


Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

# **Builder: DR Horton Inc**

# Model: 18 Eagle Creek -Edisto - B



## THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

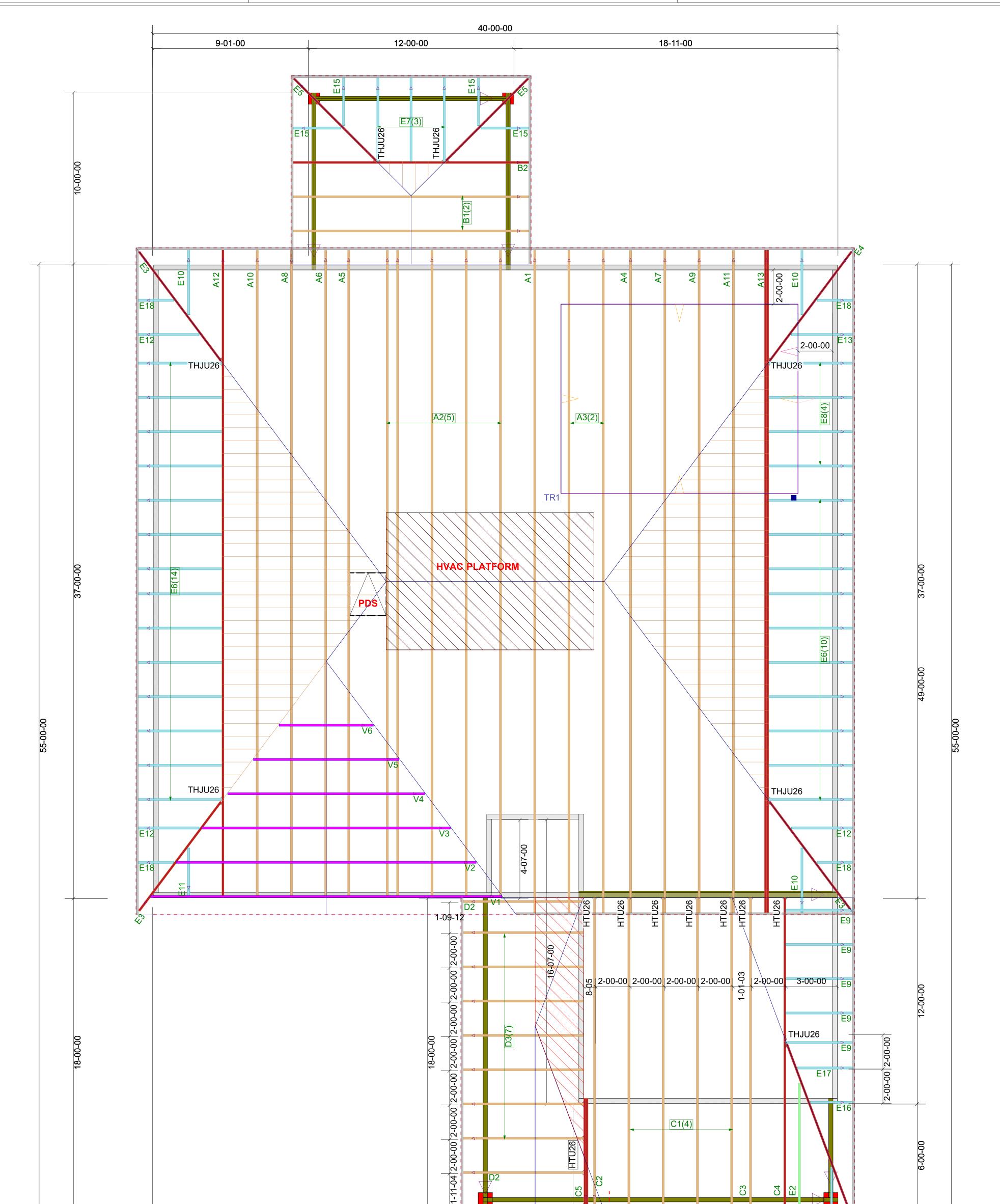
2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

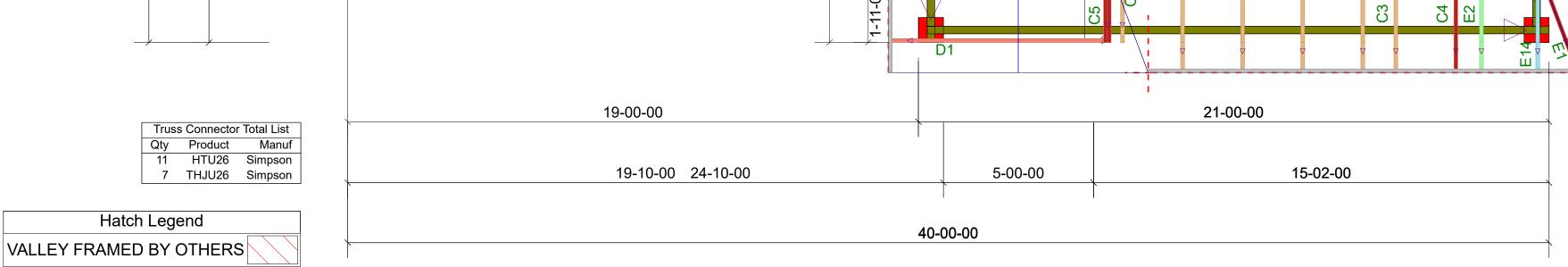
5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.


7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.


Approved By: \_\_\_\_\_

Date: \_\_\_\_\_





**General Notes:** 



| <br>       |
|------------|
| awing Left |

\*\* GIRDERS MUST BE FULLY CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS. \*\* DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH. \*\* All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the bldg designer and or contractor.

| Date:                                                                | DR Horton Inc               | R      | THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed<br>as individual components to be incorporated into the building design at the<br>specification of the building designer. See Individual design sheets for each truss                                                                                                                                                                                  | 00/00/00     | /00      | 0/00         |        |
|----------------------------------------------------------------------|-----------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|--------------|--------|
| NTS<br>Designer:<br>Designer:<br>Designer:<br>Sheet Num<br>Sheet Num | 18 Eagle Creek - Edisto - B | CARTER | design identified on the placement drawing. The building designer is responsible<br>for temporary and permanent bracing of the roof and floor systems and for the<br>overall structure. The disign of the tuss support structure including headers,<br>beams, walls, and columns is the responsibility of the building designer. For<br>general guidance regarding the bracing, consult "Bracing of Wood Truss" available | 00 00        | 00/<br>1 | /00/         | Visior |
| nber:                                                                | ROOF PLACEMENT PLAN         | Lumber | from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179                                                                                                                                                                                                                                                                                                                                                    | Vame<br>Vame | Vame     | Name<br>Name | S      |



RE: 25040187 18 Eagle Creek - Edisto B - Roof Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:Customer: DR Horton IncProject Name:25040187Lot/Block: 18Model:Edisto BAddress:Subdivision:Eagle CreekCity:State:

# General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2021/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.7 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 47 individual, dated Truss Design Drawings and 0 Additional Drawings.

| No. | Seal#     | Truss Name | Date      | No. | Seal#     | Truss Name | Date      |
|-----|-----------|------------|-----------|-----|-----------|------------|-----------|
| 1   | 172941905 | A1         | 4/23/2025 | 21  | 172941925 | D1         | 4/23/2025 |
| 2   | 172941906 | A2         | 4/23/2025 | 22  | 172941926 | D2         | 4/23/2025 |
| 3   | 172941907 | A3         | 4/23/2025 | 23  | 172941927 | D3         | 4/23/2025 |
| 4   | 172941908 | A4         | 4/23/2025 | 24  | 172941928 | E1         | 4/23/2025 |
| 5   | 172941909 | A5         | 4/23/2025 | 25  | 172941929 | E2         | 4/23/2025 |
| 6   | 172941910 | A6         | 4/23/2025 | 26  | 172941930 | E3         | 4/23/2025 |
| 7   | 172941911 | A7         | 4/23/2025 | 27  | 172941931 | E4         | 4/23/2025 |
| 8   | 172941912 | A8         | 4/23/2025 | 28  | 172941932 | E5         | 4/23/2025 |
| 9   | 172941913 | A9         | 4/23/2025 | 29  | 172941933 | E6         | 4/23/2025 |
| 10  | 172941914 | A10        | 4/23/2025 | 30  | 172941934 | E7         | 4/23/2025 |
| 11  | 172941915 | A11        | 4/23/2025 | 31  | 172941935 | E8         | 4/23/2025 |
| 12  | 172941916 | A12        | 4/23/2025 | 32  | 172941936 | E9         | 4/23/2025 |
| 13  | 172941917 | A13        | 4/23/2025 | 33  | 172941937 | E10        | 4/23/2025 |
| 14  | 172941918 | B1         | 4/23/2025 | 34  | 172941938 | E11        | 4/23/2025 |
| 15  | 172941919 | B2         | 4/23/2025 | 35  | 172941939 | E12        | 4/23/2025 |
| 16  | 172941920 | C1         | 4/23/2025 | 36  | 172941940 | E13        | 4/23/2025 |
| 17  | 172941921 | C2         | 4/23/2025 | 37  | 172941941 | E14        | 4/23/2025 |
| 18  | 172941922 | C3         | 4/23/2025 | 38  | 172941942 | E15        | 4/23/2025 |
| 19  | 172941923 | C4         | 4/23/2025 | 39  | 172941943 | E16        | 4/23/2025 |
| 20  | 172941924 | C5         | 4/23/2025 | 40  | 172941944 | E17        | 4/23/2025 |
|     |           |            |           |     |           |            |           |

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Galinski, John

My license renewal date for the state of North Carolina is December 31, 2025

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



Galinski, John



## RE: 25040187 - 18 Eagle Creek - Edisto B - Roof

Trenco 818 Soundside Rd Edenton, NC 27932

## Site Information:

Project Customer: DR Horton Inc Project Name: 25040187 Lot/Block: 18 Subdivision: Eagle Creek Address: City, County: State:

| No. | Seal#     | Truss Name | Date      |
|-----|-----------|------------|-----------|
| 41  | 172941945 | E18        | 4/23/2025 |
| 42  | 172941946 | V1         | 4/23/2025 |
| 43  | 172941947 | V2         | 4/23/2025 |
| 44  | 172941948 | V3         | 4/23/2025 |
| 45  | 172941949 | V4         | 4/23/2025 |
| 46  | 172941950 | V5         | 4/23/2025 |
| 47  | 172941951 | V6         | 4/23/2025 |
|     |           |            |           |

| Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |
|----------|-------|------------|-----|-----|----------------------------------|-----------|
| 25040187 | A1    | Common     | 1   | 1   | Job Reference (optional)         | 172941905 |

10-0-12

Loading

TCDL

BCLL

BCDL

WEBS

WEBS

FORCES

WEBS

SLIDER

BRACING

LUMBER

TCLL (roof)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:24 Page: 1 ID:C\_AxBD2r2jGHKNmWKHJBD0zODp6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 37-9-8 6-4-3 12-9-9 18-5-8 24-1-7 30-6-13 36-11-0 5-7-15 5-7-15 0-10-8 6-4-3 6-5-6 6-5-6 6-4-3 0-10-8 5x6= 6 5x6 🖌 5x6 34 35 33 36 5 6<sup>12</sup> 3x5 🍃 3x5 👟 37 32 3 9 10 0-10-0 11 1हें|॑॑ 12 18 14 13 23 38 22 20 39 12 4x5= <sup>8x10</sup>**1**5-11-8 4x5= 24-1-7 6x8 ı 6x8 II 13-5-15 13-4-14 24-0-0 23-6-2 12-11-0 12-11-0 0-1-7 7-5-10 12-9-9 18-5-8 20-11-8 23-5-1 29-5-6 36-11-0 7-5-10 5-3-14 2-5-9 2-6-0 2-6-0 2 - 5 - 95-3-14 7-5-10 0-1-1 0-5-14 0-1-1 0-5-14 Scale = 1:71.1 Plate Offsets (X, Y): [5:0-3-0,0-3-0], [7:0-3-0,0-3-0], [13:0-5-0,Edge], [22:0-5-0,Edge] 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) Spacing (loc) 20.0 Plate Grip DOL 1.15 TC 0.38 Vert(LL) -0.27 17 >999 240 MT20 244/190 Snow (Pf/Pg) 13.9/20.0 Lumber DOL 1.15 BC 0.47 Vert(CT) -0.56 17 >786 180 Rep Stress Incr WB 10.0 YES 0.44 Horz(CT) 0.07 10 n/a n/a 0.0 IRC2021/TPI2014 Matrix-MSH Code 10.0 Weight: 260 lb FT = 20% 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. TOP CHORD 2x4 SP 2400F 2.0E II; Exp B; Enclosed; MWFRS (envelope) and C-C 2x6 SP 2400F 2.0E \*Except\* 21-15:2x4 SP BOT CHORD Exterior(2E) -0-10-1 to 2-10-3, Interior (1) 2-10-3 to No.2 18-5-8, Exterior(2R) 18-5-8 to 22-1-13, Interior (1) 2x4 SP No.3 \*Except\* 22-6,13-6:2x4 SP No.2 22-1-13 to 37-9-1 zone; cantilever left and right Left 2x4 SP No.3 -- 2-0-0, Right 2x4 SP No.3 exposed ; end vertical left and right exposed;C-C for -- 2-0-0 members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 TOP CHORD Structural wood sheathing directly applied or 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4-0-3 oc purlins. Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum BOT CHORD Rigid ceiling directly applied or 6-0-0 oc DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully bracing. Exp.; Ce=0.9; Cs=1.00; Ct=1.10 1 Row at midpt 5-23, 7-12 4) Unbalanced snow loads have been considered for this REACTIONS (size) 2=0-3-8, 10=0-3-8 design. Max Horiz 2=-98 (LC 13) This truss has been designed for greater of min roof live 5) Max Grav 2=2002 (LC 3), 10=2002 (LC 3) load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on (Ib) - Maximum Compression/Maximum overhangs non-concurrent with other live loads. Tension 6) 200.0lb AC unit load placed on the bottom chord, 18-5-8 TOP CHORD 1-2=0/28, 2-4=-3642/0, 4-6=-3575/0 from left end, supported at two points, 5-0-0 apart. 6-8=-3575/0. 8-10=-3642/0. 10-11=0/28 All plates are 2x4 MT20 unless otherwise indicated. 7) BOT CHORD 2-23=0/3179, 20-23=0/3009, 18-20=0/2355 \* This truss has been designed for a live load of 20.0psf 8) 14-18=0/2355, 12-14=0/3009, 10-12=0/3180, on the bottom chord in all areas where a rectangle 19-21=-171/0, 17-19=-171/0, 16-17=-171/0, 3-06-00 tall by 2-00-00 wide will fit between the bottom 15-16=-171/0 chord and any other members, with BCDL = 10.0psf. 4-23=-273/134, 5-23=-182/210, 9)

All bearings are assumed to be SP 2400F 2.0E LOAD CASE(S) Standard

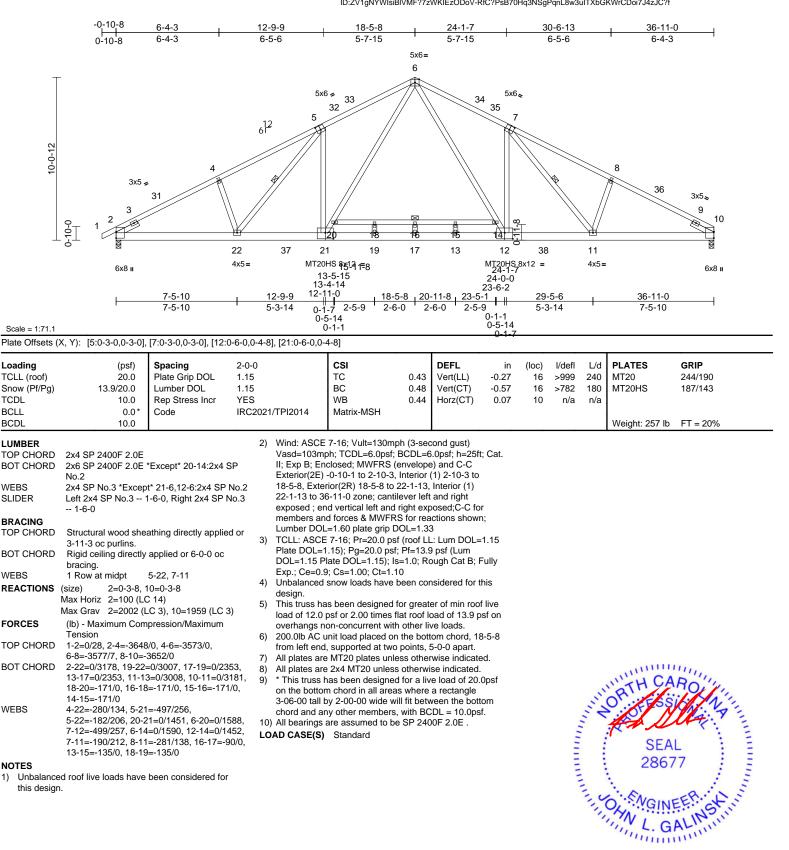
NOTES 1)

Unbalanced roof live loads have been considered for this design.

14-16=-135/0, 19-20=-135/0

5-22=-500/257, 21-22=0/1451, 6-21=0/1589,

6-15=0/1589, 13-15=0/1451, 7-13=-500/257, 7-12=-182/210, 8-12=-273/134, 17-18=-90/0, The Providence of the second s ORTH THURSDAY WANTED SEAL 2867 . GA mm


April 23,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |
|----------|-------|------------|-----|-----|----------------------------------|-----------|
| 25040187 | A2    | Common     | 5   | 1   | Job Reference (optional)         | 172941906 |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:25 ID:ZV1gNYWIsiBIVMF?7zWKIEzODoV-RfC?PsB70Hg3NSgPgnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



April 23,2025



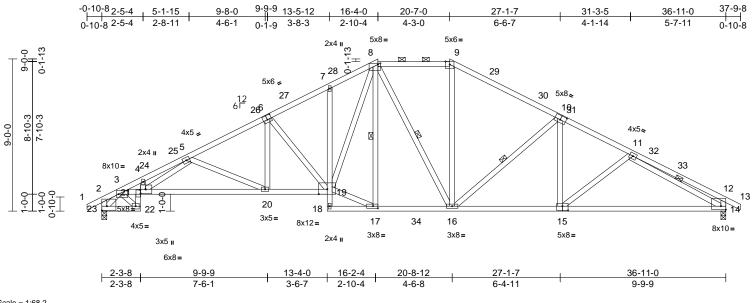
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

| Job      | Truss | Truss Type   | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |
|----------|-------|--------------|-----|-----|----------------------------------|-----------|
| 25040187 | A3    | Roof Special | 2   | 1   | Job Reference (optional)         | 172941907 |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:57 ID:cZs3pE5jKefsBqV50PturfzODp3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

| plional)                     |         |
|------------------------------|---------|
| es, Inc. Tue Apr 22 13:52:25 | Page: 1 |
| XbGKWrCDoi7J4zJC?f           |         |

|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ISBQVOUPt                                                                                                                                                                                                                                                                                              | unzodp3-Ric?                                                                                                                                                                                                                                                                                                                               | PSB70Hq3i                                                      | vəgeqnitaw              | JUII ADGAV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VICD017J42JC?1               |                                                                              |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------|
|                                                | -0-10-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3-2-4 7-                                                                                                                                                                                                                                                                                                                                                                                                            | <u>-9-12</u>                                                                                                                                                                                                                                     | <u>13-2-15</u><br>5-5-3                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13-5-12 18-5-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        | 24-1-7<br>5-7-15                                                                                                                                                                                                                                                                                                                           |                                                                | <u>30-6-13</u><br>6-5-6 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>36-11-0</u><br>6-4-3      | 37-9-8                                                                       |
| T                                              | 0-10-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | J-Z- <del>1</del> -                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                  | 6 <sup>12</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0-2-13 4-11-12<br>5x6 =<br>35 36<br>65 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5x6=<br>7                                                                                                                                                                                                                                                                                              | 37 38                                                                                                                                                                                                                                                                                                                                      | 5x6 <b>≈</b><br>3<br>∕ 8                                       | 0-0-0                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0-4-0                        | 0-10-8                                                                       |
| 10-0-12                                        | 8×11<br>8×12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                   | 3x5<br>5                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \<br>                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                            | 84                                                             |                         | 2x4 #<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3x5<br>39 10                 |                                                                              |
|                                                | _⇔⇔E '29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u></u> 286 ♀⊥                                                                                                                                                                                                                                                                                                                                                                                                      | 25                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23 2 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                            |                                                                |                         | ₩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |                                                                              |
|                                                | 0 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4x5=                                                                                                                                                                                                                                                                                                                                                                                                                | 4x5=                                                                                                                                                                                                                                             | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5x10 = 21<br>5x6 = 4x5 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19<br>2x4 <b>I</b>                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                            | 14 · ·                                                         | 40                      | 13<br>4x5=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                                                                              |
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5x6 II                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5x6 = 4x5 = 4x5 = 4x5 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2x4 II<br>2x4 II                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                            | 8x10=                                                          |                         | 47.3 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              | 5x10=                                                                        |
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2x4 <b>I</b>                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15-1 <del>2×4</del> "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                            | 4-1-7<br>-0-0                                                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                                                              |
|                                                | . 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -3-83-2-4 7.                                                                                                                                                                                                                                                                                                                                                                                                        | -9-12                                                                                                                                                                                                                                            | 13-4-0                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14-8-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5-8,20-1                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                            | 6-2                                                            | 9-5-6                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36-11-0                      |                                                                              |
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                     | 4-7-8                                                                                                                                                                                                                                            | 5-6-4                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0-3-8 1-2-14 2-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                            | 5                                                              | i-3-14                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7-5-10                       | —                                                                            |
| Scale = 1:77.9                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1-1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        | 0-5                                                                                                                                                                                                                                                                                                                                        | 5-14                                                           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                                                              |
| Plate Offsets (                                | (X, Y): [2:Edge,0-3-0],                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [3:0-6-12,0-2-1                                                                                                                                                                                                                                                                                                                                                                                                     | 15], [6:0-3-0,0                                                                                                                                                                                                                                  | -3-0], [8:0-3-0                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,0-3-0], [11:Edge,0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2-9], [14:                                                                                                                                                                                                                                                                                             | 0-5-0,0-4-8], [<br>T                                                                                                                                                                                                                                                                                                                       | 24:0-5-0,0                                                     | )-2-12], [27            | 7:0-3-0,0-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1-8]                         |                                                                              |
| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL | (psf)<br>20.0<br>13.9/20.0<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Spacing<br>Plate Grip DC<br>Lumber DOL<br>Rep Stress In                                                                                                                                                                                                                                                                                                                                                             | 1.15<br>ncr YES                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CSI<br>TC<br>BC<br>WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.46<br>0.97<br>0.79                                                                                                                                                                                                                                                                                   | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                   | in<br>-0.21<br>-0.43<br>0.22                                   | 24-25 >9<br>17-18 >9    | defl L/d<br>999 240<br>999 180<br>n/a n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MT20                         | <b>GRIP</b><br>244/190                                                       |
| BCLL<br>BCDL                                   | 0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Code                                                                                                                                                                                                                                                                                                                                                                                                                | IRC20                                                                                                                                                                                                                                            | 021/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                            |                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Weight: 260                  | lb FT = 20%                                                                  |
| FORCES<br>TOP CHORD<br>BOT CHORD<br>WEBS       | 2x4 SP No.2 *Excep<br>2.0E, 6-23:2x4 SP N<br>2400F 2.0E<br>2x4 SP No.3 *Excep<br>Right 2x4 SP No.3 -<br>Structural wood she<br>3-0-14 oc purlins, e<br>Rigid ceiling directly<br>bracing.<br>(size) 11=0-3-8,<br>Max Horiz 29=-111 (<br>Max Grav 11=1981<br>(lb) - Maximum Com<br>Tension<br>1-2=0/33, 2-3=-492/<br>4-5=-4489/0, 5-7=-3<br>9-11=-3617/0, 11-12<br>28-29=0/1697, 27-2i<br>26-27=0/5334, 25-2i<br>23-24=0/589, 6-24=-<br>19-21=0/2331, 15-13<br>11-13=0/3162, 22-2;<br>18-20=-162/0, 17-16<br>2-25=-1412/29, 5-25<br>8-14=-559/251, 8-13<br>9-13=-263/134, 7-16<br>7-24=0/1859, 4-26=1<br>3-29=-2104/0, 20-21<br>15-17=-110/0, 22-23<br>ed roof live loads have | lo.3, 23-14,14-1<br>tt* 14-7:2x4 SP 1-<br>- 2-6-0<br>athing directly a<br>xcept end vertic<br>applied or 2-2-(<br>29=0-3-8<br>LC 13)<br>(LC 3), 29=199(<br>pression/Maxim<br>13, 3-4=-5938/(<br>645/0, 7-9=-355<br>2=0/28, 2-29=-67<br>6=0/5334, 24-25<br>-331/155, 21-23<br>9=0/2331, 13-15<br>2=-162/0, 16-17:<br>3=-169/299,<br>3=-169/299,<br>3=-169/299,<br>3=-169/299,<br>1-280/0, 18-19:<br>3=-1189/0, 21-22 | 11:2x6 SP<br>No.2<br>applied or<br>cals.<br>0 oc<br>0 (LC 3)<br>num<br>0,<br>559/0,<br>37/62<br>=0/5114,<br>559/3967,<br>3=0/1071,<br>559/3967,<br>3=0/1071,<br>559/2909,<br>2=-162/0,<br>964/76,<br>3=0/1230,<br>153/0,<br>=-100/0,<br>2=0/1542 | <ul> <li>II; Exp B;<br/>Exterior(1<br/>18-5-8, E</li> <li>22-1-13 t</li> <li>exposed<br/>members</li> <li>Lumber I</li> <li>TCLL: A3</li> <li>Plate DO<br/>DOL=1.1</li> <li>Exp.; Ce:</li> <li>Unbaland</li> <li>design.</li> <li>This trus:</li> <li>load of 12</li> <li>overhang</li> <li>200.0lb A</li> <li>from left</li> <li>All plates</li> <li>* This tru<br/>on the bo</li> <li>3-60.00 t</li> <li>chord an</li> <li>Bearings</li> <li>SP 24000</li> </ul> | 3mph; TCDL=6.0psi<br>Enclosed; MWFRS<br>2E) -0-10-1 to 2-10-3<br>ixterior(2R) 18-5-8 tt<br>o 37-9-1 zone; canti<br>; end vertical left ans<br>and forces & MWFI<br>OCL=1.60 plate grip<br>SCE 7-16; Pr=20.0 psi<br>5 Plate DOL=1.15);<br>e0.9; CS=1.00; Ct=1<br>zed snow loads have<br>s has been designed<br>2.0 psf or 2.00 times<br>s non-concurrent with<br>AC unit load placed of<br>end, supported at tw<br>are zx4 MT20 unlets<br>ss has been designed<br>thore in all are<br>all by 2-00-00 wide to<br>d any other member<br>are assumed to be:<br>F 2.0E .<br>(S) Standard | (envelop<br>3, Interior<br>22-1-13<br>lever left<br>d right ex,<br>RS for ree<br>DOL=1.3<br>sf (roof L<br>3; F)=13.<br>ls=1.0; R<br>10<br>e been co<br>d for great<br>flat roof I<br>th other li<br>on the bot<br>ro points,<br>ss otherw<br>ed for a line<br>as where<br>will fit betts<br>s, with BC | e) and C-C<br>(1) 2-10-3 to<br>Interior (1)<br>and right<br>bossed;C-C for<br>actions shown<br>3<br>L: Lum DOL=<br>9 psf (Lum<br>ough Cat B; F<br>nsidered for the<br>er of min roof<br>oad of 13.9 pr<br>ve loads.<br>tom chord, 18<br>5-0-0 apart.<br>ise indicated.<br>re load of 20.0<br>a rectangle<br>ween the bott<br>CDL = 10.0psl | r<br>;;<br>fully<br>his<br>fon<br>sf on<br>s-5-8<br>Opsf<br>om |                         | and a second sec | ORTH C<br>SE<br>280<br>OKNGI | AR<br>SIDE<br>AL<br>677<br>NEFERSEL<br>MULTURE<br>GALMSITURE<br>Pril 23,2025 |
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                            |                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A                            | pril 23,2025                                                                 |
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                            |                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | -                                                                            |




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof      |
|----------|-------|------------|-----|-----|---------------------------------------|
| 25040187 | A4    | Нір        | 1   | 1   | I72941908<br>Job Reference (optional) |

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:25 ID:YyzqEw6zsGvZQ8eT7qvMw4zODp1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

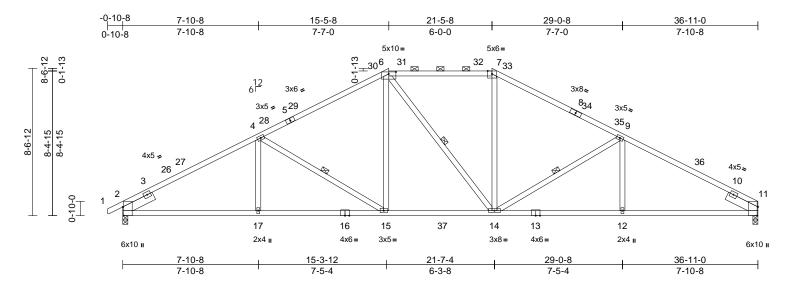


| Scale = | - 1.68 2 |
|---------|----------|
|         |          |

|                       | [2:Edge,0-3-0], [3:0-6-8,0-2-11], [6:0-3-0,0-3-0], [8:0-1-12,0-0-12], [10:0-4-0,0-3-0], [14:Edge,0-2-8], [15:0-4-0,0-3-0], [17:0-3-8,0-1-8], [21:0-3-8,0-3-0], |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Plate Offsets (X, Y): | [21:0-0-8,0-3-12]                                                                                                                                              |

| Plate Offsets (                                                  | X, Y): [21:0-0-8,0-3-1                                                                                          | 2]                                                                                                 |                                                     |                                                                                                                              |                                                                                                                                                                                   |                                                                                |                                                                                                                  |                              |                               |                               |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------|-------------------------------|------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL   | (psf)<br>20.0<br>18.9/20.0<br>10.0<br>0.0*<br>10.0                                                              | Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr                                                    | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC202 <sup>-</sup> | 1/TPI2014                                                                                                                    | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                               | 0.78<br>0.80<br>0.75                                                           | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                         | in<br>-0.22<br>-0.40<br>0.22 | (loc)<br>20-21<br>20-21<br>14 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a                 | PLATES<br>MT20<br>Weight: 254 lb | <b>GRIP</b><br>244/190<br>FT = 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD | SP No.3<br>2x4 SP No.3<br>Structural wood she                                                                   | *Except* 22-21,7-18:2x<br>athing directly applied of<br>cept end verticals, and<br>-10 max.): 8-9. | (4 2)                                               | this design.<br>Wind: ASCE<br>Vasd=103mj<br>II; Exp B; En<br>Exterior(2E)<br>16-4-0, Exte<br>20-7-0 to 25-<br>cantilever lef | roof live loads have<br>7-16; Vult=130mp<br>ph; TCDL=6.0psf; E<br>closed; MWFRS (e<br>-0-10-1 to 2-10-3, 1<br>rior(2E) 16-4-0 to 2<br>9-10, Interior (1) 2<br>t and right exposed | h (3-seo<br>3CDL=6<br>nvelopo<br>Interior<br>0-7-0, E<br>5-9-10 t<br>d ; end v | cond gust)<br>6.0psf; h=25ft<br>e) and C-C<br>(1) 2-10-3 to<br>Exterior(2R)<br>o 37-9-1 zono<br>vertical left an | ; Cat.<br>e;<br>id           |                               |                               |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                  | Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(size) 14=0-3-8,<br>Max Horiz 23=-103 (                 | applied or 10-0-0 oc<br>8-17, 8-16, 10-16, 11-<br>23=0-3-8                                         | 3)                                                  | for reactions<br>DOL=1.33<br>TCLL: ASCE<br>Plate DOL=1<br>DOL=1.15 P                                                         | d;C-C for members<br>shown; Lumber D(<br>7-16; Pr=20.0 psf<br>1.15); Pg=20.0 psf;<br>late DOL=1.15); Is:                                                                          | OL=1.60<br>(roof Ll<br>Pf=18.9<br>=1.0; Re                                     | ) plate grip<br>.: Lum DOL=<br>) psf (Lum<br>pugh Cat B; F                                                       | 1.15                         |                               |                               |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FORCES                                                           | (lb) - Maximum Com<br>Tension                                                                                   |                                                                                                    | ,                                                   | Unbalanced                                                                                                                   | 9; Cs=1.00; Ct=1.10<br>snow loads have b                                                                                                                                          |                                                                                |                                                                                                                  | his                          |                               |                               |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TOP CHORD                                                        | 1-2=0/33, 2-3=-396/4<br>4-5=-5669/316, 5-7=<br>7-8=-2981/338, 8-9=<br>9-11=-3020/268, 11-                       | 3668/286,<br>2084/278,                                                                             | 5)<br>6)<br>4 7)                                    | load of 12.0<br>overhangs n<br>Provide adeo                                                                                  | as been designed for<br>psf or 2.00 times fla<br>on-concurrent with<br>quate drainage to p<br>nas been designed                                                                   | at roof l<br>other li<br>revent                                                | oad of 13.9 p<br>ve loads.<br>water ponding                                                                      | sf on<br>g.                  |                               |                               |                                          | WH CA                            | ROUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BOT CHORD                                                        | 22-23=-107/1610, 2<br>3-21=-185/4593, 20-                                                                       | 1-22=-77/1447,<br>·21=-227/3989,<br>8-19=0/31, 7-19=-199/8                                         | .,                                                  | on the bottor<br>3-06-00 tall t<br>chord and ar<br>All bearings                                                              | n chord in all areas<br>by 2-00-00 wide wil<br>by other members,<br>are assumed to be<br>urlin representation                                                                     | where<br>I fit betw<br>with BC<br>SP 240                                       | a rectangle<br>veen the botto<br>DL = 10.0pst<br>00F 2.0E .                                                      | om<br>f.                     |                               |                               | VIII                                     | of the                           | N.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| WEBS                                                             | 6-20=0/637, 6-19=-9<br>8-19=-139/1692, 8-1<br>8-16=-161/178, 9-16<br>10-15=0/330, 11-15=<br>11-14=-2276/162, 4- | 5=-5/678, 10-16=-800/9<br>=-78/90, 3-23=-1994/13                                                   | o, <sup>o</sup> ,<br><sup>19,</sup> LC<br>39, LC    |                                                                                                                              | ation of the purlin a<br>d.                                                                                                                                                       |                                                                                |                                                                                                                  | DICE                         |                               | 11110                         | S. S | SEA<br>2867                      | EER ST.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NOTES                                                            |                                                                                                                 |                                                                                                    |                                                     |                                                                                                                              |                                                                                                                                                                                   |                                                                                |                                                                                                                  |                              |                               |                               |                                          | China L. G                       | in the second se |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut beformation, available from the Structure Review Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

April 23,2025

| Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |
|----------|-------|------------|-----|-----|----------------------------------|-----------|
| 25040187 | A5    | Нір        | 1   | 1   | Job Reference (optional)         | 172941909 |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:26 ID:NeOxdcb3RYxuDHi9TDdkYVzODoP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



Scale = 1:67

### Plate Offsets (X, Y): [2:0-6-1,Edge], [6:0-5-0,0-1-7], [11:0-6-1,Edge]

| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL                                                                                           | (psf)<br>20.0<br>18.9/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                   | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                  | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC202                         | 1/TPI2014                                                                                                                                                                                                                                                                                                                                                                                          | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH | 0.89<br>0.97<br>0.29                                                                                                                                                                                                                                                                       | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                                                                                    | in<br>-0.22<br>-0.39<br>0.14                                                             | (loc)<br>15-17<br>15-17<br>11 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 202 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|--------------------------|----------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>SLIDER<br>BRACING<br>TOP CHORD<br>WEBS<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD<br>BOT CHORD<br>WEBS | No.2<br>2x4 SP 2400F 2.0E<br>No.2<br>2x4 SP No.3<br>Left 2x6 SP 2400F 2<br>SP 2400F 2.0E 2-<br>Structural wood she<br>3-2-2 oc purlins, exc<br>2-0-0 oc purlins (2-2<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(size) 2=0-3-8, '<br>Max Horiz 2=84 (LC<br>Max Grav 2=1740 (I<br>(lb) - Maximum Com<br>Tension<br>1-2=0/28, 2-4=-3186<br>6-7=-2168/282, 7-9<br>9-11=-3180/253<br>2-17=-153/2746, 15<br>14-15=-52/2094, 12:<br>11-12=-164/2740<br>4-17=0/254, 4-15=-7 | athing directly applied<br>cept<br>-0 max.): 6-7.<br>applied or 2-2-0 oc<br>4-15, 6-14, 9-14<br>11=0-3-8<br>12)<br>_C 50), 11=1701 (LC<br>pression/Maximum<br>6/252, 4-6=-2537/269,<br>-2528/270,<br>-17=-153/2746, | e6<br>d or 3)<br>4)<br>50)<br>50)<br>6)<br>7)<br>,<br>8)<br>9) | Vasd=103mj<br>II; Exp B; En<br>Exterior(2E)<br>15-5-8, Exte<br>to 21-5-8, Ex<br>26-8-2 to 36-<br>exposed ; er<br>members an<br>Lumber DOL<br>TCLL: ASCE<br>Plate DOL=1<br>DOL=1.15 P<br>Exp.; Ce=0.3<br>Unbalanced<br>design.<br>This truss ha<br>load of 12.0<br>overhangs n<br>Provide adee<br>* This truss h<br>on the bottor<br>3-06-00 tall t<br>chord and ar<br>All bearings<br>Graphical pu |                                     | BCDL=6<br>envelope<br>Interior<br>20-8-2, I<br>or 26-8-2, Ver left a<br>right exp<br>S for rea<br>OL=1.3<br>f (roof LL<br>Pf=18.5<br>=1.0; Rc<br>0, Lu=50<br>been cor<br>for great<br>at roof k<br>o ther lip<br>prevent v<br>t for a liv<br>s where<br>II fit betw<br>with BC<br>o SP 24C | :.0psf; h=25ft<br>a) and C-C<br>(1) 2-10-3 to<br>(1) 2-10-3 to<br>(1) 2-10-3 to<br>(1) 2-10-3 to<br>(1) 2-10-3 to<br>(1) 2-0<br>and right<br>sosed; C-C for<br>ctions shown<br>3<br>:: Lum DOL=<br>9 psf (Lum<br>bugh Cat B; F<br>0-0-0<br>isidered for t<br>er of min roop<br>a do f 13.9 p<br>ve loads.<br>water pondin<br>e load of 20.<br>a rectangle<br>veen the bott<br>:DL = 10.0ps<br>bt depict the | o-8-2<br>r<br>r;<br>f1.15<br>Fully<br>his<br>f live<br>sof on<br>g.<br>0psf<br>com<br>f. |                               |                               |                          | ORTH CA                          |                                    |
| NOTES                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                     |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                          |                               |                               |                          | 2867                             | 1 : E                              |

1) Unbalanced roof live loads have been considered for this design.




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut beformation, available from the Structure Review Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |
|----------|-------|------------|-----|-----|----------------------------------|-----------|
| 25040187 | A6    | Нір        | 1   | 1   | Job Reference (optional)         | 172941910 |

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:26 ID:ColDufgq1Oi2xC9JqUk8nmzODoJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

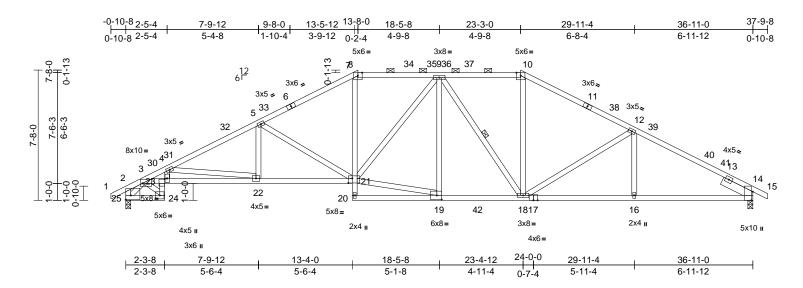
Page: 1



Scale = 1:66.7

| Plate Offsets (2                                               | X, Y): [10:Edge,0-5-1                                                                                                      | 3], [11:0-3-8,0-3-0], [1                                           | 6:0-3-8,                               | 0-3-0], [17:Edg                                                                                                                                                                                       | e,0-5-13]                                                                                                                                                                                                                                                                                                         |                                                                                                                                                     |                                                                                                                                                                                        |                                  |                               |                               |                          |                                  |                                    |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------|-------------------------------|--------------------------|----------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL | (psf)<br>20.0<br>18.9/20.0<br>10.0<br>0.0*<br>10.0                                                                         | 1 1                                                                | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC202 | 21/TPI2014                                                                                                                                                                                            | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                               | 0.62<br>0.52<br>0.80                                                                                                                                | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                               | in<br>-0.30<br>-0.52<br>0.07     | (loc)<br>13-14<br>13-14<br>13 | l/defl<br>>999<br>>840<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 217 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|                                                                | 2x4 SP No.3<br>Structural wood shee<br>4-6-9 oc purlins, ex<br>2-0-0 oc purlins (5-6<br>Rigid ceiling directly<br>bracing. | applied or 10-0-0 oc<br>6-14, 6-13<br>17=0-3-8<br>C 14)            | or<br>1<br>3;<br>4                     | Vasd=103m<br>II; Exp B; En<br>Exterior(2E)<br>13-8-0, Exte<br>18-10-10 to<br>Interior (1) 2<br>right expose<br>for members<br>Lumber DOL<br>01 CLL: ASCE<br>Plate DOL=1<br>DOL=1.15 P<br>Exp.; Ce=0.9 | 7-16; Vult=130mp<br>bh; TCDL=6.0psf; I<br>closed; MWFRS (e<br>-0-10-1 to 2-10-3,<br>rior(2R) 13-8-0 to 1<br>23-3-0, Exterior(2R)<br>8-5-10 to 36-9-4 zc<br>d; end vertical left<br>and forces & MW<br>=1.60 plate grip D<br>; 7-16; Pr=20.0 psf;<br>late DOL=1.15); Is<br>b; Cs=1.00; Ct=1.1<br>snow loads have t | BCDL=6<br>envelope<br>Interior<br>18-10-10<br>23-3-(<br>one; can<br>and righ<br>FRS for<br>OL=1.33<br>( (roof LI<br>Pf=18.9<br>=1.0; Ro<br>0, Lu=50 | .0psf; h=25ft<br>and C-C<br>(1) 2-10-3 to<br>b, Interior (1)<br>to 28-5-10,<br>tillever left an<br>t exposed;C<br>reactions sho<br>:: Lum DOL=<br>p psf (Lum<br>pugh Cat B; F<br>D-0-0 | d<br>-C<br>own;<br>1.15<br>Fully |                               |                               |                          |                                  |                                    |
| FORCES                                                         | (lb) - Maximum Com<br>Tension                                                                                              |                                                                    | 5)                                     | ) This truss ha                                                                                                                                                                                       | is been designed f<br>psf or 2.00 times fl                                                                                                                                                                                                                                                                        |                                                                                                                                                     |                                                                                                                                                                                        |                                  |                               |                               |                          |                                  |                                    |
| TOP CHORD                                                      | 1-2=0/33, 2-3=-3080<br>5-6=-2210/265, 6-7=<br>7-8=-2574/258, 8-9=<br>2-17=-1784/216, 9-1                                   | -3086/244,                                                         | 6)<br>7)                               | overhangs n<br>Provide adeo<br>* This truss l                                                                                                                                                         | on-concurrent with<br>quate drainage to p<br>nas been designed<br>n chord in all areas                                                                                                                                                                                                                            | other li<br>prevent<br>for a liv                                                                                                                    | ve loads.<br>water ponding<br>e load of 20.0                                                                                                                                           | g.                               |                               |                               |                          |                                  |                                    |
| BOT CHORD                                                      | 16-17=-102/747, 14-<br>13-14=-108/2254, 11                                                                                 | -16=-176/2672,                                                     |                                        | 3-06-00 tall I<br>chord and ar                                                                                                                                                                        | by 2-00-00 wide wi                                                                                                                                                                                                                                                                                                | ll fit betv<br>with BC                                                                                                                              | veen the bott<br>DL = 10.0ps                                                                                                                                                           |                                  |                               |                               |                          | "ATH CA                          | ROL                                |
| WEBS<br>NOTES                                                  | 6-14=-336/86, 6-13=                                                                                                        | 593/115, 5-14=-5/76<br>333/86, 7-13=-9/776<br>=-52/109, 2-16=-74/1 | ,<br>943,                              | Graphical pu                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                   | does no                                                                                                                                             | ot depict the                                                                                                                                                                          | size                             |                               |                               | N. N.                    | SEA                              | L                                  |

1) Unbalanced roof live loads have been considered for this design.




April 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut beformation, available from the Structure Review Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |  |
|----------|-------|------------|-----|-----|----------------------------------|--|
| 25040187 | A7    | Нір        | 1   | 1   | Job Reference (optional)         |  |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:26 ID:zXfysy8s9BH8HbN2oyS3YizODp\_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

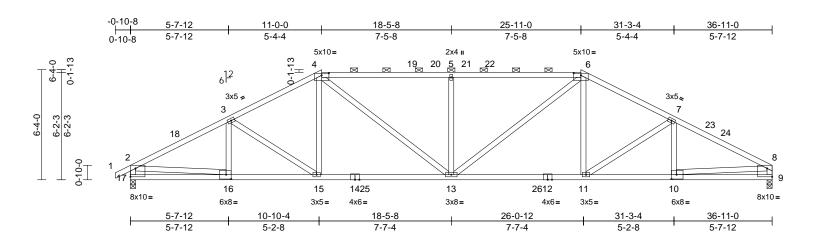


| Scale = | 1:67.8 |
|---------|--------|
|---------|--------|

| Plate Offsets (2                                               | X, Y): [2:Edge,0-3-0],                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [3:0-6-8,0-2-15], [14                                                                                                                                                                                                                                                                                | :0-6-1,Edg                                            | ge], [19:0-3-8,0                                                                                                                                                                                                                                                                                                                                                                                         | -3-0], [21:0-2-12,0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·3-4], [2                                                                                                                                                                                                                                          | 3:0-0-8,0-1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2]                                                                                             |                               |                               |                          |                                  |                                    |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|--------------------------|----------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL | (psf)<br>20.0<br>18.9/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                            | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC202                | 1/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.63<br>0.98<br>0.93                                                                                                                                                                                                                               | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                | (loc)<br>22-23<br>21-22<br>14 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 230 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|                                                                | 2x4 SP 2400F 2.0E<br>2x4 SP 2400F 2.0E *<br>SP No.3<br>2x4 SP No.3<br>Right 2x6 SP 2400F<br>Structural wood sheat<br>3-3-15 oc purlins, ep<br>2-0-0 oc purlins (5-3<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(size) 14=0-3-8,<br>Max Horiz 25=-86 (L0<br>Max Grav 14=1699 (<br>(lb) - Maximum Com<br>Tension<br>1-2=0/33, 2-3=-420/5<br>4-5=-3847/289, 5-7=<br>7-8=-2441/283, 8-9=<br>9-10=-2189/272, 10-<br>12-14=-3075/246, 14<br>2-25=-513/103<br>24-25=-55/4823, 22=<br>21-22=-159/3380, 20 | 2.0E 2-0-0<br>athing directly applie<br>xcept end verticals, a<br>-2 max.): 8-10.<br>applied or 10-0-0 oc<br>9-18<br>25=0-3-8<br>C 13)<br>(LC 50), 25=1715 (LC<br>pression/Maximum<br>51, 3-4=-5795/344,<br>-2859/279,<br>-2472/280,<br>12=-2537/264,<br>4-15=0/28,<br>24=-70/1455,<br>23=-280/5006, | d or<br>and<br>3)<br>C 50) 4)<br>5)<br>6)<br>7)<br>8) | this design.<br>Wind: ASCE<br>Vasd=103m<br>II; Exp B; En<br>Exterior(2E)<br>13-8-0, Exte<br>18-10-10 to :<br>Interior (1) 2<br>right expose<br>for members<br>Lumber DOL<br>TCLL: ASCE<br>Plate DOL=1.15 P<br>Exp.; Ce=0.5<br>Unbalanced<br>design.<br>This truss ha<br>load of 12.0<br>overhangs n<br>Provide adea<br>* This truss h<br>on the bottor<br>3-06-00 tall t<br>chord and ar<br>All bearings | roof live loads have<br>7-16; Vult=130mpl<br>bh; TCDL=6.0psf; E<br>closed; MWFRS (e<br>-0-10-1 to 2-10-3, 1<br>rior(2R) 13-8-0 to 1<br>23-3-0, Exterior(2R<br>8-5-10 to 37-9-1 zo<br>d; end vertical left.<br>and forces & MWF<br>=1.60 plate grip DC<br>7-16; Pr=20.0 psf;<br>late DOL=1.15); Is-<br>b; Cs=1.00; Ct=1.10;<br>snow loads have b<br>Is been designed for<br>psf or 2.00 times fit<br>fon-concurrent with<br>quate drainage to p<br>as been designed<br>n chord in all areas<br>by 2-00-00 wide will<br>y other members,<br>are assumed to be<br>rin representation | h (3-sec<br>3CDL=6<br>nvelope<br>neterior<br>8-10-10<br>) 23-3-0<br>ne; can<br>and righ<br>FRS for<br>DL=1.33<br>(roof LL<br>Pf=18.5<br>=1.0; Rc<br>0, Lu=50<br>keen cor<br>or great<br>at roof k<br>other line<br>for a live<br>with BC<br>SP 240 | cond gust)<br>.0psf; h=25ft<br>.0psf; h=25ft<br>.0psf; h=25ft<br>.0psf; h=25ft<br>.1p2-10-3 to<br>.1p2-10-3 to<br>.1p2-10-3 to<br>.1p3 (1)2-10-3 to<br>.1p3 (Lum<br>.1p3 (Lum<br>DUgh Cat B; F)<br>.0-0<br>.1p3 (Lum<br>DUgh Cat B; F)<br>.0-0<br>.1p3 (Lum<br>Dugh Cat B; F)<br>.0-0<br>.1p3 (Lum<br>.1p3 (Lum<br>DUgh Cat B; F)<br>.0-0<br>.1p3 (Lum<br>.0p3 (2)2<br>.1p3 (Lum<br>.0p3 (2)2<br>.1p3 (2)2 | ; Cat.<br>d<br>-C<br>own;<br>1.15<br>Fully<br>his<br>f live<br>sf on<br>g.<br>0psf<br>om<br>f. |                               |                               | Auto                     | SEA<br>2867                      | ROMAR                              |
| WEBS                                                           | 19-20=-12/143, 18-1<br>16-18=-141/2641, 14<br>4-22=-1647/134, 5-2<br>5-21=-1131/119, 9-1<br>3-24=-1781/100, 10-<br>9-18=-369/55, 12-18<br>19-21=-55/2170, 9-2<br>3-25=-1887/123                                                                                                                                                                                                                                                                                                                                   | 4-16=-141/2641<br>2=0/521,<br>9=-275/72,<br>-18=-7/727,<br>5=-594/104, 12-16=0/                                                                                                                                                                                                                      | 206,                                                  | or the orienta<br>bottom chord<br>DAD CASE(S)                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | long the                                                                                                                                                                                                                                           | top and/or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |                               |                               | annun a                  | SEA<br>2867                      | T<br>ER P                          |
| NOTES                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                      |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                |                               |                               |                          | N L.G                            | 111111                             |

April 23,2025

Page: 1




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

| Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |
|----------|-------|------------|-----|-----|----------------------------------|-----------|
| 25040187 | A8    | Нір        | 1   | 1   | Job Reference (optional)         | 172941912 |

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:27 ID:9BtzJLh4Z?ymBWJixvmctBzODoH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

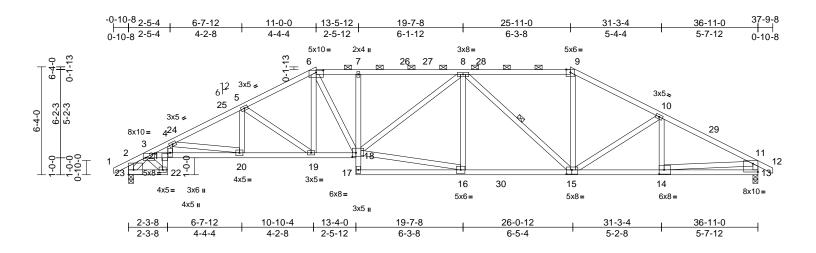


#### Scale = 1:66.3

| Plate Offsets (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X, Y): [4:0-5-0,0-1-7],                    | [6:0-5-0,0-1-7], [9:Ed                                                              | ge,0-5-13                              | 8], [10:0-3-8,0-                             | 3-0], [16:0-3-8,0-3-0                                                                     | 0], [17:8              | Edge,0-5-13]                             |       |                              |                               |                          |                |                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------|------------------------|------------------------------------------|-------|------------------------------|-------------------------------|--------------------------|----------------|------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (psf)<br>20.0<br>18.9/20.0<br>10.0<br>0.0* | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                  | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC202 | 1/TPI2014                                    | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                       | 0.77<br>0.36<br>0.80   | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT) |       | (loc)<br>11-13<br>11-13<br>9 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20 | <b>GRIP</b><br>244/190 |
| BCDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.0                                       |                                                                                     |                                        |                                              |                                                                                           |                        |                                          |       |                              |                               |                          | Weight: 211 lb | FT = 20%               |
| LUMBER       2x4 SP ≥400F 2.0E       2x4 SP ≥400F 2.0E       Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.         BOT CHORD       2x4 SP ≥400F 2.0E       II; Exp B; Enclosed; MWFRS (envelope) and C-C         WEBS       2x4 SP ≥400F 2.0E       II; Exp B; Enclosed; MWFRS (envelope) and C-C         BRACING       TOP CHORD       Structuration of the structuratio of the structurat |                                            |                                                                                     |                                        |                                              |                                                                                           |                        |                                          |       |                              |                               |                          |                |                        |
| FORCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ( )                                        | pression/Maximum                                                                    | 4)                                     | Unbalanced                                   |                                                                                           |                        |                                          | his   |                              |                               |                          |                |                        |
| TOP CHORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4-5=-3044/295, 5-6=<br>6-7=-2714/259, 7-8= | -2925/235,                                                                          | 5)                                     | This truss ha<br>load of 12.0<br>overhangs n | as been designed fo<br>psf or 2.00 times fla<br>on-concurrent with<br>puate drainage to p | at roof le<br>other li | oad of 13.9 p<br>ve loads.               | sf on |                              |                               |                          |                |                        |
| 2-17=-1774/206, 8-9=-1698/165       6)       Provide adequate drainage to prevent water ponding.         BOT CHORD       16-17=-82/561, 15-16=-181/2548,<br>13-15=-109/2362, 11-13=-106/2362,<br>10-11=-166/2557, 9-10=-55/444       7)       * This truss has been designed for a live load of 20.0psf<br>on the bottom chord in all areas where a rectangle<br>3-06-00 tall by 2-00-00 wide will fit between the bottom<br>chord and any other members, with BCDL = 10.0psf.         WEBS       3.16=-101/77, 3-15=-373/86, 4-15=0/473,<br>4-13=-53/813, 5-13=-769/159, 6-13=-51/813,<br>6-11=0/481, 7-11=-388/88, 7.10=-112/80,<br>2-16=-100/2039, 8-10=-123/2150       All bearings are assumed to be SP 2400F 2.0E.       Graphical purlin representation does not depict the size<br>or the orientation of the purlin along the top and/or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                                                     |                                        |                                              |                                                                                           |                        |                                          |       |                              |                               |                          |                |                        |
| WEBS<br>NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4-13=-53/813, 5-13=                        | -373/86, 4-15=0/473,<br>-769/159, 6-13=-51/8<br>88/88, 7-10=-112/80,<br>0=-123/2150 | 13, 8)                                 | All bearings<br>Graphical pu                 | ny other members, nare assumed to be<br>irlin representation<br>ation of the purlin al    | SP 240<br>does no      | OF 2.0E .<br>ot depict the s             |       |                              |                               | VILL                     | A M            | TIN ST                 |
| 1) Unbalance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ed roof live loads have                    | been considered for                                                                 | LC                                     | DAD CASE(S)                                  | Standard                                                                                  |                        |                                          |       |                              | =                             |                          | SEA            | L 🕴 E 🗌                |

1) Unbalanced roof live loads have been considered for this design.




April 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut beformation, available from the Structure Review Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |  |
|----------|-------|------------|-----|-----|----------------------------------|--|
| 25040187 | A9    | Нір        | 1   | 1   | Job Reference (optional)         |  |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:27 ID:vwnjHeA6hoXsXvXRwNVXd7zODoy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

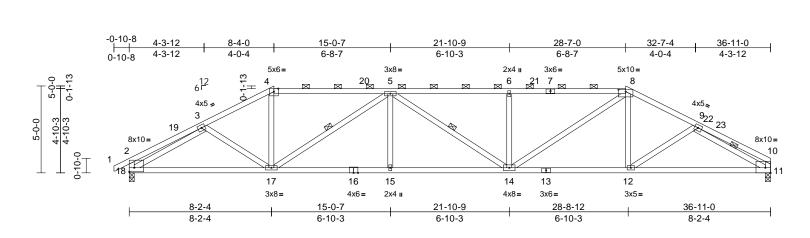
2 13:52:27 Page: 1



Scale = 1:67.6

| Plate Offsets (                                                                                    | (X, Y): [2:Edge,0-3-4],                                                                                                                                                                                                                                                                                                                                           | [3:0-6-8,0-3-3], [6:0-                                                                                                                                                                                                                           | 5-0,0-1-7]                                         | , [13:Edge,0-5                                                                                                                                                                                                                                                                                                | -13], [14:0-3-8,0-3                                                                                                                                                                                                                                                                                                                                                                                                         | -0], [15:0                                                                                                                                                                                                       | -3-12,0-3-0]                                                                                                                                                                                                                                                           | , [18:0-2-                                                          | 8,0-2-12                      | 2], [21:0-                    | -0-8,0-1                 | 1-12]                            |                                    |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------|-------------------------------|--------------------------|----------------------------------|------------------------------------|
| <b>Loading</b><br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL                              | (psf)<br>20.0<br>18.9/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                               | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC202             | 1/TPI2014                                                                                                                                                                                                                                                                                                     | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                         | 0.80<br>1.00<br>0.77                                                                                                                                                                                             | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                               |                                                                     | (loc)<br>16-17<br>16-17<br>13 | l/defl<br>>999<br>>970<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 235 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER<br>FOP CHORD<br>SOT CHORD<br>WEBS<br>BRACING<br>FOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS | 2x4 SP No.2<br>2x4 SP No.2 *Excep<br>No.3, 3-18:2x4 SP N<br>2x4 SP No.3 *Excep<br>Structural wood shea<br>2-3-6 oc purlins, ext<br>2-0-0 oc purlins (2-1<br>Rigid ceiling directly<br>bracing, Except:<br>1-4-12 oc bracing: 24                                                                                                                                   | o.1<br>t* 16-18:2x4 SP No.2<br>athing directly applie<br>cept end verticals, ar<br>1-5 max.): 6-9.<br>applied or 10-0-0 oc<br>0-21.<br>8-15<br>23=0-3-8<br>C 13)<br>[LC 50), 23=1670 (LC<br>pression/Maximum<br>46, 3-4=-5437/365,<br>-3140/280, | 2<br>d or<br>nd<br>3)<br>C <sup>50)</sup> 4)<br>5) | this design.<br>Wind: ASCE<br>Vasd=103mg<br>II; Exp B; En<br>Exterior(2E)<br>11-0-0, Exter<br>16-2-10 to 22<br>Interior (1) 3<br>exposed ; en<br>members an<br>Lumber DOL<br>TCLL: ASCE<br>Plate DOL=1<br>DOL=1.15 P<br>Exp.; Ce=0.5<br>Unbalanced<br>design.<br>This truss ha<br>load of 12.0<br>overhangs n | roof live loads hav<br>7-16; Vult=130mp<br>bh; TCDL=6.0psf;<br>closed; MWFRS (i<br>-0-10-1 to 2-10-3,<br>ior(2R) 11-0-0 to<br>5-11-0, Exterior(2F<br>1-3-4 to 37-9-1 zon<br>d vertical left and<br>d forces & MWFR:<br>=1.60 plate grip D<br>7-16; Pr=20.0 psf;<br>late DOL=1.15); Is<br>b; Cs=1.00; Ct=1.1<br>snow loads have t<br>s been designed f<br>por or 2.00 times fil<br>on-concurrent with<br>wate drainage to to | ch (3-sec<br>BCDL=6<br>envelope<br>Interior 1<br>16-2-10,<br>R) 25-11.<br>he; canti<br>right exp<br>S for rea<br>OL=1.33<br>f (roof LL<br>Pf=18.9<br>= 1.0; RG<br>D, Lu=50<br>peen cor<br>for great<br>at roof k | cond gust)<br>.0psf; h=25ff<br>and C-C<br>1) 2-10-3 to<br>Interior (1)<br>0 to 31-3-4,<br>lever left and<br>osced; C-C fo<br>ctions showr<br>b<br>:: Lum DOL=<br>0 psf (Lum<br>Dugh Cat B; F<br>)-0-0<br>isidered for t<br>er of min roo'<br>ad of 13.9 p<br>ve loads. | t; Cat.<br>r<br>r<br>;<br>:1.15<br>Fully<br>his<br>f live<br>ssf on |                               |                               |                          |                                  | F I = 20%                          |
| BOT CHORD<br>WEBS                                                                                  | 6-7=-3188/296, 7-8=<br>8-9=-2352/257, 9-10<br>10-11=-2891/235, 11<br>11-13=-1760/206<br>22-23=-103/1484, 21<br>3-21=-276/4495, 20-<br>19-20=-191/3389, 18<br>17-18=0/109, 7-18=-<br>14-16=-127/2911, 13<br>5-19=-896/111, 6-19<br>16-18=-124/2719, 8-<br>16=-246/103, 8-15<br>10-15=-395/84, 10-1<br>3-23=-1886/134, 11-<br>3-22=-1718/118, 4-2<br>4-20=-1396/110 | =-2656/254,<br>I-12=0/37, 2-23=-47(<br>I-22=-84/1409,<br>21=-300/4687,<br>3-19=-98/2739,<br>452/105, 16-17=0/22<br>3-14=-47/485<br>=-20/649, 6-18=-76/<br>18=-13/334,<br>=-829/54, 9-15=-6/8-<br>4=-95/79,<br>14=-95/2079,                       | 8)<br>9)<br>27,<br><sup>889,</sup> LC<br>41,       | * This truss h<br>on the bottor<br>3-06-00 tall h<br>chord and ar<br>All bearings<br>Graphical pu                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                             | I for a liv<br>s where<br>II fit betv<br>with BC<br>s SP No.<br>does no                                                                                                                                          | e load of 20.<br>a rectangle<br>veen the bott<br>DL = 10.0ps<br>2.<br>ot depict the s                                                                                                                                                                                  | Opsf<br>tom<br>.f.                                                  |                               |                               | State State              | SEA<br>2867                      | ER. Kunn                           |

April 23,2025




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

| Job     |    | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |
|---------|----|-------|------------|-----|-----|----------------------------------|-----------|
| 2504018 | 87 | A10   | Нір        | 1   | 1   | Job Reference (optional)         | 172941914 |

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:27 ID:1Q3d04KGdnA0av0xBcEaftzODol-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

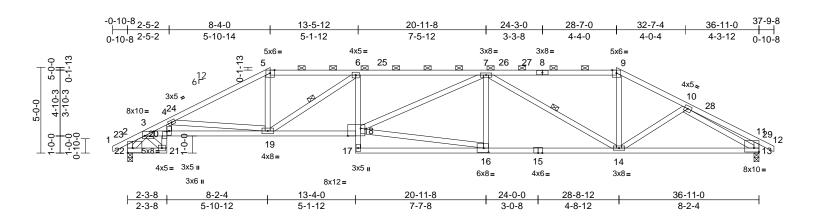


#### Scale = 1:66.3

|             | (, 1). [2.2090,0 2 12           | ], [8:0-5-0,0-1-7], [10<br>I | 0.Luge,0-0         | 0]          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                |        |       |        |     |                |          |
|-------------|---------------------------------|------------------------------|--------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|--------|-------|--------|-----|----------------|----------|
| bading      | (psf)                           | Spacing                      | 2-0-0              |             | CSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | DEFL           | in     | (loc) | l/defl | L/d | PLATES         | GRIP     |
| CLL (roof)  | 20.0                            | Plate Grip DOL               | 1.15               |             | TC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.58     | Vert(LL)       |        | 14-15 | >999   | 240 | MT20           | 244/190  |
| now (Pf/Pg) | 18.9/20.0                       | Lumber DOL                   | 1.15               |             | BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.96     | Vert(CT)       | -0.45  | 14-15 | >974   | 180 |                |          |
| DL          | 10.0                            | Rep Stress Incr              | YES                |             | WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.98     | Horz(CT)       | 0.15   | 11    | n/a    | n/a |                |          |
| CLL         | 0.0*                            | Code                         | IRC202             | 1/TPI2014   | Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                |        |       |        |     |                |          |
| CDL         | 10.0                            |                              |                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                |        |       |        |     | Weight: 203 lb | FT = 20% |
| JMBER       |                                 |                              | 2)                 | Wind: ASCE  | 7-16; Vult=130mp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | h (3-seo | cond gust)     |        |       |        |     |                |          |
| OP CHORD    | 2x4 SP No.2 *Excep              | ot* 4-7,7-8:2x4 SP 24        | 400F               |             | ph; TCDL=6.0psf;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                | ; Cat. |       |        |     |                |          |
|             | 2.0E                            |                              |                    |             | closed; MWFRS (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                |        |       |        |     |                |          |
| OT CHORD    | 2x4 SP No.2                     |                              |                    |             | -0-10-1 to 2-10-3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                |        |       |        |     |                |          |
| EBS         | 2x4 SP No.3                     |                              |                    |             | or(2R) 8-4-0 to 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                |        |       |        |     |                |          |
| RACING      |                                 |                              |                    |             | xterior(2R) 28-7-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                | )      |       |        |     |                |          |
| OP CHORD    | Structural wood she             | athing directly applie       | ed or              |             | 6-9-4 zone; cantile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                |        |       |        |     |                |          |
|             | 3-5-7 oc purlins, ex            | cept end verticals, a        | nd                 |             | nd vertical left and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                |        |       |        |     |                |          |
|             | 2-0-0 oc purlins (3-9           | -0 max.): 4-8.               |                    |             | d forces & MWFR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                | 1;     |       |        |     |                |          |
| OT CHORD    | Rigid ceiling directly          | applied or 2-2-0 oc          | 0                  |             | _=1.60 plate grip D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                |        |       |        |     |                |          |
|             | bracing.                        |                              | 3)                 |             | 7-16; Pr=20.0 ps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                | 1.15   |       |        |     |                |          |
| EBS         | 1 Row at midpt                  | 5-17, 5-14, 9-11             |                    |             | 1.15); Pg=20.0 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                |        |       |        |     |                |          |
| EACTIONS    | (size) 11=0-3-8,                | 18=0-3-8                     |                    |             | Plate DOL=1.15); Is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                | ully   |       |        |     |                |          |
|             | Max Horiz 18=64 (LC             | C 14)                        | 4                  |             | 9; Cs=1.00; Ct=1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                |        |       |        |     |                |          |
|             | Max Grav 11=1464                | ,                            | C 2) <sup>4)</sup> |             | snow loads have I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | been cor | isidered for t | nis    |       |        |     |                |          |
| ORCES       | (lb) - Maximum Com              |                              | · ,                | design.     | a haan daalamadd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                | live   |       |        |     |                |          |
| NOLO        | Tension                         | pression/maximum             | 5)                 |             | as been designed f<br>psf or 2.00 times f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                |        |       |        |     |                |          |
| OP CHORD    | 1-2=0/37, 2-3=-483/             | 55 3-42520/234               |                    |             | ion-concurrent with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                | 51 011 |       |        |     |                |          |
|             | 4-5=-2244/234, 5-6=             | , ,                          | 6)                 |             | quate drainage to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                | ~      |       |        |     |                |          |
|             | 6-8=-3389/314, 8-9=             |                              | 7)                 |             | has been designed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                |        |       |        |     |                |          |
|             | 9-10=-413/33, 2-18=             |                              |                    |             | m chord in all area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                | opsi   |       |        |     |                | 1.       |
| OT CHORD    | 17-18=-206/2057, 15             | ,                            | 11/00              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                | ~ m    |       |        |     |                | in the   |
|             | 14-15=-193/3377, 12             |                              |                    |             | by 2-00-00 wide winde winde winder winder winder begin winder w |          | veen the both  | om     |       |        |     | N'TH UA        | Roile    |
|             | 11-12=-195/2063                 | L 11- 120/2201,              | 0)                 |             | are assumed to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 2              |        |       |        | 1   | A              | 14/11    |
| EBS         | 3-17=-104/260, 4-17             | /=-4/769. 5-17=-136          | 4/96, <u>8)</u>    |             | urlin representation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                |        |       |        | 20  | - FOS          | DY.V.    |
|             | 5-15=0/132, 5-14=-8             | ,                            | , ,                |             | ation of the purlin a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                | 5128   |       |        | 55  | IN IL          | 13:1     |
|             | 8-14=-93/1362, 8-12             |                              |                    | bottom chor |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | aony the |                |        |       | 1      |     | p              | < · ·    |
|             | 3-18=-2044/209, 9-1             | ,                            | ,                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                |        |       |        |     | OR HES         | r 1      |
| DTES        |                                 |                              | L                  | DAD CASE(S) | Sianuaru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                |        |       | =      |     | O L/ (         | - :      |
|             | d as a filling to a dar to aver | been considered fo           | -                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                |        |       |        |     | 2867           | 7 :      |

1) Unbalanced roof live loads have been considered for this design.




April 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut beformation, available from the Structure Review Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

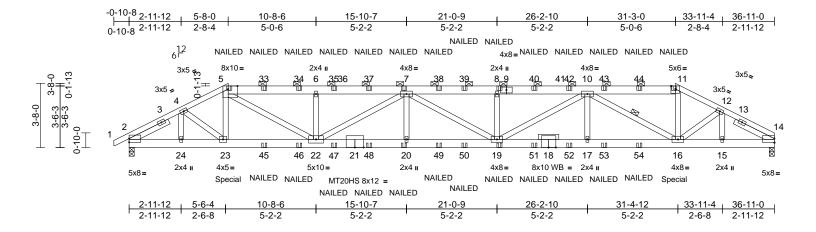
|   | Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |         |
|---|----------|-------|------------|-----|-----|----------------------------------|---------|
| 1 | 25040187 | A11   | Нір        | 1   | 1   | I7<br>Job Reference (optional)   | 2941915 |

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:27 ID:8NIhcv45ZLX?ZgwuShLfIRzODp4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



#### Scale = 1:67.4


| Plate Offsets (X, Y): [2:Edge,0-3-4], [3:0-6-8,0-3-3], [13:Edge,0-2-12], [16:0-3-8,0-3-0], [18:0-9-0,Edge], [20:0-0-8,0-1-10]                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                   |                                                                              |                            |                               |                          |                                   |                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------|-------------------------------|--------------------------|-----------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL                                                                                                          | (psf)<br>20.0<br>18.9/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                  | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2027                               | 1/TPI2014                                                                                                                                                                                                                                                                                                                                                                                          | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH | 0.60<br>0.87<br>0.98                                                                                                                                                                                                                                                                           | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                                          | in<br>-0.28<br>-0.53<br>0.26                                                 | (loc)<br>17<br>16-17<br>13 | l/defl<br>>999<br>>836<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 214 lb  | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>WEBS<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD<br>BOT CHORD<br>WEBS<br>NOTES<br>1) Unbalance | 2x4 SP 2400F 2.0E<br>2x4 SP 2400F 2.0E<br>SP No.3<br>2x4 SP No.3 *Excep<br>Structural wood shea<br>3-8-6 oc purlins, exi<br>2-0-0 oc purlins (3-5<br>Rigid ceiling directly<br>bracing,<br>1 Row at midpt<br>(size) 13=0-3-8,<br>Max Horiz 22=-62 (L<br>Max Grav 13=1524 (<br>(lb) - Maximum Com<br>Tension<br>1-2=0/37, 2-3=-335//<br>4-5=-3246/267, 5-6=<br>6-7=-4229/351, 7-9=<br>9-10=-2528/235, 10-<br>2-22=-463/105, 11-1<br>21-22=-98/1215, 20-<br>3-20=-332/3859, 19-<br>18-19=-211/4261, 17<br>16-17=0/264, 14-16=<br>13-14=-153/2043<br>5-19=-10/1146, 6-19<br>16-18=-181/3251, 7-<br>7-16=-354/124, 7-14<br>10-14=-99/283, 10-1<br>4-20=0/678, 4-19=-1<br>3-22=-1489/118, 3-2 | applied or 10-0-0 oc<br>6-19, 7-14<br>22=0-3-8<br>C 13)<br>(LC 2), 22=1522 (LC 2<br>pression/Maximum<br>55, 3-4=-4596/389,<br>-2901/273,<br>-2255/232,<br>11=-539/62, 11-12=0,<br>3=-467/117,<br>-21=-75/1155,<br>-20=-366/4015,<br>7-18=0/78, 6-18=0/37,<br>=-1654/114,<br>-18=-51/826,<br>=-1654/114,<br>-18=-51/826,<br>=-1654/114,<br>-18=-51/826,<br>=-1417/95, 9-14=0/72,<br>3=-1969/197,<br>504/233,<br>1=-1424/105 | or<br>3)<br>2) 4)<br>5)<br>/37, <sup>6)</sup><br>5, 9)<br>5, 9)<br>LC | Vasd=103mj<br>II; Exp B; En<br>Exterior(2E)<br>8-4-0, Exteri<br>to 28-7-0, Ex<br>33-9-10 to 3<br>exposed ; er<br>members an<br>Lumber DOL<br>TCLL: ASCE<br>Plate DOL=1<br>DOL=1.15 P<br>Exp.; Ce=0.3<br>Unbalanced<br>design.<br>This truss ha<br>load of 12.0<br>overhangs n<br>Provide adee<br>* This truss f<br>on the bottor<br>3-06-00 tall t<br>chord and ar<br>All bearings<br>Graphical pu |                                     | SCDL=6<br>invelope<br>interior<br>5-12, In 0<br>33-9- <sup>2</sup><br>ver left a<br>ight exp<br>S for rea<br>OL=1.3:<br>(Iroof LL<br>Pf=18.5<br>=1.0; Re<br>0, Lu=50<br>been cor<br>or great<br>at roof li<br>other li<br>orevent v<br>for a liv<br>s where<br>I fit betw<br>SP 240<br>does no | .0psf; h=25ft<br>and C-C<br>(1) 2-10-3 to<br>terior (1) 13-5<br>(0) Interior (1)<br>and right<br>oosed; C-C for<br>ctions showr<br>3<br>: Lum DOL=<br>b psf (Lum<br>ough Cat B; F<br>0-0-0<br>isidered for the<br>er of min roof<br>bad of 13.9 p<br>ve loads.<br>water ponding<br>e load of 20.1<br>a rectangle<br>veen the botth<br>0F 2.0E.<br>bt depict the s | 5-12<br>r<br>r;<br>1.15<br>fully<br>his<br>five<br>sf on<br>g.<br>Dpsf<br>om |                            |                               |                          | ORTH CA<br>ORTH CA<br>SEA<br>2867 | ROLL REPORT                        |
|                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | been considered for                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                   |                                                                              |                            |                               | 11                       | NN L. G                           | ALINSTITU                          |

April 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut beformation, available from the Structure Review Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |
|----------|-------|------------|-----|-----|----------------------------------|-----------|
| 25040187 | A12   | Hip Girder | 1   | 1   | Job Reference (optional)         | 172941916 |

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:29 ID:Km\_HUTQfzx20w\_3H5asDRLzODoe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



Scale = 1:65.9

Plate Offsets (X, Y): [2:Edge.0-2-9], [5:0-6-6.Edge], [14:Edge.0-2-13]

| Loading         (psf)         Spacing         2-0-0         CSI         Image: CSI and the construction of the construction device (s) is the responsibility of the construction of the construction device (s) is the responsibility                                                                          | Plate Offsets (                                                                                                        | X, Y): [2:Edge,0-2-9]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , [5:0-6-6,Edge], [14:                                                                                                                                                                                                                                                                                                                                                           | Edge,0-2                                                                                             | -13]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |                                                                                                              |                                                                                                                                                                                    |                                                                                                                                                     | -                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TOP CHORD         2x4 SP 2400F 2.0E *Except* 5-9,9-11:2x6 SP 2400F 2.0E         5-22=-269/2546, 6-22=-634/172, 7-29=-34/33, 8-19=-451/153, 10-19=-32/321, 8         (0.148*x3.25*) toe-nails per NDS guidlines.           BOT CHORD         2x6 SP 2400F 2.0E         7-22=-1220/140, 7-20=0/177, 7-19=-34/33, 8-19=-451/153, 10-19=-132/1218, 10-17=-0/150, 10-16=-2560/276, 10-17=0/150, 10-16=-2560/276, 12-5, 22-5, 22-7, 19-7, 19-10, 16-10:2x4 SP No.2         (0.148*x3.25*) toe-nails per NDS guidlines.           WEBS         2x4 SP No.3 *Except*         10-17=0/150, 10-16=-2560/276, 11-16=-88/1381, 12-16=-110/795, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33, 10-19=-34/33,                                                                                                                                                         | TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL                                                                            | 20.0<br>18.9/20.0<br>10.0<br>0.0*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr                                                                                                                                                                                                                                                                                                                                  | 1.15<br>1.15<br>NO                                                                                   | 21/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TC<br>BC<br>WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.44                                                                                                                                                                                                                                                                                                                               | Vert(LL)<br>Vert(CT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.30<br>-0.59                                           | 19-20<br>19-20                                                                                               | >999<br>>746                                                                                                                                                                       | 240<br>180                                                                                                                                          | MT20<br>MT20HS                                                                                                                                                                                                                                   | 244/190<br>187/143                                                                                                                                                                                                                       |
| <ul> <li>DTHERS 24 9F No.3 = 2-6-0, Right 2x4 SP No.3 = -2-6-0, Right 2x4 SP No.3 = -2-6-0</li> <li>NOTES</li> <li>NOTES</li></ul> | TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>SLIDER<br>BRACING<br>TOP CHORD<br>WEBS<br>REACTIONS<br>FORCES<br>TOP CHORD | 2400F 2.0E<br>2x6 SP 2400F 2.0E<br>2x4 SP No.3 *Excep<br>22-5,22-7,19-7,19-1<br>2x4 SP No.3<br>Left 2x4 SP No.3<br>Left 2x4 SP No.3<br>2-6-0<br>Structural wood she<br>4-0-1 oc purlins, ex<br>2-0-0 oc purlins (3-<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(size) 2=0-3-8,<br>Max Horiz 2=34 (LC<br>Max Uplift 2=-192 (I<br>Max Grav 2=2184 (<br>(lb) - Maximum Con<br>Tension<br>1-2=0/32, 2-4=-334<br>5-6=-5649/604, 6-7:<br>7-8=-6684/700, 8-11<br>10-11=-3444/385, 1<br>12-14=-3356/347<br>2-24=-305/2896, 23<br>22-23=-371/3492, 2<br>19-20=-685/6687, 1<br>16-17=-559/5641, 1 | pt*<br>0,16-10:2x4 SP No.2<br>2-6-0, Right 2x4 SP I<br>eathing directly applie<br>cept<br>10-3 max.): 5-11.<br>y applied or 10-0-0 oc<br>10-16<br>14=0-3-8<br>2 (5)<br>10-2 (5), 14=-191 (LC 7<br>LC 2), 14=2133 (LC 2)<br>npression/Maximum<br>6/347, 4-5=-3849/422<br>=-5640/601,<br>0=-6684/700,<br>1-12=-3849/421,<br>1-24=-305/2896,<br>10-22=-685/6687,<br>7-19=-559/5641, | x6 SP<br>2<br>No.3 1<br>1<br>ed or 2<br>c 3<br>()<br>2) 4<br>5<br>3, 6<br>7<br>8<br>7<br>8<br>9<br>1 | <ul> <li>IOTES</li> <li>) Unbalanced this design.</li> <li>) Wind: ASCE Vasd=103mg II; Exp B; En and right exp Lumber DOL=1</li> <li>) TCLL: ASCE Plate DOL=1.15 P Exp.; Ce=0.5</li> <li>) Unbalanced design.</li> <li>i) This truss ha load of 12.0 overhangs n</li> <li>i) Provide adea</li> <li>) All plates are so the bottom 3-06-00 tall te chord and are so the bottom 3-06-00 tall te chord and are so and the bottom 3-06-00 tall to chord and are so and the arings and the analysis of the area and the analysis of the advector t</li></ul> | 5-22=-269/2546, 6-<br>7-22=-1220/140, 7-<br>8-19=-451/153, 10-<br>10-17=0/150, 10-16<br>11-16=-88/1381, 12<br>12-15=-388/58<br>roof live loads have<br>7-16; Vult=130mp<br>bh; TCDL=6.0psf; E<br>closed; MWFRS (e<br>posed; end vertical<br>=1.60 plate grip De<br>; 7-16; Pr=20.0 psf;<br>late DOL=1.15); Is-<br>b; Cs=1.00; Ct=1.10;<br>snow loads have b<br>as been designed for<br>psf or 2.00 times fla<br>on-concurrent with<br>quate drainage to pa<br>b MT20 plates unlee<br>has been designed<br>n chord in all areas<br>by 2-00-00 wide will<br>by other members.<br>are assumed to be<br>hanical connection<br>a capable of withstat<br>b uplift at joint 2. | 22=-63<br>20=0/1<br>19=-13<br>6=-2560<br>2-16=-1<br>e been of<br>h (3-sec<br>3CDL=6<br>anvelope<br>left and<br>OL=1.3;<br>(roof LL<br>Pf=18.5<br>=1.0; Rc<br>O, Lu=50<br>been cor<br>or great<br>at roof la<br>other librorevent '<br>so other librorevent '<br>so other librorevent '<br>SP 240<br>(by oth<br>anding 1<br>does no | 4/172,<br>77, 7-19=-34/33<br>2/1218,<br>/276,<br>10/795,<br>considered for<br>cond gust)<br>3.0psf; h=25ft; C<br>a); cantilever lef<br>d right exposed;<br>3<br>:: Lum DOL=1. <sup>-</sup><br>Dysf (Lum<br>Dugh Cat B; Ful<br>D-0-0<br>nsidered for this<br>er of min roof lix<br>D-0-0<br>nsidered for this<br>er of min roof lix<br>D-0-0<br>sei loads.<br>water ponding.<br>wise indicated.<br>e load of 13.9 psf<br>ve loads.<br>water ponding.<br>wise indicated.<br>e load of 20.0p:<br>a rectangle<br>veen the bottom<br>10F 2.0E .<br>ers) of truss to<br>91 lb uplift at jc<br>bt depict the siz | Cat.<br>ft<br>;<br>15<br>lly<br>s<br>ve<br>on<br>sf<br>n | (0.1<br>13) Har<br>pro<br>lb d<br>lb u<br>of s<br>othe<br>14) In ti<br>of ti<br>LOAD (<br>1) De<br>Inc<br>Ur | 148"x3.2<br>nger(s) c<br>vided su<br>lown and<br>up at 31-<br>such con<br>ers.<br>he LOAI<br>he truss<br><b>CASE(S</b><br>ead + Sr<br>crease=<br>niform Li<br>Vert: 1-<br>oncentra | 5") toe<br>or other<br>fficient<br>d 51 lb<br>-2-4 on<br>nectior<br>D CASI<br>are no<br>D Star<br>how (ba<br>1.15<br>bads (II<br>5=-48,<br>ited Los | s 3-10d (0.148"<br>-nails per NDS<br>r connection de'<br>t to support con-<br>up at 5-8-0, an<br>bottom chord.<br>n device(s) is th<br>E(S) section, loc<br>ted as front (F)<br>ndard<br>alanced): Lumbo<br>b/ft)<br>5-11=-58, 11-1:<br>ads (lb) | x3") or 3-12d<br>guidlines.<br>vice(s) shall be<br>centrated load(s) 269<br>d 269 lb down and 51<br>The design/selection<br>e responsibility of<br>ads applied to the face<br>or back (B).<br>er Increase=1.15, Plat<br>4=-48, 25-29=-20 |

April 23,2025

Page: 1

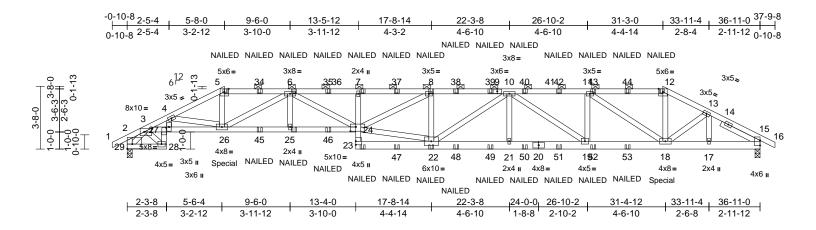


Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 1/2/2023 BEFORE USE. WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Continued on page 2

| Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |
|----------|-------|------------|-----|-----|----------------------------------|-----------|
| 25040187 | A12   | Hip Girder | 1   | 1   | Job Reference (optional)         | 172941916 |

| Vert: 5=-31 (B), 23=-264 (B), 7=-27 (B), 20=-19 (B), |
|------------------------------------------------------|
| 8=-27 (B), 19=-19 (B), 16=-264 (B), 11=-31 (B),      |
| 33=-27 (B), 34=-27 (B), 35=-27 (B), 37=-27 (B),      |
| 38=-27 (B), 39=-27 (B), 40=-27 (B), 42=-27 (B),      |
| 43=-27 (B), 44=-27 (B), 45=-19 (B), 46=-19 (B),      |
| 47=-19 (B), 48=-19 (B), 49=-19 (B), 50=-19 (B),      |
| 51=-19 (B), 52=-19 (B), 53=-19 (B), 54=-19 (B)       |
|                                                      |


Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:29 ID:Km\_HUTQfzx20w\_3H5asDRLzODoe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |
|----------|-------|------------|-----|-----|----------------------------------|-----------|
| 25040187 | A13   | Hip Girder | 1   | 2   | Job Reference (optional)         | 172941917 |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:30 ID:8wLYIXUQZnpAevWRRqzdhczODoY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



Scale = 1:67.2

| Y): [2:Edge 0-3-4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [3:0-5-4 0-2-7] [24:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0-3-12 0-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0] [27·0-0-8                                                                                                                                                                                                                                                                                                                                        | 0-2-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (psf)<br>20.0<br>18.9/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2-0-0<br>1.15<br>1.15<br>NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                      | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.26<br>0.73<br>0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                                                  | in<br>-0.29<br>-0.55<br>0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (loc)<br>7<br>7<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l/defl<br>>999<br>>799<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L/d<br>240<br>180<br>n/a                                                                                                                                                          | PLATES<br>MT20<br>Weight: 463 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>GRIP</b> 244/190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| No.3, 23-20,20-15:2:<br>2x4 SP No.3 *Excep<br>No.2<br>Right 2x4 SP No.2<br>Structural wood shee<br>6-0-0 oc purlins, ext<br>2-0-0 oc purlins (5-1<br>Rigid ceiling directly<br>bracing.<br>size) 15=0-3-8,<br>4x Horiz 29=-45 (L<br>4x Uplift 15=-209 (<br>4x Grav 15=2174 (<br>(lb) - Maximum Com<br>Tension<br>1-2=0/37, 2-3=-466/<br>4-5=-5425/747, 5-6=<br>6-7=-8747/1100, 7-8<br>8-10=-6657/806, 10-<br>11-12=-3464/419, 12<br>3-27=-704/5456, 26-<br>25-26=-935/7303, 24<br>23-24=0/172, 7-24=-<br>22-23=-124/1071, 2'<br>19-21=-727/6445, 18 | x6 SP 2400F 2.0E<br>t* 22-24,29-2:2x4 SI<br>• 2-6-0<br>athing directly applie<br>cept end verticals, an<br>0-1 max.): 5-12.<br>applied or 10-0-0 oc<br>29=0-3-8<br>C 9)<br>LC 7), 29=-255 (LC<br>(LC 2), 29=2199 (LC<br>pression/Maximum<br>71, 3-4=-6620/851,<br>-4928/686,<br>B=-8494/1070,<br>11=-5351/635,<br>2-13=-3879/455,<br>5-16=0/32, 2-29=-58<br>7-28=-218/1686,<br>:27=-744/5708,<br>4-25=-935/7303,<br>:350/106,<br>1-22=-727/6445,<br>B-19=-580/5351,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SP<br>P<br>ed or<br>nd N<br>c 1)<br>8)<br>; 2)<br>2)<br>11/75 4)<br>5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OTES<br>2-ply truss t<br>(0.131"x3")<br>Top chords<br>oc.<br>Bottom choi<br>0-9-0 oc, 2x<br>Web conner<br>All loads ardc<br>except if no<br>CASE(S) se<br>provided to<br>unless othe<br>Unbalancec<br>this design.<br>Wind: ASCE<br>Vasd=103m<br>II; Exp B; Ei<br>and right ex<br>Lumber DO<br>TCLL: ASCE<br>Plate DOL=<br>DOL=1.15 F<br>Exp.; Ce=0. | 6-26=-2751/348, 6<br>6-24=-174/1654, 2<br>8-24=-285/2008, 8<br>10-22=-60/278, 10<br>10-19=-1329/181,<br>11-18=-2296/281,<br>13-18=-126/816, 1<br>3-29=-2226/274, 3<br>4-27=-82/908<br>o be connected tog<br>nails as follows:<br>connected as follow<br>connected as follows:<br>connected as follows:<br>connected as follows:<br>connected as follows:<br>connected as follows:<br>connected as follows:<br>considered equal<br>ted as front (F) or b<br>tection. Ply to ply co<br>distribute only load<br>rwise indicated.<br>I roof live loads hav<br>E 7-16; Vult=130mp<br>ph; TCDL=6.0psf;<br>nclosed; end vertica<br>L=1.60 plate grip D<br>E 7-16; Pr=20.0 psf<br>1.15); Pg=20.0 psf<br>Plate DOL=1.15); Is<br>9; Cs=1.00; Ct=1.1 | -25=0/18<br>2-24=-6<br>-22=-13<br>-21=0/20<br>11-19=-<br>12-18=-<br>3-17=-4<br>-28=-200<br>ws: 2x4 -<br>28=-200<br>ws: 2x4 -<br>29=-200<br>ws: 2x4 -<br>29=-200<br>ws: 2x4 -<br>200<br>ws: 2 | 81,<br>78/5764,<br>42/279,<br>55,<br>13/830,<br>103/1388,<br>17/73,<br>87/288,<br>41 10d<br>1 row at 0-9-<br>44 - 1 row at 0-9-<br>44 - 1 row at 0-9-<br>0 cc.<br>at 0-9-0 oc.<br>4 to all plies,<br>acc in the LC<br>s have been<br>as (F) or (B),<br>considered fo<br>ond gust)<br>.); cantilever 1<br>ight expose<br>3<br>: Lum DOL='<br>psf (Lum<br>ugh Cat B; F)-0-0 | DAD<br>r<br>Cat.<br>eft<br>d;<br>1.15<br>ully                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | loa<br>ove<br>8) Prc<br>9) * T<br>on<br>3-0<br>chc<br>10) Bea<br>Joi<br>11) Prc<br>bea<br>15<br>12) Gra<br>or 1<br>bot<br>13) "N/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d of 12.0<br>erhangs<br>ovide add<br>his truss<br>the bottk<br>6-00 tall<br>ord and a<br>arings ar<br>nt 15 SP<br>ovide me<br>aring pla<br>and 255<br>aphical p<br>the orien<br>tom cho<br>AILED" in<br>148"x3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) psf or<br>non-co<br>equate<br>has be<br>or cho<br>by 2-0<br>any oth<br>re assuu<br>2400F<br>chanic<br>te capa<br>lb uplit<br>urlin re<br>tation or<br>rd.<br>ndicate<br>5") toe | 2.00 times flat<br>neurrent with o<br>drainage to paid<br>en designe pfo<br>erd in all areas v<br>10-00 wide will f<br>er members.<br>Imed to be: Joir<br>7.2.0E.<br>al connection (l<br>able of withstan<br>ft at joint 29.<br>apresentation d<br>of the purlin alo<br>es 3-10d (0.148<br>-nails per NDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | roof load of 13.<br>ther live loads.<br>event water pon<br>or a live load of<br>where a rectang<br>it between the t<br>at 29 SP 2400F<br>by others) of tru<br>ding 209 lb upli<br>bes not depict t<br>ing the top and/<br>(x3") or 3-12d<br>guidlines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .9 psf on<br>Iding.<br>20.0psf<br>gle<br>bottom<br>2.0E ,<br>iss to<br>ift at joint<br>he size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (psf)<br>20.0<br>18.9/20.0<br>10.0<br>0.0*<br>10.0<br>2x4 SP 2400F 2.0E<br>2x4 SP 2400F 2.0E<br>2x4 SP 2400F 2.0E<br>No.3, 23-20,20-15:2<br>2x4 SP No.3 *Excep<br>No.2<br>Right 2x4 SP No.2 -<br>Structural wood she<br>6-0-0 oc purlins, ex<br>2-0-0 oc purlins, ex<br>2-0 oc purl | (psf)<br>20.0<br>18.9/20.0<br>18.9/20.0<br>10.0<br>10.0<br>0.0*<br>10.0<br>2x4 SP 2400F 2.0E<br>2x4 SP 2400F 2.0E<br>2x4 SP 2400F 2.0E<br>2x4 SP 2400F 2.0E *Except* 28-27:2x4<br>No.3, 23-20,20-15:2x6 SP 2400F 2.0E<br>2x4 SP No.3 *Except* 22-24,29-2:2x4 SI<br>No.2<br>Right 2x4 SP No.2 2-6-0<br>Structural wood sheathing directly applied<br>6-0-0 oc purlins, except end verticals, a<br>2-0-0 oc purlins (5-10-1 max.): 5-12.<br>Rigid ceiling directly applied or 10-0-0 oc<br>bracing.<br>size) 15=0-3-8, 29=0-3-8<br>1ax Uplift 15=-209 (LC 7), 29=-255 (LC<br>1ax Grav 15=2174 (LC 2), 29=2199 (LC<br>(lb) - Maximum Compression/Maximum<br>Tension<br>1-2=0/37, 2-3=-466/71, 3-4=-6620/851,<br>4-5=-5425/747, 5-6=-4928/686,<br>6-7=-8747/1100, 7-8=-8494/1070,<br>8-10=-6657/806, 10-11=-5351/635,<br>11-12=-3464/419, 12-13=-3879/459, | $\begin{array}{c c} (psf)\\ 20.0\\ 18.9/20.0\\ 18.9/20.0\\ 10.0\\ 10.0\\ 0.0^*\\ 10.0\\ \end{array} \begin{array}{c c} Spacing\\ Plate Grip DOL\\ 1.15\\ Lumber DOL\\ 1.15\\ Rep Stress Incr\\ NO\\ Code\\ IRC202\\ \end{array}$                                                                                                                     | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.0<br>18.9/20.0<br>10.0Piate Grip DOL<br>Lumber DOL1.15<br>LSTC<br>BC<br>BC10.01.001.15BC10.00.0*<br>10.0CodeIRC2021/TPI2014Matrix-MSH10.0CodeIRC2021/TPI2014Matrix-MSH10.00.0*<br>10.0CodeIRC2021/TPI2014Matrix-MSH10.0CodeIRC2021/TPI2014Matrix-MSH2x4 SP 2400F 2.0E<br>2x4 SP 2400F 2.0E $6-26=-2751/348, 6$<br>$6-24=-174/1654, 2$<br>$8-24=-285/2008, 8$<br>$10-22=-60/278, 10$<br>$10-19=-1329/181, 13-18=-126/816, 10-19=-1329/181, 13-18=-126/816, 10-29=-2226/274, 3No.2Rigid ceiling directly applied or6-0-0 oc purlins, (5-10-1 max); 5-12.NOTESRigid ceiling directly applied or6-0-0 oc purlins (5-10-1 max); 5-12.NOTESRigid ceiling directly applied or 10-0-0 ocbracing.NOTES11 25=-3426/271, 7-5-6-4928/686,6-7=-8747/1100, 7-8=-849/1070,8-10=-6657/806, 10-11=-5351/635,11-12=-3464/419, 12-133879/459,13-15=-3326/371, 15-16=0/32, 2-29=-581/75NOTES11 -12=-3464/419, 12-133879/459,13-15=-3326/371, 15-16=0/32, 2-29=-581/752-29=-245/1796, 27-28=-218/1686,3-27=-704/5456, 26-27=-744/5708, 22-28=-581/750,2-23==124/1071, 21-22=-727/6445, 18-19=-580/5351, 17-18=-293/2886, 15-17=-293/2886Nick ASCE 7-16; Vult=130mpt, Yasg=100, pairYasg=103mph, TCDL=6.0psf;I; Exp B; Enclosed; MWFRS (and right exposed; end vertica, and right expos$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                           | (psf)         Spacing         2-0-0         CSI         DEFL           18.9/20.0         Lumber DOL         1.15         TC         0.26           10.0         Code         IRC2021/TPI2014         Matrix-MSH         DEFL           2x4 SP 2400F 2.0E         Code         IRC2021/TPI2014         Matrix-MSH         Derce 1           2x4 SP 2400F 2.0E         Except* 28-27:2x4 SP         6-24=-174/1654, 22-24=-678/5764, 8-25=0/181, 6-24=-285/2008, 8-22=-1342/279, 10-22=-60/278, 10-21=0/205, 10-19=-1329/181, 11-19=-13/830, 11-18=-2296/281, 12-18=-103/1388, 13-18=-126/816, 13-17=-447/73, 3-28=-2087/288, 6-0-0 co purlins, except end verticals, and 2-0-0 oc purlins, except end vertical, and 1-2-0/37, 2-3=-466/71, 3-4=-6620/851, 4-2=-784/5706, 1-2-2-74/57466, 2-2-2-7-24/574, 5-6=-4228/686, 6-7-8-7474/170, 7-8=-4294/172, 7-24=-380/172, 7-24=-380/173, 1-16=-032, 2-29=-581/75, 22-2=-935/7303, 24-25=-935/7303, 23-22-207/74, 5-2=-935/7303, 23-22-207/74, 5-2=-9272/6445, 18-19=-580/5351, 11-2=-23/28686, 1-2-2-2 | (ps)<br>18.9/20.0<br>18.9/20.0<br>10.0<br>0.0*         Spacing<br>(ps)<br>2.0-0<br>10.0<br>0.0*         2-0-0<br>1.15<br>(pate Grip DOL<br>1.15<br>(pate Grip DOL<br>2.2021/TPI2014         CSI<br>(pate Grip DOL<br>BC<br>0.26<br>(pate Grip DOL<br>1.15<br>(pate Grip DOL<br>1.15<br>(pate Grip DOL<br>2.224 SP 2400F 2.0E<br>(pate Grip DOL<br>2.24 SP 2400F 2.0E<br>(pate Grip DOL<br>2. | (psf)         Spacing         2-0-0           18.9/20.0         Plate Grip DOL         1.15           18.9/20.0         Lumber DOL         1.15           0.0         10.0         Rep Stress Incr         NO           10.0         Rep Stress Incr         NO           2x4 SP 2400F 2.0E         RC2021/TPI2014         BC         0.71           2x4 SP 2400F 2.0E         WEBS $4-26=-994/121, 5-26=-255/2085, 7         7           2x4 SP 2400F 2.0E         WEBS         4-26=-994/121, 5-26=-255/2085, 7         7           2x4 SP No.3 "Except" 22-24,29-2:2x4 SP         6-24=-174/1654, 22-24=-678/5764, 0         ovid           8/24 SP No.3 "Except" 22-24,29-2:2x4 SP         6-24=-275/3/248, 6-25=0/181, 0         ovid           8/24 SP No.3 "Except" 22-24,29-2:2x4 SP         10-22=-60/278, 10-21=0/205, 9         9         *T           8/24 SP No.3 "Except" 22-24,29-2:2x4 SP         10-22=-60/278, 10-21=0/205, 9         9         *T           8/21 SP No.2 - 2-60         11-15=-2296/278, 10-21=0/205, 9         9         *T           8/21 SP No.3 "Except" 22-24, 29-2:2x4 SP         10-22=-60/278, 10-21=0/205, 9         9         *T           8/21 SP No.2 - 2-60         10-19=-1329/181, 11-19=-13/830, 0         on         11           8/21 SP No.2 - 2-60     $ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                            | (psf)         Spacing         2-0-0         CSI         TC         0.26           18.9/20.0         Plate Grip DOL         1.15         TC         0.26         Vert(LL)         -0.29         7         >999         240           10.0         10.0         0.0*         TC         0.26         Vert(LL)         -0.29         7         >999         240           10.0         0.0*         TC         0.26         Vert(CT)         -0.55         7         >799         180           0.0*         0.0*         TC         0.0         No         No         No         No         Plate Grip DOL         1.15         BC         0.73         Wert(CT)         -0.55         7         >799         180           2x4 SP 2400F 2.0E         WEBS         4-26=-994/121, 5-26=-255/2085,         7)         This truss has bee         load of 12.0 ps or         overhangs non-co         overhords 11-19=-1329/181, 11-1 | (psf)         Spacing         2-0-0         CSI         DEFL         in         (loc)         //deft         L/d         PLATES           18.9/20.0         Lumber DOL         1.15         TC         0.26         Derv         Vert(LL)         -0.29         7         >999         240         MT20           18.9/20.0         Lumber DOL         1.15         BC         0.73         Vert(LL)         -0.29         7         >999         240           0.0         0.0*         Code         IRC2021/TPI2014         Matrix-MSH         Derv         0.18         15         n/a         n/a           2x4 SP 2400F 2.0E         Kecept* 28-27:2x4 SP         6-24=-717/1548, 6-25=-0/181,         6-24=-714/1654, 6-25=-0/181,         10.0         12.0 psf or 2.00 times flat         overhangs non-concurrent with or           2x4 SP No.3, 23-20, 20-15:2x6 SP 2400F 2.0E         % 24-285/2008, 8-22=-1342/279,         8         Provide adequate drainage to provi | Cst         Spacing         2-0-0           (ps)         Spacing         2-0-0 |

### April 23,2025

Page: 1



Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 1/2/2023 BEFORE USE. WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof | 170044047 |  |
|----------|-------|------------|-----|-----|----------------------------------|-----------|--|
| 25040187 | A13   | Hip Girder | 1   | 2   | Job Reference (optional)         | 172941917 |  |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:30

ID:8wLYIXUQZnpAevWRRqzdhczODoY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Carter Components (Sanford, NC), Sanford, NC - 27332,

14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 295 Ib down and 89 lb up at 5-8-0, and 33 lb down at 13-5-12, and 269 lb down and 42 lb up at 31-2-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

### LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-2=-48, 2-5=-48, 5-12=-58, 12-16=-48, 28-29=-20, 24-27=-20, 23-30=-20

Concentrated Loads (lb)

Vert: 5=-19 (F), 24=-22 (F), 7=-23 (F), 26=-292 (F),

6=-17 (F), 25=-30 (F), 22=-22 (F), 8=-23 (F),

18=-269 (F), 12=-28 (F), 34=-17 (F), 35=-17 (F),

37=-23 (F), 38=-23 (F), 39=-23 (F), 40=-23 (F),

42=-23 (F), 43=-23 (F), 44=-23 (F), 45=-30 (F),

46=-30 (F), 47=-22 (F), 48=-22 (F), 49=-22 (F), 50=-22 (F), 51=-22 (F), 52=-22 (F), 53=-22 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



| Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |
|----------|-------|------------|-----|-----|----------------------------------|-----------|
| 25040187 | B1    | Common     | 2   | 1   | Job Reference (optional)         | 172941918 |

Loading

TCDL

BCLL

BCDL

WFBS

FORCES

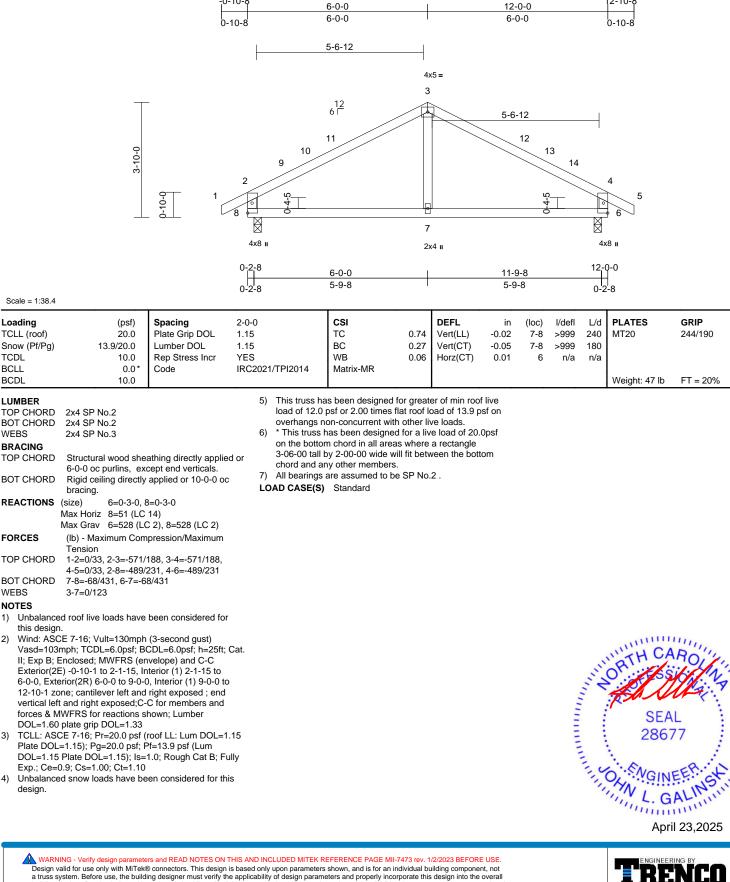
WEBS

2)

3)

4)

NOTES 1)


LUMBER

-0-10-8

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:31 ID:N6L5VzBkS6fj836dU40mALzODox-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

12-10-8



building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Edenton, NC 27932

MANNING THE

| Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |
|----------|-------|------------|-----|-----|----------------------------------|-----------|
| 25040187 | B2    | Hip Girder | 1   | 1   | Job Reference (optional)         | 172941919 |

Loading

TCDL

BCLL

BCDL

WEBS

SLIDER

BRACING

FORCES

WEBS

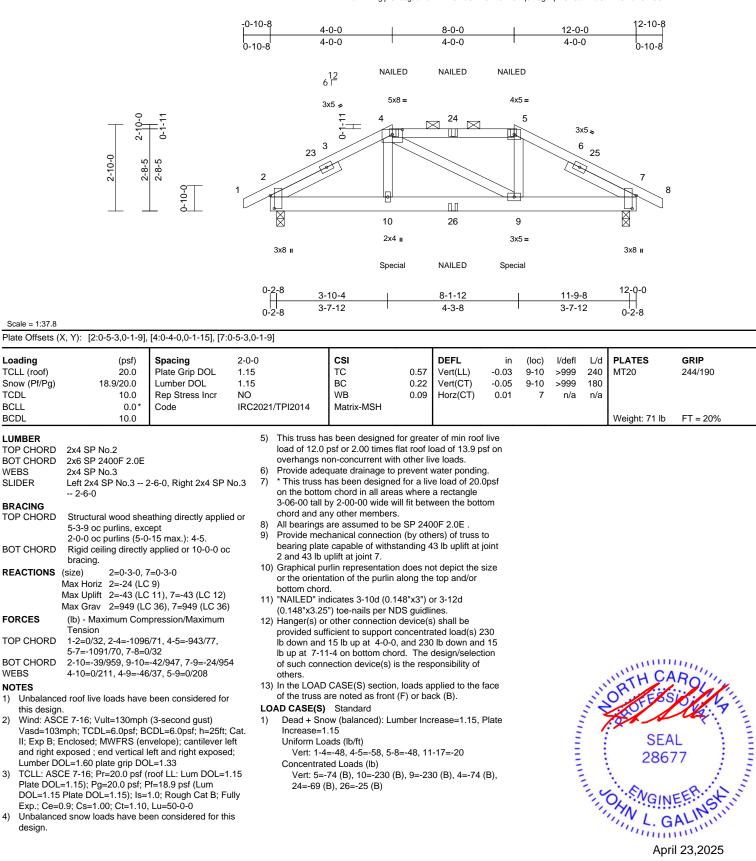
NOTES

1)

2)

3)

4)


design.

LUMBER

TCLL (roof)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:31 ID:dNRLWgijKJ4coguuVcHrPPzODoG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

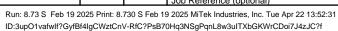


Edenton, NC 27932

| Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |
|----------|-------|------------|-----|-----|----------------------------------|-----------|
| 25040187 | C1    | Monopitch  | 4   | 1   | Job Reference (optional)         | 172941920 |

12-2-4

6-0-0


Carter Components (Sanford, NC), Sanford, NC - 27332,

-0-10-8

0-10-8

6-2-4

6-2-4



18-0-8

5-10-4

17



4-11-2

0-2-6 ⊟

7

3x5 =

2x4 II 6 -

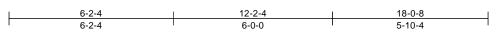
3x5 = 3x5 = 12 3 Г 5 16 4 3x5 = E 3 Fq-15 2 -9- $\bigotimes$ × 8 9 5x6 = 3x5 = 2x4 II 0-3-8 6-2-4 12-2-4 18-0-8 5-10-12 5-10-4 6-0-0

Scale = 1:40.6 Plate Offsets (X, Y): [8:0-3-0,0-3-0]

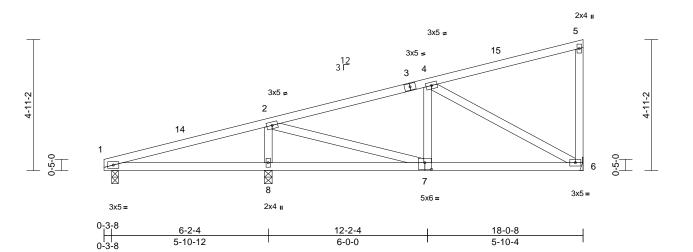
ĥ

5-0-4

| Loading<br>TCLL (roof)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (psf)<br>20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Spacing<br>Plate Grip DOL | 2-0-0<br>1.15 |        | CSI<br>TC                                                                                                                                                                                                                                                                                  | 0.43                                                                                                          | DEFL<br>Vert(LL)                                                                                                                                | in<br>-0.02                      | (loc)<br>9-14 | l/defl<br>>999 | L/d<br>240    | PLATES<br>MT20 | <b>GRIP</b><br>244/190 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------|----------------|---------------|----------------|------------------------|
| Snow (Pf/Pg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13.9/20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lumber DOL                | 1.15          |        | BC                                                                                                                                                                                                                                                                                         | 0.40                                                                                                          | Vert(CT)                                                                                                                                        | -0.05                            | 9-14          | >999           | 180           | 101120         | 244/100                |
| TCDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.0/20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rep Stress Incr           | YES           |        | WB                                                                                                                                                                                                                                                                                         | 0.46                                                                                                          | Horz(CT)                                                                                                                                        | 0.00                             | 7             | n/a            | n/a           |                |                        |
| BCLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Code                      | IRC2021/T     | PI2014 | Matrix-MSH                                                                                                                                                                                                                                                                                 | 0.10                                                                                                          |                                                                                                                                                 | 0.01                             |               |                |               |                |                        |
| BCDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |               |        |                                                                                                                                                                                                                                                                                            |                                                                                                               |                                                                                                                                                 |                                  |               |                |               | Weight: 87 lb  | FT = 20%               |
| BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TOP CHORD       2x4 SP No.2         BOT CHORD       2x4 SP No.2         WEBS       2x4 SP No.3         BRACING       Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.         BOT CHORD       Structural wood sheathing directly applied or 10-0-0 oc bracing.         REACTIONS       (size)       2=0-3-0, 7= Mechanical, 9=0-3-8 Max Horiz         Max Uplift       2=-136 (LC 14)         Max Grav       2=320 (LC 2), 7=496 (LC 22), 9=693 (LC 2) |                           |               |        | s been designed for<br>sef or 2.00 times fla<br>on-concurrent with<br>as been designed<br>on chord in all areas<br>y 2-00-00 wide will<br>y other members.<br>assumed to be: Jo<br>er(s) for truss to tru-<br>nanical connection<br>capable of withsta<br>at joint 9 and 23 lb<br>Standard | at roof lo<br>other liv<br>for a liv<br>s where<br>I fit betv<br>bint 2 SI<br>uss conr<br>(by oth<br>anding 1 | bad of 13.9 p<br>ve loads.<br>e load of 20.1<br>a rectangle<br>veen the bott<br>P No.2, Joint<br>nections.<br>ers) of truss<br>6 lb uplift at j | sf on<br>Opsf<br>om<br>t 9<br>to |               |                |               |                |                        |
| FORCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (lb) - Maximum Corr                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,                         |               |        |                                                                                                                                                                                                                                                                                            |                                                                                                               |                                                                                                                                                 |                                  |               |                |               |                |                        |
| TOP CHORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |               |        |                                                                                                                                                                                                                                                                                            |                                                                                                               |                                                                                                                                                 |                                  |               |                |               |                |                        |
| BOT CHORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5-6=-111/76, 6-7=-1<br>2-9=-146/250, 7-9=-                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |               |        |                                                                                                                                                                                                                                                                                            |                                                                                                               |                                                                                                                                                 |                                  |               |                |               |                |                        |
| WEBS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5-7=-577/116, 3-9=-                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           | '1            |        |                                                                                                                                                                                                                                                                                            |                                                                                                               |                                                                                                                                                 |                                  |               |                |               |                | 115                    |
| WEBS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5-8=0/92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 551/155, 5-0=-19/57       | 1,            |        |                                                                                                                                                                                                                                                                                            |                                                                                                               |                                                                                                                                                 |                                  |               |                |               |                |                        |
| NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |               |        |                                                                                                                                                                                                                                                                                            |                                                                                                               |                                                                                                                                                 |                                  |               |                |               | "TH UA         | ROIL                   |
| <ol> <li>Wind: ASCE 7-16; Vult=130mph (3-second gust)<br/>Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.<br/>II; Exp B; Enclosed; MWFRS (envelope) and C-C<br/>Exterior(2E) -0-10-5 to 2-1-11, Interior (1) 2-1-11 to<br/>17-10-12 zone; cantilever left and right exposed; end<br/>vertical left and right exposed;C-C for members and<br/>forces &amp; MWFRS for reactions shown; Lumber<br/>DOL=1.60 plate grip DOL=1.33</li> <li>TCLL: ASCE 7-16; Pr=20.0 psf; roof LL: Lum DOL=1.15<br/>Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum<br/>DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully<br/>Exp.; Ce=0.9; Cs=1.00; Ct=1.10</li> <li>Unbalanced snow loads have been considered for this<br/>design.</li> </ol> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |               |        |                                                                                                                                                                                                                                                                                            |                                                                                                               |                                                                                                                                                 |                                  |               |                | Survey States | SEA<br>286     | EEP. St.               |


April 23,2025




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

| Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |
|----------|-------|------------|-----|-----|----------------------------------|-----------|
| 25040187 | C2    | Monopitch  | 1   | 1   | Job Reference (optional)         | 172941921 |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:31 ID:3upO1vafwlf?GyfBf4IgCWztCnV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



Page: 1



#### Scale = 1:43.4

Plate Offsets (X, Y): [7:0-3-0,0-3-0]

| Loading                     | (psf)                           | Spacing                | 2-0-0    |             | csi                                     |           | DEFL           | in    | (loc) | l/defl | L/d | PLATES        | GRIP       |
|-----------------------------|---------------------------------|------------------------|----------|-------------|-----------------------------------------|-----------|----------------|-------|-------|--------|-----|---------------|------------|
| TCLL (roof)                 | 20.0                            | Plate Grip DOL         | 1.15     |             | TC                                      | 0.43      | Vert(LL)       | -0.02 | 8-13  | >999   | 240 | MT20          | 244/190    |
| Snow (Pf/Pg)                | 13.9/20.0                       | Lumber DOL             | 1.15     |             | BC                                      | 0.27      | Vert(CT)       | -0.05 | 8-13  | >999   | 180 |               |            |
| TCDL                        | 10.0                            | Rep Stress Incr        | YES      |             | WB                                      | 0.46      | Horz(CT)       | 0.01  | 6     | n/a    | n/a |               |            |
| BCLL                        | 0.0*                            | Code                   | IRC202   | 1/TPI2014   | Matrix-MSH                              |           |                |       |       |        |     |               |            |
| BCDL                        | 10.0                            |                        |          |             |                                         |           |                |       |       |        |     | Weight: 85 lb | FT = 20%   |
| LUMBER                      |                                 |                        | 4)       |             | nas been designed                       |           |                | Opsf  |       |        |     |               |            |
| TOP CHORD                   |                                 |                        |          |             | n chord in all area                     |           |                |       |       |        |     |               |            |
| BOT CHORD                   |                                 |                        |          |             | by 2-00-00 wide wi<br>by other members. |           | ween the botto | om    |       |        |     |               |            |
| WEBS                        | 2x4 SP No.3                     |                        | 5        |             | assumed to be: J                        |           | PNo.2 loint    | 8     |       |        |     |               |            |
| BRACING                     |                                 |                        |          | SP No.2 .   | assumed to be. J                        |           | 1 10.2 , 30111 | 0     |       |        |     |               |            |
| TOP CHORD                   | 6-0-0 oc purlins, ex            | eathing directly appli | ed or 6) |             | er(s) for truss to tru                  | uss coni  | nections.      |       |       |        |     |               |            |
| BOT CHORD                   |                                 | y applied or 10-0-0 o  | ic 7     |             | hanical connectior                      |           |                |       |       |        |     |               |            |
|                             | bracing.                        | , ,,                   |          |             | capable of withst                       |           |                | oint  |       |        |     |               |            |
| REACTIONS                   | (size) 1=0-3-0,                 | 6= Mechanical, 8=0-    | -3-8     |             | t at joint 8 and 1 lb                   | uplift at | joint 1.       |       |       |        |     |               |            |
|                             | Max Horiz 1=133 (L              | .C 14)                 | L        | OAD CASE(S) | Standard                                |           |                |       |       |        |     |               |            |
|                             | Max Uplift 1=-1 (LC             | 11), 6=-17 (LC 15),    | 8=-11    |             |                                         |           |                |       |       |        |     |               |            |
|                             | (LC 15)                         |                        |          |             |                                         |           |                |       |       |        |     |               |            |
|                             | Max Grav 1=268 (L<br>8=690 (L   |                        | ,        |             |                                         |           |                |       |       |        |     |               |            |
| FORCES                      | `                               | npression/Maximum      |          |             |                                         |           |                |       |       |        |     |               |            |
|                             | Tension                         |                        |          |             |                                         |           |                |       |       |        |     |               |            |
| TOP CHORD                   | 1-2=-283/82, 2-4=-              | 618/123, 4-5=-111/7    | 6,       |             |                                         |           |                |       |       |        |     |               |            |
|                             | 5-6=-168/91                     |                        |          |             |                                         |           |                |       |       |        |     |               |            |
| BOT CHORD                   | ,                               |                        |          |             |                                         |           |                |       |       |        |     |               |            |
| WEBS                        | 4-6=-582/118, 2-8=<br>4-7=0/92  | -546/153, 2-7=-13/3    | 50,      |             |                                         |           |                |       |       |        |     | , mining      | Mun,       |
| NOTES                       | 4-1=0/92                        |                        |          |             |                                         |           |                |       |       |        |     | SEA<br>286    | ROUL       |
|                             | CE 7-16; Vult=130mp             | h (3-second quet)      |          |             |                                         |           |                |       |       |        | S.  | A             | in YALL    |
|                             | Bmph; TCDL=6.0psf; E            |                        | ; Cat.   |             |                                         |           |                |       |       |        | 22  |               | 1. 3'      |
|                             | Enclosed; MWFRS (e              |                        | ,        |             |                                         |           |                |       |       |        | -   | GA XI         | A CONTRACT |
|                             | E) 0-0-0 to 3-0-0, Inte         |                        |          |             |                                         |           |                |       |       |        |     | 10.00         |            |
|                             | tilever left and right ex       |                        | left     |             |                                         |           |                |       |       | =      | :   | SEA           | ∖L : =     |
|                             | exposed;C-C for mem             |                        |          |             |                                         |           |                |       |       | - 3    |     | 286           | 77 : E     |
| grip DOL=                   | for reactions shown; L<br>-1 33 |                        | ale      |             |                                         |           |                |       |       | -      |     | 200           | 1 E E      |
|                             | CE 7-16; Pr=20.0 psf            | (roof LL: Lum DOI =    | 1.15     |             |                                         |           |                |       |       |        | -   | <b>N</b>      | 1 3        |
|                             | L=1.15); Pg=20.0 psf;           |                        | -        |             |                                         |           |                |       |       |        | 20  | S.SNO.        | FFR. LS    |
| DOL=1.15                    | 5 Plate DOL=1.15); Is           | =1.0; Rough Cat B; F   | ully     |             |                                         |           |                |       |       |        | 11  | A. GIN        | F.F. S.N   |
|                             | =0.9; Cs=1.00; Ct=1.10          |                        |          |             |                                         |           |                |       |       |        | 1   | L.G           | ALICIN     |
| <ol><li>Unbalance</li></ol> | ed snow loads have b            | een considered for tl  | his      |             |                                         |           |                |       |       |        |     | 11, 2.0       |            |

Unbalanced snow loads have been considered for this 3) design.



April 23,2025

mmm

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut beformation, available from the Structure Review Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |  |  |
|----------|-------|------------|-----|-----|----------------------------------|-----------|--|--|
| 25040187 | C3    | Half Hip   | 1   | 1   | Job Reference (optional)         | 172941922 |  |  |

4-2-0

4-3-2

Scale = 1:38

Loading

TCDL

BCLL

BCDL

WEBS

BRACING

FORCES

TOP CHORD

BOT CHORD WEBS

DOL=1.33

NOTES

1)

2)

LUMBER

TCLL (roof)

-0-10-8

10=806 (LC 41)

Tension

(lb) - Maximum Compression/Maximum

1-2=0/16, 2-3=-249/109, 3-5=-399/104,

2-10=-167/253, 8-10=-259/570, 7-8=-135/352

3-10=-405/132, 5-8=0/284, 5-7=-520/143,

5-6=-68/76, 6-7=-101/49

Wind: ASCE 7-16; Vult=130mph (3-second gust)

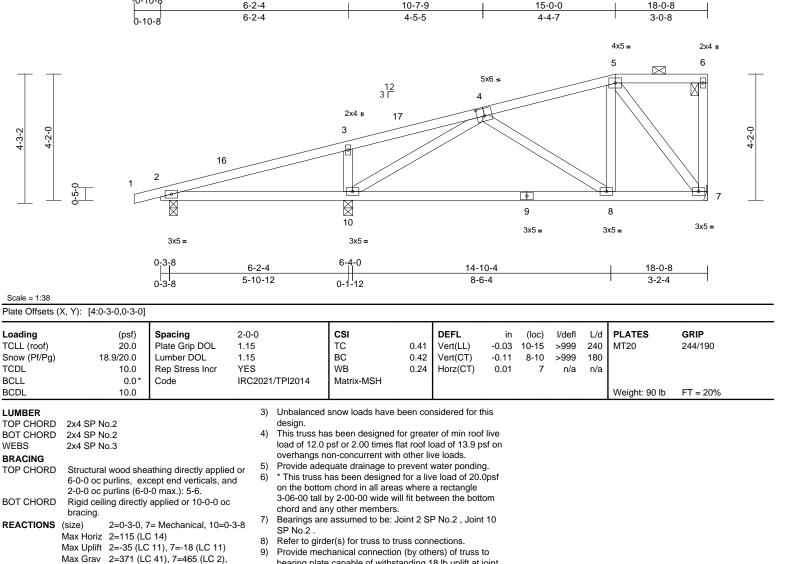
II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-10-5 to 2-1-11, Interior (1) 2-1-11 to 15-0-0, Exterior(2E) 15-0-0 to 17-10-12 zone; cantilever

left and right exposed ; end vertical left and right

Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully

Exp.: Ce=0.9: Cs=1.00: Ct=1.10. Lu=50-0-0

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip


TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

4-8=-255/149, 4-10=-400/108

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.

#### Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:31 ID:cPg9Ylb8SUHFIKdf25SXqCzshbc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



bearing plate capable of withstanding 18 lb uplift at joint 7 and 35 lb uplift at joint 2. 10) Graphical purlin representation does not depict the size

or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard



April 23,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

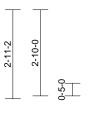
| Job      | Truss | Truss Type      | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |
|----------|-------|-----------------|-----|-----|----------------------------------|-----------|
| 25040187 | C4    | Half Hip Girder | 1   | 1   | Job Reference (optional)         | 172941923 |

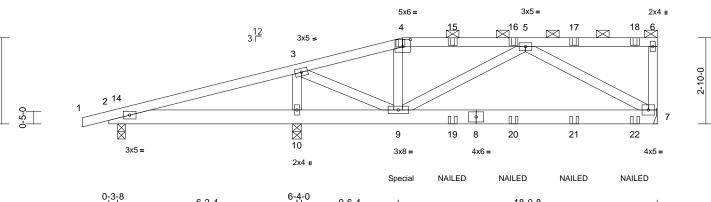
-0-10-8

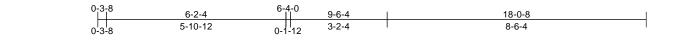
0-10-8

#### Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:31 ID:biF0qZZ09?X8eo4\_5NnRgJztCnW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

NAILED


NAILED


NAILED


NAILED



NAILED







Scale = 1:37.9

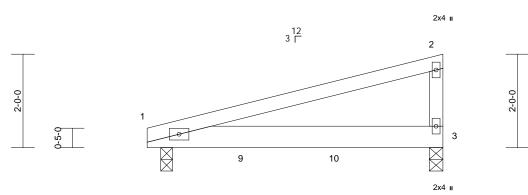
| Plate Offsets | (X, | Y): | [4:0-3-0,0-2-12] |
|---------------|-----|-----|------------------|
|---------------|-----|-----|------------------|

|                                                                                                     |             |                                 | -                      |          |                                                                                                                                        |                                            |                |                |        |       |        |            | -               |               |  |
|-----------------------------------------------------------------------------------------------------|-------------|---------------------------------|------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------|----------------|--------|-------|--------|------------|-----------------|---------------|--|
|                                                                                                     | ading       | (psf)                           | Spacing                | 2-0-0    |                                                                                                                                        | CSI                                        |                | DEFL           | in     | (loc) | l/defl | L/d        | PLATES          | GRIP          |  |
| тс                                                                                                  | LL (roof)   | 20.0                            | Plate Grip DOL         | 1.15     |                                                                                                                                        | TC                                         | 0.41           | Vert(LL)       | -0.02  | 10-13 | >999   | 240        | MT20            | 244/190       |  |
| Sn                                                                                                  | ow (Pf/Pg)  | 18.9/20.0                       | Lumber DOL             | 1.15     |                                                                                                                                        | BC                                         | 0.34           | Vert(CT)       | -0.06  | 7-9   | >999   | 180        |                 |               |  |
| TC                                                                                                  | DL          | 10.0                            | Rep Stress Incr        | NO       |                                                                                                                                        | WB                                         | 0.27           | Horz(CT)       | 0.00   | 7     | n/a    | n/a        |                 |               |  |
| BC                                                                                                  | LL          | 0.0*                            | Code                   | IRC20    | 21/TPI2014                                                                                                                             | Matrix-MSH                                 |                |                |        |       |        |            |                 |               |  |
| BC                                                                                                  | DL          | 10.0                            |                        |          |                                                                                                                                        |                                            |                |                |        |       |        |            | Weight: 97 lb   | FT = 20%      |  |
| LU                                                                                                  | MBER        |                                 |                        | 5        | i) This truss ha                                                                                                                       | as been designed                           | for great      | er of min roo  | f live |       |        |            |                 |               |  |
| то                                                                                                  | P CHORD     | 2x4 SP No.2                     |                        |          | load of 12.0                                                                                                                           | psf or 2.00 times f                        | lat roof l     | oad of 13.9 p  | sf on  |       |        |            |                 |               |  |
| BO                                                                                                  | T CHORD     | 2x6 SP No.2                     |                        |          | overhangs n                                                                                                                            | on-concurrent with                         | n other li     | ve loads.      |        |       |        |            |                 |               |  |
| WE                                                                                                  | BS          | 2x4 SP No.3                     |                        | 6        | <ol> <li>Provide ade</li> </ol>                                                                                                        | quate drainage to                          | prevent        | water pondin   | g.     |       |        |            |                 |               |  |
| BR                                                                                                  | ACING       |                                 |                        | 7        | 7) * This truss has been designed for a live load of 20.0psf                                                                           |                                            |                |                |        |       |        |            |                 |               |  |
|                                                                                                     | P CHORD     | Structural wood she             | athing directly applie | ed or    |                                                                                                                                        | m chord in all area                        |                |                |        |       |        |            |                 |               |  |
|                                                                                                     |             | 6-0-0 oc purlins, ex            | cept end verticals, a  |          |                                                                                                                                        | by 2-00-00 wide w                          |                | veen the bott  | om     |       |        |            |                 |               |  |
|                                                                                                     |             | 2-0-0 oc purlins (6-0           |                        |          | <ul><li>chord and any other members.</li><li>8) Bearings are assumed to be: Joint 2 SP No.2, Joint 10</li></ul>                        |                                            |                |                |        |       |        |            |                 |               |  |
| BO                                                                                                  | T CHORD     | Rigid ceiling directly          | applied or 6-0-0 oc    | c        | SP No.2 .                                                                                                                              | e assumed to be: J                         | 10111 2 5      | P NO.2 , JOIN  | 10     |       |        |            |                 |               |  |
|                                                                                                     |             | bracing.                        |                        |          | ••••••                                                                                                                                 | er(s) for truss to tr                      | uss con        | nections.      |        |       |        |            |                 |               |  |
| RE                                                                                                  | ACTIONS     |                                 | 7= Mechanical, 10=0    |          | 10) Provide mechanical connection (by others) of truss to                                                                              |                                            |                |                |        |       |        |            |                 |               |  |
|                                                                                                     |             | Max Horiz 2=74 (LC              |                        |          | bearing plate capable of withstanding 75 lb uplift at joint                                                                            |                                            |                |                |        |       |        |            |                 |               |  |
|                                                                                                     |             | Max Uplift 2=-42 (LC            |                        |          | 7, 104 lb upl                                                                                                                          | ift at joint 10 and 4                      | l2 lb upli     | ft at joint 2. |        |       |        |            |                 |               |  |
|                                                                                                     |             | 10=-104 (<br>Max Grav 2=302 (LC |                        | 、 1      | <ol> <li>Graphical purlin representation does not depict the size<br/>or the orientation of the purlin along the top and/or</li> </ol> |                                            |                |                |        |       |        |            |                 |               |  |
|                                                                                                     |             | 10=812 (LC                      |                        | ),       |                                                                                                                                        |                                            | along the      | e top and/or   |        |       |        |            |                 |               |  |
| FO                                                                                                  | RCES        | (lb) - Maximum Com              | ,                      |          | bottom chore                                                                                                                           |                                            |                |                |        |       |        |            |                 |               |  |
| FU                                                                                                  | RGES        | Tension                         | pression/maximum       | 1        | 12) "NAILED" indicates 3-10d (0.148"x3") or 3-12d<br>(0.148"x3.25") toe-nails per NDS guidlines.                                       |                                            |                |                |        |       |        |            |                 |               |  |
| то                                                                                                  | P CHORD     | 1-2=0/16, 2-3=-94/1             | 13 3-4=-496/85         |          |                                                                                                                                        | o") toe-nails per NL<br>r other connection |                |                |        |       |        |            |                 |               |  |
| 10                                                                                                  |             | 4-5=-462/91, 5-6=-5             |                        |          |                                                                                                                                        | ficient to support of                      |                |                | 08 lb  |       |        |            |                 |               |  |
| во                                                                                                  | T CHORD     | 2-10=-121/102, 9-10             | ,                      | 532      |                                                                                                                                        | 19 lb up at 9-7-2 c                        |                |                |        |       |        |            |                 | 111.          |  |
| WE                                                                                                  | BS          | 3-10=-632/118, 3-9=             | -87/610, 4-9=-105/5    | 5,       |                                                                                                                                        | tion of such conne                         |                |                |        |       |        |            | "" CI           | ND "IL        |  |
|                                                                                                     |             | 5-9=-184/76, 5-7=-5             |                        |          | responsibility                                                                                                                         |                                            |                |                |        |       |        |            | "ATH UT         | NO M          |  |
| NO                                                                                                  | TES         |                                 |                        | 1        |                                                                                                                                        | CASE(S) section                            | , loads a      | pplied to the  | face   |       |        | 5          | O FAS           | SKIM'S        |  |
| 1)                                                                                                  | Unbalance   | ed roof live loads have         | been considered for    | r        | of the truss a                                                                                                                         | are noted as front                         | (F) or ba      | ck (B).        |        |       |        | 33         | 10/1            | 14: 7 3       |  |
|                                                                                                     | this desigr | ז.                              |                        | L        | OAD CASE(S)                                                                                                                            | Standard                                   |                |                |        |       |        | 2          | 7/1             | VLY : E       |  |
| 2)                                                                                                  |             | CE 7-16; Vult=130mph            |                        |          | ) Dead + Sn                                                                                                                            | ow (balanced): Lu                          | mber Inc       | rease=1.15,    | Plate  |       |        |            | 1               | . 1 N E .     |  |
|                                                                                                     |             | mph; TCDL=6.0psf; B             |                        |          | Increase=1                                                                                                                             | .15                                        |                |                |        |       |        | :          | SEA             | \L : =        |  |
|                                                                                                     |             | Enclosed; MWFRS (er             |                        |          | Uniform Lo                                                                                                                             | ads (lb/ft)                                |                |                |        |       | =      | :          | 286             | 77 : 2        |  |
|                                                                                                     |             | exposed ; end vertical          |                        | d;       | Vert: 1-4                                                                                                                              | 48, 4-658, 7-1                             | 1=-20          |                |        |       |        |            | 200             | // <u>;</u> = |  |
|                                                                                                     |             | OL=1.60 plate grip DO           |                        |          | Concentrat                                                                                                                             | ed Loads (lb)                              |                |                |        |       |        |            | <b>1</b>        | 1 - E         |  |
| 3)                                                                                                  |             | CE 7-16; Pr=20.0 psf (          |                        | .15      | Vert: 4=-                                                                                                                              | 5 (B), 9=51 (B), 1                         | 5=-5 (B)       | 16=-5 (B), 1   | 7=-5   |       |        |            | 1. A.           | ains          |  |
|                                                                                                     |             | =1.15); Pg=20.0 psf; F          |                        |          | -12 (B), 19=-9 (B),                                                                                                                    | 20=-9 (l                                   | 3), 21=-9 (B), |                |        |       |        | O, VGIN    | EEL             |               |  |
|                                                                                                     |             | Plate DOL=1.15); Is=            | uny                    | 22=-13 ( | B)                                                                                                                                     |                                            |                |                |        |       | 11     | SEA<br>286 | "IN IN          |               |  |
| Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0<br>4) Unbalanced snow loads have been considered for this |             |                                 |                        | ie       |                                                                                                                                        |                                            |                |                |        |       |        |            | L.G             | AL            |  |
| 4)                                                                                                  | design.     | Su Show IDaus Have De           |                        | 10       |                                                                                                                                        |                                            |                |                |        |       |        |            | · · · · · · · · | mm            |  |
|                                                                                                     | abbigit.    |                                 |                        |          |                                                                                                                                        |                                            |                |                |        |       |        |            | 1998            |               |  |

April 23,2025

Page: 1

| WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not                                |
| a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall                         |
| building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing                            |
| is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the                                     |
| fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) |
| and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)                                               |


| Job      | Truss | Truss Type       | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |
|----------|-------|------------------|-----|-----|----------------------------------|-----------|
| 25040187 | C5    | Monopitch Girder | 1   | 2   | Job Reference (optional)         | 172941924 |

6-4-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:32 ID:n5xbi8vbZb39?5DNkFH0pDztCn4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



3x5 =



#### Scale = 1:24.7

| TC<br>Sno<br>TC<br>BC                  | LL                                                                   | (psf)<br>20.0<br>13.9/20.0<br>10.0<br>0.0*                                                                                                                                                                                                                              | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                      | 2-0-0<br>1.15<br>1.15<br>NO<br>IRC2021 | I/TPI2014                                                                                                                                                                                                                               | CSI<br>TC<br>BC<br>WB<br>Matrix-MP   | 0.29<br>0.33<br>0.00                                                                   | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                            | in<br>-0.03<br>-0.06<br>0.00 | (loc)<br>3-8<br>3-8<br>1 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20 | <b>GRIP</b><br>244/190 |
|----------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|-------------------------------|--------------------------|----------------|------------------------|
| BC                                     | DL                                                                   | 10.0                                                                                                                                                                                                                                                                    |                                                                                                         |                                        |                                                                                                                                                                                                                                         |                                      |                                                                                        |                                                                                                                     |                              |                          |                               |                          | Weight: 53 lb  | FT = 20%               |
| TO<br>BO<br>WE<br>TO<br>BO<br>RE<br>FO | ACING<br>P CHORD<br>T CHORD<br>ACTIONS                               | 2x4 SP No.2<br>2x6 SP No.2<br>2x4 SP No.3<br>Structural wood she<br>6-0-0 oc purlins, exi<br>Rigid ceiling directly<br>bracing.<br>(size) 1=0-3-0, 3<br>Max Horiz 1=46 (LC<br>Max Grav 1=714 (LC<br>(Ib) - Maximum Com<br>Tension<br>1-2=-197/31, 2-3=-1<br>1-3=-17/221 | cept end verticals.<br>applied or 10-0-0 oc<br>3=0-3-8<br>10)<br>2 2), 3=635 (LC 2)<br>pression/Maximum |                                        | on the bottom<br>3-06-00 tall b<br>chord and an<br>All bearings a<br>Hanger(s) or<br>provided suff<br>Ib down at 0<br>down at 4-0-<br>chord. The c<br>(s) is the resp<br><b>PAD CASE(S)</b><br>Dead + Snc<br>Increase=1.<br>Uniform Loa | w (balanced): Lum<br>15              | where<br>fit betw<br>SP No.<br>levice(s<br>incentra<br>at 2-0-1<br>n at 6-2<br>such co | a rectangle<br>veen the bott<br>2 .<br>) shall be<br>ated load(s) 2<br>, and 210 lb<br>-4 on bottom<br>nnection dev | om<br>19<br>ice              |                          |                               |                          |                |                        |
|                                        | TES                                                                  | 1-5=-17/221                                                                                                                                                                                                                                                             |                                                                                                         |                                        |                                                                                                                                                                                                                                         | ed Loads (lb)<br>183 (F), 4=-184 (F) | 017                                                                                    | 1 (E) 1017                                                                                                          | 5 (E)                        |                          |                               |                          |                |                        |
|                                        | 2-ply truss<br>Top chords<br>follows: 2x4<br>Bottom cho              | to be connected toget<br>s connected with 10d (<br>4 - 1 row at 0-9-0 oc.<br>ords connected with 10<br>6 - 2 rows staggered a                                                                                                                                           | (0.131"x3") nails as<br>0d (0.131"x3") nails a                                                          | IS                                     | ven. 3=-                                                                                                                                                                                                                                | ιου (Γ), 4=-104 (Γ)                  | , 9=-17                                                                                | i (i <sup>-</sup> ), i∪=-17                                                                                         | J (F)                        |                          |                               |                          | mm             |                        |
|                                        | except if no<br>CASE(S) s<br>provided to<br>unless othe<br>Wind: ASC | re considered equally<br>oted as front (F) or bar<br>ection. Ply to ply conro<br>distribute only loads<br>erwise indicated.<br>E 7-16; Vult=130mph                                                                                                                      | ck (B) face in the LO<br>nections have been<br>noted as (F) or (B),<br>(3-second gust)                  |                                        |                                                                                                                                                                                                                                         |                                      |                                                                                        |                                                                                                                     |                              |                          | Ē                             | View                     | SEA<br>2867    | ROUNT                  |
| 4)                                     | II; Exp B; E<br>and right ex<br>Lumber DC<br>TCLL: ASC               | nph; TCDL=6.0psf; B6<br>Enclosed; MWFRS (en<br>xposed ; end vertical I<br>DL=1.60 plate grip DO<br>CE 7-16; Pr=20.0 psf (<br>=1.15); Pg=20.0 psf; F                                                                                                                     | velope); cantilever le<br>eft and right exposed<br>L=1.33<br>roof LL: Lum DOL=1                         | eft<br>1;                              |                                                                                                                                                                                                                                         |                                      |                                                                                        |                                                                                                                     |                              |                          | 11111                         |                          | SEA<br>2867    | L                      |

Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 pst (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

5) Unbalanced snow loads have been considered for this design.

L. GALINS

April 23,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

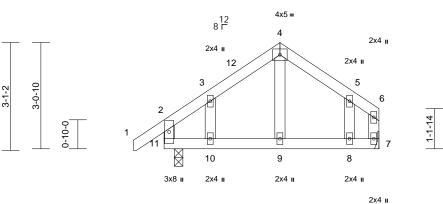
| Job      | Truss | Truss Type              | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |
|----------|-------|-------------------------|-----|-----|----------------------------------|-----------|
| 25040187 | D1    | Common Structural Gable | 1   | 1   | Job Reference (optional)         | 172941925 |

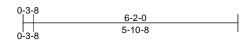
3-3-15

3-3-15

-0-10-8

0-10-8


Carter Components (Sanford, NC), Sanford, NC - 27332,


#### Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:32 ID:7VhdcEYOOhPH0eVoXfGC75ztCnX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-2-0

2-10-1







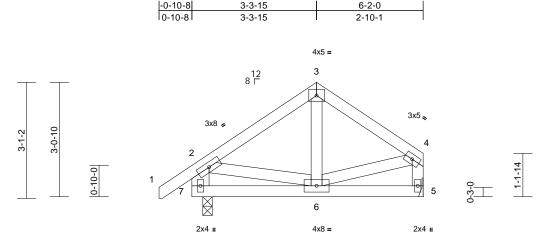
Scale = 1:33.1

| Loading<br>TCLL (roof)                                                        | (psf)<br>20.0                                                                                                                                                                                             | <b>Spacing</b><br>Plate Grip DOL                                                                                                            | 2-0-0<br>1.15             |                                                                                                                                                                                                     | CSI<br>TC                                                                                                                                                                                                                                                                           | 0.22                                                                                                                                                | <b>DEFL</b><br>Vert(LL)                                                                                                         | in<br>0.01                            | (loc)<br>9-10 | l/defl<br>>999 | L/d<br>240 | PLATES<br>MT20 | <b>GRIP</b><br>244/190 |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------|----------------|------------|----------------|------------------------|
| Snow (Pf/Pg)                                                                  | 13.9/20.0                                                                                                                                                                                                 | Lumber DOL                                                                                                                                  | 1.15                      |                                                                                                                                                                                                     | BC                                                                                                                                                                                                                                                                                  | 0.16                                                                                                                                                | Vert(CT)                                                                                                                        | -0.01                                 | 9-10          | >999           | 180        |                |                        |
| TCDL<br>BCLL                                                                  | 10.0<br>0.0*                                                                                                                                                                                              | Rep Stress Incr<br>Code                                                                                                                     | YES<br>IRC2021/1          |                                                                                                                                                                                                     | WB<br>Matrix-MR                                                                                                                                                                                                                                                                     | 0.03                                                                                                                                                | Horz(CT)                                                                                                                        | 0.00                                  | 7             | n/a            | n/a        |                |                        |
| BCDL                                                                          | 10.0                                                                                                                                                                                                      | Code                                                                                                                                        | IKC2021/                  | 11712014                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                     |                                                                                                                                                     |                                                                                                                                 |                                       |               |                |            | Weight: 31 lb  | FT = 20%               |
|                                                                               | 6-0-0 oc purlins, ex<br>Rigid ceiling directly<br>bracing.<br>(size) 7= Mecha<br>Max Horiz 11=68 (L0<br>Max Uplift 11=-2 (L0                                                                              | applied or 10-0-0 oc<br>anical, 11=0-3-0<br>C 10)<br>C 13)                                                                                  | 5)<br>d or 6)<br>7)<br>8) | Plate DOL=1<br>DOL=1.15 Pl<br>Exp.; Ce=0.9<br>This truss ha<br>load of 12.0 µ<br>overhangs nu<br>Truss to be fi<br>braced again<br>Gable studs<br>* This truss h<br>on the botton<br>3-06-00 tall b | 7-16; Pr=20.0 psi<br>.15); Pg=20.0 psi;<br>ate DOL=1.15); Is<br>; Cs=1.00; Ct=1.1<br>s been designed f<br>por concurrent with<br>ully sheathed from<br>st lateral moveme<br>spaced at 2-0-0 on<br>as been designed<br>n chord in all area<br>by 2-00-00 wide wi<br>y other members. | ; Pf=13.9<br>s=1.0; Ro<br>0<br>for greate<br>lat roof lo<br>n other lim<br>n one fac<br>ent (i.e. d<br>c.<br>d for a liv<br>s where<br>ill fit betw | e) psf (Lum<br>bugh Cat B; F<br>pad of 13.9 p<br>ve loads.<br>se or securely<br>liagonal web)<br>re load of 20.0<br>a rectangle | Fully<br>f live<br>sf on<br>,<br>Opsf |               |                |            |                |                        |
| FORCES                                                                        | Max Grav 7=230 (L0<br>(lb) - Maximum Com                                                                                                                                                                  | ,. , ,                                                                                                                                      |                           |                                                                                                                                                                                                     | assumed to be: J<br>er(s) for truss to tr                                                                                                                                                                                                                                           |                                                                                                                                                     |                                                                                                                                 |                                       |               |                |            |                |                        |
| TOROLO                                                                        | Tension                                                                                                                                                                                                   | pression/maximum                                                                                                                            |                           |                                                                                                                                                                                                     | hanical connection                                                                                                                                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                 | to                                    |               |                |            |                |                        |
| TOP CHORD                                                                     | 1-2=0/41, 2-3=-222/<br>4-5=-225/160, 5-6=-<br>6-7=-173/74                                                                                                                                                 | 102, 3-4=-211/165,<br>210/86, 2-11=-273/1                                                                                                   | 99, <sup>1</sup>          | bearing plate<br>11.                                                                                                                                                                                | capable of withst                                                                                                                                                                                                                                                                   |                                                                                                                                                     |                                                                                                                                 |                                       |               |                |            |                |                        |
| BOT CHORD                                                                     | 10-11=-57/161, 9-10<br>7-8=-57/161                                                                                                                                                                        | )=-57/161, 8-9=-57/1                                                                                                                        | 61, <b>LOA</b>            | AD CASE(S)                                                                                                                                                                                          | Standard                                                                                                                                                                                                                                                                            |                                                                                                                                                     |                                                                                                                                 |                                       |               |                |            |                |                        |
| WEBS                                                                          | 4-9=-35/66, 3-10=-5                                                                                                                                                                                       | 6/89, 5-8=-64/112                                                                                                                           |                           |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                     |                                                                                                                                                     |                                                                                                                                 |                                       |               |                |            |                | 11.                    |
| NOTES                                                                         |                                                                                                                                                                                                           |                                                                                                                                             |                           |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                     |                                                                                                                                                     |                                                                                                                                 |                                       |               |                |            | WHILL CA       | Dall                   |
| ,                                                                             | ed roof live loads have                                                                                                                                                                                   | been considered for                                                                                                                         |                           |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                     |                                                                                                                                                     |                                                                                                                                 |                                       |               |                | 1          | ATT            | 19114                  |
| Vasd=103<br>II; Exp B; E<br>(3E) -0-10<br>Corner(3E<br>exposed ;<br>members a | n.<br>CE 7-16; Vult=130mph<br>mph; TCDL=6.0psf; B<br>Enclosed; MWFRS (er<br>-0 to 2-2-0, Exterior(2I<br>) 3-3-15 to 6-0-4 zone<br>end vertical left and ri<br>and forces & MWFRS<br>DL=1.60 plate grip DC | CDL=6.0psf; h=25ft;<br>nvelope) and C-C Co<br>N) 2-2-0 to 3-3-15,<br>; cantilever left and r<br>ght exposed;C-C for<br>for reactions shown; | rner<br>ght               |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                     |                                                                                                                                                     |                                                                                                                                 |                                       |               | . CHILLING     | No. No.    | SEA<br>2867    | L 77                   |
| only. For s                                                                   | gned for wind loads in<br>studs exposed to wind<br>ard Industry Gable En                                                                                                                                  | (normal to the face)                                                                                                                        |                           |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                     |                                                                                                                                                     |                                                                                                                                 |                                       |               |                |            | CHAN L. G      | ALINSTIT               |

- exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




April 23,2025

L. GA mmm

| Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |
|----------|-------|------------|-----|-----|----------------------------------|-----------|
| 25040187 | D2    | Common     | 2   | 1   | Job Reference (optional)         | 172941926 |

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:32 ID:7VhdcEYOOhPH0eVoXfGC75ztCnX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1





Scale = 1:30.7

| (psf)<br>20.0 | Spacing                                                               | 2-0-0                                                                                                         |                                                                                                       |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20.0          |                                                                       |                                                                                                               |                                                                                                       | CSI                                                                                                                                                                                                |                                                                                                                                                                                                                                                                 | DEFL                                                                                                                                                                                                                                                                                                                                                                                                                                  | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (loc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | l/defl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PLATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               | Plate Grip DOL                                                        | 1.15                                                                                                          |                                                                                                       | TC                                                                                                                                                                                                 | 0.17                                                                                                                                                                                                                                                            | Vert(LL)                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | >999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MT20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 244/190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 13.9/20.0     | Lumber DOL                                                            | 1.15                                                                                                          |                                                                                                       | BC                                                                                                                                                                                                 | 0.05                                                                                                                                                                                                                                                            | Vert(CT)                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | >999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10.0          | Rep Stress Incr                                                       | YES                                                                                                           |                                                                                                       | WB                                                                                                                                                                                                 | 0.05                                                                                                                                                                                                                                                            | Horz(CT)                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.0*          | Code                                                                  | IRC2021                                                                                                       | /TPI2014                                                                                              | Matrix-MP                                                                                                                                                                                          |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10.0          |                                                                       |                                                                                                               |                                                                                                       |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Weight: 36 lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FT = 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                                                                       | 5)<br>6)                                                                                                      | on the botton<br>3-06-00 tall b<br>chord and an<br>Bearings are                                       | n chord in all are<br>by 2-00-00 wide w<br>by other members<br>assumed to be:                                                                                                                      | as where<br>will fit betw<br>s.<br>Joint 7 SF                                                                                                                                                                                                                   | a rectangle<br>veen the botto<br>P No.2 .                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2             | 10.0<br>0.0*<br>10.0<br>x4 SP No.2<br>x4 SP No.2<br>x4 SP No.3 *Excep | 10.0<br>0.0*<br>10.0Rep Stress Incr<br>Codexx4 SP No.2<br>xx4 SP No.2<br>xx4 SP No.3 *Except* 7-2:2x6 SP No.2 | 10.0<br>0.0*<br>10.0<br>x4 SP No.2<br>x4 SP No.2<br>x4 SP No.2<br>x4 SP No.3 *Except* 7-2:2x6 SP No.2 | 10.0     Rep Stress Incr     YES       0.0*     Code     IRC2021/TPI2014       10.0     5) * This truss h<br>on the botton<br>3-06-00 tall b<br>chord and an<br>6) Bearings are<br>70 Bearings are | 10.0       Rep Stress Incr       YES       WB         0.0*       Code       IRC2021/TPI2014       Matrix-MP         10.0       5) * This truss has been designed on the bottom chord in all are 3-06-00 tall by 2-00-00 wide wide wide wide wide wide wide wide | 10.0     Rep Stress Incr<br>Code     YES     WB     0.05       10.0     Rc2021/TPI2014     Matrix-MP       10.0     * This truss has been designed for a liv<br>on the bottom chord in all areas where<br>3-06-00 tall by 2-00-00 wide will fit betw<br>chord and any other members.       6)     * Except* 7-2:2x6 SP No.2       6)     Bearings are assumed to be: Joint 7 SF<br>Defect to direction (and (a) for true to true open | 10.0       Rep Stress Incr<br>Code       YES       WB       0.05       Horz(CT)         10.0       No.1       RC2021/TPI2014       Matrix-MP       Horz(CT)         x4 SP No.2       * This truss has been designed for a live load of 20.0 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.         6)       Bearings are assumed to be: Joint 7 SP No.2 .         7)       Before to ridox(0) for two to two another on the two to two another on the constraints. | 10.0       Rep Stress Incr       YES       WB       0.05       Horz(CT)       0.00         10.0       Code       IRC2021/TPI2014       WB       0.05       Horz(CT)       0.00         x4 SP No.2       X4 SP No.2       5)       * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle       3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.         6)       Bearings are assumed to be: Joint 7 SP No.2.       To prove to true to true to true to comparison | 10.0       Rep Stress Incr       YES       WB       0.05       Horz(CT)       0.00       5         0.0*       10.0       Code       IRC2021/TPI2014       WB       0.05       Horz(CT)       0.00       5         x4 SP No.2       x4 SP No.2       5)       * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle       3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.       6)       Bearings are assumed to be: Joint 7 SP No.2.         20       Pafor to girdpr(0) for true to true to graph to page to true to true to graph to page to | 10.0     Rep Stress Incr<br>Code     YES     WB     0.05     Horz(CT)     0.00     5     n/a       10.0     10.0     IRC2021/TPI2014     Matrix-MP     Matrix-MP     Horz(CT)     0.00     5     n/a       10.0     50     * This truss has been designed for a live load of 20.0psf<br>on the bottom chord in all areas where a rectangle<br>3-06-00 tall by 2-00-00 wide will fit between the bottom<br>chord and any other members.     5)     * Bearings are assumed to be: Joint 7 SP No.2.       10.0     50     Pedra to ridor(o) for two to true or promotione     10.0     5     n/a | 10.0       Rep Stress Incr<br>Code       YES       WB       0.05       Horz(CT)       0.00       5       n/a       n/a         10.0       10.0       IRC2021/TPI2014       Matrix-MP       Matrix-MP       Horz(CT)       0.00       5       n/a       n/a         x4 SP No.2       50       * This truss has been designed for a live load of 20.0psf<br>on the bottom chord in all areas where a rectangle<br>3-06-00 tall by 2-00-00 wide will fit between the bottom<br>chord and any other members.       50       Bearings are assumed to be: Joint 7 SP No.2.         60       Bearings are assumed to be: Joint 7 SP No.2.       70       Before to refore for former to true to to present the present to present to present the present to present t | 10.0       Rep Stress Incr       YES       WB       0.05       Horz(CT)       0.00       5       n/a       n/a         10.0       10.0       Code       IRC2021/TPI2014       Matrix-MP       Horz(CT)       0.00       5       n/a       n/a         x4 SP No.2       x4 SP No.2       5)       * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle       3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.       6)       Bearings are assumed to be: Joint 7 SP No.2.         20       Befort to right/ploif for the torup to tune to tune to an expendence       PNo.2.       7)       Refort to right/ploif for the torup to tune to tune to an expendence       Sint 7 SP No.2. |

| TOP CHORD | Structural wood sheathing directly applie   |
|-----------|---------------------------------------------|
|           | 6-0-0 oc purlins, except end verticals.     |
| BOT CHORD | Rigid ceiling directly applied or 10-0-0 oc |
|           | bracing.                                    |

- **REACTIONS** (size) 5= Mechanical, 7=0-3-0 Max Horiz 7=69 (LC 10) Max Uplift 7=-2 (LC 13) Max Grav 5=226 (LC 2), 7=301 (LC 2) FORCES (lb) - Maximum Compression/Maximum Tension 1-2=0/44, 2-3=-230/82, 3-4=-212/80, TOP CHORD 2-7=-325/174, 4-5=-248/105 BOT CHORD 6-7=-85/54, 5-6=-16/18
- WEBS NOTES
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-10-0 to 2-2-0, Interior (1) 2-2-0 to 3-3-15, Exterior(2E) 3-3-15 to 6-0-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

3-6=-7/40, 4-6=-22/149, 2-6=0/137

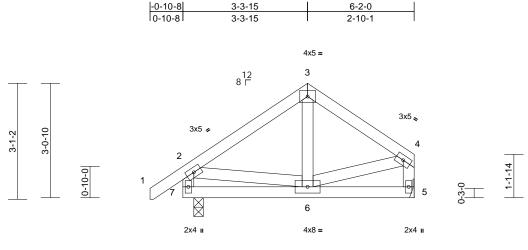
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- This truss has been designed for greater of min roof live 4) load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

- Refer to girder(s) for truss to tru
- Provide mechanical connection (by others) of truss to 8) bearing plate capable of withstanding 2 lb uplift at joint 7.
- LOAD CASE(S) Standard



April 23,2025

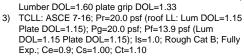



Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |
|----------|-------|------------|-----|-----|----------------------------------|-----------|
| 25040187 | D3    | Common     | 7   | 1   | Job Reference (optional)         | 172941927 |

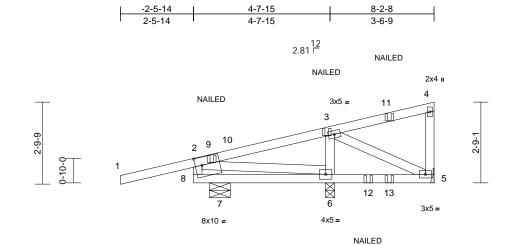
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:32 ID:7VhdcEYOOhPH0eVoXfGC75ztCnX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

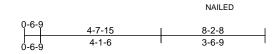

Page: 1





Scale = 1:30.7


| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                                 | (psf)<br>20.0<br>13.9/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                  | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2021/TPI2                        | 2014                                                                                         | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                  | 0.18<br>0.06<br>0.06                                             | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                   | in<br>0.00<br>0.00<br>0.00 | (loc)<br>6<br>6-7<br>5 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PLATES<br>MT20<br>Weight: 36 lb | <b>GRIP</b><br>244/190<br>FT = 20%  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------|------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------|
|                                                                                                                                                                                                                                                                                                                | 6-0-0 oc purlins, ex<br>Rigid ceiling directly<br>bracing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | applied or 10-0-0 oc<br>anical, 7=0-3-0<br>12)<br>13)                                                                                                                                                                                                                                                                                                                               | on th<br>3-06<br>chor<br>6) Bear<br>d or 7) Refe<br>8) Prov<br>bear | he bottom<br>5-00 tall b<br>rd and an<br>rings are<br>er to girde<br>vide mech<br>ring plate | as been designed<br>as chord in all area<br>y 2-00-00 wide w<br>y other members<br>assumed to be: J<br>er(s) for truss to tr<br>hanical connection<br>capable of withst<br>Standard | is where<br>ill fit betv<br>loint 7 SI<br>russ conr<br>n (by oth | a rectangle<br>veen the botto<br>P No.2 .<br>nections.<br>ers) of truss to | om<br>o                    |                        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                     |
| <ul> <li>this design</li> <li>2) Wind: ASC</li> <li>Vasd=1037</li> <li>II; Exp B; E</li> <li>Exterior(2E</li> <li>right exposs</li> <li>for membe</li> <li>Lumber DC</li> <li>3) TCLL: ASC</li> <li>Plate DOL:</li> <li>DOL=1.15</li> <li>Exp.; Ce=C</li> <li>4) This truss I</li> <li>load of 12.1</li> </ul> | (lb) - Maximum Com<br>Tension<br>1-2=0/41, 2-3=-235/<br>2-7=-321/170, 4-5=-<br>6-7=-84/53, 5-6=-16<br>3-6=-5/43, 4-6=-24/<br>droof live loads have<br>b<br>E 7-16; Vult=130mph<br>mph; TCDL=6.0psf; B<br>Enclosed; MWFRS (er<br>E) -0-10-0 to 2-2-0, Int<br>E) 3-3-15 to 6-0-4 zonu-<br>sed; end vertical left a<br>trs and forces & MWF<br>DL=1.60 plate grip DC<br>DCE 7-16; Pr=20.0 psf; F<br>Plate DOL=1.15); Is=<br>Plate DOL=1.15); Is=<br>Plate DOL=1.15); Is=<br>Net Constant of the signed for<br>0 psf or 2.00 times fla<br>non-concurrent with o | 81, 3-4=-219/83,<br>253/106<br>/18<br>154, 2-6=0/140<br>been considered for<br>(3-second gust)<br>CDL=6.0psf; h=25ft;<br>tvelope) and C-C<br>erior (1) 2-2-0 to 3-3-<br>e; cantilever left and<br>ind right exposed; C-C<br>RS for reactions shou<br>L=1.33<br>roof LL: Lum DOL=1<br>2f=13.9 psf (Lum<br>1.0; Rough Cat B; Fu<br>r greater of min roof I<br>t roof load of 13.9 psi | Cat.<br>15,<br>Cwn;<br>.15<br>illy                                  |                                                                                              |                                                                                                                                                                                     |                                                                  |                                                                            |                            |                        |                               | and a state of the | SEA<br>2867                     | EFRISK<br>ALINSTITUTION<br>123,2025 |
|                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     |                                                                                              |                                                                                                                                                                                     |                                                                  |                                                                            |                            |                        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Apri                            | 1 23,2025                           |




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job      | Truss | Truss Type          | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |
|----------|-------|---------------------|-----|-----|----------------------------------|-----------|
| 25040187 | E1    | Diagonal Hip Girder | 1   | 1   | Job Reference (optional)         | 172941928 |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:32 ID:0dj9LjbillyuTjMuEt\_IVvzshcu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1





Scale = 1:39.3

## Plate Offsets (X, Y): [8:0-2-12,0-3-4]

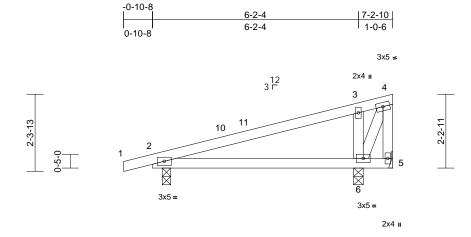
|                                                                                                                                    | (, .). <u>L</u> ere = .=,e e .                                                                                                                                                                                                                                   | -1<br>-1                                                                                                                                                                                               |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                             |                                                                                                                                       |                                                                                                                                                            |                            |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                    |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL                                                                     | (psf)<br>20.0<br>13.9/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                               | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                     | 1-11-4<br>1.15<br>1.15<br>NO<br>IRC2021/TPI2014                                                                                                                                                                    | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                          | 0.69<br>0.44<br>0.15                                                                                                                  | Vert(CT)                                                                                                                                                   | in<br>0.01<br>0.02<br>0.00 | (loc)<br>6-7<br>6-7<br>5 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PLATES<br>MT20<br>Weight: 46 lb   | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS<br>FORCES<br>TOP CHORD                  | 2x4 SP No.2<br>2x4 SP No.3<br>Structural wood she<br>6-0-0 oc purlins, ex<br>Rigid ceiling directly<br>bracing.<br>(size) 5= Mecha<br>Max Horiz 7=75 (LC<br>Max Uplift 5=-71 (LC<br>7=-49 (LC<br>Max Grav 5=78 (LC<br>7=302 (LC<br>(lb) - Maximum Com<br>Tension | r applied or 6-0-0 oc<br>anical, 6=0-3-12, 7=0-<br>8)<br>2 41), 6=-148 (LC 7),<br>2 7)<br>42), 6=-481 (LC 18),<br>C 41)<br>apression/Maximum                                                           | d or the bo<br>3-06-00 t<br>chord an<br>6) Bearings<br>SP No.2<br>7) Refer to<br>8) Provide r<br>bearing r<br>5, 148 lb<br>NDS guid<br>10) In the LC<br>of the tru<br>LOAD CASE<br>1) Dead +<br>Increas<br>Uniform | girder(s) for truss to t<br>nechanical connection<br>late capable of withs<br>uplift at joint 6 and 4°<br>'indicates 2-12d (0.1<br>tlines.<br>AD CASE(S) section<br>ss are noted as front<br>(S) Standard<br>Snow (balanced): Lu<br>∋=1.15<br>Loads (lb/ft) | as where<br>vill fit betv.<br>Joint 7 S<br>russ coni<br>n (by oth<br>tanding 7<br>9 Ib uplifit<br>48"x3.25<br>I, loads a<br>(F) or ba | a rectangle<br>veen the bott<br>P No.2 , Join<br>nections.<br>ers) of truss<br>1 lb uplift at<br>at joint 7.<br>") toe-nails p<br>pplied to the<br>ck (B). | to<br>to<br>joint<br>face  |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                    |
| BOT CHORD<br>WEBS<br>NOTES<br>1) Wind: AS<br>Vasd=100<br>II; Exp B;<br>and right<br>Lumber D<br>Plate DOI<br>DOL=1.11<br>Exp.; Ce= | 3-4=-47/20, 4-5=-84<br>7-8=-6/4, 6-7=-73/8,                                                                                                                                                                                                                      | /24<br>,5-6=-327/160<br>157/363, 2-6=-330/18<br>CDL=6.0psf; h=25ft;<br>rvelope); cantilever le<br>left and right exposed<br>DL=1.33<br>(roof LL: Lum DOL=1<br>Pf=13.9 psf (Lum<br>1.0; Rough Cat B; Fu | Concen<br>89 Vert:<br>Cat.<br>oft<br>1;<br>.15<br>.15                                                                                                                                                              | 1-2=-46, 2-4=-46, 5-4<br>trated Loads (lb)<br>12=60 (F), 13=-1 (B)                                                                                                                                                                                          |                                                                                                                                       |                                                                                                                                                            |                            |                          |                               | Number of Street | ORTH CA<br>ORTH CA<br>SEA<br>2861 |                                    |

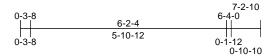
design.

 This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

April 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


TREENCO A MITek Affiliate 818 Soundside Road Edenton, NC 27932


. GA

| Job      | Truss Truss Type |             | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |  |
|----------|------------------|-------------|-----|-----|----------------------------------|-----------|--|
| 25040187 | E2               | Jack-Closed | 1   | 1   | Job Reference (optional)         | 172941929 |  |

#### Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:32 ID:biF0qZZ09?X8eo4\_5NnRgJztCnW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1





Scale = 1:34.6

| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL                                                                                                 | (psf)<br>20.0<br>13.9/20.0<br>10.0<br>0.0*                                                                                                                                                                                                                                                                                        | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                   | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2021/TPI2014                                                                                                          | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                      | 0.46<br>0.35<br>0.13                                                                                                            | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                       | in<br>-0.04<br>-0.08<br>0.01       | (loc)<br>6-9<br>6-9<br>2 | l/defl<br>>999<br>>982<br>n/a | L/d<br>240<br>180<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PLATES<br>MT20    | <b>GRIP</b><br>244/190 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------|
| BCDL                                                                                                                                                   | 10.0                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                             |                                                                                                                                                          |                                                                                                                                                                                                                                                                                         |                                                                                                                                 |                                                                                                                                                |                                    |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Weight: 30 lb     | FT = 20%               |
|                                                                                                                                                        | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Structural wood she<br>6-0-0 oc purlins, ex<br>Rigid ceiling directly<br>bracing.<br>(size) 2=0-3-0, §<br>Max Horiz 2=57 (LC<br>Max Uplift 2=-26 (LC<br>6=-1 (LC<br>Max Grav 2=284 (LC<br>(LC 22)                                                                                    | cept end verticals.<br>applied or 10-0-0 or<br>5= Mechanical, 6=0-<br>14)<br>3 11), 5=-104 (LC 22<br>15)                                                                                    | ed or<br>c<br>-3-8<br>2),<br>5) * This tru<br>on the bo<br>3-06-00 t<br>chord and<br>SP No.2<br>7) Refer to (<br>8) Provide r<br>bearing p<br>5, 1 bu pp | has been designed<br>20 psf or 2.00 times<br>s non-concurrent wit<br>ss has been designe<br>ttom chord in all aree<br>all by 2-00-00 wide wide<br>any other members<br>are assumed to be:<br>yirder(s) for truss to the<br>handle of withs<br>lift at joint 6 and 26 ll<br>(S) Standard | flat roof I<br>h other Ii<br>d for a liv<br>as where<br>vill fit betv<br>s.<br>Joint 2 S<br>russ com<br>on (by oth<br>tanding 1 | oad of 13.9 p<br>ve loads.<br>ve load of 20.<br>a rectangle<br>veen the bott<br>P No.2, Join<br>nections.<br>uers) of truss<br>104 lb uplift a | osf on<br>Opsf<br>tom<br>t 6<br>to |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                        |
| FORCES                                                                                                                                                 | (lb) - Maximum Com<br>Tension                                                                                                                                                                                                                                                                                                     | pression/Maximum                                                                                                                                                                            |                                                                                                                                                          |                                                                                                                                                                                                                                                                                         |                                                                                                                                 |                                                                                                                                                |                                    |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                        |
| TOP CHORD<br>BOT CHORD                                                                                                                                 | 1-2=0/16, 2-3=-167/<br>4-5=-52/2<br>2-6=-99/160, 5-6=-3                                                                                                                                                                                                                                                                           | , ,                                                                                                                                                                                         |                                                                                                                                                          |                                                                                                                                                                                                                                                                                         |                                                                                                                                 |                                                                                                                                                |                                    |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                        |
| WEBS                                                                                                                                                   | 3-6=-511/379, 4-6=-                                                                                                                                                                                                                                                                                                               | 180/332                                                                                                                                                                                     |                                                                                                                                                          |                                                                                                                                                                                                                                                                                         |                                                                                                                                 |                                                                                                                                                |                                    |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                        |
| Vasd=103<br>II; Exp B; F<br>Exterior(2I<br>7-0-14 zor<br>vertical lef<br>forces & M<br>DOL=1.60<br>2) TCLL: AS(<br>Plate DOL<br>DOL=1.15<br>Exp.; Ce=0 | CE 7-16; Vult=130mph<br>mph; TCDL=6.0psf; B<br>Enclosed; MWFRS (er<br>E) -0-10-5 to 2-1-11, Ir<br>e; cantilever left and r<br>t and right exposed;C-<br>WFRS for reactions s<br>plate grip DOL=1.33<br>CE 7-16; Pr=20.0 psf (<br>=1.15); Pg=20.0 psf; F<br>Plate DOL=1.15); Is=<br>0.9; Cs=1.00; Ct=1.10<br>ed snow loads have be | CDL=6.0psf; h=25ft;<br>ivelope) and C-C<br>iterior (1) 2-1-11 to<br>ight exposed ; end<br>C for members and<br>hown; Lumber<br>roof LL: Lum DOL=<br>2f=13.9 psf (Lum<br>1.0; Rough Cat B; F | 1.15<br>Fully                                                                                                                                            |                                                                                                                                                                                                                                                                                         |                                                                                                                                 |                                                                                                                                                |                                    |                          |                               | and a state of the | SEA<br>SEA<br>286 | EER. St.               |

April 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



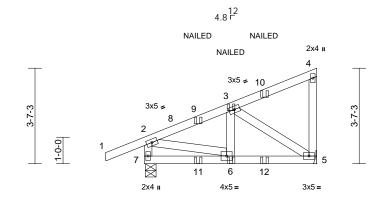
| Job      | Truss | Truss Type          | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |
|----------|-------|---------------------|-----|-----|----------------------------------|-----------|
| 25040187 | E3    | Diagonal Hip Girder | 3   | 1   | Job Reference (optional)         | 172941930 |

3-3-0

3-3-0

-1-5-8

1-5-8


Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:32 ID:crNVO2IOKtoRjRIMVTgt1EzODoo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


6-6-0

3-3-0

Page: 1



NAILED



#### Scale = 1:43.4

| 00010 = 1.40.4                            |                                                 |                       |                            |                                              |           |                  |       |       |        |     |               |              |
|-------------------------------------------|-------------------------------------------------|-----------------------|----------------------------|----------------------------------------------|-----------|------------------|-------|-------|--------|-----|---------------|--------------|
| Loading                                   | (psf)                                           | Spacing               | 2-0-0                      | CSI                                          |           | DEFL             | in    | (loc) | l/defl | L/d | PLATES        | GRIP         |
| TCLL (roof)                               | 20.0                                            | Plate Grip DOL        | 1.15                       | TC                                           | 0.24      | Vert(LL)         | 0.00  | 6     | >999   | 240 | MT20          | 244/190      |
| Snow (Pf/Pg)                              | 13.9/20.0                                       | Lumber DOL            | 1.15                       | BC                                           | 0.11      | Vert(CT)         | -0.01 | 5-6   | >999   | 180 |               |              |
| TCDL<br>BCLL                              | 10.0<br>0.0*                                    | Rep Stress Incr       | NO<br>IRC2021/TPI2014      | WB                                           | 0.11      | Horz(CT)         | 0.00  | 5     | n/a    | n/a |               |              |
| BCLL<br>BCDL                              | 10.0                                            | Code                  | IRC2021/1PI2014            | Matrix-MP                                    |           |                  |       |       |        |     | Weight: 40 lb | FT = 20%     |
|                                           | 10.0                                            | I.                    |                            |                                              | 1-1-1-7-0 |                  |       |       |        |     | Wolght. To ib |              |
| LUMBER<br>TOP CHORD                       | 2x4 SP No.2                                     |                       |                            | are assumed to be:<br>girder(s) for truss to |           |                  |       |       |        |     |               |              |
| BOT CHORD                                 | 2x4 SP No.2                                     |                       |                            | mechanical connecti                          |           |                  | 0     |       |        |     |               |              |
| WEBS                                      | 2x4 SP No.3                                     |                       |                            | plate capable of with                        |           |                  |       |       |        |     |               |              |
| BRACING                                   |                                                 |                       |                            | lb uplift at joint 5.                        |           |                  |       |       |        |     |               |              |
| TOP CHORD                                 | Structural wood she                             |                       | ed or 9) "NAILEI<br>NDS qu | " indicates 2-12d (0.                        | 148"x3.2  | o") toe-nails pe | er    |       |        |     |               |              |
|                                           | 6-0-0 oc purlins, ex                            |                       | 40) 1- 4 14                | DAD CASE(S) sectio                           | n loads a | nnlied to the f  | ace   |       |        |     |               |              |
| BOT CHORD                                 | Rigid ceiling directly<br>bracing.              | applied or 10-0-0 c   |                            | iss are noted as fron                        |           |                  | 400   |       |        |     |               |              |
| REACTIONS                                 | 5                                               | anical, 7=0-4-13      | LOAD CAS                   | (S) Standard                                 |           |                  |       |       |        |     |               |              |
|                                           | Max Horiz 7=104 (L0                             | ,                     |                            | Snow (balanced): L                           | umber Inc | rease=1.15, F    | Plate |       |        |     |               |              |
|                                           | Max Uplift 5=-33 (LC                            | ,                     |                            | e=1.15                                       |           |                  |       |       |        |     |               |              |
|                                           | Max Grav 5=280 (LC                              | C 18), 7=354 (LC 2)   |                            | 1 Loads (lb/ft)<br>1-2=-48, 2-4=-48, 5       | -720      |                  |       |       |        |     |               |              |
| FORCES                                    | (lb) - Maximum Com<br>Tension                   | npression/Maximum     |                            | trated Loads (lb)                            | -7=-20    |                  |       |       |        |     |               |              |
| TOP CHORD                                 | 2-7=-330/50, 1-2=0/<br>3-4=-73/27, 4-5=-93      |                       | Vert                       | 6=-3 (F), 3=-12 (F),                         | 11=3 (B), | 12=-1 (B)        |       |       |        |     |               |              |
| BOT CHORD<br>WEBS                         | 6-7=-102/14, 5-6=-5<br>2-6=0/257, 3-6=0/53      |                       |                            |                                              |           |                  |       |       |        |     |               |              |
| NOTES                                     | ,                                               | ,                     |                            |                                              |           |                  |       |       |        |     |               |              |
|                                           | CE 7-16; Vult=130mph                            | (3-second gust)       |                            |                                              |           |                  |       |       |        |     |               |              |
|                                           | mph; TCDL=6.0psf; B                             |                       |                            |                                              |           |                  |       |       |        |     |               | 11111        |
|                                           | Enclosed; MWFRS (er                             |                       |                            |                                              |           |                  |       |       |        |     | WAH CA        | ARO          |
|                                           | exposed ; end vertical<br>OL=1.60 plate grip DC |                       | ed;                        |                                              |           |                  |       |       |        | N   | R             | Service 1    |
|                                           | CE 7-16; Pr=20.0 psf (                          |                       | 1.15                       |                                              |           |                  |       |       |        | 22  | U. FLOS       | DK. V.S.     |
|                                           | =1.15); Pg=20.0 psf; I                          |                       |                            |                                              |           |                  |       |       |        | 2   | <b>4</b> 1    | Maj: 2       |
|                                           | Plate DOL=1.15); Is=                            |                       | Fully                      |                                              |           |                  |       |       | -      |     | 14.00         | N N E -      |
|                                           | 0.9; Cs=1.00; Ct=1.10                           |                       | L                          |                                              |           |                  |       |       | =      | :   | SEA           | AL : =       |
| <ol> <li>Unbalance<br/>design.</li> </ol> | ed snow loads have be                           | een considered for t  | nis                        |                                              |           |                  |       |       | = =    |     | SEA<br>286    | 77 : E       |
|                                           | has been designed fo                            | r greater of min root | flive                      |                                              |           |                  |       |       |        |     |               | 11 - E - E - |
|                                           | .0 psf or 2.00 times fla                        |                       | sf on                      |                                              |           |                  |       |       |        | -   | N             | - 1. E       |
| 0                                         | non-concurrent with                             |                       | 0{                         |                                              |           |                  |       |       |        | 24  | O SNGIN       | FERICE       |
|                                           | s has been designed f<br>tom chord in all areas |                       | upsr                       |                                              |           |                  |       |       |        | 11  | YA            | in S'in      |
|                                           | Il by 2-00-00 wide will                         | 0                     | om                         |                                              |           |                  |       |       |        |     | 11. L.G       | AL           |
|                                           | any other members.                              |                       | -                          |                                              |           |                  |       |       |        |     | 111111        | EEP. St.     |
|                                           |                                                 |                       |                            |                                              |           |                  |       |       |        |     | Anr           | il 23 2025   |

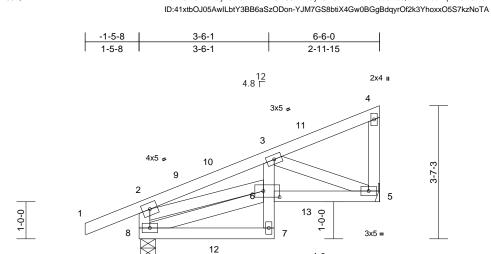
- 3) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live 4) load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- \* This truss has been designed for a live load of 20.0psf 5) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut beformation, available from the Structure Review Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



April 23,2025


| Job      | Truss | Truss Type          | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |
|----------|-------|---------------------|-----|-----|----------------------------------|-----------|
| 25040187 | E4    | Diagonal Hip Girder | 1   | 1   | Job Reference (optional)         | 172941931 |

3-7-3

# Run: 8.73 E May 9 2024 Print: 8.730 E May 9 2024 MiTek Industries, Inc. Wed Apr 23 16:10:28

4x8 =

Page: 1



Ø

3x5 =



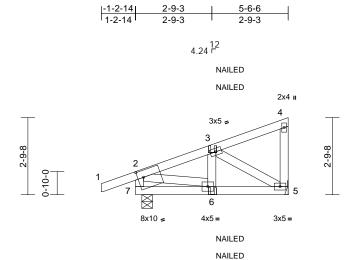
2x4 🛛

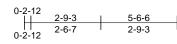
Scale = 1:31.2

Plate Offsets (X, Y): [6:0-5-4,0-2-0]

|                                                                                                                                                                                                                                             | 7, 1). [0.0-3-4,0-2-0]                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                                                                                                                                                                              |                                                                                                                                                                                                                                                  |                                                                     |                        |                               |                          |                                 |                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                              | (psf)<br>20.0<br>13.9/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-0-0<br>1.15<br>1.15<br>NO<br>IRC2021                 | I/TPI2014                                                                                                                                                                                                                                                                                                                                                                          | CSI<br>TC<br>BC<br>WB<br>Matrix-MP | 0.24<br>0.20<br>0.18                                                                                                                                                         | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                         | in<br>-0.01<br>-0.02<br>0.01                                        | (loc)<br>7<br>7-8<br>5 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 43 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| FORCES<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>NOTES<br>1) Wind: ASC<br>Vasd=103<br>II; Exp 8; f<br>and right e<br>Lumber DO<br>2) TCLL: ASC<br>Plate DOL<br>DOL=1.15<br>Exp.; Ce=0<br>3) Unbalance<br>design.<br>4) This truss<br>load of 12. | 2x4 SP No.2 *Excep<br>2x4 SP No.3<br>Structural wood she<br>6-0-0 oc purlins, exx<br>Rigid ceiling directly<br>bracing.<br>(Ib/size) 5=223/ Mi<br>Max Horiz 8=93 (LC<br>Max Uplift 5=-50 (LC<br>Max Grav 5=294 (LC<br>(Ib) - Maximum Com<br>Tension<br>2-8=-323/69, 1-2=0//<br>3-4=-58/24, 4-5=-86 | athing directly applied<br>cept end verticals.<br>applied or 10-0-0 oc<br>echanical, 8=306/0-4<br>8)<br>2 8), 8=-45 (LC 7)<br>C 18), 8=362 (LC 2)<br>apression/Maximum<br>44, 2-3=-492/70,<br>/16<br>, 3-6=-23/111,<br>/423, 3-5=-479/100<br>(3-second gust)<br>CDL=6.0psf; h=25ft; C<br>hvelope); cantilever left<br>left and right exposed;<br>9L=1.33<br>roof LL: Lum DOL=1.1<br>Pf=13.9 psf (Lum<br>1.0; Rough Cat B; Full<br>een considered for this<br>r greater of min roof liv<br>t roof load of 13.9 psf of | 8)<br>13<br>9)<br>LO<br>1)<br>:at.<br>t<br>5<br>y<br>y | on the bottor<br>3-06-00 tall b<br>chord and ar<br>Refer to gird<br>Provide mec<br>bearing plate<br>8 and 50 lb u<br>Hanger(s) or<br>provided suff<br>down and 16<br>up at 3-3-4,<br>8 lb down an<br>up at 3-6-1,<br>bottom chore<br>device(s) is t<br>In the LOAD<br>of the truss a<br><b>DAD CASE(S)</b><br>Dead + Sno<br>Increase=1<br>Uniform Loz<br>Vert: 1-22<br>Concentrate | w (balanced): Lum<br>15            | where<br>I fit betw<br>iss conr<br>(by oth<br>unding 4<br>device(so<br>oncentra<br>d 44 lb<br>4-6-6 ct<br>oncentra<br>d 44 lb<br>ction of<br>others.<br>loads al<br>=) or ba | a rectangle<br>veen the bott<br>nections.<br>ers) of truss<br>5 lb uplift at<br>) shall be<br>ated load(s) 3<br>down and 37<br>n top chord,<br>lb down and<br>up at 4-6-6 of<br>such connect<br>oplied to the<br>ck (B).<br>rease=1.15,<br>6=-20 | to<br>joint<br>36 lb<br>7 lb<br>and<br>14 lb<br>on<br>stion<br>face |                        |                               |                          | SEA<br>ON MININ                 | EEP. OC.                           |




L. GA 111111111 April 23,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component development properties and properties and the properties of the properti and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job      | Truss | Truss Type          | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |
|----------|-------|---------------------|-----|-----|----------------------------------|-----------|
| 25040187 | E5    | Diagonal Hip Girder | 2   | 1   | Job Reference (optional)         | 172941932 |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:32 ID:41xtbOJ05AwILbtY3BB6aSzODon-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



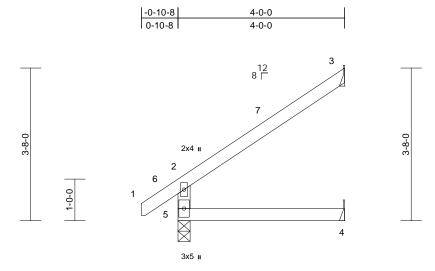


Scale = 1:41.7

Plate Offsets (X, Y): [7:0-2-8,0-3-0]

| Plate Grip DOL1.19Lumber DOL1.11Rep Stress IncrNO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.19<br>0.09<br>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | in<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (loc)<br>6<br>6-7<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | l/defl<br>>999<br>>999<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L/d<br>240<br>180<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PLATES<br>MT20<br>Weight: 32 lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>GRIP</b><br>244/190<br>FT = 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| eathing directly applied or<br>xcept end verticals.<br>y applied or 10-0-0 oc<br>28)<br>211), 7=-38 (LC 7)<br>C 18), 7=315 (LC 18)<br>mpression/Maximum<br>y/34, 2-3=-275/2,<br>8/14<br>7/230<br>13, 3-5=-265/18<br>h (3-second gust)<br>3CDL=6.0psf; h=25ft; Cat.<br>envelope); cantilever left<br>left and right exposed;<br>OL=1.33<br>(roof LL: Lum DOL=1.15<br>Pf=13.9 psf (Lum<br>=1.0; Rough Cat B; Fully<br>0<br>even considered for this<br>or greater of min roof live<br>at roof load of 13.9 psf on<br>other live loads. | on the bottor<br>3-06-00 tall to<br>chord and ar<br>6) Bearings are<br>7) Refer to gird<br>8) Provide mec<br>bearing plate<br>7 and 8 lb up<br>9) "NAILED" int<br>(0.148"x3.25<br>10) In the LOAD<br>of the truss ar<br>LOAD CASE(S)<br>1) Dead + Snc<br>Increase=1<br>Uniform Lo<br>Vert: 1-2<br>Concentrat                                                                                                                                                                                                                                                                            | n chord in all areas<br>by 2-00-00 wide will<br>by other members.<br>assumed to be: Jo<br>er(s) for truss to tru<br>hanical connection<br>capable of withsta<br>lift at joint 5.<br>dicates 3-10d (0.14<br>") toe-nails per ND:<br>CASE(S) section, 1<br>tre noted as front (F<br>Standard<br>by (balanced): Lurr<br>.15<br>ads (lb/ft)<br>=-48, 2-4=-48, 5-7=<br>ed Loads (lb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | where<br>I fit betw<br>bint 7 SI<br>iss conr<br>(by oth<br>unding 3<br>8"x3") of<br>S guidli<br>loads a<br>=) or ba<br>aber Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a rectangle<br>veen the botto<br>P No.2 .<br>lections.<br>ers) of truss t<br>8 lb uplift at j<br>or 2-12d<br>nes.<br>oplied to the to<br>ck (B).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ro<br>ooint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SEA<br>286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EEP. CAMPANY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Plate Grip DOL 1.11<br>Lumber DOL 1.11<br>Rep Stress Incr NO<br>Code IRC<br>Code IRC<br>eathing directly applied or<br>xcept end verticals.<br>y applied or 10-0-0 oc<br>anical, 7=0-4-10<br>2.8)<br>11), 7=-38 (LC 7)<br>.C 18), 7=-315 (LC 18)<br>mpression/Maximum<br>//34, 2-3=-275/2,<br>8/14<br>7/230<br>3, 3-5=-265/18<br>h (3-second gust)<br>3COL=6.0psf; h=25ft; Cat.<br>invelope); cantilever left<br>left and right exposed;<br>DL=1.39 psf (Lum<br>=1.0; Rough Cat B; Fully<br>or<br>een considered for this<br>or greater of min roof live<br>at roof load of 13.9 psf on | Plate Grip DOL 1.15<br>Lumber DOL 1.15<br>Rep Stress Incr NO<br>Code IRC2021/TPI2014<br>5) * This truss f<br>on the bottor<br>3-06-00 tall t<br>chord and ar<br>6) Bearings are<br>7) Refer to gird<br>8) Provide mec<br>20 anical, 7=0-4-10<br>20 | Plate Grip DOL       1.15       TC         Lumber DOL       1.15       BC         wyb       WB       Matrix-MP         Code       IRC2021/TPI2014       Matrix-MP         5) * This truss has been designed<br>on the bottom chord in all areas<br>3-06-00 tall by 2-00-00 wide wil<br>chord and any other members.         eathing directly applied or<br>xcept end verticals.<br>y applied or 10-0-0 oc       5)         anical, 7=0-4-10       Bearings are assumed to be: Jc         c. 18), 7=315 (LC 18)<br>mpression/Maximum       9) "NAILED" indicates 3-10d (0.14<br>(0.148"x3.25") toe-nails per ND         10) In the LOAD CASE(S) section,<br>of the truss are noted as front (f<br>LOAD CASE(S) Standard       9)         10) In the LOAD CASE(S) Standard       1)         11) Zasecond gust)<br>33, 3-5=-265/18       100 In the LOAD CASE(S) Standard         11) Group Cat B; Fully<br>Deeen considered for this       Vert: 6=-1 (F=0, B=0)         h (3-second gust)<br>3COL=6.0psf; h=25ft; Cat.<br>invelope); cantilever left       Vert: 6=-1 (F=0, B=0)         h (3-second gust)<br>3COL=5.0psf (Lum<br>=1.0; Rough Cat B; Fully<br>Deeen considered for this       Vert: 6=-1 (F=0, B=0) | Plate Grip DOL       1.15       TC       0.19         Lumber DOL       1.15       BC       0.09         Rep Stress Incr       NO       Matrix-MP         Code       IRC2021/TPI2014       Matrix-MP         5) * This truss has been designed for a liv<br>on the bottom chord in all areas where<br>3-06-00 tall by 2-00-00 wide will fit betw<br>chord and any other members.         eathing directly applied or<br>xcept end verticals.<br>y applied or 10-0-0 oc       6         anical, 7=0-4-10       7         C 18), 7=315 (LC 7)       7         C 18), 7=315 (LC 18)       9         mpression/Maximum       10         V/34, 2-3=-275/2,<br>8/14       9         V/34, 2-3=-275/2,<br>8/14       10         V/34, 2-3=-275/2,<br>8/14       10         Docd call spit and right exposed;<br>QL=1.33       0Lall spit and right exposed;<br>QL=1.33         Group LL: Lum DOL=1.15       Profile and right exposed;<br>QL=1.39 psf (Lum<br>=1.0; Rough Cat B; Fully<br>0         een considered for this       or greater of min roof live<br>at roof load of 13.9 psf on | Plate Grip DOL       1.15       TC       0.19       Vert(LL)         Lumber DOL       1.15       BC       0.09       Wert(CT)         Rep Stress Incr       NO       Matrix-MP       Horz(CT)         Code       IRC2021/TPI2014       Matrix-MP       Horz(CT)         5)       * This truss has been designed for a live load of 20.0 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bott chord and any other members.       6) Bearings are assumed to be: Joint 7 SP No.2.         7       Refer to girder(s) for truss to truss connections.       Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 38 lb uplift at joint 5.         9       "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.         10)       In the LOAD CASE(S) section, loads applied to the i of the truss are noted as front (F) or back (B).         10/At 2-3=-275/2, 8/14       Dead + Snow (balanced): Lumber Increase=1.15, 1         10/At 2-3=-265/18       Uniform Loads (lb/t)         11       Vert: 1-2=-48, 2-4=-48, 5-7=-20         12       Concentrated Loads (lb)         12       Vert: 6=-1 (F=0, B=0)         14       Yer: 6=-1 (F=0, B=0)         15       Vert: 6=-1 (F=0, B=0)         16       Now Glopa)         17       Read of 13.9 psf | Plate Grip DOL1.15TC0.19Vert(LL)0.00Rep Stress IncrNOWB0.10Horz(CT)0.00CodeIRC2021/TPI2014WB0.10Horz(CT)0.00Matrix-MPWB0.10Matrix-MPHorz(CT)0.005)* This truss has been designed for a live load of 20.0psf<br>on the bottom chord in all areas where a rectangle<br>3-06-00 tall by 2-00-00 wide will fit between the bottom<br>chord and any other members.5)* This truss has been designed for a live load of 20.0psf<br>on the bottom chord in all areas where a rectangle<br>3-06-00 tall by 2-00-00 wide will fit between the bottom<br>chord and any other members.eathing directly applied or<br>tx applied or 10-0-0 oc7)Refer to girder(s) for truss to truss connections.anical, 7=0-4-10<br>C 18), 7=315 (LC 7)<br>C 18), 7=315 (LC 7)<br>C 18), 7=315 (LC 7)<br>Matimum9)NAILED* indicates 3-10d (0.148*x3") or 2-12d<br>(0.148*x3.25") toe-nails per NDS guidlines.10)In the LOAD CASE(S) section, loads applied to the face<br>of the truss are noted as front (F) or back (B).LOAD CASE(S)<br>Vart: 1==48, 2-4=-48, 5-7=-20Concentrated Loads (Ib)<br>Vert: 6=-1 (F=0, B=0)h (3-second gust)<br>30GDL=6.0psf; h=25ft; Cat.<br>rowelope); cantilever left<br>left and right exposed;<br>OL=1.33<br>(roof LL: Lum DOL=1.15Pf=13.9 psf (Lum<br>=1.0; Rough Cat B; Fully<br>0een considered for thisor greater of min roof live<br>at roof load of 13.9 psf on | Plate Grip DOL1.15TC0.19Vert(LL)0.006Lumber DOL1.15BC0.09Vert(CT)0.006-7Rep Stress IncrNOWB0.10Matrix-MPVert(CT)0.005CodeIRC2021/TPI2014Matrix-MPMatrix-MPVert(CT)0.0055) * This truss has been designed for a live load of 20.0psf<br>on the bottom chord in all areas where a rectangle<br>3-06-00 tall by 2-00-00 wide will fit between the bottom<br>chord and any other members.6)Bearings are assumed to be: Joint 7 SP No.2 .eathing directly applied or<br>xcept end verticals.<br>y applied or 10-0-0 oc7)Refer to girder(s) for truss to truss connections.anical, 7=0-4-10<br>C 8)9)"NAILED" indicates 3-10d (0.148"x3") or 2-12d<br>(0.148"x3.25") toe-nails per NDS guidlines.9) "NAILED" indicates 3-10d (0.148"x3") or 2-12d<br>(0.148"x3.25") toe-nails per NDS guidlines.10) In the LOAD CASE(S) section, loads applied to the face<br>of the truss are noted as front (F) or back (B).LOAD CASE(S)Standard1) Dead + Snow (balanced): Lumber Increase=1.15, Plate<br>Increase=1.1510/10rm Loads (lb/ft)<br>Vert: 1-2=-48, 2-4=-48, 5-7=-20<br>Concentrated Loads (lb) | Plate Grip DOL1.15TC0.19Vert(LL)0.006>999Lumber DOL1.15BC0.09Vert(CT)0.006-7>999MoMatrix-MPMB0.10Matrix-MPVert(CT)0.006-7>999Horz(CT)0.005n/aCodeIRC2021/TPI2014Matrix-MPVert(CT)0.005n/a5)* This truss has been designed for a live load of 20.0psf<br>on the bottom chord in all areas where a rectangle<br>3-06-00 tall by 2-00-00 wide will fit between the bottom<br>chord and any other members.6)Bearings are assumed to be: Joint 7 SP No.2 .eathing directly applied or<br>xcept end verticals.<br>y applied or 10-0-0 oc7)Refer to girder(s) for truss to truss connections.anical, 7=0-4-10<br>C 8)9)"NAILED" indicates 3-10d (0.148"x3") or 2-12d<br>(0.148"x3.25") toe-nails per NDS guidlines.9)"NAILED" indicates 3-10d (0.148"x3") or 2-12d<br>(0.148"x3.25") toe-nails per NDS guidlines.10)In the LOAD CASE(S) Section, loads applied to the face<br>of the truss are noted as front (F) or back (B).LOAD CASE(S)Standard1)Dead + Snow (balanced): Lumber Increase=1.15, Plate<br>Increase=1.15<br>Uniform Loads (lb/ft)<br>Vert: 1-2=-48, 2-4=-48, 5-7=-20(230Concentrated Loads (lb)<br>Dead | Plate Grip DOL       1.15       TC       0.19       Vert(LL)       0.00       6       >999       240         Lumber DOL       1.15       BC       0.09       Vert(CT)       0.00       6-7       >999       180         Rep Stress Incr       NO       Matrix-MP       Matrix-MP       Vert(CT)       0.00       5       n/a       n/a         state Grip DOL       1.15       BC       0.09       Vert(CT)       0.00       6-7       >999       180         Code       IRC2021/TPI2014       Matrix-MP       Matrix-MP       Vert(CT)       0.00       5       n/a       n/a         statistic statisti | Plate Grip DOL       1.15       TC       0.19       Vert(LL)       0.00       6       >999       240         Martix-MP       WB       0.10       Wr(CT)       0.00       5       n/a       n/a         Weight: 32.lb       Matrix-MP       WB       0.10       Horz(CT)       0.00       5       n/a       n/a         Solution       IRC2021/TPI2014       Matrix-MP       Weight: 32.lb       Weight: 32.lb       Weight: 32.lb         Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Solution       Weight: 32.lb         Solution       Solution< |

April 23,2025


| A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not                                |
| a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall                         |
| building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing                            |
| is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the                                     |
| fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) |
| and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)                                               |



| Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |
|----------|-------|------------|-----|-----|----------------------------------|-----------|
| 25040187 | E6    | Jack-Open  | 24  | 1   | Job Reference (optional)         | 172941933 |

#### Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:33 ID:CGiMI1FV1yQss\_ZnqL7APczODor-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f





4-0-0

#### Scale = 1:27.7

| 00010 = 1.27.7                                                       |                                                                                                                                                                               |                                                                                                                    |                               |                                                                                                  |                                                                                                                                                                                                     |                                                             | ·                                                                       |                              |                          |                               |                          |                |                        |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------|--------------------------|-------------------------------|--------------------------|----------------|------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL                       | (psf)<br>20.0<br>13.9/20.0<br>10.0                                                                                                                                            | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr                                                  | 2-0-0<br>1.15<br>1.15<br>YES  |                                                                                                  | CSI<br>TC<br>BC<br>WB                                                                                                                                                                               | 0.34<br>0.23<br>0.00                                        | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                | in<br>0.02<br>-0.02<br>-0.02 | (loc)<br>4-5<br>4-5<br>3 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20 | <b>GRIP</b><br>244/190 |
| BCLL<br>BCDL                                                         | 0.0*<br>10.0                                                                                                                                                                  | Code                                                                                                               | IRC2021                       | /TPI2014                                                                                         | Matrix-MR                                                                                                                                                                                           |                                                             |                                                                         |                              |                          |                               |                          | Weight: 16 lb  | FT = 20%               |
|                                                                      | 5=0-3-8<br>Max Horiz 5=73 (LC<br>Max Uplift 3=-46 (LC<br>Max Grav 3=108 (LC<br>5=218 (LC                                                                                      | cept end verticals.<br>applied or 10-0-0 o<br>anical, 4= Mechanica<br>13)<br>C 13)<br>C 29), 4=47 (LC 29),<br>C 2) | ed or 6)<br>7)<br>c<br>al, LO | on the botton<br>3-06-00 tall I<br>chord and and<br>Bearings are<br>Refer to gird<br>Provide med | has been designed<br>m chord in all areas<br>by 2-00-00 wide wil<br>ny other members.<br>a assumed to be: , ,<br>ler(s) for truss to tru-<br>hanical connection<br>a capable of withsta<br>Standard | s where<br>Il fit betv<br>Joint 5 \$<br>Jss coni<br>(by oth | a rectangle<br>veen the bott<br>SP No.2 .<br>nections.<br>ers) of truss | to                           |                          |                               |                          |                |                        |
| FORCES                                                               | (lb) - Maximum Com<br>Tension<br>2-5=-191/98, 1-2=0/                                                                                                                          |                                                                                                                    |                               |                                                                                                  |                                                                                                                                                                                                     |                                                             |                                                                         |                              |                          |                               |                          |                |                        |
| BOT CHORD                                                            | 4-5=0/0                                                                                                                                                                       | 11, 2 0= 01/00                                                                                                     |                               |                                                                                                  |                                                                                                                                                                                                     |                                                             |                                                                         |                              |                          |                               |                          |                |                        |
| Vasd=103<br>II; Exp B; E<br>Exterior(2E<br>zone; cant<br>and right e | CE 7-16; Vult=130mph<br>imph; TCDL=6.0psf; B<br>Enclosed; MWFRS (er<br>E) -0-10-0 to 2-2-0, Int<br>liever left and right ex<br>exposed;C-C for memt<br>or reactions shown; Lu | CDL=6.0psf; h=25ft;<br>hvelope) and C-C<br>erior (1) 2-2-0 to 3-1<br>posed ; end vertical<br>bers and forces &     | 1-4<br>left                   |                                                                                                  |                                                                                                                                                                                                     |                                                             |                                                                         |                              |                          |                               | New York                 | OR CASE        | ROCKAT                 |

- grip DOL=1.33 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- This truss has been designed for greater of min roof live 3) load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

and some solution of the second se SEAL 28677 L. GA (((()))))))

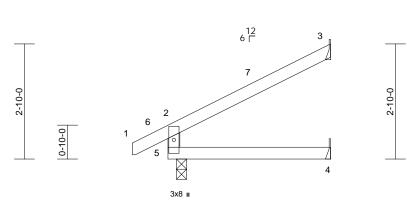
April 23,2025

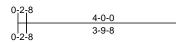


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut beformation, available from the Structure Review Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |
|----------|-------|------------|-----|-----|----------------------------------|-----------|
| 25040187 | E7    | Jack-Open  | 3   | 1   | Job Reference (optional)         | 172941934 |

4-0-0 4-0-0


-0-10-8 0-10-8


Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:33 ID:CGiMI1FV1yQss\_ZnqL7APczODor-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1





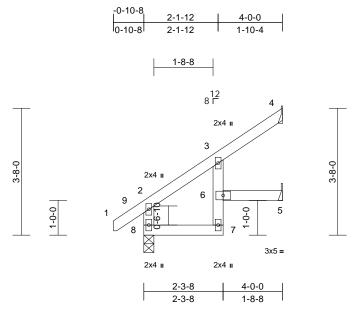


Scale = 1:28.4

| Loading<br>TCLL (roof)                                                                                                                                                                                                                                                             | (psf)<br>20.0                                                                                                                                                                                                                                                                                                                                                                     | Spacing<br>Plate Grip DOL                                                                                                                                                                                                                                            | 2-0-0<br>1.15                                                                                             | CSI<br>TC                                                                                                                                                                                                     | 0.29                                                                        | DEFL<br>Vert(LL)                                                        | in<br>0.01 | (loc)<br>4-5 | l/defl<br>>999 | L/d<br>240  | PLATES<br>MT20 | <b>GRIP</b><br>244/190 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------|------------|--------------|----------------|-------------|----------------|------------------------|
| Snow (Pf/Pg)                                                                                                                                                                                                                                                                       | 13.9/20.0                                                                                                                                                                                                                                                                                                                                                                         | Lumber DOL                                                                                                                                                                                                                                                           | 1.15                                                                                                      | BC                                                                                                                                                                                                            | 0.29                                                                        | Vert(CT)                                                                | -0.02      | 4-5          | >999           | 180         | 101120         | 244/130                |
| TCDL                                                                                                                                                                                                                                                                               | 10.0/20.0                                                                                                                                                                                                                                                                                                                                                                         | Rep Stress Incr                                                                                                                                                                                                                                                      | YES                                                                                                       | WB                                                                                                                                                                                                            | 0.00                                                                        | Horz(CT)                                                                | -0.01      | 3            | n/a            | n/a         |                |                        |
| BCLL                                                                                                                                                                                                                                                                               | 0.0*                                                                                                                                                                                                                                                                                                                                                                              | Code                                                                                                                                                                                                                                                                 | IRC2021/TPI2014                                                                                           | Matrix-MR                                                                                                                                                                                                     |                                                                             | - (- /                                                                  |            |              |                |             |                |                        |
| BCDL                                                                                                                                                                                                                                                                               | 10.0                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                      |                                                                                                           |                                                                                                                                                                                                               |                                                                             |                                                                         |            |              |                |             | Weight: 15 lb  | FT = 20%               |
| BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS                                                                                                                                                                                                                | 5=0-3-0                                                                                                                                                                                                                                                                                                                                                                           | cept end verticals.<br>applied or 10-0-0 of<br>nical, 4= Mechanica                                                                                                                                                                                                   | on the bo<br>3-06-00 t<br>chord an<br>6) Bearings<br>ed or 7) Refer to<br>8) Provide r<br>bearing p<br>3. | ss has been designe<br>ttom chord in all are<br>all by 2-00-00 wide w<br>d any other members<br>are assumed to be:<br>jirder(s) for truss to t<br>echanical connecti<br>late capable of withs<br>(S) Standard | as where<br>vill fit betv<br>s.<br>, Joint 5 \$<br>truss conr<br>on (by oth | a rectangle<br>veen the bott<br>SP No.2 .<br>nections.<br>ers) of truss | om         |              |                |             |                |                        |
| I                                                                                                                                                                                                                                                                                  | Max Horiz 5=55 (LC<br>Max Uplift 3=-35 (LC<br>Max Grav 3=127 (LC<br>5=266 (LC                                                                                                                                                                                                                                                                                                     | 5 15)<br>C 22), 4=45 (LC 22),                                                                                                                                                                                                                                        |                                                                                                           |                                                                                                                                                                                                               |                                                                             |                                                                         |            |              |                |             |                |                        |
| FORCES                                                                                                                                                                                                                                                                             | (lb) - Maximum Com<br>Tension                                                                                                                                                                                                                                                                                                                                                     | pression/Maximum                                                                                                                                                                                                                                                     |                                                                                                           |                                                                                                                                                                                                               |                                                                             |                                                                         |            |              |                |             |                |                        |
| TOP CHORD<br>BOT CHORD                                                                                                                                                                                                                                                             | 2-5=-236/137, 1-2=0<br>4-5=0/0                                                                                                                                                                                                                                                                                                                                                    | /33, 2-3=-75/50                                                                                                                                                                                                                                                      |                                                                                                           |                                                                                                                                                                                                               |                                                                             |                                                                         |            |              |                |             |                |                        |
| NOTES                                                                                                                                                                                                                                                                              | 100,0                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                      |                                                                                                           |                                                                                                                                                                                                               |                                                                             |                                                                         |            |              |                |             |                |                        |
| <ol> <li>Wind: ASC<br/>Vasd=103r<br/>II; Exp B; E<br/>Exterior(2E<br/>3-11-4 zon-<br/>vertical left<br/>forces &amp; M<br/>DOL=1.60</li> <li>TCLL: ASC<br/>Plate DOL=<br/>DOL=1.15<br/>Exp.; Ce=0</li> <li>Unbalance<br/>design.</li> <li>This truss b<br/>load of 12.0</li> </ol> | E 7-16; Vult=130mph<br>mph; TCDL=6.0psf; B<br>Enclosed; MWFRS (er<br>E) -0-10-1 to 2-1-15, Ir<br>e; cantilever left and r<br>t and right exposed;C-<br>WFRS for reactions s<br>plate grip DOL=1.33<br>CE 7-16; Pr=20.0 psf (<br>Plate DOL=1.15); Is=<br>0.9; Cs=1.00; Ct=1.10<br>d snow loads have be<br>has been designed fo<br>0 psf or 2.00 times fla<br>non-concurrent with o | CDL=6.0psf; h=25ft;<br>velope) and C-C<br>iterior (1) 2-1-15 to<br>ight exposed; end<br>C for members and<br>hown; Lumber<br>roof LL: Lum DOL=1<br>2f=13.9 psf (Lum<br>1.0; Rough Cat B; F<br>een considered for th<br>greater of min roof<br>i roof load of 13.9 ps | 1.15<br>ully<br>nis                                                                                       |                                                                                                                                                                                                               |                                                                             |                                                                         |            |              |                | State State | SEA<br>286     | EER. Stummer           |

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Thuman . April 23,2025

| Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |  |  |
|----------|-------|------------|-----|-----|----------------------------------|-----------|--|--|
| 25040187 | E8    | Jack-Open  | 4   | 1   | Job Reference (optional)         | 172941935 |  |  |

### Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:33 ID:CGiMI1FV1yQss\_ZnqL7APczODor-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

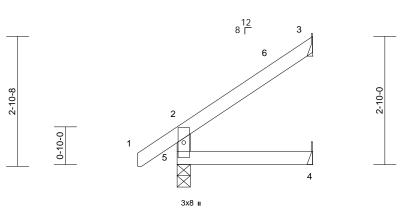
Page: 1



#### Scale = 1:33.3

| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL                                                                                                                               | (psf)<br>20.0<br>13.9/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                    | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                        | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2021/TPI2014                                                                                           | CSI<br>TC<br>BC<br>WB<br>Matrix-MR                                                                                                                                                                                               | 0.15<br>0.19<br>0.00                                              | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                   | in<br>0.02<br>-0.02<br>-0.01 | (loc)<br>7<br>7<br>5 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 19 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------|----------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|
|                                                                                                                                                                                              | 4-0-0 oc purlins, ex<br>Rigid ceiling directly<br>bracing.<br>(size) 4= Mecha<br>8=0-3-8<br>Max Horiz 8=73 (LC<br>Max Uplift 4=-30 (LC                                                                                                                | athing directly applied<br>cept end verticals.<br>applied or 10-0-0 oc<br>anical, 5= Mechanical,<br>13)<br>C 13), 5=-7 (LC 13)<br>29), 5=62 (LC 29), 8=                                                                                                   | on the bot<br>3-06-00 ta<br>chord and<br>5) Bearings a<br>d or<br>6) Refer to g<br>7) Provide m<br>bearing pl<br>4 and 7 lb<br>LOAD CASE( | s has been designe<br>tom chord in all area<br>Il by 2-00-00 wide w<br>any other members<br>are assumed to be: ,<br>irder(s) for truss to tr<br>echanical connectio<br>ate capable of withs<br>uplift at joint 5.<br>S) Standard | as where<br>vill fit betw<br>Joint 8 \$<br>russ conr<br>n (by oth | a rectangle<br>ween the both<br>SP No.2 .<br>nections.<br>iers) of truss t | om<br>to                     |                      |                               |                          |                                 |                                    |
| TOP CHORD                                                                                                                                                                                    | Tension<br>2-8=-198/85, 1-2=0/<br>3-4=-61/59                                                                                                                                                                                                          |                                                                                                                                                                                                                                                           |                                                                                                                                           |                                                                                                                                                                                                                                  |                                                                   |                                                                            |                              |                      |                               |                          |                                 |                                    |
| BOT CHORD                                                                                                                                                                                    |                                                                                                                                                                                                                                                       | /31, 3-6=-21/52, 5-6=                                                                                                                                                                                                                                     | 0/0                                                                                                                                       |                                                                                                                                                                                                                                  |                                                                   |                                                                            |                              |                      |                               |                          |                                 |                                    |
| Vasd=103r<br>II; Exp B; E<br>Exterior(2E<br>3-11-4 zon<br>vertical left<br>forces & M<br>DOL=1.60<br>2) TCLL: ASC<br>Plate DOL=<br>DOL=1.15<br>Exp.; Ce=C<br>3) This truss I<br>load of 12.1 | Enclosed; MWFRS (er<br>Enclosed; MWFRS (er<br>E) -0-10-0 to 2-0-12, Ir<br>e; cantilever left and r<br>wFRS for reactions s<br>plate grip DOL=1.33<br>CE 7-16; Pr=20.0 psf (<br>=1.15); Pg=20.0 psf; F<br>Plate DOL=1.15); Is=<br>Plate DOL=1.15); Is= | CDL=6.0psf; h=25ft; C<br>nvelope) and C-C<br>tterior (1) 2-0-12 to<br>right exposed; end<br>C for members and<br>hown; Lumber<br>roof LL: Lum DOL=1.<br>Pf=13.9 psf (Lum<br>1.0; Rough Cat B; Ful<br>r greater of min roof lir<br>t roof load of 13.9 psf | 15<br>Ily<br>ve                                                                                                                           |                                                                                                                                                                                                                                  |                                                                   |                                                                            |                              |                      |                               | -                        | SEA<br>286                      | EEP Stur                           |

GA mm April 23,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job      | Truss Truss Type Qty Ply 18 Eagle Creek - Edisto P |           |   |   | 18 Eagle Creek - Edisto B - Roof |           |
|----------|----------------------------------------------------|-----------|---|---|----------------------------------|-----------|
| 25040187 | E9                                                 | Jack-Open | 5 | 1 | Job Reference (optional)         | 172941936 |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:33 ID:CGiMI1FV1yQss\_ZnqL7APczODor-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



Page: 1



3-0-0

| Scale | - 1 | .25 | 5 |
|-------|-----|-----|---|
|       |     |     |   |

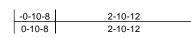
| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL                                                                                                  | (psf)<br>20.0<br>13.9/20.0<br>10.0<br>0.0*                                                                                                                                                                                                                                                   | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                     | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2021 | /TPI2014                                                                                                                | CSI<br>TC<br>BC<br>WB<br>Matrix-MR                                                                                                                                      | 0.20<br>0.12<br>0.00                                                       | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                | in<br>0.01<br>-0.01<br>-0.01 | (loc)<br>4-5<br>4-5<br>3 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20 | <b>GRIP</b><br>244/190 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------|--------------------------|-------------------------------|--------------------------|----------------|------------------------|
| BCDL                                                                                                                                                    | 10.0                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                        |                                         |                                                                                                                         |                                                                                                                                                                         |                                                                            |                                                                         |                              |                          |                               |                          | Weight: 12 lb  | FT = 20%               |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD                                                                           | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Structural wood she<br>3-0-0 oc purlins, ex<br>Rigid ceiling directly<br>bracing.                                                                                                                                                               | cept end verticals.                                                                                                                                                                                    | 5)<br>ed or 6)<br>7)                    | on the bottor<br>3-06-00 tall b<br>chord and ar<br>Bearings are<br>Refer to girde<br>Provide mec<br>bearing plate<br>3. | has been designe<br>n chord in all area<br>by 2-00-00 wide w<br>by other members<br>assumed to be: ,<br>er(s) for truss to t<br>hanical connectio<br>c capable of withs | as where<br>vill fit betw<br>5.<br>, Joint 5 \$<br>russ conr<br>on (by oth | a rectangle<br>veen the bott<br>SP No.2 .<br>nections.<br>ers) of truss | om<br>to                     |                          |                               |                          |                |                        |
|                                                                                                                                                         | (size) 3= Mecha<br>5=0-3-8<br>Max Horiz 5=57 (LC<br>Max Uplift 3=-34 (LC<br>Max Grav 3=77 (LC<br>(LC 2)                                                                                                                                                                                      | (<br>13)                                                                                                                                                                                               | ",                                      | AD CASE(S)                                                                                                              | Standard                                                                                                                                                                |                                                                            |                                                                         |                              |                          |                               |                          |                |                        |
| FORCES                                                                                                                                                  | (lb) - Maximum Com<br>Tension<br>2-5=-162/95, 1-2=0/                                                                                                                                                                                                                                         |                                                                                                                                                                                                        |                                         |                                                                                                                         |                                                                                                                                                                         |                                                                            |                                                                         |                              |                          |                               |                          |                |                        |
| BOT CHORD                                                                                                                                               | 4-5=0/0                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                        |                                         |                                                                                                                         |                                                                                                                                                                         |                                                                            |                                                                         |                              |                          |                               |                          |                |                        |
| Vasd=103i<br>II; Exp B; E<br>Exterior(2)<br>zone; canti<br>and right e<br>MWFRS fc<br>grip DOL=<br>2) TCLL: ASC<br>Plate DOL-<br>DOL=1.15<br>Exp.; Ce=( | CE 7-16; Vult=130mph<br>mph; TCDL=6.0psf; B<br>Enclosed; MWFRS (er<br>E) -0-10-0 to 2-2-0, Int<br>illever left and right exp<br>exposed; C-C for memb<br>or reactions shown; Lu<br>1.33<br>CE 7-16; Pr=20.0 psf (<br>=1.15); Pg=20.0 psf; F<br>Plate DOL=1.15); Is=<br>0.9; Cs=1.00; Ct=1.10 | CDL=6.0psf; h=25ft;<br>ivelope) and C-C<br>erior (1) 2-2-0 to 2-1<br>porsed; end vertical<br>bers and forces &<br>imber DOL=1.60 pla<br>roof LL: Lum DOL=1<br>7f=13.9 psf (Lum<br>1.0; Rough Cat B; Fi | 1-4<br>eft<br>.15<br>ully               |                                                                                                                         |                                                                                                                                                                         |                                                                            |                                                                         |                              |                          |                               | N. N. N.                 | OR FERS        | ROMAR                  |

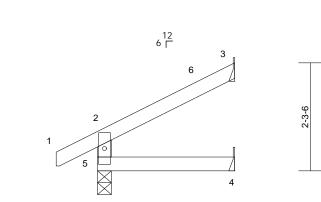
This truss has been designed for greater of min roof live 3) load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

ON L. GAL mmm

April 23,2025




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


| Job      | Truss Truss Type Qty Ply 18 Eagle Creek - Edisto B - R |           | 18 Eagle Creek - Edisto B - Roof |   |                          |           |
|----------|--------------------------------------------------------|-----------|----------------------------------|---|--------------------------|-----------|
| 25040187 | E10                                                    | Jack-Open | 3                                | 1 | Job Reference (optional) | 172941937 |

2-3-6

0-10-0

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:33 ID:k38\_YhFtGeH0Fq\_bGecxtOzODos-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f





2-10-12



Scale = 1:24.3

| .oading                | (psf)                                                                | Spacing               | 2-0-0           | CSI                                          |              | DEFL          | in    | (loc) | l/defl | L/d | PLATES        | GRIP      |
|------------------------|----------------------------------------------------------------------|-----------------------|-----------------|----------------------------------------------|--------------|---------------|-------|-------|--------|-----|---------------|-----------|
| CLL (roof)             | 20.0                                                                 | Plate Grip DOL        | 1.15            | TC                                           | 0.17         | Vert(LL)      | 0.00  | 4-5   | >999   | 240 | -             | 244/190   |
| Snow (Pf/Pg)           | 13.9/20.0                                                            | Lumber DOL            | 1.15            | BC                                           | 0.10         | Vert(CT)      | 0.00  | 4-5   | >999   | 180 | _             |           |
| CDL                    | 10.0                                                                 | Rep Stress Incr       | YES             | WB                                           | 0.00         | Horz(CT)      | -0.01 | 3     | n/a    | n/a |               |           |
| BCLL                   | 0.0*                                                                 | Code                  | IRC2021/TPI2014 | Matrix-MR                                    |              |               |       |       |        |     |               |           |
| BCDL                   | 10.0                                                                 |                       |                 |                                              |              |               |       |       |        |     | Weight: 11 lb | FT = 20%  |
| UMBER<br>OP CHORD      | 2x4 SP No.2                                                          |                       | on the b        | uss has been design<br>ottom chord in all ar | eas where    | a rectangle   | •     |       |        |     |               |           |
| OT CHORD               | 2x4 SP No.2                                                          |                       |                 | tall by 2-00-00 wide                         |              | veen the bott | om    |       |        |     |               |           |
| /EBS                   | 2x4 SP No.3                                                          |                       |                 | nd any other membe<br>are assumed to be      |              | P No 2        |       |       |        |     |               |           |
|                        | o                                                                    |                       | 7) D-4          | girder(s) for truss to                       |              |               |       |       |        |     |               |           |
| OP CHORD               | Structural wood she<br>2-10-12 oc purlins,<br>Rigid ceiling directly | except end verticals  | s. 8) Provide   | mechanical connect                           | tion (by oth | ers) of truss |       |       |        |     |               |           |
|                        | bracing.                                                             | applied of 10-0-0 0   | 3.              |                                              | 0            | •             |       |       |        |     |               |           |
| EACTIONS               | (size) 3= Mecha<br>5=0-3-8                                           | anical, 4= Mechanica  | al, LOAD CAS    | E(S) Standard                                |              |               |       |       |        |     |               |           |
|                        | Max Horiz 5=41 (LC                                                   | 12)                   |                 |                                              |              |               |       |       |        |     |               |           |
|                        | Max Uplift 3=-26 (LC                                                 | 2 15)                 |                 |                                              |              |               |       |       |        |     |               |           |
|                        | Max Grav 3=82 (LC<br>(LC 22)                                         | 22), 4=29 (LC 22),    | 5=209           |                                              |              |               |       |       |        |     |               |           |
| ORCES                  | (lb) - Maximum Com<br>Tension                                        | pression/Maximum      |                 |                                              |              |               |       |       |        |     |               |           |
| OP CHORD               | 2-5=-184/117, 1-2=0<br>4-5=0/0                                       | )/33, 2-3=-52/35      |                 |                                              |              |               |       |       |        |     |               |           |
| IOTES                  |                                                                      |                       |                 |                                              |              |               |       |       |        |     |               |           |
| ) Wind: ASC            | CE 7-16; Vult=130mph                                                 | (3-second gust)       |                 |                                              |              |               |       |       |        |     |               |           |
|                        | mph; TCDL=6.0psf; B                                                  |                       | ; Cat.          |                                              |              |               |       |       |        |     |               | 1111      |
|                        | Enclosed; MWFRS (er                                                  |                       |                 |                                              |              |               |       |       |        |     | WHY CA        | APOUL     |
|                        | E) -0-10-1 to 2-1-15, Ir<br>ne; cantilever left and r                |                       |                 |                                              |              |               |       |       |        | N   | A 1.1.        | PULL      |
|                        | t and right exposed;C-                                               |                       |                 |                                              |              |               |       |       |        | 5.  | O'FESS        | Kill in   |
|                        | WFRS for reactions s                                                 |                       |                 |                                              |              |               |       |       |        | 32  |               | 112.7 -   |
|                        | plate grip DOL=1.33                                                  |                       |                 |                                              |              |               |       |       | 1      |     | Render        | 14: 3     |
|                        | CE 7-16; Pr=20.0 psf (                                               | roof LL: Lum DOL=     | 1.15            |                                              |              |               |       |       |        |     | SEA           | u : =     |
| Plate DOL              | =1.15); Pg=20.0 psf; F                                               | Pf=13.9 psf (Lum      |                 |                                              |              |               |       |       | =      |     | JL/           |           |
|                        | Plate DOL=1.15); Is=                                                 |                       | Fully           |                                              |              |               |       |       | =      |     | 286           | // : :    |
|                        | 0.9; Cs=1.00; Ct=1.10                                                |                       |                 |                                              |              |               |       |       |        |     | <b>1</b>      | 1 2       |
| ) Unbalance<br>design. | ed snow loads have be                                                | en considered for t   | nis             |                                              |              |               |       |       |        | 2   | 1. 0          | als S     |
|                        | has been designed fo                                                 | r areater of min roof | live            |                                              |              |               |       |       |        | 1,4 | SEA<br>286    | EENA      |
|                        | .0 psf or 2.00 times fla                                             |                       |                 |                                              |              |               |       |       |        | 11  | YA            | in Si'    |
|                        | non-concurrent with o                                                |                       |                 |                                              |              |               |       |       |        |     | 11. L.G       | AL        |
|                        |                                                                      |                       |                 |                                              |              |               |       |       |        |     | L. G          | mm        |
|                        |                                                                      |                       |                 |                                              |              |               |       |       |        |     | A             | 1 22 2025 |

April 23,2025

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |
|----------|-------|------------|-----|-----|----------------------------------|-----------|
| 25040187 | E11   | Jack-Open  | 1   | 1   | Job Reference (optional)         | 172941938 |

2-10-12

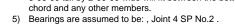
12 6 Г

Carter Components (Sanford, NC), Sanford, NC - 27332,

2-3-6

0-10-0

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:33 ID:8ep6AjHIZZga6Ij9ym9eU1zODop-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


2

Page: 1

2-3-6 1 4 3 3x8 II 2-10-12

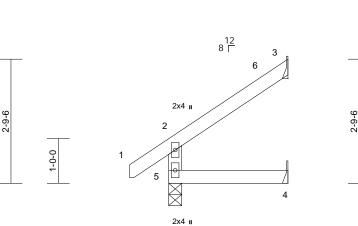
Scale = 1:21.6

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                    |                                                                            | 1                                                                                  |           |               |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i             |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------|---------------|-------|-------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|
| Loading (p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) Spacing                                                                                                                                                                                                                                                                                                                            | 2-0-0                                                                      | csi                                                                                |           | DEFL          | in    | (loc) | l/defl | L/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PLATES        | GRIP     |
| TCLL (roof) 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · · ·                                                                                                                                                                                                                                                                                                                              | 1.15                                                                       | тс                                                                                 | 0.17      | Vert(LL)      | 0.00  | 3-4   | >999   | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MT20          | 244/190  |
| Snow (Pf/Pg) 13.9/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                      | 1.15                                                                       | BC                                                                                 | 0.10      | . ,           | -0.01 | 3-4   | >999   | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |          |
| TCDL 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                      | YES                                                                        | WB                                                                                 | 0.00      | Horz(CT)      | -0.01 | 2     | n/a    | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |          |
| BCLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0* Code                                                                                                                                                                                                                                                                                                                              | IRC2021/TPI2014                                                            | Matrix-MR                                                                          |           | - (- )        |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          |
| BCDL 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                    |                                                                            |                                                                                    |           |               |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Weight: 10 lb | FT = 20% |
| 2-10-12 oc pur<br>BOT CHORD Rigid ceiling di<br>bracing.<br><b>REACTIONS</b> (size) 2= N<br>4=0<br>Max Horiz 4=3<br>Max Uplift 2=-2                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (LC 12)                                                                                                                                                                                                                                                                                                                              | 7) Provide med<br>bearing plat<br>2.<br>LOAD CASE(S)<br>ied or<br>s.<br>bc | ler(s) for truss to tru<br>chanical connection<br>e capable of withsta<br>Standard | n (by oth | ers) of truss |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          |
| Max Grav 2=8<br>(LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                      | 4=119                                                                      |                                                                                    |           |               |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          |
| FORCES (lb) - Maximum<br>Tension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Compression/Maximum                                                                                                                                                                                                                                                                                                                  | I                                                                          |                                                                                    |           |               |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          |
| TOP CHORD 1-4=-99/50, 1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -54/37                                                                                                                                                                                                                                                                                                                               |                                                                            |                                                                                    |           |               |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          |
| BOT CHORD 3-4=0/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                      |                                                                            |                                                                                    |           |               |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          |
| NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                      |                                                                            |                                                                                    |           |               |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          |
| <ol> <li>Wind: ASCE 7-16; Vult=13<br/>Vasd=103mph; TCDL=6.0<br/>II; Exp B; Enclosed; MWFF<br/>Exterior(2E) zone; cantilev<br/>vertical left and right expos<br/>forces &amp; MWFRS for reacti<br/>DOL=1.60 plate grip DOL=</li> <li>TCLL: ASCE 7-16; Pr=20.0<br/>Plate DOL=1.15); Pg=20.0<br/>DOL=1.15 Plate DOL=1.15<br/>Exp.; Ce=0.9; Cs=1.00; Ct:</li> <li>Unbalanced snow loads ha<br/>design.</li> <li>* This truss has been desig<br/>on the bottom chord in all a<br/>3-06-00 tall by 2-00-00 wid<br/>chord and any other memb</li> <li>Bearings are assumed to b</li> </ol> | f; BCDL=6.0psf; h=25ff<br>(envelope) and C-C<br>left and right exposed<br>d;C-C for members and<br>as force for members and<br>as f (roof LL: Lum DOL=<br>sf; Pf=13.9 psf (Lum<br>Is=1.0; Rough Cat B; f<br>.10<br>e been considered for t<br>ed for a live load of 20.<br>eas where a rectangle<br>will fit between the bott<br>'s. | ; end<br>I<br>1.1.15<br>Fully<br>his<br>Opsf                               |                                                                                    |           |               |       |       |        | and states of the states of th | SEA<br>2867   | EER. St. |



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

April 23,2025




| Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |  |
|----------|-------|------------|-----|-----|----------------------------------|-----------|--|
| 25040187 | E12   | Jack-Open  | 3   | 1   | Job Reference (optional)         | 172941939 |  |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:33 ID:k38\_YhFtGeH0Fq\_bGecxtOzODos-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



2-8-1



Scale = 1:25.8

| Scale = 1:25.8                                                                                                                                                                                                        |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                |                                                                             |                                                                         |                             |                          |                               |                                         |                                 |                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------|--------------------------|-------------------------------|-----------------------------------------|---------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                        | (psf)<br>20.0<br>13.9/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                              | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2021/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CSI<br>TC<br>BC<br>WB<br>Matrix-MR                                                                                                                                                                             | 0.20<br>0.12<br>0.00                                                        | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                | in<br>0.00<br>0.00<br>-0.01 | (loc)<br>4-5<br>4-5<br>3 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a                | PLATES<br>MT20<br>Weight: 11 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| I                                                                                                                                                                                                                     | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Structural wood she<br>2-8-1 oc purlins, ex<br>Rigid ceiling directly<br>bracing.<br>(size) 3= Mecha<br>5=0-3-8<br>Max Horiz 5=50 (LC<br>Max Grav 3=68 (LC<br>(LC 2) | cept end verticals.<br>applied or 10-0-0 o<br>inical, 4= Mechanica<br>10)<br>: 13)                                                                                                                                                                     | ed or<br>c<br>bearings<br>c<br>c<br>al,<br><b>b</b> ootheat<br>c<br><b>b</b> ootheat<br>c<br><b>b</b> ootheat<br><b>b</b> o | ss has been designe<br>ittom chord in all are<br>all by 2-00-00 wide v<br>d any other member<br>are assumed to be:<br>girder(s) for truss to<br>nechanical connection<br>late capable of withs<br>(S) Standard | as where<br>will fit betw<br>s.<br>, Joint 5 \$<br>truss conr<br>on (by oth | a rectangle<br>veen the bott<br>SP No.2 .<br>nections.<br>ers) of truss | tom                         |                          |                               |                                         |                                 |                                    |
| FORCES<br>TOP CHORD<br>BOT CHORD                                                                                                                                                                                      | (lb) - Maximum Com<br>Tension<br>2-5=-151/89, 1-2=0/<br>4-5=0/0                                                                                                                                                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                |                                                                             |                                                                         |                             |                          |                               |                                         |                                 |                                    |
| NOTES<br>1) Wind: ASC<br>Vasd=1037<br>II; Exp B; E<br>Exterior(2E<br>zone; canti<br>and right ex<br>MWFRS fo<br>grip DOL=1<br>2) TCLL: ASC<br>Plate DOL=<br>DOL=1.15<br>Exp.; Ce=0<br>3) This truss f<br>load of 12.0 | E 7-16; Vult=130mph<br>mph; TCDL=6.0psf; Br<br>Inclosed; MWFRS (er<br>E) -0-10-0 to 2-2-0, Int<br>ilever left and right exj<br>xposed;C-C for memb<br>r reactions shown; Lu                                       | CDL=6.0psf; h=25ft;<br>ivelope) and C-C<br>erior (1) 2-2-0 to 2-7<br>bosed ; end vertical<br>bers and forces &<br>mber DOL=1.60 pla<br>roof LL: Lum DOL=<br>Pf=13.9 psf (Lum<br>1.0; Rough Cat B; F<br>r greater of min roof<br>t roof load of 13.9 ps | r-5<br>left<br>1.15<br>fully                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                |                                                                             |                                                                         |                             |                          |                               | and | SEA<br>286                      | EER. St.                           |

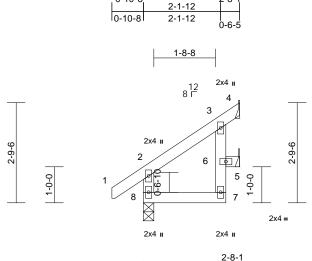
April 23,2025

Page: 1



| Job      | Truss | Truss Type | ss Type Qty Ply 18 Eagle Creek - Edisto B - Roof |   |                          |           |
|----------|-------|------------|--------------------------------------------------|---|--------------------------|-----------|
| 25040187 | E13   | Jack-Open  | 1                                                | 1 | Job Reference (optional) | 172941940 |

-0-10-8


Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:33 ID:k38\_YhFtGeH0Fq\_bGecxtOzODos-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-8-

Page: 1







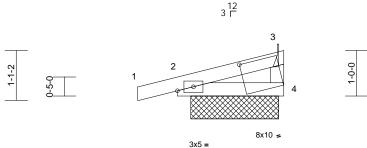
Scale = 1:32

| Scale = 1.52                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                               |                                                                                                                   |                                                                                                                                                                                                                         |                                                                             |                                                                           |                            |                        |                               |                          |                                 |                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------|------------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL                                                                                                                              | (psf)<br>20.0<br>13.9/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                   | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                     | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2021/TPI2014                                                                   | CSI<br>TC<br>BC<br>WB<br>Matrix-MR                                                                                                                                                                                      | 0.14<br>0.09<br>0.00                                                        | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                  | in<br>0.00<br>0.00<br>0.00 | (loc)<br>7-8<br>6<br>4 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 14 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|                                                                                                                                                                                             | 2x4 SP No.2<br>2x4 SP No.2 *Excep<br>2x4 SP No.3<br>Structural wood she<br>2-8-1 oc purlins, exx<br>Rigid ceiling directly<br>bracing.<br>(size) 4= Mecha<br>8=0-3-8<br>Max Horiz 8=50 (LC<br>Max Uplift 5=-31 (LC<br>Max Grav 4=34 (LC                                                                                                                              | athing directly applie<br>cept end verticals.<br>applied or 10-0-0 or<br>inical, 5= Mechanica<br>10)<br>: 13)                                                                                                                                 | on the t<br>3-06-00<br>chord a<br>5) Bearing<br>ed or 6) Refer to<br>6) Refer to<br>bearing<br>5.<br>al, LOAD CAS | uss has been design<br>oottom chord in all are<br>tall by 2-00-00 wide<br>nd any other member<br>s are assumed to be:<br>girder(s) for truss to<br>mechanical connecti<br>plate capable of with<br><b>E(S)</b> Standard | eas where<br>will fit betw<br>s.<br>, Joint 8 s<br>truss conr<br>on (by oth | a rectangle<br>veen the both<br>SP No.2 .<br>nections.<br>ers) of truss t | om<br>to                   |                        |                               |                          |                                 |                                    |
| FORCES                                                                                                                                                                                      | (LC 2)<br>(lb) - Maximum Com<br>Tension<br>2-8=-152/83, 1-2=0/4                                                                                                                                                                                                                                                                                                      | 41, 2-3=-63/7, 3-4=-                                                                                                                                                                                                                          |                                                                                                                   |                                                                                                                                                                                                                         |                                                                             |                                                                           |                            |                        |                               |                          |                                 |                                    |
| BOT CHORD                                                                                                                                                                                   | 7-8=-47/38, 6-7=-12                                                                                                                                                                                                                                                                                                                                                  | /30, 3-6=-63/95, 5-6                                                                                                                                                                                                                          | 6=0/0                                                                                                             |                                                                                                                                                                                                                         |                                                                             |                                                                           |                            |                        |                               |                          |                                 |                                    |
| NOTES                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                      | (2)                                                                                                                                                                                                                                           |                                                                                                                   |                                                                                                                                                                                                                         |                                                                             |                                                                           |                            |                        |                               |                          |                                 |                                    |
| Vasd=103/<br>II; Exp B; E<br>Exterior(2E<br>2-7-5 zone<br>vertical left<br>forces & M<br>DOL=1.60<br>2) TCLL: ASC<br>Plate DOL:<br>DOL=1.15<br>Exp.; Ce=C<br>3) This truss i<br>load of 12. | CE 7-16; Vult=130mph<br>mph; TCDL=6.0psf; Bf<br>Enclosed; MWFRS (en<br>E) -0-10-0 to 2-0-12, In<br>; cantilever left and rigt<br>t and right exposed;C-<br>IWFRS for reactions s<br>plate grip DOL=1.33<br>CE 7-16; Pr=20.0 psf; F<br>Plate DOL=1.15); Is=<br>0.9; Cs=1.00; Ct=1.10<br>has been designed for<br>0 psf or 2.00 times flat<br>is non-concurrent with c | CDL=6.0psf; h=25ft;<br>ivelope) and C-C<br>iterior (1) 2-0-12 to<br>ght exposed ; end<br>C for members and<br>hown; Lumber<br>roof LL: Lum DOL=<br>of=13.9 psf (Lum<br>1.0; Rough Cat B; F<br>r greater of min roof<br>t roof load of 13.9 ps | 1.15<br>'ully<br>live                                                                                             |                                                                                                                                                                                                                         |                                                                             |                                                                           |                            |                        |                               | Super States             | SEA<br>286                      | ROUTE EER SCL                      |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



818 Soundside Road Edenton, NC 27932


L. GA minin April 23,2025

| Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |         |
|----------|-------|------------|-----|-----|----------------------------------|---------|
| 25040187 | E14   | Jack-Open  | 1   | 1   | I7:<br>Job Reference (optional)  | 2941941 |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:33 ID:biF0qZZ09?X8eo4\_5NnRgJztCnW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-0-10-8 2-4-0 0-10-8 2-4-0



| 0-3-8 |        | 2-4-0 |
|-------|--------|-------|
|       | 2-2-10 |       |
|       | 1-11-2 |       |
| 0-3-8 |        | 0-1-5 |

Scale = 1:25.3

Plate Offsets (X, Y): [4:1-5-7,0-2-11]

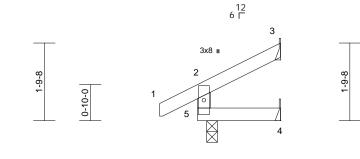
|                                                                                                                                                                                                 | 7, 1). [4.1-3-7,0-2-11]                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                 |                                                                |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                             |                                                                                                                                                                            |                                    |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                  | (psf)<br>20.0<br>13.9/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                     | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                       | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC202                         | 1/TPI2014                                                                                                                                                                                               | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                                                  | 0.06<br>0.07<br>0.00                                                                                                                                        | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                   | in<br>0.00<br>0.00<br>0.00         | (loc)<br>4-9<br>4-9<br>3 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PLATES<br>MT20<br>Weight: 9 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|                                                                                                                                                                                                 | 2x4 SP No.2<br>2x4 SP No.3<br>Structural wood shea<br>2-4-0 oc purlins, exc<br>Rigid ceiling directly<br>bracing.                                                                                                                                                                                                                                                                                      | cept end verticals.<br>applied or 10-0-0 oc<br>3= Mechanical, 4=1<br>14)<br>11), 3=-7 (LC 15)                                                                                                                                                                                   | ;<br>-11-2 9)<br>10                                            | load of 12.0<br>overhangs n<br>Gable studs<br>* This truss ł<br>on the bottor<br>3-06-00 tall ł<br>chord and ar<br>Bearings are<br>Refer to gird<br>D) Provide mec<br>bearing plate<br>2, 7 lb uplift : | is been designed<br>psf or 2.00 times 1<br>on-concurrent with<br>spaced at 2-0-0 o<br>nas been designed<br>in chord in all area<br>by 2-00-00 wide w<br>ny other members<br>assumed to be: ,<br>re(s) for truss to tr<br>hanical connectio<br>o capable of withs<br>at joind 3 and 31 ll<br>d Industry Piggyb<br>nnection to base 1 | ilat roof lin<br>n other lin<br>c.<br>d for a liv<br>s where<br>ill fit betw<br>Joint 2 S<br>russ conr<br>n (by oth<br>tanding 3<br>o uplift at<br>ack Trus | bad of 13.9 p<br>ve loads.<br>e load of 20.1<br>a rectangle<br>veen the bott<br>SP No.2 .<br>tections.<br>ers) of truss t<br>i 1 b uplift at j<br>joint 2.<br>s Connection | sf on<br>Opsf<br>om<br>to<br>joint |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                    |
| FORCES                                                                                                                                                                                          | (lb) - Maximum Com<br>Tension                                                                                                                                                                                                                                                                                                                                                                          | pression/Maximum                                                                                                                                                                                                                                                                |                                                                | consult quali                                                                                                                                                                                           | fied building desig                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                                                                            |                                    |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                    |
| TOP CHORD<br>BOT CHORD                                                                                                                                                                          | 1-2=0/16, 2-3=-148/<br>2-4=-110/177                                                                                                                                                                                                                                                                                                                                                                    | 111, 3-4=0/0                                                                                                                                                                                                                                                                    | L                                                              | DAD CASE(S)                                                                                                                                                                                             | Standard                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                             |                                                                                                                                                                            |                                    |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                    |
| Vasd=103<br>II; Exp B; F<br>(3E) zone;<br>left and rig<br>MWFRS fr<br>grip DOL=<br>2) Truss desi<br>only. For<br>see Stand.<br>or consult<br>3) TCLL: ASS<br>Plate DOL<br>DOL=1.15<br>Exp.; Ce= | CE 7-16; Vult=130mph<br>mph; TCDL=6.0psf; Bd<br>Enclosed; MWFRS (en<br>; cantilever left and righ<br>the exposed;C-C for me<br>or reactions shown; Lu<br>1.33<br>igned for wind loads in<br>studs exposed to wind<br>ard Industry Gable End<br>qualified building desig<br>CE 7-16; Pr=20.0 psf (<br>.=1.15); Pg=20.0 psf; [<br>Plate DOL=1.15); Is=<br>0.9; Cs=1.00; Ct=1.10<br>ad snow loads have be | CDL=6.0psf; h=25ft;<br>velope) and C-C Co<br>texposed; end veri<br>embers and forces &<br>mber DOL=1.60 plat<br>the plane of the trus<br>(normal to the face)<br>d Details as applicab<br>gner as per ANSI/TP<br>roof LL: Lum DOL=1<br>2f=13.9 psf (Lum<br>1.0; Rough Cat B; Fu | rner<br>tical<br>te<br>ss<br>,<br>ole,<br>vl 1.<br>.15<br>ully |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                             |                                                                                                                                                                            |                                    |                          |                               | and a state of the | SEA<br>286                     | EEP. Stur                          |

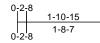
April 23,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |
|----------|-------|------------|-----|-----|----------------------------------|-----------|
| 25040187 | E15   | Jack-Open  | 4   | 1   | Job Reference (optional)         | 172941942 |


-0-10-8


0-10-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:33 ID:k38\_YhFtGeH0Fq\_bGecxtOzODos-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1





1-10-15

1-10-15

Scale = 1:26.6

| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                        | (psf)<br>20.0<br>13.9/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                     | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                     | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2021/TPI2014                                                                                          | CSI<br>TC<br>BC<br>WB<br>Matrix-MR                                                                                                                                                                      | 0.10<br>0.05<br>0.00                                         | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                   | in<br>0.00<br>0.00<br>0.00 | (loc)<br>4-5<br>4-5<br>3 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PLATES<br>MT20<br>Weight: 8 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------|--------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------|
|                                                                                                                                                                                                       | $\begin{array}{l} 2x4 \ \text{SP No.2} \\ 2x4 \ \text{SP No.2} \\ 2x4 \ \text{SP No.3} \\ \\ \hline \\ \text{Structural wood she} \\ 1-10-15 \ \text{oc purlins,} \\ \text{Rigid ceiling directly} \\ \text{bracing.} \\ (size) \qquad 3= \text{Mecha} \\ \hline \\ 5=0-3-0 \\ \\ \text{Max Horiz} \ 5=32 \ (\text{LC} \\ \text{Max Upliff} \ 3=-18 \ (\text{LC} \\ \text{Max Grav} \ 3=44 \ (\text{LC} \\ (\text{LC 22}) \end{array}$ | except end verticals.<br>applied or 10-0-0 oc<br>nical, 4= Mechanica<br>12)<br>: 15)                                                                                                                                                          | on the bott<br>3-06-00 tal<br>chord and<br>6) Bearings a<br>d or<br>7) Refer to gi<br>8) Provide mo<br>bearing pla<br>3.<br>LOAD CASE(\$ | thas been designed<br>om chord in all area<br>by 2-00-00 wide wi<br>any other members.<br>re assumed to be: ,<br>der(s) for truss to tru-<br>chanical connection<br>te capable of withst<br>b) Standard | s where<br>Il fit betv<br>Joint 5 S<br>uss conr<br>n (by oth | a rectangle<br>veen the botto<br>SP No.2 .<br>nections.<br>ers) of truss t | o                          |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                    |
| FORCES                                                                                                                                                                                                | (Ib) - Maximum Com<br>Tension                                                                                                                                                                                                                                                                                                                                                                                                          | pression/Maximum                                                                                                                                                                                                                              |                                                                                                                                          |                                                                                                                                                                                                         |                                                              |                                                                            |                            |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                    |
| TOP CHORD<br>BOT CHORD                                                                                                                                                                                | 2-5=-145/98, 1-2=0/3<br>4-5=0/0                                                                                                                                                                                                                                                                                                                                                                                                        | 33, 2-3=-34/22                                                                                                                                                                                                                                |                                                                                                                                          |                                                                                                                                                                                                         |                                                              |                                                                            |                            |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                    |
| Vasd=103i<br>II; Exp B; F<br>Exterior(2E<br>vertical left<br>forces & M<br>DOL=1.60<br>2) TCLL: ASC<br>Plate DOL<br>DOL=1.15<br>Exp.; Ce=(<br>3) Unbalance<br>design.<br>4) This truss<br>load of 12. | CE 7-16; Vult=130mph<br>mph; TCDL=6.0psf; BG<br>Enclosed; MWFRS (er<br>E) zone; cantilever left<br>t and right exposed;C-<br>IWFRS for reactions si<br>plate grip DOL=1.33<br>CE 7-16; Pr=20.0 psf; F<br>Plate DOL=1.15); Is=<br>0.9; Cs=1.00; Ct=1.10<br>d snow loads have be<br>has been designed for<br>0 psf or 2.00 times flat<br>non-concurrent with c                                                                           | CDL=6.0psf; h=25ft;<br>ivelope) and C-C<br>and right exposed;<br>C for members and<br>hown; Lumber<br>roof LL: Lum DOL=1<br>2f=13.9 psf (Lum<br>1.0; Rough Cat B; Fu<br>en considered for th<br>greater of min roof 1<br>toof load of 13.9 ps | end<br>.15<br>ully<br>is<br>live                                                                                                         |                                                                                                                                                                                                         |                                                              |                                                                            |                            |                          |                               | and a start of the | SEA<br>286                     | TT EER Sturr                       |

# April 23,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |
|----------|-------|------------|-----|-----|----------------------------------|-----------|
| 25040187 | E16   | Jack-Open  | 1   | 1   | Job Reference (optional)         | 172941943 |

-0-10-0

0-10-0

1

1-7-6

1-7-6

8 Г

3

Carter Components (Sanford, NC), Sanford, NC - 27332,

1-11-1

0-9-11

Run: 8.73 E May 9 2024 Print: 8.730 E May 9 2024 MiTek Industries, Inc. Wed Apr 23 16:12:10 ID:ZhSv\_xhEnnB8C8Y6fw7YTkztCyz-1743ugOCcLVT7IO\_ooYnVhc1dZxXAI15dwYPEGzNoRZ

Page: 1

1-10-9 2 Δ

# 3x8 II

1-7-6

#### Scale = 1:23.4

| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                             | (psf)<br>20.0<br>13.9/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                  | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                               | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2021/TPI2014                                                             | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-MR                                        | 0.12<br>0.05<br>0.00 | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT) | in<br>0.00<br>0.00<br>0.00 | (loc)<br>4-5<br>4-5<br>3 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 8 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------|------------------------------------------|----------------------------|--------------------------|-------------------------------|--------------------------|--------------------------------|------------------------------------|
|                                                                                                                                                                                                                                            | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Structural wood she<br>1-7-6 oc purlins, ex<br>Rigid ceiling directly<br>bracing.<br>(Ib/size) 3=24/ Me<br>5=108/1-6<br>Max Horiz 5=35 (LC<br>Max Upliff 3=-19 (LC<br>Max Grav 3=34 (LC<br>(LC 2)                                                                                                                                                                                                                                      | cept end verticals.<br>applied or 10-0-0 oc<br>chanical, 4=12/1-6-1<br>5-14<br>10)<br>: 13)                                                                                                                                                                                                                                      | <ul> <li>6) Provide mec<br/>bearing plate<br/>3.</li> <li>LOAD CASE(S)</li> <li>d or</li> <li>4,</li> </ul> | er(s) for truss to tru<br>hanical connection<br>a capable of withsta<br>Standard | ı (by oth            | ers) of truss t                          |                            |                          |                               |                          |                                |                                    |
| Vasd=103r<br>II; Exp B; E<br>Exterior(2E<br>vertical left<br>forces & M<br>DOL=1.60<br>2) TCLL: ASC<br>Plate DOL=<br>DOL=1.15<br>Exp.; Ce=<br>3) This truss I<br>load of 12.<br>overhangs<br>4) * This truss<br>on the bott<br>3-06-00 tal | (lb) - Maximum Com<br>Tension<br>2-5=-123/85, 1-2=0/<br>4-5=0/0<br>ZE 7-16; Vult=130mph<br>mph; TCDL=6.0psf; Bi<br>Enclosed; MWFRS (er<br>2) zone; cantilever left:<br>a and right exposed;C-<br>WFRS for reactions s<br>plate grip DOL=1.33<br>CE 7-16; Pr=20.0 psf; [<br>=1.15); Pg=20.0 psf; [<br>Plate DOL=1.15); Is=<br>Digt or 2.00 times flat<br>non-concurrent with of<br>s has been designed for<br>om chord in all areas<br>II by 2-00-00 wide will<br>any other members. | 39, 2-3=-38/26<br>(3-second gust)<br>CDL=6.0psf; h=25ft;<br>ivelope) and C-C<br>and right exposed ;<br>C for members and<br>hown; Lumber<br>roof LL: Lum DOL=1<br>Pf=13.9 psf (Lum<br>1.0; Rough Cat B; Fi<br>r greater of min roof<br>t roof load of 13.9 ps<br>ther live loads.<br>or a live load of 20.0<br>where a rectangle | end<br>.15<br>ully<br>live<br>f on<br>psf                                                                   |                                                                                  |                      |                                          |                            |                          |                               |                          | SEA<br>286                     | EEP. St.                           |

April 23,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

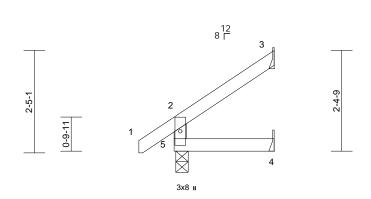
# F

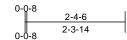
- 2

| Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |
|----------|-------|------------|-----|-----|----------------------------------|-----------|
| 25040187 | E17   | Jack-Open  | 1   | 1   | Job Reference (optional)         | 172941944 |

2-4-6

2-4-6


-0-10-0


0-10-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:34 ID:ZhSv\_xhEnnB8C8Y6fw7YTkztCyz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1





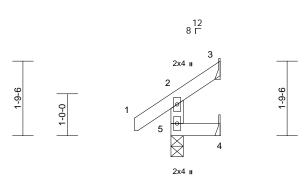
Scale = 1:27.2

|                      |                                                   |                       |                 |                                              | _          |                  |      |       |        |     |               |             |
|----------------------|---------------------------------------------------|-----------------------|-----------------|----------------------------------------------|------------|------------------|------|-------|--------|-----|---------------|-------------|
| Loading              | (psf)                                             | Spacing               | 2-0-0           | CSI                                          |            | DEFL             | in   | (loc) | l/defl | L/d | PLATES        | GRIP        |
| TCLL (roof)          | 20.0                                              | Plate Grip DOL        | 1.15            | TC                                           | 0.14       | Vert(LL)         | 0.00 | 4-5   | >999   | 240 | MT20          | 244/190     |
| Snow (Pf/Pg)         | 13.9/20.0                                         | Lumber DOL            | 1.15            | BC                                           | 0.08       | Vert(CT)         | 0.00 | 4-5   | >999   | 180 |               |             |
| TCDL                 | 10.0                                              | Rep Stress Incr       | YES             | WB                                           | 0.00       | Horz(CT)         | 0.00 | 3     | n/a    | n/a |               |             |
| BCLL                 | 0.0*                                              | Code                  | IRC2021/TPI2014 | Matrix-MR                                    |            |                  |      |       |        |     |               |             |
| BCDL                 | 10.0                                              |                       |                 |                                              |            |                  |      |       | -      |     | Weight: 10 lb | FT = 20%    |
| LUMBER               |                                                   |                       | , 0             | are assumed to be:                           |            |                  |      |       |        |     |               |             |
| TOP CHORD            | 2x4 SP No.2                                       |                       |                 | rder(s) for truss to                         |            |                  |      |       |        |     |               |             |
| BOT CHORD<br>WEBS    | 2x4 SP No.2<br>2x4 SP No.3                        |                       |                 | echanical connection<br>ate capable of withs |            |                  |      |       |        |     |               |             |
|                      | 2X4 SP IN0.3                                      |                       | 3.              | ate capable of with                          | stanuing 2 | 27 ib upint at j | om   |       |        |     |               |             |
| BRACING<br>TOP CHORD | Structural wood she                               | athing directly appli |                 | S) Standard                                  |            |                  |      |       |        |     |               |             |
|                      | 2-4-6 oc purlins, ex                              |                       |                 | -,                                           |            |                  |      |       |        |     |               |             |
| BOT CHORD            | Rigid ceiling directly                            |                       | C               |                                              |            |                  |      |       |        |     |               |             |
|                      | bracing.                                          |                       |                 |                                              |            |                  |      |       |        |     |               |             |
| REACTIONS            | ( )                                               | anical, 4= Mechanic   | al,             |                                              |            |                  |      |       |        |     |               |             |
|                      | 5=0-3-8                                           | 10)                   |                 |                                              |            |                  |      |       |        |     |               |             |
|                      | Max Horiz 5=46 (LC<br>Max Uplift 3=-27 (LC        | ,                     |                 |                                              |            |                  |      |       |        |     |               |             |
|                      | Max Grav 3=58 (LC                                 |                       | 5=155           |                                              |            |                  |      |       |        |     |               |             |
|                      | (LC 2)                                            | 20), 120 (20 11),     | 0-100           |                                              |            |                  |      |       |        |     |               |             |
| FORCES               | (lb) - Maximum Con<br>Tension                     | npression/Maximum     |                 |                                              |            |                  |      |       |        |     |               |             |
| TOP CHORD            | 2-5=-140/86, 1-2=0/                               | /39, 2-3=-55/38       |                 |                                              |            |                  |      |       |        |     |               |             |
| BOT CHORD            | 4-5=0/0                                           |                       |                 |                                              |            |                  |      |       |        |     |               |             |
| NOTES                |                                                   |                       |                 |                                              |            |                  |      |       |        |     |               |             |
|                      | CE 7-16; Vult=130mph                              |                       |                 |                                              |            |                  |      |       |        |     |               |             |
|                      | mph; TCDL=6.0psf; B                               |                       | ; Cat.          |                                              |            |                  |      |       |        |     | minin         | 11111       |
|                      | Enclosed; MWFRS (er<br>E) zone; cantilever left   |                       | ond             |                                              |            |                  |      |       |        |     | "TH CA        | Rolly       |
|                      | t and right exposed;C                             |                       |                 |                                              |            |                  |      |       |        | Nº. | Ricit         | Kik's       |
|                      | IWFRS for reactions s                             |                       |                 |                                              |            |                  |      |       |        | 22  | FFOS          | Chilles -   |
|                      | plate grip DOL=1.33                               |                       |                 |                                              |            |                  |      |       |        | 2   | 4/1           | UN: 2       |
|                      | CE 7-16; Pr=20.0 psf                              |                       | 1.15            |                                              |            |                  |      |       |        |     | per l         | 1 N N E     |
|                      | =1.15); Pg=20.0 psf; I                            |                       |                 |                                              |            |                  |      |       | =      |     | SEA           | AL : =      |
|                      | 5 Plate DOL=1.15);                                |                       | ully            |                                              |            |                  |      |       | =      |     | 286           | 77 : 5      |
|                      | has been designed fo                              |                       | live            |                                              |            |                  |      |       |        |     | 200           | 11 E E      |
|                      | .0 psf or 2.00 times fla                          |                       |                 |                                              |            |                  |      |       |        | -   | N             | 1 3         |
|                      | non-concurrent with                               |                       |                 |                                              |            |                  |      |       |        | 50  | S. SNOW       | FER. DS     |
|                      | s has been designed t                             |                       | Opsf            |                                              |            |                  |      |       |        | 11  | SEA<br>286    | 5.5. 5      |
|                      | tom chord in all areas<br>Il by 2-00-00 wide will |                       | om              |                                              |            |                  |      |       |        | 1   | INI G         | ALICIN      |
|                      | any other members.                                | in between the bolt   | UIII            |                                              |            |                  |      |       |        |     | 11111         | EER. KALING |
|                      | , saler memorie                                   |                       |                 |                                              |            |                  |      |       |        |     |               | 1 00 0005   |
|                      |                                                   |                       |                 |                                              |            |                  |      |       |        |     | Δnr           | コンマンハント     |

April 23,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


| Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |
|----------|-------|------------|-----|-----|----------------------------------|-----------|
| 25040187 | E18   | Jack-Open  | 4   | 1   | Job Reference (optional)         | 172941945 |

-0-10-8 1-2-1 0-10-8 1-2-1

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:34 ID:CGiMI1FV1yQss\_ZnqL7APczODor-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1





Scale = 1:27.5

| Loading<br>TCLL (roof)<br>Snow (Pf/Pg) | (psf)<br>20.0<br>13.9/20.0                         | Spacing<br>Plate Grip DOL<br>Lumber DOL | 2-0-0<br>1.15<br>1.15 | CSI<br>TC<br>BC                              | 0.14<br>0.05 | DEFL<br>Vert(LL)<br>Vert(CT) | in<br>0.00<br>0.00 | (loc)<br>4-5<br>4-5 | l/defl<br>>999<br>>999 | L/d<br>240<br>180 | PLATES<br>MT20                                                     | <b>GRIP</b><br>244/190 |
|----------------------------------------|----------------------------------------------------|-----------------------------------------|-----------------------|----------------------------------------------|--------------|------------------------------|--------------------|---------------------|------------------------|-------------------|--------------------------------------------------------------------|------------------------|
| TCDL                                   | 10.0                                               | Rep Stress Incr                         | YES                   | WB                                           | 0.00         | Horz(CT)                     | 0.00               | 3                   | n/a                    | n/a               |                                                                    |                        |
| BCLL                                   | 0.0*                                               | Code                                    | IRC2021/TPI2014       | Matrix-MR                                    |              |                              |                    |                     |                        |                   |                                                                    | <b>FT</b> 000/         |
| BCDL                                   | 10.0                                               |                                         |                       |                                              |              |                              | -                  | -                   | -                      |                   | Weight: 6 lb                                                       | FT = 20%               |
| UMBER                                  |                                                    |                                         |                       | s are assumed to be:                         |              |                              |                    |                     |                        |                   |                                                                    |                        |
| TOP CHORD                              | 2x4 SP No.2                                        |                                         |                       | girder(s) for truss to                       |              |                              |                    |                     |                        |                   |                                                                    |                        |
| BOT CHORD                              | 2x4 SP No.2                                        |                                         | ,                     | mechanical connecti<br>plate capable of with |              | ,                            |                    |                     |                        |                   |                                                                    |                        |
| BRACING                                | 2x4 SP No.3                                        |                                         |                       | b uplift at joint 3.                         | stanuing t   | o io upint at jo             | IIII 4             |                     |                        |                   |                                                                    |                        |
| TOP CHORD                              | Structural wood she                                | athing directly appli                   |                       | E(S) Standard                                |              |                              |                    |                     |                        |                   |                                                                    |                        |
|                                        | 1-2-1 oc purlins, ex                               |                                         |                       | (-)                                          |              |                              |                    |                     |                        |                   |                                                                    |                        |
| BOT CHORD                              | Rigid ceiling directly                             | applied or 10-0-0 o                     | C                     |                                              |              |                              |                    |                     |                        |                   |                                                                    |                        |
|                                        | bracing.                                           |                                         |                       |                                              |              |                              |                    |                     |                        |                   |                                                                    |                        |
| REACTIONS                              | · /                                                | anical, 4= Mechanic                     | al,                   |                                              |              |                              |                    |                     |                        |                   |                                                                    |                        |
|                                        | 5=0-3-8<br>Max Horiz 5=33 (LC                      | 10)                                     |                       |                                              |              |                              |                    |                     |                        |                   |                                                                    |                        |
|                                        | Max Uplift 3=-16 (LC                               |                                         |                       |                                              |              |                              |                    |                     |                        |                   |                                                                    |                        |
|                                        | Max Grav 3=16 (LC                                  |                                         | 5=129                 |                                              |              |                              |                    |                     |                        |                   |                                                                    |                        |
|                                        | (LC 19)                                            |                                         |                       |                                              |              |                              |                    |                     |                        |                   |                                                                    |                        |
| FORCES                                 | (lb) - Maximum Com                                 | npression/Maximum                       |                       |                                              |              |                              |                    |                     |                        |                   |                                                                    |                        |
| TOP CHORD                              | Tension<br>2-5=-120/88, 1-2=0/                     | 41 2-329/23                             |                       |                                              |              |                              |                    |                     |                        |                   |                                                                    |                        |
| BOT CHORD                              | 4-5=0/0                                            | -1, 2 0= 25/25                          |                       |                                              |              |                              |                    |                     |                        |                   |                                                                    |                        |
| NOTES                                  |                                                    |                                         |                       |                                              |              |                              |                    |                     |                        |                   |                                                                    |                        |
|                                        | CE 7-16; Vult=130mph                               | (3-second gust)                         |                       |                                              |              |                              |                    |                     |                        |                   |                                                                    |                        |
|                                        | mph; TCDL=6.0psf; B                                |                                         | ; Cat.                |                                              |              |                              |                    |                     |                        |                   |                                                                    | 1111                   |
|                                        | Enclosed; MWFRS (er                                |                                         |                       |                                              |              |                              |                    |                     |                        |                   | W'TH C                                                             | ARO                    |
|                                        | E) zone; cantilever left<br>t and right exposed;C- |                                         |                       |                                              |              |                              |                    |                     |                        | N                 | R                                                                  |                        |
|                                        | WFRS for reactions s                               |                                         | 1                     |                                              |              |                              |                    |                     |                        | 2.5               | O FO                                                               | State View             |
|                                        | plate grip DOL=1.33                                |                                         |                       |                                              |              |                              |                    |                     |                        | 32                | 4/                                                                 | 1. 7. 7 -              |
|                                        | CE 7-16; Pr=20.0 psf (                             |                                         | 1.15                  |                                              |              |                              |                    |                     |                        |                   | :4                                                                 | 1. 2                   |
|                                        | =1.15); Pg=20.0 psf; I                             |                                         |                       |                                              |              |                              |                    |                     | -                      |                   | SE                                                                 | AL 🗄 🗄                 |
|                                        | Plate DOL=1.15); ls=<br>0.9; Cs=1.00; Ct=1.10      |                                         | -ully                 |                                              |              |                              |                    |                     | =                      | :                 | 206                                                                |                        |
|                                        | has been designed fo                               |                                         | flive                 |                                              |              |                              |                    |                     |                        |                   | 200                                                                | 11 i E                 |
|                                        | .0 psf or 2.00 times fla                           |                                         |                       |                                              |              |                              |                    |                     |                        | 1                 | N                                                                  | 1 2                    |
|                                        | non-concurrent with                                |                                         |                       |                                              |              |                              |                    |                     |                        | 30                | S.ENO.                                                             | -ERIL S                |
|                                        | s has been designed f                              |                                         | 0psf                  |                                              |              |                              |                    |                     |                        | 11                | OV GIV                                                             | EF. ST.                |
|                                        | tom chord in all areas<br>Il by 2-00-00 wide will  |                                         | om                    |                                              |              |                              |                    |                     |                        | 1                 | SEA<br>SEA<br>SEA<br>SEA<br>SEA<br>SEA<br>SEA<br>SEA<br>SEA<br>SEA | ALIMIN                 |
|                                        | any other members.                                 | in between the bott                     | UIII                  |                                              |              |                              |                    |                     |                        |                   | 11111                                                              | AL<br>VEER ST.         |
|                                        | ,                                                  |                                         |                       |                                              |              |                              |                    |                     |                        |                   |                                                                    |                        |
|                                        |                                                    |                                         |                       |                                              |              |                              |                    |                     |                        |                   | AD                                                                 | FILZ 3 2025            |

April 23,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

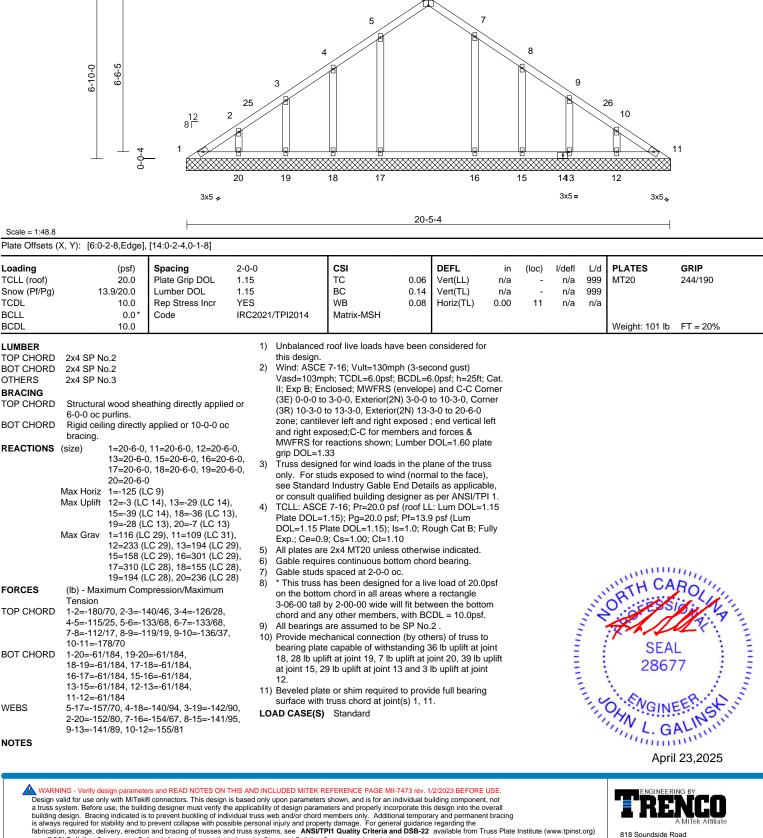
| Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |
|----------|-------|------------|-----|-----|----------------------------------|-----------|
| 25040187 | V1    | Valley     | 1   | 1   | Job Reference (optional)         | 172941946 |

3x5: 6

10-2-10

10-2-10

Carter Components (Sanford, NC), Sanford, NC - 27332,

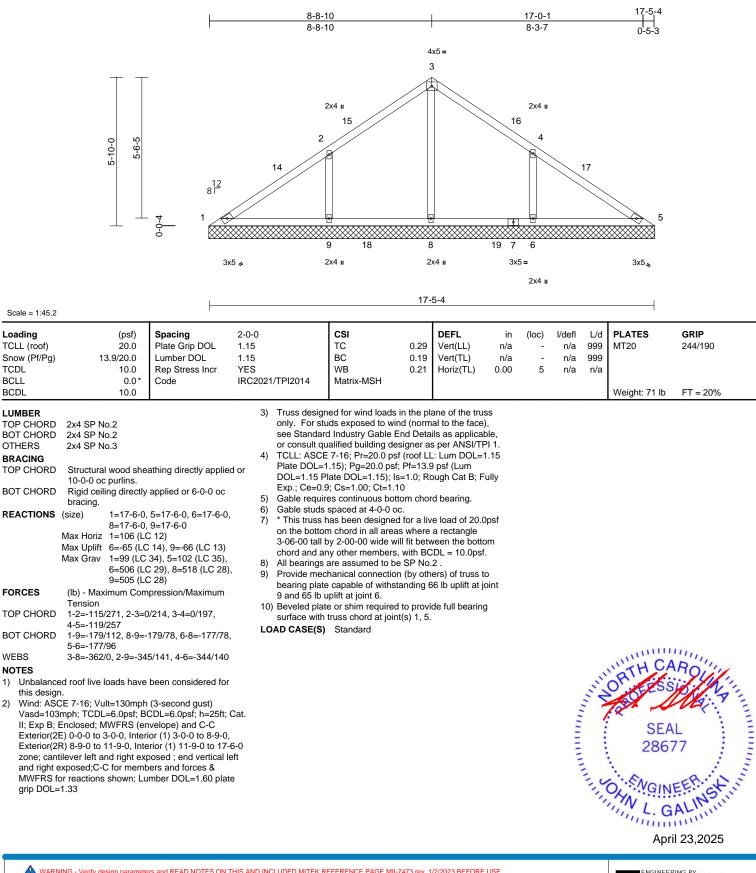

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:34 ID:gSGkzNG7oFYjU88zO2ePypzODoq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

20-0-1

9-9-7

Page: 1

Edenton, NC 27932




and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |
|----------|-------|------------|-----|-----|----------------------------------|-----------|
| 25040187 | V2    | Valley     | 1   | 1   | Job Reference (optional)         | 172941947 |

2)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:34 ID:gSGkzNG7oFYjU88zO2ePypzODoq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



818 Soundside Road

Edenton, NC 27932

| Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof      |
|----------|-------|------------|-----|-----|---------------------------------------|
| 25040187 | V3    | Valley     | 1   | 1   | I72941948<br>Job Reference (optional) |

Loading

TCDL

BCLL

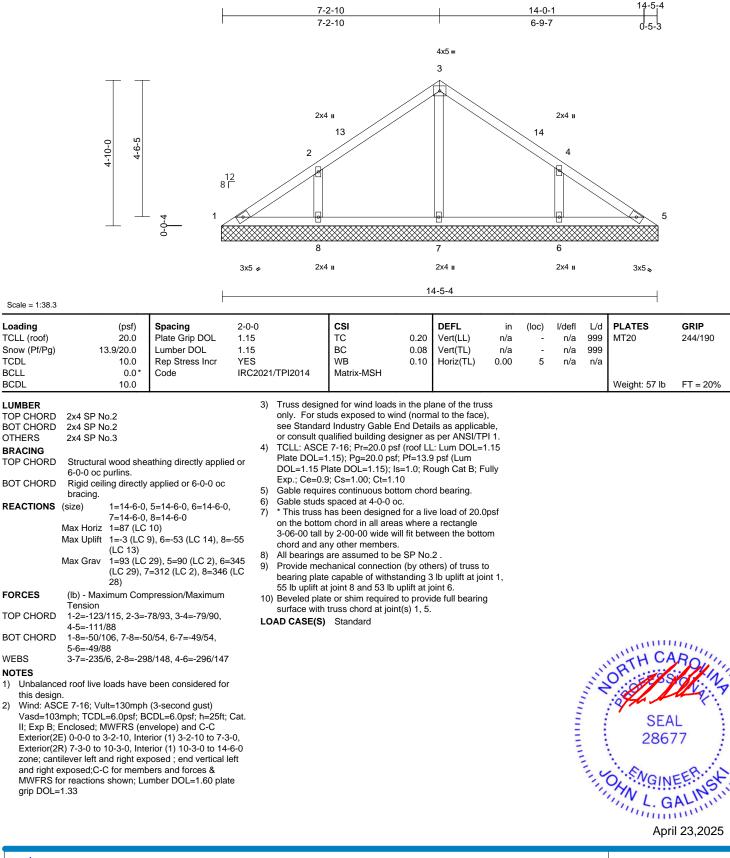
BCDL

LUMBER

OTHERS

FORCES

WEBS


NOTES

1)

2)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:34 ID:gSGkzNG7oFYjU88zO2ePypzODoq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



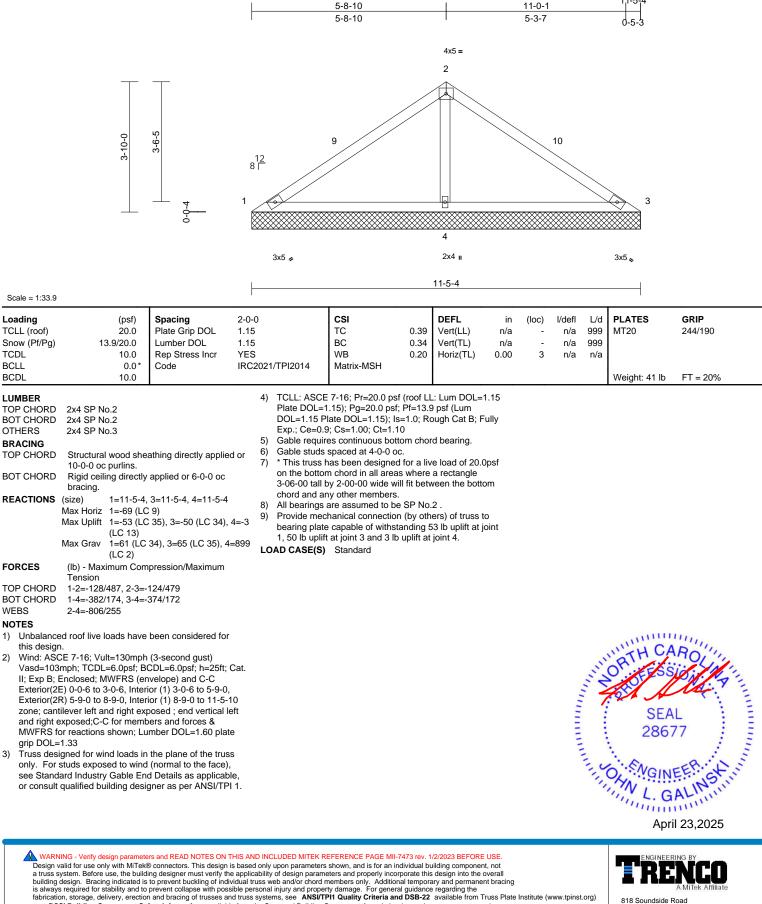
818 Soundside Road

Edenton, NC 27932

Martin Hall

| Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |
|----------|-------|------------|-----|-----|----------------------------------|-----------|
| 25040187 | V4    | Valley     | 1   | 1   | Job Reference (optional)         | 172941949 |

1)


2)

3)

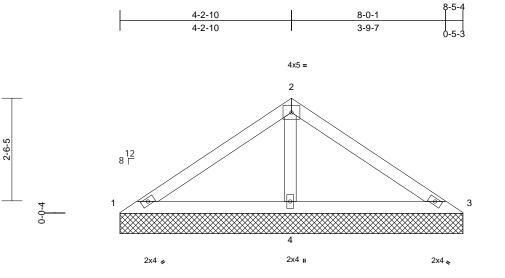
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:34 ID:gSGkzNG7oFYjU88zO2ePypzODoq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

11-5-4

Edenton, NC 27932



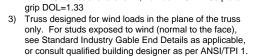
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


| Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |
|----------|-------|------------|-----|-----|----------------------------------|-----------|
| 25040187 | V5    | Valley     | 1   | 1   | Job Reference (optional)         | 172941950 |

2-10-0

## Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:34 ID:8ep6AjHIZZga6Ij9ym9eU1zODop-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f




Page: 1



8-5-4

| Scale = | 1.28.3 |  |
|---------|--------|--|

| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)                                                                            | (psf)<br>20.0<br>13.9/20.0                                                                          | Spacing<br>Plate Grip DOL<br>Lumber DOL                                                                                                                            | 2-0-0<br>1.15<br>1.15                                                                                                    | CSI<br>TC<br>BC                                                                                                                                                                                                                                                                                                           | 0.23<br>0.21                                                                                    | <b>DEFL</b><br>Vert(LL)<br>Vert(TL)                                                                                                                                                         | in<br>n/a<br>n/a        | (loc)<br>-<br>- | l/defl<br>n/a<br>n/a | L/d<br>999<br>999       | PLATES<br>MT20 | <b>GRIP</b><br>244/190  |
|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------|----------------------|-------------------------|----------------|-------------------------|
| TCDL                                                                                                              | 10.0                                                                                                | Rep Stress Incr                                                                                                                                                    | YES                                                                                                                      | WB                                                                                                                                                                                                                                                                                                                        | 0.10                                                                                            | Horiz(TL)                                                                                                                                                                                   | 0.00                    | 3               | n/a                  | n/a                     |                |                         |
| BCLL                                                                                                              | 0.0*                                                                                                | Code                                                                                                                                                               | IRC2021/TPI2014                                                                                                          | Matrix-MP                                                                                                                                                                                                                                                                                                                 |                                                                                                 |                                                                                                                                                                                             |                         |                 |                      |                         |                |                         |
| BCDL                                                                                                              | 10.0                                                                                                |                                                                                                                                                                    |                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                 |                                                                                                                                                                                             |                         |                 |                      |                         | Weight: 29 lb  | FT = 20%                |
| BOT CHORD<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS                                             | Max Horiz 1=50 (LC<br>Max Uplift 1=-19 (LC<br>Max Grav 1=65 (LC<br>(LC 2)                           | applied or 6-0-0 oc<br>3=8-5-4, 4=8-5-4<br>12)<br>2 35), 3=-16 (LC 34)<br>34), 3=69 (LC 35), 4                                                                     | d or 7) * This truss<br>on the botto<br>3:06-00 tall<br>chord and a<br>8) All bearings<br>9) Provide mer<br>bearing plat | E 7-16; Pr=20.0 psf<br>1.15); Pg=20.0 psf;<br>Plate DOL=1.15); Is-<br>9; Cs=1.00; Ct=1.11<br>res continuous bott<br>spaced at 4-0-0 oc<br>has been designed<br>m chord in all areas<br>by 2-00-00 wide wil<br>ny other members.<br>are assumed to be<br>chanical connection<br>e capable of withsta<br>uplift at joint 3. | Pf=13.9<br>=1.0; Ro<br>om chor<br>c<br>for a liv<br>s where<br>Il fit betw<br>SP No.<br>(by oth | <ul> <li>a) psf (Lum</li> <li>b) ugh Cat B; F</li> <li>c) d bearing.</li> <li>c) load of 20.0</li> <li>a) rectangle</li> <li>veen the botto</li> <li>2.</li> <li>ers) of truss t</li> </ul> | ully<br>Opsf<br>om<br>o |                 |                      |                         |                |                         |
| FORCES                                                                                                            | (lb) - Maximum Corr<br>Tension                                                                      | pression/Maximum                                                                                                                                                   |                                                                                                                          | Otandara                                                                                                                                                                                                                                                                                                                  |                                                                                                 |                                                                                                                                                                                             |                         |                 |                      |                         |                |                         |
| TOP CHORD                                                                                                         | 1-2=-105/311, 2-3=-                                                                                 | 102/304                                                                                                                                                            |                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                 |                                                                                                                                                                                             |                         |                 |                      |                         |                |                         |
| BOT CHORD                                                                                                         | 1-4=-265/157, 3-4=-                                                                                 |                                                                                                                                                                    |                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                 |                                                                                                                                                                                             |                         |                 |                      |                         |                |                         |
| WEBS                                                                                                              | 2-4=-519/202                                                                                        |                                                                                                                                                                    |                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                 |                                                                                                                                                                                             |                         |                 |                      |                         |                |                         |
| NOTES                                                                                                             |                                                                                                     |                                                                                                                                                                    |                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                 |                                                                                                                                                                                             |                         |                 |                      |                         |                |                         |
| 1) Unbalance                                                                                                      | d roof live loads have                                                                              | been considered for                                                                                                                                                |                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                 |                                                                                                                                                                                             |                         |                 |                      |                         |                |                         |
| this design.                                                                                                      |                                                                                                     |                                                                                                                                                                    |                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                 |                                                                                                                                                                                             |                         |                 |                      |                         | minin          | 1111.                   |
| Vasd=103r<br>II; Exp B; E<br>Exterior(2E<br>Exterior(2R<br>zone; cantil<br>and right ex<br>MWFRS fo<br>grip DOL=1 |                                                                                                     | CDL=6.0psf; h=25ft;<br>hvelope) and C-C<br>ior (1) 3-0-6 to 4-3-0,<br>ior (1) 7-6-7 to 8-5-1<br>posed ; end vertical I<br>bers and forces &<br>imber DOL=1.60 plat | ,<br>0<br>eft<br>ie                                                                                                      |                                                                                                                                                                                                                                                                                                                           |                                                                                                 |                                                                                                                                                                                             |                         |                 |                      | Vin                     | SEA<br>2867    | ROJANA<br>NA<br>L<br>77 |
| only. For s                                                                                                       | gned for wind loads in<br>studs exposed to wind<br>ard Industry Gable En<br>qualified building desi | l (normal to the face)<br>d Details as applicab                                                                                                                    | ,<br>ile,                                                                                                                |                                                                                                                                                                                                                                                                                                                           |                                                                                                 |                                                                                                                                                                                             |                         |                 |                      | and and a second second | OLYN L. G      | EEP. St.                |





April 23,2025

L. GA mmm

| Job      | Truss | Truss Type | Qty | Ply | 18 Eagle Creek - Edisto B - Roof |           |
|----------|-------|------------|-----|-----|----------------------------------|-----------|
| 25040187 | V6    | Valley     | 1   | 1   | Job Reference (optional)         | 172941951 |

2-8-10

2-8-10

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:34 ID:8ep6AjHIZZga6Ij9ym9eU1zODop-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4x5 =

2

5-0-1

2-3-7

5-5-4

3

2x4 💊



þ 1 0-0-4 4 2x4 II 2x4 🍫 5-5-4

1-6-5

1-10-0

12 8 Г

Scale = 1:24.3

| Loading<br>TCLL (roof) | (psf)<br>20.0                                    | Spacing<br>Plate Grip DOL | 2-0-0<br>1.15                  | CSI<br>TC                                    | 0.08       | DEFL<br>Vert(LL) | in<br>n/a | (loc) | l/defl<br>n/a | L/d<br>999 | PLATES<br>MT20         | <b>GRIP</b><br>244/190 |
|------------------------|--------------------------------------------------|---------------------------|--------------------------------|----------------------------------------------|------------|------------------|-----------|-------|---------------|------------|------------------------|------------------------|
| Snow (Pf/Pg)           | 13.9/20.0                                        | Lumber DOL                | 1.15                           | BC                                           | 0.00       | Vert(TL)         | n/a       | _     | n/a           | 999        | 101120                 | 244/130                |
| TCDL                   | 10.0/20.0                                        | Rep Stress Incr           | YES                            | WB                                           | 0.00       | Horiz(TL)        | 0.00      | 3     | n/a           | n/a        |                        |                        |
| BCLL                   | 0.0*                                             | Code                      | IRC2021/TPI2014                | Matrix-MP                                    |            |                  |           |       |               |            |                        |                        |
| BCDL                   | 10.0                                             | 1                         |                                |                                              |            |                  |           |       |               |            | Weight: 18 lb          | FT = 20%               |
| LUMBER                 |                                                  |                           |                                | ids spaced at 4-0-0                          |            |                  |           |       |               |            |                        |                        |
| TOP CHORD              | 2x4 SP No.2                                      |                           | ,                              | ss has been designe                          |            |                  | Opsf      |       |               |            |                        |                        |
| BOT CHORD<br>OTHERS    | 2x4 SP No.2<br>2x4 SP No.3                       |                           |                                | ttom chord in all are<br>all by 2-00-00 wide |            | 0                | ന         |       |               |            |                        |                        |
| BRACING                | 214 37 110.3                                     |                           |                                | d any other member                           |            | veen the bolt    | 5111      |       |               |            |                        |                        |
| TOP CHORD              | Structural wood she                              | athing directly appli     |                                | gs are assumed to I                          |            | 2.               |           |       |               |            |                        |                        |
|                        | 5-5-4 oc purlins.                                |                           | <ol><li>9) Provide ı</li></ol> | nechanical connection                        |            |                  |           |       |               |            |                        |                        |
| BOT CHORD              | Rigid ceiling directly<br>bracing.               | applied or 6-0-0 oc       | bearing p                      | late capable of with                         | standing 2 | lb uplift at jo  | int 3.    |       |               |            |                        |                        |
| REACTIONS              | 0                                                | 3=5-5-4, 4=5-5-4          | LOAD CASE                      | (S) Standard                                 |            |                  |           |       |               |            |                        |                        |
|                        | Max Horiz 1=-31 (LC                              | ,                         |                                | . ,                                          |            |                  |           |       |               |            |                        |                        |
|                        | Max Uplift 3=-2 (LC                              |                           |                                |                                              |            |                  |           |       |               |            |                        |                        |
|                        | Max Grav 1=64 (LC                                | 34), 3=67 (LC 35),        | 4=332                          |                                              |            |                  |           |       |               |            |                        |                        |
|                        | (LC 2)                                           |                           |                                |                                              |            |                  |           |       |               |            |                        |                        |
| FORCES                 | (lb) - Maximum Con                               | pression/Maximum          |                                |                                              |            |                  |           |       |               |            |                        |                        |
| TOP CHORD              | Tension<br>1-2=-60/129, 2-3=-6                   | 6/122                     |                                |                                              |            |                  |           |       |               |            |                        |                        |
| BOT CHORD              | 1-2=-00/129, 2-3=-0                              |                           |                                |                                              |            |                  |           |       |               |            |                        |                        |
| WEBS                   | 2-4=-248/109                                     | 11/00                     |                                |                                              |            |                  |           |       |               |            |                        |                        |
| NOTES                  |                                                  |                           |                                |                                              |            |                  |           |       |               |            |                        |                        |
| 1) Unbalance           | ed roof live loads have                          | been considered for       | or                             |                                              |            |                  |           |       |               |            |                        |                        |
| this design            |                                                  |                           |                                |                                              |            |                  |           |       |               |            | MILLIN                 | 11111                  |
|                        | CE 7-16; Vult=130mph                             |                           | _                              |                                              |            |                  |           |       |               |            | W'TH CA                | ROUL                   |
|                        | mph; TCDL=6.0psf; B<br>Enclosed; MWFRS (er       |                           | ; Cat.                         |                                              |            |                  |           |       |               | S          | Rint                   | . Aller                |
|                        | E) zone; cantilever left                         |                           | . end                          |                                              |            |                  |           |       |               | 20         | C APS                  | Ki Vit                 |
|                        | t and right exposed;C                            |                           |                                |                                              |            |                  |           |       |               | 5          | AL A                   | 1 7: 1 -               |
|                        | IWFRS for reactions s                            | hown; Lumber              |                                |                                              |            |                  |           |       |               |            | 14                     | 1 N N E                |
|                        | plate grip DOL=1.33                              |                           |                                |                                              |            |                  |           |       | =             |            | SEA                    |                        |
|                        | igned for wind loads ir<br>studs exposed to wind |                           |                                |                                              |            |                  |           |       | =             |            | 286                    | 77 : 5                 |
|                        | ard Industry Gable En                            |                           |                                |                                              |            |                  |           |       |               |            | : 200                  | 11 E E                 |
|                        | qualified building desi                          |                           |                                |                                              |            |                  |           |       |               | -          | N                      | 1 3                    |
|                        | CE 7-16; Pr=20.0 psf (                           |                           | 1.15                           |                                              |            |                  |           |       |               | 20         | OR TH CA<br>SEA<br>286 | FER. LS                |
|                        | =1.15); Pg=20.0 psf; I                           |                           |                                |                                              |            |                  |           |       |               | 11         | 4 GIN                  | S.S.                   |
|                        | Plate DOL=1.15);                                 |                           | -uiiy                          |                                              |            |                  |           |       |               | -          |                        | ALIM                   |
|                        | uires continuous botto                           |                           |                                |                                              |            |                  |           |       |               |            | 111111                 | 11111                  |
| -,                     |                                                  |                           |                                |                                              |            |                  |           |       |               |            |                        |                        |

April 23,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

