 B CP GRH	170400505	
25040098-01	B02	Common Girder		1	2	Job Reference (optional)	173103585	
Carter Components (Sanford, NO		Run: 8.73 S Feb 19 2	2025 Print: 8.	730 S Feb 1	9 2025 MiTek Industries, Inc. Tue Apr 29 10:42:18	Page: 2		

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 10:42:18 ID:iFFKd9_s5HOVK9vBFwqTAGzRAMn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

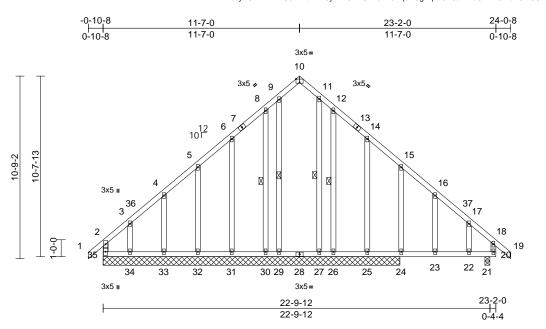
16) LGT2 Hurricane ties must have two studs in line below the truss.

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (lb/ft)

Vert: 1-4=-60, 4-7=-60, 14-17=-20

Concentrated Loads (lb)


Vert: 10=-1890 (B), 13=-1890 (B), 12=-1890 (B), 8=-828 (B), 22=-1890 (B), 23=-1890 (B), 24=-1890 (B), 25=-1890 (B), 26=-1890 (B), 27=-828 (B), 28=-828 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH	
25040098-01	B03	Common Supported Gable	1	1	Job Reference (optional)	173103586

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 10:42:18 ID:onyrICEMWITAUsFxYbXALJy7LR6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:67.9

Plate Offsets (X, Y): [10:0-2-8,Edge]

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.26	()		22-23	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.22			22-23	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.16	Horz(CT) ·	0.02	10	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MR		-						
BCDL	10.0										Weight: 188 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shi 6-0-0 cc purlins, er Rigid ceiling directh bracing. 1 Row at midpt (size) 10=17-6 32=17-6 32=17-6 35=17-6 35=17-6 35=17-6 35=262 Max Uplift 10=-172 24=-204 26=-82 (33=-61 (33=-61 (35=-244 Max Grav 10=475 (24=244 (24=244 (24=214 (y applied or 10-0-0 oc 9-29, 11-27, 8-30, 12 0, 21=0-3-8, 24=17-6 0, 26=17-6-0, 27=17- 0, 30=17-6-0, 31=17- 0, 33=17-6-0, 34=17- 0 (LC 12) (LC 13), 21=-85 (LC 1 (LC 15), 25=-12 (LC 1 LC 15), 27=-7 (LC 15) LC 14), 32=-77 (LC 14 LC 14), 34=-179 (LC 14)	BOT CHOR 2-26 -0, -0, -0, -0, -0, -0, -0, -0,	3-4=-259/221, 4-5 6-8=-253/357, 8-5 10-11=-285/439, 1 12-14=-247/354, 1 15-16=-137/186, 1 17-18=-158/69, 1 34-35=-27/100, 3 32-33=-27/100, 2 27-29=-27/100, 2 27-29=-27/100, 2 23-24=-27/100, 2 21-22=-27/100, 2 9-29=-84/38, 11-2 6-31=-170/101, 5 3-34=-135/130, 1 14-25=-132/77, 1 16-23=-54/68, 17 ced roof live loads ha	i=-253/2(i=-270/4(11-12=-2 14-15=-2 14-15=-2 16-17=-1 3-19=0/3 3-34=-27 1-32=-27 3-32=-27 5-27=-27 4-25=-27 2-23=-27 7-2-23=-27 7-2-23=-27 7-2-23=-27 3-22=-81/7 ve been ph (3-sea BCDL== (envelope 0 2-1-8, F 14-7-0, F	65, 5-6=-235/30 77, 9-10=-285/4: 72/409, 47/290, 59/128, 8, 18-20=-206/1 /100,	8, 38, 22 , 99, 99,	Pla DO Cs= 5) Unl dess 6) Thi loar ove 7) All 8) Tru bra 9) Gal 10) Thi chc 11) * Ti 3-0 chc 12) Bea usi	the DOL= PL=1.15): =1.00; C balanced sign. s truss h d of 12.0 erhangs i plates an iss to be icced aga ble studs s truss h ord live lo his truss the botto 6-00 tall ord and a aring at j ng ANSI. signer sh	=1.15); ; is=1.0. ; is=1.0. d snow mas bee 0 psf or non-coc re 2x4 folly si inst lat s space bad nonobly 2-0 any oth has be pom choo by 2-0 any oth inst lat re 2x4 folly si inst lat s space pad nonoclo view pad	s; Pr=20.0 psf (ron Pf=20.0 psf (Lun); Rough Cat B; f loads have beer en designed for g 1.00 times flat ro ncurrent with oth MT20 unless oth heathed from one eral movement (i ed at 2-0-0 oc. en designed for a nconcurrent with heen designed for a nconcurrent with 10 considers pai angle to grain for erify capacity of th NH CA	of LL: Lum DOL=1.15 n DOL=1.15 Plate Fully Exp.; Ce=0.9; n considered for this reater of min roof live bof load of 20.0 psf or the rive loads. erwise indicated. e face or securely i.e. diagonal web). 10.0 psf bottom any other live loads. a live load of 20.0psf here a rectangle between the bottom h BCDL = 10.0psf. rallel to grain value rmula. Building
FORCES	31=211 (33=194 (35=389 ((LC 21), 32=196 (LC 2 (LC 30), 34=227 (LC 3	5), left and 0), exposed reaction DOL=1. 3) Truss de	ight exposed ; end ve ;C-C for members an s shown; Lumber DOI 50 signed for wind loads r studs exposed to wi	d forces _=1.60 pl	& MWFRS for ate grip ane of the truss					SEA 0363	22

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

April 30,2025

TRENCIDERING BY AMITEK Affiliate

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, recetion and bracing of trusses and truss systems, see **ANSI/TP1 Quility Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

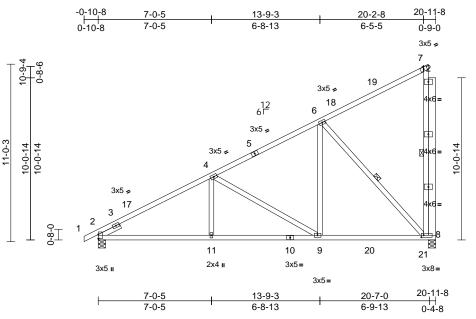
C

Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH	
25040098-01	B03	Common Supported Gable	1	1	Job Reference (optional)	173103586
Carter Components (Sanford, NC	C), Sanford, NC - 27332,	Run: 8.73 S Feb 19 2	Page: 2			

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 10:42:18 ID: on yrlCEMWITAUsFxYbXALJy7LR6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 172 lb uplift at joint 10.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH	
25040098-01	C01	Half Hip	4	1	Job Reference (optional)	173103587

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 29 10:42:18 ID:Je5w06f8goBW?T4xbCQ60Kyfk?K-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

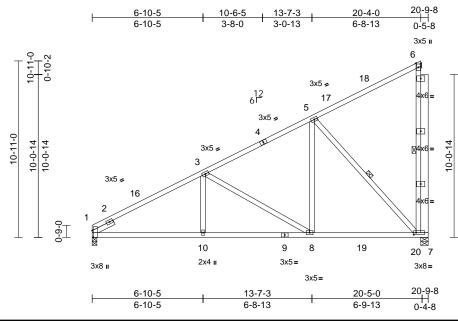
Scale = 1:71.5 Plate Offsets (X, Y): [2:0-3-1,0-0-1], [8:0-1-12,0-1-8]

Loading (psf) Spacing 2-0-0 TCLL (roof) 20.0 Plate Grip DOL 1.15 Snow (Pf) 20.0 Lumber DOL 1.15 TCDL 10.0 Rep Stress Incr YES BCLL 0.0* Code IRC2	021/TPI2014	CSI TC BC WB Matrix-MSH	0.83 0.62 0.79	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.14 0.03	(loc) 8-9 8-9 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 148 lb	GRIP 244/190 FT = 20%
LUMBERTOP CHORD $2x4$ SP No.2BOT CHORD $2x4$ SP No.3 *Except* 7-8:2x4 SP No.2WEBS $2x4$ SP No.3 *Except* 7-8:2x4 SP No.2OTHERS $2x6$ SP No.2SLIDERLeft 2x4 SP No.3 - 1-6-0BRACINGTOP CHORDTOP CHORDStructural wood sheathing directly applied or 4-8-11 oc purlins, except end verticals.BOT CHORDRigid ceiling directly applied or 10-0-0 oc bracing.WEBS1 Row at midpt7-8, 6-8REACTIONS(size)2=0-5-8, 8=0-5-8Max Horiz2=387 (LC 14)Max Grav2=954 (LC 5), 8=1731 (LC 21)FORCES(lb) - Maximum Compression/Maximum TensionTOP CHORD1-2=0/23, 2-4=-1437/30, 4-6=-824/0, 6-7=-166/102, 7-8=-270/93BOT CHORD1-2=0/23, 2-4=-1437/30, 4-6=-824/0, 6-7=-166/102, 7-8=-270/93BOT CHORD2-11=-399/1321, 9-11=-320/1321, 8-9=-159/721WEBS4-11=0/263, 4-9=-691/185, 6-9=0/637, 6-8=-1026/227NOTES1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. I; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 17-4-4, Exterior(2E) 17-4-4 to 20-4-4 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.602) TCLL: ASCE 7-16; Pr=2.0 psf (roof LL: Lum DOL=1.15 Plate DOL =1.15 Plate	 design. 4) This truss ha load of 12.0 g overhangs no 5) All plates are 6) This truss ha chord live loa 7) * This truss ha on the bottom 3-06-00 tall b chord and are 8) One H2.5A S recommende UPLIFT at jt(and does not 9) Hanger(s) or provided suff lb down and design/select responsibility LOAD CASE(S) 1) Dead + Snc Increase=1. Uniform Loa Vert: 1-75 	Standard bw (balanced): Lum 15 ads (lb/ft) =-60, 8-13=-20 ed Loads (lb)	or great to the r lin other lin or a 10.0 vith any for a liv where to bear nnectio rces. levice(s oncentra 0 on bo ction de	er of min roof pad of 20.0 p (e loads. se indicated. psf bottom other live loa e load of 20.0. past live load of 20.0 DL = 10.0psi ctors ing walls due n is for uplift) shall be ated load(s) 7 ttom chord.	f live sf on ads. Opsf om f. e to only 752 The				SEA 0363	• –

- to 17-4-4, Exterior(2E) 17-4-4 to 20-4-4 zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 2)
- DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

G mm

April 30,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss Truss Type Qty				918 Serenity-Roof-B326 B CP GRH		
25040098-01	C02	Half Hip	1	1	Job Reference (optional)	173103588	

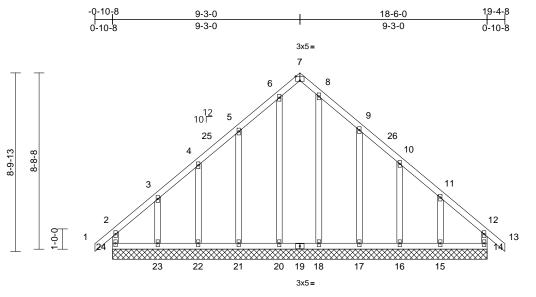
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 10:42:18 ID:EGq646Pbf2EXC6nWIJzpaiyfjwU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [1:0-5-1,Edge], [7:0-1-12,0-1-8]

Scale = 1:71.3

	X, 1): [1:0 0 1,Edge],	[7:0 1 12;0 1 0]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/	TPI2014	CSI TC BC WB Matrix-MSH	0.82 0.63 0.75	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.14 0.03	(loc) 7-8 7-8 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 146 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=103 II; Exp B; I and C-C E 17-4-4, Ex members a Lumber DC 2) TCLL: ASC Plate DOL	2x4 SP No.2 2x4 SP No.3 *Excep 2x6 SP No.2 Left 2x4 SP No.3 Structural wood she 4-7-1 oc purlins, exc Rigid ceiling directly bracing. 1 Row at midpt (size) 1=0-3-8, 7 Max Horiz 1=370 (LC Max Uplift 1=-30 (LC Max Uplift 1=-30 (LC Max Grav 1=900 (LC (lb) - Maximum Com Tension 1-3=-1401/30, 3-5=- 6-7=-265/93 1-10=-405/1286, 8-1 7-8=-159/716 3-10=0/254, 3-8=-65 5-7=-1018/227 CE 7-16; Vult=130mph mph; TCDL=6.0psf; Bt Enclosed; MWFRS (er- ixterior(2E) 0-2-0 to 3-; terior(2E) 0-2-0 to 3-; terior(2E) 0-2-0 to 3-; terior(2E) 17-4-4 to 20 and forces & MWFRS OL=1.60 plate grip DO CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L	I-6-0 athing directly applied cept end verticals. applied or 10-0-0 oc 6-7, 5-7 7=0-5-8 2 14), 7=-342 (LC 14) 2 5), 7=1714 (LC 20) pression/Maximum 812/0, 5-6=-162/100, 0=-319/1286, 8/185, 5-8=0/624, (3-second gust) CDL=6.0psf; h=25ft; (velope) exterior zone 2-0, Interior (1) 3-2-0 -4-4 zone;C-C for for reactions shown; L=1.60 roof LL: Lum DOL=1.	4) 5) d or 6) 7) LOA 1)	design. This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar One H2.5A S trecommende UPLIFT at jtt and does no Hanger(s) or provided suf lb down and design/selec responsibility AD CASE(S) Dead + Sm Increase=1 Uniform Lo Vert: 1-6	Standard ow (balanced): Lun .15 ads (lb/ft) =-60, 7-12=-20 ed Loads (lb)	or a 10. with any for a liv s where II fit betw with BC e conne to bear onnectio orces. device(s oncentra -0 on bo ction de	D psf bottom other live loa e load of 20. a rectangle veen the bott DL = 10.0 ps ctors ing walls due n is for uplift :) shall be ated load(s) 7 ttom chord.	ads. Opsf form f. e to only 752 The		W. HILLING		SEA 0363	


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

April 30,2025

Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH	
25040098-01	D01	Common Supported Gable	1	1	Job Reference (optional)	173103589

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 10:42:18 ID:8F2D?hHuvW?rb9K6OMb_Y2zRQrE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

18-6-0

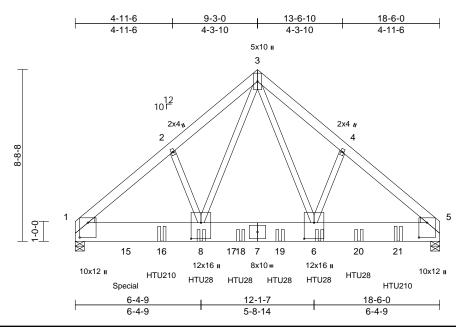
Scale = 1:56.9

Plate Offsets (X, Y): [7:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL1.Lumber DOL1.Rep Stress IncrYI	0-0 15 15 ES C2021/TPI2014	CSI TC BC WB Matrix-MR	0.21 0.12 0.20	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 127 lb	GRIP 244/190 FT = 20%
	6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 14=18-6-(21=18-6-(24=18-6-(24=18-6-(Max Horiz 24=-225 (Max Uplift 14=-48 (L 21=-114 (23=-168 (Max Grav 14=190 (I 16=173 (I 18=222 (I 21=252 (I	applied or 6-0-0 oc 0, 15=18-6-0, 16=18-6-0, 0, 18=18-6-0, 20=18-6-0, 0, 22=18-6-0, 23=18-6-0, 0 LC 12) C 11), 15=-163 (LC 15), C 15), 17=-117 (LC 15), LC 14), 22=-47 (LC 14), LC 14), 24=-71 (LC 10) -C 30), 15=223 (LC 26), -C 22), 20=227 (LC 21), -C 21), 22=172 (LC 21),	 NOTES Unbalancec this design. Wind: ASCE Vasd=103m II; Exp B; En and C-C Co 2-2-12 to 6- (2N) 12-2-4 cantilever le right expose for reactions DOL=1.60 Truss desig only. For st see Standan or consult q TCLL: ASC: Plate DOL= 	6-20=-187/8, 8-18= 4-22=-142/94, 3-23 9-17=-214/164, 10- 11-15=-170/170 roof live loads have 5-16; Vult=130mpl ph; TCDL=6.0psf; E holosed; MWFRS (e rner(3E) -0-10-8 to 2-12, Corner(3R) 6- to 16-2-4, Corner(3R) 6- to 16-2-	=-172/1 16=-14 h (3-sec 3CDL=6 nvelope 2-2-12, to E) 16-2 1; end v and fo DL=1.60 h the pl d (norm hd Deta igner a: (roof LL (roof LL	58, 3/90, considered fo cond gust) 5.0psf; h=25ft 9) exterior zon Exterior(2N) 12-2-4, Exte -4 to 19-4-8 <i>z</i> vertical left ar cress & MWFF 0) plate grip ane of the tru al to the face ils as applica is per ANSI/T :: Lum DOL= DL=1.15 Plate	or ;; Cat. ne rior zone; nd RS uss s), ible, PI 1. :1.15 e	on t 3-0 cho 13) Pro bea 24, upli	the botto 6-00 tall ord and a vide me tring plat 48 lb up ft at join t 17, 46	om cho by 2-0 iny oth chanica ie capa lift at jo t 22, 10 lb uplif	rd in all areas wh 0-00 wide will fit er members. al connection (by ble of withstand bint 14, 114 lb up 38 lb uplift at joint t at joint 16 and	a live load of 20.0psf here a rectangle between the bottom v others) of truss to ing 71 lb uplift at joint volift at joint 21, 47 lb t 23, 117 lb uplift at 163 lb uplift at joint
FORCES	(lb) - Maximum Com Tension	LC 25), 24=206 (LC 26) apression/Maximum	Cs=1.00; Ci			•			4	N. N	FEST	Diverse
TOP CHORD	2-24=-168/64, 1-2=0 3-4=-106/91, 4-5=-9 6-7=-96/175, 7-8=-9	3/116, 5-6=-115/233, 2/166, 8-9=-117/238, I=-89/71, 11-12=-151/11(-155/46 -23=-105/187, -21=-105/187, -18=-105/187,	 load of 12.0 overhangs r 7) All plates ar 8) Gable requi 9) Truss to be braced agai 10) Gable stude 11) This truss h 	as been designed for psf or 1.00 times fla ion-concurrent with e 2x4 MT20 unless res continuous botto fully sheathed from nst lateral movemen spaced at 2-0-0 oc as been designed for ad nonconcurrent w	at roof le other lin otherwi om chor one fac ont (i.e. c or a 10.0	bad of 20.0 p ve loads. se indicated. d bearing. ee or securely liagonal web) 0 psf bottom	esf on /).					EER. KUN

April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH	
25040098-01	D02	Common Girder	1	3	Job Reference (optional)	173103590

Scale = 1:58.5

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 10:42:19 ID:ahvaep5BsMWascBuTkn6buzRAib-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [1:0-9-0,0-5-0], [5:0-9-0,0-5-0], [6:0-9-12,0-6-0], [8:0-9-12,0-6-0]

	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. , ,,,	,		1								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.37 0.52 0.87	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.15 0.02	(loc) 8-11 8-11 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 546 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE			4) 0.3	Vasd=103m II; Exp B; En cantilever let	7-16; Vult=130mp ph; TCDL=6.0psf; closed; MWFRS (ft and right expose d; Lumber DOL=1	BCDL=6 envelop ed;end	6.0psf; h=25ft e) exterior zon vertical left ar	ne; nd	Co	oncentra Vert: 8=	ated Lo =-1893 97 (B),	(B), 6=-1893 (B), 18=-1893 (B), 19	
BRACING TOP CHORD	Structural wood she 6-0-0 oc purlins.	athing directly applie	5) d or	Plate DOL=1 DOL=1.15);	7-16; Pr=20.0 ps 1.15); Pf=20.0 psf Is=1.0; Rough Ca	(Lum DO	DL=1.15 Plate)					
BOT CHORD		applied or 10-0-0 oc	6)	Cs=1.00; Ct=1.10 6) Unbalanced snow loads have been considered for this									
REACTIONS		7) C 6) ov	chord live loa	as been designed ad nonconcurrent	with any	other live loa							
FORCES	(lb) - Maximum Com Tension		8)	on the bottor	nas been designed m chord in all area by 2-00-00 wide w	s where	a rectangle						
TOP CHORD	1-2=-14218/0, 2-3=- 4-5=-12624/0	14152/0, 3-4=-12497	7/0, 0)	chord and a	ny other members	, with BC	DL = 10.0pst	f.					
BOT CHORD WEBS		,	3)	14-10dx1 1/2 spaced at 12 end to 16-4-	2 Truss, Single Ply 2-0-0 oc max. start 12 to connect trus	Girder) Ging at 4-	or equivalent 4-12 from the	t				mm	u ₁₁₁ .
Top chord follows: 23 Bottom ch	s to be connected toge ds connected with 10d (x6 - 2 rows staggered a ords connected with S 5 follows: 2x12 - 3 rows	(0.131"x3") nails as at 0-9-0 oc. impson SDS 1/4 x 4 [,]	1/2	26-10dx1 1/2 spaced at 2-	n Strong-Tie HTU2 2 Truss, Single Ply 0-0 oc max. startir 12 to connect trus	/ Girder) ng at 6-4	or equivalent -12 from the			4	A.	ORTH CA	ROLLING
Web chorn follows: 22 2) All loads a except if r CASE(S)	dis connected with 10d x4 - 1 row at 0-9-0 oc. are considered equally noted as front (F) or bas section. Ply to ply conr to distribute only loads	(0.131"x3") nails as applied to all plies, ck (B) face in the LO nections have been	11 12	 Hanger(s) or provided suf lb down and 	oles where hanger other connection ficient to support of 536 lb up at 2-7-0 tion of such conne of others.	device(s concentra) on bot	s) shall be ated load(s) 8 om chord. Tl	3869 he				SEA 0363	22

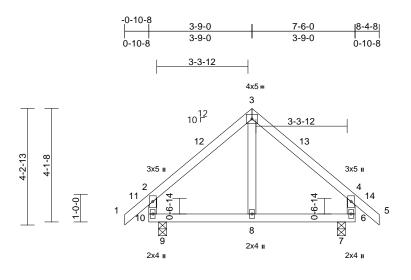
- provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for
- this design.

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)

LOAD CASE(S) Standard

minim April 30,2025

G



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH	
25040098-01	E01	Common	1	1	Job Reference (optional)	173103591

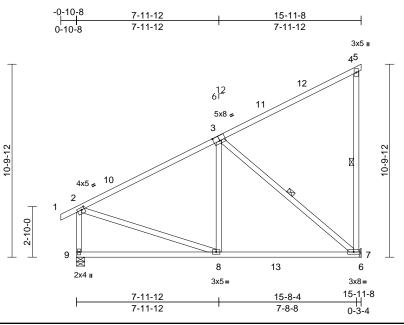
Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 29 10:42:19 ID:5YjLyPhGJKHB5AEdSp6x7Qy7LK3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff

Page: 1

Scale = 1:41.9

		1		-								
Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.40	Vert(LL)	-0.01	8	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.29	Vert(CT)	-0.02	8	>999	180	-	
TCDL	10.0	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	7	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MR	0.00	11012(01)	0.00	,	n/a	n, a		
BCDL	10.0	Couc	11(02021/1112014								Weight: 37 lb	FT = 20%
	10.0										troigin: or ib	11 - 2070
	Max Horiz 9=-114 (L Max Uplift 7=-38 (LC	cept end verticals. applied or 10-0-0 oc 9=0-3-8 C 12) : 15), 9=-38 (LC 14)	d or 7) * This truss chord live d or 7) * This truss on the bo 3-06-00 ta chord and 8) H10A Sim connect th and 7. Th	has been designed i .0 psf or 1.00 times f s non-concurrent with has been designed load nonconcurrent s has been designed tom chord in all area II by 2-00-00 wide w any other members pson Strong-Tie con uss to bearing walls s connection is for u lateral forces.	lat roof lo n other li for a 10.1 with any d for a liv is where ill fit betw nectors due to U	bad of 20.0 p ve loads. D psf bottom other live loa e load of 20. a rectangle veen the bott recommende PLIFT at jt(s	ads. Opsf com ed to) 9					
	Max Grav 7=460 (L0	C 22), 9=460 (LC 21)										
FORCES	(lb) - Maximum Com		LOAD CASE	5) Standard								
	Tension											
TOP CHORD	1-2=0/49, 2-3=-269/	94, 3-4=-269/92,										
	4-5=0/49, 2-10=-375											
BOT CHORD	9-10=-11/120, 8-9=-	11/122, 7-8=-11/122,	,									
	6-7=-11/122											
WEBS	3-8=-26/84											
NOTES												
1) Unbalance	ed roof live loads have	been considered for										1.65
, this design											1111100	
Vasd=103 II; Exp B; I and C-C E to 5-4-8, E and right e C for mem shown; Lu	CE 7-16; Vult=130mph mph; TCDL=6.0psf; Bi Enclosed; MWFRS (er Exterior(2E) -0-10-8 to . Exterior(2E) 5-4-8 to 8- exposed ; end vertical l beers and forces & MW mber DOL=1.60 plate	CDL=6.0psf; h=25ft; velope) exterior zone 2-1-8, Exterior(2R) 2- 4-8 zone; cantilever I left and right exposed /FRS for reactions grip DOL=1.60	e -1-8 left d;C-						A	AN AN	SEA 0363	
Plate DOL DOL=1.15 Cs=1.00; (CE 7-16; Pr=20.0 psf (.=1.15); Pf=20.0 psf (L :); Is=1.0; Rough Cat E Ct=1.10 ed snow loads have be	um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9;	;									EER. KINN

Unbalanced snow loads have been considered for this 4) design.


GI un unin

April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

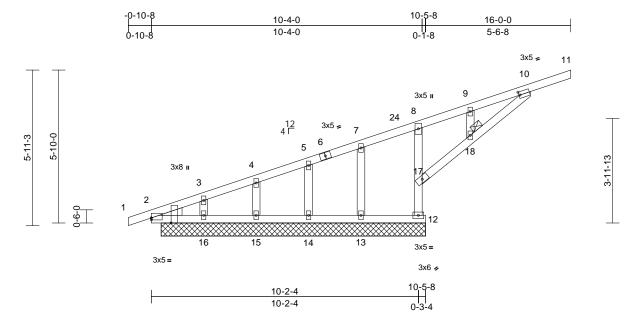
Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH	
25040098-01	G01	Monopitch	5	1	Job Reference (optional)	173103592

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 10:42:19 ID:PdAAD85_ICJN?UaWrZNnF5zRQu2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:64.6

Plate Offsets (X, Y):	[2:0-2-0,0-1-8], [3:0-4-0,0-3-4]
-----------------------	----------------------------------

Plate Offsets (X, Y): [2:0-2-0,0-1-8]	, [3.0-4-0,0-3-4]										
Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL1.1Lumber DOL1.1Rep Stress IncrYE	15	BC	0.95 0.67 0.39	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.20 -0.01	(loc) 7-8 7-8 7	l/defl >999 >923 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 106 lb	GRIP 244/190 FT = 20%
BRACING TOP CHORD Structural wood she 2-2-0 oc purlins, ex BOT CHORD Rigid ceiling directly bracing. WEBS 1 Row at midpt	pt* 4-7:2x4 SP No.2 eathing directly applied or ccept end verticals. y applied or 10-0-0 oc 4-7, 3-7 anical, 9=0-5-8 C 14) _C 14)	 load of 12.0 joverhangs n 5) This truss ha chord live loa 6) * This truss the on the bottor 3-06-00 tall the chord and ar 7) Refer to gird(8) Provide mec 	s been designed for psf or 1.00 times flat on-concurrent with o is been designed for ad nonconcurrent with as been designed for nchord in all areas y by 2-00-00 wide will f by other members, w er(s) for truss to trus hanical connection (i e capable of withstan Standard	t roof lo other liv a 10.0 th any or a liv where fit betw vith BC s conr by oth	bad of 20.0 ps ve loads. D psf bottom other live load e load of 20.0 a rectangle veen the bottc DL = 10.0psf nections. ers) of truss to	sf on ds.)psf om					
	npression/Maximum /119, 4-5=-12/0, -655/84 -195/603, 6-7=0/0 8/250, 2-8=0/486 n (3-second gust) GCDL=6.0psf; h=25ft; Cat. nvelope) exterior zone 2-1-8, Interior (1) 2-1-8 8 to 15-11-8 zone; 1; end vertical left forces & MWFRS for 1.60 plate grip (roof LL: Lum DOL=1.15 Lum DOL=1.15 Plate B; Fully Exp.; Ce=0.9;							A . THILLING	2 A A A A A A A A A A A A A A A A A A A	SEA 0363	22 EFR ALLIN


April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH	
25040098-01	H01	Monopitch Supported Gable	2	1	Job Reference (optional)	173103593

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 10:42:19 ID:kX6Xm09JsM8Rk_RkgNonK3zRRGV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:43.9

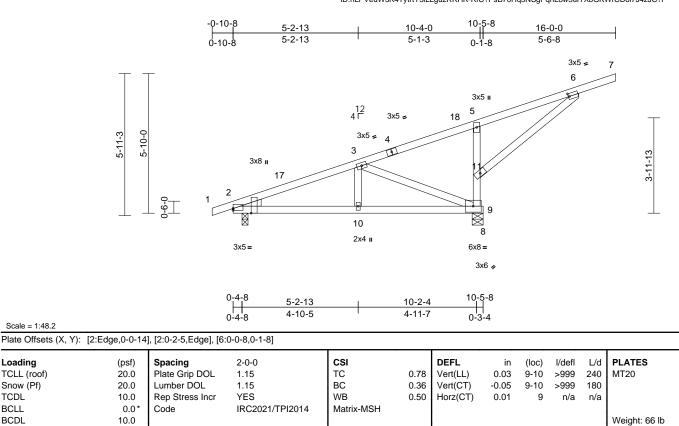
Plate Offsets (X, Y): [2:Edge,0-0-14], [2:0-2-5,Edge], [10:0-0-8,0-1-8]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.99	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.36	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.26	Horz(CT)	-0.08	17	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 68 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING	2x4 SP No.2 2x4 SP No.3 *Excep 2x4 SP No.3 Left: 2x4 SP No.3		N (1)	DTES Wind: ASCE Vasd=103mj	3-16=-145/179, 4- 5-14=-168/172, 7- 17-18=-793/656, 1 9-18=-21/26 7-16; Vult=130mg ph; TCDL=6.0psf; closed; MWFRS (13=-33/5 0-18=-8 oh (3-sec BCDL=6	6, 01/669, cond gust) .0psf; h=25ft		bea 12, 12) N/A	aring plat 98 lb up	te capa lift at jo	able of withstand bint 16 and 9 lb t	y others) of truss to ing 72 lb uplift at joint uplift at joint 13. Review required.
TOP CHORD	6-0-0 oc purlins, ex Except: 9-5-0 oc bracing: 12	cept end verticals.	ed or	and C-C Cor to 16-0-0 zor vertical left a	mer(3E) -0-10-8 to ne; cantilever left a and right exposed;(2-0-0, E and right C-C for n	xterior(2N) 2 exposed ; er nembers and	2-0-0 nd	,	CASE(S		•	teview required.
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc			/FRS for reactions late grip DOL=1.60		Lumber						
JOINTS	1 Brace at Jt(s): 18		2)		ned for wind loads								
REACTIONS	14=10-1-0 17=10-1-0			see Standar or consult qu	uds exposed to wir d Industry Gable E ualified building de	ind Deta	ils as applica s per ANSI/T	able, PI 1.					
		21), 12=-72 (LC 21 10), 14=-41 (LC 14 C 10), 16=-98 (LC 1),	Plate DOL=1 DOL=1.15); Cs=1.00; Ct=	7-16; Pr=20.0 ps I.15); Pf=20.0 psf Is=1.0; Rough Cat =1.10 snow loads have	(Lum DC B; Fully	L=1.15 Plate Exp.; Ce=0.	e 9;					1990).
	15=158 (L 17=875 (L	LC 1), 14=172 (LC 2 LC 1), 16=217 (LC 2 LC 21)	1), 5)	This truss ha load of 12.0 overhangs n	as been designed to psf or 1.00 times f on-concurrent with e 2x4 MT20 unless	lat roof le n other liv	oad of 20.0 p /e loads.	osf on		2	A.L.	OP FESS	ROIN
FORCES	(lb) - Maximum Com Tension		7) 8)	Gable studs	spaced at 2-0-0 o as been designed	с.						SEA	
TOP CHORD	4-5=-606/425, 5-7=- 8-9=-633/630, 9-10= 12-17=0/0, 8-17=-36 2-16=-383/370, 15-1 14-15=-383/370, 13-	544/407, 7-8=-542/4 632/697, 10-11=-44 54/285 6=-383/370,	76, 9) 5/0, 9)	chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar	ad nonconcurrent nas been designed m chord in all area by 2-00-00 wide w ny other members. int(s) 17 considers	with any d for a liv s where ill fit betv	other live loa e load of 20. a rectangle veen the bott	0psf tom		ATT111122		0363	• -
	12-13=-383/370		10	using ANSI/	TPI 1 angle to grai	n formula	a. Building				11	in the second se	ILBE.

April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH		
25040098-01	H02	Monopitch	6	1	Job Reference (optional)	173103594	


Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 29 10:42:19 ID:nLPVeuW3K4TytrtY3ILLguzRRHK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

GRIP

244/190

FT = 20%

3) Unbalanced snow loads have been considered for this

This truss has been designed for greater of min roof live

load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

chord and any other members.

LOAD CASE(S) Standard

and does not consider lateral forces.

One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 9 and 2. This connection is for uplift only

design.

4)

5)

6)

7)

LOWIDER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x4 SP N	o.3 *Except* 5-9:2x4 SP No.1
WEDGE	Left: 2x4 \$	SP No.3
BRACING		
TOP CHORD		l wood sheathing directly applied or purlins, except end verticals.
	Except:	
	5-3-0 oc b	pracing: 9-11
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(size)	2=0-3-0, 9=0-5-8
	Max Horiz	2=207 (LC 10)
	Max Uplift	2=-100 (LC 10), 9=-371 (LC 10)
	Max Grav	2=377 (LC 1), 9=1084 (LC 21)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD		2-3=-368/82, 3-5=-393/465, /707, 6-7=-45/0, 9-11=-847/467, 1/163
BOT CHORD	• • • •=	0/338, 9-10=-230/338, 8-9=0/0

Scale = 1:48.2

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TCDL

BCLL

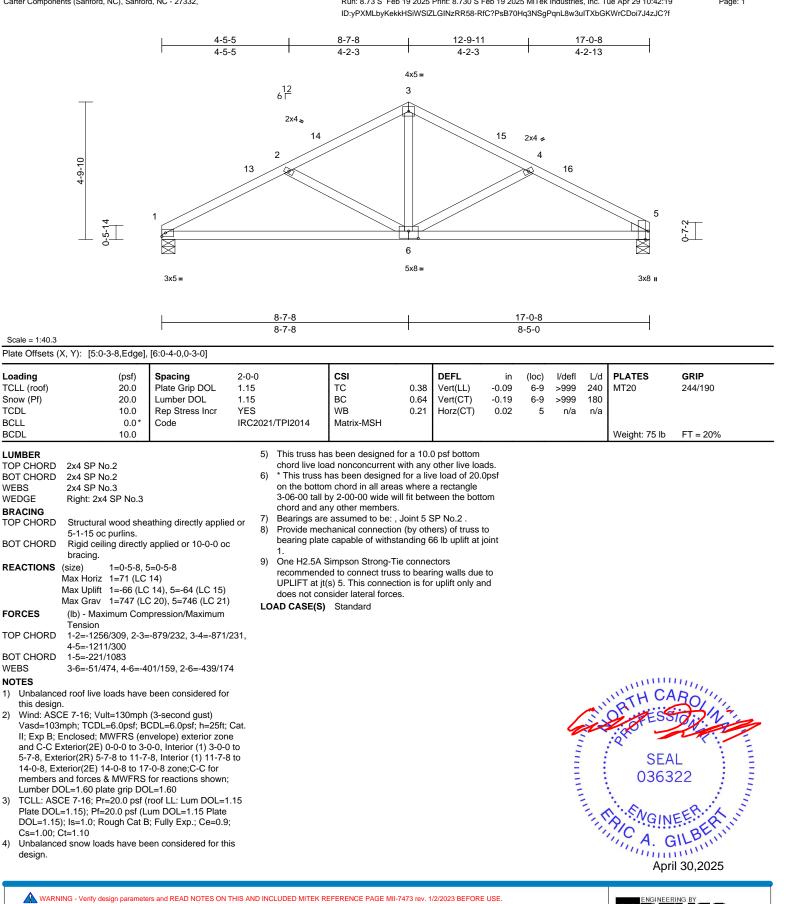
BCDL

NOTES	
WEBS	3-10=-124/211, 3-9=-614/478, 6-11=-811/468
BOT CHORD	2-10=-230/338, 9-10=-230/338, 8-9=0/0

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 1) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II: Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 16-0-0 zone; cantilever left exposed ; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

CHINA AND SEAL 036322 G mm April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	s Truss Type		Ply	918 Serenity-Roof-B326 B CP GRH	
25040098-01	J01	Common	5	1	Job Reference (optional)	173103595

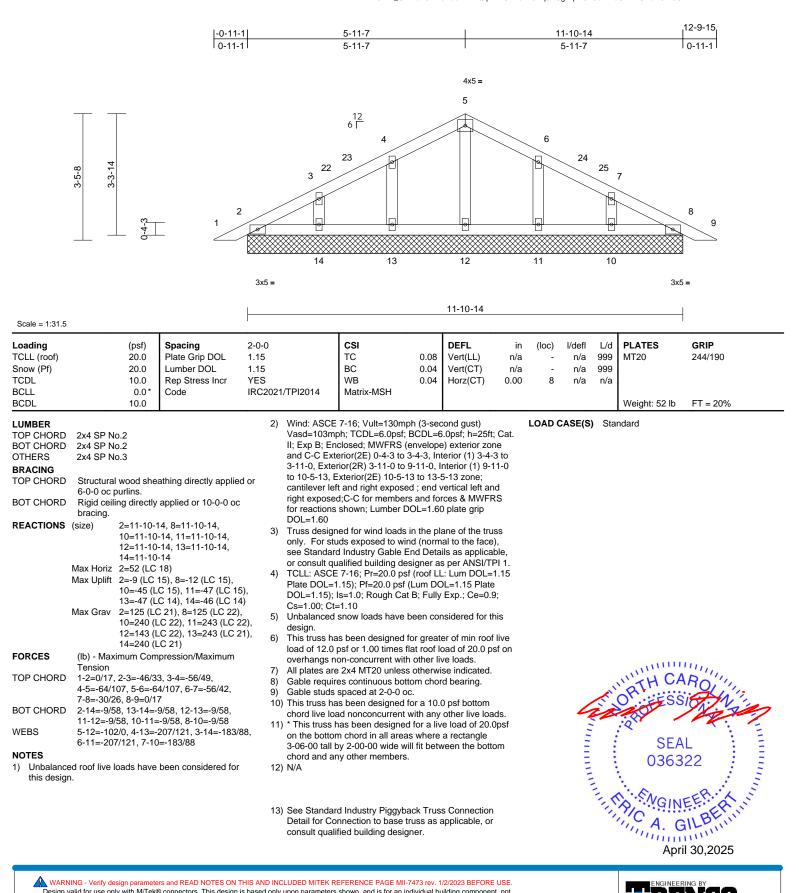
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 29 10:42:19

Page: 1

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH		
25040098-01	РВА	Piggyback	2	1	Job Reference (optional)	173103596	

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 10:42:19 ID:RPY8AW_GFKIcY3mFoYebvHzRQqK-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f

:42:19 Page: 1 J4zJC?f

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH		
25040098-01	PBA1	Piggyback	18	1	Job Reference (optional)	173103597	

5-11-7

5-11-7

12 6 Г

2x4 u

Carter Components (Sanford, NC), Sanford, NC - 27332,

3-5-8

Scale = 1:31.5 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

WEBS

1)

2)

NOTES

TOP CHORD

BOT CHORD

this design.

DOL=1.60

REACTIONS (size)

TCDL

BCLL

BCDL

, ч

2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

6-0-0 oc purlins.

bracing.

Max Uplift

Max Grav

Tension

21)

Wind: ASCE 7-16; Vult=130mph (3-second gust)

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone

and C-C Exterior(2E) 0-4-3 to 3-4-3, Interior (1) 3-4-3 to 3-11-0, Exterior(2R) 3-11-0 to 9-11-0, Interior (1) 9-11-0 to 10-5-13, Exterior(2E) 10-5-13 to 13-5-13 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

-0-11-1

0-11-1

Run: 8 73 S. Feb 19 2025 Print: 8 730 S. Feb 19 2025 MiTek Industries. Inc. Tue Apr 29 10:42:19 ID:Cx19sF4HMnJTVINoGDnTDzzRQqC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 4x5 = 4

11-10-14

5-11-7

2x4 I

5 0

P

8

2x4 II

PLATES

Weight: 47 lb

MT20

12-9-15

0-11-1

6

3x5 =

GRIP

244/190

FT = 20%

19 18 20 17 3 -4-3 ю 10 9 3x5 = 2x4 II 2x4 ı 11-10-14 Spacing 2-0-0 CSI DEFL l/defl L/d (psf) in (loc) Plate Grip DOL 20.0 1.15 TC 0.29 Vert(LL) n/a n/a 999 BC 20.0 Lumber DOL 1 15 0.12 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.08 Horiz(TL) 0.00 7 n/a n/a 0.0 Code IRC2021/TPI2014 Matrix-MSH 10.0 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate Structural wood sheathing directly applied or DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10 Rigid ceiling directly applied or 10-0-0 oc Unbalanced snow loads have been considered for this 5) desian. 1=13-10-0, 2=13-10-0, 6=13-10-0, 6) Gable requires continuous bottom chord bearing. 7=13-10-0, 8=13-10-0, 9=13-10-0, 7) Gable studs spaced at 4-0-0 oc. 10=13-10-0 This truss has been designed for a 10.0 psf bottom 8) Max Horiz 1=52 (LC 18) chord live load nonconcurrent with any other live loads. 1=-26 (LC 15), 7=-11 (LC 15), 9) * This truss has been designed for a live load of 20.0psf 8=-92 (LC 15), 10=-91 (LC 14) on the bottom chord in all areas where a rectangle 1=45 (LC 21), 2=69 (LC 1), 6=57 3-06-00 tall by 2-00-00 wide will fit between the bottom (LC 1), 7=47 (LC 22), 8=439 (LC chord and any other members. 22), 9=299 (LC 21), 10=440 (LC 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 26 lb uplift at joint (Ib) - Maximum Compression/Maximum 1 and 11 lb uplift at joint 7. 11) N/A 1-2=-56/65, 2-3=-54/48, 3-4=-124/94, 4-5=-124/94, 5-6=-36/48, 6-7=-19/15 2-10=-8/45, 9-10=-8/45, 8-9=-8/45, 6-8=-8/45 4-9=-213/92, 3-10=-385/205, 5-8=-384/205 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer. Unbalanced roof live loads have been considered for

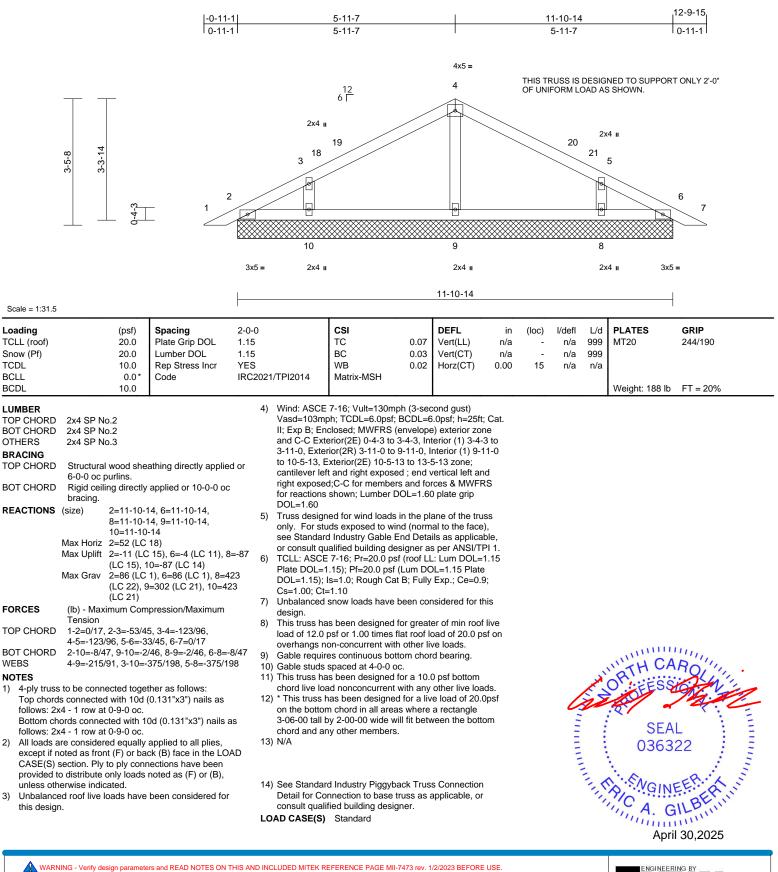
LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH	
25040098-01	PBA2	Piggyback	2	4	Job Reference (optional)	173103598

1)

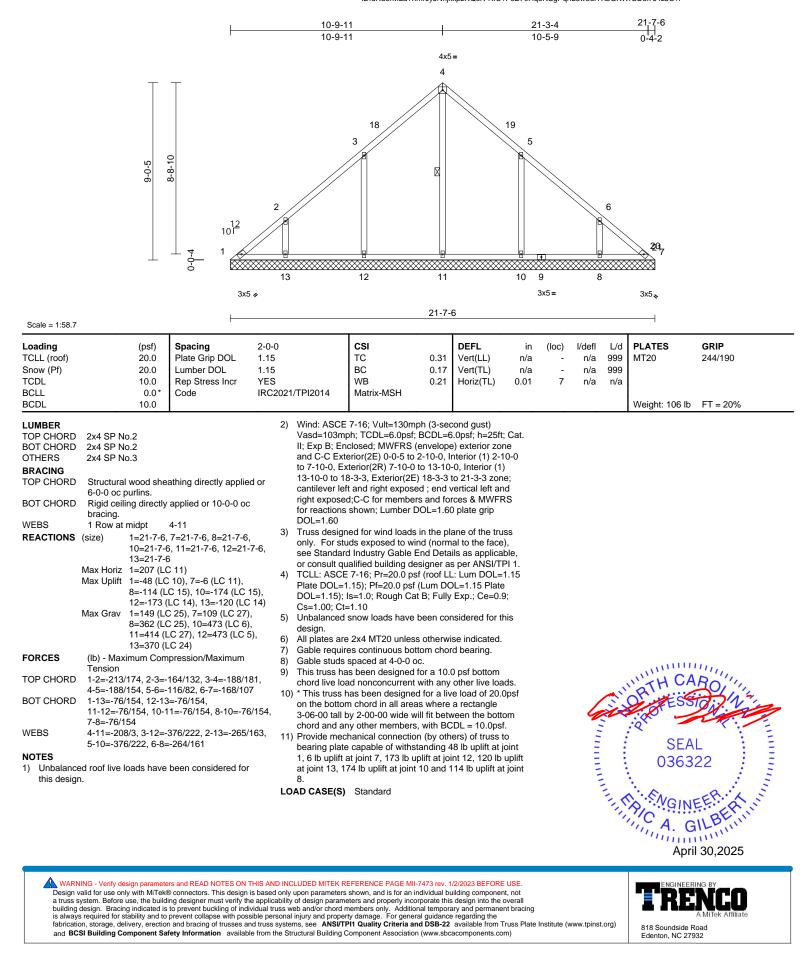
2)


3)

Run: 8 73 S Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 10:42:20 ID:m2dQdjvppkexqPVgwg5aZPzRCX1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road


Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH		
25040098-01	VLB1	Valley	1	1	Job Reference (optional)	173103599	

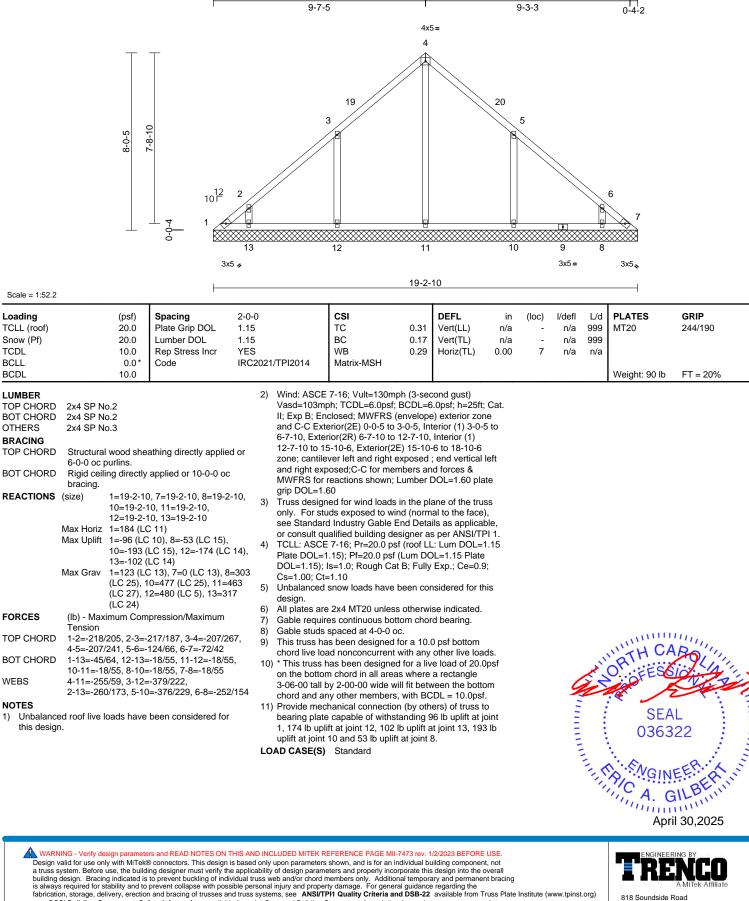
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 10:42:20 ID:uRu6rMLa1rlmrJyJNhjxxpzRQsR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH		
25040098-01	VLB2	Valley	1	1	Job Reference (optional)	173103600	

9-7-5

Carter Components (Sanford, NC), Sanford, NC - 27332,

1)


Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 10:42:20 ID:yJIn_UX?VSBe9dbBmLUS1zzRQsC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

18-10-8

Page: 1

19-2-10

Edenton, NC 27932

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH	
25040098-01	VLB3	Valley	1	1	Job Reference (optional)	173103601

Scale = 1:50.5 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

WEBS

NOTES

1)

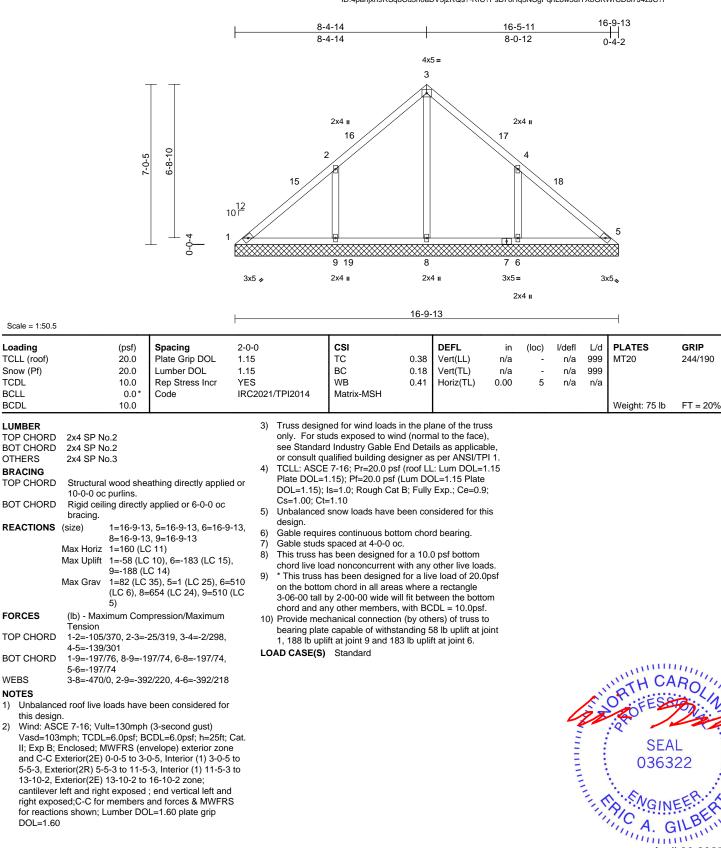
2)

TOP CHORD

BOT CHORD

this design.

DOL=1.60


TCDL

BCLL

BCDL

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 29 10:42:20 ID:4pahjxh9RSqoCd5h0aDV3jzRQs?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

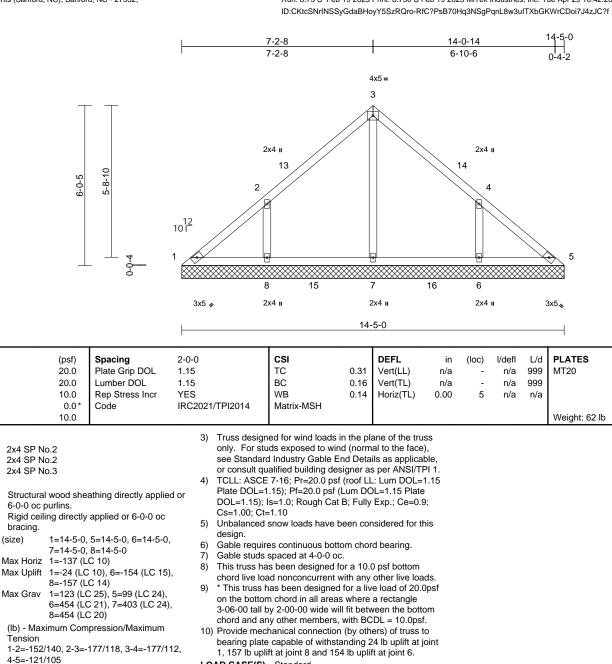
Page: 1

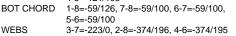
April 30,2025

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH	
25040098-01	VLB4	Valley	1	1	Job Reference (optional)	173103602


Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 29 10:42:20


Page: 1

GRIP

244/190

FT = 20%

NOTES

FORCES

TOP CHORD

Scale = 1:43.4 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS (size)

bracing.

Tension

TCDL

BCLL

BCDL

- Unbalanced roof live loads have been considered for 1) this design. 2)
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-2-13, Interior (1) 3-2-13 to 4-2-13, Exterior(2R) 4-2-13 to 10-2-13, Interior (1) 10-2-13 to 11-2-13, Exterior(2E) 11-2-13 to 14-5-5 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

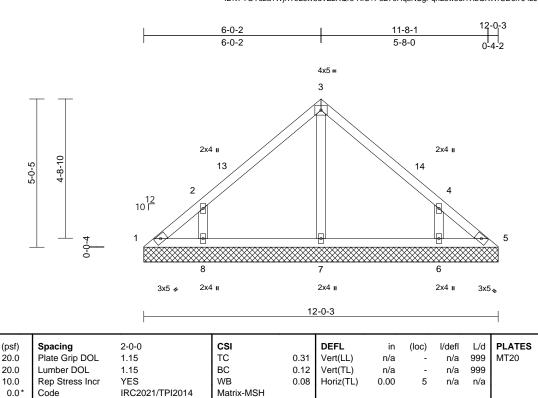
LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type Qty Ply		Ply	918 Serenity-Roof-B326 B CP GRH	
25040098-01	VLB5	Valley	1	1	Job Reference (optional)	173103603

Run: 8 73 S Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries Inc. Tue Apr 29 10:42:20 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

GRIP

Weight: 50 lb

244/190

FT = 20%

LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 OTHERS BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 1=12-0-3, 5=12-0-3, 6=12-0-3, 7=12-0-3, 8=12-0-3 Max Horiz 1=114 (LC 11) 1=-34 (LC 10), 5=-6 (LC 11), Max Uplift 6=-136 (LC 15), 8=-139 (LC 14) Max Grav 1=91 (LC 30), 5=70 (LC 24), 6=434 (LC 21), 7=259 (LC 20), 8=434 (LC 20) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-114/101, 2-3=-218/115, 3-4=-218/115, 4-5=-88/63 BOT CHORD 1-8=-32/75, 7-8=-31/73, 6-7=-31/73, 5-6=-31/73 WEBS 3-7=-172/0. 2-8=-401/220. 4-6=-401/220

10.0

NOTES

Scale = 1:39.1 Loading

TCLL (roof)

Snow (Pf)

TCDL

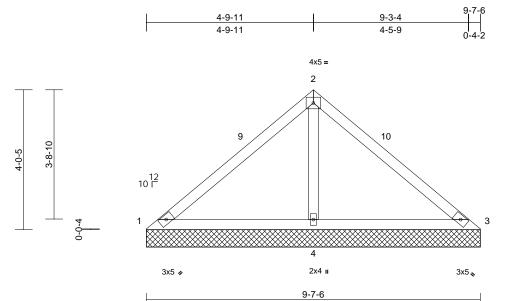
BCLL

BCDL

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 9-0-8, Exterior(2E) 9-0-8 to 12-0-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15
- Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) desian.
- 6) Gable requires continuous bottom chord bearing. 7)
 - Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 8)
- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 34 lb uplift at joint 1, 6 lb uplift at joint 5, 139 lb uplift at joint 8 and 136 lb uplift at joint 6.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH	
25040098-01	VLB6	Valley	1	1	Job Reference (optional)	173103604

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 10:42:20 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:33.2

		1			-	i					i	
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.45	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.42	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.18	Horiz(TL)	0.01	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0				-						Weight: 37 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 9-7-6 oc purlins. Rigid ceiling directly bracing.	applied or 6-0-0 oc 3=9-7-6, 4=9-7-6 11) : 21), 3=-49 (LC 20), C 14)	Plate D DOL=1 Cs=1.0 5) Unbalar design. 6) Gable r 7) Gable s 8) This tru chord li 9) * This tr on the t 3-06-00 chord a 10) Provide	SCE 7-16; Pr=20.0 ps DL=1.15); Pf=20.0 psf 15); Is=1.0; Rough Ca ccd snow loads have equires continuous bo tuds spaced at 4-0-0 c ss has been designed re load nonconcurrent uss has been designed ottom chord in all area tall by 2-00-00 wide w nd any other members mechanical connection plate capable of withs	(Lum DC at B; Fully been co ttom cho cc. for a 10. with any d for a liv as where will fit betw s. on (by oth	DL=1.15 Plate Exp.; Ce=0.5 Insidered for the rd bearing. 0 psf bottom other live loa re load of 20.0 a rectangle ween the botto users) of truss t	ds. Opsf om					
FORCES	(lb) - Maximum Com	pression/Maximum		uplift at joint 3 and 10			om					
TOP CHORD BOT CHORD WEBS	,			E(S) Standard								
NOTES												
	ed roof live loads have	been considered for										1.1.1
this desig												
Vasd=103 II; Exp B; and C-C E to 6-7-11, left and ric exposed; reactions DOL=1.60 3) Truss des only. For see Stand	CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; Br Enclosed; MWFRS (er Exterior(2E) 0-0-5 to 3- Exterior(2E) 6-7-11 to ght exposed ; end vertii C-C for members and fr shown; Lumber DOL=') igned for wind loads in studs exposed to wind lard Industry Gable En qualified building design	CDL=6.0psf; h=25ft; velope) exterior zon 0-5, Exterior(2R) 3-0 9-7-11 zone; cantile cal left and right prces & MWFRS for I.60 plate grip the plane of the trus (normal to the face) d Details as applicab	e -5 ver ss						A million .			EER A

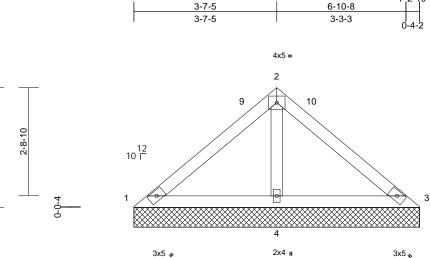
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO AMITEK ATTILIATE

818 Soundside Road Edenton, NC 27932

April 30,2025

Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH			
25040098-01	VLB7	Valley	1	1	Job Reference (optional)	173103605		


3-0-5

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 29 10:42:20 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-10-8

Page: 1

7-2-10

Scale = 1:29.1

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	BC	0.26 0.26 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS	7-2-10 oc purlins. Rigid ceiling directly bracing.	, 3=7-2-10, 4=7-2-10 C 10) C 21), 3=-17 (LC 20), C 14) C 20), 3=105 (LC 21) C 20) npression/Maximum 88/228	 Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar Provide mec bearing plate 	snow loads have been es continuous bottom spaced at 4-0-0 oc. Is been designed for ad nonconcurrent with has been designed for n chord in all areas w by 2-00-00 wide will fin hanical connection (b e capable of withstanc at joint 3 and 73 lb u	m DO Fully en com n chore a 10.0 h any or a live vhere it betw by othe ding 1	 L=1.15 Plate Exp.; Ce=0.9; asidered for the d bearing. bysf bottom other live loac e load of 20.0; a rectangle veen the botto ers) of truss to 7 lb uplift at jo 	; is ds. psf m					
this design 2) Wind: ASC Vasd=103	ed roof live loads have n. CE 7-16; Vult=130mph mph; TCDL=6.0psf; Br Enclosed; MWFRS (er	n (3-second gust) CDL=6.0psf; h=25ft;								- AL	ORTH CA	Della international

- and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 4-2-14, Exterior(2E) 4-2-14 to 7-2-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

annun annun - COLONNA MARTIN SEAL 036322 GI minim April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type C		Ply	918 Serenity-Roof-B326 B CP GRH			
25040098-01	VLB8	Valley	1	1	Job Reference (optional)	173103606		

2-4-14

2-4-14

Carter Components (Sanford, NC), Sanford, NC - 27332,

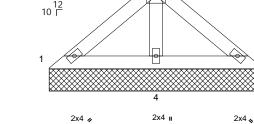
1-8-10

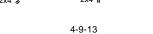
0-0-4

2-0-5

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 29 10:42:20 ID:vFTOYoza1WjXT9L6tv8uVZzRQre-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-5-11


2-0-12


4-9-13

3

Page: 1

4x5 = 2

Scale = 1:26

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.11	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.04	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 17 lb	FT = 20%
LUMBER TOP CHORE BOT CHORE OTHERS BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-9-13 oc purlins. Rigid ceiling directly bracing. 	applied or 6-0-0 oc 3=4-9-13, 4=4-9-13 2 10) 15), 4=-33 (LC 14)	9 3 1 4-292	 design. Gable require Gable studs This truss has chord live loo * This truss loon the botton 3-06-00 tall loop of an and an an		ttom chor oc. for a 10. with any ed for a liv as where vill fit betw s. on (by oth	rd bearing. 0 psf bottom other live loa re load of 20. a rectangle veen the bott ers) of truss	ads. Opsf om to					
FORCES	(lb) - Maximum Com Tension												
TOP CHORD	,												
BOT CHORD	,	/87											
WEBS	2-4=-207/95												
NOTES													
,	ced roof live loads have	been considered fo	r										
this desig	gn. SCE 7-16; Vult=130mph	(2 accord quat)										mm	11111
	3mph; TCDL=6.0psf; B		Cat								3	WAH CA	Roll
	; Enclosed; MWFRS (er										5	R	······································
	Exterior(2E) zone; cant										~	OWEEGO	City is
	; end vertical left and ri		r							6	1		MALL
	s and forces & MWFRS										n	2	and the second s
	DOL=1.60 plate grip DC											SEA	1 1 2
	signed for wind loads in									=	:		• -
	r studs exposed to wind									11111		0363	22 : =
see Stan	idard Industry Gable En	d Details as applica	ble,										: 2

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 4) DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

or consult qualified building designer as per ANSI/TPI 1.

A. GI A. GIL April 30,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type Qty Ply 918 Serenity-Roof-B32			918 Serenity-Roof-B326 B CP GRH	
25040098-01	VLD1	Valley	1	1	Job Reference (optional)	173103607

Scale = 1:50.8 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

WEBS

NOTES

1)

2)

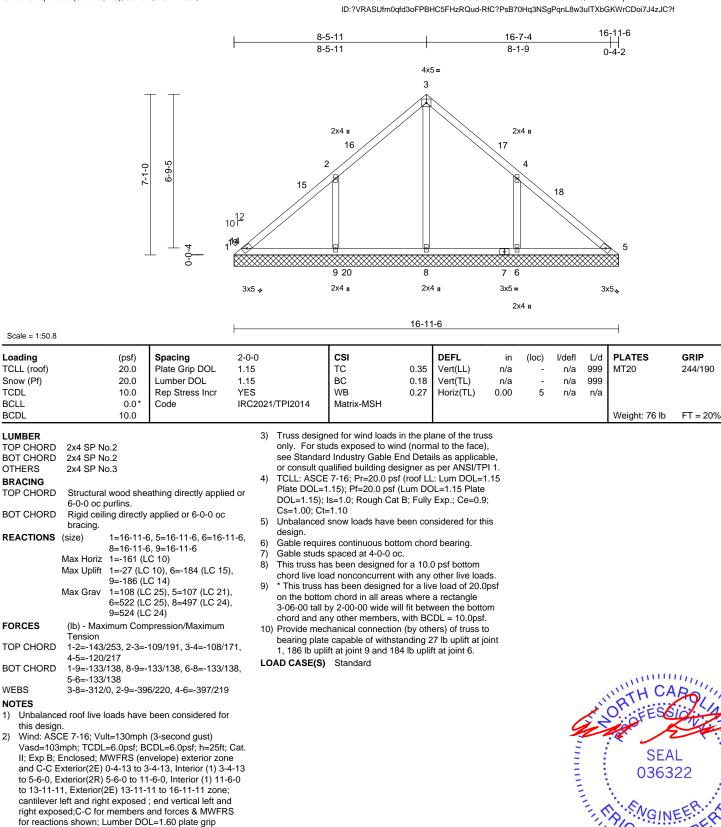
TOP CHORD

BOT CHORD

this design.

DOL=1.60

cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip


TCDL

BCLL

BCDL

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 10:42:21

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

G mm April 30,2025 1111111111

Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH	
25040098-01	VLD2	Valley	1	1	Job Reference (optional)	173103608

Scale = 1:43.7 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

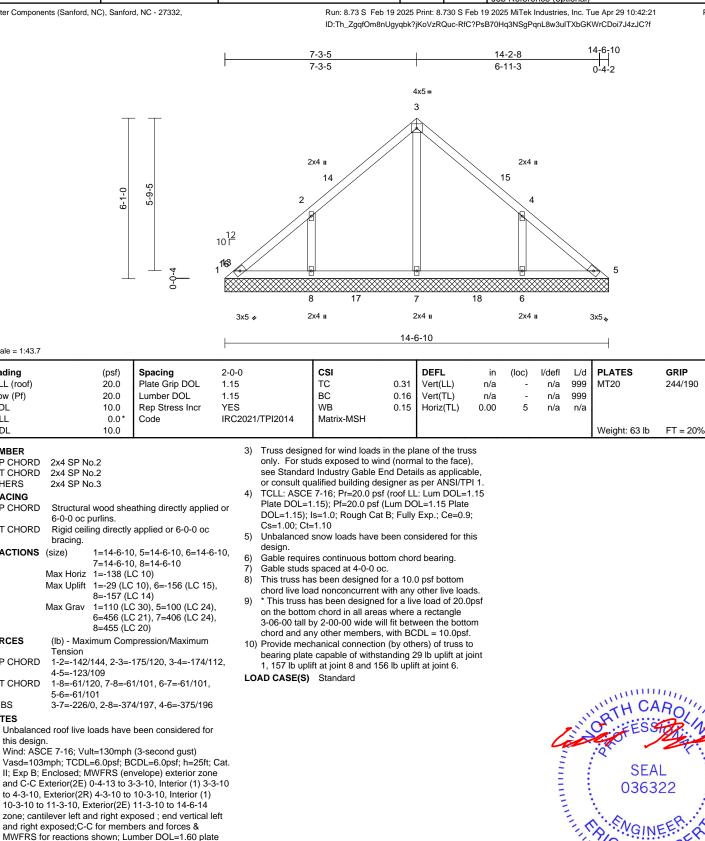
this design.

WEBS

NOTES

1)

2)


REACTIONS (size)

TCDL

BCLL

BCDL

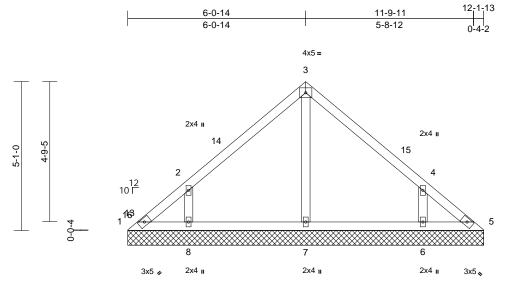
Page: 1

to 4-3-10, Exterior(2R) 4-3-10 to 10-3-10, Interior (1) 10-3-10 to 11-3-10, Exterior(2E) 11-3-10 to 14-6-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932


G mm April 30,2025 VIIIIIIIIIIII

Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH	
25040098-01	VLD3	Valley	1	1	Job Reference (optional)	173103609

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 10:42:21 ID:kUxM45s?bF21LX?KCRTFVAzRQqU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1/J42JC /1

Page: 1

12-1-13

Scale = 1:39.3

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202 ⁻	I/TPI2014	CSI TC BC WB Matrix-MSH	0.31 0.12 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 50 lb	GRIP 244/190 FT = 20%
	6-0-0 oc Rigid ceil bracing. (size) Max Horiz Max Uplift	o.2 lo.3 l wood shea purlins. ing directly 1=12-1-13 7=12-1-13 1=-114 (LL 1=-37 (LC 6=-136 (LL 1=80 (LC	athing directly applied applied or 10-0-0 oc 3, 5=12-1-13, 6=12-1- 3, 8=12-1-13 C 10) 10), 5=-5 (LC 11), C 15), 8=-138 (LC 14) 25), 5=73 (LC 24), 6= =261 (LC 21), 8=432	5) 13, 6) 7) 8) 434 9)	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall t	ed for wind loads ids exposed to wi d Industry Gable I talified building de 7-16; Pr=20.0 ps (s=1.0; Rough Ca =1.10 snow loads have es continuous boi spaced at 4-0-0 c is been designed ad nonconcurrent nas been designed ad nonconcurrent oy 2-00-00 wide w y other members	nd (norm End Deta ssigner a: sf (roof LI (Lum DC t B; Fully been cor tom chor c. for a 10. with any d for a liv as where rill fit betw	al to the face ils as applical is per ANSI/TF L=1.15 Plate Exp.; Ce=0.5 asidered for the d bearing. D psf bottom other live loa a rectangle), ble, Pl 1. 1.15); his ds. 0psf					
FORCES	Tension		pression/Maximum 217/116, 3-4=-217/11) Provide mec bearing plate	hanical connection capable of withs	n (by oth tanding 3	87 lb uplift at j	oint					
BOT CHORD WEBS	4-5=-91/6 1-8=-32/7 5-6=-32/7	63 75, 7-8=-32/ 73	/73, 6-7=-32/73, 6/212, 4-6=-397/217	,	and the second s		pint at joi	ni o anu 136	U				N'ITH CA	Ro
NOTES	al an af Dan		haan considered for									AN'	A SECO	12-11

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-16; Vult=130mph (3-second gust)
- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-13 to 3-4-13, Exterior(2R) 3-4-13 to 9-2-2, Exterior(2E) 9-2-2 to 12-2-2 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affilia 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH	
25040098-01	VLD4	Valley	1	1	Job Reference (optional)	173103610

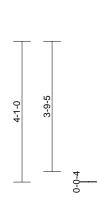
4-10-8

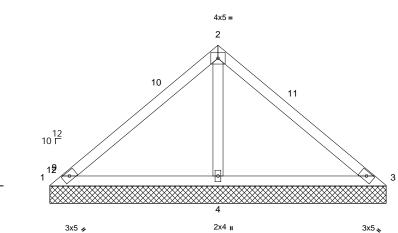
4-10-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

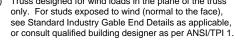
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 10:42:21 ID:kUxM45s?bF21LX?KCRTFVAzRQqU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-4-14


4-6-6


9-9-0

4x5 = 2 个 11



9-9-0

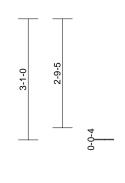
Scale = 1:33.4

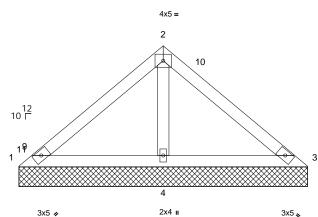
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.46 0.43 0.19	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 37 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.3 Structural wood she 9-9-0 oc purlins. Rigid ceiling directly bracing. (size) 1=9-9-0, Max Horiz 1=-91 (LC Max Uplift 1=-61 (LC 4=-109 (L Max Grav 1=74 (LC (LC 20)	3=9-9-0, 4=9-9-0 C 10) C 21), 3=-51 (LC 20), C 14) 20), 3=94 (LC 21), 4	Plate DOL= DOL=1.15); Cs=1.00; Ct 5) Unbalanced design. 6) Gable requii 7) Gable studs 8) This truss hi chord live lo 9) * This truss on the botto 3-06-00 tall chord and a 10) Provide mec bearing plat	snow loads have to spaced at 4-0-0 or as been designed f ad nonconcurrent y has been designed m chord in all areas by 2-00-00 wide wi ny other members. chanical connection e capable of withsta	Lum DC B; Fully been cor om chor c. or a 10.0 with any I for a liv s where II fit betv n (by oth anding 6	DL=1.15 Plate Exp.; Ce=0.9 Insidered for the d bearing. D psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss t in lb uplift at j	o; ds. opsf om o					
FORCES	(lb) - Maximum Con Tension		1, 51 lb uplif LOAD CASE(S)	t at joint 3 and 109 Standard	lb uplift	at joint 4.						
TOP CHORD BOT CHORD WEBS	1-2=-113/380, 2-3=- 1-4=-247/173, 3-4=- 2-4=-646/270											
NOTES	2-4=-040/270											
 Unbalance this design 	ed roof live loads have n.	been considered for										11111
Vasd=103/ II; Exp B; E and C-C E 3-4-13 to 6 cantilever I right expos for reactior DOL=1.60 3) Truss desi only. For s see Standa	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (ex xterior(2E) 0-4-13 to 3 9-9.5, Exterior(2E) 6-9 left and right exposed sed;C-C for members his shown; Lumber DC gned for wind loads in studs exposed to wind ard Industry Gable En qualified building desi	CDL=6.0psf; h=25ft; nvelope) exterior zon 3-4-13, Exterior(2R) I-5 to 9-9-5 zone; ; end vertical left and and forces & MWFR DL=1.60 plate grip n the plane of the trus d (normal to the face) d Details as applicab	e S S Je,								A. C	EEPERTUUT

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH				
25040098-01	VLD5	Valley	1	1	Job Reference (optional)	173103611			

3-8-2


3-8-2


Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 10:42:21 ID:CgVkHRtdMZAuzhaXm9_U10zRQqT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4x5 = 2

7-4-3

Scale	= 1.293	2

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	BC).27).27).09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shee 7-4-3 oc purlins. Rigid ceiling directly bracing. (size) 1=7-4-3, 3 Max Horiz 1=-67 (LC Max Uplift 1=-29 (LC Max Grav 1=72 (LC 4=539 (LC	applied or 6-0-0 oc 3=7-4-3, 4=7-4-3 : 10) : 21), 3=-17 (LC 20), : 14) 20), 3=103 (LC 21),	 Plate DOL= DOL=1.15); Cs=1.00; Ct Unbalanced design. Gable requin Gable studs This truss has chord live lo * This truss on the botto 3-06-00 tall chord and a Provide med 	7-16; Pr=20.0 psf (rc 1.15); Pf=20.0 psf (Lu Is=1.0; Rough Cat B; =1.10 snow loads have bee res continuous bottom spaced at 4-0-0 oc. as been designed for a da nonconcurrent with has been designed for m chord in all areas w by 2-00-00 wide will fir ny other members. chanical connection (b e capable of withstance	m DC Fully n cor chor a 10.0 a any r a liv here t betw y othe	DL=1.15 Plate Exp.; Ce=0.9 asidered for th d bearing. D psf bottom other live loar e load of 20.0 a rectangle veen the botto ers) of truss to	; ds. lpsf om					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-87/232, 2-3=-9 1-4=-182/154, 3-4=- 2-4=-428/197	0/231		t at joint 3 and 73 lb u			אות					

NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-13 to 3-8-6, Exterior(2R) 3-8-6 to 4-4-8, Exterior(2E) 4-4-8 to 7-4-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

SEAL 036322 April 30,2025

MILLIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

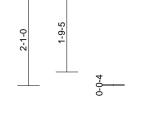
Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH	
25040098-01	VLD6	Valley	1	1	Job Reference (optional)	173103612

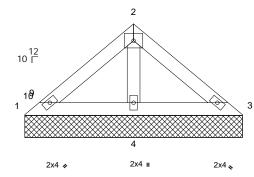
2-5-11

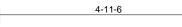
2-5-11

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 29 10:42:21 ID:CgVkHRtdMZAuzhaXm9_U1OzRQqT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


4-7-4


2 - 1 - 9

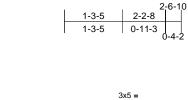

4-11-6

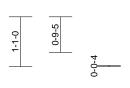
4x5 =2

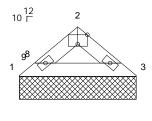
Scale = 1:26.2

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MP	0.09 0.11 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
4-11-6 BOT CHORD Rigid bracin REACTIONS (size) Max Ho Max Up Max Gr	 No.2 No.3 ural wood she <i>o</i> co purlins. ceiling directly <i>g</i>. 1=4-11-6 riz 1=-44 (LC lift 3=-7 (LC av 1=59 (LC (LC 20) 	15), 4=-32 (LC 14) 20), 3=88 (LC 21), 4	9) ⁵ 10 ⁴⁼²⁹⁷ LC	design. Gable requir Gable studs This truss ha chord live lo * This truss on the botto 3-06-00 tall chord and a		bottom chor o c. ed for a 10.0 nt with any ned for a liv reas where e will fit betw ers. tion (by oth	d bearing.) psf bottom other live loa e load of 20. a rectangle veen the bott ers) of truss	nds. Opsf om to					
TOP CHORD 1-2=-6	on 52/104, 2-3=-8 55/89, 3-4=-85 14/98 ve loads have	i/89 been considered fo											000.

- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	918 Serenity-Roof-B326 B CP GRH	
25040098-01	VLD7	Valley	1	1	Job Reference (optional)	173103613

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 29 10:42:21 ID:CgVkHRtdMZAuzhaXm9_U1OzRQqT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-6-10

Scale = 1:25.1

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.05 0.05 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 7 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS (s M W FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=103m II; Exp B; Er and C-C Ext exposed ; et members ar Lumber DOI 3) Truss design only. For stt see Standar or consult qu 4) TCLL: ASCE Plate DOL=	10.0 2x4 SP No.2 2x4 SP No.2 Structural wood she 2-6-10 oc purlins. Rigid ceiling directly bracing. size) 1=2-6-10, Max Horiz 1=-20 (LC Max Uplift 1=-1 (LC Max Grav 1=86 (LC (Ib) - Maximum Com Tension 1-2=-130/55, 2-3=-1 1-3=-31/101 I roof live loads have E 7-16; Vult=130mph ph; TCDL=6.0psf; Bi closed; MWFRS (er terior(2E) zone; cant nd vertical left and rij nd forces & MWFRS L=1.60 plate grip DC ned for wind loads in uds exposed to wind rd Industry Gable En ualified building desig E 7-16; Pr=20.0 psf (L Is=1.0; Rough Cat E	applied or 10-0-0 or 3=2-6-10 :10) 15), 3=-8 (LC 15) 20), 3=111 (LC 21) pression/Maximum 42/59 been considered for (3-second gust) CDL=6.0psf; h=25ft; welope) exterior zon lever left and right ght exposed;C-C for for reactions shown. L=1.60 the plane of the trus (normal to the face) d Details as applicat gner as per ANSI/TF roof LL: Lum DOL=1. 15 Plate	8) This trus chord liv 9) * This tru on the bo 3-06-00 chord an 10) Provide I bearing 1 and 8 lb LOAD CASE r Cat. ne ; ss), ole, PI 1. 1.15	Ids spaced at 4-0-0 d s has been designed e load nonconcurrent ss has been designed ttom chord in all are: all by 2-00-00 wide v d any other members nechanical connection late capable of withs uplift at joint 3. (S) Standard	I for a 10. t with any ed for a liv as where will fit betw s. on (by oth	other live loa e load of 20. a rectangle veen the bott ers) of truss	Opsf com to			A LA	Weight: 7 Ib OFTH CA OSEA 0363	
design.	=1.10 I snow loads have be res continuous botto		iis								201111	ILBERTIT

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

