

RE: 2504-5093-A - The Farm at Neills Creek Lot	00.0184 Roof Trenco 818 Soundside Rd
Project Customer: DRB Raleigh Project Name: T	be Farm at Neills Creek Lot 00 0184
Lot/Block: Lot 00.0184 Subdivi Model: Cooper 3	ision: The Farm at Neills Creek
Address: 102 Appleseed Dr	
City: Lillington State:	NC
General Truss Engineering Criteria & Design Loa	ads (Individual Truss Design
Drawings Show Special Loading Conditions):	
Design Code: IRC2021/TPI2014	Design Program: MiTek 20/20 8.8
Wind Code: ASCE 7-16	Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16
Wind Speed: 120 mph	Floor Load: N/A psf
Roof Load: 40.0 psf	1
Mean Roof Height (feet): 25	Exposure Category: B

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters

My license renewal date for the state of North Carolina is December 31, 2025 **IMPORTANT NOTE:** The seal on these truss component designs is a conference that the engineer named is licensed in the iurisdiction (a) is a conference that the engineer named is licensed in the iurisdiction (a) is a conference that the engineer named is licensed in the iurisdiction (a) is a conference that the engineer named is licensed in the iurisdiction (a) is a conference that the engineer named is licensed in the iurisdiction (a) is a conference that the engineer named is licensed in the iurisdiction (a) is a conference that the engineer named is licensed in the iurisdiction (a) is a conference that the engineer named is licensed in the iurisdiction (a) is a conference that the engineer named is licensed in the iurisdiction (a) is a conference that the engineer named is licensed in the iurisdiction (a) is a conference that the engineer named is licensed in the iurisdiction (a) is a conference that the engineer named is licensed in the iurisdiction (a) is a conference that the engineer name (b) is a conference designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Galinski, John

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0184 Roof	
2504-5093-A	A1T	Piggyback Base	2	1	Job Reference (optional)	172666429

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Thu Apr 10 08:29:04

Page: 1

April 11,2025

818 Soundside Road Edenton, NC 27932

Structural, LLC, Thurmont, MD - 21788.

Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 20.0 20.4/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.46 0.96 0.91	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.13 0.09	(loc) 23-24 23-24 15	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190	
BCLL BCDL	0.0* 10.0	Code	IRC202	1/TPI2014	Matrix-AS		Wind(LL)	0.03	26-27	>999	240	Weight: 472 lb	FT = 20%	
LUMBER TOP CHORD 3OT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	2x6 SP No.2 2x6 SP No.2 *Excep 22-21:2x4 SP No.3 2x4 SP No.3 *Excep No.2 Left 2x4 SP No.3 1 Structural wood she except end verticals, (6-0-0 max.): 8-12. Rigid ceiling directly	t* 28-4:2x4 SP No.2, t* 19-12,20-11:2x4 S I-6-0 athing directly applie , and 2-0-0 oc purlins applied.	W SP 1) d, s 2)	EBS 8 1 1 9 7 4 DTES Unbalanced 1 this design. Wind: ASCE Vasd=95mph II; Exp B; End	3-23=0/915, 8-22= 2-19=-945/10, 12 3-16=-184/180, 1 3-20=-1203/44, 11 7-23=-1053/62, 5-2 1-26=-373/49, 20-2 roof live loads hav 7-16; Vult=120mp 1; TCDL=6.0psf; B closed; MWFRS (i	-1479/52 -17=0/66 4-16=0/7 -20=-163 26=0/404 22=-942/ re been c wh (3-sec CDL=6.0 envelope	2, 11-19=0/10 88, 13-17=-50 753, 19/20, 7-24=0 19, 5-24=-716/3 99, 9-22=-17/ sonsidered for ond gust) 0psf; h=25ft; C 0) and C-C	73, 6/74, /585, 39, 895 Cat.	11) One recc UPL doe 12) This loac pan Bott 13) This stru cho the	H2.5A bommend IFT at jt s not coo truss ha l of 250. els and a com Cho truss de ctural we rd and 1 bottom c	Simpso ed to c (s) 15. nsider as bee Olb live at all p rd, nor esign r cod sh /2" gyp chord.	on Strong-Tie cor connect truss to b This connection lateral forces. n designed for a e and 3.0lb dead anel points along inconcurrent with a equires that a mi eathing be applie boum sheetrock b	inectors earing walls dur is for uplift only moving concent ocated at all mi the Top Chord any other live lo nimum of 7/16" id directly to the e applied direct	e to ' and id i and oads. ≥ top tly to
WEBS WEBS REACTIONS	1 Row at midpt 2 Rows at 1/3 pts (size) 2=0-3-8, 1 Max Horiz 2=214 (LC Max Grav 2=773 (LC 20=2974 (8-22, 12-19, 13-17, 5 7-23 11-20 5=0-3-8, 20=0-3-8 2 15) 2 57), 15=1021 (LC 5 LC 3)	9-20, 59),	Exterior(2E) - Exterior(2R) 37-7-8, Exter 44-9-13 to 50 exposed ; en members and Lumber DOL	1-0-0 to 4-1-0, Int 18-4-8 to 25-6-13, ior(2R) 37-7-8 to 0-10-4 zone; cantil d vertical left and d forces & MWFR =1.60 plate grip D	terior (1) Interior 44-9-13, ever left right exp S for rea OL=1.60	4-1-0 to 18-4 (1) 25-6-13 to Interior (1) and right osed;C-C for ctions shown;	-8,	14) Gra or th bott LOAD C	phical po ne orient om chor CASE(S)	urlin re ation c d. Star	presentation doe f the purlin along ndard	s not depict the the top and/or	size
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=0/41, 2-4=-1051 5-7=-726/69, 7-8=-6: 9-11=0/888, 11-12=- 12-13=-670/164, 13- 14-15=-940/35	/30, 4-5=-1330/0, 5/405, 8-9=-2/719, 263/229, 14=-921/84,	3) 4) 5)	TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced s design. This truss has	7-16; Pr=20.0 psf .15); Pg=20.0 psf; DL = 1.15); Is=1.0 ; Cs=1.00; Ct=1.1 snow loads have b s been designed f	f (roof LL ; Pf=20.4 ; Rough 0, Lu=50 peen con	: Lum DOL=1 psf (Lum DO Cat B; Partial)-0-0 usidered for th er of min roof	.15 L = ly is			And	ORTH CA	ROJUL	
BOT CHORD	2-28=109/748, 27-2 26-27=-65/1457, 24- 23-24=-17/560, 22-2 21-22=-169/62, 20-2 19-20=-211/243, 17- 15-16=-39/65	8=-20/383, 4-27=0/3 26=-17/1198, 3=-282/147, 1=-76/6, 19=0/494, 16-17=0/7	365, 6) 7) 715, 8) 9)	load of 12.0 p overhangs no Provide adeq Plates check about its cent This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an All bearings a	sst or 2.00 times fi pon-concurrent with juate drainage to ju ed for a plus or mi ter. s been designed fi d nonconcurrent as been designec n chord in all area y 2-00-00 wide wi y other members, are assumed to be	at roof lo other liv orevent v inus 5 de or a 10.0 with any l for a liv s where Il fit betw with BC	ad of 15.4 ps re loads. vater ponding gree rotation 0 psf bottom other live load e load of 20.0 a rectangle reen the botto DL = 10.0psf. 2	t on Is. psf m		THILLIN'S	S. S	SEA 2867	FR. St.	AMULTINITY

10) All bearings are assumed to be SP No.2 .

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0184 Roof	
2504-5093-A	A1A	Piggyback Base	1	1	Job Reference (optional)	172666430

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Thu Apr 10 08:29:03 ID:bFWe8TNxnA2q4vi43k0QCqyAQoy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-1-0-0 4-10-14 11-9-2 18-4-8 24-1-4 30-9-8 37-7-8 44-2-14 51-0-0 + 4-10-14 6-10-4 6-7-6 5-8-12 6-8-4 6-10-0 6-7-6 6-9-2 1-0-0 51-0-0	
$46=$ $4x4=$ $4x4=$ 33 7^{12} 34 $4x6=$ 31^{32} $4x6=$ $4x6=$ $4x6=$ $4x4=$ $4x6=$	ix6 * 13 0-11-6 14 3x4 II
$\frac{4-10-14}{4-10-14} + \frac{11-9-2}{6-10-4} + \frac{18-6-4}{6-9-2} + \frac{24-1-4}{5-7-0} + \frac{30-9-8}{6-8-4} + \frac{37-5-12}{6-8-4} + \frac{44-2-14}{6-9-2} + \frac{51-0-0}{6-9-2}$ Plate Offsets (X, Y): [11:0-5-4.0-3-0]	
Loading (psf) Spacing 2-0-0 CSI DEFL in (loc) I/def I/d PLATES O TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.40 Vert(LL) -0.07 23-24 >999 360 MT20 2 Snow (Pf/Pg) 20.4/20.0 Lumber DOL 1.15 BC 0.48 Vert(CT) -0.11 23-24 >999 240 MT20 2 ScLL 0.0* Code IRC2021/TPI2014 WB 0.87 Wind(LL) 0.02 23-24 >999 240 Weight: 455 lb F	RIP 44/190 T = 20%
 LUMBER TOP CHORD 2x6 SP No.2 Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0pst; BCJL=6.0pst; h=25ft cast. It; Exp B; cholosed; MW/FRS (ervelope) and C-C Exterior(ZE) -1-0-0 to 4-1-0. Interior (1) 2-16-6-13 to 37-7-8; Exterior(ZE) -1-0-0 to 4-1-0. Interior (1) 2-6-6-13 to 37-7-8; Exterior(ZE) -1-0-0 to 4-1-0. Interior (1) 2-6-6-13 to 37-7-8; Exterior(ZE) -1-0-0 to 4-1-0. Interior (1) 2-6-13 to 37-7-8; Exterior(ZE) -1-0-0 to 4-1-0. Interior (1) 44-9-13 to 50-104 2 zone: cantilever left and right exopsed : and vertical left and right exopsed; C-C for members and forces & MW/FRS for reactions shown; Lumber DOL=-1.60 TCLL: ASCE 7-16; P-220.0 psf; Pol-20.4 psf (Lum DOL=-1.6) TCL: LSCE 7-16; P-220.0 psf; Pol-20.4 psf (Lum DOL=-1.6) TCL: LSCE 7-16; P-220.0 psf; Pol-20.4 psf (Lum DOL=-1.6) TCL: LSCE 7-16; P-220.0 psf; Pol-20.4 psf (Lum DOL=-1.6) TCL: LSCE 7-16; P-220.0 psf; Pol-20.4 psf (Lum DOL=-1.6) TCL: LSCE 7-16; P-220.0 psf; Pol-20.4 psf (Lum DOL=-1.6) TCL: LSCE 7-16; P-220.0 psf; Pol-20.4 psf (Lum DOL=-1.6) This truss has been designed for ratio load of 15.4 psf on overhangs non-concurrent with any other live loads. Provide adequate drainage to prevent water ponding. 12-13-F1028(1, 19-21-38/17), 18-13-5-0089(1, 19-21-38/17), 18-13-5-0089(1, 19-21-6-2007), 42-4-01005, 8-21=-34/1252, 10-19-1405/3 WEES T-21=-32578; 11-18-00601, 12-15-244/135, 12-13-5-0089, 11-18-00601, 12-15-244/135, 8-21=-34/1252, 10-19-2405/3, 10 All bearings are assume to bot 20.0psf. All bearings are assume to bot 20.0psf. 	ot depict the size a top and/or

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0184 Roof	
2504-5093-A	A3	Attic	6	1	Job Reference (optional)	172666431

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Thu Apr 10 08:29:08 ID:eW?e6daPLXKyNUOUDcC2wYyATYH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

L	6-0-2	12-10-6	18-4-8	26-5-4	29-2-4	37-7-8	43-8-8
	6-0-2	6-10-4	5-6-2	8-0-12 43-8-8	2-9-0	8-5-4	6-1-0

Scale = 1:113.9

Plate Offsets (X, Y): [6:0-4-0,0-1-11], [10:0-5-8,0-2-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.77 0.55 0.77	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.20 -0.48 -0.05 0.03	(loc) 20-21 13-16 1 23-24	l/defl >999 >427 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18AHS MT20HS Weight: 350 lb	GRIP 244/190 186/179 187/143 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS JOINTS REACTIONS	2x4 SP SS *Except* 2x4 SP SS *Except* 2x4 SP No.3 *Except 7-21,8-18,10-13,25-2 Left 2x6 SP No.2 1 Structural wood shere except end verticals, (6-0-0 max.): 6-10. Rigid ceiling directly 1 Row at midpt 1 Brace at Jt(s): 25, 26 (size) 1=0-3-8, 1 Max Horiz 1=248 (LC	4-6,10-11:2x4 SP No.2 17-14:2x4 SP No.2 t* 26:2x4 SP No.2 1-6-0 athing directly applied, and 2-0-0 oc purlins applied. 5-21, 6-21, 7-20, 8-2 25-26, 11-12, 10-25 12=0-3-8, 20=0-3-8 C 15)	1) 2.2 2) d, 0, 3) 4)	Unbalanced i this design. Wind: ASCE Vasd=95mph II; Exp B; End Exterior(2E) (Exterior(2R)) 37-7-8, Exter left and right exposed;C-C reactions sho DOL=1.60 TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced s	roof live loads have 7-16; Vult=120mpi ; TCDL=6.0psf; Bc closed; MWFRS (e) 0-0 to 4-44, Inte 18-4-8 to 24-6-7, II ior(2E) 37-7-8 to 4 exposed ; end veri for members and wm; Lumber DOL= 7-16; Pr=20.0 psf; 15); Pg=20.0 psf; 15); Pg=20.0 psf; 0L = 1.15); Is=1.0; ; Cs=1.00; Ct=1.10 snow loads have b	e been o h (3-sec CDL=6.0 nvelope rior (1) hterior (3-6-12 : ical left forces & 1.60 pla (roof LL Pf=20.4 Rough 0, Lu=50 een cor	considered for ond gust))psf; h=25ft; ()) and C-C 4-4-4 to 18-4- 1) 24-6-7 to zone; cantilev and right & MWFRS for ate grip :: Lum DOL=1 Psf (Lum DOL=1 Psf (Lum DOL=1)-0-0 isidered for th	r Cat. 8, /er 1.15 DL = Ily	14) This stru cho the 15) Gra or tf bott 16) Attic LOAD (truss d ctural w rd and 1 bottom c phical p te orient om chor c room c CASE(S)	esign i bod sh /2" gyţ chord. urlin re ation o d. hecke i Sta	requires that a mi eathing be applie bourn sheetrock b opresentation doe of the purlin along d for L/360 deflec ndard	nimum of 7/16 d directly to th e applied direc s not depict the the top and/or tion.	" e top xtly to e size r
FORCES TOP CHORD BOT CHORD	Max Grav 1=1370 (L 20=2202 ((lb) - Maximum Com Tension 1-3=-2124/170, 3-5= 6-7=-978/81, 7-8=-4 10-11=-808/0, 11-12 1-24=-249/1868, 23-	LC 57), 12=1229 (LC (LC 50) pression/Maximum 1769/16, 5-6=-1234, 16/107, 8-10=-634/17 2=-1234/0 -24=-122/1868,	59), 5) 6) 7) 78, 8) 7, 9) 10]	250.0lb AC u from left end, Provide adeq All plates are The Fabricati Plates check about its cent) This truss ha	nit load placed on supported at two uate drainage to p MT20 plates unle: on Tolerance at jo ed for a plus or min ter. s been designed for	the bott points, f revent v ss other int 10 = nus 5 de pr a 10.0	om chord, 33 5-0-0 apart. water ponding wise indicated 8% egree rotation 0 psf bottom	-4-0 g. d.			A. A	OR FESS	ROUT	
WEBS NOTES	21-23=-107/1527, 2(18-20=0/636, 16-18- 12-13=-109/117 5-21=-925/60, 6-21= 7-20=-1165/72, 8-20 17-25=0/795, 8-25=(14-26=-184/206, 10- 11-13=0/944, 15-17= 25-26=-1/12, 3-24=0 5-23=0/477, 15-16=(D-21=-37/410, =0/630, 13-16=0/630, =-99/266, 7-21=-65/10 D=-1108/0, 17-18=0/7: D/801, 13-14=-234/17 -26=-184/206, =0/11, 14-15=0/11, D/323, 3-23=-416/62, D/163, 10-25=-30/0	11) 042, 27, 22, 12 13	chord live loa * This truss h on the bottom 3-06-00 tall b chord and an) All bearings a) This truss ha load of 250.0 panels and a Bottom Chord	d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide wil y other members, are assumed to be s been designed fo lb live and 3.0lb de t all panel points a d, nonconcurrent w	vith any for a liv s where I fit betw with BC SP SS or a move ad location long the vith any	other live load e load of 20.0 a rectangle veen the botto DL = 10.0psf. ving concentra ted at all mid Top Chord a other live load	ds. Dpsf ated ds.			S. S	SEA 2867	ER.St	Manninnin 1997

April 11,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0184 Roof	
2504-5093-A	A3G	Piggyback Base Supported Gable	1	1	Job Reference (optional)	172666432

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Thu Apr 10 08:29:09 ID:Jj4xyVLkTXkyNltxh_nWisyAQ0e-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:103

Plate Offsets (X, Y): [12:0-3-0,0-1-12], [23:0-3-0,0-1-12], [28:Edge,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 20.0 20.4/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.65 0.25 0.31	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 28	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC2021/TPI2014	Matrix-AS							Weight: 425 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she except end verticals (6-0-0 max.): 12-23. Rigid ceiling directly 1 Row at midpt (size) 28=43-6- 30=43-6- 32=43-6- 34=43-6-	athing directly applied , and 2-0-0 oc purlins applied. 27-28, 18-36, 16-38, 15-39, 14-40, 13-41, 11-42, 10-43, 9-45, 19-35, 20-34, 21-33, 22-32, 24-31, 25-30, 26-29 12, 29=43-6-12, 12, 31=43-6-12, 12, 33=43-6-12, 12, 35=43-6-12, 12, 35=43-6-12,	, FORCES TOP CHORD	Ax Grav 28=275 (159), 30- (LC 157), 33=333 (154), 35- (LC 152), 39=333 (149), 41- (LC 147), 45=333 (144), 47- (LC 142), 50=332 (144), 47- (LC 142), 50=332 (149), 52- (Ib) - Maximum Con Tension 1-52=-267/162, 1-2: 3-4=-245/224, 4-5= 6-8=-164/153, 8-9= 10-11=-193/265, 11 12-13=-169/246, 13	LC 160 =335 (L ; 32=33 LC 155 =333 (L ; 38=33 LC 150 =333 (L ; 43=33 LC 145 =333 (L ; 49=33 LC 140 =282 (L npressi =-360/3 =203/19 =156/18 -12=-11 :14=-11), 29=326 (LC 2 158), 31=33 3 (LC 156),), 34=333 (LC C 153), 36=33 3 (LC 151),), 40=333 (LC C 148), 42=33 3 (LC 146),), 46=333 (LC C 143), 48=33 3 (LC 141),), 51=339 (LC C 138) on/Maximum 100, 2-3=-275/ 199, 5-6=-173/1 129, 9-10=-167, 69/246.	2 332 333 333 333 2 2 2 333 2 2 2 33 2 2 2 33 2 2 2 33 2 2 33 2 2 33 2 33 2 2 33 33	BOT CH	HORD	51-52 49-50 47-48 45-46 42-43 33-34 40-41 38-39 35-36 15-39 13-41 10-43 6-47= 19-35 21-33 24-31 24-31		I = 20% $I = -113/148,$ $J = -264/35,$ $J = -267/37,$ $J = -264/35,$ $J = -264/35,$ $J = -264/35,$ $J = -264/31,$ $J = -270/73,$
	36=43-6- 39=43-6- 41=43-6- 43=43-6- 46=43-6- 46=43-6- 50=43-6- 52=43-6- 52=43-6- 52=43-6- 52=43-6- 52=252 (L Max Uplift 28=-21 (L 30=-17 (L 41=-1 (LC 43=-15 (L 48=-9 (LC 51=-125 (12, 38=43-6-12, 12, 40=43-6-12, 12, 42=43-6-12, 12, 45=43-6-12, 12, 47=43-6-12, 12, 45=43-6-12, 12, 51=43-6-12, 12, 51=43-6-12, 13, 42=-13 (LC 16), 14, 51=-123 (LC 16),),), 14)	14-15=-169/246, 15 16-18=-169/246, 18 19-20=-169/246, 20 21-22=-169/246, 22 23-24=-169/228, 24 25-26=-161/218, 26 27-28=-256/207	-16=-11 -19=-11 -21=-11 -23=-11 -25=-11	39/246, 39/246, 39/246, 39/246, 39/265, 32/238,		NOTES		and a state of the	SEA 286	EER.St.

April 11,2025

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0184 Roof	
2504-5093-A	A3G	Piggyback Base Supported Gable	1	1	I72666 Job Reference (optional)	6432

Structural LLC Thurmont MD - 21788

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner 2) (3E) 0-1-12 to 4-6-0, Exterior(2N) 4-6-0 to 18-4-8, Corner(3R) 18-4-8 to 22-8-12, Exterior(2N) 22-8-12 to 37-7-8, Corner(3R) 37-7-8 to 42-0-0, Exterior(2N) 42-0-0 to 43-5-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- Unbalanced snow loads have been considered for this 5) desian.
- 6) Provide adequate drainage to prevent water ponding. 7) Plates checked for a plus or minus 5 degree rotation
- about its center.
- 8) Gable requires continuous bottom chord bearing. Truss to be fully sheathed from one face or securely 9)
- braced against lateral movement (i.e. diagonal web). 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) All bearings are assumed to be SP No.2.
- 14) N/A
- 15) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 16) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 17) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org)

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Run: 8.83 S. Mar 20 2025 Print: 8.830 S. Mar 20 2025 MiTek Industries. Inc. Thu Apr 10 08:29:09 ID:Jj4xyVLkTXkyNltxh_nWisyAQ0e-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0184 Roof
2504-5093-A	A2A	Piggyback Base	2	1	Job Reference (optional)

Scale = 1:95.8

Plate Offsets (X, Y): [2:0-2-14,0-2-0], [7:0-6-0,0-2-4], [9:Edge,0-1-8], [13:0-2-8,0-2-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.83 0.82 0.87	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.24 -0.34 0.14 0.07	(loc) 10-11 10-11 10 10-11	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18AHS MT20HS Weight: 262 lb	GRIP 244/190 186/179 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 *Except 2x4 SP SS *Except* 19-3,13-12:2x4 SP N 2x4 SP No.3 *Except No.2, 10-8:2x4 SP S Structural wood shea except end verticals, (5-4-5 max.): 7-9.	t* 7-9:2x4 SP SS 20-19:2x4 SP No.2, Io.3 t* 9-10,2-18:2x4 SP S athing directly appliec, and 2-0-0 oc purlins	2) J, 3)	Wind: ASCE Vasd=95mph II; Exp B; End Exterior(2E) - 18-4-8, Exter to 33-10-12 z vertical left ar forces & MW DOL=1.60 pla TCLL: ASCE	7-16; Vult=120mph ; TCDL=6.0psf; BC closed; MWFRS (el 1-0-0 to 2-1-12, Ini ior(2R) 18-4-8 to 2: oone; cantilever left nd right exposed;C FRS for reactions s ate grip DOL=1.60 7-16; Pr=20.0 psf	n (3-sec CDL=6.0 nvelope terior (1 3-2-4, li and rig -C for n shown; (roof LL	ond gust) Dpsf; h=25ft; () and C-C) 2-1-12 to hterior (1) 23- ht exposed ; hembers and Lumber .: Lum DOL=1	Cat. 2-4 end	14) Gra or th bott LOAD C	phical prine orient om chor CASE(S)	urlin re ation c d. Star	presentation does f the purlin along ndard	anot depict the size the top and/or
BOT CHORD WEBS WEBS REACTIONS	Rigid ceiling directly 1 Row at midpt 2 Rows at 1/3 pts (size) 10=0-3-8, Max Horiz 20=289 (L Max Grav 10=1692 ((Ib) - Maximum Com	applied. 9-10, 7-13, 8-11, 5-1 8-10 20=0-3-8 .C 13) LC 43), 20=1610 (LC pression/Maximum	4 4) 550) 5)	Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced s design. This truss hai load of 12.0 p overbangs no	.15); Pg=20.0 psf; DL = 1.15); Is=1.0; ; Cs=1.00; Ct=1.10 snow loads have be s been designed fo psf or 2.00 times fla pn-concurrent with	Pf=20.4 Rough), Lu=5(een cor er greate at roof lo	Post (Lum DC Cat B; Partial)-0-0 usidered for the er of min roof pad of 15.4 ps (e loads)	DL = ly lis live sf on					
TOP CHORD	Tension 1-2=0/47, 2-3=-3650 4-5=-2538/0, 5-7=-17 8-9=-160/165, 9-10=	/0, 3-4=-3218/0, 760/56, 7-8=-1310/73 -317/44, 2-20=-1651/	6) 7) 3, 8)	Provide adeq All plates are Plates checke	uate drainage to p MT20 plates unles ed for a plus or min	revent v s other nus 5 de	water ponding wise indicate egree rotation	ı. d.					
BOT CHORD	19-20=-206/365, 18- 3-18=-80/441, 17-18 16-17=-281/3039, 14 13-14=-177/1537, 12 11-12=-71/112, 10-1	19=-76/255, =-506/3606, 4-16=-215/2295, 2-13=-51/155, 1=-111/1105	9) 10)	This truss has chord live loa) * This truss h on the botton 3-06-00 tall b	s been designed fo d nonconcurrent w as been designed n chord in all areas v 2-00-00 wide will	r a 10.0 ith any for a liv where fit bety) psf bottom other live load e load of 20.0 a rectangle yeen the botto	ds. Ipsf			A.M.	ORTH CA	ROUNT
WEBS	7-14=0/988, 7-13=-6 8-13=-100/956, 8-11 8-10=-1793/19, 5-16 4-16=-813/71, 5-14= 3-17=-618/236, 2-18	26/85, 11-13=-91/11 =-62/280, =0/595, 4-17=-22/433 -1083/53, =-221/3002	13, 11) 3, 12)	chord and an) Bearings are SP SS .) This truss has load of 250.0	y other members, v assumed to be: Jo s been designed fo lb live and 3.0lb de	with BC int 20 \$ or a mov ad loca	DL = 10.0psf. P No.2 , Join ving concentra ted at all mid	t 10 ated		THE PARTY IN		SEAI 2867	7
NOTES 1) Unbalance this design	d roof live loads have	been considered for	13)	panels and a Bottom Chord This truss de structural woo chord and 1/2 the bottom ch	t all panel points all d, nonconcurrent w sign requires that a od sheathing be ap 2" gypsum sheetroo nord.	ong the ith any minim plied di ck be aj	Top Chord a other live load um of 7/16" rectly to the to oplied directly	nd ds. op to		ł		SHAN L. GI	EP LINSK

April 11,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0184 Roof				
2504-5093-A	A2G	Piggyback Base Supported Gable	1	1	Job Reference (optional)	172666434			

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Thu Apr 10 08:29:06 ID:edDe3RcDvYg7BT2hCWrvI5yATeh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

					34-0-8								
Scale = 1:88.1													
late Offsets (X, Y): [2:0-2-0,0-1-12], [13:0-2-0,0-2-5], [21:Edge,0-2-0], [22:Edge,0-2-0]													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.72	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15	BC	0.46	Vert(CT)	n/a	-	n/a	999			
TCDL	10.0	Rep Stress Incr	YES	WB	0.31	Horz(CT)	0.01	22	n/a	n/a			
BCU	0.0*	Code	IRC2021/TPI2014	Matrix-AS									

BCDL		10.0	Code	1862021/1712014	Iviauix	A3			Weight: 325 lb FT = 20%			
BCDL LUMBER TOP CHORD 2x4 SP N BOT CHORD 2x4 SP N WEBS 2x4 SP N OTHERS 2x4 SP N BRACING TOP CHORD Structura (6-0-0 m BOT CHORD Rigid cei WEBS 1 Row at REACTIONS (size)		10.0 .2 .2 .3 *Except* 21-22:2x4 SP No.2 .3 wood sheathing directly applied, d verticals, and 2-0-0 oc purlins c.): 13-21. ng directly applied. nidpt 21-22, 20-23, 19-24, 18-25, 17-26, 16-27, 15-28, 14-29, 12-30, 11-31, 10-32 22=34-0-8, 23=34-0-8, 24=34-0-{		FORCES TOP CHORD -8, -8,	Max Grav 22=284 (LC 134), 23=337 (LC 133), 24=333 (LC 132), 25=333 (LC 131), 26=333 (LC 130), 27=333 (LC 129), 28=333 (LC 128), 29=333 (LC 127), 30=332 (LC 126), 31=334 (LC 125), 32=333 (LC 124), 33=332 (LC 123), 34=333 (LC 122), 35=333 (LC 121), 36=333 (LC 120), 37=334 (LC 119), 38=330 (LC 118), 39=314 (LC 117) (lb) - Maximum Compression/Maximum Tension 2-39=-315/231, 1-2=0/47, 2-3=-525/418, 3-4=-416/340, 4-5=-390/330, 5-6=-348/304, 6-7=-309/281, 7-9=-269/258, 9-10=-229/235,				Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; C II; Exp B; Enclosed; MWFRS (envelope) and C-C Cor (3E) -1-0-0 to 2-4-14, Exterior(2N) 2-4-14 to 18-4-8, Corner(3R) 18-4-8 to 22-0-8, Exterior(2N) 22-0-8 to 33-10-12 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the trus: only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicab' or consult qualified building designer as per ANSI/TPI TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.			
	Max Horiz 3 Max Uplift 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	28=34-0-8 31=34-0-8 37=34-0-8 37=34-0-8 39=289 (L 22=-6 (LC 24=-6 (LC 29=-3 (LC 31=-14 (LI 35=-9 (LC 38=-135 (I	5, 29=34-0-8, 30=34-0 8, 32=34-0-8, 33=34-0 8, 32=34-0-8, 36=34-0 8, 38=34-0-8, 36=34-0 13), 23=-11 (LC 12), 13), 25=-1 (LC 12), 13), 30=-21 (LC 13), C 16), 32=-10 (LC 16) 16), 36=-17 (LC 16), LC 13), 39=-72 (LC 12)	-8, -8, -8, -8 BOT CHORD , , , 2) WEBS	$\begin{array}{c} 10-11=-1\\ 12-13=-1\\ 14-15=-1\\ 16-17=-1\\ 18-19=-1\\ 20-21=-1\\ 36-37=-1\\ 36-37=-1\\ 34-35=-1\\ 34-35=-1\\ 29-30=-1\\ 24-25=-1\\ 24-25=-1\\ 24-25=-1\\ 20-23=-2\\ 18-25=-2\\ 18-25=-2\\ 18-25=-2\\ 14-29=-2\\ 11-31=-2\\ 9-33=-27\\ 5-36=-28 \end{array}$	89/212, 11-12=-1 53/180, 13-14=-1 52/193, 15-16=-1 52/193, 17-18=-1 52/193, 17-18=-1 52/193, 17-28=-1 53/194, 35-36=-1 53/194, 35-36=-1 53/194, 30-31=-1 53/194, 28-29=-1 53/194, 28-29=-1 53/194, 28-29=-1 53/194, 23-24=-1 53/194, 23-24=-1 53/194 82/135, 19-24=-26 64/35, 15-28=-26 64/49, 12-30=-26 69/61, 10-32=-27 3/56, 7-34=-276/5 1/62, 4-37=-285/4	73/204, 73/204, 52/193, 52/193, 52/193, 53/194, 53/	5)	Plate DOL=1.15); Pg=20.0 ps; Pf=20.4 pst (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.0; Ct=1.10, Lu=50-0-0 Unbalanced snow loads have been considered for this design. SEAL 28677 SEAL 28677			

Continued on page 2

April 11,2025

818 Soundside Road Edenton, NC 27932

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

NOTES

Job	Truss	Truss Type		Ply	The Farm at Neills Creek Lot 00.0184 Roof					
2504-5093-A	A2G	Piggyback Base Supported Gable	1	1	Job Reference (optional)	2666434				
•										

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhands non-concurrent with other live loads
- Provide adequate drainage to prevent water ponding. 7) 8) Plates checked for a plus or minus 5 degree rotation about its center.
- 9) Gable requires continuous bottom chord bearing.
- 10) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 13) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 14) All bearings are assumed to be SP No.2.
- 15) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 72 lb uplift at joint 39, 6 lb uplift at joint 22, 11 lb uplift at joint 23, 6 lb uplift at joint 24, 1 lb uplift at joint 25, 3 lb uplift at joint 29, 21 Ib uplift at joint 30, 14 lb uplift at joint 31, 10 lb uplift at joint 32, 11 lb uplift at joint 33, 10 lb uplift at joint 34, 9 lb uplift at joint 35, 17 lb uplift at joint 36 and 135 lb uplift at ioint 38.
- 16) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 17) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 18) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.83 S. Mar 20 2025 Print: 8.830 S.Mar 20 2025 MiTek Industries. Inc. Thu Apr 10 08:29:06 ID:edDe3RcDvYg7BT2hCWrvI5yATeh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0184 Roof	
2504-5093-A	A2	Piggyback Base	8	1	Job Reference (optional)	172666435

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Thu Apr 10 08:29:05 ID:X6fz5k6uCWTc9dlojlyCKbyAQcN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:90.3

Plate Offsets (X, Y): [7:0-3-0,0-2-5], [9:Edge,0-2-0]

Loading FCLL (roof) Snow (Pf/Pg) FCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-AS	0.84 0.59 0.90	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.28 -0.37 0.06 0.07	(loc) 10-11 10-11 10 10-11	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18AHS MT20HS Weight: 253 lb	GRIP 244/190 186/179 187/143 FT = 20%	
LUMBER FOP CHORD BOT CHORD WEBS SLIDER BRACING FOP CHORD BOT CHORD WEBS NEBS REACTIONS	2x4 SP No.2 *Except 1-5:2x4 SP SS 2x4 SP SS *Except* 2x4 SP No.3 *Except 13-8,10-8:2x4 SP SS Left 2x6 SP No.2 1 Structural wood sheat except end verticals, (5-11-10 max.): 7-9. Rigid ceiling directly 1 Row at midpt 2 Rows at 1/3 pts (size) 2=0-3-8, 1 Max Horiz 2=282 (LC	t* 7-9:2x6 SP No.2, 2-14:2x4 SP DSS t* 9-10:2x4 SP No.2, 	2) d, 3) 3 4) 5)	Wind: ASCE Vasd=95mph II; Exp B; Enn Exterior(2E) 18-4-8, Exter to 33-10-12 z vertical left au forces & MW DOL=1.60 ph TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced : design.	7-16; Vult=120mp i; TCDL=6.0psf; Bi closed; MWFRS (e -1-0-0 to 2-4-14, Ir ior(2R) 18-4-8 to 2 cone; cantilever lef nd right exposed; C FRS for reactions ate grip DOL=1.60 7-16; Pr=20.0 psf; DL = 1.15); Is=1.0; ; Cs=1.00; Ct=1.11 snow loads have b s been designed for	h (3-sec CDL=6.0 envelope terior (1 3-2-4, li t and rig C-C for n shown; (roof LL Pf=20.4 Rough 0, Lu=50 been cor	ond gust))psf; h=25ft; C) and C-C) 2-4-14 to iterior (1) 23- ht exposed ; d nembers and Lumber : Lum DOL=1 psf (Lum DO Cat B; Partial)-0-0 sidered for th er of min roof	Cat. 2-4 end I.15 JL = Iy ly live	14) Gra or ti bott LOAD (phical p ne orient om chor CASE(S)	urlin re ation o d. Stai	presentation doe: f the purlin along ndard	> not depict the siz the top and/or	:e
	Max Grav 2=1623 (L (lb) - Maximum Com Tension	.C 50), 10=1734 (LC pression/Maximum	43) 6) 7)	overhangs no Provide adec All plates are	on-concurrent with uate drainage to p MT20 plates unle	other liv orevent v ss other	ve loads. vater ponding wise indicated	a on J. d.						
BOT CHORD	6-7=-1716/77, 7-8=- 9-10=-318/52 2-16=-349/2184, 15- 13-15=-182/2081, 11-	1379/85, 8-9=-163/1 16=-207/2184, I-13=-111/1161,	70, 8) 9) 10	about its cen This truss ha chord live loa) * This truss h	ter. s been designed fo d nonconcurrent v as been designed	or a 10.0 vith any for a liv) psf bottom other live load e load of 20.0	ds. Ipsf			and a	ORTH CA	ROUL	
WEBS	10-11=-111/1161 7-13=0/399, 8-13=-9 8-10=-1876/27, 6-15 4-16=-30/269, 4-15=	0/740, 8-11=0/501, =0/414, 6-13=-911/5 250/55	9, 11	on the botton 3-06-00 tall b chord and an) Bearings are SP SS.	n chord in all areas y 2-00-00 wide wil y other members, assumed to be: Jo	s where I fit betw with BC pint 2 SF	a rectangle veen the botto DL = 10.0psf. PDSS , Joint	om 10			4	SEAL		
 Unbalance this design 	ed roof live loads have 1.	been considered for	12) This truss ha load of 250.0 panels and a Bottom Chore) This truss de structural wo	s been designed for lb live and 3.0lb do t all panel points a d, nonconcurrent v sign requires that od sheathing be a	or a move ad location long the vith any a minim oplied di	ving concentra ted at all mid Top Chord a other live load um of 7/16" rectly to the to	ated nd ds. op		10 Provide State		2867	ERSK	

13) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

April 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

L. GA

mmm

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0184 Roof	
2504-5093-A	G1	Piggyback Base	1	1	Job Reference (optional)	172666436

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Thu Apr 10 08:29:13 ID:XXZ?22VbBuVQg4ZVskfK2Oy3nLJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	6-8-7	13-3-9	20-0-0	
Scale = 1:83.1	6-8-7	6-7-2	6-8-7	

Plate Offsets (X, Y): [3:0-3-0,0-2-1], [4:0-4-0,0-2-12], [5:0-2-12,0-1-8], [6:Edge,0-1-8]

10-0-0

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.79 0.89 0.20	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.19 -0.23 0.01 0.01	(loc) 7-9 9-10 6 7-9	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 151 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 *Excep 2x4 SP No.2 2x4 SP No.3 *Excep Structural wood shea	t* 3-4:2x6 SP No.2 t* 10-2,6-5:2x4 SP N athing directly applied	4) 5) 0.2 d, 6)	Unbalanced design. This truss ha load of 12.0 p overhangs no Provide adec All plates are	snow loads have b s been designed fo osf or 2.00 times fli on-concurrent with juate drainage to p unte on plates unle	peen cor or greate at roof le other liv prevent v	nsidered for the er of min roof bad of 15.4 p ve loads. water ponding wise indicate	his f live sf on g.						
 All plates are MT20 plates unless otherwise indicated. Plates checked for a plus or minus 5 degree rotation about its center. Plates checked for a plus or minus 5 degree rotation about its center. Plates checked for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom 														
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=0/72, 2-3=-843/ 4-5=-833/100, 2-10= 9-10=-201/183, 7-9= 3-9=-92/210, 3-7=-11/2 2-9=0/543, 5-7=-14/5	pression/Maximum 103, 3-4=-539/139, -1087/103, 5-6=-977 -90/559, 6-7=-51/10' 01/105, 4-7=-129/132 543	11) 12) /80 ! 2, 13)	chord and an All bearings a This truss ha load of 250.0 panels and a Bottom Chor This truss de	y other members, are assumed to be s been designed fo lb live and 3.0lb do t all panel points a d, nonconcurrent v sign requires that a	with BC SP No. or a move ad location long the vith any a minim	DL = 10.0psi 2. /ing concentr tted at all mid Top Chord a other live loa um of 7/16"	f. rated I and ads.						
 VOTES I) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. 				structural wo chord and 1/2 the bottom cl) Graphical pu or the orienta	od sheathing be ap 2" gypsum sheetro hord. rlin representation ition of the purlin a	does no	price of the second sec	top y to size			A. A.	ORTH CA	ROUT	

- Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 6-10-3, Exterior(2R) 6-10-3 to 11-1-2, Interior (1) 11-1-2 to 13-1-13, Exterior(2R) 13-1-13 to 17-4-11, Interior (1) 17-4-11 to 19-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

bottom chord.

LOAD CASE(S) Standard

Sunnan Sun WWWWWWWWWW 28677 OHA GA April 11,2025

SEAL

Page: 1

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0184 Roof	
2504-5093-A	G1G	Piggyback Base Supported Gable	1	1	Job Reference (optional)	172666437

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Thu Apr 10 08:29:13 ID:2ddFeGH?Bm2yvqBdSLKGv8y8SrO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

20-0-0

Scale = 1:84		_
Plate Offsets (X, Y):	[6:0-2-0,0-0-10], [10:0-2-0,0-0-10], [16:Edge,0-1-8]	

,					•										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(ps 20. 20.4/20. 10. 0. 10.	sf) .0 .0 .0 .0* .0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	021/TPI2014	CSI TC BC WB Matrix-AS	0.62 0.30 0.28	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 187 It	GRIP 244/190 D FT = 209	%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood except end verti (6-0-0 max.): 6- Rigid ceiling diru 1 Row at midpt (size) 16=2 19=2 22=2 25=2 Max Horiz 26=-2 Max Uplift 16=-2 18=-3 24=-3 26=-2 Max Grav 16=3 18=3 20=3 108), (LC 1	I shea icals, 10. ectly : 0-0-0 0-0-0 200 (L 213 (L 213 (L 216 (L 258 (L 33 (L) 22=3 06) (2	thing directly applied and 2-0-0 oc purlins 3-21, 7-22, 5-23, 9-2 11-19 , 17=20-0-0, 18=20- , 20=20-0-0, 21=20- , 23=20-0-0, 24=20- , 26=20-0-0 C 14) .C 13), 17=-233 (LC 2 17), 21=-5 (LC 12) C 16), 25=-235 (LC 1 C 12), 17=390 (LC 5 C 111), 19=333 (LC C 109), 21=333 (LC 133 (LC 107), 23=33 24=334 (LC 105).	d, 0, 0-0, 0-0, 0-0, 12), , (3), (3), (3), (3), (3), (3), (3),	BOT CHORD WEBS 1) Unbalanced this design. 2) Wind: ASCE Vasd=95mp II; Exp B; En (3E) -1-0-0 t (3R) 6-10-3 Corner(3R) 21-0-0 zone vertical left a forces & MW DOL=1.60 p 3) Truss design only. For st see Standar or consult qu	25-26=-114/130, 2 22-24=-114/130, 2 20-21=-114/130, 1 18-19=-114/130, 1 18-19=-114/130, 1 16-17=-114/130 8-21=-267/81, 7-2: 4-24=-277/126, 3: 11-19=-272/1, 12- 13-17=-275/128 roof live loads hav 7-16; Vult=120mp h; TCDL=6.0psf; B iclosed; MWFRS (ic o 2-0-0, Exterior(2) to 10-0-0, Exterior(2) to 10-0, Exterior(2) to 10	4-25=-1 1-22=-1 9-20=-1 7-18=-1 2=-268/(2 25=-275, 18=-277, the been of the been of the been of the been of the been of the been of the be	14/130, 14/130, 14/130, 14/130, 14/130, 1, 5-23=-272/1 129, 9-20=-21 126, considered for cond gust) 0psf; h=25ft; (f b) and C-C Cc to 6-10-3, Co 0-0 to 13-1-13 2N) 16-0-0 to posed ; end nembers and Lumber ane of the trus al to the face) Is as applicat s per ANSI/TF	r Cat. orner orner 3, b ss), ble, Pl 1.	 9) Gai 10) Tru bra 11) Gai 12) Thii chc 13) * TI on ' 3-0 chc 14) All 15) Pro bea 26, upli join 16) Thi loa par Bot 	ble requi ss to be ced agaiole studes is truss he struss he struss he botto 6-00 tall rd and a coearings vide me tring plat 213 lb u ft at join t 18 and s truss h d of 250. iels and tom Cho	res co fully si nst lata s space as bee as bee as bee n choo by 2-C ny oth are as chanic e capa plift at chanic e capa plift at as bee 0lb livv at all p rd, noi	ntinuous bottom heathed from or eral movement ed at 2-0-0 oc. en designed for nconcurrent with een designed for rd in all areas w 00-00 wide will fi er members. ssumed to be S al connection (t able of withstam- joint 16, 5 lb up 35 lb uplift at joint 1° en designed for e and 3.0lb dea wanel points alor nconcurrent with	chord bearine face or set (i.e. diagonal a 10.0 psf bunany other I r a live load there a recta t between the P No.2. ny others) of ding 216 lb u diff at joint 22 a moving co d located at n any other I	ing. ecurely il web). ottom ive loads. of 20.0psf angle he bottom truss to uplift at joint 1, 33 lb uplift at incentrated all mid Zhord and live loads.
FORCES TOP CHORD	(lb) - Maximum Tension 2-26=-295/202, 3-4=-93/186, 4- 6-7=-95/243, 7- 9-10=-95/243, 7- 11-12=-121/269 13-14=-147/149 14-16=-295/200	92 (L Comp 1-2=(5=-12 8=-95 0-11= 9, 12 9, 14)	C 57), 26=360 (LC 5 pression/Maximum)/72, 2-3=-149/151, 12/270, 5-6=-146/242 //243, 8-9=-95/243, -146/242, 13=-93/187, 15=0/72,	9) 2,	 TCLL: ASCE Plate DOL=' 1.15 Plate D Exp.; Ce=1. Unbalanced design. This truss ha load of 12.0 overhangs n Provide ade Plates check about its cer 	E 7-16; Pr=20.0 ps 1.15); Pg=20.0 psf OL = 1.15); Is=1.0 0; Cs=1.00; Ct=1.1 snow loads have I as been designed f psf or 2.00 times f on-concurrent with quate drainage to I wed for a plus or m hter.	f (roof LI Pf=20.4 ; Rough 0, Lu=50 poeen con for great lat roof lu other lin prevent inus 5 de	.: Lum DOL=1 psf (Lum DC Cat B; Partial)-0-0 sidered for th er of min roof pad of 15.4 ps ve loads. water ponding egree rotation	1.15 DL = Ily his live sf on g.			Summer 1	SE/ 286 OFN L. C	AL 77	AMULTUNIA

April 11,2025

Page: 1

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, recetion and bracing of trusses and truss systems, see **ANSI/TPI Quility Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0184 Roof	
2504-5093-A	G1G	Piggyback Base Supported Gable	1	1	Job Reference (optional)	172666437
Structural, LLC, Thurmont, MD -	21788,	Run: 8.83 S Mar 20 2	2025 Print: 8.	830 S Mar 2	0 2025 MiTek Industries, Inc. Thu Apr 10 08:29:13	Page: 2

ID:2ddFeGH?Bm2yvqBdSLKGv8y8SrO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

17) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

18) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0184 Roof	
2504-5093-A	G1A	Piggyback Base	9	1	Job Reference (optional)	172666438

Structural LLC Thurmont MD - 21788

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Thu Apr 10 08:29:13 ID:foZxhosD1jn7f?91A0wgJqyATsZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1	6-8-7	13-3-9	20-0-0	
Г Scale = 1:79.3	6-8-7	6-7-2	6-8-7	
Plate Offsets (X, Y): [2:0-4-4 0-2-0] [3:0-3-2 0-2-2] [5:Edge 0-1-8	8]			

	,,	[0:0 0 _,0], [0:0											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.93	Vert(LL)	-0.19	8-9	>999	360	MT20	244/190	
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15	BC	0.89	Vert(CT)	-0.23	8-9	>999	240	MT20HS	187/143	
TCDL	10.0	Rep Stress Incr	YES	WB	0.21	Horz(CT)	0.01	5	n/a	n/a			
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	-0.01	8-9	>999	240			
BCDL	10.0										Weight: 144 lb	FT = 20%	
LUMBER			4) Unbalance	d snow loads hav	e been cor	sidered for t	his						
TOP CHORD	2x4 SP No.2		design.										
BOT CHORD	2x4 SP No 2		Frovide add	equate drainage t	to prevent v	vater pondin	a.						

WEBS	2x4 SP No.3 *Except* 9-1,5-4:2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied,
	except end verticals, and 2-0-0 oc purins
	(Z-Z-0 IIIdx.). Z-3.
BOT CHORD	Rigid ceiling directly applied.
WEBS	1 Row at midpt 2-8, 2-6, 3-6
REACTIONS	(size) 5=0-3-8, 9=0-3-8
	Max Horiz 9=185 (LC 13)
	Max Grav 5=982 (LC 50), 9=990 (LC 50)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-842/95, 2-3=-532/134, 3-4=-834/95,
	1-9=-990/77, 4-5=-980/77

BOT CHORD 8-9=-181/185. 6-8=-84/557. 5-6=-52/105 WEBS 2-8=-98/210, 2-6=-103/103, 3-6=-127/134, 1-8=-8/556, 4-6=-8/548

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 6-10-3, Exterior(2R) 6-10-3 to 11-1-2, Interior (1) 11-1-2 to 13-1-13, Exterior(2R) 13-1-13 to 17-4-11, Interior (1) 17-4-11 to 19-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0

- All plates are MT20 plates unless otherwise indicated. 6)
- 7) Plates checked for a plus or minus 5 degree rotation
 - about its center.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 10) All bearings are assumed to be SP No.2 .
- 11) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

April 11,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0184 Roof	
2504-5093-A	PB1G	Piggyback	1	1	Job Reference (optional)	6439

Structural LLC Thurmont MD - 21788

Loading

TCDL

BCLL

BCDL

LUMBER

OTHERS

BRACING

FORCES

WEBS

NOTES

TCLL (roof)

Unbalanced roof live loads have been considered for 1)

this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

. GAL

April 11,2025

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0184 Roof	
2504-5093-A	PB1	Piggyback	17	1	Job Reference (optional)	

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Thu Apr 10 08:29:14 ID:1g_pehrTMPIq7LuwuRQV2cyATvA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:50.1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCCL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/	TPI2014	CSI TC BC WB Matrix-AS	0.63 0.70 0.17	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 MT20HS Weight: 71 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD BOT CHORD DTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea Rigid ceiling directly (size) 1=19-3-0, 7=19-3-0, 11=19-3-0 Max Horiz 1=-87 (LC Max Uplift 1=-122 (LI 6=-176 (LI 8=-37 (LC Max Grav 1=276 (LC 6=358 (LC 8=514 (LC (lb) - Maximum Com Tension 1-2=-104/96, 2-3=-90 4-5=-157/81, 5-6==92 2-11=-57/87, 9-11=-1 6-8=-57/84 4-9=-315/26, 3-11=-2 ed roof live loads have	athing directly applied applied. 2=19-3-0, 6=19-3-0, 8=19-3-0, 9=19-3-0, 12) C 62), 2=-171 (LC 63 C 62), 7=-120 (LC 65 17), 11=-37 (LC 16) C 44), 2=371 (LC 68), C 66), 7=279 (LC 60), C 34) pression/Maximum 6/73, 3-4=-157/84, 2/62, 6-7=-71/72 16/59, 8-9=-16/59, 378/124, 5-8=-378/12 been considered for	3) 4) 5) 6) 7) 7) 8) 9) 10) 11) 11) 12) 13) 24 14)	Truss design only. For stu see Standard or consult qui TCLL: ASCE Plate DOL=1 1.15 Plate DOL=1 1.15 Plate DOL=1 Unbalanced s design. All plates are Plates checka about its cent Gable require Gable require Gable require Gable require about its cent Gable require about its cent about its cent a	ed for wind loads in ds exposed to wind Industry Gable Er alified building des 7-16; Pr=20.0 psf; 15); Pg=20.0 psf; (DL = 1.15); Is=1.0; (CS=1.00; Ct=1.10) mow loads have b MT20 plates unles ed for a plus or min er. scontinuous botto spaced at 4-0-0 oc s been designed fo d nonconcurrent w as been designed for d nonconcurrent w as been designed for d nonconcurrent w as been d nonc	n the plat d (norma igner as (roof LL Pf=15.4 Rough) een con as other nus 5 de orn chore or a 10.0 rith any for a liv, where fit betw with BC SP No.1 (by oth nding 1	ane of the trus al to the face) Is as applicat per ANSI/TF : Lum DOL=1 psf (Lum DC Cat B; Partial sidered for th wise indicated gree rotation d bearing. 0 psf bottom other live load e load of 20.0 a rectangle recen the botto DL = 10.0psf. 2. ars) of truss to 22 lb uplift at	ss), ple, l.15 l.15 DL = lly d. ds. opsf om joint	17) See Deta con: LOAD C	Standa ail for Co sult qual CASE(S)	rd Indu nnecti ified bo Star	Istry Piggyback T on to base truss a uilding designer. Indard	russ Connection as applicable, or	
 Wind: ASG Vasd=95n II; Exp B; Exterior(2 18-11-8 zc vertical lef forces & M DOL=1.60 	 CE 7-16; Vult=120mph nph; TCDL=6.0psf; BCI Enclosed; MWFRS (en E) 0-3-8 to 3-3-8, Interi R) 9-7-8 to 12-7-8, Interi one; cantilever left and ft and right exposed;C-1 /WFRS for reactions sl 0 plate grip DOL=1.60	(3-second gust) DL=6.0psf; h=25ft; Ca velope) and C-C or (1) 3-3-8 to 9-7-8, rior (1) 12-7-8 to right exposed ; end C for members and hown; Lumber	15) at. 16)	This truss has load of 250.0 panels and a Bottom Chord This truss des structural woo chord and 1/2 the bottom ch	s been designed fo b live and 3.0lb de all panel points al d, nonconcurrent w sign requires that a od sheathing be ap " gypsum sheetroo ord.	or a moved loca ong the with any a minimi oplied di ck be ap	ting concentra ted at all mid Top Chord a other live load um of 7/16" rectly to the to oplied directly	ated ind ds. op to		THE DEST	S. S	SEAI 2867	7 ER.St.	WITTER .

- Exterior(2E) 0-3-8 to 3-3-8, Interior (1) 3-3-8 to 9-7-8, Exterior(2R) 9-7-8 to 12-7-8, Interior (1) 12-7-8 to 18-11-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Bottom Chord, nonconcurrent with any other live loads. 16) This truss design requires that a minimum of 7/16"
- structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

11111 April 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0184 Roof	
2504-5093-A	V1	Valley	1	1	Job Reference (optional)	172666441

16-1-3

16-1-10

12

3 2x4 u

4

3x4 👟 18

3x4 🛛 1

9-4-15

10

 \otimes

3x4 🛛

11

2x4 II

9

16 ²17

15

Structural, LLC, Thurmont, MD - 21788,

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Thu Apr 10 08:29:16 ID:m7GgZ_WLmT3V0Xi3i4KwamyAQwW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

19 2x4 II ⁵ 20 21 6 0-0-7 ***** \times $\sim\sim\sim\sim$ \times 12 13 7 8 14 3x4= 2x4 II 2x4 II 2x4 II 16-1-3

Scale = 1:63.1

Loading	-	(psf)	Spacing	2-0-)	CSI	:	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.81	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	1	15.4/20.0	Lumber DOL	1.15		BC	0.49	Vert(TL)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES		WB	0.30	Horiz(TL)	0.01	6	n/a	n/a		
BCLL		0.0*	Code	IRC	2021/TPI2014	Matrix-S								
BCDL		10.0					_						Weight: 83 lb	FT = 20%
LUMBER					2) Truss desig	ned for wind loads	in the pl	ane of the tru	SS					
TOP CHORD	2x4 SP N	No.2			only. For st	uds exposed to wi	ind (norm	al to the face),					
BOT CHORD	2x4 SP N	lo.2			see Standar	d Industry Gable I	End Deta	ils as applica	ble,					
WEBS	2x4 SP N	No.3			or consult qu	ualified building de	esigner a	s per ANSI/TI	PI 1.					
OTHERS	2x4 SP N	No.3			3) TCLL: ASCE	7-16; Pr=20.0 ps	sf (roof Ll	: Lum DOL=	1.15					
BRACING					Plate DOL=	1.15); Pg=20.0 ps	t; Pt=15.4	pst (Lum DC)L =					
TOP CHORD	Structura	al wood she	athing directly applie	d or	1.15 Plate D Exp.: Ce=1.0	OL = 1.15); Is=1.0 0: Cs=1.00: Ct=1.	0; Rough 10	Cat B; Partia	lly					
	6-0-0 0C	puriins, ex	cept end verticals.		4) Unbalanced	snow loads have	been co	nsidered for t	nis					
BUICHURD	hracing	ling arecuy	applied or 10-0-0 oc		design.									
WEBS	1 Row at	t midpt	1-10		5) Plates check	ked for a plus or m	ninus 5 d	egree rotatior	1 I					
REACTIONS	(size)	6=16-1-1(0, 7=16-1-10, 8=16-1	-10,	about its cer	nter.		al la a adre a						
	()	9=16-1-10	0, 10=16-1-10	- /	 Gable requil Coble stude 	es continuous boi	ttom choi	d bearing.						
	Max Horiz	: 10=-223 ((LC 12)		 Gable Studs This trues by 	spaceu al 4-0-0 l	for a 10	and hottom						
	Max Uplift	6=-6 (LC	13), 7=-23 (LC 17), 8	s=-20	chord live lo	ad nonconcurrent	with any	other live loa	de					
		(LC 17), 9	9=-23 (LC 17), 10=-20	0 (LC	9) * This truss	has been designe	d for a liv	e load of 20.0	Opsf					
	Max Gray	12)	~ 49) 7-422 (I C 56)		on the botto	m chord in all area	as where	a rectangle						
	Wax Glav	8-408 (1.0	C 55) 9-480 (LC 35)	,	3-06-00 tall	by 2-00-00 wide w	vill fit bety	veen the bott	om					
		10=316 (L	_C 53)	,	chord and a	ny other members	s, with BC	DL = 10.0pst						
FORCES	(lb) - Ma:	ximum Corr	pression/Maximum		10) All bearings	are assumed to b	e SP No.	Z.	0					
	Tension		1		hearing plat	e canable of withs	tanding 3	eis) ui iiuss i 20 lh unlift at i	oint					
TOP CHORD	1-10=-28	34/66, 1-2=-	142/127, 2-4=-216/2	01,	10, 6 lb unlif	t at joint 6, 23 lb u	plift at io	nt 9. 20 lb un	lift at					in the second se
	4-5=-282	2/243, 5-6=-	353/297		joint 8 and 2	3 lb uplift at joint 7	7.						"TH CA	Roille
BOT CHORD	9-10=-25	52/319, 8-9=	=-252/319, 7-8=-252/3	319,	12) This truss ha	as been designed	for a mo	ving concentr	ated			5	OF ERO	in the
WEBS	0-7=-252	2/319 8/127 4- 8	329/100 5-7337/0	7	load of 250.	Olb live and 3.0lb	dead loca	ted at all mid				32	A STOR	PNIA
NOTES	2-3=-330	J, 1∠1, 4-0=-	523/100, 5-7=-557/9	'	panels and a	at all panel points	along the	e Top Chord a	and			-	A/L	115: 3
	CE 7-16: \/	ult-120mph	(3-second qust)			Standard	with ally		us.		-		054	
Vasd=95n		=6.0 nsf BC	DI = 6 0 second gust	at	LUAD CASE(S)	Sianuaru					-		SEA	L ; =
II: Exp B:	Enclosed: I	MWFRS (er	velope) and C-C								= =		2867	77 : E
Exterior(2	E) 0-1-12 to	o 3-1-12, In	terior (1) 3-1-12 to										: 2007	1 E
15-6-11 z	one; cantile	ever left and	right exposed ; end									1	N	1 2
vertical lef	ft and right	exposed;C-	C for members and									20	. En	RINS

15-6-11 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

L. GA mmm April 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0184 Roof	
2504-5093-A	V1G	Valley	1	1	Job Reference (optional)	6442

16-1-3

16-1-10

3x4 👟

12 17

5 2x4 u

2x4 🛛 329

30 4

3х4 **п**

1 27 2

Ø

9-4-15

2x4 II

2x4 🛛

28

Structural, LLC, Thurmont, MD - 21788,

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Thu Apr 10 08:29:16 ID:iWOQ_fXcI4KDFqsRpVNOfByAQwU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-0-4

2x4 II 6 ን 31 2x4 II 7 32 8 33 ^{2x4} " 34 9 35 10

16-1-3

Scale =	1:64.1
	1.04.1

-				_										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1	(psf) 20.0 5.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	21/TPI2014	CSI TC BC WB Matrix-S	0.76 0.20 0.34	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 108 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structural 6-0-0 oc p Rigid ceili bracing. 1 Row at (size) Max Horiz Max Uplift	0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	athing directly applied cept end verticals. applied or 6-0-0 oc 1-18 0, 11=16-1-10, 0, 13=16-1-10, 0, 17=16-1-10, 0 LC 14) C 15), 11=-12 (LC 17 C 17) 12-12 (LC 17	N 1 d or 2 3 7), 4	 Wind: ASCE Vasd=95mph II; Exp B; Enc Exterior(2E) 1 15-6-11 zone vertical left au forces & MW DOL=1.60 pl: Truss design only. For stu see Standarc or consult qu TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced : design. 	7-16; Vult=120mp ; TCDL=6.0psf; B closed; MWFRS (i)-1.12 to 3-1-12, 1 ; cantilever left ar nd right exposed;(FRS for reactions ate grip DOL=1.6(de for wind loads ds exposed to wir Industry Gable E alified building dei 7-16; Pr=20.0 psf; DL = 1.15); Is=1.0 ; Cs=1.00; Ct=1.1 snow loads have I	oh (3-sec iCDL=6. interior (interior (ind right e C-C for n shown;) in the pl- nd (norm ind Deta signer a: f (roof LL ; Pf=15.4 ; Rough 0 obeen cor	cond gust) Dpsf; h=25ft; () and C-C 1) 3-1-12 to ixposed ; end nembers and Lumber ane of the tru: al to the face ills as applicat s per ANSI/TF 2: Lum DOL= \$ psf (Lum DC Cat B; Partia nsidered for th	SS), ble, PI 1. 1.15 DL = Illy	12) This loac pan Bott	truss h l of 250. els and om Cho cASE(S)	as bee 0lb live at all p rd, noi) Sta	n designed for a ∋ and 3.0lb dead anel points along nconcurrent with ndard	moving concentrated located at all mid g the Top Chord and any other live loads.
FORCES TOP CHORD BOT CHORD WEBS	Max Grav (lb) - Max Tension 1-18=-264 3-4=-189/ 7-8=-295/ 17-18=-25/ 15-16=-21 13-14=-28 11-12=-25/ 6-14=-28 9-11=-285	14=-10 (L 14=-10 (L 16=-8 (LC 18=-29 (L 12=333 (L 14=333 (L 14=332 (L 18=283 (L 18=283 (L 18=283 (L 18=283 (L 18=283 (L 176, 4-6=- 248, 8-9=- 53/320, 16- 53/320, 14- 53/320, 10- 3/105, 3-16 1/46, 7-13= 3/48	C 17), 15=-12 (LC 17) C 17), 15=-12 (LC 17) C 14) C 56), 11=332 (LC 7 C 71), 13=333 (LC 7 C 69), 15=333 (LC 6 C 67), 17=337 (LC 6 C 65) pression/Maximum 110/109, 2-3=-158/15 225/201, 6-7=-260/22 331/272, 9-10=-364/2 17=-253/320, 13=-253/320, 13=-253/320, 11=-253/320 =-276/63, 4-15=-278 -284/46, 8-12=-287/4), 5 (), 6 (2), 7 (0), 8 (8), 9 (6), 9 (6), 1 (24, 1 297 (47, 47, 47, 5)	 5) Plates checked for a plus or minus 5 degree rotation about its center. 6) Gable requires continuous bottom chord bearing. 7) Gable studs spaced at 2-0-0 oc. 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 10) All bearings are assumed to be SP No.2. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 29 lb uplift at joint 18, 35 lb uplift at joint 10, 14 lb uplift at joint 17, 8 lb uplift at joint 13, 10 lb uplift at joint 12 and 12 lb uplift at joint 11. 						SEA 286	EER. K		

April 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0184 Roof	
2504-5093-A	PB2G	Piggyback	1	1	Job Reference (optional)	172666443

Structural LLC Thurmont MD - 21788

Run: 8.83 S. Mar 20 2025 Print: 8.830 S. Mar 20 2025 MiTek Industries. Inc. Thu Apr 10 08:29:15 ID:7wxcYOXfLjhwi_oDCqVjoKyATy9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

- Max Grav 1=225 (LC 44), 2=441 (LC 72), 10=289 (LC 79), 11=335 (LC 78), 12=334 (LC 77), 13=326 (LC 76), 14=336 (LC 75), 15=325 (LC 74), 16=356 (LC 73) FORCES (lb) - Maximum Compression/Maximum Tension
- TOP CHORD 1-2=-118/128, 2-3=-96/84, 3-4=-92/75 4-5=-82/92, 5-6=-100/126, 6-7=-100/124, 7-8=-80/85, 8-9=-95/52, 10-17=0/0, 9-10=-269/31 BOT CHORD 2-16=-76/42, 15-16=-32/42, 14-15=-32/42,
- 13-14=-32/42, 12-13=-32/42, 11-12=-32/42, 10-11=-32/42 WEBS 6-13=-269/15, 5-14=-285/56, 4-15=-281/47, 3-16=-299/54, 7-12=-284/53, 8-11=-286/54
- NOTES

Scale = 1:50.9 Loading

TCLL (roof)

TCDL

BCLL

BCDL

WFBS

OTHERS

BRACING

TOP CHORD

BOT CHORD

LUMBER

TOP CHORD

BOT CHORD

Snow (Pf/Pg)

Unbalanced roof live loads have been considered for 1) this design.

- 5) Unbalanced snow loads have been considered for this design.
- 6) Plates checked for a plus or minus 5 degree rotation about its center.
- Gable requires continuous bottom chord bearing. 7)
- Gable studs spaced at 2-0-0 oc. 8)
- This truss has been designed for a 10.0 psf bottom 9) chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) All bearings are assumed to be SP No.2
- 12) Bearing at joint(s) 10, 17 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 153 lb uplift at joint 1, 10 lb uplift at joint 14, 10 lb uplift at joint 15, 13 lb uplift at joint 16, 8 lb uplift at joint 12 and 17 lb uplift at joint 11.

April 11,2025

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters when Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0184 Roof	
2504-5093-A	PB2	Piggyback	10	1	Job Reference (optional)	172666444

Page: 1

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Thu Apr 10 08:29:15 ID:7wxcYOXfLjhwi_oDCqVjoKyATy9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 9-7-8 15-8-0 9-7-8 6-0-8 15-8-0 4x4= 4 712 2x4 u 18 19 2x4 II 20 17 3 5 2x4 II 16 21 5-7-6 22 6 15 23 10 24 9 26 8 28 4x4= 25 27 2x4 🛚 2x4 II 2x4 🛛 2x4 =

Scale = 1:50.9

Plate Offsets (X, Y):	[2:0-0-9,Edge]	
-		

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-AS	0.47 0.47 0.17	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 67 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she: except end verticals. Rigid ceiling directly (size) 1=15-8-0, 11=15-8-0, 11=15-8-0 Max Uplift 1=-393 (L Max Uplift 1=-393 (L 7=-61 (LC 10=-28 (L) Max Grav 1=140 (LC 9=405 (LC (lb) - Maximum Com Tension 1-2=-129/235, 2-3=- 4-5=-110/111, 5-6=4 6-7=-259/64 2-10=-229/42, 9-10= 7-8=-36/42 4-9=-318/15, 3-10=: ed roof live loads have n.	athing directly applied applied. 2=15-8-0, 7=15-8-0, 9=15-8-0, 10=15-8-0, 13) C 46), 2=-9 (LC 16), 60), 8=-26 (LC 17), C 16) C 44), 2=662 (LC 46), C 67), 8=393 (LC 66), C 65), 10=446 (LC 34) pression/Maximum 111/226, 3-4=-115/11 91/58, 7-11=0/0, -36/42, 8-9=-36/42, 345/111, 5-8=-321/93 been considered for	2) I, 3) , 4) 5) 6) 7, 8) 9) 10) 11] 12] 13]	Wind: ASCE Vasd=95mpl II; Exp B; En Exterior(2E) Exterior(2R) zone; cantile and right exp MWFRS for grip DOL=1.1 Truss design only. For stu see Standar or consult qu TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design. Plates check about its cen Gable requir Gable studs. This truss ha chord live loc) * This truss h on the bottor 3-06-00 tall b chord and ard) All bearings .) Bearing ANSI/1	7-16; Vult=120mph 7: TCDL=6.0psf; BC closed; MWFRS (ei 0-3-8 to 3-3-8, Inter 9-7-8 to 12-7-8, Inte	n (3-seet CDL=6.1 wrelopp rior (1) erior (1) erior (1) mber I mber I mber I f hep pl, d (norm giner a: giner a:	cond gust) ops; h=25ft; () and C-C 3-3-8 to 9-7-8) 12-7-8 to 15 ; end vertical d forces & DOL=1.60 pla d forces & DOL=1.60 pla ane of the tru al to the face ils as applical s per ANSI/TF :: Lum DOL=: 4 psf (Lum DC C at B; Partia hysi (Lum DC C at B; Partia sidered for th egree rotation d bearing. D psf bottom other live loa te load of 20.0 a rectangle veen the botto DL = 10.0psf 2. lilel to grain va a. Building ing surface. ers) of truss t	Cat. 3, 5-6-4 left ate ss ble, PI 1. 1.15 DL = lly his h ds. Dpsf om f. alue	 14) N/A 15) This load pan Bott 16) This stru cho the Det. con 17) See Det. con LOAD C 	s truss h d of 250. els and tom Cho s truss d ctural w rd and 1 bottom c Standa ail for Cc sult qua CASE(S)	as bee Olb live rd, nor esign r ood sh hord. rd Indu onnect iffied b Star	en designed for a e and 3.0lb dead anel points along neoncurrent with requires that a m leathing be applit bosum sheetrock t ustry Piggyback ⁻ ion to base truss uilding designer. Indard	moving conc located at all 3 the Top Chd any other live nimum of 7/1 2d directly to be applied dir Truss Connec as applicable	entrated mid ord and e loads. 6" the top ectly to xtion a, or
				bearing plate 7 and 393 lb	e capable of withsta uplift at joint 1.	nding 6	51 Ib uplift at j	oint			11	N L G	ALINS	S

- this design.
- 12) Bearing at joint(s) 7, 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 61 lb uplift at joint 7 and 393 lb uplift at joint 1.

GA mm April 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0184 Roof	
2504-5093-A	V2	Valley	2	1	Job Reference (optional)	2666445

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Thu Apr 10 08:29:17 ID:EKq2nKXzXnCMdhHFGns97zyAQwV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

13-2-15

Scale = 1:56.6

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-S	0.62 0.63 0.17	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 63 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASI Vasd=95r II; Exp B; Exterior(2 12-8-14 zi vertical le forces & M DOL=1.6(2) Truss des only. For see Stanc or consult	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 cc purlins, exx Rigid ceiling directly bracing. (size) $4=13-3-6$, 7=13-3-6 Max Horiz $7=-182$ (L Max Uplift $5=-26$ (LC 7=-15 (LC Max Grav $4=331$ (LC 6=440 (LC (lb) - Maximum Com Tension 1-7=-285/74, $1-2=-113-4=-307/2546-7=-219/292$, $5-6=-2-6=-331/133$, $3-5=$	athing directly applie cept end verticals. applied or 10-0-0 oc 5=13-3-6, 6=13-3-6, C 12) (17), 6=-21 (LC 17), (12) C 45), 5=481 (LC 34) C 49) pression/Maximum 27/116, 2-3=-212/18 219/292, 4-5=-219/2 352/142 (3-second gust) DL=6.0psf; h=25ft; C velope) and C-C terior (1) 3-1-12 to right exposed ; end C for members and hown; Lumber the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP	3) 4) 6 or 7) 8) 9) , 10 11 3, 12 92 LC iat. s [le, 11.	TCLL: ASCE Plate DOL=1 1.15 Plate DOL=1 1.15 Plate DOL=1 (Exp.; Ce=1.0 Unbalanced design. Plates check about its cen Gable require Gable studs : This truss ha on the botton 3-06-00 tall b chord and ar All bearings a Provide mecl bearing plate 7, 21 lb uplift This truss ha load of 250.0 panels and a Bottom Chor DAD CASE(S)	7-16; Pr=20.0 psf; 15); Pg=20.0 psf; DL = 1.15); Is=1.0; (Cs=1.00; Ct=1.1] snow loads have b ed for a plus or miter. es continuous bott spaced at 4-0-0 or s been designed f d nonconcurrent v as been designed f n chord in all area: y 2-00-00 wide wi y other members, are assumed to be nanical connectior capable of withst at joint 6 and 26 I s been designed f lb live and 3.0lb d t all panel points a d, nonconcurrent v Standard	f (roof LL ; Pf=15.4 ; Rough 0 been cor inus 5 de tom chor c. for a 10.0 with any d for a liv s where ill fit betty , with BC e SP No. n (by oth anding 1 b uplift a for a any e SP No.	.: Lum DOL=: I psf (Lum DC Cat B; Partia asidered for th agree rotation d bearing. D psf bottom other live load e load of 20.0 a rectangle veen the bottt DL = 10.0psf 2. ers) of truss t 5 lb uplift at j t joint 5. ving concentri ted at all mid Top Chord a other live load	1.15 DL = Ily his ds. ppsf om oint ated ds. if ated ds.				SEA 2867	EFR. 64

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

April 11,2025

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0184 Roof	
2504-5093-A	B1	Monopitch	7	1	Job Reference (optional)	172666446

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Thu Apr 10 08:29:11 ID:PG_85eDjrFYDCiYm7klD4syAUC2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-0-1 12-7-0 6-6-15 6-0-1

Scale = 1:63.5

Plate Offsets (X, Y):	[2:0-7-15,Edge]
-----------------------	-----------------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/	/TPI2014	CSI TC BC WB Matrix-AS	0.76 0.40 0.65	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.15 -0.20 0.02 -0.02	(loc) 6-7 6-7 2 6-7	l/defl >965 >762 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 74 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=95m II; Exp B; E Exterior(2E zone; cant and right e MWFRS fc grip DOL= 2) TCLL: ASC Plate DOL 1.15 Plate Exp; Ce=' 3) Unbalance design.	2x4 SP No.2 2x4 SP DSS 2x4 SP DSS 2x4 SP No.3 Left 2x6 SP No.2 1 Structural wood shea except end verticals. Rigid ceiling directly 1 Row at midpt (size) 2=0-3-8, 6 Max Uplift 0=-11 (LC Max Grav 2=199 (LC (Max Uplift 6=-11 (LC Max Grav 2=560 (LC (Ib) - Maximum Com Tension 1-2=0/41, 2-4=-621/2 5-6=-307/110 2-7=-350/570, 6-7=-2 4-7=0/366, 4-6=-586 EE 7-16; Vult=120mph ph; TCDL=6.0psf; BCI Enclosed; MWFRS (en E) -1-0-0 to 2-0-0, Inter ilever left and right exp xposed; C-C for memb or reactions shown; Lut 1.60 CE 7-16; Pr=20.0 psf; P DOL = 1.15); Ig==20.0 psf; P DOL = 1.15); Is=1.0; F	-6-0 athing directly applied 5-6 (applied. 5-6 (applied. 5-6 (applied. 5-7 (applied. 5-2), 6=549 (LC 23) (appression/Maximum 215, 4-5=-170/138, 213/570 (160 (3-second gust) DL=6.0psf; h=25ft; Ca velope) and C-C ior (1) 2-0-0 to 12-5-4 vosed ; end vertical le ers and forces & mber DOL=1.60 plate roof LL: Lum DOL=1. ff=15.4 psf (Lum DOL Rough Cat B; Partially en considered for this	4) 5) 6) 7) 8) 9) 10) 11) at. LO. 4 ft 5 7 5	This truss ha load of 12.0 p overhangs no Plates check about its ceni This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an All bearings a One H2.5A S recommende UPLIFT at jt(: does not con This truss ha load of 250.0 panels and a Bottom Chorr This truss de structural woo chord and 1/2 the bottom ch	s been designed fo sef or 2.00 times fla on-concurrent with of ed for a plus or min- rer. s been designed fo d nonconcurrent w as been designed fo n chord in all areas y 2-00-00 wide will y other members. The assumed to be impson Strong-Tie d to connect truss to s) 6. This connectic sider lateral forces. Is been designed fo blo live and 3.0lb de t all panel points all d, nonconcurrent w sign requires that a bd sheathing be ap " gypsum sheetroo ord. Standard	r greate t roof lk other liv us 5 de r a 10.0 ith any for a liv where fit betw SP DSS connec to beario on is for r a mov ad loca ong the ith any plied di ck be ap	er of min roof pad of 15.4 p: ve loads. ogree rotation opsf bottom other live loa e load of 20.4 a rectangle veen the botte S. ctors ng walls due uplift only ar ving concentri ted at all mid other live loa um of 7/16" rectly to the to opplied directly	live sf on ds. Dpsf om to ated and ds. top / to				SEA 2867	ROUL ALINGUIN

- grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

L. GA minin April 11,2025

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0184 Roof	
2504-5093-A	B1G	Monopitch Supported Gable	1	1	Job Reference (optional)	6447

Scale = 1:61.6

Plate Offsets (X, Y): [2:0-2-0,0-1-12], [9:Edge,0-1-8]

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Thu Apr 10 08:29:11 ID:TcLy68?pJP9wQnb6WFvmpsyAUCL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9

-

2x4 II

10 29 3x4 =

2x4 II

2

3x4=

24 14 25 13 26 12 27 11 28

2x4 II

2x4 II

2x4 II

12-5-4

1-0-0

April 11,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202 ⁻	1/TPI2014	CSI TC BC WB Matrix-AS	0.59 0.25 0.25	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 85 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she except end verticals Rigid ceiling directly 1 Row at midpt (size) 9=12-5-4, 12=12-5-4 (size) 9=12-5-4, 12=12-5-4 15=12-5-4 (Max Uplift 9=-24 (LC 11=-7 (LC 14=-78 (L Max Grav 9=284 (LC 11=332 (L 13=330 (L 15=320 (L	athing directly applied applied. 8-9 10=12-5-4, 11=12-5- 4, 13=12-5-4, 14=12-4 4. C 13), 10=-11 (LC 16) C 13), 10=-11 (LC 16) C 13), 15=-33 (LC 12 C 65), 10=337 (LC 64 C 63), 12=334 (LC 6 C 61), 14=343 (LC 6 C 59)	1) 1, 2) 4, 5-4, 3) 5, () () (), (), (), (), (), (),	Wind: ASCE Vasd=95mph II; Exp B; End (3E) -10-0 tc cantilever left right exposed for reactions DOL=1.60 Truss design only. For stu see Standarc or consult qu TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 tp overhangs nc Plates check	7-16; Vult=120m ;; TCDL=6.0psf; closed; MWFRS 2-0-0, Exterior(; t and right expos t;C-C for membe shown; Lumber I ed for wind loads ds exposed to w I Industry Gable alified building dı 7-16; Pr=20.0 ps DL = 1.15); Is=1. ;; Cs=1.00; Ct=1. snow loads have s been designed on-concurrent wit ed for a plus or n	ph (3-sec BCDL=6.0 (envelope 2N) 2-0-0 ed ; end v rs and for DOL=1.6(s in the pl ind (norm End Deta sesigner as f (roof LL f; Pf=15.4 0; Rough 10 been cor for great flat roof lk th other lim inus 5 d	xond gust) Dpsf; h=25ft; C e) and C-C Co to 12-3-8 zon vertical left and cces & MWFR D plate grip ane of the trus al to the face) ils as applicat s per ANSI/TP :: Lum DOL=1 e psf (Lum DO Cat B; Partial sidered for th er of min roof pad of 15.4 ps ve loads. gree rotation	Cat. rner e; d S S S S S S S L L L L L I V is live f on	 13) Prov bear 15, 1 at joint 14. 14) This load pan- Bott 15) This struic choin the l 	vide mer ring plat 24 lb up int 11, 1 truss h of 250. els and om Cho truss d ctural w rd and 1 cottom c cASE(S)	chanic e capa lift at jt 16 lb ul as beee Olb livv at all p rd, noi esign i chord.) Stai	al connection (by uble of withstandi point 9, 11 lb uplift olift at joint 12 an en designed for a e and 3.0lb dead anel points along reconcurrent with requires that a mi eathing be applie bosum sheetrock b indard	others) of truss to ng 33 lb uplift at joint at joint 10, 7 lb uplift d 78 lb uplift at joint moving concentrated located at all mid g the Top Chord and any other live loads. nimum of 7/16" ad directly to the top be applied directly to
TOP CHORD	(lb) - Maximum Com Tension 2-15=-300/150, 1-2=	pression/Maximum :0/47, 2-3=-456/315,	7) 8)	about its cen Gable require Truss to be fu	ter. es continuous bo ully sheathed fro	ttom chor n one fac	d bearing. e or securely				and a	WITH CA	ROUNT
BOT CHORD	3-4=-336/242, 4-5=- 6-7=-188/178, 7-8=- 14-15=-110/144, 13- 12-13=-110/144, 11- 10-11=-110/144, 9-1	299/228, 5-6=-239/19 96/110, 8-9=-264/43 14=-110/144, 12=-110/144, 0=-110/144	97, 9) 10	braced again Gable studs :) This truss ha chord live loa	st lateral movem spaced at 2-0-0 o s been designed ad nonconcurrent	ent (i.e. d oc. for a 10.0 with any	iagonal web). 0 psf bottom other live load	ds.				SEA	L
WEBS	7-10=-278/159, 6-11 5-12=-281/94, 4-13=	=-278/105, 283/71, 3-14=-291/2	209	on the botton	n chord in all are	as where	a rectangle	psi		E		2867	7 : 3
NOTES			12	chord and an chord and an All bearings a	y 2-00-00 wide v y other members are assumed to b	s. Se SP No.	2.	111			annan an	SANGIN	EEP. St. Marine

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0184 Roof	
2504-5093-A	C1A	Common	1	1	Job Reference (optional)	172666448

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Thu Apr 10 08:29:12 ID:IIUN3sHITRq1EdLQfYXfGMzjYkN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

				6-0-0			12-0-0						
Scale = 1:46			I	6-0-0	I		6-0-0		I				
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	•
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.72	Vert(LL)	-0.11	5-6	>999	360	MT20	244/190	
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.80	Vert(CT)	-0.13	5-6	>999	240			
TCDL	10.0	Rep Stress Incr	NO	WB	0.38	Horz(CT)	0.00	4	n/a	n/a			
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.02	5-6	>999	240			
BCDL	10.0										Weight: 66 lb	FT = 20%	

LUMBER	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3 *Except* 6-1,4-3:2x6 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied,
	except end verticals.
BOT CHORD	Rigid ceiling directly applied.
REACTIONS	(size) 4=0-3-0, 6=0-3-0
	Max Horiz 6=83 (LC 52)
	Max Uplift 4=-473 (LC 50), 6=-473 (LC 51)
	Max Grav 4=766 (LC 43), 6=766 (LC 42)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-951/848, 2-3=-951/851, 1-6=-719/624,
	3-4=-716/628
BOT CHORD	5-6=-679/711, 4-5=-650/650
WEBS	2-5=-69/304, 1-5=-599/658, 3-5=-603/662
NOTES	
1) Unbalance	ed roof live loads have been considered for
this desigr	۱.
2) Wind: ASC	CE 7-16; Vult=120mph (3-second gust)

Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-2-12 to 3-2-12, Interior (1) 3-2-12 to 6-0-0, Exterior(2R) 6-0-0 to 9-0-0, Interior (1) 9-0-0 to 11-9-4 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

- 5) Plates checked for a plus or minus 5 degree rotation about its center.
- This truss has been designed for a 10.0 psf bottom 6)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. All bearings are assumed to be SP No.2 . 8)
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 473 lb uplift at joint
- 6 and 473 lb uplift at joint 4. 10) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid
- panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. 11) This truss has been designed for a total drag load of 100
- plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 12-0-0 for 100.0 plf.
- 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard

April 11,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0184 Roof	
2504-5093-A	C1	Common	4	1	Job Reference (optional)	172666449

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Thu Apr 10 08:29:11 ID:HVv5MQfmTnPHdoydAL6hibzjYIA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-0-0 6-0-0	6-0-0	

Plate Offsets (X, Y):	[6:Edge,0-1-8]
-----------------------	----------------

Scale = 1:49.8

			-											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.80 0.76 0.12	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.12 -0.14 0.00 0.02	(loc) 6-7 6-7 6 7-8	l/defl >999 >977 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 69 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea except end verticals. Rigid ceiling directly (size) 6=0-3-0, 8 Max Horiz 8=95 (LC Max Grav 6=537 (LC (lb) - Maximum Com Tension 1-2=0/52, 2-3=-484/' 7-8=-130/323, 6-7=-5 3-7=-79/314, 2-7=-7' ed roof live loads have	athing directly applied. =0-3-0 15) 2 2), 8=537 (LC 2) pression/Maximum 199, 3-4=-484/199, 198, 4-6=-482/198 98/323 1/216, 4-7=-71/216 been considered for	5) 6) 7) 8) 9) 10) 11)	This truss ha load of 12.0 p overhangs no Plates check about its cenn This truss ha chord live loa * This truss ha on the bottom 3-06-00 tall b chord and an All bearings a This truss ha load of 250.0 panels and a Bottom Chore This truss de structural wo chord and 1/2 the bottom ch	s been designed for osf or 2.00 times fits on-concurrent with ed for a plus or mir ter. s been designed for d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members. are assumed to be s been designed for b live and 3.0lb de t all panel points all d, nonconcurrent w sign requires that a od sheathing be ap " gypsum sheetro hord.	or greate at roof k other liv ous 5 de or a 10.0 vith any for a liv where i fit betw SP No. or a move ad loca ong the vith any a minim oplied di ck be ap	er of min roof pad of 15.4 ps re loads. gree rotation of the rive loa e load of 20.0 a rectangle reen the botto 2. ring concentri- ted at all mid Top Chord a other live loa um of 7/16" rectly to the to oplied directly	live sf on ds. Dpsf ated und ds. op / to						

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 6-0-0, Exterior(2R) 6-0-0 to 9-0-0, Interior (1) 9-0-0 to 13-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

LOAD CASE(S) Standard

April 11,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0184 Roof	
2504-5093-A	C1G	Common Supported Gable	1	1	Job Reference (optional)	172666450

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Thu Apr 10 08:29:12 ID:DcVRCIUL0AWPKUIInhLAbRzjYIP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1	6-0-0	12-0-0
I	6-0-0	6-0-0

Scale = 1:49.8 Plate Offsets (X, Y): [2:0-3-0,0-1-12], [8:0-3-0,0-1-12], [10:Edge,0-1-8]

			0,											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-AS	0.64 0.76 0.55	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.12 -0.14 0.00 0.02	(loc) 11-12 11-12 10 11-12	l/defl >999 >971 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 81 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS FORCES	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she except end verticals Rigid ceiling directly 1 Brace at Jt(s): 13, 15 (size) 10=0-3-0, Max Horiz 12=95 (LC Max Grav 10=537 (L (lb) - Maximum Com	athing directly applied. applied. 12=0-3-0 C 15) .C 2), 12=537 (LC 2) .pression/Maximum	2) d, 3) 4)	Wind: ASCE Vasd=95mph II; Exp B; En Exterior(2E) zone; cantile and right exp members an Lumber DOL Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 1.15 Plate D	7-16; Vult=120m n; TCDL=6.0psf; E closed; MWFRS (-1-0-0 to 2-0-0, In 6-0-0 to 2-0-0, In 6-0-0 to 9-0-0, In wer left and right (bosed; porch left a d forces & MWFR =1.60 plate grip ID hed for wind loads dds exposed to wid d Industry Gable II alified building de 7-16; Pr=20.0 psi 0L = 1.15); Is=1.0	ph (3-sec BCDL=6.6 (envelopenterior (1)) terior (1)) terior (1)) exposed and right of SS for rea DOL=1.66 in the plaind (norm End Detai ssigner as of (roof LL f; Pf=15.4): Rough	ond gust) psf; h=25ft; () and C-C 2-0-0 to 6-0- 9-0-0 to 6-0- 9-0-0 to 13-0- end vertical exposed;C-C ctions shown ane of the tru: al to the face Is as applical per ANSI/TF psf (Lum DOL=' psf (Lum DC cat B; Partia	Cat. 0, -0 left for ; ss), ble, PI 1. 1.15 DL = y	14) This stru cho the LOAD (s truss d ctural w rd and 1 bottom o CASE(S)	esign r ood sh /2" gyp chord.) Star	equires that a mi eathing be applie bsum sheetrock t ndard	nimum of 7/1 d directly to t e applied dire	6" the top ectly to
TOP CHORD BOT CHORD WEBS	Tension 2-12=-479/197, 1-2= 3-4=-412/179, 4-5=- 6-7=-412/180, 7-8=- 8-10=-479/197 11-12=-116/285, 10- 5-11=-108/305, 2-14 13-14=-56/223, 11-1 11-15=-61/228, 15-1 8-16=-48/225, 4-13= 6-15=-118/35, 7-16=	=0/52, 2-3=-471/162, 400/205, 5-6=-400/2(471/162, 8-9=0/52, -11=-87/285 I=-48/225, I3=-61/228, 6=-56/223, -118/35, 3-14=-75/3(-75/39	5) 5) 6) 7) 8) 9, 9)	Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 overhangs n Plates check about its cen Truss to be f braced again Gable studs	c); Cs=1.00; Ct=1. snow loads have as been designed psf or 2.00 times on-concurrent wit ted for a plus or m ter. ully sheathed from ist lateral movem snaced at 2-0.0 c	10 been cor for greate flat roof lo h other liv hinus 5 de m one fac ent (i.e. d	sidered for the er of min roof ad of 15.4 ps re loads. gree rotation e or securely iagonal web)	nis live sf on			A.C.	OR HES	ROUN	
NOTES 1) Unbalance this desigr	ed roof live loads have	been considered for	10) 11) 12] 13]	 This truss ha chord live loa This truss ha on the bottor 3-06-00 tall b chord and ar All bearings a This truss ha load of 250.0 panels and a Bottom Chor 	is been designed ad nonconcurrent has been designe n chord in all arec by 2-00-00 wide yo other members are assumed to b is been designed blb live and 3.0lb o it all panel points d nonconcurrent	for a 10.0 with any d for a liv as where vill fit betw s. for a mov dead loca along the with any	 psf bottom other live loa e load of 20.0 a rectangle reen the botto 2. 2. ring concentri- ted at all mid Top Chord a other live loa 	ds. Dpsf om ated and		CONTRACT.	Junin 1	SEA 2867	EEP. ST	annun ann

Bottom Chord, nonconcurrent with any other live loads.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

April 11,2025

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0184 Roof	
2504-5093-A	V3	Valley	2	1	Job Reference (optional)	172666451

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Thu Apr 10 08:29:17 ID:EKq2nKXzXnCMdhHFGns97zyAQwV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-4-10

Scale	- 1	1.20.2	
COLORIG	_	1. N/. Z	

Loading		(psf)	Spacing	2-0-0			CSI		DEFL	in	(loc)	l/defl	L/d	PLATES
TCLL (roof)		20.0	Plate Grip DOL	1.15			тс	0.48	Vert(LL)	n/a	-	n/a	999	MT20
Snow (Pf/Pg)	1	5.4/20.0	Lumber DOL	1.15			BC	0.81	Vert(TL)	n/a	-	n/a	999	
TCDL		10.0	Rep Stress Incr	YES			WB	0.09	Horiz(TL)	0.00	4	n/a	n/a	
BCLL		0.0*	Code	IRC2	021/TP	12014	Matrix-S							
BCDL		10.0												Weight: 47 lb
LUMBER					3) TC	CLL: ASCE	7-16; Pr=20.0	psf (roof Ll	L: Lum DOL=	1.15				
TOP CHORD	2x4 SP N	0.2			Pla	ate DOL=1	.15); Pg=20.0 p	osf; Pf=15.₄	1 psf (Lum DC	DL =				
BOT CHORD	2x4 SP N	0.3			1.1	15 Plate DO	DL = 1.15); ls=	1.0; Rough	Cat B; Partia	lly				
WEBS	2x4 SP N	0.3			Ex	кр.; Ce=1.0	; Cs=1.00; Ct=	1.10						
OTHERS	2x4 SP N	0.3			4) Ur	balanced s	snow loads hav	e been cor	nsidered for th	nis				
BRACING					de	sign.								
TOP CHORD	Structura	I wood she	athing directly applie	d or	5) Pla	ates checke	ed for a plus or	minus 5 de	egree rotation					
	6-0-0 oc	purlins, ex	cept end verticals.		ab	out its cent	er.							
BOT CHORD	Rigid ceil	ing directly	applied or 10-0-0 oc	:	6) Ga	able require	es continuous b	ottom chor	d bearing.					
	bracing.				7) Ga	able studs s	spaced at 4-0-0) OC.	0 pof bottom					
REACTIONS	(size)	4=10-5-1,	5=10-5-1, 6=10-5-1,	,	o) 111 ch	ord live log	d popeopourro	nt with any	othor live loo	de				
		7=10-5-1			Q) * T	This trues h	as been design	ned for a liv	e load of 20 (us. Inef				
	Max Horiz	7=-141 (L	C 12)		0) I	the hottom	chord in all ar	eas where	a rectangle	por				
	Max Uplift	4=-38 (LC	C 47), 5=-17 (LC 17),		3-0	06-00 tall b	v 2-00-00 wide	will fit bety	veen the bott	m				
		6=-22 (LC	C 17), 7=-11 (LC 12)		ch	ord and an	v other membe	rs. with BC	DL = 10.0psf					
	Max Grav	4=272 (LC	C 45), 5=384 (LC 51)	,	10) All	bearings a	are assumed to	be SP No.	3.					
		6=445 (LC	34), 7=315 (LC 49)		11) Pr	ovide mech	nanical connect	tion (by oth	ers) of truss t	0				
FORCES	(Ib) - Max	umum Com	pression/Maximum		be	aring plate	capable of with	nstanding 1	1 lb uplift at j	oint				
	I ension		10/05 0.0 000/450		7,	38 lb uplift	at joint 4, 22 lb	uplift at joi	int 6 and 17 lt	0				
TOP CHORD	2 1-7=-283	//0, I-Z=-1 /10/	19/95, 2-3=-203/158	,	up	lift at joint &	5.							
	6-7151	/224 5-6	151/224 4-5151/2	24	12) Th	is truss ha	s been designe	ed for a mo	ving concentr	ated				
WEBS	2-6=-340	/138 3-5=-	318/105	<u> </u>	loa	ad of 250.0	ID live and 3.0lb	o dead loca	ated at all mid					, minin
	2 0- 040	100, 0 0=-	010,100		pa	nels and a	t all panel point	is along the	e Top Chord a	IND				N' IL CI

NOTES

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 4-4-11, Interior (1) 4-4-11 to 9-10-9 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Bottom Chord, nonconcurrent with any other live loads.

April 11,2025

GRIP 244/190

FT = 20%

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0184 Roof	
2504-5093-A	VA2	Valley	1	1	I72 Job Reference (optional)	2666452

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Thu Apr 10 08:29:18 ID:oyibI0dpkLZUIaN57HZWDTzjYmW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:28.7													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.52	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.72	Vert(TL)	n/a	-	n/a	999			
TCDL	10.0	Rep Stress Incr	YES	WB	0.11	Horiz(TL)	0.00	4	n/a	n/a			
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS									
BCDL	10.0										Weight: 30 lb	FT = 20%	
LUMBER			5) Unbalance	d snow loads hav	e been cor	sidered for th	his						
TOP CHORD	2x4 SP No.2		design.										
BOT CHORD	2x4 SP No.3		Plates check	ked for a plus or	minus 5 de	egree rotatior	า						
OTHERS	2x4 SP No.3		about its ce	enter.									
PRACING			Gable requ	ires continuous b	ottom chor	d bearing.							

8-8-4

BRACING		
TOP CHORD	Structural	wood sheathing directly applied.
BOT CHORD	Rigid ceili	ng directly applied.
REACTIONS	(size)	1=8-8-4, 3=8-8-4, 4=8-8-4
	Max Horiz	1=44 (LC 13)
	Max Uplift	1=-55 (LC 45), 3=-55 (LC 44)
	Max Grav	1=270 (LC 47), 3=270 (LC 51),
		4=631 (LC 2)

FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-232/324, 2-3=-232/324 BOT CHORD 1-4=-259/173, 3-4=-259/173 WEBS 2-4=-524/159

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 4-4-8, Exterior(2R) 4-4-8 to 7-4-8, Interior (1) 7-4-8 to 8-8-10 zone; cantilever left and right exposed ; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- 8) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 9) chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) All bearings are assumed to be SP No.3 .
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 55 lb uplift at joint 1 and 55 lb uplift at joint 3.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard

April 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss		Truss Type		Qty	Ply	Th	e Farm a	at Neills	Creek	Lot 00.0184 Roof	
2504-5093-A	V4		Valley		2	1	Jo	b Refere	nce (op	tional)		172666453
Structural, LLC, Thurr	mont, MD - 21788,			Run: 8.83 S Mar 2 ID:EKq2nKXzXnC	20 2025 P MdhHFGi	Print: 8.830 S I ns97zyAQwV	Mar 20 202 RfC?PsB7	25 MiTek I 70Hq3NSg	ndustries PqnL8w	s, Inc. Ti 3uITXb(hu Apr 10 08:29:17 GKWrCDoi7J4zJC?f	Page: 1
				7-6-6								
				7-6-13								
		4-15		6 2x4 2	II 2 - 7							
		4	_ 5	9 4		8 10 2x	3	0-0-4 	_			
			1	2x4 7-6-6	II							
Scale = 1:38.6												
.oading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 20.0 15.4/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB Matrix B	0.52 0.86 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
3CDL	10.0	Code	IKG2021/1P12014	Wallix-P							Weight: 31 lb	FT = 20%

LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.3
WEBS	2x4 SP N	0.3
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural 6-0-0 oc p	l wood sheathing directly applied or ourlins, except end verticals.
BOT CHORD	Rigid ceil bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(size)	3=7-6-13, 4=7-6-13, 5=7-6-13
	Max Horiz	5=-99 (LC 14)
	Max Uplift	4=-22 (LC 17), 5=-6 (LC 12)
	Max Grav	3=293 (LC 43), 4=427 (LC 47),
		5=314 (LC 46)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-5=-283/	/81, 1-2=-101/84, 2-3=-192/147
BOT CHORD	4-5=-120/	(179, 3-4=-120/179
WEBS	2-4=-339/	(150

NOTES

 Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 4-4-11, Interior (1) 4-4-11 to 7-0-5 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 5 degree rotation
- about its center.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 9) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be SP No.3.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 6 lb uplift at joint 5 and 22 lb uplift at joint 4.
- 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. LOAD CASE(S) Standard

April 11,2025

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0184 Roof	
2504-5093-A	PB3	Piggyback	11	1	Job Reference (optional)	172666454

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Thu Apr 10 08:29:16 ID:IZEd3GbQCy0F0dUouOXWQByATsv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:31.3

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	15	(psf) 20.0 5.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.23 0.36 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No Structural Rigid ceili (size) Max Horiz Max Uplift Max Grav	0.2 0.3 0.3 mg directly 1=6-3-10, 5=6-3-10, 1=-39 (LC 1=-238 (L 4=-25 (LC 1=215 (LC 6=332 (LC 6=332 (LC	athing directly applied applied. 2=6-3-10, 4=6-3-10, 6=6-3-10 (14) C 46), 2=-29 (LC 16), C 46), 2=-29 (LC 16), C 46), 2=-29 (LC 47) C 44), 2=484 (LC 46), C 47), 5=-217 (LC 56), C 63)	4) 5) 6) 7) 8) 9) 10	TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design. Plates check about its cen Gable requir Gable studs This truss ha chord live loa) * This truss h on the bottor 3-06-00 tall h chord and an	F7-16; Pr=20.0 psi 1.15); Pg=20.0 psi; OL = 1.15); Is=1.0 0; Cs=1.00; Ct=1.1 snow loads have b ted for a plus or mi- ter. es continuous bott spaced at 4-0-0 or is been designed fad nonconcurrent has been designed n chord in all area by 2-00-00 wide wi- by other members.	f (roof LL Pf=15.4 ; Rough 0 peen cor inus 5 de oom chor c. or a 10.0 with any I for a liv s where II fit betv	:: Lum DOL= psf (Lum DC Cat B; Partia sidered for th egree rotation d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto	1.15 DL = Illy his n dds. Opsf om					
FUNCES	Tension		pression/maximum	11 12) All bearings	are assumed to be hanical connectior	e SP No. 1 (by oth	3 . ers) of truss t	h					
TOP CHORD	1-2=-62/1	64, 2-3=-1	59/100, 3-4=-159/99,		bearing plate	e capable of withst	anding 2	38 lb uplift at	t joint					
BOT CHORD	2-6=-90/5	5, 4-6=-90	/55	1 and 236 ib uplift at joint 5.										
WEBS	3-6=-199/	2		10	, iv/A									
NOTES	ed roof live l	oade have	heen considered for											unin,

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 14) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 15) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 16) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

April 11,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Aft 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0184 Roof	
2504-5093-A	VA1	Valley	1	1	Job Reference (optional)	172666455

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Thu Apr 10 08:29:17 ID:S_viFJZgvpxBCpV8LkzLWPzjYmb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-2-4

Scolo - 1.24

00010 = 1.24													
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.24	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190	
Snow (Pf/Pg) TCDL	15.4/20.0 10.0	Lumber DOL Rep Stress Incr	1.15 YES	BC WB	0.31 0.06	Vert(TL) Horiz(TL)	n/a 0.00	- 4	n/a n/a	999 n/a			
BCLL BCDL	0.0* 10.0	Code	IRC2021/TPI2014	Matrix-AS							Weight: 17 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea Rigid ceiling directly a (size) 1=5-2-4, 3 Max Horiz 1=-25 (LC Max Uplift 1=-27 (LC Max Grav 1=278 (LC 4=410 (LC	athing directly applied applied. =5-2-4, 4=5-2-4 12) 50), 3=-27 (LC 48) :47), 3=278 (LC 51), :57)	 6) Plates check about its cer 7) Gable requires the second se	ked for a plus or ter. res continuous b spaced at 4-0-0 as been designe has been designe m chord in all ar by 2-00-00 wide ny other membe are assumed to chanical connect	minus 5 de pottom chor) oc. ed for a 10.0 nt with any hed for a liv eas where e will fit betw ers. be SP No. tion (by oth betanding 2	egree rotation d bearing.) psf bottom other live loa e load of 20.0 a rectangle veen the botto 3. ers) of truss t	n Ids. Opsf om to						

FORCES	(Ib) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-215/178, 2-3=-215/178
BOT CHORD	1-4=-112/162, 3-4=-112/162
WEBS	2-4=-305/79

NOTES

Unbalanced roof live loads have been considered for 1) this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.

- bearing plate capable of withstanding 27 lb uplift at joint 1 and 27 lb uplift at joint 3.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. 14) This truss design requires that a minimum of 7/16"
- structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard

April 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0184 Roof	
2504-5093-A	P1	Monopitch	4	1	Job Reference (optional)	172666456

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Thu Apr 10 08:29:14 ID:OSB5YkJzx4txW1iFxUKym3zzB_t-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:41.6

		•												
Loading	(psf)	Spacing	2-0-0		CSI	0.45	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
ICLL (roof)	20.0	Plate Grip DOL	1.15		IC	0.48	Vert(LL)	-0.03	5-9	>999	360	M120	244/190	
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.51	Vert(CT)	-0.04	5-9	>999	240			
TCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.01	2	n/a	n/a			
BCLL	0.0*	Code	IRC2021	/TPI2014	Matrix-AS		Wind(LL)	0.01	5-9	>999	240			
BCDL	10.0											Weight: 30 lb	FT = 20%	
LUMBER FOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2		5) 6)	Plates check about its cer This truss ha	ted for a plus or minister. As been designed for	nus 5 de or a 10.	egree rotation 0 psf bottom	n						
NEBS	2x4 SP No.3		7)	* This trues I		for a liv	other live los	aus. Opof						
DIHERS	2x4 SP No.3	 This truss has been designed for a live load of 20.0psf 												
SLIDER	Left 2x6 SP No.2 1-6-0		5.2 1-6-0 on the bottom chord in all areas where a rectangle											
BRACING				shord and a	by 2-00-00 wide will	i ili beli		UIII						
TOP CHORD	Structural wood sheat except end verticals.	athing directly applie	d, 8)	Bearings are	assumed to be: Jo	oint 2 SI	P No.2 , Join	t 13						
BOT CHORD	10-0-0 oc bracing.			SP No.3 .										
REACTIONS	(size) 2=0-3-0, 1	3=0-1-8	9)	Bearing at jo	int(s) 13 considers	paralle formul	l to grain valu a Building	e						
	Max Horiz 2=62 (LC	16)		designer sho	ould verify capacity	of bear	ing surface.							
	Max Uplift 13=-30 (Le Max Grav 2=400 (LC	C 13) C 40), 13=305 (LC 42	10) 2)	Provide med bearing plate	hanical connection at joint(s) 13.	(by oth	ers) of truss	to						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	11)	One H2.5A S recommende	Simpson Strong-Tie ed to connect truss	e conne to bear	ctors ing walls due	e to						
TOP CHORD	1-2=0/41, 2-4=-161/ ² 4-6=-81/193	120, 5-6=-51/292,		UPLIFT at jt does not cor	(s) 13. This connects and the second states (second second s	tion is f	or uplift only	and						
BOT CHORD	2-5=-72/86		12)	This truss ha	as been designed for	or a mo	ving concent	rated						
WEBS	4-13=-223/73		,	load of 250.0	Ib live and 3.0lb de	ad loca	ted at all mic	ł						

NOTES

 Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 4-6-4 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

- 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 13) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord.

LOAD CASE(S) Standard

April 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0184 Roof	
2504-5093-A	V5	Valley	2	1	Job Reference (optional)	172666457

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Thu Apr 10 08:29:17 ID:EKq2nKXzXnCMdhHFGns97zyAQwV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:31

-				1						i		
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.71	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pa)	15.4/20.0	Lumber DOL	1.15	BC	0.71	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-P		- ()						
BCDL	10.0										Weight: 17 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 4-8-8 oc purlins, exc Rigid ceiling directly bracing. (size) 2=4-8-8, 3 Max Horiz 3=-58 (LC Max Uplift 3=-2 (LC Max Grav 2=333 (LC	athing directly applied cept end verticals. applied or 10-0-0 oc 3=4-8-8 : 12) 17) 2 41), 3=333 (LC 39)	 7) Gable stude 8) This truss h chord live log 9) * This truss on the botto 3-06-00 tall chord and a 10) All bearings 11) Provide me bearing plat 12) This truss h load of 250. panels and 	spaced at 4-0-0 oc as been designed fo ad nonconcurrent w has been designed m chord in all areas by 2-00-00 wide wil ny other members. are assumed to be chanical connection e capable of withsta as been designed fo 0b live and 3.0lb de at all panel points a	c. or a 10.0 vith any for a liv s where Il fit betw SP No. (by oth anding 2 or a move ead location	D psf bottom other live loa e load of 20.0 a rectangle veen the botto 2. ers) of truss t ! Ib uplift at jo ving concentr tted at all mid	ds. Dpsf om int 3. ated					
FORCES	(lb) - Maximum Com	pression/Maximum	panels and	at all panel points al	long the	e Top Chord a	and					
1 ONOLO	DRCES (Ib) - Maximum Compression/Maximum Tension				viur arry	other live loa	us.					
TOP CHORD	1-3=-293/100, 1-2=-	93/85	LUAD CASE(S	Stanuaru								
BOT CHORD	2-3=-76/120											
NOTES												
 Wind: ASS Vasd=95m II; Exp B; Exterior(2 vertical lef forces & M DOL=1.60 Truss des only. For see Stand or consult TCLL: AS¹ 	CE 7-16; Vult=120mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (en E) zone; cantilever left it and right exposed;C- /WFRS for reactions si 0 plate grip DOL=1.60 igned for wind loads in studs exposed to wind lard Industry Gable Ene qualified building desig CE 7-16; Pr=20.0 psf ((3-second gust) DL=6.0psf; h=25ft; Ca ivelope) and C-C and right exposed; e C for members and hown; Lumber the plane of the truss (normal to the face), d Details as applicabl gner as per ANSI/TPI roof LL: Lum DOL=1.	at. end s e, 1. 15							All and a second s	OR FESS	ROUNT
 Plate DOL 1.15 Plate Exp.; Ce= 4) Unbalance design. 5) Plates che about its c 6) Gable req 	_=1.15); Pg=20.0 psf; F DOL = 1.15); Is=1.0; F 1.0; Cs=1.00; Ct=1.10 ed snow loads have be ecked for a plus or minu- center. uires continuous bottor	Yf=15.4 psf (Lum DOL Rough Cat B; Partially en considered for this us 5 degree rotation m chord bearing.	- = / 6						1111	J. M. MARINE	286) Shini L. G	EEP. ALINS

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially 3) Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 5 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.

April 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0184 Roof	
2504-5093-A	F1	Monopitch	2	1	Job Reference (optional)	172666458

1-11-8 1-11-8

1-11-8

12 7 Г

6

2x4 II

3

-1-0-0

1-0-0

Structural LLC Thurmont MD - 21788

TCDL

BCLL

BCDL

WEBS

WEBS

1)

2)

3)

4)

Run: 8.83 S. Mar 20 2025 Print: 8.830 S.Mar 20 2025 MiTek Industries. Inc. Thu Apr 10 08:29:12 ID:q?aVs?vufxuG2uC24VcZ4WzhCGT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1-11-11 2-0-12 2 0-10-0 7 3x4 = 8x8 = 1-11-8 Scale = 1:27.3 Plate Offsets (X, Y): [5:Edge,0-6-0] Loading Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES (psf) (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.23 Vert(LL) -0.01 4-5 >999 360 MT20 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 BC 0.23 Vert(CT) -0.01 4-5 >999 240 10.0 Rep Stress Incr WB 0.03 Horz(CT) YES 0.00 4 n/a n/a 0.0 IRC2021/TPI2014 Matrix-MP Code 10.0 Weight: 13 lb LUMBER 5) Plates checked for a plus or minus 5 degree rotation about its center. TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2 6) This truss has been designed for a 10.0 psf bottom 2x4 SP No.3 chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 7) BRACING on the bottom chord in all areas where a rectangle TOP CHORD Structural wood sheathing directly applied or 3-06-00 tall by 2-00-00 wide will fit between the bottom 1-11-8 oc purlins, except end verticals. chord and any other members. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc Bearings are assumed to be: Joint 5 SP No.2 . 8) bracing. Refer to girder(s) for truss to truss connections. 9) **REACTIONS** (size) 4= Mechanical, 5=0-3-8 10) Provide mechanical connection (by others) of truss to Max Horiz 5=45 (LC 15) bearing plate capable of withstanding 13 lb uplift at joint Max Uplift 4=-13 (LC 13) Max Grav 4=278 (LC 45), 5=317 (LC 40) 11) This truss has been designed for a moving concentrated FORCES (lb) - Maximum Compression/Maximum load of 250.0lb live and 3.0lb dead located at all mid Tension panels and at all panel points along the Top Chord and 1-2=0/47, 2-3=-76/66, 3-4=-262/36, TOP CHORD Bottom Chord, nonconcurrent with any other live loads. 2-5=-300/100 LOAD CASE(S) Standard BOT CHORD 4-5=-120/56 2-4=-41/111 NOTES 10 Manual Str Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

April 11,2025

GRIP

244/190

FT = 20%

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0184 Roof	
2504-5093-A	F1G	Monopitch Supported Gable	2	1	Job Reference (optional)	172666459

-1-0-0

1-0-0

Structural, LLC, Thurmont, MD - 21788,

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Thu Apr 10 08:29:12 ID:yEL_0esNbjOqZGuHrfXdvgzhCGX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

1-11-8 1-11-8

370 1

1-11-8

2x4 u

1-11-8

Scale = 1:30.4

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	1/TPI2014	CSI TC BC WB Matrix-MR	0.17 0.19 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 MT20HS Weight: 11 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD 30T CHORD WEBS BRACING TOP CHORD 30T CHORD REACTIONS FORCES	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sheat 1-11-8 oc purlins, exc Rigid ceiling directly a bracing. (size) 4=1-11-8, 5 Max Horiz 5=45 (LC 1: Max Uplift 4=-13 (LC 1: Max Grav 4=-278 (LC - (lb) - Maximum Comp Tension 2-5=-299/160, 1-2=0/4	thing directly applie cept end verticals. applied or 6-0-0 oc 5=1-11-8 3) 13) 45), 5=317 (LC 40) ression/Maximum 47, 2-3=-101/44,	6) 7) vd or 8) 9) 10 11 12 , 12	This truss ha load of 12.0 p overhangs nd All plates are Plates check about its cen Gable require Truss to be fi braced again) Gable studs) This truss ha chord live loa) * This truss h on the bottom 3-06-00 tall b chord and ar	s been designed for on 2.00 times fit on-concurrent with MT20 plates unle ed for a plus or mit ter. es continuous botte ully sheathed from st lateral movement spaced at 2-0-0 oc s been designed for d nonconcurrent v has been designed in chord in all areas by 2-00-00 wide will yo other members. are assumed to be	or greate at roof k other lin ss other nus 5 de om chor one fac on fac on a 10.0 vith any for a liv s where Il fit betw SP No.	er of min roof pad of 15.4 ps ve loads. wise indicated eggree rotation d bearing. e or securely iagonal web). 0 psf bottom other live load e load of 20.0 a rectangle veen the botto 2.	live sf on d. ds.)psf om						
BOT CHORD NOTES 1) Wind: AS(Vasd=95n	3-4=-262/81 4-5=-33/38 CE 7-16; Vult=120mph (; nph; TCDL=6.0psf; BCD	3-second gust) IL=6.0psf; h=25ft; C	14 15 Cat.) Provide mecl bearing plate 4.) This truss ha load of 250.0 	hanical connection capable of withsta s been designed for lb live and 3.0lb de	or a move and ing 1 or a move ad loca	ers) of truss to 3 lb uplift at jo ving concentra ted at all mid	o pint ated						

Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

15) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. LOAD CASE(S) Standard

April 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0184 Roof	
2504-5093-A	M1	Monopitch	1	1	Job Reference (optional)	172666460

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Thu Apr 10 08:29:14 ID:nCF9Psh27DSdS8kGH2d0sAyAPpH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:32.2

Loading (psf) Spacing 2- TCLL (roof) 20.0 Plate Grip DOL 1. Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1. TCDL 10.0 Rep Stress Incr Yf BCLL 0.0* Code IR BCDL 10.0	0-0 15 15 ES C2021/TPI2014	CSI TC 0 BC 0 WB 0 Matrix-MR	0.18 0.21 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 0.00 0.00 0.00	(loc) 4-5 4-5 4 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%	
 LUMBER IOP CHORD 2x4 SP No.2 SOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 1-11-8 oc purlins, except end verticals. 3OT CHORD 6-0-0 oc bracing. REACTIONS (size) 4= Mechanical, 5=0-3-0 Max Horiz 5=49 (LC 13) Max Uplift 4=-30 (LC 13), 5=-1 (LC 12) Max Grav 4=278 (LC 42), 5=317 (LC 40) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/47, 2-3=-97/47, 3-4=-262/60, 2-5=-299/104 BOT CHORD 4-5=-35/32 NOTES 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (roof LL: Lum DOL=4.15) Plate DOL=1.15); Pg=20.0 psf (roof LL: Lum DOL=5.15) Plate DOL=4.10; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) Plates checked for a plus or minus 5 degree rotation about its center. 	 6) This truss ha chord live loa 7) * This truss h on the botton 3-06-00 tall b chord and an 8) Bearings are 9) Refer to girdd 10) Provide mecl bearing plate 4 and 1 lb up 11) This truss ha load of 250.0 panels and a Bottom Chor LOAD CASE(S) 	s been designed for a d nonconcurrent with as been designed for n chord in all areas wi y 2-00-00 wide will fit assumed to be: Joint er(s) for truss to truss nanical connection (by capable of withstand lift at joint 5. s been designed for a lb live and 3.0lb dead t all panel points alon- d, nonconcurrent with Standard	a 10.0 p n any of r a live there a t betwee t 5 SP s conne by other d locate ng the T n any of	psf bottom ther live loads load of 20.0ps rectangle en the bottom No.2. ctions. 's) of truss to lb uplift at joir ng concentrate ad at all mid Top Chord and ther live loads	s. sf n ed d s.			And	SEAL 2867	ROLLAR ST.	

April 11,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

