

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DR Horton Inc

Model: 36 Mason Ridge -Hayden - K

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

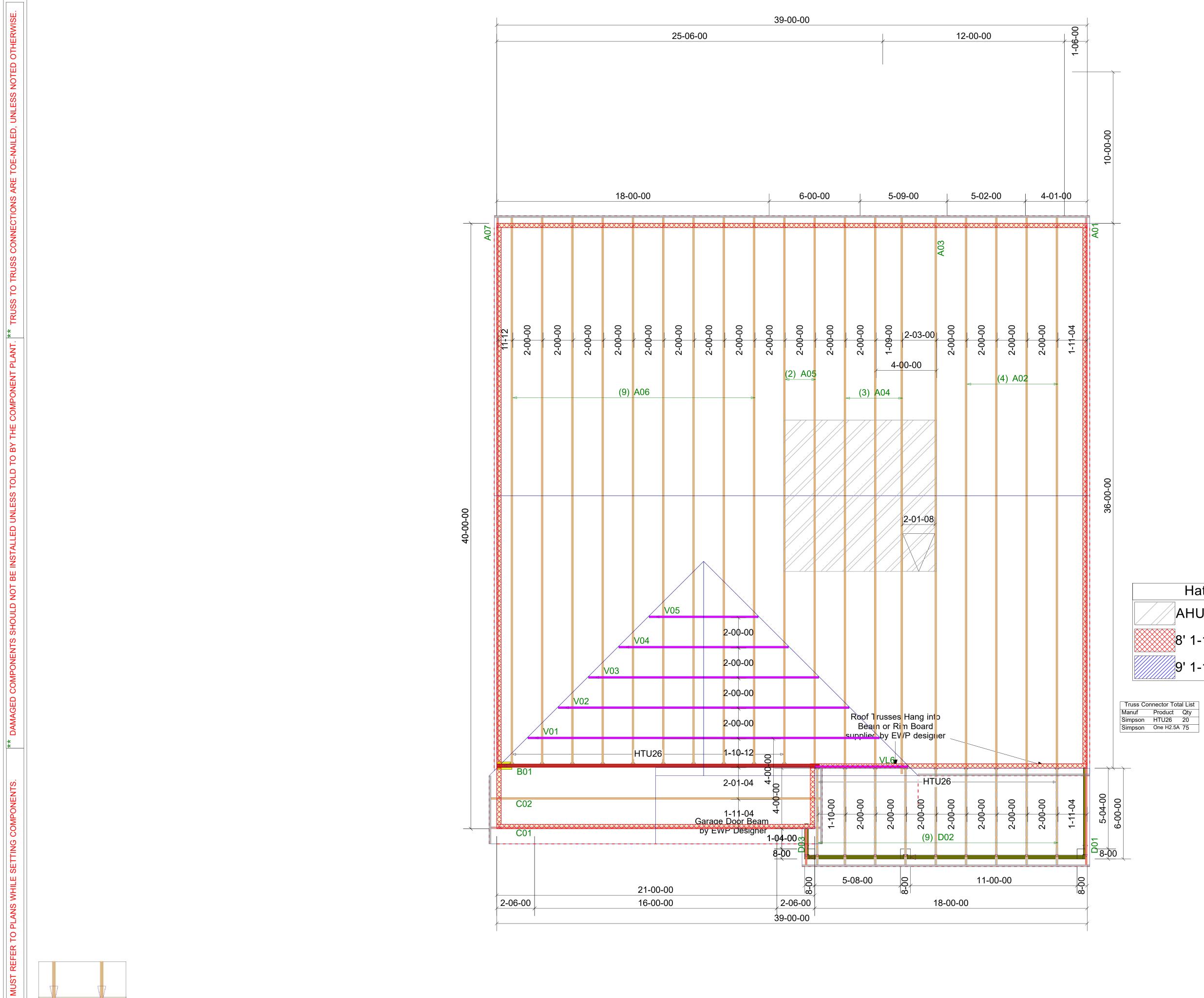
3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

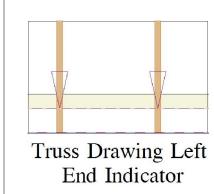
4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.


8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.


9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

ER

GIRDERS MUST BE FULLY CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS. TOMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH. All uplift connectors are the responsibility of the bldg designer and or contractor.	DR Horton Inc in the specification of the building design sheets for at the specification of the building design sheets for DR Horton Inc DR Horton Inc	is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The disign of the tuss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing v v v v	Roof Truss Layout Boof Truss Layout Boof Truss Layout
GIRDERS MUST BE FULLY CONNECTED TOGE	Date: 5 Nate 25	NTS	dson ^{iber:} -C

RE: 25040239 36 Mason Ridge - Hayden K - Roof Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:Customer: DR Horton IncProject Name:25040239Lot/Block: 36Model:Hayden KAddress:Subdivision:Mason RidgeCity:State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.7 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 19 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	169125629	A01	10/25/2024
2	169125630	A02	10/25/2024
3	169125631	A03	10/25/2024
4	169125632	A04	10/25/2024
5	169125633	A05	10/25/2024
6	169125634	A06	10/25/2024
7	169125635	A07	10/25/2024
8	169125636	B01	10/25/2024
9	169125637	C01	10/25/2024
10	169125638	C02	10/25/2024
11	169125639	D01	10/25/2024
12	169125640	D02	10/25/2024
13	169125641	D03	10/25/2024
14	169125642	V01	10/25/2024
15	169125643	V02	10/25/2024
16	169125644	V03	10/25/2024
17	169125645	V04	10/25/2024
18	169125646	V05	10/25/2024
19	169125647	VL6	10/25/2024

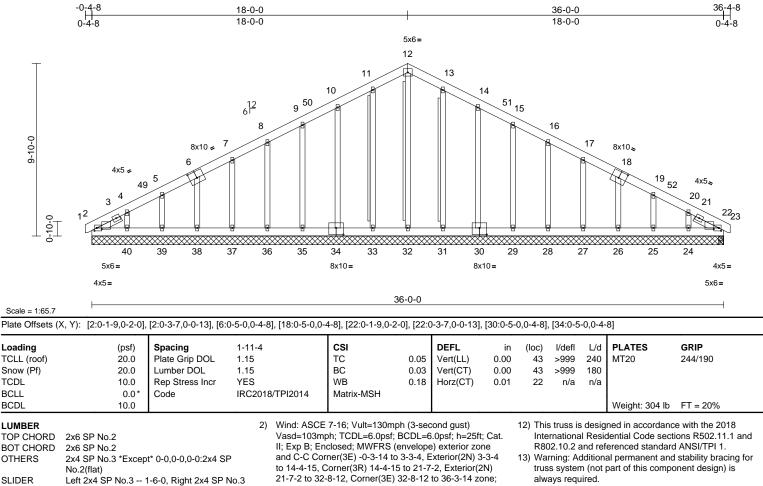
The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2025


North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	36 Mason Ridge - Hayden K - Roof
25040239	A01	Common Supported Gable	1	1	Job Reference (optional)

Run: 8,73 E May 9 2024 Print: 8,730 E May 9 2024 MiTek Industries, Inc. Thu Oct 24 16:45:14 ID:vF2b2QneXVJP9E5IeL0ISzzyU_5-Roo3Pb89FI0GbVw?_9qUKZYKtZjSWT8jIsPX3dyQ9QZ

LOAD CASE(S) Standard

bracing. WEBS T-Brace: 2x4 SP No.2 - 12-32, 11-33, 13-31 Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c.,with 3in minimum end distance. Brace must cover 90% of web length. REACTIONS All bearings 36-0-0. (lb) - Max Horiz 2=141 (LC 14), 41=141 (LC 14) Max Uplift All uplift 100 (lb) or less at joint(s) 2, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41 Max Grav All reactions 250 (lb) or less at joint (s) 2, 22, 24, 25, 26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 45

Structural wood sheathing directly applied or

Rigid ceiling directly applied or 10-0-0 oc

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown

TOP CHORD 11-12=-102/253, 12-13=-102/253

-- 1-6-0

6-0-0 oc purlins.

NOTES

BRACING

TOP CHORD

BOT CHORD

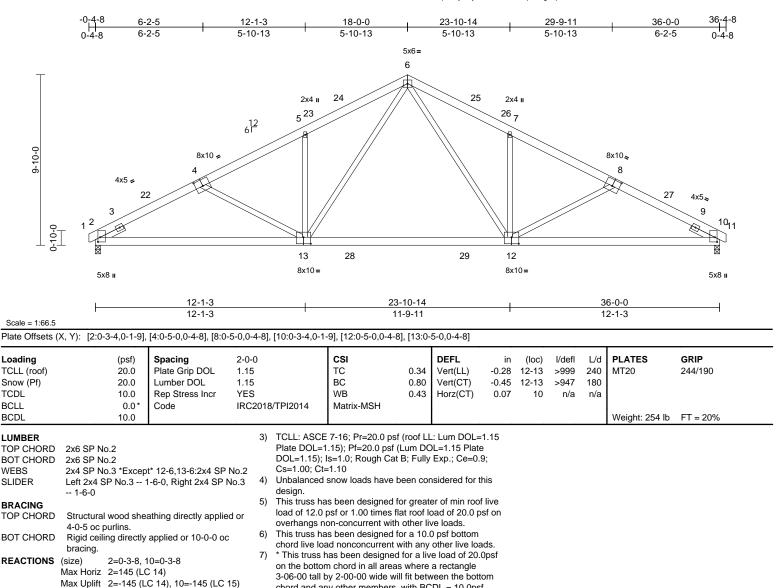
1) Unbalanced roof live loads have been considered for this design.

cantilever left and right exposed ; end vertical left and right exposed C-C for members and forces & MWERS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhands non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 9) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 10) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to
- UPLIFT at jt(s) 2, 33, 34, 35, 36, 37, 38, 39, 40, 31, 30, 29, 28, 27, 26, 25, and 24. This connection is for uplift only and does not consider lateral forces.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	36 Mason Ridge - Hayden K - Roof	
25040239	A02	Common	4	1	Job Reference (optional)	169125630

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Wed Oct 23 15:54:51 ID:m1UPesaseHFNi6b7QPEqXNzyU0y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/13, 2-5=-2924/301, 5-6=-2726/382,
	6-7=-2726/382, 7-10=-2924/301, 10-11=0/13
BOT CHORD	2-10=-301/2526
WEBS	6-12=-204/1211, 7-12=-510/224,
	8-12=-291/182, 6-13=-204/1211,
	5-13=-510/225, 4-13=-291/181

Max Grav 2=1591 (LC 3), 10=1591 (LC 3)

NOTES

Unbalanced roof live loads have been considered for 1) this design.

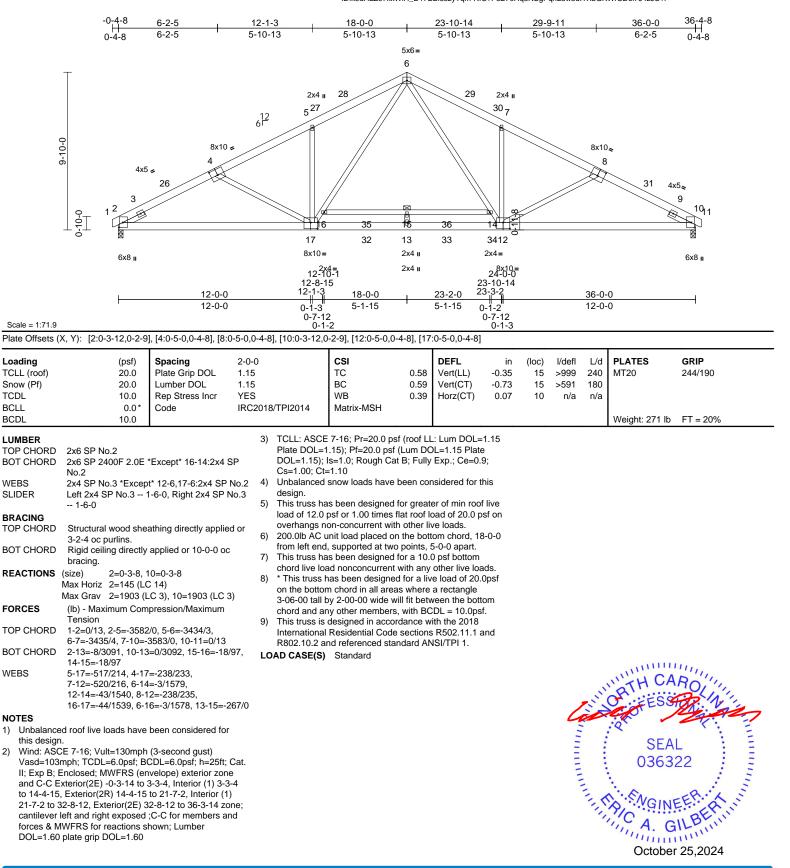
Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-3-14 to 3-3-4. Interior (1) 3-3-4 to 14-4-15, Exterior(2R) 14-4-15 to 21-7-2, Interior (1) 21-7-2 to 32-8-12. Exterior(2E) 32-8-12 to 36-3-14 zone: cantilever left and right exposed ; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

chord and any other members, with BCDL = 10.0psf. One H2.5A Simpson Strong-Tie connectors 8) recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 10. This connection is for uplift only

- and does not consider lateral forces. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and
- R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

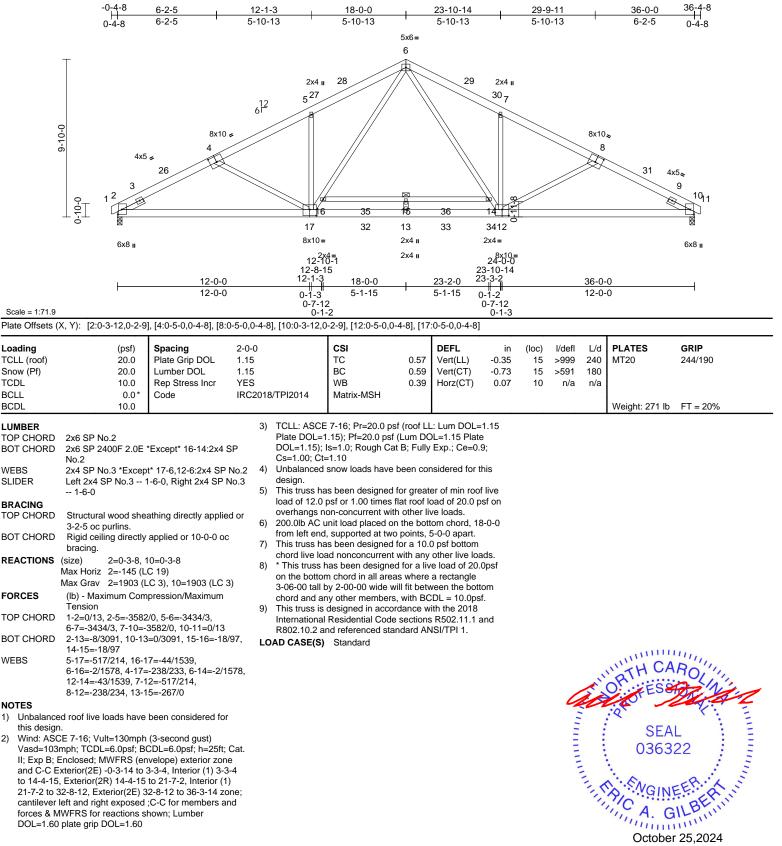

Job	Truss	Truss Type	Qty	Ply	36 Mason Ridge - Hayden K - Roof	
25040239	A03	Common	1	1	Job Reference (optional)	169125631

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Wed Oct 23 15:54:51 ID:x5dHLZ07xxWiH_D17EEI8szyTqm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Oct 23 15:54:51 Page: 1

818 Soundside Road

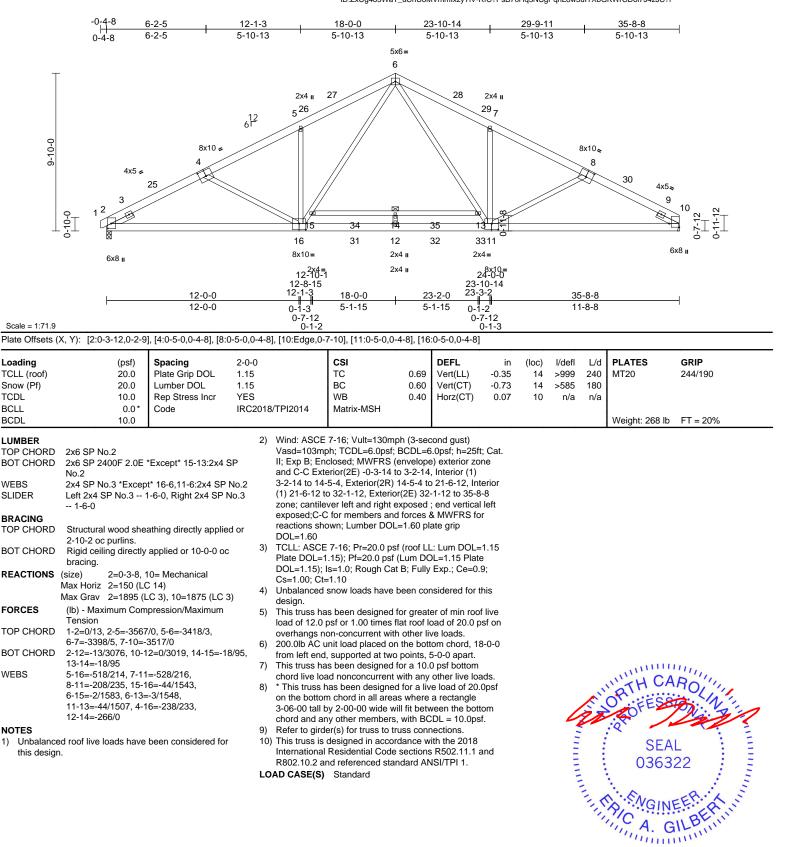
Edenton, NC 27932



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	36 Mason Ridge - Hayden K - Roof	169125632
25040239	A04	Common	3	1	Job Reference (optional)	

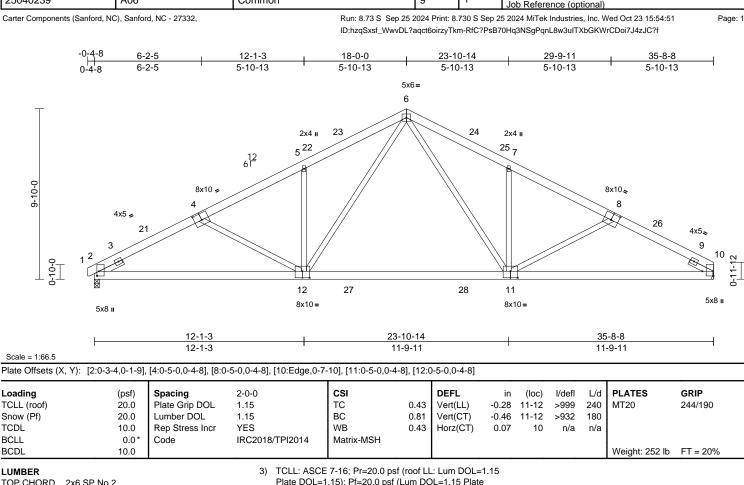
Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Wed Oct 23 15 ID:5n1bX0I2OIdsE9NkoPgROwzyTt_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJ


2024 MiTek Industries, Inc. Wed Oct 23 15:54:51 Page: 1 Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f							
29-9-11 5-10-13	36-0-0 6-2-5	36-4-8 0-4-8					

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	36 Mason Ridge - Hayden K - Roof	
25040239	A05	Common	2	1	Job Reference (optional)	169125633

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Wed Oct 23 15:54:51 ID:ZxUg4o5WaT_uCnUoMVmmlxzyTIV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



October 25,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	36 Mason Ridge - Hayden K - Roof	100405004	
25040239	A06	Common	9	1	Job Reference (optional)	169125634	

BOT CHORD		0.2
WEBS		0.3 *Except* 11-6,12-6:2x4 SP No.2
SLIDER	Left 2x4 S	P No.3 1-6-0, Right 2x4 SP No.3
	1-6-0	
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	3-10-15 o	c purlins.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	2=0-3-8, 10= Mechanical
	Max Horiz	2=150 (LC 14)
	Max Uplift	2=-145 (LC 14), 10=-135 (LC 15)
	Max Grav	2=1584 (LC 3), 10=1561 (LC 3)
FORCES	(lb) - Maxi	mum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/13,	2-5=-2910/299, 5-6=-2712/381,
	6-7=-2695	5/380, 7-10=-2867/298
BOT CHORD	2-10=-306	
WEBS	7-11=-517	//225, 5-12=-510/225,
	4-12=-291	/181, 6-11=-202/1185,
		/1215, 8-11=-263/178

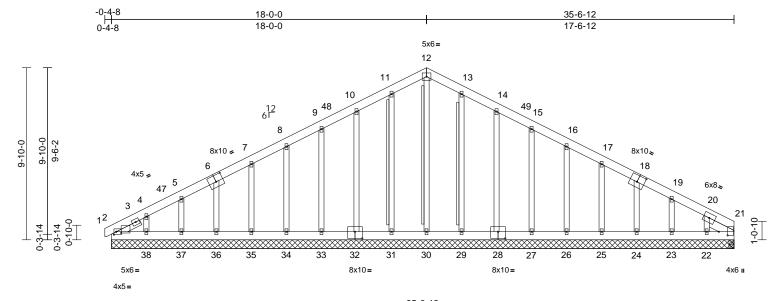
NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-3-14 to 3-2-14. Interior (1) 3-2-14 to 14-5-4, Exterior(2R) 14-5-4 to 21-6-12, Interior (1) 21-6-12 to 32-1-12, Exterior(2E) 32-1-12 to 35-8-8 zone; cantilever left and right exposed ; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10 Unbalanced snow loads have been considered for this

- design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections. 8) 9)
 - Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 135 lb uplift at joint 10.
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


4)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	36 Mason Ridge - Hayden K - Roof	
25040239	A07	Common Supported Gable	1	1	Job Reference (optional)	169125635

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Wed Oct 23 15:54:52 ID:ISAbvuJkJjelkMZSOkGIQ2zyTwq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:65.8

35-6-12

Plate Offsets (X, Y): [2:												
	0-1-9,0-2-0], [2:0-3-7,0-	0-13], [6:0-5-	0,0-4-8], [18:0-5-0	,0-4-8], [21:	0-2-8,0-5-15], [2	8:0-5-0,0-4-8], [32:0-5-	0,0-4-8]				
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) Spacing 20.0 Plate Grip 20.0 Lumber D 10.0 Rep Stress 0.0* Code 10.0 Key Stress	DOL 1. OL 1. ss Incr Y	0-0 15 15 ES 8C2018/TPI2014	CSI TC BC WB Matrix-	0.05 0.03 0.15 MSH	Vert(CT)	in 0.00 0.00 0.01	(loc) 45 45 21	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 303 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x6 SP BOT CHORD 2x6 SP OTHERS 2x4 SP No.2(fla SLIDER Left 2x4 1-7-7 BRACING TOP CHORD Structur 6-0-0 oc	No.2 No.2 No.3 *Except* 0-0,0-0,0) SP No.3 1-6-0, Right al wood sheathing direc : purlins. iling directly applied or	2x6 SP No.2 ttly applied or 10-0-0 oc			2=-5 (LC 10), 2 23=-41 (LC 15 25=-46 (LC 15 27=-45 (LC 15 29=-21 (LC 15 32=-50 (LC 14 34=-43 (LC 14 36=-46 (LC 14 38=-92 (LC 14 2=137 (LC 27) 22=154 (LC 37 24=159 (LC 22 26=160 (LC 1)	, 24=-44 (LC , 26=-43 (LC , 28=-52 (LC , 31=-27 (LC , 33=-45 (LC , 35=-45 (LC , 35=-45 (LC , 43=-5 (LC 1 21=104 (LC), 23=154 (LC 27=176 (LC	15), 15), 15), 14), 14), 14), 14), 14), 28), 28), 237), 21), 22),	this 2) Wir	balance design. nd: ASC	10-32 7-35= 4-38= 14-28 16-26 18-24 20-22 d roof li E 7-16	=-132/22, 11-31 =-191/87, 9-33= 128/133, 13-29 =-191/87, 15-27 =-126/77, 17-25 =-125/75, 19-23 =-108/135 ive loads have b ; Vult=130mph (;	197/52, -138/78, 8-34=-126/77 25/77, 5-37=-120/79, 197/48, 138/78, 131/80, 123/100, een considered for
Fasten (web with 3in mini Brace REACTIONS (size)	11-31, 13-3 2X) T and I braces to r n 10d (0.131"x3") nails, mum end distance. must cover 90% of web 2=35-6-12, 21=35-6 24=35-6-12, 21=35-6 26=35-6-12, 27=35-6 28=35-6-12, 31=35-6 30=35-6-12, 31=35-6 32=35-6-12, 33=35-6 38=35-6-12, 37=35-6 38=35-6-12, 39=35-6 38=35-6-12 2 =152 (LC 14), 43=1	29 narrow edge c 6in o.c.,with length. 12, -12, -12, -12, -12, -12, -12, -12,	FORCES	Tension 1-2=0/9, 1 5-7=-113 9-10=-78 11-12=-1 13-14=-9 15-16=-6 19-20=-1 2-38=-42 36-37=-4 34-35=-4 34-35=-4 29-30=-4 26-27=-4	28=231 (LC 22 30=168 (LC 32 32=231 (LC 21 34=160 (LC 1) 36=160 (LC 36 38=176 (LC 36 43=137 (LC 27 imum Compres 2-4=-196/61, 4-{ /88, 7-8=-68/112 /169, 10-11=-93 3/218, 14-15=-7 6/123, 16-17=-5 01/29, 20-21=-8 /137, 37-38=-42 2/137, 35-36=-4 /140, 33-34=-4 /140, 30-31=-4 3/318, 27-29=-4 /140, 23-24=-4), 31=238 (LC), 33=176 (LC 35=164 (LC), 33=176 (LC), 37=151 (LC), 37=104 (LC) ; 8-9=-66/135 218, 105/252, 3/169, 5/78, 17-19=- 2/26 137, 4/140, 4/140, 4/140, 4/140,	2 21), 2 21), 1), 2 1), 2 1), 2 28), n	II; E anc 3-2 (2N zon anc MW grip	Exp B; E C-C Cc -14 to 1- I) 21-6-1 le; cantil d right ex- /FRS fo DOL=1	nclose prner(3 4-5-4, (2 to 32 lever le cposed r reacti 1.60	d; MWFRS (env. E) -0-3-14 to 3-2 Corner(3R) 14-5 2-0-0, Corner(3E ft and right expo ;C-C for membe	elope) exterior zone -14, Exterior(2N) 4 to 21-6-12, Exterior) 32-0-0 to 35-6-12 sed ; end vertical left rs and forces & ber DOL=1.60 plate

October 25,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)

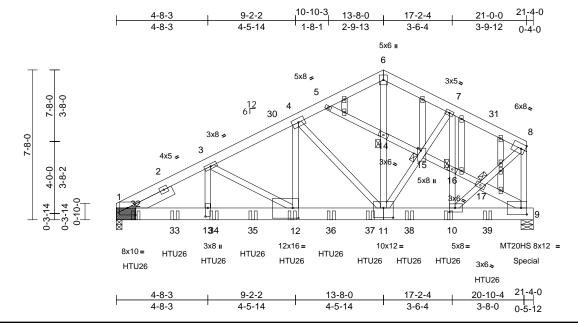
Job	Truss	Truss Type	Qty	Ply	36 Mason Ridge - Hayden K - Roof	
25040239	A07	Common Supported Gable	1	1	Job Reference (optional)	169125635

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Bearings are assumed to be: , Joint 21 User Defined .
- 12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 31, 32, 33, 34, 35, 36, 37, 38, 29, 28, 27, 26, 25, 24, 23, 22, and 2. This connection is for uplift only and does not consider lateral forces.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

LOAD CASE(S) Standard

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Wed Oct 23 15:54:52 ID:ISAbvuJkJjelkMZSOkGIQ2zyTwq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2



Job	Truss	Truss Type	Qty	Ply	36 Mason Ridge - Hayden K - Roof	
25040239	B01	Common Girder	1	2	Job Reference (optional)	169125636

Scale = 1:58.9

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Wed Oct 23 15:54:52 ID:qdHuCSNJkkLV_VCNLN62azyTNu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [1:0-5-0,0-4-6], [9:0-3-8,0-4-0], [10:0-3-8,0-2-8], [11:0-6-0,0-6-0], [12:0-3-8,0-6-4], [13:0-5-4,0-1-8], [15:0-1-8,0-2-0]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.80 0.48 0.84	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.24 0.05	(loc) 12-13 12-13 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS	GRIP 244/190 187/143
BCDL	10.0											Weight: 454 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD	No.2, 17-9:2x6 SP N 2x4 SP No.3 Left 2x6 SP No.2 2 Structural wood she	2-6-0 athing directly applied	SP	(0.131"x3") n Top chords c staggered at Bottom chord staggered at Web connect Except mem	be connected toge alls as follows: connected as follow 0-9-0 cc, 2x4 - 1 rc 5 connected as fol 0-6-0 oc. ted as follows: 2x4 ber 4-12 2x4 - 1 ro row at 0-7-0 oc, 2x	rs: 2x6 ow at 0- lows: 2 - 1 row w at 0-6	- 2 rows -9-0 oc. x8 - 2 rows at 0-9-0 oc, 5-0 oc, memb		12) This cho 13) * Th on t 3-00 cho 14) LG ⁻ con	s truss h rd live lo his truss the botto 6-00 tall rd and a T2 Simp nect trus	as bee bad no has be by cho by 2-0 iny oth son St ss to b	nconcurrent with een designed for ord in all areas wi 00-00 wide will fit er members. rong-Tie connec earing walls due	a 10.0 psf bottom any other live loads. a live load of 20.0psf here a rectangle between the bottom tors recommended to to UPLIFT at jt(s) 1. d does not consider
BOT CHORD JOINTS	3-9-1 oc purlins, ex Rigid ceiling directly bracing. 1 Brace at Jt(s): 14, 15, 16, 17	cept end verticals. applied or 10-0-0 oc	2)	All loads are except if note CASE(S) sec	considered equally ed as front (F) or ba ction. Ply to ply con listribute only loads	ack (B) nection	face in the Lo s have been		late 15) This Inte	ral force s truss is rnationa	s. desig I Resi	ned in accordan	ce with the 2018 tions R502.11.1 and
	, ,	C 12) C 12)	3)	2x8 SP 2400 attached to e nails spaced is assumed to	wise indicated. IF 2.0E bearing blo each face with 4 ro 3" o.c. 16 Total fas o be SP 2400F 2.0 roof live loads have	ws of 1 steners E.	0d (0.131"x3 per block. Be	earing	 ma:	10dx1 1, k. startin	/2 Trus g at 1-		spaced at 2-0-0 oc end to 17-0-0 to
FORCES	(lb) - Maximum Com	pression/Maximum	,	this design.				51					
TOP CHORD	Tension 1-3=-13158/1157, 3- 4-5=-6956/560, 5-6= 6-7=-5593/458, 7-8= 8-9=-6334/263	-5791/469,	5)	Vasd=103mp II; Exp B; End cantilever lef	7-16; Vult=130mpl bh; TCDL=6.0psf; E closed; MWFRS (e t and right exposed	BCDL=6 nvelope I ; end v	6.0psf; h=25ft e) exterior zo vertical left				- M	ORTH CA	ARO
BOT CHORD	1-13=-1134/11584,		6)	Truss design		n the pl	ane of the tru			4	1	100	1430
WEBS	10-12=-833/9316, 9- 3-13=-223/2667, 4-1 11-14=-379/5187, 6- 10-16=-1295/424, 7- 3-12=-2644/348, 4-1 11-15=-340/1184, 7- 5-14=-1864/192, 14- 15-16=-1941/201, 11 9-17=-2117/205, 10- 8-17=-218/5866	2=-470/5220, -14=-379/5173, -16=-1392/432, 1=-3923/462, -15=-3923/462, -15=-1892/193, -15=-1892/193, -17=-2038/206,	8) 9)	Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANS/ITPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. All plates are MT20 plates unless otherwise indicated. All plates are 2x4 MT20 unless otherwise indicated.						EER. KILL			

mmm October 25,2024

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 1/2/2023 BEFORE USE Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	36 Mason Ridge - Hayden K - Roof	
25040239	B01	Common Girder	1	2	Job Reference (optional)	169125636

- 17) Use Simpson Strong-Tie HTU26 (20-10d Girder, 14-10dx1 1/2 Truss, Single Ply Girder) or equivalent at 19-0-0 from the left end to connect truss(es) to back face of bottom chord, skewed 0.0 deg.to the left, sloping 0.0 deg, down.
- 18) Fill all nail holes where hanger is in contact with lumber.
- LGT2 Hurricane ties must have two studs in line below the truss.
- Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1862
 Ib down at 20-10-4 on bottom chord. The design/ selection of such connection device(s) is the responsibility of others.

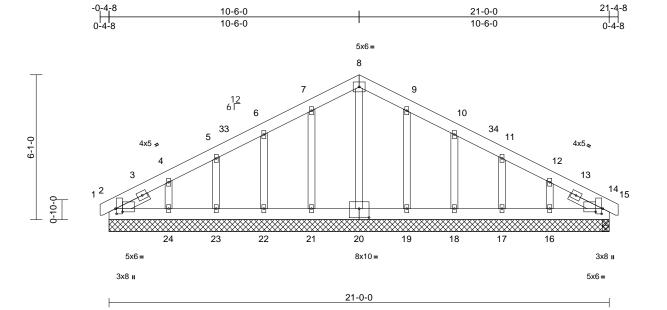
LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-6=-58, 6-8=-58, 9-26=-19

- Concentrated Loads (lb)
- Vert: 9=-1617 (B), 12=-1403 (B), 10=-1403 (B), 32=-1404 (B), 33=-1403 (B), 34=-1403 (B), 35=-1403 (B), 36=-1403 (B), 37=-1403 (B), 38=-1403 (B), 39=-1611 (B)


Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Wed Oct 23 15:54:52 ID:qdHuCSNJkkLV__VCNLN62azyTNu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	36 Mason Ridge - Hayden K - Roof
25040239	C01	Common Supported Gable	1	1	Job Reference (optional)

Run: 8.73 E May 9 2024 Print: 8.730 E May 9 2024 MiTek Industries, Inc. Thu Oct 24 16:46:10 ID:soQIgSV4E6qUu99PoH5mGuzyTQJ-oZBE9kqH3V3KJ6CmGwqcbNsu28rbepgyAZzV1OyQ9Ph Page: 1

Scale =	1:48.4

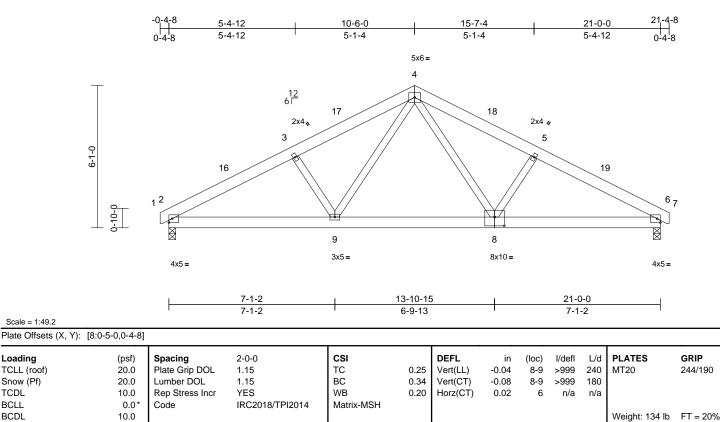
Plate Offsets (X, Y): [2:0-2-10.0-0-8]. [2:0-3-8.0-1-9]. [14:0-2-10.0-0-8]. [14:0-3-8.0-1-9]. [20:0-5-0.0-4-8]

Plate Offsets	s (X, Y): [2:0-2-10,0-0-8	i], [2:0-3-8,0-1-9], [14:0-	-2-10,0-0-8	3], [14:0-3-8,	0-1-9], [20:0-5-0,0 I	-4-8]							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	1-11-4 1.15 1.15 YES IRC2018/T	PI2014	CSI TC BC WB Matrix-MSH	0.03 0.03 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 27 27 14	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 151 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORE BOT CHORE OTHERS SLIDER BRACING TOP CHORE BOT CHORE BOT CHORE REACTIONS (lb) FORCES NOTES 1) Unbaland	 D 2x6 SP No.2 D 2x6 SP No.2 2x4 SP No.3 Left 2x4 SP No.3	00 (lb) or less at joint(s 18, 19, 21, 22, 23, 24, ons 250 (lb) or less at jo 16, 17, 18, 19, 20, 21, 2 5, 29 ax. Ten All forces 250 hen shown.	F C C C C C C C C C C C C C C C C C C C	Plate DOL=1 DOL=1.15); I CS=1.00; Ct= Jnbalanced design. This truss ha oad of 12.0 I yverhangs ni All plates are Sable studs This truss ha chord live loa This truss ha chord live loa This truss ha chord live loa This truss ha chord and ar Dine H2.5A S ecommende JPLIFT at jt(connection is corces.	snow loads have b s been designed for performance of the second second performance of the second second performance of the second performance of the second s been designed for a donoconcurrent w has be	Lum DC B; Fully been color or great at roof l other li other li other wi br a 10. vith any for a liv s where ll fit betw e conne to bear 1, 19, 18 does n dance w	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the er of min roof pad of 20.0 pay ve loads. se indicated. 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto ctors ing walls due 8, 17, and 16. ot consider la ith the 2018	e ilive sf on dds. Dpsf om to This teral					
Vasd=10 II; Exp B; and C-C to 7-6-0, to 18-3-1 cantileve right exp for reacti DOL=1.6 3) Truss de only. Fo	SCE 7-16; Vult=130mph)3mph; TCDL=6.0psf; B ; Enclosed; MWFRS (er Corner(3E) -0-3-14 to 2 Corner(3R) 7-6-0 to 13- 14, Corner(3E) 18-3-14 t er left and right exposed osed;C-C for members ions shown; Lumber DC	CDL=6.0psf; h=25ft; Ca velope) exterior zone 2-6-0, Exterior(2N) 2-6-6 -6-0, Exterior(2N) 13-6-6 to 21-3-14 zone; ; end vertical left and and forces & MWFRS JL=1.60 plate grip In the plane of the truss I (normal to the face),	R at. LOAI)		Residential Code nd referenced stan Standard			ind				SEA 0363	• -

DOL=1.60 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932


G munn

October 25,2024

Job	Truss	Truss Type	Qty	Ply	36 Mason Ridge - Hayden K - Roof	
25040239	C02	Common	1	1	Job Reference (optional)	169125638

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Wed Oct 23 15:54:53 ID:PzU3IBWmSwPZz4aYjwcSfbzyTP?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

LUMBER TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 5-11-14 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **REACTIONS** (size) 2=0-3-8. 6=0-3-8 Max Horiz 2=86 (LC 18) Max Uplift 2=-86 (LC 14), 6=-86 (LC 15) Max Grav 2=902 (LC 21), 6=902 (LC 22) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/9, 2-3=-1438/254, 3-4=-1274/269, 4-5=-1275/269, 5-6=-1438/254, 6-7=0/9 BOT CHORD 2-9=-154/1221. 6-9=-154/1221 WEBS 3-9=-350/169, 4-9=-72/484, 4-8=-73/485, 5-8=-350/169

NOTES

Loading

TCLL (roof)

Snow (Pf)

TCDL

BCLL

BCDL


1) Unbalanced roof live loads have been considered for this design.

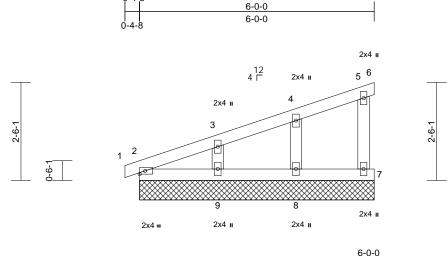
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-3-14 to 2-8-2, Interior (1) 2-8-2 to 7-6-0, Exterior(2R) 7-6-0 to 13-6-0, Interior (1) 13-6-0 to 18-3-14, Exterior(2E) 18-3-14 to 21-3-14 zone; cantilever left and right exposed ; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

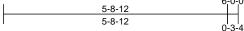
4) Unbalanced snow loads have been considered for this design.

- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 6 and 2. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road


Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	36 Mason Ridge - Hayden K - Roof	
25040239	D01	Monopitch Supported Gable	1	1	Job Reference (optional)	169125639

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Wed Oct 23 15:54:53 ID:RPFco9iHZuPKmp1rZQ1BZjzw85G-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

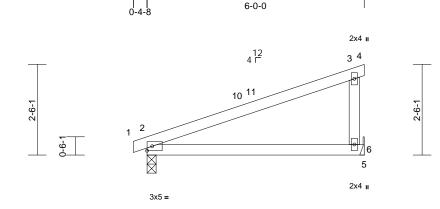
Scale = 1:29.5

		1										
Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC (0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC (0.05	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB (0.06	Horz(CT)	0.00	6	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 25 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=6-0-0, 9=6-0-0, Max Horiz 2=77 (LC Max Uplift 6=-16 (LC Max Grav 2=120 (LC (LC 21), 8	e applied or 10-0-0 oc 6=6-0-0, 7=6-0-0, 8=6- 10=6-0-0 10), 10=77 (LC 10)	Plate DOL= DOL=1.15); Cs=1.00; Ct 4) Unbalanced design. 5) This truss ha load of 12.0 overhangs r 6) Gable requi -0-0, 7) Gable studs 8) This truss ha chord live lo 9) * This truss on the botto 3-06-00 tall chord and a 10) Provide med	F7-16; Pr=20.0 psf (rc 1.15); Pf=20.0 psf (Lu Is=1.0; Rough Cat B; =1.10 snow loads have bee as been designed for g psf or 1.00 times flat r on-concurrent with ot es continuous bottom spaced at 2-0-0 oc. as been designed for ad nonconcurrent with has been designed for m chord in all areas w by 2-00-00 wide will fit ny other members. chanical connection (b e capable of withstanc	m DO Fully en con greate roof lo her liv n chord a 10.0 h any o r a live where a t betw	L=1.15 Plate Exp.; Ce=0.9 sidered for th er of min roof pad of 20.0 ps re loads. d bearing. 0 psf bottom other live load e load of 20.0 a rectangle reen the botto ers) of truss to	; live lf on ds. psf m					
FORCES	(lb) - Maximum Com Tension			t at joint 7, 28 lb uplift								
TOP CHORD	4-5=-35/20, 5-6=-13	/5, 5-7=-103/103		designed in accordan Residential Code sec			nd					
BOT CHORD	,			nd referenced standa			-				, in the second	
WEBS	4-8=-170/166, 3-9=-	180/186	LOAD CASE(S)	Standard							TH CA	Roill
NOTES			- (-)							1	ORTHUA	Juli .
Vasd=103 II; Exp B; and C-C (to 6-0-0 z vertical le MWFRS f grip DOL= 2) Truss des only. For	CE 7-16; Vult=130mph 3mph; TCDL=6.0ps; B Enclosed; MWFRS (er Corner(3E) -0-4-8 to 2- one; cantilever left and ft exposed;C-C for mer ior reactions shown; Lu =1.60 signed for wind loads in studs exposed to wind lard Industry Gable En	CDL=6.0psf; h=25ft; C vvelope) exterior zone 7-8, Exterior(2N) 2-7-6; right exposed ; end mbers and forces & imber DOL=1.60 plate the plane of the truss I (normal to the face),	3						A THURSDAY	D	SEA 0363	

- MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 2)
- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G 11111111 October 25,2024


Job	Truss	Truss Type	Qty	Ply	36 Mason Ridge - Hayden K - Roof	
25040239	D02	Monopitch	9	1	Job Reference (optional)	169125640


6-0-0

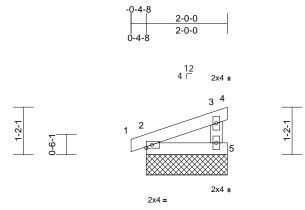
Carter Components (Sanford, NC), Sanford, NC - 27332,

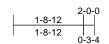
Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Wed Oct 23 15:54:53 ID:krHzYocKvxshGLGFSgtm6Xzw845-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:31.8

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.75	Vert(LL)	0.12	`6-9	>590	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.50	Vert(CT)	-0.14	6-9	>486	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.02	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 22 lb	FT = 20%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS (FORCES TOP CHORD BOT CHORD BOT CHORD NOTES	6-0-0 oc purlins, ex Rigid ceiling directly bracing.	 applied or 10-0-0 oc 6= Mechanical 10) C 10), 6=-103 (LC 10) C 21), 6=341 (LC 21) apression/Maximum 3-4=-8/0, 3-6=-250 0/0 	on the bo 3-06-00 f cchord an 7) Refer to bearing p 6. 9) One H2.4 recomme UPLIFT does not 10) This trus 10) This trus LOAD CASE	ss has been designe wittom chord in all area all by 2-00-00 wide w d any other members girder(s) for truss to t nechanical connectic late capable of withs 5A Simpson Strong-T ended to connect trus at jt(s) 2. This connec consider lateral force is is designed in acco nal Residential Code 2 and referenced sta (S) Standard	as where vill fit betw s. russ com on (by oth standing ? Tie conne ss to bear sto bear stion is fo es. rdance we sections	a rectangle ween the bott nections. ers) of truss (03 lb uplift a ctors ing walls due r uplift only a ith the 2018 \$ R502.11.1 a	to t joint t joint					
 Vasd=103rr II; Exp B; Er and C-C Exx 3-0-0, Exter and right ex and right ex mWFRS for grip DOL=1 TCLL: ASC Plate DOL= DOL=1.15; Cs=1.00; Ci Unbalancec design. This truss h load of 12.0 overhangs r This truss h 	nph; TCDL=6.0psf; B nclosed; MWFRS (er tterior(2E) -0-4-8 to 2 rior(2E) 3-0-0 to 6-0-0 sposed; end vertical cposed; C-C for memb r reactions shown; Lu .60 E 7-16; Pr=20.0 psf (1.15); Pf=20.0 psf (; 1s=1.0; Rough Cat E	CDL=6.0psf; h=25ft; vvelope) exterior zon -7-8, Interior (1) 2-7-i 0 zone; cantilever left left exposed; porch le bers and forces & Imber DOL=1.60 plat (roof LL: Lum DOL=1. 1.40 POL=1.15 Plate 3; Fully Exp.; Ce=0.9 been considered for th r greater of min roof 1 t roof load of 20.0 ps other live loads. r a 10.0 psf bottom	e 8 to t eft .15 ; iis live if on									EER C

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




October 25,2024

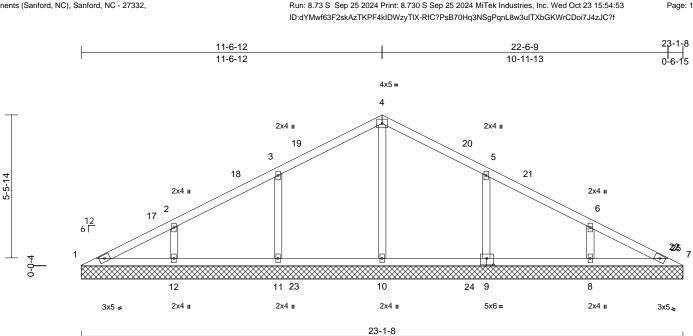
Job	Truss	Truss Type	Qty	Ply	36 Mason Ridge - Hayden K - Roof	
25040239	D03	Monopitch Supported Gable	1	1	Job Reference (optional)	169125641

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Wed Oct 23 15:54:53 ID:Z4Ix46WIUgAB8iwTnDC768zw82x-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:28.4

Scale = 1:28.4												
Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.04	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0				_						Weight: 8 lb	FT = 20%
UMBER	2x4 SP No.2			s has been designe 2.0 psf or 1.00 time								
BOT CHORD	2x4 SP No.2 2x4 SP No.2			s non-concurrent w			51 011					
VEBS	2x4 SP No.3			quires continuous b								
	2.0.0.1000		,	, ids spaced at 2-0-0		0						
OP CHORD	Structural wood she	athing directly appli	ed or 8) This trus	s has been designe	ed for a 10.	0 psf bottom						
0. 0.101.0	2-0-0 oc purlins, ex		chord live	e load nonconcurre								
BOT CHORD	Rigid ceiling directly bracing.		on the bo	ss has been desigr ttom chord in all ar	eas where	a rectangle	•					
REACTIONS	(size) 2=2-0-0,	4=2-0-0, 5=2-0-0, 6=		all by 2-00-00 wide		veen the botte	om					
	Max Horiz 2=30 (LC	10), 6=30 (LC 10)		d any other membe nechanical connect		ore) of truce t	0					
	Max Uplift 2=-15 (LC), bearing r	late capable of with								
		C 14), 6=-15 (LC 10)) 2.43 lb i	plift at joint 4, 39 lb								
	Max Grav 2=108 (L	C 21), 4=13 (LC 14) C 21), 6=108 (LC 21	, uplift at jo	pint 2.								
FORCES	(lb) - Maximum Con	,. ·		s is designed in accondination in acconding the second secon			ind					
	Tension		R802.10	2 and referenced s	tandard Al	ISI/TPI 1.						
TOP CHORD	1-2=0/9, 2-3=-37/22 3-5=-132/145	2, 3-4=-20/14,	LOAD CASE	(S) Standard								
BOT CHORD	2-5=-46/20											
NOTES												
Vasd=103 II; Exp B; I and C-C C exposed ; and forces	CE 7-16; Vult=130mpl mph; TCDL=6.0pst; E Enclosed; MWFRS (e Corner(3E) zone; canti end vertical left expos & MWFRS for reaction plate grip DOL=1.60	CDL=6.0psf; h=25ft nvelope) exterior zor lever left and right sed;C-C for members	ne						4		ORTH C	AROUN
only. For see Stand	igned for wind loads in studs exposed to wind ard Industry Gable Er qualified building des	d (normal to the face d Details as applica	e), ble,						11111		SE/ 0363	
 TCLL: ASO Plate DOL 	CE 7-16; Pr=20.0 psf .=1.15); Pf=20.0 psf (L i); Is=1.0; Rough Cat I	(roof LL: Lum DOL= .um DOL=1.15 Plate	1.15 e						THUNKS		S. SNGII	EER ALL
	ed snow loads have b	een considered for th	his								11111	GILBE


October 25,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	36 Mason Ridge - Hayden K - Roof	
25040239	V01	Valley	1	1	Job Reference (optional)	169125642

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Wed Oct 23 15:54:53

Scale = 1:44.3 Plate Offsets (X, Y): [9:0-3-0,0-3-0]

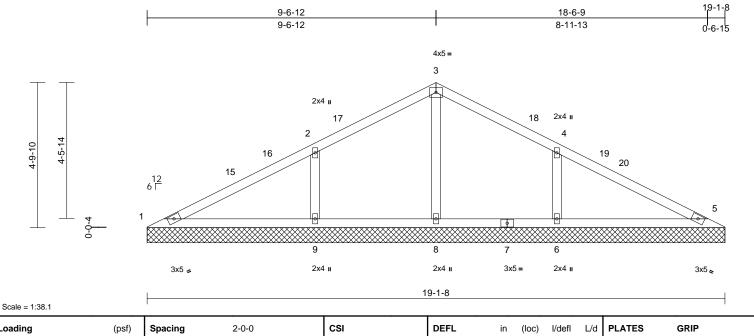
5-9-10

							-						
Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr	2-0-0 .15 .15 /ES RC2018/	TPI2014	CSI TC BC WB Matrix-MSH	0.31 0.17 0.15	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0											Weight: 92 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins. Rigid ceiling directly bracing.	athing directly applied c applied or 6-0-0 oc 7=23-1-8, 8=23-1-8,	r	Vasd=103mp II; Exp B; En- and C-C Exte 8-7-4, Exterio 19-7-1, Exter and right exp C for membe shown; Lumb	7-16; Vult=130mp bh; TCDL=6.0psf; closed; MWFRS (erior(2E) 0-0-8 to 3 or(2R) 8-7-4 to 14- rior(2E) 19-7-1 to 2 oosed ; end vertica ers and forces & M ber DOL=1.60 plat	BCDL=6 envelope 3-0-8, In 7-4, Inte 22-7-1 z I left and WFRS f e grip D	6.0psf; h=25ft; b) exterior zor terior (1) 3-0 erior (1) 14-7- one; cantileve d right expose or reactions OL=1.60	he 8 to 4 to er left ed;C-					
	9=23-1-8, 12=23-1-1 Max Horiz 1=94 (LC Max Uplift 1=-9 (LC 9=-100 (L 12=-81 (L Max Grav 1=106 (L0 8=340 (L0	10=23-1-8, 11=23-1-8, 8 14) 15), 8=-78 (LC 15), C 15), 11=-99 (LC 14), C 14) C 20), 7=75 (LC 21), C 3), 9=472 (LC 6), LC 5), 11=470 (LC 5),	4) 5)	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design.	snow loads have b	nd (norm nd Deta signer a (roof Ll Lum DC B; Fully been cor	al to the face ils as applical s per ANSI/TF .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 nsidered for th), ble, ⊇I 1. 1.15 9;					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	7)	Gable require	e 2x4 MT20 unless es continuous bott	om choi						mm	un,
TOP CHORD		43/116, 3-4=-79/128, 2/97, 6-7=-127/92	9)	This truss ha	spaced at 4-0-0 or is been designed f	or a 10.		مام				TH CA	Roilin
BOT CHORD		2=-47/74, 10-11=-47/74,	10)	* This truss h	ad nonconcurrent v has been designed	l for a liv	e load of 20.0			4	i	FESS	DAL
WEBS		390/149, 2-12=-244/11	7, :	3-06-00 tall b	n chord in all areas by 2-00-00 wide wi by other members,	ll fit betv	veen the botto					·Q*	
NOTES					hanical connectior					Ξ		SEA	L <u>:</u> E
	ed roof live loads have n.	been considered for		bearing plate 99 lb uplift at at joint 9 and	capable of withsta i joint 11, 81 lb upli I 78 lb uplift at joint designed in accord	anding 9 ift at join t 8.) Ib uplift at jo t 12, 100 lb u	int 1,		and the state of t		0363	22

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

A. GILDIN


October 25,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	36 Mason Ridge - Hayden K - Roof	
25040239	V02	Valley	1	1	Job Reference (optional)	169125643

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Wed Oct 23 15:54:53 ID:9MoYRm3dHYcJLJmDhND3gIzyTIY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.49 0.26 0.21	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a -0.01	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0					-						Weight: 71 lb	FT = 20%
	10-0-0 oc purlins. Rigid ceiling direct bracing. (size) 1=19-1- 8=19-1- Max Horiz 1=77 (L Max Uplift 1=-45 (l 9=-130 Max Grav 1=110 ((LC 21) 20), 14=	LC 36), 6=-125 (LC 15) (LC 14) LC 35), 5=1 (LC 1), 6=4 , 8=566 (LC 21), 9=588 e1 (LC 1)	d or 5) 3 6) 3 7) 579 9)	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requir Gable studs This truss ha chord live loo * This truss ha chord live loo 3-06-00 tall t	ed for wind loads dis exposed to w d Industry Gable lalified building d : 7-16; Pr=20.0 psi ls=1.0; Rough Ca =1.10 snow loads have es continuous bo spaced at 4-0-0 d is been designed ad nonconcurrent has been designed ad nonconcurrent has been designed y 2-00-00 wide v y other members	ind (norm End Deta esigner a: sf (roof LI (Lum DC at B; Fully been cor ttom chor oc. for a 10. with any d for a liv as where vill fit betw	al to the face ils as applica is per ANS/T : Lum DOL= L=1.15 Plate Exp.; Ce=0. asidered for t d bearing. 0 psf bottom other live loa e load of 20. a rectangle	e), able, PI 1. :1.15 e 9; his ads. 0psf					
FORCES	Tension	mpression/Maximum	1(hanical connection capable of withs								
TOP CHORD	1-2=-146/425, 2-3 4-5=-132/441	=0/393, 3-4=0/413,	4		ft at joint 9 and 1								
BOT CHORD	1-9=-328/126, 8-9 5-6=-328/98	=-328/98, 6-8=-328/98,		Ínternational	designed in acco Residential Code nd referenced sta	e sections	s R502.11.1 a	and				TH CA	11111.
WEBS	3-8=-516/65, 2-9=	-448/171, 4-6=-445/172	² L	DAD CASE(S)								W'TH CA	Rollin
NOTES 1) Unbalance	ed roof live loads hav	e been considered for		.,						/	S.	OREESS	icht !!

 Unbalanced roof live loads have been considered fo this design.
 Wind: ASCE 7-16; Vult=130mph (3-second gust)

Vind: AGCE 7-10, Valie 150 hpt (3-second gdst) Vasd=103mph; TCDL=6.0ps; BCDL=6.0ps; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 6-7-4, Exterior(2E) 15-7-1 to 18-7-1 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

A. GILP.... October 25,2024

SEAL 036322 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	36 Mason Ridge - Hayden K - Roof	
25040239	V03	Valley	1	1	Job Reference (optional)	169125644

7-6-12

7-6-12

Carter Components (Sanford, NC), Sanford, NC - 27332,

TCDL

BCLL

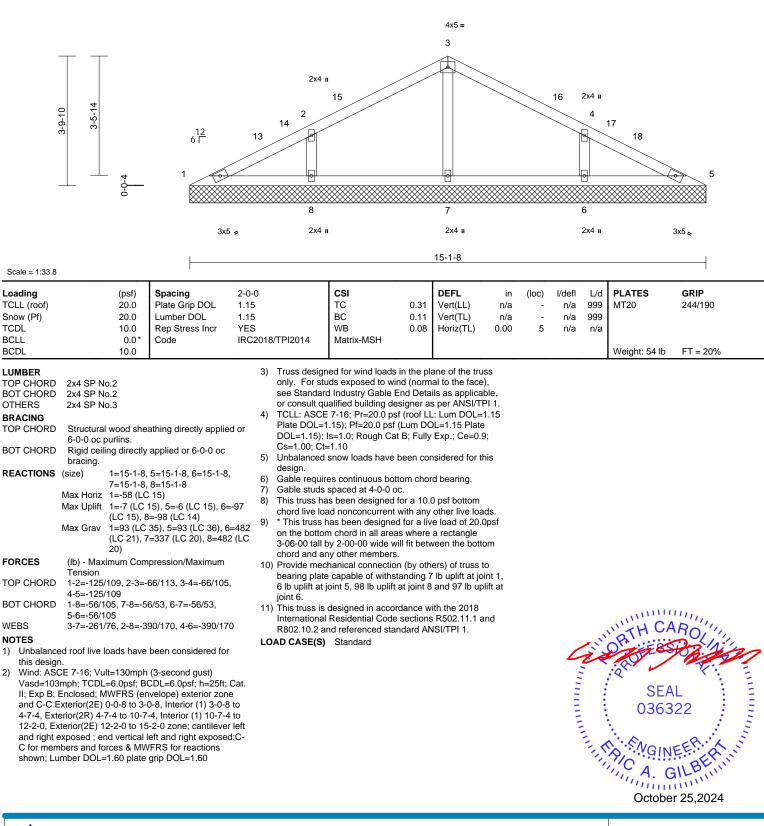
BCDL

WEBS

1)

2)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Wed Oct 23 15:54:53 ID:9MoYRm3dHYcJLJmDhND3gIzyTIY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


14-6-9

6-11-13

Page: 1

15-1-8

d-6-15

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	36 Mason Ridge - Hayden K - Roof	
25040239	V04	Valley	1	1	Job Reference (optional)	169125645

5-6-12

5-6-12

Carter Components (Sanford, NC), Sanford, NC - 27332,

2-9-10

Scale = 1:29.4 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

WFBS

NOTES

1)

2)

TOP CHORD

BOT CHORD

this design

REACTIONS (size)

TCDL

BCLL

BCDL

2-5-

(psf)

20.0

20.0

10.0

10.0

2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

bracing.

Max Uplift

Max Grav

Tension

2-4=-667/341

10-0-0 oc purlins.

Max Horiz 1=42 (LC 14)

4=-72 (LC 14)

4=856 (LC 21)

1-2=-164/491, 2-3=-164/491

1-4=-374/216, 3-4=-374/216

0.0

Code

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Wed Oct 23 15:54:53 ID:HO8JJrd6D?XeUXsFxIZ54DzyTkp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-6-9

4-11-13

Page: 1

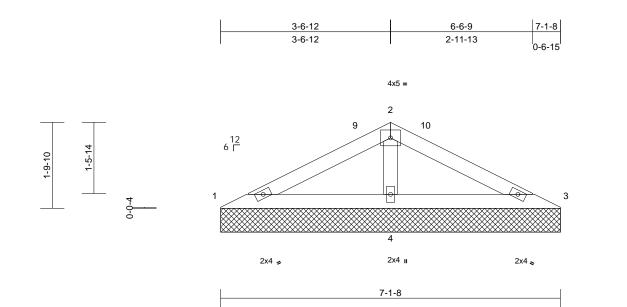
4x5 = 2 9 10 12 4 2x4 II 3x5 🦂 3x5 👟 11-1-8 2-0-0 CSI DEFL l/defl L/d PLATES GRIP Spacing in (loc) Plate Grip DOL 1.15 TC 0.54 Vert(LL) n/a 999 MT20 244/190 n/a 1 15 BC Lumber DOL 0.51 Vert(TL) n/a n/a 999 Rep Stress Incr YES WB 0.15 Horiz(TL) 0.01 4 n/a n/a IRC2018/TPI2014 Matrix-MSH Weight: 36 lb FT = 20%TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 5) desian. Structural wood sheathing directly applied or Gable requires continuous bottom chord bearing. 6) 7) Gable studs spaced at 4-0-0 oc. Rigid ceiling directly applied or 6-0-0 oc 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 1=11-1-8, 3=11-1-8, 4=11-1-8 9) on the bottom chord in all areas where a rectangle 1=-50 (LC 21), 3=-50 (LC 20), 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 1=126 (LC 20), 3=126 (LC 21), 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 50 lb uplift at joint (lb) - Maximum Compression/Maximum 1, 50 lb uplift at joint 3 and 72 lb uplift at joint 4. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Unbalanced roof live loads have been considered for Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-8 to 3-0-8, Exterior(2R) 3-0-8 Vanananan to 8-2-0, Exterior(2E) 8-2-0 to 11-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-SEAL C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 036322

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932


GI (1111111) October 25,2024

Job	Truss	Truss Type	Qty	Ply	36 Mason Ridge - Hayden K - Roof	
25040239	V05	Valley	1	1	Job Reference (optional)	169125646

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Wed Oct 23 15:54:54 ID:DnG3jXeMlcnMjr?e3AbZAezyTkn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

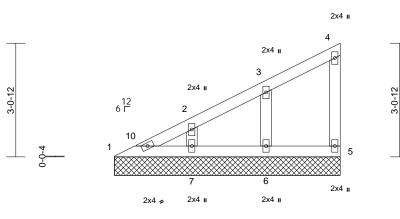
Scale = 1:24.2

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.20 0.22 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD WEBS NOTES	2x4 SP No.3 Structural wood shea 7-1-8 oc purlins. Rigid ceiling directly a bracing.	applied or 6-0-0 oc =7-1-8, 4=7-1-8 (4) 14), 3=-16 (LC 15), 14) 20), 3=110 (LC 21) 20) oression/Maximum 24/225	6) 7) 8) 9) , 1(Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar)) Provide mec bearing plate 1, 16 lb upliff) This truss is International	snow loads have es continuous bo spaced at 4-0-0 is been designed ad nonconcurrent has been designed n chord in all are by 2-00-00 wide v y other members hanical connection e capable of withs at joint 3 and 36 designed in accor Residential Cod- nd referenced sta	f (Lum DC at B; Fully been con- totom chor oc. I for a 10.1 t with any ed for a 10.1 t with any ed for a liv as where vill fit bety shon (by oth standing 1 i lb uplift a rodance we e sections	DL=1.15 Plate Exp.; Ce=0.1 asidered for t d bearing. D psf bottom other live loa e load of 20.1 a rectangle veen the bott ers) of truss i 0 lb uplift at j ti joint 4. ith the 2018 s R502.11.1 a	e 9; his 0psf om to joint					
	ed roof live loads have b	peen considered for										mm	um.

this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-8 to 3-0-8, Exterior(2R) 3-0-8 to 4-2-0, Exterior(2E) 4-2-0 to 7-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Job	Truss	Truss Type	Qty	Ply	36 Mason Ridge - Hayden K - Roof	
25040239	VL6	Valley	1	1	Job Reference (optional)	169125647

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Wed Oct 23 15:54:54 ID:LhLH_y89wqDstMwtGhh4zBzyU9G-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31

BCDL 10.0 Weight: 25 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 Gable requires continuous bottom chord bearing. Gable requires continuous bottom chord bearing. BOT CHORD 2x4 SP No.3 Gable requires continuous bottom chord bearing. Gable requires continuous bottom chord bearing. BOT CHORD 5.5 Gable studies spaced at 2-0-0 cc. This truss has been designed for a 10.0 ps bottom chord in all areas where a rectangle BOT CHORD Rigid ceiling directly applied or 10-0-0 cc bracing. This truss has been designed for a 10.0 ps bottom chord in all areas where a rectangle BOT CHORD Rigid ceiling directly applied or 10-0-0 cc bracing. This trus has been designed for a 10.0 ps bottom chord and any other members. BOT CHORD Rigid ceiling directly applied or 10-0-0 cc bracing. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 16 lb uplift at joint 5.48 lb uplift at joint 5.48 lb uplift at joint 5.48 lb uplift at joint 6.48 (LC 14), T=-38 (LC 20), 5=65 (LC 20). Max Uplift S-16 (LC 14), 6=-48 (LC 14), T=-38 (LC 20), 5=65 (LC 20). Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 16 lb uplift at joint 7. TOP CHORD 1-22226/75, 2-3=-148/53, 3-4=-48/23, -4-5=-69/70 Provide mechanical Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. DOT CHORD 1-210.05, 6=-0.00 Provide mechani	Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB 4 Matrix-MP	0.08 0.04 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
TOP CHORD 2x4 SP No.2 50 BOT CHORD 2x4 SP No.3 50 Gable studs spaced at 2-0-0 cc. 7 OTHERS 2x4 SP No.3 60 BRACING 7 This truss has been designed for a 10.0 psf bottom 6-0-0 oc purlins, except end verticals. 7 BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. 7 This truss has been designed for a 10.0 psf bottom chord in ell and anocnocurrent with any other live loads. REACTIONS (size) 1=6-1-0, 5=6-1-0, 7=6-1-0. 6 Max Horiz 1=104 (LC 14) 6 7 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9 FORCES (lb) - Maximum Compression/Maximum Tension 2.04 (2.7 - 184/166 1.2 - 226/75, 2-3 - 148/53, 3-4 - 48/23, 4-5 - 69/70 2.3 - 48/25, 'Standard NOTES 1) Ymsd: ASCE 7-16; Vult=130mpt (3-second gust) Yasd - 1030m, fr.CD-e.6.0psf; BCDL-6.0psf; B-25f; Cat. It is ps. Enclosed; MWFRS (envelope) exterior zone and C+C Corregr(25) race, catily life and right Standard												Weight: 25 lb	FT = 20%
 and Collection (GC) Zond, Guilding in the standing in exposed (C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pr=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 	TOP CHORD 2 BOT CHORD 2 WEBS 2 OTHERS 2 BRACING TOP CHORD 5 BOT CHORD 5 BOT CHORD 6 BOT CHORD 7 BOT CHORD 7 Max 4 FORCES ((TTOP CHORD 1 WEBS 3 NOTES 1) Wind: ASCE Vasd=103mp II; Exp 8; Enc and C-C Corr exposed ;C-C reactions sho DOL=1.60 2) Truss designd only. For stu- see Standard or consult qua 3) TCLL: ASCE Plate DOL=1. DOL=1.15; 1:	x4 SP No.2 x4 SP No.3 x4 SP No.3 structural wood she -0-0 oc purlins, ex ligid ceiling directly racing. ze) 1=6-1-0, s ax Horiz 1=104 (LC T=-38 (LC xGrav 1=81 (LC (LC 20), 7 b) - Maximum Corr ension -2=-226/75, 2-3=-1 -5=-69/70 -7=-103/80, 6-7=0/ -6=-206/214, 2-7=- 7-16; Vult=130mph h; TCDL=6.0psf; B losed; MWFRS (er her(3E) zone; cantil for members and wn; Lumber DOL= ed for wind loads in ds exposed to wind Industry Gable En alified building desi 7-16; Pr=20.0 psf (L 5=-10; Rough Cat	cept end verticals. ² applied or 10-0-0 or 5=6-1-0, 6=6-1-0, 7= C 14), 6=-48 (LC 14) C 14), 5=-48 (LC 14) C 14), 5=-85 (LC 20), 67 7=256 (LC 20) 1,7=256 (LC 20) 1,7=256 (LC 20) 1,84/166 (3-second gust) CDL=6.0psf; h=25ft; 1,84/166 (3-second gust) CDL=6.0psf; h=25ft; 1,900 peterior zor lever left and right forces & MWFRS fo 1.60 plate grip the plane of the true (normal to the face) d Details as applical gner as per ANSI/TF (roof LL: Lum DOL='. 1,5 Plate	design. 5) Gabler 6) Gables 7) This tru chord li ed or 6) * This tru chord li 6) * This tru chord li 6-243 * This tri 6=243 * This tri 6=243 * This tri 10) This tru 10) T	equires continuous be tuds spaced at 2-0-0 ss has been designed ve load nonconcurren uss has been designed totom chord in all are tall by 2-00-00 wide ind any other member mechanical connecti plate capable of with uplift at joint 6 and 38 ss is designed in acco ional Residential Cod 0.2 and referenced sta	ottom choi oc. d for a 10. t with any ed for a liv eas where will fit betv 's. on (by oth standing 1 3 lb uplift a ordance w le sections	d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 6 lb uplift at j tt joint 7. th the 2018 s R502.11.1 a	ids. Opsf om oont					EER. Kunn

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

