

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DR Horton Inc

Model: 87 Eagle Creek -Edisto - E

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

TRIANGULAR SYMBOL NEAR END OF TRUSS INDICATES LEFT END OF TRUSS AS SHOWN ON INDIVIDUAL TRUSS DRAWINGS

*

General Notes:

** CUTTING OR DRILLING OF COMPONENTS SHOULD NOT BE DONE WITHOUT CONTACTING COMPONENT SUPPLIER FIRST.

	7		
V			
Tru	ss Drav	ving Le	eft

End Indicator

GIRDERS MUST	BE FULLY CONNECTED	TOGETHER PRIOR TO ADDING ANY LOADS.	3 ARE READ AS: FOOT-INCH-SIXTEENTH. 1, all uplift connec	tors shown within these documents are recommendations stors are the responsibilty of the bldg designer and or cont	३ only tractc	[,] Pe or.	r AN	ISI/TF	וי
2	Scale: Date:	DR Horton Inc		THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for each truss		/00/00	00/00/	00/00/	
NTS 4/30/202 Designer: be Donald Project Num 5040190 Sheet Num	87 Eagle Creek - Edisto - E	CARTER	design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The disign of the tuss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing of Wood Truss" available			00		Revision:	
	lison	ROOF PLACEMENT PLAN	Lamoer	from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179		Vame	lame	Vanie	S S S

RE: 25040190 87 Eagle Creek - Edisto E - Roof Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:Customer: DR Horton IncProject Name:25040190Lot/Block: 87Model:Edisto EAddress:Subdivision:Eagle CreekCity:State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2021/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.7 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 44 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Seal# I73141543 I73141544 I73141545 I73141546 I73141547 I73141547 I73141549 I73141550 I73141550 I73141552 I73141555 I73141555 I73141555 I73141556 I73141558 I73141559 I73141559 I73141560	Truss Name A1 A2 A3 A4 A5 A6 A7 A8 A9 B1 B2 C1 C2 C1 C2 D1 D2 D3 D4 D5	Date 5/1/2025	No. 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	Seal# I73141563 I73141564 I73141565 I73141566 I73141567 I73141568 I73141569 I73141570 I73141570 I73141571 I73141572 I73141573 I73141575 I73141576 I73141577 I73141578 I73141579 I73141579 I73141580	Truss Name E2 E3 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V10 V11 V12 V13 V14 V15 V16	Date 5/1/2025
17 18 19 20	I73141559 I73141560 I73141561 I73141562	D4 D5 D6 E1	5/1/2025 5/1/2025 5/1/2025 5/1/2025	37 38 39 40	73141579 73141580 73141581 73141582	V15 V16 V17 V18	5/1/2025 5/1/2025 5/1/2025 5/1/2025

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Galinski, John

My license renewal date for the state of North Carolina is December 31, 2025

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Galinski, John

RE: 25040190 - 87 Eagle Creek - Edisto E - Roof

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Project Customer: DR Horton Inc Project Name: 25040190 Lot/Block: 87 Address: City, County: State:

No. 41 42 43	Seal# I73141583 I73141584 I73141585	Truss Name V19 V20 V21	Date 5/1/2025 5/1/2025 5/1/2025
43	1/3141585	V21	5/1/2025
44	173141586	V22	5/1/2025

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	A1	Common	3	1	Job Reference (optional)	173141543

25040190	А	1	Common		3	1					N	173141543
Carter Components (S	Sanford, NC), S	Sanford, NC - 27332,		Run: 8.73 S Feb 1 ID:ZV1gNYWIsiBI\	9 2025 /MF?7z	Print: 8.730 S I WKIEzODoV-R	Feb 19 2 RfC?PsB	<u>ob Refer</u> 025 MiTek 70Hq3NSg	ence (op Industrie: PqnL8w3	s, Inc. V uITXbG) Wed Apr 30 12:37:47 GKWrCDoi7J4zJC?f	Page: 1
	-0-10-8	6-4-3	13-4-13	18-5-8	1	23-6-3		30-6	6-13		36-11-0	37-9-8
	0-10-8	6-4-3	7-0-11	5-0-11	1	5-0-11	1	7-0	-11		6-4-3	0-10-8
Scale = 1:71.1 Plate Offsets (X, Y)	1 2 6x8 II 	5x 4 3x5 = 3 23 6-4-3 6-4-3 -3-0], [8:0-3-0,0-3-0], [1	6 = 6 ¹² 6 = 13-4-13 13 7-0-11 0 3:0-5-0,0-4-8], [22:0-5-0,0	34 33 34 33 34 34 34 34 34 34	б	35 14 223 22-10-5 -0 1-10-13 0-0 0-1	367 367 367 38×8035 13 3×8035 5-0 11-4 -15 5-12 -15 5-12	<u>30-6</u> 7-0	<u>5-13</u> -11	55	x6 x 8 37 2 2 36-11-0 6-4-3	3x5 s 9 10 11 8 6x8 II
Loading	(p:	sf) Spacing	2-0-0	CSI	0.22	DEFL	ir	(loc)	l/defl	L/d	PLATES	GRIP
Snow (Pf/Pg)	13.9/20	0.0 Lumber DOL	1.15	BC	0.32	Vert(CT)	-0.22	. 17 5 17	>999 >976	∠40 180	10120	244/190
TCDL	10	0.0 Rep Stress Incr	YES	WB	0.40	Horz(CT)	0.07	10	n/a	n/a		
BCLL BCDL	0 10	0.0* Code 0.0	IRC2021/TPI2014	Matrix-MSH							Weight: 258 lb	FT = 20%
		2.05	2) Wind: ASC	E 7-16; Vult=130mph	(3-sec	cond gust)	t: Cat					

TOP CHORD	2x4 SP 2400F 2.0E
BOT CHORD	2x6 SP 2400F 2.0E *Except* 21-15:2x4 SP No.2
WEBS	2x4 SP No.3 *Except* 22-6,13-6:2x4 SP No.2
SLIDER	Left 2x4 SP No.3 2-6-0, Right 2x4 SP No.3 2-6-0
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 4-2-2 oc purlins.
BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing.
REACTIONS	(size) 2=0-3-8, 10=0-3-8
	Max Horiz 2=98 (LC 14)
	Max Grav 2=1946 (LC 3), 10=1946 (LC 3)
FORCES	(Ib) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=0/28, 2-5=-3540/0, 5-6=-3310/0,
	6-7=-3310/0, 7-10=-3540/0, 10-11=0/28
BOT CHORD	2-23=0/3098, 20-23=0/3100, 18-20=0/2235,
	14-18=0/2235, 12-14=0/3100, 10-12=0/3099,
	19-21=-108/0, 17-19=-108/0, 16-17=-108/0,
	15-16=-108/0
WEBS	5-22=-421/178, 21-22=0/1395, 6-21=0/1495,
	4-22=-333/171, 4-23=-68/12, 7-13=-421/178,
	6-15=0/1495, 13-15=0/1395, 8-13=-333/171,
	8-12=-68/12, 19-20=-108/0, 17-18=-113/0,
	14-16=-108/0
NOTES	

NOTES

1) Unbalanced roof live loads have been considered for this design.

II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-10-1 to 2-10-3, Interior (1) 2-10-3 to 18-5-8, Exterior(2R) 18-5-8 to 22-1-13, Interior (1) 22-1-13 to 37-9-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

6) 200.0lb AC unit load placed on the bottom chord, 18-5-8 from left end, supported at two points, 5-0-0 apart.

All plates are 2x4 MT20 unless otherwise indicated. 7)

* This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 9) All bearings are assumed to be SP 2400F 2.0E .

LOAD CASE(S) Standard

3)

5)

May 1,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	A2	Common	6	1	Job Reference (optional)	173141544

Lumber DOL=1.60 plate grip DOL=1.33

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 12:37:48 ID:ZV1gNYWIsiBIVMF?7zWKIEzODoV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

May 1,2025

Edenton, NC 27932

L. GA

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	A3	Common	2	1	Job Reference (optional)	173141545

Run: 8.73 E May 9 2024 Print: 8.730 E May 9 2024 MiTek Industries, Inc. Thu May 01 14:38:29 ID:gc7G9x02nGC9Tnb1sEC5TQzO8am-FCZzM4uXTwjejN_AmhsjoR8hg_8Hf84ew6g_yhzKrzO Page: 1

May 1,2025

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	A4	Common	1	1	Job Reference (optional)	173141546

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 12:37:49 ID:IBmKzq9yX8AJQIGKkG7rGIzO8DK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y):	[2:0-6-1,Edge]	[4:0-3-0,0-3-0],	[8:0-3-0,0-3-0],	[10:0-3-8,Edge],	, [12:0-4-0,0-3-0]	, [14:0-4-0,0-3-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.59 0.58 0.55	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.35 0.11	(loc) 14-15 14-15 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 227 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES	2x4 SP 2400F 2.0E 2x4 SP 2400F 2.0E 2x4 SP No.3 *Excep Left 2x6 SP 2400F 2 SP 2400F 2.0E 2-0 Structural wood shea 3-10-11 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 1 Max Horiz 2=100 (LC Max Grav 2=1655 (L (lb) - Maximum Com	t* 6-14,6-12:2x4 SP .0E 2-0-0, Right 2 0-0 athing directly applie applied or 10-0-0 oc 10=0-3-8 C 14) .C 3), 10=1612 (LC : pression/Maximum	3) No.2 4) 5) ed or 6) 3) 7)	TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced ³ design. This truss ha load of 12.0 p overhangs nc * This truss h on the bottom 3-06-00 tall b chord and an All bearings a	7-16; Pr=20.0 psf 15); Pg=20.0 psf; ate DOL=1.15); Is= ; Cs=1.00; Ct=1.10 snow loads have b s been designed for bosf or 2.00 times flag on-concurrent with as been designed n chord in all areas y 2-00-00 wide will y other members, are assumed to be Standard	(roof LL Pf=13.9 =1.0; Rc) eeen cor or greate at roof lo other liv for a liv where l fit betw with BC SP 240	L: Lum DOL= P psf (Lum hugh Cat B; F asidered for t er of min roo bad of 13.9 p /e loads. e load of 20. a rectangle /een the bott DL = 10.0ps 0F 2.0E .	E1.15 Fully his f live psf on Opsf tom t.					
	Tension	1/252 5 6 2604/24 ⁻	7										
TOP CHORD	6-7=-2604/349, 7-10)=-2998/256	Ι,										
BOT CHORD	2-15=-138/2579, 13-	-15=-140/2575,)-11140/2582											
WEBS	4-15=0/197, 4-14=-4 6-14=-152/1031, 6-1 6-12=-152/1032, 7-1 8-12=-447/95, 8-11=	143/89, 5-14=-445/17 3=0/244, 2=-445/177, =0/197	77,								-	ORTH CA	ROUNT
NOTES											33	PM	NS: 7 -
 Unbalance this design Wind: ASC Vasd=103 II; Exp B; I Exterior(2I 18-5-8, Ex to 36-11-0 vertical lef forces & M DOL=1.60 	ed roof live loads have CE 7-16; Vult=130mph imph; TCDL=6.0psf; BG Enclosed; MWFRS (en E) -0-10-1 to 2-9-14, In terior(2R) 18-5-8 to 22 zone; cantilever left at t and right exposed;C- IWFRS for reactions sl plate grip DOL=1.33	been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) and C-C tterior (1) 2-9-14 to 2-1-7, Interior (1) 22- nd right exposed ; en C for members and hown; Lumber	r Cat. 1-7 nd								S MULTINE S	SEA 2867	E.P. C. L. M.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	A5	Common Supported Gable	1	1	Job Reference (optional)	173141547

WEBS

WEBS

OTHERS

BRACING

TOP CHORD

BOT CHORD

REACTIONS (size)

2x4 SP No.3

2x4 SP No.3

bracing.

1 Row at midpt

Structural wood sheathing directly applied or

22=36-11-0. 23=36-11-0.

24=36-11-0, 25=36-11-0,

26=36-11-0, 27=36-11-0,

28=36-11-0, 30=36-11-0,

31=36-11-0, 32=36-11-0,

33=36-11-0, 34=36-11-0,

36=36-11-0, 37=36-11-0,

38=36-11-0, 39=36-11-0,

40=36-11-0, 41=36-11-0,

24=-6 (LC 16), 25=-18 (LC 16),

26=-15 (LC 16), 27=-16 (LC 16),

28=-15 (LC 16), 30=-19 (LC 16),

31=-10 (LC 16), 33=-11 (LC 15),

34=-19 (LC 15), 36=-15 (LC 15),

37=-16 (LC 15), 38=-15 (LC 15),

39=-19 (LC 15), 40=-4 (LC 15),

41=-56 (LC 15), 42=-26 (LC 11)

Max Uplift 22=-6 (LC 12), 23=-48 (LC 16),

42=36-11-0

Max Horiz 42=-115 (LC 13)

11-32, 10-33, 12-31

6-0-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 6-0-0 oc

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Wed Apr 30 12:37:49 ID:zOwdqVY5FoLlp?Y_EniUSDzO8oG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

26=160 (LC 2), 27=160 (LC 40), II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner 28=160 (LC 2), 30=180 (LC 23), (3E) -0-10-1 to 2-10-3, Exterior(2N) 2-10-3 to 18-5-8, 31=205 (LC 23), 32=166 (LC 36) Corner(3R) 18-5-8 to 22-1-13. Exterior(2N) 22-1-13 to 33=205 (LC 22), 34=180 (LC 22), 37-9-1 zone; cantilever left and right exposed ; end 36=160 (LC 2), 37=160 (LC 39), vertical left and right exposed;C-C for members and 38=160 (LC 2), 39=161 (LC 39), forces & MWFRS for reactions shown: Lumber 40=155 (LC 2), 41=179 (LC 33), DOL=1.60 plate grip DOL=1.33 42=158 (LC 34) Truss designed for wind loads in the plane of the truss 3) (Ib) - Maximum Compression/Maximum only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 2-42=-136/74, 1-2=0/33, 2-3=-94/68, 3-4=-75/59, 4-6=-70/111, 6-7=-71/157, 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum 7-8=-82/202, 8-9=-100/247, 9-10=-120/295, DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully 10-11=-136/334, 11-12=-136/334,

Exp.; Ce=0.9; Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been considered for this

- design. 6)
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

May 1,2025

Page: 1

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org)

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

1)

Tension

12-13=-120/295, 13-14=-100/247,

16-18=-59/111, 18-19=-54/35, 19-20=-75/40,

41-42=-34/98, 40-41=-34/98, 39-40=-34/98,

38-39=-34/98, 37-38=-34/98, 36-37=-34/98,

34-36=-34/98, 33-34=-34/98, 32-33=-34/98,

31-32=-34/98, 30-31=-34/98, 28-30=-34/98,

27-28=-34/98, 26-27=-34/98, 25-26=-34/98,

24-25=-34/98, 23-24=-34/98, 22-23=-34/98

9-34=-140/83, 8-36=-126/76, 7-37=-126/78,

6-38=-127/77, 5-39=-128/80, 4-40=-123/69,

14-15=-82/202, 15-16=-71/157,

11-32=-225/58, 10-33=-165/65,

3-41=-147/139, 12-31=-165/65,

13-30=-140/83, 14-28=-126/76,

15-27=-126/78, 16-26=-127/77, 17-25=-128/80, 18-24=-122/69,

Unbalanced roof live loads have been considered for

19-23=-145/139

20-21=0/33, 20-22=-136/73

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

this desian.

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	A5	Common Supported Gable	1	1	Job Reference (optional)	173141547

- All plates are 2x4 MT20 unless otherwise indicated. 7)
- Gable requires continuous bottom chord bearing. 8)
- Truss to be fully sheathed from one face or securely 9) braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) All bearings are assumed to be SP No.2 .
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 26 lb uplift at joint 42, 6 lb uplift at joint 22, 11 lb uplift at joint 33, 19 lb uplift at joint 34, 15 lb uplift at joint 36, 16 lb uplift at joint 37, 15 lb uplift at joint 38, 19 lb uplift at joint 39, 4 lb uplift at joint 40, 56 lb uplift at joint 41, 10 lb uplift at joint 31, 19 lb uplift at joint 30, 15 lb uplift at joint 30, 15 lb uplift at joint 28, 16 lb uplift at joint 27, 15 lb uplift at joint 26, 18 lb uplift at joint 25, 6 lb uplift at joint 24 and 48 lb uplift at joint 23.

LOAD CASE(S) Standard

Run; 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 12:37:49 ID:zOwdqVY5FoLlp?Y_EniUSDzO8oG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	A6	Common Supported Gable	1	1	Job Reference (optional)	173141548

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 12:37:49 ID:g0vEKOIPXjpZ?6Z5P9GaGMzO89H-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:64.7

Plate Offsets (X, Y): [5:0-3-0,0-3-0], [17:0-3-0,0-3-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-	0.11 0.07 0.16 MR	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - 21	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 253 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood sh 6-0-0 oc purlins, e Rigid ceiling direct bracing.	eathing directly applie except end verticals. ly applied or 10-0-0 oc	ed or S	Max Grav	21=93 (LC 33), 2 23=150 (LC 2), 2 25=160 (LC 2), 2 27=160 (LC 2), 2 30=205 (LC 23), 32=205 (LC 22), 35=160 (LC 2), 2 37=160 (LC 2), 2 41=163 (LC 34)	22=194 (LC 4 24=162 (LC 4 29=180 (LC 2 31=162 (LC 33=180 (LC 2 33=180 (LC 3 36=160 (LC 3 38=161 (LC 3 40=178 (LC 3	0), 2 0), 3), 36), 22), 9), 9), 3),	 Wir Vas II; E (3E Con 36- ver ford DO Tru onl 	nd: ASCE sd=103m Exp B; En) -0-10-1 rner(3R) 9-4 zone tical left : ces & MV L=1.60 p ss desig v. For st	E 7-16; nph; TC nclose to 2-9 18-5-8 e; canti and rig VFRS blate gi ned fo uds ex	; Vult=130mph (CDL=6.0psf; BC/ d; MWFRS (env 9-14, Exterior(2N 8 to 22-1-7, Exter lever left and rig pht exposed;C-C for reactions sho rip DOL=1.33 r wind loads in ti goosed to wind (3-second gus DL=6.0psf; h= alope) and C-) 2-9-14 to 18 rior(2N) 22-1- ht exposed; for members own; Lumber he plane of th normal to the	t) =25ft; Cat. -C Corner 8-5-8, -7 to end ; and he truss face).
WEBS REACTIONS	1 Row at midpt (size) 21=36-1 25=36-1 27=36-1 30=36-1 32=36-1 35=36-1 37=36-1 39=36-1 41=36-1 Max Uplift 22=-49 24=-18	11-31, 10-32, 12-30 1-0, 22=36-11-0, 1-0, 24=36-11-0, 1-0, 29=36-11-0, 1-0, 31=36-11-0, 1-0, 33=36-11-0, 1-0, 38=36-11-0, 1-0, 40=36-11-0, 1-0, (LC 14) (LC 16), 23=-6 (LC 16) (LC 16), 25=-15 (LC 10)	BOT CHORD), 6),	(iii) - Inia. Tension 2-41=-14 3-4=-82/ 7-8=-89/ 10-11=-1 14-15=-8 16-18=-6 20-21=-6 40-41=-3 37-38=-3 33-35=-3 30-31=-3 26-27=-2	10/73, 1-2=0/33, 2-60, 4-6=-76/112, 6 202, 8-9=-102/247 37/335, 11-12=-12 21/295, 13-14=-11 19/202, 15-16=-77/ 15/112, 18-19=-59/ 12/82, 39-40=-32/8 12/82, 30-40=-32/8 12/82, 32-33=-32/8 12/82, 29-30=-32/8 12/82, 29-30=-32/8	3=-99/67, -7=-77/157, -7=-77/157, -7=-77/157, -7/157, -7/257, -7/2747,	2295, 6/37, (82, (82, (82, (82, (82,	see or o Pla DO Exp (5) Unl des (5) Thi loa ove	Standar Standar consult q LL: ASC te DOL= L=1.15 F 0.; Ce=0. palancec ign. s truss h d of 12.0 rhangs r	ad Indu ualified E 7-16 1.15); Plate D 9; Cs= I snow as bee psf or non-co	sistry Gable End d building desigr ; Pr=20.0 psf (rfr Pg=20.0 psf; Pfr 00L=1.15); Is=1. =1.00; Ct=1.10 loads have bee en designed for g =2.00 times flat i ncurrent with oth	Defails as ap ler as per AN of LL: Lum D =13.9 psf (Lui 0; Rough Cat n considered greater of min oof load of 11 her live loads.	plicable, SI/TPI 1. OL=1.15 m : B; Fully for this roof live 3.9 psf on
	26=-16 29=-19 32=-11 35=-15 37=-15 39=-3 (I 41=-27	(LC 16), 27=-15 (LC 16) (LC 16), 30=-10 (LC 11) (LC 15), 33=-19 (LC 12) (LC 15), 36=-16 (LC 12) (LC 15), 38=-19 (LC 12) (LC 15), 40=-57 (LC 15) (LC 11)	6), 6), WEBS 5), 5), 5), 5), 1), Wotes	20-27=-3 23-24=-3 9-33=-14 6-37=-12 3-40=-14 13-29=-1 15-26=-1 17-24=-1 19-22=-1	2/22, 25-26=-32/8 22/82, 22-23=-32/8 22/82, 22-23=-32/8 22/85, 10-32=-16 10/83, 8-35=-126/7 7/77, 5-38=-128/8 15/138, 12-30=-16 40/83, 14-27=-12 26/77, 16-25=-126 28/79, 18-23=-118 56/162	2, 24-23=32/ 2, 21-22=-32/ 5/65, 6, 7-36=-126, 0, 4-39=-123, 5/65, 5/76, 5/77, 8/74,	/82 /78, /69,		COULDAN.	N. S. S.	SE/ 286	IL 77 EEER.SS	
			this design	ia root live I.	ioaus nave béén (considered for	ſ				Min L. G	AL	

NOTES

Page: 1

Thummen a

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 1/2/2023 BEFORE USE.

Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

May 1,2025

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	A6	Common Supported Gable	1	1	Job Reference (optional)	173141548
Carter Components (Sanford, NC), Sanford, NC - 27332,	Run: 8.73 S Feb 19 2	2025 Print: 8.	730 S Feb 1	9 2025 MiTek Industries, Inc. Wed Apr 30 12:37:49	Page: 2

- All plates are 2x4 MT20 unless otherwise indicated. 7)
- Gable requires continuous bottom chord bearing. 8)
- Truss to be fully sheathed from one face or securely 9)
- braced against lateral movement (i.e. diagonal web). 10) Gable studs spaced at 2-0-0 oc.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) All bearings are assumed to be SP No.2 .
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 27 lb uplift at joint 41, 11 lb uplift at joint 32, 19 lb uplift at joint 33, 15 lb uplift at joint 35, 16 lb uplift at joint 36, 15 lb uplift at joint 37, 19 lb uplift at joint 38, 3 lb uplift at joint 39, 57 lb uplift at joint 40, 10 lb uplift at joint 30, 19 lb uplift at joint 29, 15 lb uplift at joint 27, 16 lb uplift at joint 26, 15 lb uplift at joint 25, 18 lb uplift at joint 24, 6 lb uplift at joint 23 and 49 lb uplift at joint 22.

LOAD CASE(S) Standard

Run; 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 12:37:49 ID:g0vEKOIPXjpZ?6Z5P9GaGMzO89H-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	A7	Roof Special	4	1	Job Reference (optional)	173141549

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 12:37:49 ID:BbxjEoIILJJyUtfnL_NG9mzO8H1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	-0-10-8 <u>2</u> -5. 	-4 6-4-3 6-4-1 -4 3-10-15 0-0-7	0 <u>13-5-12</u> 7-1-2	<u> </u>	23-6-3 5-0-11 5x8=		30-6-13 7-0-11		36-11-0 6-4-3
10-0-12 1-0-0 10-0-12	8x10= 0.0-1 1 2 20 0-1 1 20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5x6 3x5 = 5 425 19 - 17 4x5 = 17	6 ¹²	2x4 II 626 15 0=	7 8 14 31	28 ^{2x4} II 298 13		5x6* 9 12	30 4x5 x 10 11
		4x5 II 3x6 II		2x4 II	5x6=	5x8=		2x4 II	5x10 u
Scale = 1:69.2	⊢ <u>2-3-</u> 2-3-	-8 6-4-3 -8 4-0-11	<u>13-4-0</u> 6-11-13	<u>18-5-8</u> 5-1-8	<u>23-5-0</u> 4-11-8	23-6-3 0-1-3	<u>30-6-13</u> 7-0-11		36-11-0 6-4-3
Plate Offsets (X, Y): [2:Edge,0-3-4]	, [3:0-6-8,0-3-3], [5:0-3-	0,0-3-0], [9:0-3-0,0-3-0), [11:0-3-8,Edge], [13	:0-3-4,0-3-0], [16:	0-3-12,0-2-8], [1	8:0-0-8,0-1-12	2]	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC 0 BC 0 WB 0 Matrix-MSH	.57 Vert(LL) .97 Vert(CT) .61 Horz(CT)	in (loc) -0.21 16-17 -0.40 16-17 0.22 11	I/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 Weight: 239	GRIP 244/190 lb FT = 20%
LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	2x4 SP 2400F 2.0E 2x4 SP 2400F 2.0E SP No.3 2x4 SP No.3 *Excep Right 2x6 SP 2400F Structural wood she 3-5-7 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 11=0-3-8. Max Horiz 20=109 (I Max Grav 11=1586 (Ib) - Maximum Com Tension 1-2=0/33, 2-3=-389/ 4-6=-3951/270, 6-7= 7-8=-2547/349, 8-17 2-20=-486/101 19-20=-105/1469, 1 3-18=-280/4394, 17 16-17=-187/3496, 1 6-16=-395/179, 14-7 12-14=-142/253, 5-17= 3-19=-1701/128, 5-17= 3-19=-1701/128, 5-17= 3-19=-1701/128, 7-19=-12=0/201, 9-13=-4 ed roof live loads have the second	*Except* 19-18,6-15:27 bt* 13-7:2x4 SP No.2 2.0E 2-0-0 eathing directly applied of (cept end verticals. / applied or 10-0-0 oc 7-14, 5-16 , 20=0-3-8 LC 12) (LC 3), 20=1644 (LC 3) npression/Maximum /48, 3-4=-5350/357, =-2858/363, 1=-2949/256, 8-19=-91/1393, -18=-295/4591, 5-16=0/89, 15=-18/86, 1-12=-140/2540 =0/519, 3-20=-1826/120 16=-1141/112, =-1094/112, =-441/177, 13=-155/1025, 455/95 a been considered for	 2) Wind: ASCE Vasd=103mp 4(1); Exp B; Enn Exterior(2E) 18-5-8, Exter to 36-11-0 zc vertical left a forces & MW DOL=1.60 pl 3) TCLL: ASCE Plate DOL=1 3) TCLL: ASCE Plate DOL=1.15 pl Exp.; Cc=0.9 4) Unbalanced design. 5) This truss ha load of 12.0 t overhangs no 6) * This truss h on the bottom 3-06-00 tall b chord and ar 7) All bearings a LOAD CASE(S) 	7-16; Vult=130mph (3 bh; TCDL=6.0psf; BCI closed; MWFRS (enve 0-10-1 to 2-9-14, Inte ior(2R) 18-5-8 to 22-1 one; cantilever left and nd right exposed;C-C FRS for reactions shot ate grip DOL=1.33 7-16; Pr=20.0 psf; Pf ate DOL=1.15; Is=1.1 ;C S=1.00; Ct=1.10 snow loads have been s been designed for g psf or 2.00 times flat r on-concurrent with oth tas been designed for n chord in all areas wf y 2-00-00 wide will fit yo other members, with are assumed to be SF Standard	e-second gust) pl=6.0psf; h=25ft; elope) and C-C rior (1) 2-9-14 to -7, Interior (1) 22- right exposed ; er for members and wn; Lumber of LL: Lum DOL=1 13.9 psf (Lum D; Rough Cat B; Fr in considered for th reater of min roof bof load of 13.9 ps er live loads. a live loads of 20.0 here a rectangle between the botton b BCDL = 10.0psf. 2400F 2.0E .	Cat. 1-7 nd .15 ully is live if on psf m		SE 280 OK NGI	AROUTINE SIGNATION AL 677 NEER SKIN

May 1,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	A8	Roof Special	1	1	Job Reference (optional)	173141550

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 12:37:49 ID:uUY5kWp4ado?BWgmxQlaRkzO8PP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	A9	Roof Special	2	1	Job Reference (optional)	173141551

	el Elect EleE
WEBS	2x4 SP No.3 *Except* 13-7:2x4 SP No.2
SLIDER	Right 2x6 SP 2400F 2.0E 2-0-0
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	3-1-3 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing, Except:
	6-0-0 oc bracing: 19-21,17-19,16-17,15-16.
WEBS	1 Row at midpt 5-23

SP 2400F 2 0F

REACTIONS	(size) 11= Mechanical, 27=0-3-8
	Max Horiz 27=110 (LC 12)
	Max Grav 11=1893 (LC 3), 27=1956 (LC 3)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/33, 2-3=-455/14, 3-4=-6346/0,
	4-6=-4746/0, 6-7=-3587/0, 7-8=-3211/0,
	8-11=-3413/0, 2-27=-556/65
BOT CHORD	26-27=0/1738, 25-26=0/1636, 3-25=0/5210,
	24-25=0/5451, 23-24=0/4210, 22-23=0/563,
	6-23=-392/178, 20-22=0/1016, 18-20=0/2212
	14-18=0/2212, 12-14=0/2972, 11-12=0/2970,
	21-23=0/2059, 19-21=-104/0, 17-19=-104/0,
	16-17=-104/0, 15-16=-104/0
WEBS	5-23=-1208/90, 7-23=0/1856, 7-15=0/1253,
	13-15=-3/1186, 8-13=-427/178, 5-24=0/567,

9-13=-301/178, 9-12=-69/9, 3-27=-2159/0, 3-26=-2004/0, 19-20=-267/0, 17-18=-108/0, 14-16=-97/0, 21-22=-1128/0, 20-21=0/1463, 4-25=0/948, 4-24=-1242/34

NOTES

TCDL

BCLL

BCDL

1) Unbalanced roof live loads have been considered for this design.

Exterior(2E) -0-10-1 to 2-10-3, Interior (1) 2-10-3 to 18-5-8, Exterior(2R) 18-5-8 to 22-1-13, Interior (1) 22-1-13 to 36-8-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this

- design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 6) 200.0lb AC unit load placed on the bottom chord, 18-5-8 from left end, supported at two points, 5-0-0 apart.
- All plates are 2x4 MT20 unless otherwise indicated. 7) * This truss has been designed for a live load of 20.0psf 8)

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 2, 9) Bearings are assumed to be: Joint 27 SP 2400F 2.0E .

10) Refer to girder(s) for truss to truss connections. LOAD CASE(S) Standard

3)

May 1,2025

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	B1	Common	2	1	Job Reference (optional)	173141552

TCDL

BCLL

BCDL

WFBS

WEBS

2)

3)

4)

NOTES 1)

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Wed Apr 30 12:37:50 ID:N6L5VzBkS6fj836dU40mALzODox-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Martin Hall

818 Soundside Road

Edenton, NC 27932

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	B2	Hip Girder	1	1	Job Reference (optional)	173141553

Loading

TCDL

BCLL

BCDL

WEBS

WEBS

NOTES

1)

2)

3)

4)

SLIDER

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Wed Apr 30 12:37:50 ID:dNRLWgijKJ4coguuVcHrPPzODoG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	C1	Common Supported Gable	1	1	Job Reference (optional)	173141554

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 12:37:50 ID:ajXQwHo4r8PiO7Cyx?4z5zzLYtg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

May 1,2025

818 Soundside Road Edenton, NC 27932

Scol	<u> </u>	1.20
Scal	e =	1:39

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	13	(psf) 20.0 3.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	21/TPI2014	CSI TC BC WB Matrix-MR	0.14 0.05 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 67 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav	0.2 0.2 0.3 wood shear purlins, exa ng directly 10=10-11 12=10-11 16=10-11 16=-124 (10=-55 (L 10=-134 (L 10=-134 (L 10=-134 (L 10=-134 (L 10=-179 (L 14=179 (L 16=-143 (L	athing directly applie sept end verticals. applied or 6-0-0 oc -0, 11=10-11-0, -0, 15=10-11-0, -0 LC 11) C 10), 11=-61 (LC 9 C 14), 14=-36 (LC 1 C 10), 16=-66 (LC 9 .C 29), 11=167 (LC 2 C 30), 15=172 (LC 2 C 30)	2 ed or 3), 3), 5 30), 5 30), 7 22), 6 29), 7	 Wind: ASCE Vasd=103mp II; Exp B; End (3E) -0-9-14 (3R) 5-5-8 to cantilever lef right exposed for reactions DOL=1.33 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 PI Exp.; Ce=0.9 This truss ha load of 12.0 g overhangs no All plates are Gable require 	7-16; Vult=130mp bh; TCDL=6.0psf; closed; MWFRS (e to 2-2-2, Exterior(2 8-5-8, Exterior(2N t and right expose d;C-C for members shown; Lumber D ed for wind loads ds exposed to wird I Industry Gable E alified building det 7-16; Pr=20.0 psf; 15); Pg=20.0 psf; ate DOL=1.15); Is b; Cs=1.00; Ct=1.1 s been designed f psf or 2.00 times fi pn-concurrent with 2x4 MT20 unless es continuous bott will we boatbad from	h (3-sec BCDL=6 envelope 2N) 2-2- i) 8-5-8 d ; end v s and fo OL=1.60 in the pl nd (norm ind Deta signer a: f (roof LL F[=13.5] =1.0; Rc 0 for great lat roof h i other li c other li c other li c other li c other li	cond gust) 5.0psf; h=25ft b) and C-C C 2 to 5-5-8, Cr to 11-8-14 zc vertical left ar rcces & MWFF 0 plate grip ane of the tru al to the face ils as applica s per ANSI/TI .: Lum DOL= 0 psf (Lum ough Cat B; F er of min roof 0 psd of 13.9 p ve loads. se indicated. d bearing.	; Cat. orner orner one; id RS), ble, PI 1. 1.15 fully flive sf on					
FORCES	(lb) - Maxi Tension	imum Com	pression/Maximum	0	braced again	st lateral moveme	nt (i.e. c	liagonal web)					WH CA	ROUL
TOP CHORD	2-16=-115 3-4=-61/1 6-7=-63/1 8-10=-110	5/115, 1-2= 45, 4-5=-1 47, 7-8=-6)/114	0/47, 2-3=-78/80, 17/257, 5-6=-117/25 7/70, 8-9=0/47,	57, ³	0) * This truss h on the botton 3-06-00 tall b	n chord in all areas of 2-00-00 wide wi	I for a liv s where Il fit betv	e load of 20.0 a rectangle veen the botte	Opsf om			N.V.	OP	M
BOT CHORD	15-16=-63	3/71, 14-15	=-63/71, 13-14=-63/	/71, 1 /71	1) All bearings a	are assumed to be	SP No.	2.					SEA	1 1 1
WEBS	5-13=-243 3-15=-143 7-11=-142	3/48, 4-14= 3/146, 6-12 2/146	176/151, =-176/151,	· · 1:	 Provide mecl bearing plate 16, 55 lb upli uplift at joint joint 11. 	hanical connection capable of withsta ft at joint 10, 36 lb 15, 36 lb uplift at jo	n (by oth anding 6 uplift at oint 12 a	ers) of truss f 66 lb uplift at j joint 14, 67 ll ind 61 lb uplif	io oint o t at		HITE.		2867	77
 Unbalance this design 	ed roof live l n.	oads have	been considered for	Ĺ	OAD CASE(S)	Standard							NN L.G	ALINGUIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	C2	Common Girder	1	2	Job Reference (optional)	173141555

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 12:37:50 ID:iVLIDXAunMBS?kVjhlc?JIzLYfC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:43.3

Plate Offsets (X, Y): [1:Edge,0-9-0], [3:Edge,0-9-0], [5:0-5-0,0-4-12], [6:0-5-0,0-4-12]

			,	1.1	-									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC202	1/TPI2014 Wind: ASCE	CSI TC BC WB Matrix-MSH 7-16; Vult=130mp	0.55 0.28 0.62 h (3-sec	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.07 0.00	(loc) 5-6 5-6 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 149 lb	GRIP 244/190 187/143 FT = 20%	
TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) 2-ply truss (0.131"x3" Top chord 0c. Bottom ch staggered Web conn 2) All loads a except if n CASE(S) s provided t unless oth 3) Unbalance this design	2x4 SP No.2 2x6 SP 2400F 2.0E 2x4 SP No.3 *Excep Structural wood she 5-5-14 oc purlins, e Rigid ceiling directly bracing. (size) 4=0-3-8, 7 Max Horiz 7=-107 (L Max Grav 4=5356 (I (lb) - Maximum Com Tension 1-2=-4474/0, 2-3=-4 3-4=-3708/0 6-7=-22/573, 5-6=0/ 1-6=0/3013, 3-5=0/2 2-5=0/2984 to be connected toge nails as follows: s connected as follows: ords connected as follows: ected as follows: 2x4 - tre considered equally oted as front (F) or ba section. Ply to ply conro o distribute only loads terwise indicated. ad roof live loads have n.	et* 7-1,4-3:2x4 SP Not athing directly applie xcept end verticals. applied or 10-0-0 oc 7=0-3-8 C 30) C 3), 7=4442 (LC 3) pression/Maximum 570/0, 1-7=-3655/0, 2522, 4-5=0/602 2979, 2-6=0/2753, ther with 10d s: 2x4 - 1 row at 0-9-0 ows: 2x6 - 3 rows - 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO nections have been noted as (F) or (B), been considered for	0.2 d or 5) 6) 7) 8) 9) 10 10 11 LC 1) AD	Vasd=103mj II; Exp B; En and right exp Lumber DOL TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 All plates are * This truss F on the bottor 3-06-00 tall th chord and ar All bearings Use Simpson 14-10dx1 1/2 left end to cc chord. Use Simpson 14-10dx1 1/2 spaced at 2- end to 9-10- bottom chore Fill all nail ho Dead + Snc Increase=1 Uniform Lo: Vert: 1-2 Concentrativ Vert: 6=- 10=-1414	bh; TCDL=6.0psf; l closed; MWFRS (e bosed; end vertica =1.60 plate grip D : 7-16; Pr=20.0 psf; late DOL=1.15); ls 0; Cs=1.00; Ct=1.1 e MT20 plates unle as been designed m chord in all areas by 2-00-00 wide win y other members. are assumed to be n Strong-Tie HTU2 2 Truss) or equival- nect truss(es) to n Strong-Tie HTU2 2 Truss, Single Ply 0-0 oc max. startin 12 to connect truss d. bles where hanger Standard bw (balanced): Lun 15 ads (lb/ft) =-48, 2-3=-48, 4-7: ed Loads (lb) 1411 (B), 8=-1216 4 (B), 11=-1415 (B	BCDL=6 envelope I left and OL=1.3: (roof LL Pf=13.9 =1.0; Rc 0 ss other ss other ss other for a liv ss other for a liv ss other the for a liv ss other shore a liv ss other shore a liv ss other ss other a for a liv ss other the for a liv ss other ss other a for a liv ss other a for a liv si in cor a (B), 9=-	.0psf; h=25ft a right expose a right expose b psf (Lum DOL= b psf (Lum DOL= b psf (Lum DOL= c lum Dough Cat B; F wise indicate e load of 20. a rectangle veen the bott 0F 2.0E . 5d Girder, 10-12 from the cod Girder, or equivalen 0-12 from the boack face of that the lum rease=1.15, 1411 (B),	t; Cat. left ed; f1.15 Fully ed. Opsf dom he t e left Plate				SEA 2867	RO L Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Affiliate

May 1,2025

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	D1	Monopitch	4	1	Job Reference (optional)	173141556

Scale = 1:40.6

5-0-4

Plate Offsets (X, Y): [4:0-3-0,0-3-0], [7:0-3-0,0-3-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-MSH	0.47 0.58 0.74	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.30 0.03	(loc) 6-7 6-7 6	l/defl >999 >476 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 83 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 4-3-6 oc purlins, exx Rigid ceiling directly bracing. (size) 2=0-3-0, 6 Max Horiz 2=136 (LC Max Uplift 2=-44 (LC Max Grav 2=703 (LC (b) - Maximum Com Tension 1-2=0/16, 2-3=-1632 5-6=-163/91 2-8=-381/1568, 6-8= 3-7z=-442/183, 4-7=0	athing directly applie cept end verticals. applied or 9-1-14 oc 3= Mechanical, 8=0- 2 14) 11), 6=-26 (LC 15) 2 2), 6=667 (LC 22), 2 2) pression/Maximum /305, 3-5=-1252/192 381/1568 /458, 4-6=-912/223	4) 5) d or 6) 3-8 7) 3-8 8) LC	This truss ha load of 12.0 y overhangs ne * This truss h on the bottom 3-06-00 tall b chord and ar Bearings are SP No.2 . Refer to girde Provide meci bearing plate 6 and 44 lb u DAD CASE(S)	s been designed for on-concurrent with has been designed in chord in all areas by 2-00-00 wide will by other members. assumed to be: Jo er(s) for truss to tru- hanical connection is capable of withsta plift at joint 2. Standard	or great tat roof k other liv for a liv where I fit betw bint 2 SF iss conr (by oth unding 2	er of min rool pad of 13.9 p e loads. e load of 20.1 a rectangle veen the bott P No.2 , Joint rections. ers) of truss i 6 lb uplift at j	f live sf on Opsf om t 8 to joint						
NOTES NOTES 1) Wind: AS(Vasd=103 II; Exp B; Exterior(2 17-10-12: vertical lef forces & N DOL=1.60 2) TCLL: AS Plate DOL	CE 7-16; Vult=130mph Smph; TCDL=6.0psf; B(Enclosed; MWFRS (en E) -0-10-5 to 2-1-11, In zone; cantilever left and t and right exposed;C- WFRS for reactions sl plate grip DOL=1.33 CE 7-16; Pr=20.0 psf; F =1.15): Pg=20.0 sf; F	(3-second gust) CDL=6.0psf; h=25ft; ivelope) and C-C terior (1) 2-1-11 to dright exposed; enc C for members and hown; Lumber roof LL: Lum DOL=1 Ye=13.9 psf (Lum	Cat. 1 .15							. and the second	and the second sec	SEA 2867	ROJU DEL 7	A CONTRACTOR OF THE OWNER OF THE

DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

OKN L. GAL ////////

May 1,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	D2	Monopitch Supported Gable	1	1	Job Reference (optional)	173141557

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 12:37:51 ID:jx5bKr0sINTkrEh79xsu0YzLYcp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	D3	Half Hip Girder	1	1	Job Reference (optional)	173141558

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 12:37:51 ID:YJs?T947mlafSEVP?fLNqCzLYY_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	D4	Half Hip	2	1	Job Reference (optional)	173141559

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 12:37:51 ID:9vPHOehYRALnvg9zI4EZjFzLYSv-RfC?PsB70Hg3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	D5	Half Hip	3	1	Job Reference (optional)	173141560

4-8-0

Page: 1

Scale = 1:45.8

Plate Offsets (X, Y): [3:0-2-4,0-3-4], [5:0-5-8,0-1-8], [10:0-3-0,0-3-0]

TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	20.0 18.9/20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr Code	1.15 1.15 NO IRC202	1/TPI2014	TC BC WB Matrix-MSH	0.65 0.82 0.53	Vert(LL) Vert(CT) Horz(CT)	-0.09 -0.21 0.04	10 10-15 7	>999 >999 n/a	240 180 n/a	MT20 Weight: 91 lb	244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 3-8-2 oc purlins, exo 2-0-0 oc purlins (5-4 Rigid ceiling directly bracing, Except: 8-2-2 oc bracing: 1-1	athing directly applied cept end verticals, an -13 max.): 5-8, 5-6. applied or 10-0-0 oc	3) 4) d or (d 5) 6)	Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced a design. Provide adece * This truss h on the bottom 3-06-00 tall b chord and an	1-16, PI=20.0 psr 15); Pg=20.0 psr; ate DOL=1.15); Is- ; Cs=1.00; Ct=1.10; snow loads have b uate drainage to p as been designed a chord in all areas y 2-00-00 wide will y other members.	revent v for a liv where fit betv	 Def (Lum DOLE) Posf (Lum Dough Cat B; F)-0-0 Insidered for t water pondin e load of 20. a rectangle veen the bott 	Fully his g. Opsf om						
REACTIONS	(size) 1=0-3-0, 7 Max Horiz 1=189 (LC Max Uplift 1=-6 (LC Max Grav 1=860 (LC	√- Mechanical C 15) 11), 7=-38 (LC 15) C 40), 7=1086 (LC 40	7) 8) 9)	Bearings are Refer to girde Provide mech bearing plate Z and 6 lb up	assumed to be: Jo er(s) for truss to tru nanical connection capable of withsta	oint 1 SI ss conr (by oth anding 3	P No.2 . nections. ers) of truss 8 lb uplift at	to joint						
FORCES	(lb) - Maximum Com Tension 1-2=-2156/294, 2-4= 5-8=-933/274, 4-5=-8 6-7=-1061/315	pression/Maximum 1619/164, 87/64, 5-6=-1136/267	10 ^{7,} LC	 Graphical pu or the orienta bottom chord Dad CASE(S) 	rlin representation tion of the purlin al Standard	does no long the	ot depict the set top and/or	size Plata						
BOT CHORD WEBS	1-9=-507/2066, 8-9= 6-8=-316/1328, 3-9= 3-10=-28/680, 2-10=	-210/1181, 7-8=-45/1 0/143, 5-9=-314/57, -634/211, 3-5=-1158	121 ¹⁾ /197	Increase=1. Uniform Loa Vert: 1-4=	ads (lb/ft) -48, 5-6=-408, 7-1	1=-20	Tease=1.15,	Fidle				TH CA	ROIT	
NOTES 1) Unbalanc: this design 2) Wind: AS(Vasd=103 II; Exp B; Exterior(2 zone; can and right e MWFRS fi grip DOL=	ed roof live loads have n. CE 7-16; Vult=130mph mph; TCDL=6.0psf; B(Enclosed; MWFRS (en E) 0-0-0 to 3-0-0, Interi tilever left and right exp exposed;C-C for memb or reactions shown; Lu =1.33	been considered for (3-second gust) CDL=6.0psf; h=25ff; (velope) and C-C or (1) 3-0-0 to 17-10- osed ; end vertical le ers and forces & mber DOL=1.60 plate	Cat. 12 sft								NV STILL	SEA 2867	ER ST	and and the second second

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

May 1,2025

GA mm 111

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	D6	Half Hip Supported Gable	1	1	Job Reference (optional)	173141561

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 12:37:51 ID:EhVxWSJctLDm_GPj9De_8WzLYQp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1	16-10-4	18-0-8
Ì	16-10-4	1-2-4

Scale = 1:39.2

Plate Offsets (X, Y): [6:0-3-0,0-3-0],	[16:0-3-0,0-3-0]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2021	/TPI2014	CSI TC BC WB Matrix-MSH	0.35 0.30 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 1	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 83 lb	GRIP 244/190 FT = 20%	6
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing, Except: 10-0-0 oc bracing: 1 (size) 1=18-0-8, 13=18-0-8 13=18-0-6 Max Horiz 1=184 (LC Max Uplift 11=-57 (LC 13=-13 (L 15=-7 (LC 18=-25 (L Max Grav 1=190 (LC 12=296 (L 14=189 (L 16=224 (L 16=224 (L)	athing directly applied cept end verticals, an -0 max.): 9-12, 9-10. applied or 6-0-0 oc 1-12. 11=18-0-8, 12=18-0- 3, 14=18-0-8, 15=18-(2, 15), 12=-22 (LC 11) C 15), 14=-7 (LC 11), C 15), 16=-8 (LC 15), C 15), 16=-8 (LC 15), C 40), 11=268 (LC 32 C 34), 13=190 (LC 4 C 40), 15=181 (LC 4 C 40), 17=37 (LC 40)	1) 1) 2) 1 or d 3) 8, 8, 4) 8, 4) 8, 5) 8, (-5) 8, (-5) 8, (-5) 8, (-7) 9, (-7) 9, (-7) 9, (-7) 9, (-7) 9, (-7) 9, (-7) 9, (-7) 9, (-7) (Unbalanced r this design. Wind: ASCE Vasd=103mp II; Exp B; End (3E) 0-0-0 to cantilever left right exposed for reactions DOL=1.33 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced s design. Provide adeq All plates are Gable require Gable studs s * This truss h	roof live loads have 7-16; Vult=130mpt bh; TCDL=6.0psf; B closed; MWFRS (el 3-0-0, Exterior(2N) t and right exposed d;C-C for members shown; Lumber DC ed for wind loads ir ids exposed to wind 1 Industry Gable Er alified building desi 7-16; Pr=20.0 psf; 13t; Pg=20.0 psf; 13t; PG=2.0.0 psf; 13t; PG=2.0.0 psf; 13t; CS=1.00; Ct=1.10; snow loads have be juate drainage to p 2x4 MT20 unless of spaced at 2-0-0 oc. ias been designed	a been of a been of a been of a constant a consta	considered for considered for .0psf; h=25ft; .0 and C-C Co o 17-10-12 zc retrical left and ces & MWFR .0 plate grip ane of the trus al to the face) lis as applicate s per ANSI/TP .1 Lum DOL=1 psf (Lum pugh Cat B; Fu -0-0 isidered for th water ponding se indicated. d bearing. e load of 20.0	Cat. rrner d S S S S S S S S S S S S S S S S S S	1) De Inc Ur	aad + Sn crease= iiform Lc Vert: 1-8	ow (ba 1.15 bads (II 3=-48,	alanced): Lumbe b/ft) 9-10=-408, 11-1	9=-20	1.15, Plate
FORCES	(lb) - Maximum Com Tension 1-2=-197/111, 2-3=-	pression/Maximum 142/79, 3-4=-126/83,	11)	on the botton 3-06-00 tall b chord and an	n chord in all areas by 2-00-00 wide will by other members.	where fit betw	a rectangle veen the botto	m					1	
BOT CHORD WEBS	4-5=-99/74, 5-7=-76, 9-12=-300/133, 8-9= 10-11=-304/93 1-18=-110/152, 17-1 14-15=-39/77, 13-14 11-12=-30/70 7-13=-154/85, 6-14= 4-16=-168/92, 3-17=	/67, 7-8=-48/47, 57/33, 9-10=-40/34, 8=-39/78, 15-17=-39, I=-40/78, 12-13=-40/7 148/83, 5-15=-146/8 57/40, 2-18=-339/17	(78, (78, (8, (32, (5) (75) (75)	Provide mech bearing plate 11, 22 lb uplif at joint 14, 7 25 lb uplift at Graphical pui or the orienta bottom chord	capable of withsta capable of withsta ft at joint 12, 13 lb u lb uplift at joint 15, joint 18. rlin representation ation of the purlin al l.	(by oth nding 5 uplift at 8 lb upl does no ong the	2. ers) of truss to 7 lb uplift at jo joint 13, 7 lb u ift at joint 16 a ot depict the si top and/or	o bint uplift and ize		THURS.	J. M.	286 286	EEP. SV	A Strange
			LO	AD CASE(S)	Standard									

May 1,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	E1	Diagonal Hip Girder	2	1	Job Reference (optional)	173141562

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 12:37:51 ID:41xtbOJ05AwILbtY3BB6aSzODon-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:41.7

Plate Offsets (X, Y): [7:0-2-8,0-3-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2021/TI	PI2014	CSI TC BC WB Matrix-MP	0.19 0.09 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 6 6-7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD WEBS NOTES 1) Wind: ASC Vasd=103 II; Exp B; F and right e Lumber DC 2) TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce= 3) Unbalance design. 4) This truss load of 12. overhangs	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 5-6-6 oc purlins, exx Rigid ceiling directly bracing. (size) 5= Mecha Max Horiz 7=79 (LC Max Uplift 5=-8 (LC - Max Grav 5=233 (LC (Ib) - Maximum Com Tension 2-7=-292/50, 1-2=0% 3-4=-49/20, 4-5=-78, 6-7=-77/10, 5-6=-17, 2-6=0/236, 3-6=0/43 CE 7-16; Vult=130mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (en enclosed; end vertical I DL=1.60 plate grip DO DC 7-16; Pr=20.0 psf (=1.15); Pg=20.0 psf; F Plate DOL=1.15); Is= Plate DOL=1.15; Is= has been designed for 0 psf or 2.00 times flat non-concurrent with c	athing directly applie cept end verticals. applied or 10-0-0 oc 11), 7=-38 (LC 7) C 18), 7=315 (LC 18) pression/Maximum 34, 2-3=-275/2, /14 (3-second gust) CDL=6.0psf; h=25ft; ivelope); cantilever le eft and right exposed UL=1.33 roof LL: Lum DOL=1 Pf=13.9 psf (Lum 1.0; Rough Cat B; Fu een considered for thi r greater of min roof I t roof load of 13.9 ps ther live loads.	5) * 0 3 0 6) B 7 9) "" (0 10) Ir 0 LOAI 1) Cat. 4 5 15 Illy is ive f on	This truss h on the bottom i-06-00 tall b shord and an gearings are revide mech earing plate of and 8 lb up NAILED" inc 0.148"x3.25" in the LOAD of the truss a D CASE(S) Dead + Sno Increase=1. Uniform Loa Vert: 1-2= Concentrate Vert: 6=-	as been designed in chord in all areas y 2-00-00 wide wil y other members. assumed to be: Jo er(s) for truss to tru- nanical connection capable of withsta lift at joint 5. lift	for a liv s where I fit betw bint 7 SF iss conr (by oth- anding 3 8"x3") c S guidlin loads ap F) or bac her Inco =-20	e load of 20.0 a rectangle veen the botto P No.2 . ections. ers) of truss to 8 lb uplift at ju rr 2-12d nes. oplied to the f ck (B). rease=1.15, F	opsf om opint ace Plate				SEA 2867	ROUTE TALING	and and and a second

May 1,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	E2	Jack-Open	3	1	Job Reference (optional)	173141563

4-0-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 12:37:51 ID:CGiMI1FV1yQss_ZnqL7APczODor-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:28.4

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MR	0.29 0.19 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.02 -0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD NOTES 1) Wind: AS(Vasd=103 II; Exp 8; Exterior(2 3-11-4 zor vertical lef forces & M DOL=1.6C 2) TCLL: AS Plate DOL DOL=1.15 Exp; Ce= 3) Unbalancc design. 4) This truss load of 12 overhangs	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 4-0-0 oc purlins, exa Rigid ceiling directly bracing. (size) $3=$ Mecha 5=0-3-0 Max Horiz $5=55$ (LC Max Uplift $3=-35$ (LC Max Uplift $3=-35$ (LC Max Grav $3=127$ (LC 5=266 (LC (lb) - Maximum Com Tension 2- $5=-236/137$, $1-2=0$ 4- $5=0/0$ CE 7-16; Vult=130mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (on E) -0-10-1 to 2-1-15, In e; cantilever left and r t and right exposed;C-/ MWFRS for reactions s1 Oplate grip DOL=1.33 CE 7-16; Pr=20.0 psf; IS 5 Plate DOL=1.15); IS= 0.9; CS=1.00; Ct=1.10 ed snow loads have be has been designed for .0 psf or 2.00 times flat s non-concurrent with c	athing directly applied cept end verticals. applied or 10-0-0 oc inical, 4= Mechanical 15) 15) 22), 4=45 (LC 22), 22) pression/Maximum 33, 2-3=-75/50 (3-second gust) CDL=6.0psf; h=25ft; ivelope) and C-C tretrior (1) 2-1-15 to ight exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1. 2f=13.9 psf (Lum 1.0; Rough Cat B; Fu een considered for thi r greater of min roof I t roof load of 13.9 psf ther live loads.	5) * This truss on the bott 3-06-00 tal chord and 6) Bearings a 8) Provide me bearing pla 3. LOAD CASE(S) Cat.	has been designed om chord in all area: I by 2-00-00 wide wi any other members. re assumed to be: , ider(s) for truss to tru- ichanical connection te capable of withst i) Standard	I for a liv s where II fit betw Joint 5 S uss conr h (by oth anding 3	e load of 20. a rectangle veen the bott SP No.2 . iections. ers) of truss i 5 lb uplift at j	0psf om to joint				ORTH CA SEA 2867 OL NGIN	ROUL ALINGUIN	

May 1,2025

818 Soundside Road Edenton, NC 27932

L. GAL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	E3	Jack-Open	4	1	Job Reference (optional)	173141564

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 12:37:52 ID:k38_YhFtGeH0Fq_bGecxtOzODos-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-0-10-8 1-10-15 0-10-8 1-10-15

Scale = 1:26.6

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MR	0.10 0.05 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 1-10-15 oc purlins, Rigid ceiling directly bracing. (size) 3= Mecha 5=0-3-0 Max Horiz 5=32 (J C	athing directly applie except end verticals. applied or 10-0-0 oc nical, 4= Mechanical 12)	5) d or 7) 8) , LO	* This truss h on the botton 3-06-00 tall b chord and an Bearings are Refer to girde Provide mech bearing plate 3. AD CASE(S)	as been designed in chord in all areas y 2-00-00 wide will y other members. assumed to be: , J er(s) for truss to tru nanical connection capable of withsta Standard	for a liv where fit betv loint 5 S ss conr (by oth nding 1	e load of 20.0 a rectangle veen the botto SP No.2 . lections. ers) of truss t 8 lb uplift at j	Dpsf om o oint					
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=103r II; Exp B; E Exterior(2E vertical left forces & M DOL=1.60 2) TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce=C 3) Unbalance design. 4) This truss I load of 12.1 overhangs	Max Uplift 3=-18 (LC Max Uplift 3=-18 (LC Max Grav 3=44 (LC (LC 22) (lb) - Maximum Com Tension 2-5=-145/98, 1-2=0/ 4-5=0/0 E 7-16; Vult=130mph mph; TCDL=6.0psf; Bi Enclosed; MWFRS (er E) zone; cantilever left and right exposed;C- WFRS for reactions s plate grip DOL=1.33 CE 7-16; Pr=20.0 psf; C =1.15); Pg=20.0 psf; F Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 d snow loads have be has been designed for 0 psf or 2.00 times flar non-concurrent with c	 (15) (22), 4=18 (LC 13), 5 (3), 500 (gust) (3), 2-3=-34/22 (4), 2-3=-34/22 (5), 2-3=-34/22 (5), 2-3=-34/22 (5), 2-3=-34/22 (6), 2-3=-34/22 (7), 2-3=-34/22<td>=165 Cat. end .15 .19 s ive fon</td><td></td><td></td><td></td><td></td><td></td><td></td><td>. and the second s</td><td>and States</td><td>SEA 2867</td><td>ROJULT PROVIDENT</td>	=165 Cat. end .15 .19 s ive fon							. and the second s	and States	SEA 2867	ROJULT PROVIDENT

May 1,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	V1	Valley	1	1	Job Reference (optional)	173141565

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 12:37:52 ID:cPkGwCkhwCNLtcjIMQcZZJzLYq5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

May 1,2025

818 Soundside Road Edenton, NC 27932

Scale = 1:57.7

Plate Offsets (X, Y): [6:0-2-8,Edge], [9:0-3-11,Edge], [12:0-2-8,0-0-3]

			-										
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.11	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.15	Horiz(TL)	0.00	9	n/a	n/a		
BCLL	0.0*	Code	IRC2021	I/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 90 lb	FT = 20%
LUMBER			2)	Wind: ASCE	7-16; Vult=130mpl	h (3-seo	cond gust)						
TOP CHORD	2x4 SP No.2		,	Vasd=103mp	oh; TCDL=6.0psf; E	SCDL=6	.0psf; h=25ft;	Cat.					
BOT CHORD	2x4 SP No.2			II; Exp B; En	closed; MWFRS (e	nvelope	e) and C-C						
OTHERS	2x4 SP No.3			Exterior(2E)	0-0-5 to 2-9-6, Inte	rior (1)	2-9-6 to 10-9-	·6,					
BRACING				Exterior(2R)	10-9-6 to 13-9-6, Ir	nterior (1) 13-9-6 to						
TOP CHORD	Structural wood she	athing directly applied	d or	15-9-6 zone;	cantilever left and	right ex	posed ; end						
	6-0-0 oc purlins.	3 ,		vertical left a	nd right exposed;C	-C for r	nembers and						
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc		forces & MW	FRS for reactions	shown;	Lumber						
	bracing.		2)	DOL=1.60 pl	ate grip DOL=1.33								
REACTIONS	(size) 1=15-9-2	, 9=15-9-2, 10=15-9-2	<u>2</u> , 3)	I russ design	ed for wind loads it	n the pl	ane of the tru	SS \					
	11=15-9-2	2, 12=15-9-2, 13=15-	9-2,	coo Standard	lus exposed to wind	u (norm), blo					
	14=15-9-2	2, 15=15-9-2, 16=15-	9-2	or consult au	alified building des	igner a	s ner ANSI/TE	DI 1					
	Max Horiz 1=161 (LO	C 10)	4)	TCLL · ASCE	7-16 [.] Pr=20.0 psf	(roof I I	\cdot Lum DOI =	1 15					
	Max Uplift 9=-12 (LC	C 12), 10=-8 (LC 14),	.,	Plate DOL=1	.15): Pa=20.0 psf:	Pf=13.9) psf (Lum						
	11=-26 (L	.C 14), 12=-39 (LC 14	l),	DOL=1.15 PI	ate DOL=1.15); Is=	=1.0; Ro	ough Cat B; F	ully					
	13=-40 (L	.C 13), 14=-40 (LC 13	3),	Exp.; Ce=0.9	; Cs=1.00; Ct=1.10	<u>`</u>	0 ,	,					
	15=-41 (L	.C 13), 16=-31 (LC 13	³⁾ 5)	All plates are	2x4 MT20 unless	otherwi	se indicated.						
	Max Grav 1=155 (L0	C 30), 9=114 (LC 31),	(6)	Gable require	es continuous botto	om choi	d bearing.						
	10=152 (1	C 2), 11=202 (LC 29 C 12) 13=171 (LC 28), 7)	Gable studs	spaced at 2-0-0 oc								
	14-173 (1	(10, 12), 13 = 171 (10, 20)	8) 8)	* This truss h	as been designed	for a liv	e load of 20.0)psf					
	16=246 (1	_C 28)	.0),	on the botton	n chord in all areas	where	a rectangle					, in the second	inin,
FORCES	(lb) - Maximum Corr	pression/Maximum		3-06-00 tall b	y 2-00-00 wide will	l fit betv	veen the botto	om				TH CA	Roill
	Tension		0)	All boarings	iy other members.		2				N	A	in the
TOP CHORD	1-2=-250/144, 2-3=-	185/85, 3-4=-135/45,	9) 10) Provide med	hanical connection	(by oth	 Are) of trues t 	<u> </u>			22		DV. St.
	4-5=-117/21, 5-6=-1	27/49, 6-7=-128/49,	10	bearing plate	canable of withsta	ndina 1	2 lb unlift at i	oint		-	: `		13: 1
	7-8=-115/21, 8-9=-1	05/34		9 39 lb unlift	at joint 12 40 lb u	nlift at i	ant 13 40 lb	unlift		-		1	- X
BOT CHORD	1-16=-31/150, 15-16	6=-24/84, 14-15=-24/8	34,	at joint 14, 4	1 lb uplift at joint 15	5. 31 lb	uplift at ioint 1	6.		-	:	SEA	1 1 2
	13-14=-24/84, 12-13	3=-24/84, 11-12=-47/	123,	26 lb uplift at	joint 11 and 8 lb u	plift at j	oint 10.	-,		=			<u>-</u> : :
	10-11=-47/116, 9-10)=-36/94	. 11) Beveled plate	e or shim required	to provi	de full bearing	3		=		286	11 ÷ E
WEBS	5-13=-162/92, 4-14=	=-153/88, 3-15=-143/8	32,	surface with	truss chord at joint	(s) 9, 1 ⁻	I, 10.			-		:	1 5
	2-10=-186/79, 7-11=	=-107/94, 8-10=-128/6	^{D4} LC	AD CASE(S)	Standard						2	· .	A 1 . 3
NOTES											- 4	NGIN	FERRICE
1) Unbalance	ed roof live loads have	been considered for									11	YA	
this desigr	n.											IL G	ALILIN
												11111	un u

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	V2	Valley	1	1	Job Reference (optional)	173141566

Run: 8.73 E May 9 2024 Print: 8.730 E May 9 2024 MiTek Industries, Inc. Thu May 01 14:39:45 ID:8B5T2gb2GkoFLqfiGQa2cbzLZ1B-1q9iJ3pCaGIsr3onDeDYuTIiNdAQTY3qPx5?dHzKryC Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

May 1,2025

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	V3	Valley	1	1	Job Reference (optional)	173141567

TCDL

BCLL

BCDL

WEBS

2)

Run: 8.73 E May 9 2024 Print: 8.730 E May 9 2024 MiTek Industries, Inc. Thu May 01 14:40:00 ID:8B5T2gb2GkoFLqfiGQa2cbzLZ1B-cW??Fs_Ha3tWDtT1bTqSQt4gGxgksoud7Uk6UzKry_

Page: 1

818 Soundside Road Edenton, NC 27932

MANALITICA PARTICICA

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	V4	Valley	1	1	Job Reference (optional)	173141568

Run: 8.73 E May 9 2024 Print: 8.730 E May 9 2024 MiTek Industries, Inc. Thu May 01 14:40:11 ID:B3a8GII_CILq2s2WCh3o?7zLYyP-GqkXmy7WSGaAy3omk6hexyN9662nYLgfN_OMXnzKrxo

Page: 1

Scale = 1:43.3

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1:	(psf) 20.0 3.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.20 0.16 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 62 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structural 6-0-0 oc p Rigid ceili bracing. (Ib/size) Max Horiz Max Uplift Max Grav	0.2 0.2 0.3 wood shea purlins. ng directly 1=79/14-3 6=280/14- 8=282/14- 1=109 (LC 1=-14 (LC (LC 13) 1=116 (LC 6=413 (LC	athing directly applie applied or 6-0-0 oc -13, 5=62/14-3-13, 3-13, 7=248/14-3-13 3-13 9), 6=-76 (LC 14), 8 2 29), 5=81 (LC 28), 2 29), 7=394 (LC 28),	3) 4, ed or 5) 6, 3, 7, 3, 8=-79 8,),	Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Gable require Gable studs * This truss h on the botton 3-06-00 tall b chord and an Provide mecl bearing plate 1, 79 lb uplift	ed for wind loads in ds exposed to wind lindustry Gable Er alified building des 7-16; Pr=20.0 psf; ate DOL=1.15; Is= ; Cs=1.00; Ct=1.10 es continuous botto spaced at 4-0-0 oc as been designed n chord in all areas y 2-00-00 wide will y other members, nanical connection capable of withsta at joint 8 and 76 lb Standard	n the pla d (norm nd Deta igner as (roof LL Pf=13.9 =1.0; Rc) for a liv s where I fit betw with BC (by oth and g 1 b uplift a	ane of the tru al to the face ils as applica s per ANSI/T : Lum DOL= 0 psf (Lum bugh Cat B; F d bearing. e load of 20.1 a rectangle veen the bott :DL = 10.0ps ers) of truss : 4 lb uplift at j t joint 6.	iss ble, bl 1. 1.15 fully Opsf om f. to joint					
FORCES	(lb) - Max Tension	imum Com	pression/Maximum											
TOP CHORD	1-2=-141/ 4-5=-105/	122, 2-3=-´ 94	111/130, 3-4=-110/1	30,										
BOT CHORD	1-8=-50/1 5-6=-50/1	13, 7-8=-50 11	0/111, 6-7=-50/111,										WITH CA	BO
WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp B; I (3E) 0-0-5 (3R) 7-2-3 zone; cant and right e MWFRS fc grip DOL=	3-7=-211/ ed roof live I CE 7-16; Vu imph; TCDL Enclosed; M to 3-2-3, E: to 10-2-3, I tilever left an exposed;C-C or reactions t1.33	0, 2-8=-31: oads have lt=130mph =6.0psf; BC WFRS (en kterior(2N) Exterior(2N) dright exp C for memb shown; Lui	3/266, 4-6=-312/264 been considered for (3-second gust) CDL=6.0psf; h=25ft; velope) and C-C Co 3-2-3 to 7-2-3, Corn) 10-2-3 to 13-11-9 iosed ; end vertical l ers and forces & mber DOL=1.60 pla	Cat. orner er left te							. ATTITUTE.	AND STREET	SEA 2867	L 7 ALINSTITUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUT

May 1,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	V5	Valley	1	1	Job Reference (optional)	173141569

Run: 8.73 E May 9 2024 Print: 8.730 E May 9 2024 MiTek Industries, Inc. Thu May 01 14:40:22 ID:B3a8GII_CILq2s2WCh3o?7zLYyP-Rxuh4jGPseycnl7utwNDtHK2YYpQdK?HvCYRPezKrxd

Page: 1

Scale = 1:38.9

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1:	(psf) 20.0 3.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.18 0.09 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 49 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structural 6-0-0 oc p Rigid ceili bracing. (Ib/size) Max Horiz Max Uplift Max Grav	0.2 0.2 0.3 I wood shea ing directly 1=48/11-1 6=249/11- 8=251/11- 1=90 (LC 1=-23 (LC (LC 14), 8 1=81 (LC (LC 29) 7	athing directly applie applied or 10-0-0 or 1-0, 5=32/11-11-0, 11-0, 7=208/11-11- 10) 9), 5=-6 (LC 10), 6= =-70 (LC 13) 29), 5=50 (LC 28), 6 =-39 (LC 2) 8=316	3) ed or c 5) 0, 7) =-67 8) 6=311	Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Gable requirr Gable studs * This truss h on the bottom 3-06-00 tall b chord and ar Provide mech bearing plate 1, 6 lb uplift a	ed for wind loads i ds exposed to wind a Industry Gable En alified building des 7-16; Pr=20.0 psf; ate DOL=1.15; Is- t; Cs=1.00; Ct=1.10; es continuous bott spaced at 4-0-0 oc nas been designed n chord in all areas by 2-00-00 wide will y other members. hanical connection capable of withsta at joint 5, 70 lb upli	n the pla d (norm nd Deta signer as (roof LL Pf=13.§ =1.0; Ro or chor : for a liv s where I fit betv (by oth anding 2 ft at join	ane of the tru al to the face ils as applical per ANSI/Tf per ANSI/Tf to be an application per ANSI/Tf per ANSI/Tf per ANSI/Tf per ANSI/Tf d bearing. e load of 20.0 a rectangle veen the botto ers) of truss t 3 lb uplift at j t 8 and 67 lb	ss), ble, Pl 1. 1.15 :ully Opsf om o oint uplift					
FORCES	(lb) - Max	28) imum Com	pression/Maximum	L	DAD CASE(S)	Standard								
TOP CHORD	1 ension 1-2=-104/ 4-5=-100/	/82, 2-3=-16 /53	61/139, 3-4=-161/13	38,										
BOT CHORD	1-8=-21/7 5-6=-19/7	'3, 7-8=-19/ '3	73, 6-7=-19/73,										TH CA	ROUL
WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp B; 1 (3E) 0-0-5 Corner(3R 11-6-12 zc vertical lef forces & M DOL=1.60	3-7=-153/ ed roof live I n. CE 7-16; Vu imph; TCDL Enclosed; M to 3-0-5, Ej to 3-0-	(0, 2-8=-31) oads have lt=130mph =6.0psf; B(IWFRS (en kterior(2N) o 8-11-13, E ver left and exposed;C-r reactions sl DOL=1.33	5/304, 4-6=-314/310 been considered fo (3-second gust) CDL=6.0psf; h=25ft; velope) and C-C Cc 3-0-5 to 5-11-13, :xterior(2N) 8-11-13 right exposed ; end C for members and nown; Lumber	r Cat. orner							Contraction of the second s	and Street	SEA 2867	L. P. HILLER

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

May 1,2025

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	V6	Valley	1	1	Job Reference (optional)	173141570

Run: 8.73 E May 9 2024 Print: 8.730 E May 9 2024 MiTek Industries, Inc. Thu May 01 14:40:34 ID:B3a8GII_CILq2s2WCh3o?7zLYyP-5FcDbqPx1KTvDb2BaRb1Npq3INsYRIn2g3S4ryzKrxR

Page: 1

Scale =	1:33
ooulo -	1.00

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.26 0.26 0.17	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 36 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 9-6-3 oc purlins. Rigid ceiling directly bracing. (Ib/size) 1=27/9-6 4=591/9- Max Horiz 1=-71 (LC Max Uplift 1=-24 (LC 4=-17 (LC Max Grav 1=71 (LC (LC 2)	eathing directly applied y applied or 6-0-0 oc -3, 3=27/9-6-3, 6-3 C 11) C 35), 3=-24 (LC 34), C 13) C 34), 3=71 (LC 35), 4:	 4) TCLL: AS Plate DOL DOL=1.15 Exp.; Ce= 5) Gable stui 7) * This trus on the bot 3-06-00 ta chord and 8) Provide m bearing pl 1, 24 lb up LOAD CASE(CE 7-16; Pr=20.0 ps =1.15); Pg=20.0 ps Plate DOL=1.15); I 0.9; Cs=1.00; Ct=1. iires continuous boi ls spaced at 4-0-0 c s has been designe om chord in all aree I by 2-00-00 wide w any other members echanical connection ate capable of withs lift at joint 3 and 17 S) Standard	sf (roof LL f; Pf=13.5 s=1.0; Rd 10 ttom choro. d for a liv as where ill fit betws.n (by othtanding 2lb uplift a	:: Lum DOL=') psf (Lum ough Cat B; F d bearing. e load of 20.0 a rectangle veen the botto ers) of truss t t lo uplift at ju t joint 4.	I.15 ully Dpsf om o					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Con Tension 1-2=-168/326, 2-3=- 1-4=-238/243 3-4=-	npression/Maximum -161/326 -238/243										
WEBS NOTES 1) Unbalance this design	2-4=-625/363 ed roof live loads have	been considered for									TH CA	Ro

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) 0-0-5 to 3-0-5, Exterior(2N) 3-0-5 to 4-9-6, Corner (3R) 4-9-6 to 7-9-6, Exterior(2N) 7-9-6 to 9-6-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

South States SEAL 28677 OHA GA mm 111

May 1,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	V7	Valley	1	1	Job Reference (optional)	173141571

3-6-11

3-6-11

Carter Components (Sanford, NC), Sanford, NC - 27332,

(psf)

20.0

10.0

0.0

4=411/7-1-6

4 /1

Max Horiz 1=-53 (LC 11)

10.0

13.9/20.0

2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

bracing.

11-124

7-1-6 oc purlins.

Scale = 1:28.9 Loading

TCLL (roof)

TCDL

BCLL

BCDL

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS (lb/size)

Snow (Pf/Pg)

φ

Run: 8,73 E May 9 2024 Print: 8,730 E May 9 2024 MiTek Industries, Inc. Thu May 01 14:40:47 ID:B3a8GII_CILq2s2WCh3o?7zLYyP-Clv8JGZ5zK63HbYhrgK4OYsJgdJb_ePyfb6GohzKrxE

4x5 = 2

10

9

6-9-4

3-2-9

3

3x5 💊

n/a 999

n/a 999

n/a n/a

L/d

PLATES

Weight: 26 lb

MT20

GRIP

244/190

FT = 20%

2-11-13 12 10 Г 4 -0-0 4 3x5 🛷 2x4 II 7-1-6 Spacing 2-0-0 CSI DEFL in l/defl (loc) Plate Grip DOL 1.15 тс 0.16 Vert(LL) n/a BC 1 15 Lumber DOL 0.20 Vert(TL) n/a . Rep Stress Incr YES WB 0.08 Horiz(TL) 0.00 3 Code IRC2021/TPI2014 Matrix-MP TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 4-0-0 oc. 6) Structural wood sheathing directly applied or * This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle Rigid ceiling directly applied or 6-0-0 oc 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 1=35/7-1-6, 3=35/7-1-6,

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 4 lb uplift at joint 1, 4 lb uplift at joint 3 and 10 lb uplift at joint 4. 1 (I C 24) 4 10

May 1,2025

GA mm 111

818 Soundside Road

Edenton, NC 27932

		Max Oplin	(LC 13)	LOAD CASE(S)	i) Standard	
		Max Grav	1=67 (LC 34), 3=67 (LC 35), 4=486 (LC 2)			
FO	RCES	(lb) - Max Tension	imum Compression/Maximum			
то	P CHORD	1-2=-128/	/209, 2-3=-117/209			
BO	T CHORD	1-4=-174/	/207, 3-4=-174/207			
WE	BS	2-4=-409/	/265			
NO	TES					
1)	Unbalance	ed roof live l	oads have been considered for			
	this desigr	۱.				ò
2)	Wind: ASC	CE 7-16; Vu	It=130mph (3-second gust)		N	Ù
	Vasd=103	mph; TCDL	=6.0psf; BCDL=6.0psf; h=25ft; Cat.		3.	2
	II; Exp B;	Enclosed; N	WFRS (envelope) and C-C Corner		2	
	(3E) 0-0-5	to 3-0-5, Ex	xterior(2N) 3-0-5 to 3-7-0, Corner		5	
	(3R) 3-7-0	to 6-4-5, E	xterior(2N) 6-4-5 to 7-1-11 zone;		2	1
	cantilever	left and righ	t exposed ; end vertical left and		2	1
	right expo	sed;C-C for	members and forces & MWFRS			1
	for reactio	ns snown; L	Lumber DOL=1.60 plate grip		5	
2)	DOL=1.33		nd loads in the plane of the truce		2	
3)	Truss des	gned for will	nd loads in the plane of the truss			C
	only. For	ard Inductry	Cable End Details as applicable			1
	or consult	and industry	ilding designer as per ANSI/TPI 1			1
		quameu bu	inding designer as per ANOI/TETT.			

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	V8	Valley	1	1	Job Reference (optional)	173141572

2-4-5

2-4-5

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 E May 9 2024 Print: 8.730 E May 9 2024 MiTek Industries, Inc. Thu May 01 14:40:57 ID:22Jo4QsX9TtkqGRLUcE30jzLYm3-wgVwQhhMdONeT7JcRmWQofH3jflaKASQy8Xo96zKrx4

4-4-8

2-0-3

4-8-10

Page: 1

Scale =	1:25.8
---------	--------

Loading TCLL (roof)) 13.0	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15 1.15		CSI TC BC	0.05	DEFL Vert(LL)	in n/a n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
TCDI) 10.3	10.0	Rep Stress Incr	YES		WB	0.03	Horiz(TL)	0.00	3	n/a	n/a		
BCLL		0.0*	Code	IRC2021	/TPI2014	Matrix-MP	0.0.		0.00	Ũ				
BCDL		10.0											Weight: 17 lb	FT = 20%
LUMBER TOP CHORI BOT CHORI OTHERS BRACING TOP CHORI	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural w 4-8-10 oc pu 	2 2 3 rood shea urlins.	athing directly appli	6) 7) ed or LO	Gable studs s * This truss h on the bottom 3-06-00 tall b chord and an DAD CASE(S)	spaced at 4-0-0 oc. as been designed n chord in all areas y 2-00-00 wide will y other members. Standard	for a liv where fit betv	e load of 20.0 a rectangle veen the botto	0psf om					
BOT CHORI	D Rigid ceiling bracing.	directly	applied or 6-0-0 oc											
REACTIONS	(Ib/size) 1: 4: Max Horiz 1: Max Grav 1:	=42/4-8- =235/4-8 =-34 (LC =61 (LC	10, 3=42/4-8-10, -10 9) 34), 3=61 (LC 35),	4=277										
FORCES	(lb) - Maxim	um Com	pression/Maximum											
TOP CHORI) 1-2=-54/87	2-3=-54/	87											
BOT CHORI	1-4=-79/119 2-4=-199/13), 3-4=-79	9/119											
	2-4=-199/13	99												
NUIES	ood roof live loo	de have	hoon considered fo	r										
 this desi this desi Wind: Ai Vasd=1(II; Exp B (3E) zon left and I MWFRS grip DOI Direct di 	gn. SCE 7-16; Vult= 3mph; TCDL=6 ; Enclosed; MW e; cantilever left ight exposed;C- for reactions sh ==1.33	130mph 5.0psf; BC /FRS (en t and righ -C for me hown; Lu	(3-second gust) CDL=6.0psf; h=25ft; velope) and C-C C it exposed; end velop mbers and forces a mber DOL=1.60 pla	; Cat. orner rtical & ate								New York	OR DEERS	RO
 a) Truss de only. Fo see Star or consul 4) TCLL: A Plate DC 	28677 28677 28677 28677 28677 28677													
DOL=1. Exp.; Ce 5) Gable re	5 Plate DOL=1. =0.9; Cs=1.00; quires continuo	.15); Is=1 Ct=1.10 us bottor	n chord bearing.	ully								111	MN L.G	ALINS

May 1,2025

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	V9	Valley	1	1	Job Reference (optional)	173141573

Run: 8.73 E May 9 2024 Print: 8.730 E May 9 2024 MiTek Industries, Inc. Thu May 01 14:41:08 ID:YN3jpwQJDcpj1PRPXYIZtvzLYPN-5og4kSpG1nl4IpekaaC?lzExF4XvP9q2UMht0_zKrwv

2-3-13 1-1-14 1-11-11 1-1-14 0-9-12

Page: 1

0-0-4

0-11-13

2x4 🍫 2x4 💊

2-3-13

Scale = 1:23.8

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.04 0.04 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 7 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD NOTES	2x4 SP No.2 2x4 SP No.2 Structural wood shea 2-3-13 oc purlins. Rigid ceiling directly bracing. (lb/size) 1=78/2-3- Max Horiz 1=-15 (LC Max Grav 1=93 (LC (lb) - Maximum Com Tension 1-2=-130/86, 2-3=-13 1-3=-47/92	athing directly applie applied or 10-0-0 or 13, 3=78/2-3-13 11) 2), 3=93 (LC 2) pression/Maximum 30/86	7) * This truss h on the bottor 3-06-00 tall b chord and ar ed or LOAD CASE(S)	has been designed n chord in all areas y 2-00-00 wide wil y other members. Standard	for a liv s where I fit betv	e load of 20. a rectangle /een the bott	Opsf om					
 Unbalance this design Wind: ASC Vasd=103 II; Exp B; E (3E) zone; left and rig MWFRS fr grip DOL= Truss desi only. For 3 see Stand: or consult TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce=d Gable reqi Gable stud 	a roof live loads have h. 2E 7-16; Vult=130mph mph; TCDL=6.0psf; B(Enclosed; MWFRS (en ; cantilever left and righ jht exposed;C-C for me or reactions shown; Lu 1.33 igned for wind loads in studs exposed to wind ard Industry Gable Enc qualified building desig CE 7-16; Pr=20.0 psf (i =1.15); Pg=20.0 psf; F i Plate DOL=1.15); Is=' 0.9; Cs=1.00; Ct=1.10 uires continuous bottor ds spaced at 4-0-0 oc.	(3-second gust) CDL=6.0psf; h=25ft; velope) and C-C Cc texposed; end ver embers and forces 8 mber DOL=1.60 pla the plane of the trus (normal to the face) d Details as applicat gner as per ANSI/TF roof LL: Lum DOL=1 f=13.9 psf (Lum 1.0; Rough Cat B; Fi n chord bearing.	Cat. prner tical te ss s, ble, 11. 1.15 ully								SEA 286	EER.SK

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	V10	Valley	1	1	Job Reference (optional)	173141574

6-1-4

Carter Components (Sanford, NC), Sanford, NC - 27332,

TCDL

BCLL

BCDL

WEBS

NOTES

1)

2)

Run: 8.73 E May 9 2024 Print: 8.730 E May 9 2024 MiTek Industries, Inc. Thu May 01 14:41:21 ID:47IcGp3V??Soq4wDSxq8H?zLYV?-DIy?SuzQzmOEMp8Drpx2njG6DKxuy1CzUtL3_jzKrwi

11-7-9

Page: 1

bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	V11	Valley	1	1	Job Reference (optional)	173141575

Run: 8.73 E May 9 2024 Print: 8.730 E May 9 2024 MiTek Industries, Inc. Thu May 01 14:41:32 ID:hjruAlgwgsDwlWankNjKA2zLYSw-OP79mf6JN8ngAVUL_dedj1Dz9met1_wa?5V8tbzKrwX

3x5 🍬

10-2-8

Scale = 1:28.4			1										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	21/TPI2014	CSI TC BC WB Matrix-MSH	0.36 0.34 0.12	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 33 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 10-0-0 oc purlins. Rigid ceiling directly bracing. (Ib/size) 1=39/10-2 4=614/10- Max Horiz 1=25 (LC Max Uplift 1=-19 (LC Max Grav 1=91 (LC (LC 2) (Ib) - Maximum Com Tension	athing directly applie applied or 6-0-0 oc 2-8, 3=39/10-2-8, -2-8 14) 2 22), 3=-19 (LC 21) 21), 3=91 (LC 22), - pression/Maximum	ed or 4=725	 4) TCLL: ASCE Plate DOL=: DOL=1.15 P Exp.; Ce=0. 5) Unbalanced design. 6) Gable studs 7) Gable studs 3) * This truss I on the botton 3-06-00 tall I chord and ai 4) Provide mec bearing plate 1 and 19 lb 0 CADCASE(S) 	 F7-16; Pr=20.0 p T-15; Pg=20.0 ps Plate DOL=1.15); P; Cs=1.00; Ct=1 snow loads have res continuous bc spaced at 4-0-0 has been designed m chord in all are by 2-00-00 wide v ny other member hanical connectitie e capable of withs uplift at joint 3. Standard 	sf (roof LI sf; Pf=13.s Is=1.0; R 10 been con- been con- oc. ed for a liv as where will fit betv s. on (by oth standing 1	L: Lum DOL= ² B psf (Lum bugh Cat B; F rsidered for th rd bearing. re load of 20.0 a rectangle veen the botto ers) of truss to 19 lb uplift at jo	1.15 fully Dpsf om oint					
TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=100	1-2=-177/384, 2-3=- 1-4=-318/237, 3-4=- 2-4=-586/353 ed roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; BC	176/384 318/237 been considered fo (3-second gust) CDL=6.0psf; h=25ft;	or ; Cat.									ORTH CA	ROUT
(3E) 0-0-8 (3R) 5-1-	3 to 3-0-8, Exterior(2N) 12 to 8-1-12, Exterior(2I)	3-0-8 to 5-1-12, Co N) 8-1-12 to 10-3-0	rner							-	1	A. N	and the second

- zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss 3)
- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	V12	Valley	1	1	Job Reference (optional)	173141576

Run: 8.73 E May 9 2024 Print: 8.730 E May 9 2024 MiTek Industries, Inc. Thu May 01 14:41:44

ID:9vPHOehYRALnvg9zI4EZjFzLYSv-2jrhHIFrYqIzcLPeh8sSCZj2xbm8rQQLmyPnluzKrwL

Spacing

Plate Grip DOL

8-2-8

in

n/a

n/a

0.00

(loc)

4

l/defl

n/a 999

n/a 999

n/a n/a

L/d

PLATES

Weight: 26 lb

MT20

GRIP

244/190

FT = 20%

DEFL

Vert(LL)

Vert(TL)

Horiz(TL)

2x4

CSI

тс

BC

WB

Matrix-MP

0.24

0.25

0.08

Snow (Pf/Pg) TCDL BCLL BCDL	1:	3.9/20.0 10.0 0.0* 10.0	Lumber DOL Rep Stress Incr Code	1.15 YES IRC2	2021	/TPI2014
LUMBER TOP CHORD BOT CHORD OTHERS	2x4 SP N 2x4 SP N 2x4 SP N	0.2 0.2 0.3			4)	TCLL: A Plate DC DOL=1. Exp.; Ce
BRACING TOP CHORD	Structural 8-2-8 oc r	l wood shea	athing directly applie	d or	5) 6)	Unbalan design. Gable re
BOT CHORD	Rigid ceil bracing.	ing directly	applied or 6-0-0 oc		7) 8)	Gable st * This tru
REACTIONS	(lb/size) Max Horiz Max Uplift Max Grav	1=44/8-2-4 4=468/8-2 1=-19 (LC 1=-2 (LC 3 1=93 (LC	8, 3=44/8-2-8, -8 13) 39), 3=-5 (LC 16) 21), 3=93 (LC 22), 4	=554	9)	on the b 3-06-00 chord ar Provide bearing and 5 lb
FORCES	(lb) - Max Tension	(LC 2) imum Com	pression/Maximum		LO	AD CASI
TOP CHORD	1-2=-160/	288. 2-3=-	157/288			

1-4=-254/224, 3-4=-254/224

Unbalanced roof live loads have been considered for

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner

(3E) 0-0-8 to 3-0-8, Exterior(2N) 3-0-8 to 4-1-12, Corner (3R) 4-1-12 to 7-0-11, Exterior(2N) 7-0-11 to 8-3-0 zone; cantilever left and right exposed ; end vertical left and

right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

Wind: ASCE 7-16; Vult=130mph (3-second gust)

2-4=-422/284

(psf)

20.0

Scale = 1:25.3 Loading

TCLL (roof)

BOT CHORD WEBS

this design.

DOL=1.33

NOTES

1)

2)

3)

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this
 - desian.

2-0-0

1.15

- Gable requires continuous bottom chord bearing. 6) 7)
 - Gable studs spaced at 4-0-0 oc.
- * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 2 lb uplift at joint 1 and 5 lb uplift at joint 3.

LOAD CASE(S) Standard

May 1,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	V13	Valley	1	1	Job Reference (optional)	173141577

3-1-4

3-1-4

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 E May 9 2024 Print: 8.730 E May 9 2024 MiTek Industries, Inc. Thu May 01 14:42:00 ID:IgMHbgh_7Mg9IHRk6Jin1YzLYRd-aopkeERtnIJiXpdjdV8CsxOpw2EhbfhiSRIdszzKrw5

4x5 =

5-7-9

2-6-5

6-2-8

0-6-15

3

2x4 👟

4 2x4 💋 2x4 🛚 6-2-8 Snacing CSI DEFI 2-0-0 in

May 1,2025

818 Soundside Road Edenton, NC 27932

1-3-2 1-6-14 0-0-4

Scale = 1:23.2

Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.11 0.13 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-2-8 oc purlins. Rigid ceiling directly bracing. (Ib/size) 1=50/6-2- 4=321/6-2 Max Horiz 1=-14 (LC Max Uplift 1=-2 (LC Max Grav 1=83 (LC	athing directly applie applied or 6-0-0 oc 8, 3=50/6-2-8, -8 : 13) 15), 3=-5 (LC 16) 21), 3=83 (LC 22), 4	 5) Unbalanced design. 6) Gable requ 7) Gable stud: 8) * This truss on the bottt 3-06-00 tall chord and a 9) Provide me bearing pla and 5 lb up LOAD CASE(S) 	I snow loads hav res continuous b s spaced at 4-0-0 has been design m chord in all ar by 2-00-00 wide ny other membe chanical connect re capable of with ift at joint 3.	e been cor ottom chor oc. led for a liv eas where will fit betv rs. ion (by oth astanding 2	nsidered for the dearing. It dearing. It load of 20.0 a rectangle veen the both ers) of truss to the uplift at jo	nis Dpsf om int 1					
FORCES	(lb) - Maximum Com Tension 1-2=-98/167, 2-3=-9	pression/Maximum 8/167										
BOT CHORD WEBS	1-4=-151/167, 3-4=- 2-4=-268/220	151/167										
NOTES	2 . 200,220											
 Unbalance this design 	d roof live loads have	been considered for	r									11111
 Wind: ASC Vasd=1037 II; Exp B; E (3E) zone; left and rig MWFRS fo grip DOL=' 	E 7-16; Vult=130mph mph; TCDL=6.0psf; B(Enclosed; MWFRS (er cantilever left and righ ht exposed;C-C for more r reactions shown; Lu 1.33	(3-second gust) CDL=6.0psf; h=25ft; ivelope) and C-C Co it exposed ; end ver embers and forces & mber DOL=1.60 pla	Cat. orner tical & te							New York	ORTH CA	L
 Truss designed only. For see Standa or consult (gned for wind loads in studs exposed to wind ard Industry Gable En-	the plane of the trus (normal to the face) d Details as application oper as per ANSI/TE	ss), ble, Pl 1								2867	17
4) TCLL: ASC Plate DOL= DOL=1.15	CE 7-16; Pr=20.0 psf (=1.15); Pg=20.0 psf; F Plate DOL=1.15); Is=	roof LL: Lum DOL=1 Pf=13.9 psf (Lum 1.0; Rough Cat B; F	1.15 Jully							1111	OFN L.G	ALINSTIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	V14	Valley	1	1	Job Reference (optional)	173141578

Run: 8.73 E May 9 2024 Print: 8.730 E May 9 2024 MiTek Industries, Inc. Thu May 01 14:42:10 ID:IgMHbgh_7Mg9IHRk6Jin1YzLYRd-HjQWkeZ9QqZHkLOeCbJYG2oV34g8xBAAl?j9COzKrvx

3-7-9

1-6-5

4-2-8

0-6-15

3

Page: 1

4-2-8

Plate Offsets (X, Y): [2:0-2-8,Edge]

	(, :): [<u>=:e = e</u> , <u>=age</u>]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.13 0.12 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Unbalancee this design 2) Wind: ASC Vasd=103r II; Exp B; E (3E) zone; left and rigi MWFRS for grip DOL=1 3) Truss desig or consult of 4) TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce=0 5) Unbalancee design. 6) Gable requ 7) Gable stud	2x4 SP No.2 2x4 SP No.2 Structural wood shea 4-2-8 oc purlins. Rigid ceiling directly bracing. (lb/size) 1=142/4-2 Max Horiz 1=9 (LC 1 Max Grav 1=168 (LC (lb) - Maximum Com Tension 1-2=-327/258, 2-3=- 1-3=-210/283 d roof live loads have E 7-16; Vult=130mph mph; TCDL=6.0psf; B4 inclosed; MWFRS (er cantilever left and righ th exposed; C-C for me treactions shown; Lu 1.33 gned for wind loads in tuds exposed to wind ard Industry Gable En- qualified building desig 2E 7-16; Pr=20.0 psf (=1.15); Pg=20.0 psf (=1.15); Pg=20.0 psf (=1.5); Cs=1.00; Ct=1.10 d snow loads have be lires continuous bottor s spaced at 4-0-0 oc.	athing directly applie applied or 10-0-0 or 2-8, 3=142/4-2-8 4) C 2), 3=168 (LC 2) pression/Maximum 327/258 been considered for (3-second gust) CDL=6.0psf; h=25ft; twelope) and C-C Co th exposed ; end ver embers and forces 8 imber DOL=1.60 pla the plane of the trus (normal to the face) d Details as applicat gner as per ANSI/TF roof LL: Lum DOL=1 2F=13.9 psf (Lum 1.0; Rough Cat B; F sen considered for th m chord bearing.	8) * This truss on the botto 3-06-00 tall chord and a ed or LOAD CASE(S) c Cat. mer tical te ss ble, P1 1. 1.15 ully is	has been designed m chord in all area by 2-00-00 wide w ny other members Standard	d for a liv as where rill fit betv	e load of 20. a rectangle veen the bott	0psf om				SEA 2867	EEP St.	
WARNI Design va a truss sv	NG - Verify design paramete alid for use only with MiTek@ stem. Before use, the build	ers and READ NOTES ON © connectors. This design ing designer must verify th	THIS AND INCLUDED MITEK F is based only upon parameters the applicability of design param	EFERENCE PAGE MII- s shown, and is for an ir eters and properly inco	-7473 rev. 1 ndividual bu	/2/2023 BEFOR	E USE. nt, not overall						

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	V15	Valley	1	1	Job Reference (optional)	173141579

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 12:37:53 ID:BlxQ1wt9eOQQsin6i?rvBKzLYrC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4-5-9

Scale = 1:30.7

	(;;; ;): [<u>=</u> :=age;e e e];	[0:2490;0 : 0]										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MR	0.81 0.42 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2-0-0 oc purlins: 1-2 Rigid ceiling directly bracing. (size) 3=5-10-0, Max Horiz 4=-114 (L Max Uplift 3=-47 (LC Max Grav 3=278 (LC 	, except end vertica applied or 10-0-0 oc 4=5-10-0 C 11) 2 10), 4=-47 (LC 9) 2 28), 4=278 (LC 29)	 * This trus on the bot 3-06-00 ta chord and All bearing 10) Provide m bearing pl 4 and 47 ll Graphical or the orie bottom cho 	s has been designed om chord in all are I by 2-00-00 wide v any other members s are assumed to be chanical connection ate capable of withs o uplift at joint 3. purlin representation tation of the purlin ord. S) Standard	ed for a liv as where will fit betw s, with BC be SP No. on (by oth standing 4 on does no along the	e load of 20.0 a rectangle veen the bott DL = 10.0psl 2 . ers) of truss t .7 Ib uplift at j ot depict the s top and/or	Dpsf om f. oint size					
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension											
IOP CHORD	1-4=-199/278, 1-2=- 3-4=-135/136	38/35, 2-3=-199/278										
NOTES												
1) Wind: AS Vasd=103 II; Exp B; (3) zone; left and ri grip DOL	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Bo Enclosed; MWFRS (er cantilever left and right ght exposed;C-C for m for reactions shown; Lu =1.33	(3-second gust) CDL=6.0psf; h=25ft; ivelope) and C-C Co exposed ; end vertic embers and forces & mber DOL=1.60 plat	Cat. rner cal							and a	ORTH CA	ROJU
 I russ des only. For see Stand or consult 	signed for wind loads in studs exposed to wind dard Industry Gable End t qualified building desire	the plane of the trus (normal to the face) d Details as application oper as per ANSI/TP	ss , , 11								SFA	N N. N
3) TCLL: AS Plate DO DOL=1.15 Exp : Ce	SCE 7-16; Pr=20.0 psf (L=1.15); Pg=20.0 psf; F 5 Plate DOL=1.15); Is= =0.9: Cs=1.00: Ct=1.10	roof LL: Lum DOL=1 Pf=18.9 psf (Lum 1.0; Rough Cat B; Fi Lu=50-0-0	.15 Jlly						1111		286	77
 4) Provide a 	dequate drainage to pr	event water ponding								24	S.SNOW	EFR. LS
5) Gable rec	quires continuous bottor	m chord bearing.								11	LA GIN	F.F. S.N
6) Truss to b braced ac	be fully sheathed from or gainst lateral movement	one face or securely t (i.e. diagonal web).									L.G	ALIMIN
Gable stu	ids spaced at 4-0-0 oc.											1. C.

- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 4-0-0 oc.

May 1,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	V16	Valley	1	1	Job Reference (optional)	173141580

3x5 II

5-10-0

2x4 🛛

Carter Components (Sanford, NC), Sanford, NC - 27332,

Scale = 1:30 Loading

TCLL (roof)

TCDL

BCLL

BCDL

LUMBER

WFBS

OTHERS

BRACING

FORCES

WEBS

1)

2)

3)

4)

NOTES

TOP CHORD

BOT CHORD

grip DOL=1.33

TOP CHORD

BOT CHORD

REACTIONS (size)

TOP CHORD

BOT CHORD

2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

2x4 SP No.3

bracing.

Max Grav

Tension

3-4=-93/129

Snow (Pf/Pg)

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Wed Apr 30 12:37:53 ID:BlxQ1wt9eOQQsin6i?rvBKzLYrC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x5 II

Page: 1

2 \bowtie 3-11-9 6 4 5 3x5 II 3x5 II 2x4 II 5-10-0 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) Plate Grip DOL 20.0 1.15 TC 0.44 Vert(LL) n/a n/a 999 MT20 244/190 BC 18 9/20 0 Lumber DOL 1 15 0.23 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.08 Horiz(TL) 0.00 4 n/a n/a 0.0 Code IRC2021/TPI2014 Matrix-MR 10.0 Weight: 32 lb FT = 20%5) Gable requires continuous bottom chord bearing. 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). Gable studs spaced at 4-0-0 oc. 7) * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom 2-0-0 oc purlins: 1-3. except end verticals. chord and any other members. Rigid ceiling directly applied or 10-0-0 oc All bearings are assumed to be SP No.2 . 9) 10) Provide mechanical connection (by others) of truss to 4=5-10-0, 5=5-10-0, 6=5-10-0 bearing plate capable of withstanding 35 lb uplift at joint Max Horiz 6=-100 (LC 9) 6, 35 lb uplift at joint 4 and 5 lb uplift at joint 5. Max Uplift 4=-35 (LC 10), 5=-5 (LC 10), 6=-35 11) Graphical purlin representation does not depict the size (LC 9) or the orientation of the purlin along the top and/or 4=91 (LC 28), 5=263 (LC 2), 6=91 bottom chord. (LC 29) LOAD CASE(S) Standard (Ib) - Maximum Compression/Maximum 1-6=-93/129, 1-2=-16/16, 2-3=-16/16, 5-6=-118/122. 4-5=-118/122 2-5=-198/278 HOV MANUMULT Wind: ASCE 7-16; Vult=130mph (3-second gust) OR Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & ALTER DAY NO. MWFRS for reactions shown; Lumber DOL=1.60 plate SEAL Truss designed for wind loads in the plane of the truss 867 only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 GA May 1,2025 building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) 818 Soundside Road and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com) Edenton, NC 27932

Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0 Provide adequate drainage to prevent water ponding. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	V17	Valley	1	1	Job Reference (optional)	173141581

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 12:37:53 ID:fxVoEGtnPiYHUsMIGjM8kYzLYrB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-10-0

3-5-9

Scale	_	1.28	
Scale	_	1.20	

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 18.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MR	0.33 0.18 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0										Weight: 30 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2-0-0 oc purlins: 1-3 Rigid ceiling directly bracing. (size) 4=5-10-0, Max Horiz 6=-87 (LC Max Uplift 4=-27 (LC (LC 9) Max Grav 4=91 (LC (LC 2) (b) Maxigum Com	, except end vertical applied or 10-0-0 oc 5=5-10-0, 6=5-10-0 11) 10), 5=-5 (LC 10), 6 2), 5=262 (LC 2), 6=	5) Gable rec 6) Truss to the braced ag 7) Gable stu 8) * This trus on the bo 3-06-00 ta chord and 9) All bearing p 6, 27 lb u 11) Graphical 91 bottom ch	uires continuous bot e fully sheathed fror ainst lateral movem ds spaced at 4-0-0 c is has been designe tom chord in all aree all by 2-00-00 wide w any other members gs are assumed to b lechanical connectio ate capable of withs blift at joint 4 and 5 lt purlin representatio intation of the purlin ord. S) Standard	tom chor n one fac ent (i.e. c bc. d for a liv as where vill fit betv e SP No. n (by oth tanding 2 o uplift at n does no along the	d bearing. e or securely liagonal web). e load of 20.0 a rectangle veen the botto 2. ers) of truss to 27 lb uplift at jo joint 5. of depict the s e top and/or)psf om o pint ize						
	Tension	procedent/maximum											
TOP CHORD	1-6=-87/121, 1-2=-1- 3-4=-87/121	4/15, 2-3=-14/15,											
BOT CHORD	5-6=-101/104, 4-5=-	101/104											
WEBS	2-5=-198/278												
NOTES											MILLIN	1111	
 Wind: ASC Vasd=103 II; Exp B; I (3) zone; c left and rig MWFRS fc grip DOL= Truss desi only. For : see Stand or consult TCLL: ASC Plate DOL= DOL=1.15 Exp.; Ce= Provide acc 	CE 7-16; Vult=130mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (en antilever left and right that exposed;C-C for me or reactions shown; Lu 1.33 igned for wind loads in studs exposed to wind ard Industry Gable End qualified building desig CE 7-16; Pr=20.0 psf (.=1.15); Pg=20.0 psf; [Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10, dequate drainage to pro-	(3-second gust) CDL=6.0psf; h=25ft; velope) and C-C Cor exposed; end vertic embers and forces & mber DOL=1.60 plat the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP roof LL: Lum DOL=1. ½=18.9 psf (Lum 1.0; Rough Cat B; Fu Lu=50-0-0 event water ponding.	Cat. rner al e s le, I 1. .15 ully						. and the second second	and	SEA 2867	ROUTER STUDIES	ANNIH III III

May 1,2025

111111111

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	V18	Valley	1	1	Job Reference (optional)	173141582

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 12:37:53 ID:fxVoEGtnPiYHUsMIGjM8kYzLYrB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-10-0

Scale =	1:25.9
---------	--------

Loading FCLL (roof) Snow (Pf/Pg) FCDL	(psf) 20.0 18.9/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB Matrix-MR	0.24 0.12 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0	Code	11(02021/1112014	Mathemat							Weight: 28 lb	FT = 20%	
LUMBER FOP CHORD SOT CHORD WEBS DTHERS BRACING FOP CHORD SOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2-0-0 oc purlins: 1-3, Rigid ceiling directly bracing. (size) 4=5-10-0, Max Horiz 6=-73 (LC Max Uplift 4=-19 (LC (LC 9) Max Grav 4=91 (LC (LC 2)	, except end vertical applied or 10-0-0 oc 5=5-10-0, 6=5-10-0 9) 10), 5=-5 (LC 10), 6 2), 5=261 (LC 2), 6=	 5) Gable requ 6) Truss to be braced aga 7) Gable stud: 8) * This truss on the botto 3-06-00 tall chord and a 9) All bearings 10) Provide me bearing pla 6, 19 lb upil 11) Graphical p or the orien bottom cho LOAD CASE(S 	res continuous bot fully sheathed from inst lateral moveme s spaced at 4-0-0 o has been designed im chord in all area by 2-00-00 wide w iny other members are assumed to be chanical connection e capable of withst ft at joint 4 and 5 lb urlin representation tation of the purlin rd.) Standard	tom chor n one fac ent (i.e. d ic. d for a liv as where ill fit betv e SP No. n (by oth tanding 2 o uplift at n does no along the	d bearing. e or securely iagonal web). e load of 20.0 a rectangle veen the botto 2. ers) of truss to 0 lb uplift at jo joint 5. ot depict the s top and/or	opsf om oint ize						
ORCES	(lb) - Maximum Com Tension	pression/Maximum											
FOP CHORD	1-6=-82/114, 1-2=-12 3-4=-82/114	2/14, 2-3=-12/14,											
	5-6=-84/86, 4-5=-84/	/86											
	2-3=-191/210												
 IOTES Wind: ASC Vasd=103i II; Exp B; E (3) zone; c left and rig MWFRS fc grip DOL= Truss desi only. For s see Standi- or consult TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce=C Provide ac 	CE 7-16; Vult=130mph mph; TCDL=6.0psf; BG Enclosed; MWFRS (en eantilever left and right ht exposed; C-C for me or reactions shown; Lu 1.33 gned for wind loads in studs exposed to wind ard Industry Gable Enc qualified building desig CE 7-16; Pr=20.0 psf; F Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10, Sequet drainage to pr	(3-second gust) CDL=6.0psf; h=25ft; velope) and C-C Co exposed ; end vertic embers and forces & mber DOL=1.60 plat the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP roof LL: Lum DOL=1 Yf=18.9 psf (Lum 1.0; Rough Cat B; Ft Lu=50-0-0 event water ponding.	Cat. mer sal s s , le, l 1. .15 ully							And	SEA 2867	ROLL L 27 ALMST	and and and and and a start of the start of

May 1,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	V19	Valley	1	1	Job Reference (optional)	173141583

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 12:37:53 ID:fxVoEGtnPiYHUsMIGjM8kYzLYrB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-10-0

Scale = 1:23.9

-

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MR	0.18 0.08 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 26 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 2-0-0 oc purlins: 1-3 Rigid ceiling directly bracing. (size) 4=5-10-0, Max Horiz 6=-59 (LC Max Uplift 4=-13 (LC (LC 9) Max Grav 4=92 (LC	, except end vertical applied or 10-0-0 oc 5=5-10-0, 6=5-10-0 : 11) : 10), 5=-5 (LC 10), 6 2), 5=260 (LC 2), 6=	5) 6) 7) 8) Is. 9) 10) 5=-14 11) 92	Gable require Truss to be fi braced again Gable studs : * This truss h on the botton 3-06-00 tall b chord and an All bearings a Provide mech bearing plate 6, 13 lb uplift Graphical pu or the orienta	es continuous botto illy sheathed from o st lateral movemen spaced at 4-0-0 oc. as been designed in chord in all areas y 2-00-00 wide will y other members. are assumed to be nanical connection capable of withsta at joint 4 and 5 lb of din representation of tion of the purlin al	om chor one fac ti (i.e. d for a liv where fit betw SP No. (by oth nding 1 uplift at does no ong the	d bearing. e or securely iagonal web) e load of 20.0 a rectangle veen the botto 2. ers) of truss t 4 lb uplift at jr joint 5. t depict the s t top and/or	Dpsf om oint size					
FORCES	(LC 2) (Ib) - Maximum Com Tension 1-6=-78/109, 1-2=-12	pression/Maximum 2/14, 2-3=-12/14,	LO	AD CASE(S)	Standard								
BOT CHORD WEBS	3-4=-78/109 5-6=-66/67, 4-5=-66/ 2-5=-197/278	/67											
NOTES													L11.
 NOTES Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0 											and a state of the	SEA 2867	ROULEER. SK IIIII
Provide ad	dequate drainage to pro	event water ponding										111111	(III)

May 1,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	V20	Valley	1	1	Job Reference (optional)	173141584

1-11-9

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 12:37:53 ID:fxVoEGtnPiYHUsMIGjM8kYzLYrB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-10-0

Scolo	- 1.21	0
SUGIE	= 1.21	

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	21/TPI2014	CSI TC BC WB Matrix-MR	0.13 0.05 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2c4 SP No.3 2c4 SP No.3 (sige) 4=5-10-0, Max Horiz 6=-46 (LC Max Uplift 4=-9 (LC - (LC 9) Max Grav 4=92 (LC -	, except end verticals applied or 10-0-0 oc 5=5-10-0, 6=5-10-0 9) 10), 5=-5 (LC 10), 6=- 2), 5=258 (LC 2), 6=5	5) 6) 7) 8) 5. 9) 10 9 11	 Gable require Truss to be fibraced again Gable studs a * This truss h on the botton 3-06-00 tall b chord and an All bearings a Provide mech bearing plate 9 lb uplift at ji Graphical pu or the orienta bottom chord 	es continuous bott lly sheathed from st lateral moveme spaced at 4-0-0 or as been designec n chord in all area y 2-00-00 wide wii y other members. are assumed to be nanical connectior capable of withst bint 4 and 5 lb upl rin representation tion of the purlin a	om chor o one fac nt (i.e. d c. I for a liv s where II fit betv SP No. to (by oth anding S ift at join does no along the	d bearing. e or securely iagonal web). e load of 20.0p a rectangle veen the botton 2. ers) of truss to l b uplift at joir t 5. ot depict the size e top and/or	osf m nt 6, ze					
FORCES	(Ib) - Maximum Com Tension	pression/Maximum	L	OAD CASE(S)	Standard								
TOP CHORD	1-6=-75/105, 1-2=-1: 3-4=-75/104	3/15, 2-3=-13/15,											
BOT CHORD	5-6=-55/55, 4-5=-55/ 2-5196/277	/55											
NOTES	2 0- 100/211											mun	1111
 Wind: ASC Vasd=103 II; Exp B; I (3) zone; c left and rig MWFRS fc grip DOL= Truss desi only. For s see Stand- or consult TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce= Provide acc 	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B(Enclosed; MWFRS (en antilever left and right pht exposed;C-C for me or reactions shown; Lu 1.33 igned for wind loads in studs exposed to wind ard Industry Gable End qualified building desig CE 7-16; Pr=20.0 psf (.=1.15); Pg=20.0 psf; [Plate DOL=1.15); Is=: 0.9; Cs=1.00; Ct=1.10, dequate drainage to pro-	Cat. her al e, 1. 15 ly							. and the second	And	SEAL SEAL 2867	ROUL 7 E.R. St.	

- or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum
- DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0
- 4) Provide adequate drainage to prevent water ponding.

Thunner . May 1,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	V21	Valley	1	1	Job Reference (optional)	173141585

1-5-9

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 12:37:53 ID:fxVoEGtnPiYHUsMIGjM8kYzLYrB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-10-0

Cool		4.4		۱.
- DCA	H =		9.9	

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/	TPI2014	CSI TC BC WB Matrix-MR	0.12 0.05 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 2-0-0 oc purlins: 1-3 Rigid ceiling directly bracing. (size) 4=5-10-0, Max Horiz 6=32 (LC Max Uplift 4=-5 (LC - (LC 9) Max Grav 4=93 (LC (LC 2)	, except end verticals applied or 10-0-0 oc 5=5-10-0, 6=5-10-0 10) 10), 5=-5 (LC 10), 6=- 2), 5=257 (LC 2), 6=5	5) 6) 7) 8) 5. 9) 10) -5 11) 03	Gable require Truss to be fi braced again Gable studs st * This truss h on the bottom on the bottom and an All bearings a Provide medi bearing plate bearing plate bearing plate or the orienta bottom chord	es continuous bott ully sheathed from st lateral moveme spaced at 4-0-0 or as been designed n chord in all area: y 2-00-00 wide wi y other members. are assumed to be nanical connectior capable of withst- oint 4 and 5 lb upli rlin representation tion of the purlin a	om chor one fac nt (i.e. d 2. for a liv s where Il fit betw SP No. (by oth anding 5 ft at join does no long the	d bearing. e or securely iagonal web). a rectangle veen the botto 2. ers) of truss to i lb uplift at joir t 5. ot depict the si t to pand/or	osf m nt 6, ze					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	LOA	AD CASE(S)	Standard								
TOP CHORD	1-6=-73/102, 1-2=-18 3-4=-73/102	8/19, 2-3=-18/19,											
BOT CHORD	5-6=-46/44, 4-5=-46/ 2-5=-195/275	/44											
NOTES	20 100/210												11.
 Wind: ASC Vasd=103 II; Exp B; I (3) zone; c left and rig MWFRS fr grip DOL= Truss desis only. For see Stand or consult TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce= Provide acc 	CE 7-16; Vult=130mph imph; TCDL=6.0psf; B0 Enclosed; MWFRS (en cantilever left and right ht exposed;C-C for me or reactions shown; Lu ±1.33 igned for wind loads in studs exposed to wind ard Industry Gable Ene qualified building desig CE 7-16; Pr=20.0 psf (=1.15); Pg=20.0 psf; F is Plate DOL=1.15); Is= 0.9; CS=1.00; Ct=1.10, dequate drainage to pri	Cat. ner al e e, 1. 15 ly								and states	SEA 2867	ROUL AND ALLING	

- or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 $\,$ 3) Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0
- 4) Provide adequate drainage to prevent water ponding.

L. GAL May 1,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	87 Eagle Creek - Edisto E - Roof	
25040190	V22	Valley	1	1	Job Reference (optional)	173141586

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Apr 30 12:37:54 ID:fxVoEGtnPiYHUsMIGjM8kYzLYrB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Sca	ale = 1:17.3												
Loa TCL Sno TCE BCL	ding L (roof) w (Pf/Pg) DL L	(psf) 20.0 18.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MR	0.42 0.19 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCE	DL	10.0										Weight: 18 lb	FT = 20%
LUN TOF BOT WEE BR/ TOF BOT	MBER CHORD CHORD SS ACING CHORD CHORD ACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2-0-0 oc purlins: 1-2 Rigid ceiling directly bracing. (size) 3=5-10-0, Max Horiz 4=18 (LC Max Uplift 3=-5 (LC Max Grav 3=222 (LC	, except end vertica applied or 10-0-0 oc 4=5-10-0 10) 10), 4=-5 (LC 9) 2 2), 4=222 (LC 2)	 8) * This trust on the bott 3-06-00 tal chord and 9) All bearing 10) Provide me bearing pla and 5 lb up 11) Graphical or the orier bottom cho 	s has been design om chord in all are l by 2-00-00 wide any other member s are assumed to echanical connecti the capable of with blift at joint 3. ourlin representation tation of the purlir ord.	ed for a liv eas where will fit betv rs. be SP No. ion (by oth standing 5 on does no n along the	e load of 20.0 a rectangle veen the botto 2 . ers) of truss to i lb uplift at joi ot depict the s e top and/or	Dpsf om ont 4 ize					
FOF	CES	(lb) - Maximum Com	pression/Maximum										
TOF BOT	CHORD	Tension 1-4=-168/237, 1-2=- 3-4=-185/198	185/170, 2-3=-168/2	37									
NOT	TES												
1)	Wind: ASC Vasd=103i II; Exp B; E (3) zone; c left and rig MWFRS fo grip DOL=	CE 7-16; Vult=130mph mph; TCDL=6.0psf; Bo Enclosed; MWFRS (er eantilever left and right ht exposed;C-C for mo or reactions shown; Lu 1.33	(3-second gust) CDL=6.0psf; h=25ft; ivelope) and C-C Co exposed ; end vertic embers and forces 8 mber DOL=1.60 pla	Cat. rmer cal te								WITH CA	NRO IN
2)	Truss designed only. For s see Standa	gned for wind loads in studs exposed to wind ard Industry Gable Eng qualified building desir	the plane of the trus (normal to the face) d Details as applicat	ss , ple, u 1							in the second se	o ess	Charles and the second
3)	TCLL: ASC Plate DOL DOL=1.15 Exp.: Ce=(CE 7-16; Pr=20.0 psf (=1.15); Pg=20.0 psf; F Plate DOL=1.15); Is= 0.9: Cs=1.00: Ct=1 10	roof LL: Lum DOL=1 Pf=18.9 psf (Lum 1.0; Rough Cat B; Fi . Lu=50-0-0	.15 ully						11111		SEA 2867	L 77
4)	Provide ad	lequate drainage to pr	event water ponding								-	N	1 5
5) Gable requires continuous bottom chord bearing.											50	S.ENO.	FRIDE
6)	Truss to be	e fully sheathed from c	one face or securely								11	Ch GIN	E.F. SIN
7)	braced aga Gable stud	ainst lateral movement Is spaced at 4-0-0 oc.	t (i.e. diagonal web).									L.G	ALIM

- Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0
- 4) Provide adequate drainage to prevent water ponding.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely
- braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 4-0-0 oc.

May 1,2025

mmm

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

