

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: HH Hunt Homes Raleigh

Model: Taylor EA SP FL GRH

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

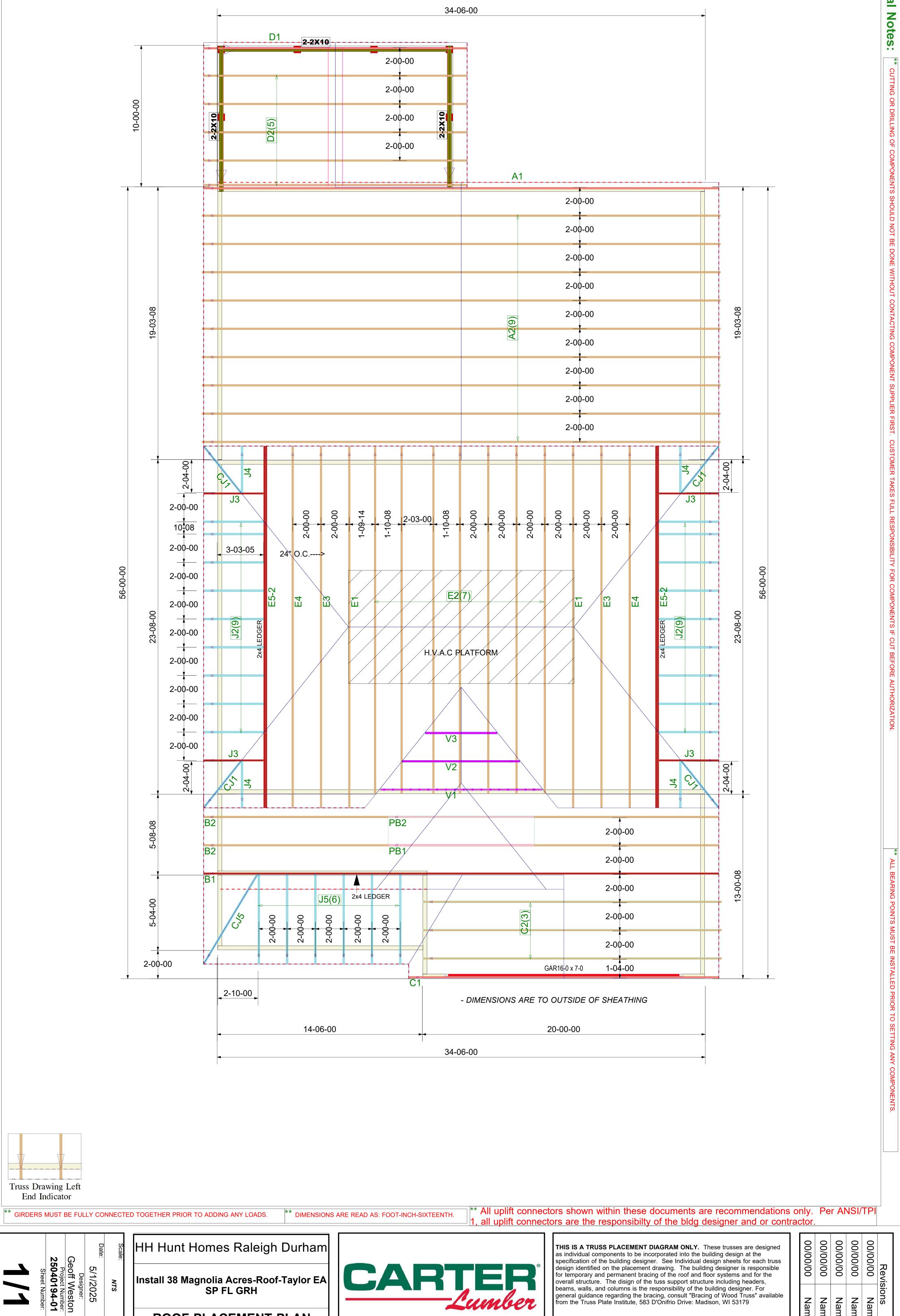
8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death. 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

TRIANGULAR SYMBOL NEAR END OF TRUSS INDICATES LEFT END OF

TRUSS AS SHOWN ON INDIVIDUAL TRUSS DRAWINGS


PLC

IMBING DROPS NOTED ARE IN THE APPROXIMATE LOCATIONS PER PLAN.

BUILDER TO VERIFY LOCATIONS BEFORE SETTING TRUSSES

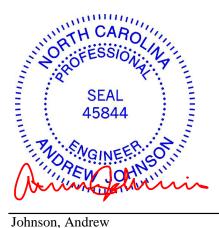
*

REFER TO FINAL TRUSS ENGINEERING SHEETS FOR PLY TO PLY CONNECTIONS

ROOF PLACEMENT PLAN

Name	00/00/00
Name	00/00/00
sions	Revisions

Trenco 818 Soundside Rd Edenton, NC 27932

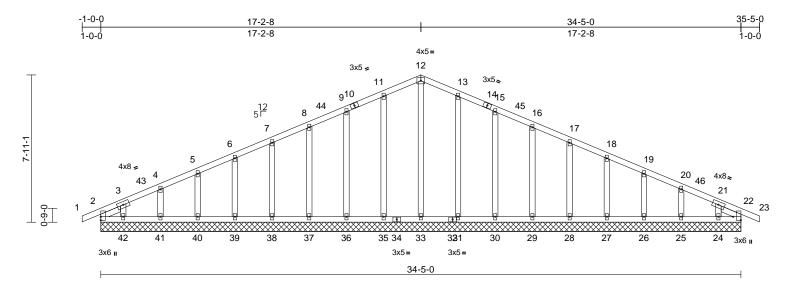

Re: 25040194-01 Install 38 Magnolia Acres-Roof-Taylor EA SP FL GRH

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I73186124 thru I73186147

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844


May 2,2025

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Install 38 Magnolia Acres-Roof-Taylor EA SP FL GRH
25040194-01	A1	Common Supported Gable	1	1	I73186124 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:11:15 ID:xhySC1?3Z6B9c8SdfOnvUTykKpv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:61.9

Plate Offsets (X, Y): [22:Edge,0-5-0]

	(, .). [==		1												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER TOP CHORD	2x4 SP No		Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2	2018/TPI2014 FORCES	CSI TC BC WB Matrix-SH (Ib) - Maximum C Tension	•		in n/a n/a 0.01	Va	sd=103m	nph; TC	PLATES MT20 Weight: 211 lb ; Vult=130mph (3 CDL=6.0psf; BCD	-second gust DL=6.0psf; h=	25ft; Cat.
BOT CHORD OTHERS SLIDER BRACING TOP CHORD	2x4 SP No Left 2x4 S 1-2-8	o.3 P No.3 1	I-2-8, Right 2x4 SP	No.3	TOP CHORD	CHORD 1-2=-2/0, 2-3=-180/62, 3-4=-120/64, 4-5=-89/73, 5-6=-69/88, 6-7=-51/107, 7-8=-54/126, 8-9=-64/151, 9-11=-77/1 11-12=-92/223, 12-13=-92/223, 13-15=-77/188, 15-16=-64/151, 16-17=-54/114, 17-18=-45/78, 18-19=					II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -1-0-0 to 2-5-5, Exterior(2N) 2-5-5 to 17-2-8, Corner(3R) 17-2-8 to 20-7-13, Exterior(2N) 20-7-13 to 35-5-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown;				
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 2=34-5-0, 22=34-5-0, 24=34-5-0, 25=34-5-0, 26=34-5-0, 27=34-5-0, 28=34-5-0, 29=34-5-0, 30=34-5-0, 31=34-5-0, 33=34-5-0, 35=34-5-0, 36=34-5-0, 37=34-5-0, 38=34-5-0, 39=34-5-0, 40=34-5-0, 41=34-5-0, 42=34-5-0 Max Horiz 2=120 (LC 16)				5-0, 1-5-0, 1-5-0, 1-5-0, 1-5-0,	BOT CHORD	19-20=-46/22, 20 22-23=-2/0 2-42=-37/113, 31 37-38=-37/113, 3 35-36=-37/113, 3 31-33=-37/113, 3 29-30=-37/113, 2 27-28=-37/113, 2	-42=-37/1 18-39=-37 16-37=-37 13-35=-37 13-35=-37 10-31=-37 18-29=-37 16-27=-37	13, 40-41=-3; /113, /113, /113, /113, /113, /113, /113,	7/113,	3) Tru onl see or 4) TC Pla DC Ex	iss desig y. For si Standa consult q LL: ASC ite DOL= 0L=1.15 I o.; Ce=0	ned fo tuds ex rd Indu jualified E 7-16 1.15); Plate D .9; Cs=	b) plate grip DOL= r wind loads in th kposed to wind (n lstry Gable End I d building design ; Pr=20.0 psf; Pf= PG=20.0 psf; Pf= PG=20.0 psf; Pf= 100=1.15); Is=1.0	e plane of the ormal to the f Details as app er as per ANS of LL: Lum DO 13.9 psf (Lun D; Rough Cat	face), blicable, SI/TPI 1. OL=1.15 n B; Fully
	42=34-5-0				22-24=-37/113 design. WEBS 12-33=-126/12, 11-35=-159/67, 9-36=-143/74, 8-37=-125/71, 7-38=-125/71, 6-39=-125/71, 5-40=-124/71, 4-41=-127/80, 3-42=-104/120, 13-31=-159/67, 15-30=-143/74, 16-29=-125/71, 17-28=-125/71, 18-27=-125/71, 19-26=-124/71, 20-25=-127/80, 21-24=-104/116 6) This truss has to load of 12.0 psf overhangs non- overhangs non- 0 (12.0 psf)						as bee psf or non-co	ow loads have been considered for this been designed for greater of min roof live f or 2.00 times flat roof load of 13.9 psf on -concurrent with other live loads.			
					NOTES 1) Unbalance this design	d roof live loads ha	ave been (considered for				N. I. I. I.	SEA 4584 SNGINI SNGINI Ma	L 4 0HN9 ay 2,2025	ANTION OF ANTI

Continued on page 2 WARNING - Verify

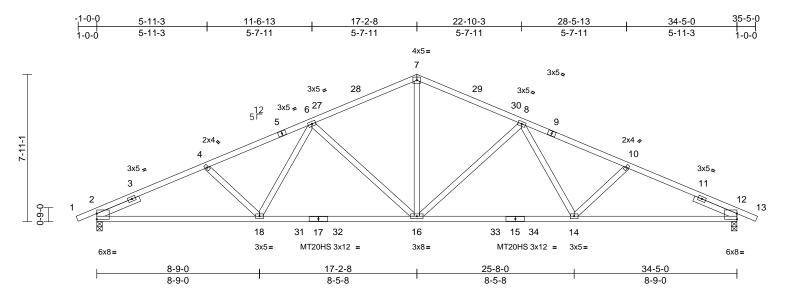
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 38 Magnolia Acres-Roof-Taylor EA SP FL GRH	
25040194-01	A1	Common Supported Gable	1	1	Job Reference (optional)	173186124
Carter Components (Sanford, N	C), Sanford, NC - 27332,	Run: 8.73 S Feb 19 2	2025 Print: 8.	730 S Feb 1	9 2025 MiTek Industries, Inc. Thu May 01 16:11:15	Page: 2

- All plates are 2x4 MT20 unless otherwise indicated. 7)
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 11) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) All bearings are assumed to be SP No.2 .
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint 2, 38 lb uplift at joint 35, 39 lb uplift at joint 36, 38 lb uplift at joint 37, 38 lb uplift at joint 38, 38 lb uplift at joint 39, 38 lb uplift at joint 40, 39 lb uplift at joint 41, 81 lb uplift at joint 42, 36 lb uplift at joint 31, 40 lb uplift at joint 30, 38 lb uplift at joint 29, 38 lb uplift at joint 28, 38 lb uplift at joint 27, 38 lb uplift at joint 26, 39 lb uplift at joint 25 and 63 lb uplift at joint 24.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run; 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:11:15 ID:xhySC1?3Z6B9c8SdfOnvUTykKpv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 38 Magnolia Acres-Roof-Taylor EA SP FL GRH
25040194-01	A2	Common	9	1	I73186125 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:11:16 ID:xhySC1?3Z6B9c8SdfOnvUTykKpv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:61.9

Plate Offsets (X, Y): [2:Edge,0-3-11], [12:Edge,0-3-11]

	⊼, 1). [z.∟uge,0-5-11]], [12.2490,0 0 11]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 2 2-6-0 Sheathed. Rigid ceiling directly bracing. (size) 2=0-3-8, 1 Max Horiz 2=-71 (LC Max Grav 2=1546 (L (lb) - Maximum Com	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code 2-6-0, Right 2x4 SP 1 applied or 2-2-0 oc 12=0-3-8 2 17) .C 3), 12=1546 (LC 3)	No.3 4) 5) 6) 7) 8) 3) 9)	TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 Unbalanced design. This truss ha load of 12.0 j overhangs n All plates are All plates are chord live loa chord live loa * This truss ha on the bottor	CSI TC BC WB Matrix-MSH 7-16; Pr=20.0 psf; 15; Pg=20.0 psf; late DOL=1.15; Is= ; Cs=1.00; Ct=1.11 ; Cs=1.00; Ct=1.11 ; cs=1.00; Ct=1.11 snow loads have b as been designed for on-concurrent with MT20 plates unless is been designed for ad nonconcurrent w has been designed for ad nonconcurrent w	Pf=13.9 =1.0; R 0 peen color or great at roof I other li ss othe otherw or a 10. vith any for a liv s where	e) psf (Lum bugh Cat B; f er of min roo oad of 13.9 p ve loads. rwise indicate ise indicated. 0 psf bottom other live load of 20. a rectangle	-0.50 0.13 at.15 =ully this f live sef on ed. ads. Opsf	(loc) 16-18 16-18 12	I/defl >999 >830 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 179 lb	GRIP 244/190 187/143 FT = 20%
FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD $1-2=0/31, 2-4=-3104/241, 4-6=-2953/227, 6-7=-2206/239, 7-8=-2206/239, 8-10=-2953/227, 10-12=-3104/241, 12-13=0/31 BOT CHORD 2-18=-145/2787, 16-18=-94/2454, 14-16=-100/2455, 12-14=-151/2789 WEBS 7-16=-61/1357, 8-16=-736/124, 8-14=0/444, 10-14=-212/102, 6-16=-736/124, 6-18=0/444, 4-18=-212/102 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-11 to 1-11-5, Interior (1) 1-11-5 to 17-2-8, Exterior(2R) 17-2-8 to 20-2-8, Interior (1) 20-2-8 to 35-5-11 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 $				chord and ar All bearings This truss is International	y 2-00-00 wide wil y other members, are assumed to be designed in accord Residential Code s and referenced stand Standard	with BC SP No dance w sections	CDL = 10.0ps .1 . vith the 2018 s R502.11.1 a	f.		Continue		SEA 4584	EEP. ON

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Install 38 Magnolia Acres-Roof-Taylor EA SP FL GRH
25040194-01	B1	Hip Girder	1	1	I73186126 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:11:17 ID:xhySC1?3Z6B9c8SdfOnvUTykKpv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -1-0-<u>0</u> 4-1-0 8-0-12 12-0-8 22-4-8 24-5-8 26-4-4 30-4-0 34-5-0 35-5-0 1-0-0 3-11-12 10-4-1 2-1-0 1-10-12 1-0-0 4-1-0 3-11-12 3-11-12 4-1-0 5x6= 5x8. 7 6 59 3x5 🍫 5x6。 3x5 8 3x5、 12 10 9 3x5 🖌 58 60 11-2-15 10-9-3x5. 3 10 61 57 22 22 4è 48 3xF 3xF 8x10 // 11 0-6-0 ~~~~~ ~~~~~ 18 17 16 14 13 15 62 21 63 64 20 65 66 19 67 4x6= 4x6= 3x5= 3x5= 3x10 u 3x5= 3x5= 3x10 II 3x5= 8-0-12 11-10-12 17-2-8 22-6-4 26-4-4 30-4-0 4-1-0 34-5-0 4-1-0 3-11-12 3-10-0 5-3-12 3-10-0 3-11-12 5-3-12 4-1-0 Scale = 1:71.6 Plate Offsets (X, Y): [2:0-5-8,Edge], [6:0-3-4,0-2-4], [8:0-3-0,0-3-0], [11:0-5-8,Edge], [22:0-2-0,0-0-13], [39:0-4-4,0-2-8] 2-0-0 CSI DEFL in (loc) l/defl L/d PLATES GRIP (psf) Spacing 20.0 Plate Grip DOL 1.15 TC 0.73 Vert(LL) -0.04 13-14 >999 240 MT20 244/190 Snow (Pf/Pg) 18.9/20.0 Lumber DOL 1.15 BC 0.39 Vert(CT) -0.06 13-14 >999 180 WB Horz(CT) 10.0 Rep Stress Incr NO 0.62 0.02 11 n/a n/a 0.0 IRC2018/TPI2014 Matrix-MSH Code Weight: 381 lb 10.0 FT = 20%

LUMBER WEBS 3-21=-210/56, 3-22=-169/133, 20-22=-120/126, 20-23=-219/65, TOP CHORD 2x4 SP No.2 *Except* 6-7:2x6 SP 2400F 4-23=-219/65, 4-24=-156/118, 2.0E 19-24=-153/117, 19-25=-942/46, BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 *Except* 17-6,17-7:2x4 SP No.2 6-25=-942/46. 6-46=-27/723. 17-46=-22/706. 17-47=-460/99. 39-47=-446/90. OTHERS 2x4 SP No.3 7-39=-449/92, 15-49=-87/651, 7-49=-82/626, Left: 2x4 SP No.3 WEDGE Right: 2x4 SP No.3 9-15=-512/158 9-14=-42/350 10-14=-304/135, 10-13=-11/111 BRACING 22-23=-86/29, 23-24=-94/31, 24-25=-102/33, TOP CHORD Sheathed or 5-0-0 oc purlins, except 25-46=-91/33, 46-48=-76/39, 47-48=-22/10, 2-0-0 oc purlins (6-0-0 max.): 6-7. 39-48=-71/38, 39-49=-144/83, 8-49=-109/97 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc NOTES bracing. 1 Row at midpt WEBS 6-25 1) Unbalanced roof live loads have been considered for this design JOINTS 1 Brace at Jt(s): 23, Wind: ASCE 7-16; Vult=130mph (3-second gust) 24, 25, 39, 46, 48, 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. 49 II; Exp B; Enclosed; MWFRS (envelope) exterior zone; **REACTIONS** (size) 2=14-9-8, 11=0-3-8, 19=14-9-8, cantilever left and right exposed ; end vertical left and 20=14-9-8. 21=14-9-8 right exposed; Lumber DOL=1.60 plate grip DOL=1.33 Max Horiz 2=255 (LC 11) 2=-54 (LC 13), 11=-100 (LC 13), Max Uplift 3) Truss designed for wind loads in the plane of the truss 19=-89 (LC 12), 20=-158 (LC 12), only. For studs exposed to wind (normal to the face), 21=-76 (LC 9) see Standard Industry Gable End Details as applicable, Max Grav 2=411 (LC 37), 11=1128 (LC 47), or consult qualified building designer as per ANSI/TPI 1. 19=1518 (LC 43), 20=761 (LC 37), TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) 21=784 (LC 37) Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum FORCES (Ib) - Maximum Compression/Maximum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Tension Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0 TOP CHORD 1-2=0/48, 2-3=-356/107, 3-4=-252/117, 5) Unbalanced snow loads have been considered for this 4-6=-221/139, 6-7=-456/142, 7-9=-861/178, desian. 9-10=-1167/155, 10-11=-1350/121, 6) This truss has been designed for greater of min roof live 11-12=0/48 load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on BOT CHORD 2-21=-181/300, 20-21=-133/300, overhangs non-concurrent with other live loads. 19-20=-90/257, 17-19=-85/277, 15-17=0/653, 7) Provide adequate drainage to prevent water ponding. 14-15=0/822, 13-14=0/998, 11-13=-2/998

All plates are 2x4 MT20 unless otherwise indicated. 8)

9) Gable studs spaced at 2-0-0 oc. 10) This truss has been designed for a 10.0 psf bottom

Page: 1

12

chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

12) All bearings are assumed to be SP No.2

13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 54 lb uplift at joint 2, 76 lb uplift at joint 21, 158 lb uplift at joint 20, 89 lb uplift at joint 19, 100 lb uplift at joint 11 and 54 lb uplift at joint 2

- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Continued on page 2

Loading

TCDL

BCLL

BCDL

TCLL (roof)

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Install 38 Magnolia Acres-Roof-Taylor EA SP FL GRH
25040194-01	B1	Hip Girder	1	1	I73186126 Job Reference (optional)

Run; 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:11:17

ID:xhySC1?3Z6B9c8SdfOnvUTykKpv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Carter Components (Sanford, NC), Sanford, NC - 27332,

- 16) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 121 Ib down and 50 lb up at 2-9-10 on top chord, and 49 lb down at 2-9-10, 219 lb down and 32 lb up at 2-10-13, 219 lb down and 32 lb up at 4-10-13, 219 lb down and 32 lb up at 6-10-13, 219 lb down and 32 lb up at 8-10-13, and 219 lb down and 32 lb up at 10-10-13, and 219 lb down and 32 lb up at $\,$ 12-10-13 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 17) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15

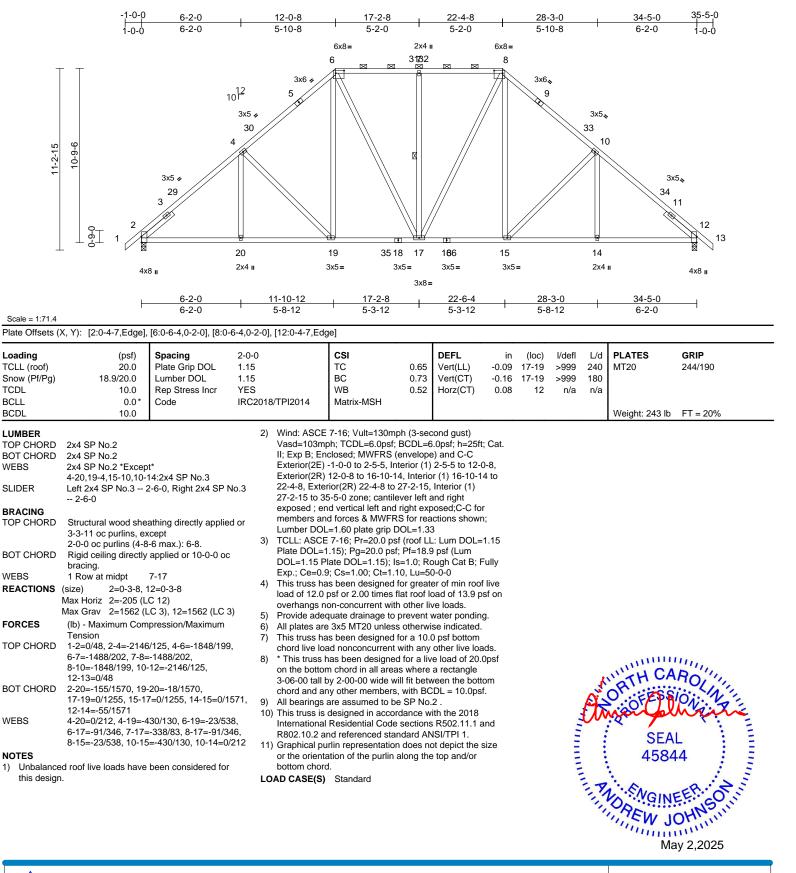
Uniform Loads (lb/ft)

Vert: 1-6=-48, 6-7=-58, 7-12=-48, 51-54=-20

Concentrated Loads (lb)

Vert: 57=-98 (F), 62=-266 (F=-47), 63=-219, 64=-219, 65=-219, 66=-219, 67=-219

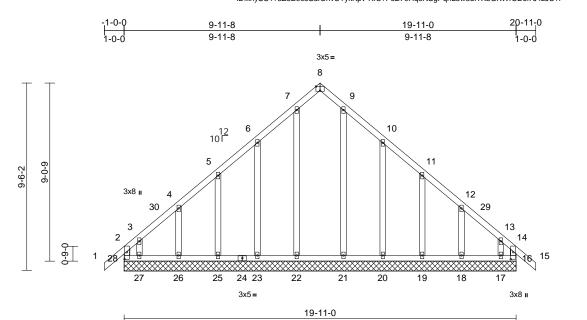
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	Install 38 Magnolia Acres-Roof-Taylor EA SP FL GRH
25040194-01	B2	Piggyback Base	2	1	I73186127 Job Reference (optional)

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:11:17 ID:xhySC1?3Z6B9c8SdfOnvUTykKpv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road


Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 38 Magnolia Acres-Roof-Taylor EA SP FL GRH
25040194-01	C1	Common Supported Gable	1	1	I73186128 Job Reference (optional)

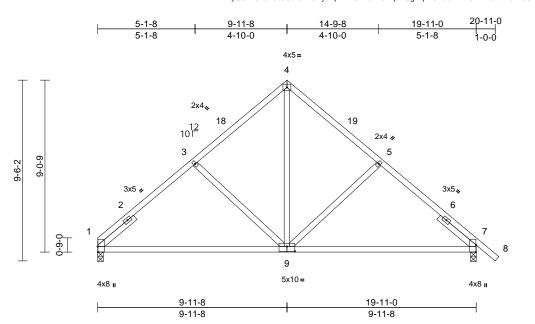
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:11:17 ID:xhySC1?3Z6B9c8SdfOnvUTykKpv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Sca	le –	1.5	85

Plate Offsets (X, Y): [2:0-4-4,0-1-8], [8:0-2-8,Edge], [16:0-4-4,0-1-8]

	(X, T). [2.0-4-4,0-T-0]	, [0.0-2-0,Euge], [10.0-4-	4,0-1-0]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Plate Grip DOL1Lumber DOL1Rep Stress IncrY	-0-0 15 15 ES RC2018/TPI2014	BC 0	.22 Vert(LL) .13 Vert(CT) .15 Horz(CT)	in n/a n/a 0.01	(loc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 136 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 16=19-11 20=19-11 20=19-11 22=19-11 22=19-11 22=19-11 22=19-11 (20=-102) 25=73 (I) 27=251 Max Grav 16=323 (28=209 (20=202 (22=230 (25=204 (27=183 ((lb) - Maximum Con Tension 14-16=-222/120, 8- 10-11=-82/45, 11-11 2-13=-211/103, 13 14-15=0/55, 1-2=0/	<pre>/ applied or 10-0-0 oc l-0, 17=19-11-0, l-0, 19=19-11-0, l-0, 21=19-11-0, l-0, 23=19-11-0, l-0, 28=19-11-0, l-0, 28=19-11-0 LC 13) (LC 13), 17=-240 (LC 15), cLC 15), 19=-73 (LC 15), (LC 15), 19=-73 (LC 15), (LC 14), 28=-140 (LC 15), LC 14), 28=-140 (LC 13), LC 14), 28=-140 (LC 13), LC 31), 19=203 (LC 31), LC 31), 19=203 (LC 31), LC 31), 21=213 (LC 31), LC 30), 23=197 (LC 30), LC 30), 26=209 (LC 30), LC 30), 26=209 (LC 30), LC 30), 28=343 (LC 14) npression/Maximum 9=-87/95, 9-10=-85/92, 2=-130/73, i=14=-314/160, 55, 2-3=-332/166, -145/100, 5-6=-102/72,</pre>	 WEBS NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=103m II; Exp B; Er and C-C Co to 9-11-8, C 13-1-12 to 2 exposed; el members ar Lumber DOI 3) Truss design only. For st see Standar or consult qi 4) TCLL: ASCE Plate DOL= DOL=1.15 F Exp.; Ce=0. 5) This truss ha load of 12.0 overhangs r 6) All plates ar 7) Gable requit 8) Truss to be 	27-28=-108/250, 26-27 25-26=-108/250, 23-29 22-23=-108/250, 17-12 20-21=-108/250, 19-20 18-19=-108/250, 17-16 16-17=-108/250 9-21=-116/4, 7-22=-13 11-19=-147/101, 12-14 13-17=-134/158, 6-23 5-25=-147/101, 4-26=- 3-27=-134/159 I roof live loads have be Ξ 7-16; Vult=130mph (3 ph; TCDL=6.0psf; BCD colosed; MWFRS (enver rmer(3E) -1-0-0 to 2-0-0 orner(3E) 9-11-8 to 13 20-11-0 zone; cantileve mod vertical left and righ d forces & MWFRS fo L=1.60 plate grip DOL= ned for wind loads in th uds exposed to wind (r d Industry Gable End I ualified building design Ξ 7-16; PT=20.0 psf; Pf= Plate DOL=1.15); Is=1.0 9; Cs=1.00; Ct=1.10 as been designed for g psf or 2.00 times flat rn non-concurrent with oth res continuous bottom fully sheathed from on nst lateral movement (i	5=-108/250, 2=-108/250, 3=-108/250, 3=-108/250, 3=-108/250, 0/24, 10-20=-162 3=-157/115, 163/138, 157/115, 2000	or ; Cat. ne D-0 J) r ; ss), ble, PI 1. 1.15 Fully ilive sf on	 10) This chor 11) * Th on ti 3-06 chor 12) All b 13) Prov bear 16, i uplif joint lb up 14) This Intee R80 LOAD C 	a truss h rd live k is truss he botto -00 tall rd and a pearings vide me ring plat 140 lb u t at join 17, 99 polift at jos a truss is a truss is case(S	has bee bad non- has be more than by 2-C any oth s are as chanic te capa point 26 s desigg al Resis and ref) Sta	een designed for rd in all areas wh 0-00 wide will fit er members, with ssumed to be SP al connection (by able of withstandi joint 28, 102 lb u 2 lb uplift at joint t at joint 23, 73 lt and 251 lb uplift ned in accordance dential Code sect erenced standard ndard	any other live loads. a live load of 20.0psf ere a rectangle between the bottom BCDL = 10.0psf. No.2. others) of truss to ng 103 lb uplift at joint plift at joint 20, 73 lb 18, 240 lb uplift at ouplift at joint 25, 72 at joint 27. we with the 2018 ions R502.11.1 and DANSI/TPI 1.

May 2,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 38 Magnolia Acres-Roof-Taylor EA SP FL GRH
25040194-01	C2	Common	3	1	Job Reference (optional)

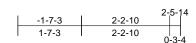
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:11:18 ID:xhySC1?3Z6B9c8SdfOnvUTykKpv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

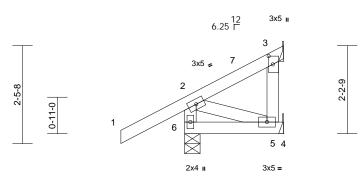
Page: 1

Scale = 1:60.6

Plate Offsets (X, Y): [1:0-3-8,Edge], [7:0-4-7,Edge], [9:0-5-0,0-3-0]

	, , , , , <u>, [</u> = -, <u>-</u> g-],	[,==ge],[,,										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER TOP CHORD		Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201 4)	load of 12.0	CSI TC BC WB Matrix-MSH as been designed f psf or 2.00 times fi	at roof l	Vert(CT) Horz(CT) er of min roo pad of 13.9 p		(loc) 9-16 9-12 1	l/defl >999 >855 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 110 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS SLIDER BRACING	2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 2 2-6-0	2-6-0, Right 2x4 SP	5) No.3 6)	This truss ha chord live loa * This truss l	on-concurrent with as been designed f ad nonconcurrent v nas been designed n chord in all areas	or a 10. with any I for a liv	0 psf bottom other live loa re load of 20.						
TOP CHORD BOT CHORD	Sheathed or 6-0-0 o Rigid ceiling directly bracing.		c 7) 8)	chord and ar All bearings	by 2-00-00 wide wi by other members. are assumed to be designed in accord	SP No	2.	tom					
	(size) 1=0-3-8, 7 Max Horiz 1=-167 (L Max Grav 1=795 (LC	C 12)	-,	International	Residential Code nd referenced star	sections	s R502.11.1 a	and					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-3=-876/134, 3-4=- 5-7=-855/132, 7-8=0 1-7=-141/693 4-9=-78/625, 5-9=-3	802/155, 4-5=-801/1 /53	53,		Standard								
 this design Wind: ASC Vasd=103 II; Exp B; I Exterior(2I 21-0-2 zor vertical lef forces & M DOL=1.60 TCLL: ASC Plate DOL DOL=1.15 	ed roof live loads have b. CE 7-16; Vult=130mph mph; TCDL=6.0psf; Bd Enclosed; MWFRS (er E) 0-0-0 to 3-0-0, Interi R) 9-11-8 to 12-11-8, In he; cantilever left and r he; cantilever left and r t and right exposed; C- MVFRS for reactions s plate grip DOL=1.33 CE 7-16; Pr=20.0 psf; [=1.15); Pg=20.0 psf; [Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10	(3-second gust) CDL=6.0psf; h=25ft; velope) and C-C or (1) 3-0 to 9-11- iterior (1) 12-11-8 tt ight exposed ; end C for members and hown; Lumber roof LL: Lum DOL= ² Pf=13.9 psf (Lum	Cat. 8, 0							Contraction	111 AND	NEW J	EER.ON


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


A MiTek Affiliat 818 Soundside Road Edenton, NC 27932

May 2,2025

Job	Truss	Truss Type	Qty	Ply	Install 38 Magnolia Acres-Roof-Taylor EA SP FL GRH
25040194-01	CJ1	Jack-Open	4	1	I73186130 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:11:18 ID:xhySC1?3Z6B9c8SdfOnvUTykKpv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

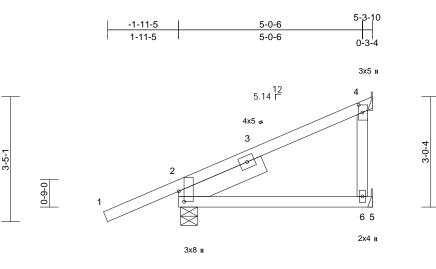
Scale = 1:29

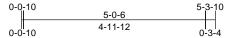
Plate Offsets (X, Y): [3:0-2-8,0-1-4]

	(i, i): [ele 2 ele i i]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.28 0.04 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 5-6 5-6 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp B; E Exterior(2E 2-2-10 zon vertical left forces & M DOL=1.60 3) TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce=0	verticals. Rigid ceiling directly bracing. (size) 3= Mecha 6=0-4-11 Max Horiz 6=43 (LC Max Uplift 3=-35 (LC Max Grav 3=22 (LC (LC 23) (lb) - Maximum Com Tension 2-6=-258/139, 1-2=0 5-6=-100/41, 4-5=0/ 3-5=0/0, 2-5=-43/100 ed roof live loads have	nical, 5= Mechanical 13) 22), 6=-5 (LC 16) 23), 5=53 (LC 7), 6=2 pression/Maximum V61, 2-3=-60/27 0 been considered for (3-second gust) CDL=6.0psf; h=25ff; (velope) and C-C erior (1) 1-4-13 to ight exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1. Y=13.9 psf (Lum 1.0; Rough Cat B; Fu	6) nd 7) , 8) 9) 10 279 11 12 L0 Cat. 15 Ily	load of 12.0 overhangs n This truss ha chord live loa * This truss f on the bottor 3-06-00 tall t chord and ar Bearings are SP No.2, Jo Refer to gird D) Provide mec bearing plate and 35 lb up 1) This truss is International R802.10.2 ar	designed in accor Residential Code nd referenced star n inside of top cho vertical web shall r	lat roof lin n other lin for a 10.1 with any d for a liv is where lill fit betw loint 3 Sl uss conr n (by oth anding 5 dance w sections ndard Ah rd bearin	bad of 13.9 p ve loads. D psf bottom other live load e load of 20.1 a rectangle veen the botth No.2, Joint nections. ers) of truss 1 lb uplift at joint ith the 2018 it R502.11.1 at ISJ/TP1 1. ng and first	sf on ads. Opsf om t 6 to to		C. HILLEY		SEA 458 VORTH CA	EEP. ON

May 2,2025

Page: 1




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 38 Magnolia Acres-Roof-Taylor EA SP FL GRH
25040194-01	CJ5	Jack-Open	1	1	I73186131 Job Reference (optional)

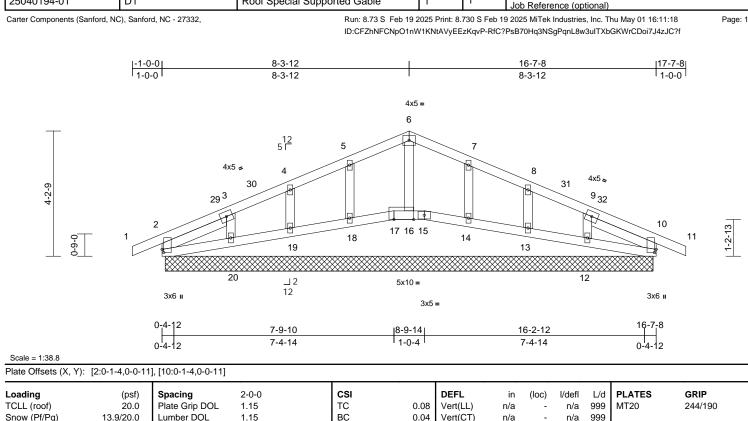
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:11:18 ID:xhySC1?3Z6B9c8SdfOnvUTykKpv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.5

Plate Offsets (X, Y): [2:0-3-7,0-1-12], [4:0-2-8,0-1-4]

	,, :): [<u>=</u> :0 0 1,0 1 1 <u>=</u>	3, E = = ; = _]										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.42 0.28 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.03 -0.06 0.02	(loc) 6-9 6-9 2	l/defl >999 >963 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x6 SP No.2 2 Sheathed or 5-3-10 Rigid ceiling directly bracing.	oc purlins.	load of 12.0 overhangs r 5) This truss h chord live lo 6) * This truss on the botto 3-06-00 tall chord and a	as been designed psf or 2.00 times ion-concurrent wit as been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w ny other members a assumed to be:	flat roof k th other liv for a 10.0 with any d for a liv as where vill fit betv s.	bad of 13.9 p ve loads.) psf bottom other live loa e load of 20.1 a rectangle veen the bott	sf on Ids. Opsf					
	(size) 2=0-5-9, 4 Mechanic Max Horiz 2=72 (LC Max Uplifi 2=-13 (LC Max Grav 2=352 (LC 6=96 (LC	16) 5 12), 4=-32 (LC 16) C 23), 4=154 (LC 23)	8) Refer to gird 9) Provide mer bearing plat 4 and 13 lb), 10) This truss is	ler(s) for truss to t chanical connectic e capable of withs uplift at joint 2. designed in acco I Residential Code	russ conr on (by oth standing 3 rdance w	ections. ers) of truss 2 lb uplift at j ith the 2018	oint					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=0/59, 2-4=-256/ 2-6=-147/134, 5-6=0 4-6=0/0	79	R802.10.2 a 11) Gap betwee	and referenced state in inside of top cho vertical web shall	Indard AN ord bearir	ISI/TPI 1. Ig and first						
NOTES 1) Wind: ASC Vasd=103r II; Exp B; E (3) -2-0-0 t cantilever I	CE 7-16; Vult=130mph mph; TCDL=6.0psf; BG Enclosed; MWFRS (er to 2-2-14, Exterior(2R) left and right exposed	CDL=6.0psf; h=25ft; ivelope) and C-C Co 2-2-14 to 5-0-6 zone ; end vertical left and	rner e; d						C	L'A	ORTH CA	ROLLIN
for reaction DOL=1.33 2) TCLL: ASC Plate DOL= DOL=1.15 Exp.; Ce=0	sed;C-C for members : ns shown; Lumber DO CE 7-16; Pr=20.0 psf (=1.15); Pg=20.0 psf; F Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 d snow loads have be	L=1.60 plate grip roof LL: Lum DOL=1 Yf=13.9 psf (Lum 1.0; Rough Cat B; Fu	.15 ully						CHILLING .	Number of Street	SEA 458 VOREW J	


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

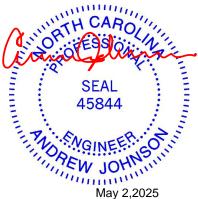
JO mm

Job	Truss	Truss Type	Qty	Ply	Install 38 Magnolia Acres-Roof-Taylor EA SP FL GRH
25040194-01	D1	Roof Special Supported Gable	1	1	I73186132 Job Reference (optional)

Snow (Pf/Pg) TCDL BCLL BCDL	13.9/20.0 10.0 0.0* 10.0	Lumber DOL Rep Stress Incr Code	1.15 YES IRC2	018	/TPI2014	BC WB Matrix-MSH	0.04 0.03	Vert(CT) Horz(CT)	n/a 0.00	10	n/a n/a
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2-5-2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=16-5-0 13=16-5- 19=16-5- 19=16-5- Max Horiz 2=-36 (Ld Max Uplift 2=-13 (Ld 14=-16 (l 19=-9 (Ld Max Grav 2=158 (L 12=174 (l 14=199 (l 14=199 (l 14=199 (l 14=199 (l 14=199 (l 16=104 (l)	C 12), 10=-16 (LC 13 LC 17), 13=-10 (LC 1 LC 17), 18=-16 (LC 1 C 16), 20=-25 (LC 16 C 2), 10=158 (LC 2), LC 41), 13=181 (LC 2) LC 24), 15=40 (LC 7) LC 2), 17=40 (LC 7), LC 23), 19=181 (LC 2)	No.3 ed or -5-0, -5-0, -5-0, -7), 6),) 24),	 1) 2) 3) 4) 5) 	TES Unbalanced this design. Wind: ASCE Vasd=103m II; Exp B; Er (3E) -1-0-0 t (3R) 8-3-12 zone; cantile and right exp MWFRS for grip DOL=1. Truss design only. For sti see Standar or consult qu TCLL: ASCE Plate DOL= DOL=1.15 F Exp.; Ce=0. Unbalanced design.	6-16=-98/0, 5-18 3-20=-137/107, 7 9-12=-138/106 roof live loads h 7-16; Vult=130r ph; TCDL=6.0ps Iclosed; MWFRS 0 2-0-0, Exterior to 11-3-12, Exter ver left and right posed;C-C for m reactions shown 33 ned for wind load ualified building (27-16; Pr=20.0 p 1.15); Pg=20.0 p Plate DOL=1.15); 9; Cs=1.00; Ct=1 snow loads have as been designed	7-14=-161/ ave been (mph (3-sec f; BCDL=6 (envelope (2N) 2-0-0 (2N) 2-0-0 (2	91, 8-13=-14 considered fo cond gust) .0psf; h=25ft)) and C-C C to 8-3-12, Cc -3-12 to 17-7 ; end vertical d forces & DOL=1.60 pla ane of the tru al to the face ills as applica is per ANSI/TI :: Lum DOL= 0 psf (Lum pugh Cat B; F	·2/85, r ; Cat. prner -8 left ate ss), ble, PI 1. 1.15 fully his	bea 2, 1 at jo 10 l join 13) Nor 14) This Inte R80	wide meclaring plate 16 lb uplift 16 lb uplift 16 uplift at 12 and 11 n Standar s truss is ernational 02.10.2 ar CASE(S)
FORCES	Tension 1-2=0/29, 2-3=-57/3 4-5=-51/95, 5-6=-63 7-8=-51/95, 8-9=-42	3/139, 6-7=-63/139,		8)	overhangs n All plates are Gable studs This truss ha	psf or 2.00 times on-concurrent w e 2x4 MT20 unle spaced at 2-0-0 as been designer ad nonconcurrer	ith other liv ss otherwi oc. d for a 10.0	ve loads. se indicated. O psf bottom			Unnin
BOT CHORD	17-18=-12/60, 16-1	=-12/61, 18-19=-12/6 7=-10/58, 15-16=-10/ 4=-12/61, 12-13=-12/	/58,		* This truss on the botto 3-06-00 tall chord and a	has been design m chord in all are by 2-00-00 wide ny other member are assumed to	ed for a liv eas where will fit betw rs.	e load of 20.0 a rectangle veen the botto	Opsf		The second se

chanical connection (by others) of truss to tte capable of withstanding 13 lb uplift at joint lift at joint 10, 16 lb uplift at joint 18, 9 lb uplift 25 lb uplift at joint 20, 16 lb uplift at joint 14, at joint 13, 21 lb uplift at joint 12, 13 lb uplift at 16 lb uplift at joint 10.

Weight: 78 lb

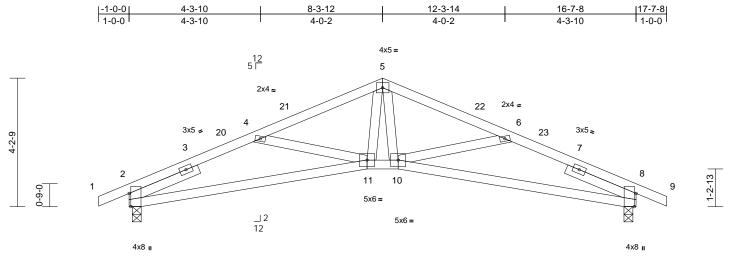

FT = 20%

ard bearing condition. Review required.

s designed in accordance with the 2018 al Residential Code sections R502.11.1 and and referenced standard ANSI/TPI 1.

S) Standard

n/a



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 38 Magnolia Acres-Roof-Taylor EA SP FL GRH
25040194-01	D2	Roof Special	5	1	I73186133 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:11:18 ID:Yxr9s83seiWU3BQ4Afl8lizKqvb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-4-12	7-9-10	8-9-14	16-2-12	16-7-8
0-4-12	7-4-14	1-0-4	7-4-14	0-4-12

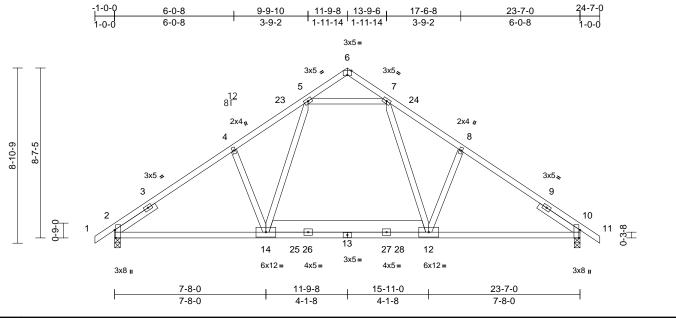
Scale = 1:37.8

Plate Offsets (X, Y): [2:0-5-3,Edge], [8:0-5-3,Edge]

			-										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.39 0.64 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.17 0.08	(loc) 11-14 11-14 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 81 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 2 2-6-0 Structural wood she 4-6-1 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 8 Max Horiz 2=36 (LC Max Grav 2=725 (LC (lb) - Maximum Com Tension 1-2=0/29, 2-4=-1447	16) C 2), 8=725 (LC 2) pression/Maximum 7/344, 4-5=-1255/254, 1449/346, 8-9=0/29	5) or 6) 7) 8) 9)	Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall t chord and ar All bearings Bearing at jo using ANSI/ designer sho	7-16; Pr=20.0 psf (.15); Pg=20.0 psf (late DQL=1.15); ls= 0; Cs=1.00; Ct=1.10 snow loads have be us been designed fo psf or 2.00 times fla on-concurrent with seen designed fo ad nonconcurrent w as been designed fo ad nonconcurrent w the signed for a concourter the signed signed for the signe	Pf=13.5 a1.0; Ro been cor or great tt roof lo other liv ro a 10.1 ith any for a liv where fit betw SP No. s parall formul. of bear ance w	e) psf (Lum bugh Cat B; F isidered for t er of min roof bad of 13.9 p ve loads. 0) psf bottom other live loa e load of 20.1 a rectangle veen the bott 2. el to grain va a. Building ng surface. ith the 2018	Fully his f live sf on ads. Opsf om lue					
WEBS NOTES 1) Unbalance	4-11=-235/146 LOAD CASE(S) Standard												
this desigr										U	E A	Kitteg	Mingin

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 8-3-12, Exterior(2R) 8-3-12 to 11-3-12, Interior (1) 11-3-12 to 17-7-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 SEAL 45844 MGINEER.GOTIN May 2,2025

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 38 Magnolia Acres-Roof-Taylor EA SP FL GRH
25040194-01	E1	COMMON	2	1	I73186134 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:11:18 ID:xhySC1?3Z6B9c8SdfOnvUTykKpv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [2:0-4-13,Edge], [6:0-2-8,Edge], [10:0-4-13,Edge]

Scale = 1:58.4

1 1010 0110010 (, , , , , , [2.0 ; ; ; 0,2 age]; [e:e = e;=ege]; [:e		ago]									-
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.46 0.69 0.35	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 14-17 12-21 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 153 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES	bracing. (size) 2=0-3-8, Max Horiz 2=-160 (L Max Grav 2=-161 (L (lb) - Maximum Com Tension 1-2=0/42, 2-4=-1652 5-6=-124/42, 6-7=-1 8-10=-1652/11, 10-1 2-14=-65/1344, 12-1 10-12=-51/1345	et* 5-7:2x4 SP No.2 F 2-6-0, Right 2x4 SP I c purlins. applied or 10-0-0 oc 10=0-3-8 C 12) _C 30), 10=1211 (LC pression/Maximum 2/11, 4-5=-1648/65, 24/42, 7-8=-1648/65 1=0/42 14=0/1054, 289/145, 5-14=0/670	, 4) No.3 5) 6) 7) 31) 8)	Plate DOL= DOL=1.15 P Exp.; Ce=0.3 This truss ha load of 12.0 overhangs in 150.0lb AC u from left end This truss ha chord live lo * This truss ha chord live lo * This truss ha chord live lo * This truss a chord live lo * This truss a preservative reduced 20% be protected the treatment treatment m If ACQ, CBA corrosion pre plates may b	E 7-16; $Pr=20.0 \text{ psf}$ 1.15); $Pg=20.0 \text{ psf}$; late DOL=1.15); $Is=$ 9; $Cs=1.00$; $Ct=1.10$ as been designed for psf or 2.00 times flator on-concurrent with unit load placed on - I, supported at two p as been designed for ad nonconcurrent with mas been designed for ad nonconcurrent with mas been designed for ad nonconcurrent with so Plate lateral resists 6 where used in this 1 from corrosion per th company. Borate ay be used if it does 0, or CA-B treated IL obsection is required, be used with his de an considered for th	Pf=13.9 =1.0; Ro or great at roof k other list points, a for a 10.4 with any for a live where a list between the reco or other s not co umber is a and G sign. In	a) psf (Lum bugh Cat B; F er of min roof pad of 13.9 p ve loads. om chord, 11 4-0-0 apart. D psf bottom other live loa e load of 20. a rectangle ween the bott CDL = 10.0ps irre-treated wi values have b r. Plates sho r suitable rrode the pla s used, impro- tab galvanize cising factors	Fully f live sf on 1-9-8 ads. 0psf om f. ith opeen uld n of ttes. oved ed				WITH CA	ROLAN
this design 2) Wind: ASC Vasd=103 II; Exp B; I	ed roof live loads have n. CE 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er E) -1-0-0 to 2-0-0, Inte E) -1-0-0 to 2-0-0, Inte	9) Cat. 10	intended use All bearings)) This truss is International	verify suitability of the are assumed to be designed in accord Residential Code s nd referenced stand	SP No. lance w	2 . ith the 2018 s R502.11.1 a	and		0	K.	SEA 4584	• •	

Exterior(2R) 11-9-8 to 14-9-8, Interior (1) 14-9-8 to 24-7-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber

DOL=1.60 plate grip DOL=1.33

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 38 Magnolia Acres-Roof-Taylor EA SP FL GRH
25040194-01	E2	Common	7	1	I73186135 Job Reference (optional)

3x5 🖌 5

9-9-10

3-9-2

22

1<u>2</u>

4

2x4,

<u>11-9-8</u> <u>13-9-6</u> 1-11-14 1-11-14

3x5= 6

Carter Components (Sanford, NC), Sanford, NC - 27332,

8-10-9 ά

Scale = 1:58.4

Loading

TCDL

BCLL

BCDL

WEBS

SLIDER

BRACING

TOP CHORD

BOT CHORD

REACTIONS

TOP CHORD

BOT CHORD

WFBS

NOTES

1)

FORCES

(size)

LUMBER

TOP CHORD

BOT CHORD

TCLL (roof)

Snow (Pf/Pg)

-1-0-0

1-0-0

6-0-8

6-0-8

3x5 🍫 3

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:11:18 ID:xhySC1?3Z6B9c8SdfOnvUTykKpv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

17-6-8

3-9-2

3x5.

7

23

2x4 🏿

8

23-7-0

6-0-8

3x5、

9

10

3x8 II

GRIP

244/190

244/190

FT = 20%

Page: 1

0-6-(13 24 25 12 26 27 11 3x5= MT18HS 3x10 = 3x5= 3x8 II 23-7-0 7-8-0 15-11-0 7-8-0 8-3-0 7-8-0 Plate Offsets (X, Y): [2:0-4-13,Edge], [6:0-2-8,Edge], [10:0-4-13,Edge] Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES (psf) (loc) 20.0 Plate Grip DOL 1.15 тс 0.50 Vert(LL) -0.20 11-13 >999 240 MT20 13.9/20.0 Lumber DOL 1.15 BC 0.74 Vert(CT) -0.43 11-13 >665 180 MT18HS Rep Stress Incr WB 0.35 Horz(CT) 10.0 YES 0.04 10 n/a n/a 0.0 IRC2018/TPI2014 Matrix-MSH Code 10.0 Weight: 127 lb 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum 2x4 SP No 2 DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully 2x4 SP No.1 Exp.; Ce=0.9; Cs=1.00; Ct=1.10 2x4 SP No.3 *Except* 5-7:2x4 SP No.2 This truss has been designed for greater of min roof live Left 2x4 SP No.3 -- 2-6-0, Right 2x4 SP No.3 4) load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on -- 2-6-0 overhangs non-concurrent with other live loads. 5) 150.0lb AC unit load placed on the bottom chord, 11-9-8 Sheathed or 4-3-9 oc purlins. from left end, supported at two points, 4-0-0 apart. Rigid ceiling directly applied or 10-0-0 oc All plates are MT20 plates unless otherwise indicated. bracing 7) This truss has been designed for a 10.0 psf bottom 2=0-3-8, 10=0-3-8 chord live load nonconcurrent with any other live loads. Max Horiz 2=157 (LC 13) * This truss has been designed for a live load of 20.0psf 8) Max Grav 2=1220 (LC 30), 10=1158 (LC 31) on the bottom chord in all areas where a rectangle (lb) - Maximum Compression/Maximum 3-06-00 tall by 2-00-00 wide will fit between the bottom Tension chord and any other members, with BCDL = 10.0psf. 1-2=0/45, 2-4=-1738/0, 4-5=-1679/49, All bearings are assumed to be SP No.2 . 5-6=-122/46, 6-7=-121/46, 7-8=-1682/52, 10) This truss is designed in accordance with the 2018 8-10 = -1685/4International Residential Code sections R502.11.1 and 2-13=-40/1360, 11-13=0/1072, R802.10.2 and referenced standard ANSI/TPI 1. 10-11=-39/1364 LOAD CASE(S) Standard 8-11=-286/154, 5-13=0/681, 4-13=-279/154, 7-11=0/688, 5-7=-1125/67 Unbalanced roof live loads have been considered for

this design Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-1-0 to 1-11-0, Interior (1) 1-11-0 to 11-9-8, Exterior(2R) 11-9-8 to 14-9-8, Interior (1) 14-9-8 to 23-7-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

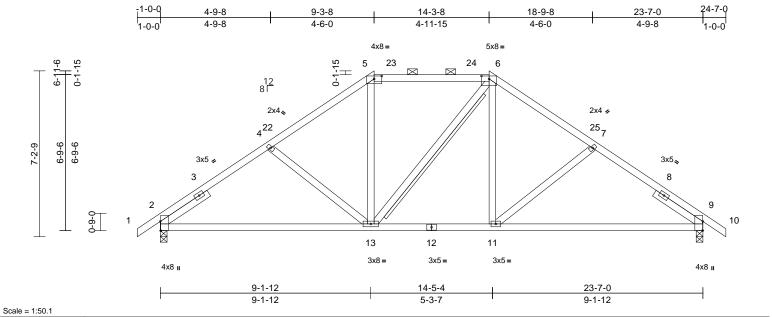
818 Soundside Road

Edenton, NC 27932

mmm May 2,2025

SEAL

5844


Contraction of the

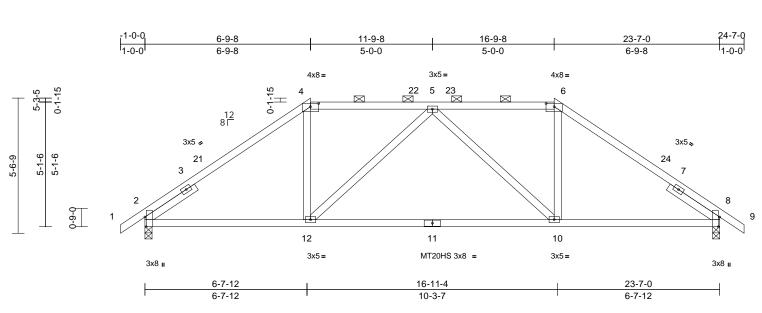
annun un

Job	Truss	Truss Type	Qty	Ply	Install 38 Magnolia Acres-Roof-Taylor EA SP FL GRH
25040194-01	E3	Нір	2	1	I73186136 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:11:18 ID:xhySC1?3Z6B9c8SdfOnvUTykKpv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [2:0-4-13,Edge], [5:0-4-0,0-1-9], [6:0-4-0,0-1-9], [9:0-4-13,Edge]


Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.37 0.69 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.26 0.03	(loc) 11-20 11-20 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 134 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.2(flat) Left 2x4 SP No.3 2-6-0 Sheathed or 5-3-8 of 2-0-0 oc purlins (5-5 Rigid ceiling directly bracing. T-Brace: Fasten (2X) T and web with 10d (0.13' 3in minimum end di Brace must cover (size) 2=0-3-8, Max Horiz 2=127 (LI Max Grav 2=1003 ((lb) - Maximum Con Tension 1-2=0/42, 2-4=-117: 5-6=-871/138, 6-7= 9-10=0/42 2-13=-125/990, 11- 4-13=-227/99, 5-13: 6-11=0/326, 7-11=-:	9-15 max.): 5-6. / applied or 10-0-0 oc 2x4 SP No.2 - 6-13 I braces to narrow ed 1"x3") nails, 6in o.c.,w istance. 90% of web length. 9=0-3-8 C 13) LC 2), 9=1003 (LC 2) npression/Maximum 3/118, 4-5=-1091/118 -1091/118, 7-9=-1173 13=0/829, 9-11=-93/8 =0/326, 6-13=-97/98, 228/99	; 3) lge of 4) 5) 6) 7) 3, 3/118, 8) 9) 991 10 11	Vasd=103mp II; Exp B; En Exterior(2E) Exterior(2E) Ixterior(2R) 14-3-8, Exter to 24-7-0 zor vertical left a forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp; Ce=0.5 This truss ha load of 12.0 J overhangs n Provide adec This truss ha chord live loa * This truss ha chord live loa * This truss is International R802.10.2 al 0 or the original B802.10.2 al 0 or the original portion chore Warning: Ad	ditional permane (not part of this red.	BCDL=((envelop) Interior (1) Interior (1) Interior (1) Interior (1) Interior (1) Interior (1) Interior (1) Is-6-6, I Is-6-6, Is-6-6, Is- Is-10, Lu=5- Is shown; 33 Is (roof LI Is; Pf=18.9, Is-10, Lu=5- Is for great flat roof I Is, Io, Lu=5- Is for great flat roof I Is shown; Is sh	 i.Opsf; h=25ft and C-C 2-0-0 to 9-3. 2-0-0 to 9-3. 13-6-7 to nterior (1) 18 exposed; ernembers and Lumber I.Lum DOL= p sf (Lum DOL= p sf (Lum DOL= p of (13.9 p) ve loads. water pondin p op fottom other live load e load of 20. a rectangle veen the bott 2. ith the 2018 is R502.11.1 a ISI/TPI 1. ot depict the a a pand/or bility bracing 	-8, -6-6 hd f -1.15 Fully f live sf on g. ads. Opsf com and size		Continue		NINTH CA	ROLIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 38 Magnolia Acres-Roof-Taylor EA SP FL GRH
25040194-01	E4	Нір	2	1	I73186137 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:11:19 ID:xhySC1?3Z6B9c8SdfOnvUTykKpv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:47.3

Plate Offsets (2	X, Y): [2:0-4-13,Edge], [4:0-4-0,0-1-9], [6	:0-4-0,0-1-9	9], [8:0-4-13,Ec	lge]								
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.45	Vert(LL)	-0.26	10-12	>999	240	MT20	244/190
Snow (Pf/Pg)	18.9/20.0	Lumber DOL	1.15		BC	0.86	Vert(CT)	-0.53	10-12	>535	180	MT20HS	187/143
TCDL	10.0	Rep Stress Incr	YES		WB	0.32	Horz(CT)	0.05	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018	3/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 120 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 2 2-6-0	2-6-0, Right 2x4 SP	3) No.3 4)	Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 This truss ha load of 12.0	7-16; Pr=20.0 p 1.15); Pg=20.0 ps late DOL=1.15); 2; Cs=1.00; Ct=1. s been designed psf or 2.00 times	f; Pf=18.9 ls=1.0; Ro 10, Lu=50 l for great flat roof lo	9 psf (Lum ough Cat B; F 0-0-0 er of min roo oad of 13.9 p	⁻ ully f live					

BRA	CING
TOP	CHO

TOP CHORD	Sheathed or 4-8-2 oc purlins, except	
	2-0-0 oc purlins (5-8-5 max.): 4-6.	
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc	
	bracing.	
REACTIONS	(size) 2=0-3-8, 8=0-3-8	
	Max Horiz 2=96 (LC 13)	
	Max Grav 2=1003 (LC 2), 8=1003 (LC 2)	
FORCES	(Ib) - Maximum Compression/Maximum	
	Tension	
TOP CHORD	1-2=0/42, 2-4=-1253/72, 4-5=-1004/110,	

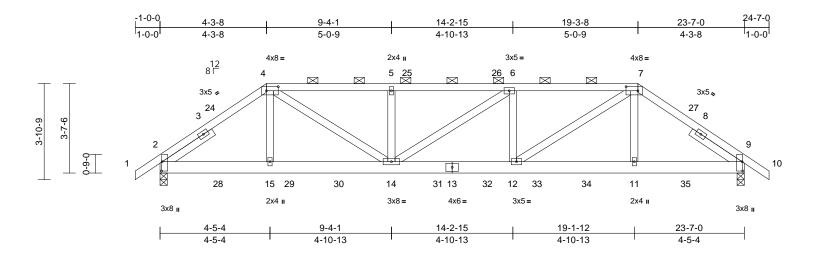
TOP CI 5-6=-1004/110, 6-8=-1253/72, 8-9=0/42 BOT CHORD 2-12=-109/977, 10-12=0/1151, 8-10=-104/977 WEBS 4-12=0/429, 5-12=-332/108, 5-10=-332/108, 6-10=0/429

NOTES

Unbalanced roof live loads have been considered for 1) this design.

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 6-9-8, Exterior(2R) 6-9-8 to 11-0-7, Interior (1) 11-0-7 to 16-9-8, Exterior(2R) 16-9-8 to 21-0-6, Interior (1) 21-0-6 to 24-7-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- overhangs non-concurrent with other live loads. 5) Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated. 6)
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

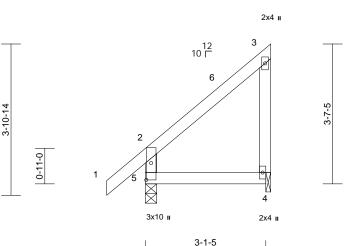

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 38 Magnolia Acres-Roof-Taylor EA SP FL GRH
25040194-01	E5-2	Hip Girder	2	2	I73186138 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:11:19 ID:xhySC1?3Z6B9c8SdfOnvUTykKpv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:46.5


	X, Y): [2:0-4-8,0-0-5]	, [4.0-5-12,0-2-0], [7. T	0-5-12,0-2	-0], [9.0-4-6,0	-0-5j		· · · ·									
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP			
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC BC	0.32	Vert(LL)		12-14	>999	240	MT20	244/190			
Snow (Pf/Pg) TCDL	18.9/20.0 10.0	Lumber DOL	1.15 NO		WB	0.33 0.30	Vert(CT)	-0.11	12-14 9	>999 n/a	180 n/a					
BCLL	0.0*	Rep Stress Incr Code		8/TPI2014	Matrix-MSH	0.30	Horz(CT)	0.02	9	n/a	n/a					
BCDL	10.0	Code	IKC201	0/1712014	Width X-IVIOI I							Weight: 290 II	o FT = 20%			
LUMBER TOP CHORD BOT CHORD WEBS SLIDER	P CHORD 2x4 SP No.2 T CHORD 2x6 SP No.2 BS 2x4 SP No.3 DER Left 2x4 SP No.3 2-4-12, Right 2x4 SP No.3 No.3 2-4-12 ACING				All loads are considered equally applied to all plies, 15 except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. Unbalanced roof live loads have been considered for this design.							15) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 46 lb down and 21 lb up at 2-4-4, and 46 lb down and 21 lb up at 21-2-12 on top chord, and 77 lb down and 28 lb up at 2-4-4, 101 lb down and 54 lb up at 4-4-4, 101 lb down and 54 lb up at 5-2-12, 101 lb down and 54 lb up				
BRACING	.		4)	0	E 7-16; Vult=130r	nnh (3-so	cond quet)						up at 9-2-12, 101 lb)1 lb down and 54 lb			
TOP CHORD			4)	Vasd=103m	ph; TCDL=6.0ps	f; BCDL=6	6.0psf; h=25ft		at	13-2-12,	101 lb	down and 54 l	b up at 15-2-12, 101			
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	0	and right ex	nclosed; MWFRS posed ; end verti	cal left and	d right expose		lb u	pat 19-	-2-12,	and 77 lb down	nd 101 lb down and 5 and 28 lb up at			
REACTIONS	•	9=0-3-8	5)		L=1.60 plate grip			4 45		21-2-12 on bottom chord. The design/selection of such						
	Max Horiz 2=67 (LC	11)	5)		E 7-16; Pr=20.0 p 1.15); Pg=20.0 p			1.15		connection device(s) is the responsibility of others. AD CASE(S) Standard						
	Max Uplift 2=-261 (L				Plate DOL=1.15);			ullv					er Increase=1.15, Pla			
	Max Grav 2=1475 (I		36)		9; Cs=1.00; Ct=1					crease=		alariceu). Luitid	or morease=1.15, Fla			
FORCES	(lb) - Maximum Com	pression/Maximum	6)		nsidered for t	his		hiform Le		b/ft)						
	Tension		.	design.					Vert: 1-4=-48, 4-7=-58, 7-10=-48, 16-20=-20 Concentrated Loads (lb) Vert: 15=-69, 14=-69, 11=-69, 24=-27 (F), 27=-27 (F 28=-49 (F), 29=-69, 30=-69, 31=-69, 32=-69, 33=-69 34=-69, 35=-49 (F)							
TOP CHORD	1-2=0/57, 2-4=-206 ² 5-6=-2847/579, 6-7=	,	9, 7)		as been designed											
	7-9=-2023/401, 9-10	,			psf or 2.00 times non-concurrent w			st on								
BOT CHORD	2-15=-356/1662, 14		8)		quate drainage to			a								
	12-14=-553/2844, 1		9)		as been designed			9.								
	9-11=-284/1630		- /		ad nonconcurrer			ıds.				"THU	ARO			
WEBS	4-15=-80/291, 4-14=				has been design			0psf		/	5	ON SER	at Alle			
	5-14=-476/73, 6-14=		57,		m chord in all are						1 K	TALA A	- Ann			
	7-12=-318/1436, 7-1	11=-53/244			by 2-00-00 wide		veen the bott	om			\mathcal{C}^{\vee}	:0	1 4: 3			
NOTES			11		ny other member are assumed to		2									
	to be connected toge) nails as follows:	ther with 10d			chanical connecti			to			:	SE/	AL : :			
()	s connected as follows:	s [.] 2x4 - 1 row at 0-9.			e capable of with					-		458	44			
OC.	s connected as ronow.	5. 2x4 110W at 0 5	0		o uplift at joint 9.			,			8	. +00	TT (* 1			
	ords connected as foll	ows: 2x6 - 2 rows	13		designed in acc	ordance w	ith the 2018				2		1. 1. 1			
staggered	at 0-9-0 oc.				I Residential Coc			and	TA BALLERIER							
Web connected as follows: 2x4 - 1 row at 0-9-0 oc.					and referenced st				VGINEE							
		14		urlin representation			size			1	REIN	OHN				
				tation of the purlir	n along the	e iop and/or					1111					
				bottom chord.					SEAL 45844 MGINEEP. O							

WARNING - Verity design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-4/3 fev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeR's connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 38 Magnolia Acres-Roof-Taylor EA SP FL GRH
25040194-01	J2	JACK-OPEN	18	1	I73186139 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:11:19 ID:xhySC1?3Z6B9c8SdfOnvUTykKpv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:29.8

Plate Offsets (X, Y): [5:0-5-4,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.27 0.17 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 n/a	(loc) 4-5 4-5 -	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES	2x4 SP No.2 2x4 SP No.3 Sheathed or 3-2-13 verticals. Rigid ceiling directly bracing. (size) 4=0-1-8, 5 Max Horiz 5=77 (LC Max Uplift 4=-42 (LC Max Grav 4=119 (LC (lb) - Maximum Com Tension 2-5=-171/99, 1-2=0/5	applied or 10-0-0 or 5=0-3-8 14) 14) 2 (14) 2 30), 5=200 (LC 2) pression/Maximum	7) 8) 9) 10 11	chord live loc * This truss I on the bottoo 3-06-00 tall I chord and ar All bearings Bearing at jc using ANSI/- designer sho Provide mec bearing plate 4.) This truss is International	as been designed ad nonconcurrent has been designe m chord in all arec by 2-00-00 wide yo other members are assumed to b init(s) 4 considers TPI 1 angle to gra build verify capacit thanical connectic e at joint(s) 4. thanical connectic e apable of withs designed in acco Residential Code nd referenced sta Standard	with any d for a liv as where vill fit betw s. e e SP No. parallel t in formula y of beari on (by oth tanding 4 rdance w e sections	other live loa e load of 20. a rectangle veen the bott 2. o grain value a. Building ng surface. ers) of truss ers) of truss 2 lb uplift at j ith the 2018 s R502.11.1 a	Opsf com co to joint					
1) Unbalance this design	ed roof live loads have n. CE 7-16: Vult=130mph		r										Della

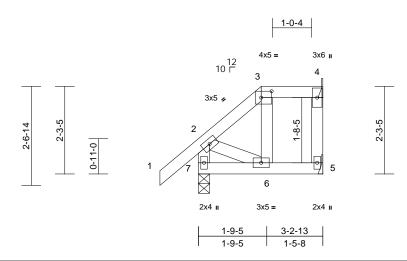
2) Wind: AŠCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 3-1-1 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

SEAL 45844

May 2,2025

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

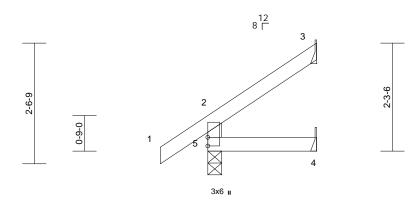
Job	Truss	Truss Type	Qty	Ply	Install 38 Magnolia Acres-Roof-Taylor EA SP FL GRH
25040194-01	J3	Half Hip Girder	4	1	I73186140 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:11:19 ID:xhySC1?3Z6B9c8SdfOnvUTykKpv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:30

Plate Offsets (X, Y): [3:0-3-4,0-2-0]

	7, 1). [3.0-3-4,0-2-0]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TP	I2014 CS TC BC WE Ma	C 0.17 C 0.19	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.02	(loc) 6 6-7 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=103 II; Exp B; f and right e Lumber DO DOL=1.15 Exp.; Ce=(3) Unbalance design. 4) This truss load of 12.	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Sheathed or 3-2-13 verticals, and 2-0-0 Rigid ceiling directly bracing.	bc purlins: 3-4. applied or 10-0-0 oc nical, 5= Mechanica 9) 9), 5=-16 (LC 9), 7= 33), 5=92 (LC 37), 7 pression/Maximum 9, 3-4=-22/16, 4-5=0 (16 1/61 (3-second gust) CDL=6.0psf; h=25ft; welope); cantilever h eft and right expose L=1.33 roof LL: Lum DOL=1 7f=18.9 psf (Lum 1.0; Rough Cat B; Fi, Lu=50-0-0 een considered for th greater of min roof roof load of 13.9 ps	6) Th chi chi chi chi chi chi chi ch	is truss has been ord live load no his truss has been of live load no his truss has been the bottom cho 06-00 tall by 2-0 ord and any off arings are assue No.2, Joint 5 fer to girder(s) ovide mechanic aring plate capp ovide mechanic aring plate capp to lib uplift at jo is truss is desig ernational Resi 102.10.2 and re aphical puritin the orientation the orientation the orientation the distribution win and 40 lb up win and 6 lb up sign/selection of sponsibility of o the LOAD CAS the truss are no CASE(S) Sta bead + Snow (b Inform Loads (1)	sumed to be: Joint 4 SF SP No.2.) for truss to truss conrical connection (by oth pable of withstanding 1 oint 5 and 11 lb uplift a gned in accordance w sidential Code sections ferenced standard AN representation does no of the purlin along the side of top chord bearin cal web shall not exceed er connection device(s int to support concentra up at 1-7-9 on top choo of such connection de others. SE(S) section, loads a poted as front (F) or ba andard balanced): Lumber Inc (lb/ft) 8, 2-3=-48, 3-4=-58, 5- oads (lb)	b) psf bottom other live loa e load of 20.0. a rectangle veen the bottom P No.2, Joint mections. ers) of truss to 0 lb uplift at ji t joint 7. th the 2018 R502.11.1 a ISI/TPI 1. bt depict the se top and/or g and first d 0.500in.) shall be tied load(s) 9 rd, and 27 lb hord. The vice(s) is the oplied to the fick (B).	ds. Opsf om a to joint and size 88 lb		Continue.		SEA 4584	ROLL L 44 EEP. CONTINUE
5											М	ay 2,2025


TRENCIDE A MITEK Atfiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 38 Magnolia Acres-Roof-Taylor EA SP FL GRH
25040194-01	J4	Jack-Open	4	1	I73186141 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:11:19 ID:xhySC1?3Z6B9c8SdfOnvUTykKpv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-3-8

Scale = 1:24.3

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.14	Vert(LL)	0.00	4-5	>999	240	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		вс	0.06	Vert(CT)	0.00	4-5	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MR		- (- /						
BCDL	10.0											Weight: 10 lb	FT = 20%
WEBS BRACING TOP CHORD BOT CHORD REACTIONS	verticals. Rigid ceiling directly bracing. (size) 3= Mecha 5=0-3-8 Max Horiz 5=48 (LC Max Uplift 3=-25 (LC Max Grav 3=52 (LC	5 14)	8) , 9) LC	on the bottor 3-06-00 tall b chord and ar All bearings Refer to gird Provide mec bearing plate 3. This truss is International	has been designed in chord in all area by 2-00-00 wide wi by other members, are assumed to be er(s) for truss to tru- hanical connection a capable of withst designed in accorr Residential Code and referenced star Standard	s where II fit betw SP No. uss conr (by oth anding 2 dance w sections	a rectangle veen the both 2. ers) of truss t 25 lb uplift at j ith the 2018 \$ R502.11.1 a	om to joint					
FORCES	(LC 2) (Ib) - Maximum Com	pression/Maximum											
	Tension												
TOP CHORD BOT CHORD	2-5=-157/106, 1-2=0	/48, 2-3=-52/36											
	4-5=0/0												
NOTES		(a											
Vasd=103n II; Exp B; E Exterior(2E vertical left forces & M DOL=1.60	E 7-16; Vult=130mph nph; TCDL=6.0psf; Bi inclosed; MWFRS (er i) zone; cantilever left and right exposed;C- WFRS for reactions s plate grip DOL=1.33	CDL=6.0psf; h=25ft; ivelope) and C-C and right exposed ; d C for members and hown; Lumber	end							()	lin	OR TH CA	ROLIN
Plate DOL= DOL=1.15 Exp.; Ce=0 3) This truss h load of 12.0	E 7-16; Pr=20.0 psf (=1.15); Pg=20.0 psf; F Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 has been designed for 0 psf or 2.00 times fla	Pf=13.9 psf (Lum 1.0; Rough Cat B; Fu r greater of min roof I t roof load of 13.9 psi	illy ive									SEA 4584	• •

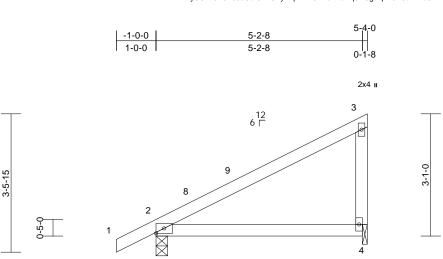
overhangs non-concurrent with other live loads. 4) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.

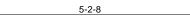
THE REW 101 minim May 2,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	Install 38 Magnolia Acres-Roof-Taylor EA SP FL GRH
25040194-01	J5	Jack-Open	6	1	I73186142 Job Reference (optional)


Run; 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:11:19 ID:xhySC1?3Z6B9c8SdfOnvUTykKpv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 II

Page: 1

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.51	Vert(LL)	0.04	4-7	>999	240	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.35	Vert(CT)	-0.08	4-7	>743	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.01	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 22 lb	FT = 20%

2x4 SP N	0.2
2x4 SP N	0.2
2x4 SP N	0.3
Sheathed	or 5-4-0 oc purlins.
Rigid ceili	ng directly applied or 10-0-0 oc
bracing.	
(size)	2=0-3-8, 4=0-1-8
Max Horiz	2=74 (LC 16)
Max Uplift	4=-20 (LC 16)
Max Grav	2=283 (LC 23), 4=238 (LC 23)
(lb) - Max	imum Compression/Maximum
Tension	
1-2=0/33,	2-3=-117/62
2-4=-81/8	5
3-4=-167/	138
	2x4 SP N 2x4 SP N Sheathed Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-2=0/33, 2-4=-81/8

Wind: ASCE 7-16; Vult=130mph (3-second gust)

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 5-2-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully

Unbalanced snow loads have been considered for this

This truss has been designed for greater of min roof live

load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.

Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum

Exp.: Ce=0.9: Cs=1.00: Ct=1.10

NOTES

grip DOL=1.33

1)

2)

3)

4)

5)

design.

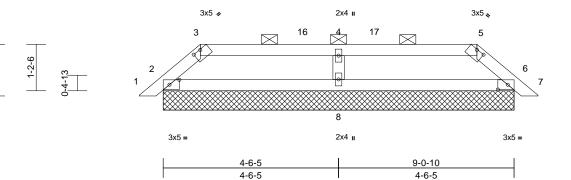
on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- 7) Bearings are assumed to be: Joint 2 SP No.2, Joint 4 SP No.3 .
- 8) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 20 lb uplift at joint
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

ſ	Job	Truss	Truss Type	Qty	Ply	Install 38 Magnolia Acres-Roof-Taylor EA SP FL GRH
	25040194-01	PB1	Piggyback	1	1	I73186143 Job Reference (optional)


1-4-0

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:11:20 ID:GtUpzwGHzI5f?e9GE4N6MVzKrE_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.7

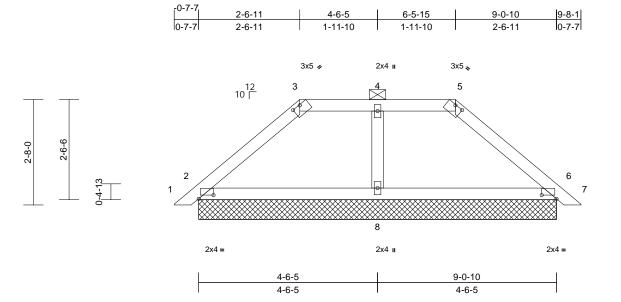
Plate Offsets (X, Y): [2:0-3-1,0-1-8], [3:0-2-8,0-0-3], [5:0-2-8,0-0-3], [6:0-3-1,0-1-8]

	(,,, ,): [<u>=</u> :e e ije i e];		2 0,0 0 0],	[0:0 0 1,0 1 0	·]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.30 0.16 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 13	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 31 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, exc		5)	Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 Unbalanced design. This truss ha	7-16; Pr=20.0 psf .15); Pg=20.0 psf; late DOL=1.15); Is= b; Cs=1.00; Ct=1.10 snow loads have b is been designed fo psf or 2.00 times fla	Pf=18.9 =1.0; Ro), Lu=5 een con	9 psf (Lum bugh Cat B; F 0-0-0 nsidered for th er of min roof	Fully his Flive					
BOT CHORD Rigid ceiling directly applied or 10-0-0 corbracing. overhang. REACTIONS (size) 2=9-0-10, 6=9-0-10, 8=9-0-10 % Gable racional corbracing. Max Horiz 2=-22 (LC 14) 10) This truss chord live Max Grav 2=220 (LC 44), 6=220 (LC 44), 11) * This truss chord live					on-concurrent with quate drainage to p es continuous botto spaced at 2-0-0 oc is been designed fo ad nonconcurrent w nas been designed n chord in all areas	revent om choi or a 10. vith any for a liv	water ponding d bearing. 0 psf bottom other live loa re load of 20.0	ids.					
FORCES TOP CHORD BOT CHORD WEBS	4-5=-228/69, 5-6=-2	87, 3-4=-228/69, 70/91, 6-7=0/25		3-06-00 tall t chord and ar All bearings Provide mec	by 2-00-00 wide will by other members. are assumed to be hanical connection a capable of withsta	fit betv SP No. (by oth	veen the botto 2 . ers) of truss t	to				2641111	
NOTES 1) Unbalance this design 2) Wind: AS0 Vasd=103 II; Exp B; Exterior(2)	ed roof live loads have	(3-second gust) CDL=6.0psf; h=25ft; ivelope) and C-C erior(2R) 1-7-3 to	15 Cat. 16	International R802.10.2 at See Standar Detail for Co consult quali) Graphical pu	designed in accord Residential Code s and referenced stand d Industry Piggybar nnection to base tru field building design rlin representation ation of the purlin al	sections dard Al ck Trus uss as uer. does n	R502.11.1 a NSI/TPI 1. s Connection applicable, or ot depict the s			(to	OR FESS	• •

- II; EXP 5; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-2-14 to 1-7-3, Exterior(2R) 1-7-3 to 5-10-2, Interior (1) 5-10-2 to 8-8-14, Exterior(2E) 8-8-14 to 10-1-3 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

LOAD CASE(S) Standard

bottom chord.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affil 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Install 38 Magnolia Acres-Roof-Taylor EA SP FL GRH
25040194-01	PB2	Piggyback	1	1	I73186144 Job Reference (optional)

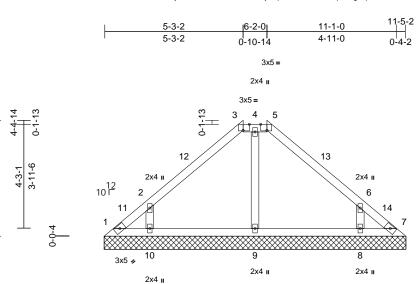
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:11:20 ID:M2C?XVW7ooU6HC8IYFcVtqzKr21-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.1

Plate Offsets (X, Y): [2:0-4-8,0-1-2], [3:0-2-8,0-0-3], [5:0-2-8,0-0-3], [6:0-4-8,0-1-2]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	TPI2014	CSI TC BC WB Matrix-MSH	0.12 0.18 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 13	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 35 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalancec this design. 2) Wind: ASCI Vasd=103rr II; Exp B; E Exterior(2E vertical left forces & MV DOL=1.60 g 3) Truss desig only. For si see Standa	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 2=9-0-10, Max Horiz 2=-47 (LC Max Grav 2=-47 (LC Max Grav 2=-43 (LC 8=326 (LC (lb) - Maximum Com Tension 1-2=0/25, 2-3=-280/ 4-5=-200/131, 5-6=- 2-8=-28/175, 6-8=-1 4-8=-222/78 d roof live loads have	 b-0 max.): 3-5. applied or 10-0-0 oc 6=9-0-10, 8=9-0-10 (14) (15), 6=-9 (LC 17) C 45), 6=343 (LC 45) C 44) apression/Maximum (120, 3-4=-200/131, 280/126, 6-7=0/25 8/175 been considered for (3-second gust) CDL=6.0psf; h=25ft; nvelope) and C-C and right exposed; c-C for members and shown; Lumber and right exposed; c-C for members and shown; Lumber a the plane of the truss (normal to the face), d Details as applicab 	5) d or 6) 7) 8) 9) 10) 11) 11) 12) 13) 14) Cat. 15) end 16) s. LOA e,	Plate DOL=1 DOL=1.15 P Exp.; Ce=0.3; This truss ha load of 12.0 overhangs n Provide adec Gable requir Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar All bearings Provide mec bearing plate 9 lb uplift at j joint 6. This truss is International R802.10.2 at See Standar Detail for Co consult quali Graphical pu		f; Pf=18.5 s=1.0; Rc 10, Lu=50 been cor for great: flat roof lk h other lin prevent tom chor for a 10.0 with any d for a liv as where vill fit betv s. be SP No. on (by oth standing £ at joint 2 a rdance w e sections indard AN pack Trus truss as a gner. n does no	 a) psf (Lum pugh Cat B; F b)-0-0 nsidered for the sidered for the s	fully his live sf on g. ds. Opsf om to int 2, at		Control		NITH CA	



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 38 Magnolia Acres-Roof-Taylor EA SP FL GRH
25040194-01	V1	GABLE	1	1	I73186145 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:11:20 ID:xhySC1?3Z6B9c8SdfOnvUTykKpv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x5 💊

11-5-2

Scale = 1:43.8	= 1:43.8
----------------	----------

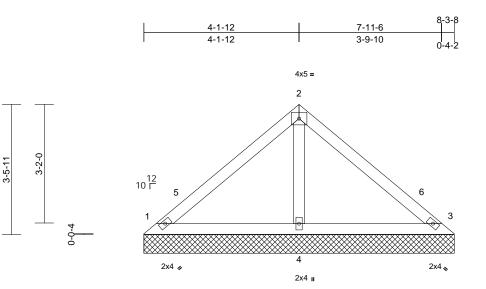
Plate Offsets	(X. Y)	: [3:0-2-13,Edge], [5:0-2-13,Edge]

4-4-14

Plate Offsets	s (X, Y): [3:0-2-13,Edge], [5:0-2-13,Edge]											
Loading TCLL (roof) Snow (Pf/Pg TCDL BCLL BCDL	(psf) 20.0) 18.9/20.0 10.0 0.0* 10.0	Lumber DOL	2-0-0 1.15 1.15 YES IRC2018/T	PI2014	CSI TC BC WB Matrix-SH	0.16 0.12 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 45 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORE BOT CHORE OTHERS BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SP No.2 2x4 SP No.3 Sheathed or 6-0-0 o 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 	P E 4) P 6) T c 7) * 11, 3 8) A 9) P 291 b 291 b (LC u 10) T	 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 8) All bearings are assumed to be SP No.2. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 34 lb uplift at joint 1.20 lb uplift at joint 2.20 lb uplift at joint 2.200										
TOP CHORE	4-5=-104/128, 5-6=-	68/115, 3-4=-104/127, 168/108, 6-7=-95/40 14/74, 8-9=-14/74,	11) G o	Graphical pu	nd referenced star rlin representation ation of the purlin a	does n	ot depict the	size					11111
	7-8=-14/74			D CASE(S)								TH CA	ROIT
WEBS NOTES	4-9=-140/9, 2-10=-2	50/225, 6-8=-250/224		.,							K.	OFFESS	Oin N'
1) Unbalan	ced roof live loads have	been considered for									1/2	your	
Vasd=10 II; Exp B Exterior(Exterior(Interior (right exp for meml	gri. SCE 7-16; Vult=130mph)3mph; TCDL=6.0psf; B4 ; Enclosed; MWFRS (er 2E) 0-4-13 to 3-4-13, Int 2E) 5-3-7 to 6-2-4, Extel 1) 10-5-3 to 11-0-14 zor osed ; end vertical left a bers and forces & MWFI DOL=1.60 plate grip DO	CDL=6.0psf; h=25ft; C ivelope) and C-C terior (1) 3-4-13 to 5-3- rior(2R) 6-2-4 to 10-5 ie; cantilever left and nd right exposed;C-C RS for reactions show	-7, 3,								Number of Street	NEW J	HA EER. ON

May 2,2025

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Install 38 Magnolia Acres-Roof-Taylor EA SP FL GRH
25040194-01	V2	Valley	1	1	I73186146 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:11:20 ID:xhySC1?3Z6B9c8SdfOnvUTykKpv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

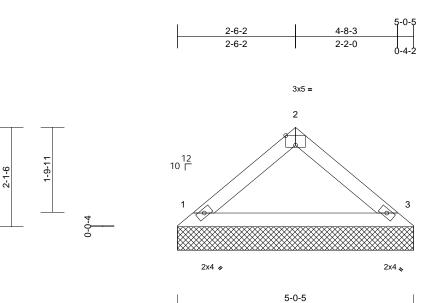
Page: 1

8-3-8

Scale = 1:30.8

		1			-							
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.29	Vert(LL)	n/a	· -	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.14	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI201	Matrix-P								
BCDL	10.0										Weight: 31 lb	FT = 20%
	bracing.	applied or 10-0-0 oc 3=8-3-8, 4=8-3-8 2 12) 2 15), 3=-16 (LC 15)	on the I 3-06-00 chord a 7) All beal 8) Provide bearing 1 and 1 9) This tru Interna R802.1	uss has been designe ottom chord in all area tall by 2-00-00 wide w hd any other members ings are assumed to b mechanical connectio plate capable of withs 6 lb uplift at joint 3. ss is designed in acco ional Residential Code .2 and referenced sta E(S) Standard	as where vill fit betv s. be SP No on (by oth standing 1 rdance w e sections	a rectangle ween the botto .2. mers) of truss to 11 lb uplift at ju rith the 2018 5 R502.11.1 a	o o oint					
FORCES	(Ib) - Maximum Corr	pression/Maximum										
	Tension											
TOP CHORD	1-2=-116/73, 2-3=-1											
BOT CHORD	1-4=-11/48, 3-4=-11	/48										
WEBS	2-4=-179/77											
NOTES	d an af line la a da la ana	h										
this design	d roof live loads have	been considered for										
	E 7-16; Vult=130mph	(3-second aust)										1122
	mph; TCDL=6.0psf; B		Cat.									in the second se
II; Exp B; E	Enclosed; MWFRS (er	velope) and C-C									TH UA	ROUL
	E) 0-4-13 to 3-4-13, In									1.5	A LEGO	in the
	R) 4-2-1 to 7-2-1, Inter									ج لار	drep.	Alia
	ilever left and right ex exposed;C-C for memb		eft							\mathcal{N}		
	pr reactions shown; Lu		ie.									
grip DOL=									=	1	SEA	LIE
3) TCLL: ASC	CE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1	.15						=		4584	14 : E
	=1.15); Pg=20.0 psf; I								-	P		
	Plate DOL=1.15); Is=		ully									123
	0.9; Cs=1.00; Ct=1.10									-,7	1. SNOW	ER. S.
	uires continuous botto has been designed fo									1	O HIN	F.F. 6
	load nonconcurrent w		ds.								REWJ	OHMIN

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

.10 mm May 2,2025

J	Job	Truss	Truss Type	Qty	Ply	Install 38 Magnolia Acres-Roof-Taylor EA SP FL GRH
2	25040194-01	V3	Valley	1	1	I73186147 Job Reference (optional)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu May 01 16:11:20 ID:xhySC1?3Z6B9c8SdfOnvUTykKpv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:24.5

Plate Offsets (X, Y): [2:0-2-8,Edge]

Plate Offsets (X, Y): [2:0-2-8,Edge]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.11 0.23 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD NOTES	2x4 SP No.2 2x4 SP No.2 Sheathed or 5-0-14 Rigid ceiling directly bracing. (size) 1=5-0-5, 3 Max Horiz 1=33 (LC Max Grav 1=171 (LC (lb) - Maximum Com Tension 1-2=-150/85, 2-3=-1	applied or 10-0-0 or 3=5-0-5 11) C 2), 3=171 (LC 2) pression/Maximum	International R802.10.2 a LOAD CASE(S)	designed in acco Residential Cod nd referenced st Standard	le sections	R502.11.1 a	and				rogn. to b	
 this design Wind: ASC Vasd=103 II; Exp B; I Exterior(2l vertical lef forces & M DOL=1.60 3) TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce=1 4) Gable reqt 5) This truss chord live 6) * This truss on the bot 3-06-00 ta chord and 	ed roof live loads have CE 7-16; Vult=130mph imph; TCDL=6.0psf; B(Enclosed; MWFRS (enc E) zone; cantilever left t and right exposed;C- MWFRS for reactions s 0 plate grip DOL=1.33 CE 7-16; Pr=20.0 psf (_=1.15); Pg=20.0 psf; P Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 uires continuous bottor has been designed for load nonconcurrent wi s has been designed for tom chord in all areas II by 2-00-00 wide will any other members. Is are assumed to be S	(3-second gust) CDL=6.0psf; h=25ft; welope) and C-C and right exposed; C for members and hown; Lumber roof LL: Lum DOL= ⁻ Pf=13.9 psf (Lum 1.0; Rough Cat B; F m chord bearing. r a 10.0 psf bottom th any other live loa or a live load of 20.0 where a rectangle fit between the bottom	Cat. end 1.15 fully ds. opsf						Continue	and the second sec	SEA 4584 VOR SEA 4584 VOR SIN	•

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

