

Trenco 818 Soundside Rd Edenton, NC 27932

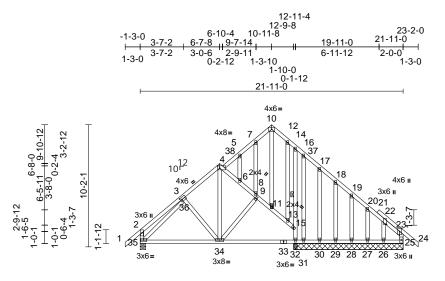
Re: P02003-24593 1055 Serenity

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Lumber 2383 (Dunn, NC).

Pages or sheets covered by this seal: T37046641 thru T37046666

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844


April 18,2025

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	1055 Serenity	
P02003-24593	A01SE	Common Structural Gable	1	1	Job Reference (optional)	T37046641

Continued on page 2

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Thu Apr 17 14:09:24 ID:?8OUYKBYO737veGILHtAxAzQ8Sg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	6-7-8	12-11-4	21-11-0	
Scale = 1:96	6-7-8	6-3-12	8-11-12	
Plate Offsets (X, Y): [3:0-1-8,0-2-0], [4:0-2-0,0-2-4], [22:0-0-5,0-1-0]				

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MS	0.41 0.35 0.55	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.10 0.01	34-35	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 207 Ib	GRIP 244/190 FT = 20%
	1 Brace at Jt(s): 11 (size) 25=9-1-8, 28=9-1-8, 31=9-1-8, 35=205 (L Max Uplift 25=-69 (L 27=-16 (L	t* 0-17:2x4 SP No.2 athing directly applied cept end verticals. applied or 10-0-0 oc 14-32 26=9-1-8, 27=9-1-8, 29=9-1-8, 30=9-1-8, 32=0-3-8, 35=0-5-8 LC 13)	d or BOT CHORD WEBS 5),	10-12=-249/149, 1 14-16=-230/142, 1 17-18=-300/99, 18 19-20=-317/71, 20 22-23=-381/86, 23 4-5=-277/93, 5-7= 4-6=-235/88, 6-8= 9-11=-251/107, 11 13-15=-156/51, 23	12-14=-2 12-14=-2 16-17=-2 3-19=-30 0-22=-29 3-24=0/4 -252/111 -261/100 1-13=-16 3-25=-36 32-34=-8 3-25=-36 32-34=-8 3-25=-59 7-8=-1/52 31=-27/0 331=-27/0 34=0/16 36=-400	70/130, 85/124, 6/76, 1/66, 3, 2-35=-313// 3, 7-10=-202/1 4/39, 5/56 0/377, /259, /259, /259, /259, /259, /259, /259, /259, /259, /259, /259, /259, /259, /259, /21, 7-30=-71. i6, 20-27=-10 /21, 9-34=-55,	/61, 9/32, 100,	Plai 1.1? Exp 5) This load over req 7) Pro 8) All 1 9) Tru brai 10) Gat 11) This choo 12) * Th	te DOL= 5 Plate I 5, Ce=1 s truss h d of 12.0 rhangs lding De fying Ra uiremen vide add plates a ss to be ced aga plates a s truss h s truss h mod live botto the botto	=1.15); DOL = .0; Cs= has bee) psf or non-co isigner, ain Loa ts spec equate re 2x4 fully sl inst lat s space has bee bad non has be	Pg=10.0 psf; Pf= 1.15); Is=1.0; Rc =1.00; Ct=1.10 en designed for cg 1.00 times flat r incurrent with oth /Project enginee d = 5.0 (psf) cov cific to the use of drainage to prev (II) MT20 unless heathed from on eral movement (ed at 1-4-0 oc. en designed for a nconcurrent with een designed for rd in all areas with	r responsible for ers rain loading i this truss component. vent water ponding. s otherwise indicated. e face or securely i.e. diagonal web). a 10.0 psf bottom any other live loads. a live load of 20.0psf here a rectangle
FORCES	31=-216 (Max Grav 25=455 (L 27=157 (L 29=100 (L	LC 5), 35=-99 (LC 14 LC 26), 26=94 (LC 13 LC 2), 28=101 (LC 27 LC 27), 30=116 (LC 2 C 11), 32=446 (LC 5), LC 2)) NOTES), 1) Unbalanc this desig 7), 2) Wind: AS 7), 2) Wind: AS 10, 20 10,	ed roof live loads haven. CE 7-16; Vult=115m, nph; TCDL=4.2psf; E Enclosed; MWFRS (Exterior(2E) -1-3-0 to Exterior(2R) 10-11-8 0 23-2-0 zone; cantile end vertical left and and forces & MWFR OL=1.60 plate grip I igned for wind loads studs exposed to wind lard Industry Gable E qualified building de	bh (3-sei BCDL=3. envelopi 1-9-0, li to 13-11 ever left right exj S for rea DOL=1.6 in the pl nd (norm End Deta	cond gust) Ops; h=25ft; (e) exterior zon terior (1) 1-9- &, Interior (1) and right posed;C-C for ctions shown 0 ane of the trus al to the face) ils as applicat	Cat. ne -0 to ; ; ss), ble,			Part Part	00-00 wide will fit ler members. H CA SEA 0433	L25 EERCAN

April 18,2025

Page: 1

mmm

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 1/2/2023 BEFORE USE WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1055 Serenity	
P02003-24593	A01SE	Common Structural Gable	1	1	Job Reference (optional)	T37046641

- 13) Provide mechanical connection (by others) of truss to 13, riovide mechanical connection (by others) of truss to bearing plate capable of withstanding 216 lb uplift at joint 31, 49 lb uplift at joint 30, 44 lb uplift at joint 29, 53 lb uplift at joint 28, 16 lb uplift at joint 27, 161 lb uplift at joint 26, 69 lb uplift at joint 25 and 99 lb uplift at joint 35.
 14) This truss is designed in accordance with the 2018 International Residential Code sections EF02111 and
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Thu Apr 17 14:09:24 ID:?8OUYKBYO737veGILHtAxAzQ8Sg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

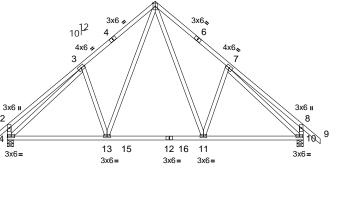
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1055 Serenity	
P02003-24593	A02	Common	6	1	Job Reference (optional)	T37046642

10-3-5

-1-12

2


10-6-10

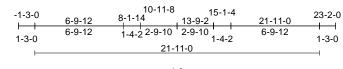
Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Thu Apr 17 14:09:26 ID:dWJkQBgG06pUwf7cai1ATPzQ8Mt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

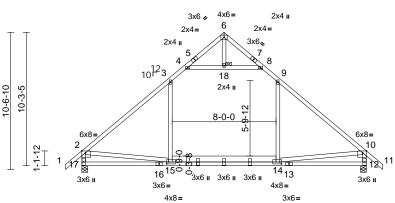
Page: 1

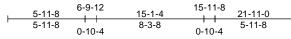
23-2-0 -1-3-0 21-11-0 5-7-4 10-11-8 16-3-12 \mapsto + - 1 5-7-4 5-4-4 5-4-4 5-7-4 1-3-0 1-3-0 21-11-0 4x6 u

5

Loading (ps) Specing 2-0-0 CS Display Utility PLATES CRIP TCLL (pool) 200 Non (PP(p) 7.77.00 Non (PP(p) Non (PP(p)	Scale = 1:85.3		7-4-11 7-4-11	<u>14-6-5</u> 7-1-11		<u>21-11-</u> 7-4-1					
10-11-8, Exterior(2R) 10-11-8 to 13-11-8, Interior (1) 13-11-8 to 23-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for	Loading (psf) Spacing TCLL (roof) 20.0 Plate Grip DOL Snow (Pf/Pg) 7.7/10.0 Lumber DOL TCDL 7.0 Rep Stress Incr BCDL 10.0 Code LUMBER 10.0 Rep Stress Incr TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 *Except* 11-5,13-5,14-3,10-7:2x4 SP No.2 BRACING TOP CHORD Structural wood sheathing directly app 5-9-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 bracing. BRACTIONS REACTIONS (size) 10=0-5-8, 14=0-5-8 Max Horiz 14=212 (LC 13) Max Uplift 10=-116 (LC 15), 14=-116 (Max Grav 10=969 (LC 27), 14=969 (LC 57938/219, 7-8=-322/148, 3-5=-938/219 5-7=-938/219, 7-8=-322/148, 3-5=-938/219 5-7=-938/219, 7-8=-322/148, 3-5=-938/219 5-7=-938/219, 7-8=-322/148, 3-5=-938/219 5-7=-938/219, 7-8=-322/148, 3-5=-938/219 5-7=-938/219, 7-8=-322/148, 3-5=-938/219 5-7=-938/219, 7-8=-322/148, 3-5=-938/219 5-7=-938/219, 7-8=-322/148, 3-5=-938/219 5-7=-938/219, 7-8=-322/148, 3-5=-938/219 5-7=-938/219, 7-18=-300/39 NOTES 1) Unbalanced roof live loads have been considered this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25f1 II; Exp B; Enclosed; MWFRS (envelope) exterior z and C-C Exterior(2E) -1-3-0 to	1.15 1.15 YES IRC201 3 4 lied or 5 oc 6 LC 14) 7 C 26) n 8 3, 9 L for L for 5 (Cat. one 9-0 to 1)	7-4-11 CSI TC BC WB Matrix-MS TCLL: ASCE 7-16; Pr=20 Plate DOL=1.15); Pg=10. 1.15 Plate DOL = 1.15); Pg=10. 1.15 Plate DOL = 1.15); Pise Dot = 1.15); Pise Dot = 1.15); Pise Dot = 1.15); Pise Dot = 1.15); Pise Control for 1.00 This truss has been desig load of 12.0 psf or 1.00 This truss has been desig chord live load nonconcur This truss has been desig on the bottom chord in all 3-06-00 tall by 2-00-00 wi chord and any other mer Provide mechanical conn bearing plate capable of v 10 and 116 lb uplift at joir This truss is designed in a International Residential I R802.10.2 and reference	7-1-11 0.34 0.57 0.78 0.0 psf; Pf=7.7 5=1.0; Rough t=1.10 ned for great mes flat roof I t with other li engineer res (psf) covers I he use of this ined for a 10. great where de will fit betw. bers, with BC ection (by oth vithstanding ' accordance w Code sections	Vert(LL) Vert(CT) Horz(CT) Horz(CT) 	7-4-1 in -0.10 1 -0.14 1 0.02 1.15 - = Illy live on hent. ds. Dpsf o joint	1 (loc) 1-13 0-11 10	>999 >999 n/a	240 180 n/a	MT20 Weight: 151 lb	244/190 FT = 20%


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



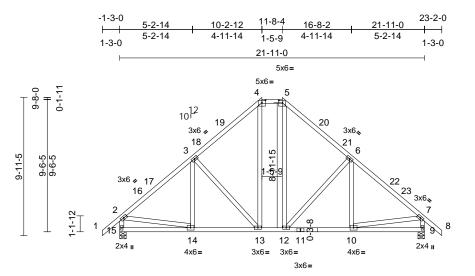

Job	Truss	Truss Type	Qty	Ply	1055 Serenity	
P02003-24593	A02A	Attic	5	1	Job Reference (optional)	T37046643

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Thu Apr 17 14:09:26 ID:ZVh3JFS1_UaRpMqWD9do_izQ8Gi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:88.7 Plate Offsets (X, Y): [2:0-3-8,Edge], [10:0-3-8,Edge], [14:0-1-8,0-1-12], [15:0-1-8,0-1-12]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MS	0.92 0.66 0.11	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	-0.40 0.01	(loc) 15-17 15-17 12 14-15	l/defl >777 >647 n/a >368	L/d 240 180 n/a 360	PLATES MT20 Weight: 151 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS FORCES TOP CHORD	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.3 *Excep No.1, 15-2,14-10:2x4 Structural wood she 4-7-14 oc purlins, e Rigid ceiling directly bracing. 1 Brace at Jt(s): 18 (size) 12=0-5-8, Max Horiz 17=212 (L Max Uplift 12=-92 (L Max Grav 12=941 (L (lb) - Maximum Com Tension	t* 9-14,3-15,4-8:2x4 4 SP No.2 athing directly applie xcept end verticals. applied or 9-4-3 oc 17=0-5-8 .C 13) C 15), 17=-92 (LC 14 .C 28), 17=941 (LC 2 pression/Maximum 7/126, 3-4=-652/145, /88, 8-9=-652/145,	SP d or 3) 4) 27) 5) 6)	Vasd=91mph II; Exp B; Enn and C-C Extt 10-11-8, Extt 13-11-13 to 2 exposed ; en members an Lumber DOL TCLL: ASCE Plate DOL=1 1.15 Plate DD Exp.; Ce=1.0 This truss ha load of 12.0 J overhangs n Building Des verifying Raii requirements This truss ha	7-16; Vult=115m n; TCDL=4.2psf; E closed; MWFRS (erior(2E) -1-3-0 to erior(2R) 10-11-8 32-2-0 zone; canti d vertical left and d vertical left and s 0 polo zon context s been designed 1 s s been designed 1 in Load = 5.0 (psf) s specific to the us s been designed 1 d nonconcurrent	CDL=3. envelope 1-9-0, Ir to 13-11 lever left right exp S for resp IOL=1.60 f (roof LL ; Pf=7.7 ; Rough 0 for great lat roof Io other limer resp covers r e of this for a 10.	Dpsf; h=25ft; e) exterior zoi terior (1) 1-9 -13, Interior (and right bosed;C-C foil ctions showr) : Lum DOL= psf (Lum DO Cat B; Partial er of min roof bad of 7.7 psi ve loads. bonsible for ain loading truss compo psf bottom	ne -0 to 1) r t, t.15 L = slly f live f on					
BOT CHORD WEBS NOTES 1) Unbalance this design	10-12=-878/131 15-17=-314/525, 14- 12-14=-194/371 9-14=0/332, 3-15=0/ 8-18=-751/175, 6-18 10-14=-140/565 ed roof live loads have	-15=-11/739, /332, 4-18=-751/175, =-1/4, 2-15=-134/56	7) 0, 8) 9) 10 11	* This truss h on the bottor 3-06-00 tall b chord and ar Bottom chord chord dead h Provide mec bearing plate 17 and 92 lb) This truss is International R802.10.2 ar	as been designed in chord in all area y 2-00-00 wide w y other members. J live load (20.0 p: bad (5.0 psf) appli hanical connection capable of withst uplift at joint 12. designed in accor Residential Code and referenced star tecked for L/360 d	I for a liv s where ill fit betw sf) and a ed only n (by oth anding s dance w sections ndard AN	e load of 20.0 a rectangle veen the bott diditional bott o room. 14-1 ers) of truss t 2 lb uplift at j th the 2018 R502.11.1 a ISI/TPI 1.	Opsf om om 5 to joint		CONTINUE.	AND	SEA 0433	EB. A.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

O' mmm April 18,2025

Job	Truss	Truss Type	Qty	Ply	1055 Serenity	
P02003-24593	A03	Нір	1	1	Job Reference (optional)	T37046644

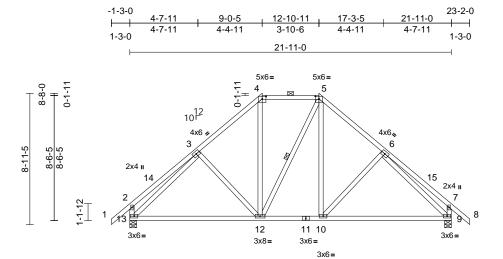
Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Thu Apr 17 14:09:27 ID:6OEON9G3C30wLfRPfkKWBqzQ8Ff-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	5-2-14	10-1-0	11-10-0	16-8-2	21-11-0	
Scale = 1:82.9	5-2-14	4-10-2	1-9-1	4-10-2	5-2-14	
Plate Offsets (X, Y): [4:0-3-0,0-2-1], [5:0-3-0,0-2-1]						

	(X, Y): [4:0-3-0,0-2-1],				1	-						1	-
Loading	(psf)	Spacing	2-0-0		CSI TC	0.00	DEFL	in	(loc)	l/defl	L/d	PLATES MT20	GRIP
FCLL (roof) Snow (Pf/Pg)	20.0 12.7/10.0	Plate Grip DOL Lumber DOL	1.15 1.15		BC	0.32 0.28	Vert(LL) Vert(CT)	-0.05 -0.07		>999 >999	240 180	M120	244/190
CDL	7.0	Rep Stress Incr	YES		WB	0.25	Horz(CT)	0.07	9	>999 n/a	n/a		
BCLL	0.0*	Code		8/TPI2014	Matrix-MS	0.20	11012(01)	0.01	Ũ	n/a	n/a		
BCDL	10.0											Weight: 158 lb	FT = 20%
UMBER			2)	Wind: ASCE	7-16; Vult=115m	ph (3-seo	cond gust)		LOAD	CASE(S)) Sta	ndard	
OP CHORD	2x4 SP No.2				h; TCDL=4.2psf; E								
OT CHORD	2x4 SP No.2				closed; MWFRS								
VEBS	2x4 SP No.3 *Excep				erior(2E) -1-3-0 tc erior(2E) 10-2-12								
	13-4,13-3,12-5,12-6	2X4 5P NO.2			-11-3, Interior (1)								
BRACING	Structural wood she	athing directly appli	ad or		t and right expose								
	6-0-0 oc purlins, ex				d;C-C for member			RS					
	2-0-0 oc purlins (6-0				shown; Lumber [DOL=1.6) plate grip						
BOT CHORD	Rigid ceiling directly		c av	DOL=1.60	7 40 5 00 0								
	bracing.		3)		7-16; Pr=20.0 ps 1.15); Pg=10.0 ps								
REACTIONS	(size) 9=0-5-8, *	15=0-5-8			OL = 1.15); Is=1.0								
	Max Horiz 15=199 (I); Cs=1.00; Ct=1.			any					
	Max Uplift 9=-116 (L		16) 4)		snow loads have			his					
	Max Grav 9=875 (L0	,, , , ,		design.									
ORCES	(lb) - Maximum Com	pression/Maximum	5)		is been designed								
TOP CHORD	Tension 1-2=0/48, 2-3=-934/	117 3-1762/168			psf or 1.00 times			t on					
	4-5=-496/158, 5-6=-	, ,	122. 6)		on-concurrent wit igner/Project eng								
	7-8=0/48, 2-15=-827	,	, ,		n Load = 5.0 (psf)								
BOT CHORD	14-15=-178/241, 13	-14=-99/693,			s specific to the us			nent.					11.
	12-13=-24/496, 10-1	,	• • • •	Provide ade	quate drainage to	prevent	water ponding	g.				M' U CA	Dille
NEBS	6-10=-3/147, 3-14=-		9, 8)		as been designed							"ath	TO 11
	3-13=-294/161, 5-12 6-12=-294/161, 2-14	,	1 0		ad nonconcurrent						S.	O' . All	Nº1
NOTES	0-12=-294/101, 2-1-	==1/001, 7=10=-0/00	9)		nas been designe m chord in all area			upsr			24		No. 7 -
	ed roof live loads have	been considered fo			by 2-00-00 wide w			om				:01	K: =
this design		been considered to	1		y other members			om				CEA	1 1 3
the deelg			10		hanical connectio		ers) of truss t	to		=	:	SEA	·L : =
					e capable of withs	tanding 1	16 lb uplift at	t joint		=		0433	25 : =
					b uplift at joint 9.					-	3		
			11		designed in accor Residential Code			and			- ~	N. A	0123
					nd referenced sta			and			27	K. SNGIN	FETT AS
			15		Irlin representation			size			11	1 ANNIN	EGIN
					ation of the purlin							SEA 0433	EER GATIN
				bottom chore								111111	TITLE .
												Apr	1 10 2025

April 18,2025

818 Soundside Road Edenton, NC 27932


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1055 Serenity	
P02003-24593	A04	Нір	1	1	Job Reference (optional)	T37046645

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Thu Apr 17 14:09:27 ID:LOoDr2aN52IETfROABocFJzQ8FF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

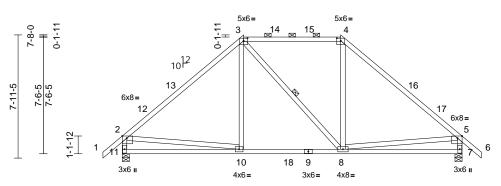
Page: 1

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in (loc) l/def	fl L/d	PLATES C	GRIP
Plate Offsets (X, Y):	[4:0-3-0,0-2-1],	[5:0-3-0,0-2-1]							
Scale = 1:78.5			F	<u>8-10-9</u> 8-10-9	13-0-7 4-1-14	<u>21-11-0</u> 8-10-9			

					1			-					
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.49	Vert(LL)	-0.16	9-10	>999	240	MT20	244/190
Snow (Pf/Pg)	12.7/10.0	Lumber DOL	1.15		BC	0.65	Vert(CT)	-0.33	9-10	>785	180		
TCDL	7.0	Rep Stress Incr	YES		WB	0.52	Horz(CT)	0.02	9	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MS								
BCDL	10.0											Weight: 153 lb	FT = 20%
LUMBER			2)	Wind: ASCE	7-16; Vult=115m	oh (3-seo	cond aust)						
TOP CHORD	2x4 SP No.2		,		h; TCDL=4.2psf; E			Cat.					
BOT CHORD	2x4 SP No.2			II; Exp B; En	closed; MWFRS (envelope	e) exterior zoi	ne					
WEBS	2x4 SP No.3 *Excep	ot* 12-4,10-5,12-5:2x	4 SP	and C-C Ext	erior(2E) -1-3-0 to	1-9-0, Ir	nterior (1) 1-9	-0 to					
	No.2				or(2E) 9-0-5 to 12								
BRACING					17-5-1, Interior (1)								
TOP CHORD	Structural wood she	athing directly applie	d or		ft and right expose								
	6-0-0 oc purlins, ex	cept end verticals, a	nd		d;C-C for member			RS					
	2-0-0 oc purlins (6-0			DOL=1.60	shown; Lumber D	OL=1.6	plate grip						
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	; 3)		E 7-16; Pr=20.0 ps	f (roof L		1 1 5					
	bracing.		3)		1.15); Pg=10.0 ps								
WEBS	1 Row at midpt	5-12			OL = 1.15; $Is = 1.00$								
	(size) 9=0-5-8, 2				0; Cs=1.00; Ct=1.1			iiiy					
	Max Horiz 13=181 (L		4)		as been designed			live					
	Max Uplift 9=-112 (L		14) ′		psf or 1.00 times f								
	Max Grav 9=875 (LC			overhangs n	on-concurrent with	n other li	ve loads.						
FORCES	(lb) - Maximum Com	pression/Maximum	5)	Building Des	signer/Project engi	neer res	ponsible for						
	Tension				in Load = 5.0 (psf)								
TOP CHORD	1-2=0/48, 2-3=-257/		_		s specific to the us								
	4-5=-518/162, 5-6=-	,	, 0)		quate drainage to			g.					
	7-8=0/48, 2-13=-304		7)		as been designed							minin	Un.
BOT CHORD	12-13=-109/601, 10-	-12=-24/517,			ad nonconcurrent							N'H CA	ROUL
WEBS	9-10=-34/596 6-10=-146/148, 4-12	- 51/267	8)		has been designed			Upst			1	a	Still.
WEDS	3-12=-145/148, 5-10		96		m chord in all area						S.	0.4	O: N'
	3-13=-673/75, 6-9=-		00,		by 2-00-00 wide w ny other members		veen the bott	om			24		Va. 7 -
NOTES	0 10 010/10, 0 0 -	012/00	9)		hanical connection		ore) of truce t	'n		-		:0	K: =
	d roof live loads have	haan appaidared for	-,		e capable of withst					-		OR THE CA	1 1 1
this design					uplift at joint 13.	anung						SEA	L <u>; </u>
uns design			10		designed in accor	dance w	ith the 2018			Ξ		0433	25 E
					Residential Code			ind				. 0700	
				R802.10.2 a	nd referenced star	ndard AN	ISI/TPI 1.				1	N	1. 2
			11) Graphical pu	Irlin representation	n does n	ot depict the	size			いろ	· . En.	A: 23
				or the orient	ation of the purlin	along the	e top and/or				11	Y, GIN	EF. CR.
				bottom chore	d.						11	KID	DE
			L	DAD CASE(S)	Standard						2	11, J. () Tillin

818 Soundside Road Edenton, NC 27932

J. O'HE' O'


April 18,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1055 Serenity	
P02003-24593	A05	Нір	1	1	Job Reference (optional)	T37046646

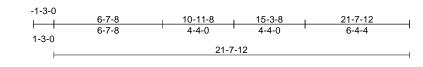
Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Thu Apr 17 14:09:27 ID:LfKePsn14HRq?GEfgGbbRvzQ8F_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

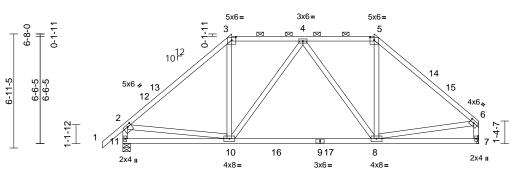
7-8-3 6-6-10 7-8-3		7-8-3	14-2-13	21-11-0
Scale = 1:74.3	Scale = 1:74.3	7-8-3	6-6-10	7-8-3

Plate Offsets (X, Y): [2:0-3-8,Edge], [3:0-3-0,0-2-1], [4:0-3-0,0-2-1], [5:0-3-8,Edge]

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[0.0 0 0,0 2 1], [4.0 1		, [0.0 0 0,Eug			· · · ·					r	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.90	Vert(LL)	-0.09	7-8	>999	240	MT20	244/190
Snow (Pf/Pg)	12.7/10.0	Lumber DOL	1.15		BC	0.51	Vert(CT)	-0.18	7-8	>999	180		
TCDL	7.0	Rep Stress Incr	YES		WB	0.13	Horz(CT)	0.01	7	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MS								
BCDL	10.0											Weight: 136 lb	FT = 20%
LUMBER			3)		7-16; Pr=20.0 psf	(roof LI	· Lum DOI =	1 15					
TOP CHORD	2x4 SP No.2		0)		1.15); Pg=10.0 psf;								
BOT CHORD	2x4 SP No.2				OL = 1.15); Is=1.0;								
WEBS		t* 11-2,7-5:2x4 SP N	0.3	Exp.; Ce=1.0); Cs=1.00; Ct=1.10	0, Lu=5	0-0-0						
BRACING		,	4)	This truss ha	as been designed fo	or great	er of min roo	f live					
TOP CHORD	Structural wood she	athing directly applied	dor		psf or 1.00 times fla			fon					
		cept end verticals, an			on-concurrent with								
	2-0-0 oc purlins (6-0		5)		igner/Project engin								
BOT CHORD		applied or 10-0-0 oc			n Load = 5.0 (psf) (
	bracing.				s specific to the use								
WEBS	1 Row at midpt	3-8	6)		quate drainage to p			g.					
REACTIONS	(size) 7=0-5-8, 1	11=0-5-8	7)		s been designed for								
	Max Horiz 11=-163 (LC 12)	0)		ad nonconcurrent w								
	Max Uplift 7=-107 (L	C 15), 11=-107 (LC 1	4) 8)		has been designed			opsi					
	Max Grav 7=935 (LC		,	on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom									
FORCES	(lb) - Maximum Com	pression/Maximum		chord and any other members, with BCDL = 10.0psf.									
	Tension		9)										
TOP CHORD	1-2=0/48, 2-3=-954/	137, 3-4=-634/160,	0)										
	4-5=-942/137, 5-6=0	/48, 2-11=-821/156,						.,					
	5-7=-811/157		10		designed in accord	lance w	ith the 2018						
BOT CHORD	10-11=-258/493, 8-1	0=-84/666, 7-8=-189	/378	International	Residential Code s	sections	R502.11.1 a	and					LLL.
WEBS	3-10=0/304, 4-8=-6/2	284, 3-8=-83/87,		R802.10.2 a	nd referenced stan	dard AN	ISI/TPI 1.					IN CA	DIL
	2-10=-121/455, 5-8=) Graphical pu	Irlin representation	does no	ot depict the	size				"TH UA	TOM		
NOTES				ation of the purlin a	long the	e top and/or				5	ON ARE	in All	
1) Unbalance	ed roof live loads have	been considered for		bottom chore							22		Nizi
this design	۱.		LC	DAD CASE(S)	Standard						-	197	1. 2
2) Wind: ASC	CE 7-16; Vult=115mph	(3-second gust)									1		
Vasd=91m	nph; TCDL=4.2psf; BC	DL=3.0psf; h=25ft; C	at.									SEA SEA	L 🕴 E
	Enclosed; MWFRS (en									=	8		• -
BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp B; E	1-2=0/48, 2-3=-954/ 4-5=-942/137, 5-6=0 5-7=-811/157 10-11=-258/493, 8-1 3-10=0/304, 4-8=-6/ 2-10=-121/455, 5-8= ed roof live loads have n. E 7-16; Vult=115mph nph; TCDL=4.2psf; BC	137, 3-4=-634/160, /48, 2-11=-821/156, 0=-84/666, 7-8=-189 284, 3-8=-83/87, -126/445 been considered for (3-second gust) DL=3.0psf; h=25ft; C ivelope) exterior zone	/378 11 LC at.	chord and an Provide mec bearing plate 11 and 107 I b) This truss is International R802.10.2 a) Graphical pu or the orients bottom chord	y other members, hanical connection e capable of withsta b uplift at joint 7. designed in accorc Residential Code s nd referenced stan Irlin representation ation of the purlin a d.	with BC (by oth anding 1 dance w sections dard AN does no	CDL = 10.0ps ers) of truss 07 lb uplift a ith the 2018 s R502.11.1 a ISI/TPI 1. ot depict the	f. to t joint and			And And	ORTH CA	L

Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-3-0 to 1-9-0, Interior (1) 1-9-0 to 7-9-15, Exterior(2R) 7-9-15 to 12-0-13, Interior (1) 12-0-13 to 14-1-1, Exterior(2R) 14-1-1 to 18-4-0, Interior (1) 18-4-0 to 23-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 SEAL 043325 J. O'RECALING April 18,2025


Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1055 Serenity	
P02003-24593	A06	Нір	1	1	Job Reference (optional)	T37046647

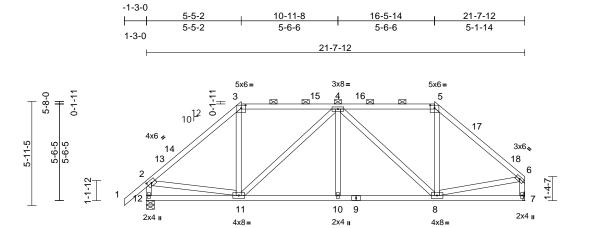
Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Thu Apr 17 14:09:28 ID:xuEoUHM8n1U0mevuULSrN0zQ8EE-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

	6-5-12	15-5-4	21-7-12
Scale = 1:70.1	6-5-12	8-11-7	6-2-8

Plate Offsets (X, Y): [2:0-2-12,0-1-8], [3:0-3-0,0-2-1], [5:0-3-0,0-2-1], [6:0-3-0,0-1-12]

oading CLL (roof)	(psf) 20.0		2-0-0 1.15		CSI TC	0.61	DEFL Vert(LL)	in -0.21	(loc) 8-10	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf/Pg)	12.7/10.0	1 1	1.15		BC	0.75	Vert(CT)	-0.32	8-10	>790	180		210,000
CDL	7.0	Rep Stress Incr	YES		WB	0.24	Horz(CT)	0.01	7	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MS								
SCDL	10.0											Weight: 133 lb	FT = 20%
UMBER			3)	TCLL: ASCE	7-16; Pr=20.0 psf	(roof LL	: Lum DOL=	1.15					
OP CHORD	2x4 SP No.2		-)		.15); Pg=10.0 psf;								
OT CHORD	2x4 SP No.2			1.15 Plate D	OL = 1.15); ls=1.0;	Rough	Cat B; Partia	ally					
/EBS	2x4 SP No.3 *Excep	t* 10-4,10-2,8-4:2x4 S			; Cs=1.00; Ct=1.10								
	No.2		4)		s been designed fo								
RACING					osf or 1.00 times fla on-concurrent with			fon					
OP CHORD		athing directly applied											
		cept end verticals, and	5)	 Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading 									
OT CHORD	2-0-0 oc purlins (6-0 Rigid ceiling directly	applied or 10-0-0 oc			specific to the use			nent.					
	bracing.		6)		uate drainage to p			g.					
EACTIONS	0	inical, 11=0-5-8	7)		s been designed fo								
	Max Horiz 11=139 (L	,		chord live load nonconcurrent with any other live loads.									
	Max Uplift 7=-76 (LC		8)	 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 									
	Max Grav 7=866 (L0			on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom									
ORCES	(lb) - Maximum Com	pression/Maximum		chord and any other members, with BCDL = 10.0psf.									
	Tension		9)		er(s) for truss to tru								
OP CHORD	1-2=0/48, 2-3=-977/		10) Provide mec	hanical connection	(by oth	ers) of truss	to					
		949/126, 2-11=-848/14	9,		capable of withsta	nding 1	01 lb uplift at	t joint					
OT CHORD	6-7=-790/111	0=-118/736, 7-8=-71/	21		uplift at joint 7.								
EBS	,	28/360, 4-10=-199/110			designed in accord Residential Code s			and				minin	unin.
LDS		96/559, 4-8=-216/111	',		nd referenced stan			anu				"TH CA	Rollin
OTES			12		rlin representation			size			N	R	· · · · · ·
	ed roof live loads have	been considered for			ation of the purlin a						32		Ni. Si
this design				bottom chore		•	-					ORTH CA	7: -
	CE 7-16; Vult=115mph	(3-second gust)	LC	DAD CASE(S)	Standard						1	:x /	1 1 2
	nph; TCDL=4.2psf; BC		t.							Ξ		SEA	L : E
	Enclosed; MWFRS (er									-		0122	• –

II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-3-0 to 1-9-0, Interior (1) 1-9-0 to 6-7-8, Exterior(2R) 6-7-8 to 10-11-8, Interior (1) 10-11-8 to 15-3-8, Exterior(2R) 15-3-8 to 19-6-6, Interior (1) 19-6-6 to 21-6-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 SEAL 043325 VGINEERCATION April 18,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1055 Serenity	
P02003-24593	A07	Нір	1	1	Job Reference (optional)	T37046648

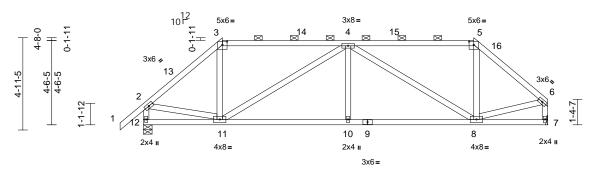
Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Thu Apr 17 14:09:28 ID: 319r2nYci8q6WiOjDwDqMhzQ8Ci-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff

Page: 1

3x6=

			5-3-6	10-11-8	16-7-10		21-7-12		
Scale = 1:65.9			5-3-6	5-8-2	5-8-2		5-0-2	ļ.	
Plate Offsets (X	(, Y): [2:0-2-14,0-2-0], [3:0-3-0,0-2-1], [5:0-3	3-0,0-2-1]						
Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 20.0 12.7/10.0 7.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC 0.38 BC 0.34 WB 0.39	DEFL in Vert(LL) -0.02 Vert(CT) -0.06 Horz(CT) 0.02	8-10 >9 8-10 >9	defl L/d 999 240 999 180 n/a n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC2018/TPI2014	Matrix-MS				Weight: 133 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 7= Mecha Max Horiz 12=121 (L Max Uplift 7=-68 (LC Max Grav 7=788 (LC (lb) - Maximum Com Tension 1-2=0/48, 2-3=-890/	applied or 10-0-0 oc anical, 12=0-5-8 LC 11) C 15), 12=-93 (LC 14) C 2), 12=868 (LC 2) apression/Maximum 125, 3-4=-611/138, 856/122, 2-12=-819/14 -11=-152/841, e-47/80	Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 4) This truss ha load of 12.0 overhangs n 5) Building Des verifying Rai requirements 6) Provide ader 7) This truss ha chord live loa 8) * This truss ha chord live loa 8) * This truss ha chord and ar 9) Refer to gird 47, 10) Provide mec bearing plate 12 and 68 lb 11) This truss is	- 7-16; Pr=20.0 psf (roof LI 1.15); Pg=10.0 psf; Pf=12. OL = 1.15); Is=1.0; Rough 0; Cs=1.00; Ct=1.10, Lu=5 as been designed for great psf or 1.00 times flat roof 1 on-concurrent with other Ii igner/Project engineer res n Load = 5.0 (psf) covers I s specific to the use of this quate drainage to prevent as been designed for a 10. ad nonconcurrent with any has been designed for a 10. ad nonconcurrent with they n chord in all areas where by 2-00-00 wide will fit betw by other members. er(s) for truss to truss con thanical connection (by oth a capable of withstanding s uplift at joint 7. designed in accordance w Residential Code section:	7 psf (Lum DOL = Cat B; Partially 0-0-0 er of min roof live oad of 7.7 psf on ve loads. ponsible for ain loading truss component. water ponding. 0 psf bottom other live loads. re load of 20.0psf a rectangle veen the bottom nections. ers) of truss to 03 lb uplift at joint ith the 2018				
 this design. Wind: ASC. Vasd=91mj II; Exp B; E and C-C Ex 5-5-2, Exter 16-5-14, Eb; 20-8-13 to 2 exposed; e members a 	4-8=-382/111 d roof live loads have E 7-16; Vult=115mph ph; TCDL=4.2psf; BC nclosed; MWFRS (en	(3-second gust) DL=3.0psf; h=25ft; Cai vvelope) exterior zone -9-0, Interior (1) 1-9-0 f 1, Interior (1) 9-8-1 to 20-8-13, Interior (1) er left and right ght exposed; C-C for for reactions shown;	12) Graphical pu or the orienta bottom chore LOAD CASE(S) t.		ot depict the size		A CONTRACT OF A	SEA 0433	25 NILLING

April 18,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1055 Serenity	
P02003-24593	A08	Нір	1	1	Job Reference (optional)	T37046649

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Thu Apr 17 14:09:28 ID:FKG8DwHB73xNGA8INbJRwrzQ8D3-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

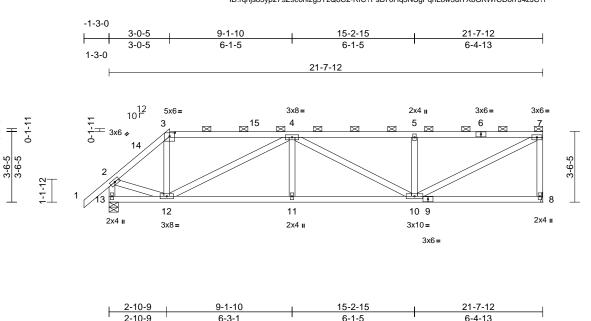
Scale = 1:61.7			4-1-0 4-1-0	<u>10-11-8</u> 6-10-8	17-10- 6-10-	-	21-7-12 3-9-12	
	(X, Y): [3:0-3-0,0-2-1],	[5:0-3-0,0-2-1]						
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 12.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.58 BC 0.48 WB 0.64 Matrix-MS	DEFL in Vert(LL) -0.05 Vert(CT) -0.10 Horz(CT) 0.02	8-10 >99 10-11 >99	99 240 MT20 99 180 /a n/a	ES GRIP 244/190 t: 125 lb FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 *Excep Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing.	athing directly applie cept end verticals, ar -0 max.): 3-5. applied or 10-0-0 oc anical, 12=0-5-8 _C 11) 2 10), 12=-94 (LC 11)	Plate DOI 1.15 Plate 1.15 Plate 2.15 Plate 4) This truss ad or 10ad of 12 overhang 5) Building I verifying I requireme 6) Provide a 7) This truss chord live 8) * This truss	SCE 7-16; $Pr=20.0 \text{ psf}$ (roof L L=1.15); $Pg=10.0 \text{ psf}$; $Pf=12.$ a DOL = 1.15); $Is=1.0$; Rough =1.0; $Cs=1.00$; $Ct=1.10$, $Lu=5$ a has been designed for grea 2.0 psf or 1.00 times flat roof s non-concurrent with other I Designer/Project engineer res Rain Load = 5.0 (psf) covers ents specific to the use of this dequate drainage to prevent a has been designed for a 10 load nonconcurrent with any ss has been designed for a lit tom chord in all areas where	7 psf (Lum DOL = a Cat B; Partially 0-0-0 ter of min roof live load of 7.7 psf on ive loads. sponsible for rain loading t truss component. water ponding. 0 psf bottom o ther live loads. ve load of 20.0psf			
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=0/48, 2-3=-886/ 4-5=-610/115, 5-6=-	127, 3-4=-633/122,	3-06-00 ta chord and 9) Refer to g	all by 2-00-00 wide will fit bet d any other members. girder(s) for truss to truss con nechanical connection (by oth	ween the bottom			
BOT CHORD WEBS	6-7=-761/102 11-12=-110/123, 10- 8-10=-206/1069, 7-8 3-11=-15/322, 4-10= 4-11=-545/138, 6-8= 4-8=-573/141	-11=-206/1069, 3=-30/37 =0/284, 5-8=-13/302,	bearing p 12 and 90 11) This truss Internatio 606, R802.10.3	late capable of withstanding b uplift at joint 7. s is designed in accordance v nal Residential Code section 2 and referenced standard A l purlin representation does n	94 lb uplift at joint vith the 2018 s R502.11.1 and NSI/TPI 1.		NUMBER OF	A CARO
this design 2) Wind: ASC Vasd=91n II; Exp B; I and C-C B; 4-2-12, Ex to 17-8-4, left and rig exposed;C	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=4.2psf; BC Enclosed; MWFRS (er Exterior(2E) -1-3-0 to 1: tterior(2E) 4-2-12 to 8- Exterior(2E) 4-2-12 to 8- Exterior(2E) 17-8-4 to ght exposed ; end verti shown; Lumber DOL='	(3-second gust) DL=3.0psf; h=25ft; C ivelope) exterior zon -9-0, Interior (1) 1-9- 5-10, Interior (1) 8-5 21-6-0 zone; cantile cal left and right orces & MWFRS for	cat. 0 to -10 ver	entation of the purlin along th			PHILIP	SEAL 043325 VGINEER. CALINI

April 18,2025

Page: 1

TRENGINEERING BY RENCO A MITEK Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	1055 Serenity	
P02003-24593	A09	Half Hip	1	1	Job Reference (optional)	T37046650

3-8-0

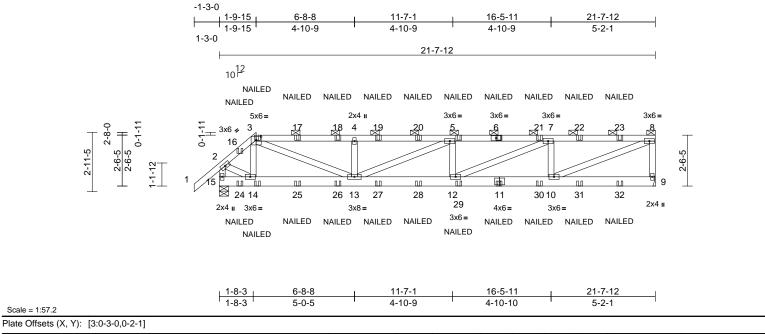
3-11-5

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Thu Apr 17 14:09:29 ID:rqhjs83yp279Z9cohlzg3YzQ8C2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:57.5		I	2-10-9	I	6-3-1	I	6-1-5		I	6	6-4-13	I	
Plate Offsets ((X, Y): [3:0-3-0,0-2-1]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 12.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MS	0.44 0.48 0.71	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.12 0.03	(loc) 10-11 10-11 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 120 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.3 *Excep No.2 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (4-9	athing directly applic cept end verticals, a I-13 max.): 3-7. applied or 10-0-0 or	ed or Ind	Vasd=91n II; Exp B; I and C-C E 3-0-5, Ext 21-6-0 zor vertical lef forces & M DOL=1.60 TCLL: ASP Plate DOL 1.15 Plate	CE 7-16; Vult=115m nph; TCDL=4.2psf; I Enclosed; MWFRS ixterior(2E) -1-3-0 tt erior(2R) 3-0-5 to 7- ne; cantilever left an t and right exposed MWFRS for reaction: 0 plate grip DOL=1.6 CE 7-16; Pr=20.0 ps =1.15); Pg=10.0 ps DOL = 1.15); Is=1.1	BCDL=3. (envelope o 1-9-0, Ir 3-4, Inter d right ex ;C-C for r s shown; 50 sf (roof Ll f; Pf=12.7 0; Rough	Dpsf; h=25ft; e) exterior zo iterior (1) 1-9 ior (1) 7-3-4 i posed ; end nembers and Lumber .: Lum DOL= 7 psf (Lum D0 Cat B; Partia	ne -0 to to 1 :1.15 OL =					
REACTIONS	•	,	This truss load of 12 overhangs	1.0; Cs=1.00; Ct=1. has been designed .0 psf or 1.00 times s non-concurrent wit	for great flat roof le h other li	er of min root bad of 7.7 ps /e loads.							
FORCES	(lb) - Maximum Com Tension			verifying F	esigner/Project eng Rain Load = 5.0 (psf) covers r	ain loading						
TOP CHORD			6) 9/172, 7)	Provide ac This truss	nts specific to the u dequate drainage to has been designed load nonconcurrent	prevent for a 10.	water pondin) psf bottom	g.					115
BOT CHORD	12-13=-160/112, 11- 10-11=-296/1333, 8-	,	8)	* This trus	s has been designe tom chord in all area	d for a liv	e load of 20.					"TH CA	RO
WEBS	7-10=-254/1258, 2-1 3-12=-19/322, 4-12= 4-10=-206/51, 5-10=	-833/186, 4-11=0/2		3-06-00 ta chord and	Il by 2-00-00 wide w any other members irder(s) for truss to t	vill fit betv 3.	veen the bott	tom			N. A	on	ONNA
NOTES 1) Unbalance this design	ed roof live loads have		1(r 11 12	 Provide m bearing pl 8 and 118 This truss Internation R802.10.2 Graphical or the orie bottom ch 	echanical connectic ate capable of withs Ib uplift at joint 13. is designed in acco- nal Residential Code and referenced sta purlin representatio ntation of the purlin	on (by oth standing 1 rdance w e sections indard AN n does no	ers) of truss 57 lb uplift a th the 2018 SR502.11.1 a ISI/TPI 1. ot depict the s	t joint and			Philippin	SEA 0433	L 25 D'REGALINI

April 18,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

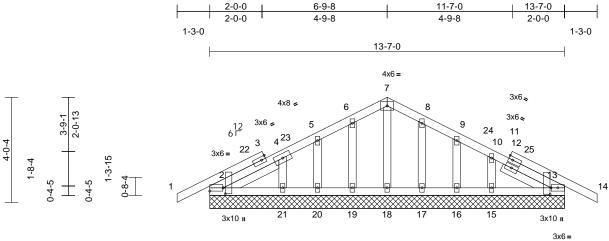
Job	Truss	Truss Type	Qty	T07040054		
P02003-24593	A10G	Half Hip Girder	1	2	Job Reference (optional)	T37046651

Scale = 1:57.2

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Thu Apr 17 14:09:29 ID:agx0Wb8D9TrolzkGGhgLiBzQ7iy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	, , , , , , , , , , , , , , , , , , , ,												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 12.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	8/TPI2014	CSI TC BC WB Matrix-MS	0.20 0.32 0.44	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 12-13 12-13 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 264 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 14 (size) 9= Mecha Max Horiz 15=73 (LC Max Uplift 9=-255 (L Max Grav 9=1083 (I	cept end verticals, ai +0 max.): 3-8. applied or 10-0-0 oc -15. unical, 15=0-5-8 C 7) C 7), 15=-345 (LC 7)	nd or 3) nd 4) c 5)	except if note CASE(S) sec provided to c unless othen Unbalanced this design. Wind: ASCE Vasd=91mph II; Exp B; En cantilever lef right expose TCLL: ASCE Plate DOL=1 1.15 Plate D	considered equal ed as front (F) or b tition. Ply to ply co istribute only load wise indicated. roof live loads hav 7-16; Vult=115mp r; TCDL=4.2psf; B (closed; MWFRS (closed; MWFRS t, Lumber DOL=1 7-16; Pr=20.0 psf DL = 1.15); Is=1.0	sack (B) nnection ls noted ve been (SCDL=3. envelope vd; end v. 60 plate f (roof LL ; Pf=12.7); Rough	face in the LC s have been as (F) or (B), considered for cond gust) Dpsf; h=25ft; s) exterior zor vertical left an grip DOL=1. :: Lum DOL= / psf (Lum DC Cat B; Partia	or Cat. ne; id 60 1.15 DL =	or ti bott 15) "NA (0.1 LOAD (1) De Inc Ur Co	he orien tom choi (ILED" ir (48"x3.2 CASE(S ead + Sr crease= hiform Lo Vert: 1-2 oncentra Vert: 3= 5=-45 (I (F), 20=	tation of rd. 5") toe) Stat now (ba 1.15 bads (ll 2=-29, ted Lo -50 (F) F), 16= -45 (F)	of the purlin along rails per NDS g ndard alanced): Lumber b/ft) 2-3=-29, 3-8=-36 ads (lb)), 6=-45 (F), 11=: 5 (F), 17=-45 (F)	3") or 3-12d uidlines. r Increase=1.15, Plate 9, 9-15=-20 -24 (F), 14=-24 (F), 1, 18=-45 (F), 19=-45 =-45 (F), 23=-45 (F),
FORCES	(lb) - Maximum Com Tension 1-2=0/48, 2-3=-1013	pression/Maximum	6)	 Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0 (i) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads. 									(F), 31=-24 (F),
BOT CHORD	4-5=-2351/585, 5-7= 7-8=-2026/488, 8-9= 2-15=-1157/302 14-15=-71/52, 13-14	-996/264,	7)	7) Building Designer/Project engineer responsible for								1100	
	12-13=-685/2760, 10 9-10=-31/62	0-12=-495/2026,	9)	This truss ha chord live loa	s been designed ad nonconcurrent	for a 10.0 with any) psf bottom other live loa	ids.			and and	ORTHOR	ROUT
WEBS	2-14=-250/916, 3-14 3-13=-378/1683, 4-1 5-13=-450/95, 5-12= 7-12=-208/802, 7-10 8-10=-504/2136	3=-384/173, 160/120,		on the bottor 3-06-00 tall b chord and ar	as been designed n chord in all area by 2-00-00 wide w by other members. er(s) for truss to tr	is where ill fit betv	a rectangle veen the botte				N. N.	SEA	L
NOTES 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc.				 verifying Rain Load = 5.0 (pst) covers rain loading requirements specific to the use of this truss component. 8) Provide adequate drainage to prevent water ponding. 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 11) Refer to girder(s) for truss to truss connections. 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 255 lb uplift at joint 9 and 345 lb uplift at joint 15. 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 								EER. ANII	

April 18,2025


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1055 Serenity	
P02003-24593	B01E	Common Supported Gable	1	1	Job Reference (optional)	T37046652

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Thu Apr 17 14:09:30 ID:x_N2PNEgz7B15pcZXaHSMAzQ7hY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 14-10-0

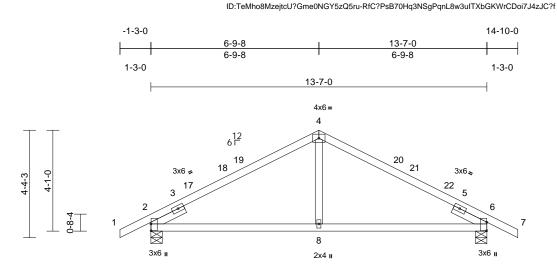
	13-7-0
Scale = 1:44.1	
Plate Offsets (X, Y): [2:0-2-12,0-1-0], [2:Edge,0-1-8], [13:0-3-0,0-0-8]	

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 7.7/10.0 7.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MS	0.18 0.04 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 13	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0											Weight: 82 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=13-7-0, 16=13-7-0	athing directly applied applied or 10-0-0 oc 13=13-7-0, 15=13-7-0), 17=13-7-0, 18=13-7-	,) 0,	this design. Wind: ASCE Vasd=91mph II; Exp B; En and C-C Cor to 6-9-8, Cor 14-10-0 zone vertical left a forces & MW DOL=1.60 pl Truss design only. For stu	roof live loads have 7-16; Vult=115mp b; TCDL=4.2psf; Bi closed; MWFRS (e ner(3E) -1-3-0 to 1 ner(3R) 6-9-8 to 9- e; cantilever left an nd right exposed; FRS for reactions ate grip DOL=1.60 ed for wind loads i ds exposed to wind I ndustry Gable E	h (3-sec CDL=3. envelope -9-0, Ex 9-8, Ex 9-8, Ex d right e C-C for n shown; n the pla d (norm	cond gust) Dpsf; h=25ft; () exterior zor terior(2N) 1-5 terior(2N) 9-9 xposed; end nembers and Lumber ane of the tru: al to the face	Cat. ne)-0 -8 to ss),	bea 2, 4 at jo 32 I 14) This Inte	ring plat 3 lb upli bint 20, 2 b uplift a s truss is rnationa 02.10.2 a	te capa ift at joi 28 lb u at joint s desig al Resid and ref	able of withstand int 13, 28 lb uplif plift at joint 21, 2 16 and 31 lb upl ned in accordan dential Code sec erenced standar	ce with the 2018 tions R502.11.1 and
	Max Horiz 2=-46 (LC Max Uplift 2=-37 (LC 15=-31 (L 17=-27 (L 20=-32 (L Max Grav 2=211 (LC 15=122 (L 17=105 (L	: 16), 13=-43 (LC 17), C 17), 16=-32 (LC 17), C 17), 19=-28 (LC 16), C 16), 21=-28 (LC 16) C 2), 13=213 (LC 2), C 37), 16=92 (LC 37), C 37), 18=88 (LC 33), C 36), 20=95 (LC 36),	4) 5) 6)	or consult qu TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 J overhangs n	alified building des 7-16; $Pr=20.0 \text{ psf}$. 15); $Pg=10.0 \text{ psf}$; DL = 1.15; $Is=1.0$; Cs=1.00; $Ct=1.11snow loads have bs been designed forpsf or 1.00 times fiton-concurrent with$	signer as (roof LL Pf=7.7 Rough 0 been cor or great at roof lo other liv	s per ANSI/TF .: Lum DOL=' psf (Lum DOL Cat B; Partia nsidered for the per of min roof pad of 7.7 psf /e loads.	PI 1. 1.15 - = Ily his live				NUTH C	ROL
FORCES	(lb) - Maximum Com	,	7)	verifying Rai	igner/Project engir n Load = 5.0 (psf) (covers r	ain loading				12		ON
TOP CHORD	Tension 1-2=0/27, 2-4=-54/3- 5-6=-28/69, 6-7=-40, 8-9=-28/69, 9-10=-2- 13-14=0/27	/98, 7-8=-40/98,		All plates are Gable require) Gable studs	s specific to the use 2x4 () MT20 unl es continuous botto spaced at 1-4-0 oc s been designed fo	ess oth om chor	erwise indicat d bearing.					SEA 0433	
BOT CHORD	18-19=-22/61, 17-18 15-16=-22/61, 13-15			chord live loa) * This truss h	ad nonconcurrent v as been designed n chord in all areas	vith any for a liv	other live loa e load of 20.0					0455	A . A
WEBS	7-18=-62/0, 6-19=-7 4-21=-73/61, 8-17=- 10-15=-85/59			3-06-00 tall b	y 2-00-00 wide wil y other members.			om					EF. GATT
NOTES												·///////	1111

April 18,2025

Page: 1

ENGINEERING BY AMITEK Affiliate B18 Soundside Road Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1055 Serenity	
P02003-24593	B02	Common	1	1	Job Reference (optional)	T37046653

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Thu Apr 17 14:09:30

Page: 1

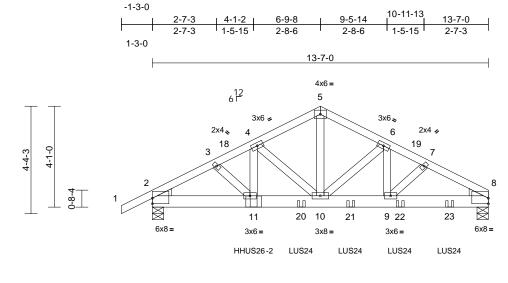
84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

	6-9-8	13-7-0	1
Scale = 1:46.6	6-9-8	6-9-8	1
Plate Offsets (X, Y): [2:0-3-4,0-0-1], [6:0-4-1,0-0-1]			

Plate Olisets ((X, Y): [2:0-3-4,0-0-1]	, [6:0-4-1,0-0-1]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TI	PI2014	CSI TC BC WB Matrix-MS	0.48 0.41 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.09 0.02	(loc) 8-11 8-11 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 57 lb	GRIP 244/190 FT = 20%
 this design Wind: ASC Vasd=91m II; Exp B; I and C-C E 6-9-8, Ext 14-10-0 zc vertical lef forces & DOL=1.60 TCLL: ASC Plate DOL 	1-6-0 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, 1 Max Horiz 2=-50 (LC Max Uplift 2=-91 (LC Max Grav 2=-91 (LC Max Grav 2=-570 (LC (lb) - Maximum Com 1-2=0/30, 2-4=-627/ 6-7=0/30 2-8=-143/504, 6-8=- 4-8=0/285 ed roof live loads have	2 17) 2 16), 6=-91 (LC 17) C 2), 6=570 (LC 2) ppression/Maximum 194, 4-6=-627/194, 146/504 been considered for 1 (3-second gust) EDL=3.0psf; h=25ft; C tyelope) exterior zone -9-0, Interior (1) 1-9-0 B, Interior (1) 9-9-8 to B, Interior (1) 9-9-8 to B, Interior (1) 9-9-8 to C for members and hown; Lumber froof LL: Lum DOL=1 Pf=7.7 psf (Lum DOL=1	at. 15 15 15 15 16 16 15 16 16 16 16 16 16 16 16 16 16	esign. his truss ha oad of 12.0 verhangs n uilding Des erifying Rai equirements his truss ha hord live loo This truss ha hord live loo This truss ha n the bottor -06-00 tall b hord and ar trovide mec earing plate and 91 lb u his truss is isternational	snow loads have I is been designed f psf or 1.00 times fl on-concurrent with igner/Project engin in Load = 5.0 (psf) is specific to the us is been designed f ad nonconcurrent to has been designed in chord in all area by 2-00-00 wide win yo other members. hanical connection e capable of withst uplift at joint 6. designed in accorr Residential Code nd referenced star Standard	or great lat roof le noter limeer res covers r e of this or a 10. with any f for a liv s where a liv s where h (by oth anding s dance w sections	er of min roof oad of 7.7 psf ve loads. ponsible for ain loading truss compor other live loa re load of 20.0 a rectangle veen the bottot ers) of truss t 21 lb uplift at j ith the 2018 s R502.11.1 a	f ive f on nent. ds. Dpsf om to oint			Number of States	SEA 0433	• -

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


mmm

April 18,2025

Job	Truss	Truss Type	Qty	Ply	1055 Serenity	
P02003-24593	B03G	Common Girder	1	2	Job Reference (optional)	T37046654

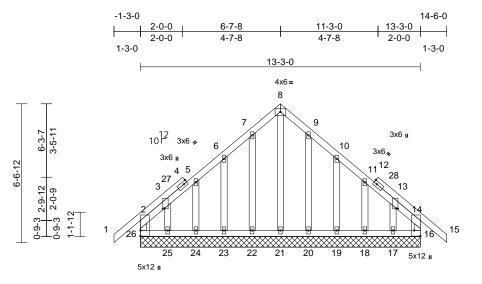
Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Thu Apr 17 14:09:31 ID:oz?1RzB7UvfNL5M7T88W6ezQ5tP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	4-1-2		6-9-8	9-5-14	13-7-0	
	4-1-2	1	2-8-6	2-8-6	4-1-2	
Scale = 1:46.6						
Plate Offsets (X, Y): [2:Edge.0-2-11]. [8:Edge.0-2-11]						

Plate Offsets (X, Y): [2:Edge,0-2-11]], [8:Edge,0-2-11]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-MS	0.52 0.70 0.57	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.09 0.02	(loc) 10-11 10-11 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 169 lb	GRIP 244/190 FT = 20%
	5-8-5 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, 8 Max Horiz 2=57 (LC	16) C 12), 8=-405 (LC 13)	2) 3) or 4) 5)	except if note CASE(S) see provided to d unless othen Unbalanced this design. Wind: ASCE Vasd=91mpH II; Exp B; Enc cantilever lef right expose TCLL: ASCE Plate DOL=1 1.15 Plate DO	considered equall ed as front (F) or b btion. Ply to ply con listribute only loads wise indicated. roof live loads hav 7-16; Vult=115mp 1; TCDL=4.2psf; B closed; MWFRS (et and right expose. d; Lumber DOL=1. : 7-16; Pr=20.0 psf; OL = 1.15); Is=1.0; C cs=1.00; Ct=1.1	ack (B) nnection s noted e been h (3-see CDL=3. envelope d ; end 60 plate f (roof LI Pf=7.7 ; Rough	face in the LC is have been as (F) or (B), considered for cond gust) 0psf; h=25ft; a) exterior zor vertical left an grip DOL=1. .: Lum DOL= psf (Lum DOL	DAD r Cat. ne; id 60 1.15 L =	4-1 cor 14) Use Tru 6-0 bac 15) Use SD fror bot 16) Fill LOAD (1) De In	0d Truss anect tru e Simpso -4 from to k face o e Simpso 9212 Tru n the lef tom cho all nail h CASE(S ead + Sr crease=	s) or ec ss(es) on Stro quivale the left f botto on Stro uss, Sin t end to rd. noles w) Stan now (ba 1.15	uvalent at 4-1-2 to back face of b ng-Tie LUS24 (4 nt spaced at 2-0 end to 10-0-4 to m chord. ng-Tie LUS24 (4 ngle Ply Girder) o o connect truss(e here hanger is ir ndard alanced): Lumber	2 (14-10d Girder, from the left end to ottom chord. -10d Girder, 2-10d 0 oc max. starting a connect truss(es) tr -SD9112 Girder, 2- or equivalent at 12-(s) to back face of a contact with lumber r Increase=1.15, Pla
FORCES	(lb) - Maximum Com Tension	pression/Maximum	6)		snow loads have b		nsidered for th	nis			5=-29,	5-8=-29, 12-15=	-20
TOP CHORD		-4224/629	7)	 7) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on (B), 23=-550 (B) 									
WEBS	9-10=-522/3770, 8-9)=-531/3699 =-50/275, 4-11=-177/6)=-66/1035,	578,	verifying Rain requirements This truss ha	n Load = 5.0 (psf) s specific to the use is been designed f	covers i e of this or a 10.	ain loading truss compoi 0 psf bottom				and a	ORTH CA	ROIN
(0.131"x3" Top chord oc. Bottom ch staggered	to be connected toget) nails as follows: s connected as follows ords connected as follows at 0-9-0 oc. ected as follows: 2x4 -	s: 2x4 - 1 row at 0-9-0 ows: 2x6 - 2 rows	11	 overhangs non-concurrent with other live loads. 8) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component. 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 405 lb uplift at joint 8 and 433 lb uplift at joint 2. 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 							L 25 D'REGATION		

April 18,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

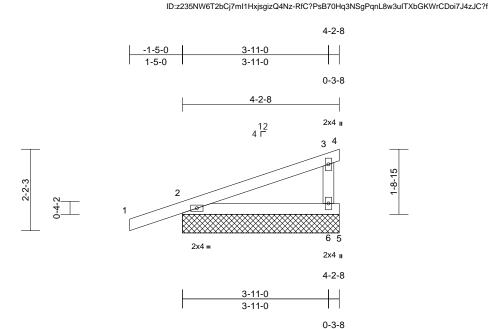
Job	Truss	Truss Type	Qty	Ply	1055 Serenity	
P02003-24593	C01E	Common Supported Gable	1	1	Job Reference (optional)	T37046655

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Thu Apr 17 14:09:31 ID:DyKwo5sQu8T802tuGuqs2HzQ4Li-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

13-3-0

Scale = 1:54.5	
Plate Offsets (X, Y):	[3:0-0-5,0-1-0], [13:0-0-5,0-1-0], [16:Edge,0-3-8]


Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 7.7/10.0 7.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.1 BC 0.0 WB 0.1 Matrix-MR 0.1	4 Vert(LL) n 4 Vert(CT) n	in (loc) l/defl /a - n/a /a - n/a 00 16 n/a		E S GRIP 244/190
BCDL	10.0						Weigh	t: 104 lb FT = 20%
	6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 16=13-3-1 22=13-3-1 22=13-3-1 25=13-3-1 Max Uplift 16=-46 (L 20=-34 (L 23=-53 (L 23=-53 (L 23=-79 (L Max Grav 16=157 (I 18=101 (I 20=105 (I 24=101 (I 26=170 (I	applied or 6-0-0 oc 0, 17=13-3-0, 18=13-3- 0, 20=13-3-0, 21=13-3- 0, 23=13-3-0, 24=13-3- 0, 23=13-3-0, 24=13-3- 0, 26=13-3-0 LC 13) C 11), 17=-72 (LC 15) C 15), 19=-53 (LC 14) C 14), 24=-35 (LC 14) C 14), 24=-35 (LC 14) C 14), 26=-69 (LC 10) LC 33), 17=93 (LC 13), LC 33), 19=105 (LC 27 LC 27), 21=133 (LC 29 LC 26), 23=105 (LC 26 LC 32), 25=108 (LC 12 LC 27)	this design Vasd=91m II; Exp B; E and C-CC 0, to 6-7-8, C 0, 14-6-0 zon 0, vertical left forces & M DOL=1.60 3) Truss desig only. For s see Standa or consult 4) TCLL: ASC Plate DOL= 1,5) This truss I load of 12. overhangs	8-21=-182/54, 7-22=-81 5-24=-73/73, 3-25=-71/6 10-19=-78/81, 11-18=-7 d roof live loads have bee E 7-16; Vult=115mph (3- ph; TCDL=4.2psf; BCDL= inclosed; MWFRS (envel- ormer(3R) 6-7-8 to 9-7-8, e; cantilever left and right and right exposed; C-C fc WFRS for reactions show plate grip DOL=1.60 gned for wind loads in the tuds exposed to wind (no ard Industry Gable End Do qualified building designe iz 7-16; Pr=20.0 psf (rooi =1.15); Pg=10.0 psf; (P=7 DOL = 1.15); Is=1.0; Rou .0; Cs=1.00; Ct=1.10 has been designed for gro 0 pof or 1.00 times flat roo non-concurrent with othe signer/Project engineer	11, 9-20=-79/51, 4/73, 13-17=-70/60 n considered for second gust) 3.0psf; h=25ft; Cat. ppe) exterior zone Exterior(2N) 1-9-0 Exterior(2N) 9-7-8 to exposed ; end r members and n; Lumber plane of the truss rmal to the face), etails as applicable, as per ANSI/TPI 1. LL: Lum DOL=1.15 7 psf (Lum DOL = gh Cat B; Partially eater of min roof live f load of 7.7 psf on r live loads.	on the bott 3-06-00 tal chord and 13) Provide me bearing pla 26, 46 lb u uplift at joir 25, 34 lb u uplift at joir 14) This truss i Internation R802.10.2 LOAD CASE(S	om chord in all I by 2-00-00 wic any other memi acchanical conne- tie capable of w plift at joint 16, ; tt 23, 35 Ib uplift plift at joint 20, 4 tt 18 and 72 Ib o s designed in a al Residential C and referenced S Standard	ection (by others) of truss to <i>i</i> thstanding 69 lb uplift at joint 35 lb uplift at joint 22, 53 lb it at joint 24, 79 lb uplift at joint 53 lb uplift at joint 19, 36 lb uplift at joint 17. (ccordance with the 2018 Code sections R502.11.1 and I standard ANSI/TPI 1.
FORCES	(lb) - Maximum Com Tension	ihiession/inigximutu		ain Load = 5.0 (psf) cove				· · · · · · · · · · · · · · · · · · ·
TOP CHORD	10-11=-35/87, 11-13 14-15=0/43, 14-16= 25-26=-61/82, 24-25	/87, 6-7=-63/146, 4/187, 9-10=-63/146, 3=-38/46, 13-14=-73/59 -145/104 5=-61/82, 23-24=-61/82	 All plates a Gable requisition Truss to be braced aga Gable studies 	this specific to the use of the use of the use of the transformation of transforma	otherwise indicated. hord bearing. face or securely diagonal web).		DE E	SEAL 043325 J. O'REGNUM April 18,2025
		2=-61/82, 20-21=-61/82 9=-61/82, 17-18=-61/82	' chord live l	oad nonconcurrent with a			in Ip	J. O'RE April 18,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1055 Serenity	
P02003-24593	E01E	Monopitch Supported Gable	1	1	Job Reference (optional)	T37046656

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries. Inc. Thu Apr 17 14:09:31

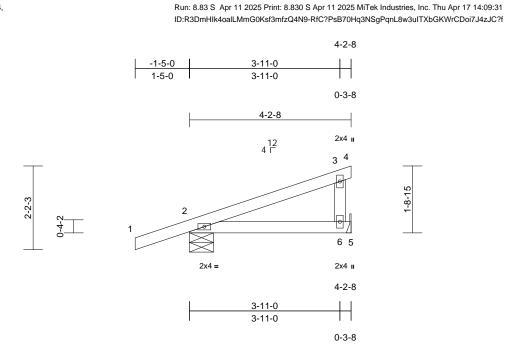
84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

Scale = 1:30.9

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 7.7/10.0 7.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁴	8/TPI2014	CSI TC BC WB Matrix-MP	0.15 0.11 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	4-2-8 oc purlins.	eathing directly applie	° 7	 design. This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements Gable requir 	snow loads hav as been designe psf or 1.00 time on-concurrent w igner/Project er n Load = 5.0 (ps s specific to the es continuous b	d for great s flat roof le vith other liv gineer res sf) covers r use of this ottom chor	er of min roof bad of 7.7 psi ve loads. ponsible for ain loading truss compo	live on				Weight: 17 lb	FT = 20%
REACTIONS	Max Horiz 2=58 (LC Max Uplift 2=-67 (LC 5=-94 (LC Max Grav 2=214 (L	C 12), 4=-195 (LC 2), C 7), 6=-106 (LC 16)	9) This truss ha chord live los 0) * This truss l on the bottor 3-06-00 tall l	spaced at 2-0-0 as been designe ad nonconcurren has been design n chord in all ar by 2-00-00 wide hy other membe	d for a 10.0 nt with any led for a liv eas where will fit bety	other live loa e load of 20.0 a rectangle	Opsf					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Con Tension 1-2=0/24, 2-3=-94/3 2-6=-9/53, 5-6=0/0	npression/Maximum 33, 3-4=-67/66	1	 Provide mec bearing plate 94 lb uplif 	hanical connect capable of with t at joint 5, 195 I	ion (by oth Istanding 6 b uplift at je	67 lb uplift at j	oint					
WEBS NOTES 1) Wind: ASC	3-6=-315/356 2E 7-16; Vult=115mph			 This truss is International 	I 67 Ib uplift at jo designed in acc Residential Coo nd referenced s	ordance w	s R502.11.1 a	ind				mmm	1111.

- Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -1-5-0 to 1-7-0, Exterior(2N) 1-7-0 to 4-2-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

LOAD CASE(S) Standard



Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1055 Serenity	
P02003-24593	E02	Monopitch	4	1	Job Reference (optional)	T37046657

Scale = 1:30

00010 = 1.50													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	6) T	uilding Desig erifying Rain equirements his truss has hord live load	CSI TC BC WB Matrix-MP gner/Project eng Load = 5.0 (psf specific to the us been designed d nonconcurrent) covers r se of this for a 10.0 with any	Vert(CT) Horz(CT) ponsible for ain loading truss compo 0 psf bottom other live loa	ıds.	(loc) 6-9 6-9 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
TOP CHORD	Structural wood she	athing directly applie			as been designe I chord in all area			0psf					
BOT CHORD	4-2-8 oc purlins. Rigid ceiling directly bracing.	applied or 10-0-0 o	c 3 c	-06-00 tall by hord and any	y 2-00-00 wide w y other members	/ill fit betv 5.	veen the bott	om					
	(size) 2=0-7-8, 6 Max Horiz 2=58 (LC Max Uplift 2=-71 (LC Max Grav 2=235 (LC (lb) - Maximum Com Tension 1-2=0/24, 2-3=-57/2: 2-6=-4/65, 5-6=0/0 3-6=-91/80	C 12), 6=-34 (LC 16) C 2), 6=142 (LC 23) pression/Maximum	9) P b 2 10) T Ir R	rovide mech earing plate and 34 lb up his truss is d hternational F	r(s) for truss to t ranical connection capable of withs oblift at joint 6. lesigned in acco Residential Code d referenced sta Standard	n (by oth tanding 7 rdance w sections	ers) of truss '1 lb uplift at ith the 2018 5 R502.11.1 a	joint					
NOTES	3-0=-91/80												
 Wind: ASC Vasd=91m II; Exp B; E and C-C E 4-2-8 zone vertical left forces & M DOL=1.60 TCLL: ASC Plate DOL 1.15 Plate Exp.; Ce=' Unbalance design. This truss load of 12. 	CE 7-16; Vult=115mph hph; TCDL=4.2psf; BC Enclosed; MWFRS (en exterior(2E) -1-5-0 to 1: e; cantilever left and rig t and right exposed;C- IWFRS for reactions s plate grip DOL=1.60 CE 7-16; Pr=20.0 psf (=1.15); Pg=10.0 psf; F DOL = 1.15); Is=1.0; f 1.0; Cs=1.00; Ct=1.10 ed snow loads have be has been designed for .0 psf or 1.00 times flats is non-concurrent with c	DL=3.0psf; h=25ft; (ivelope) exterior zor -7-0, Interior (1) 1-7- jht exposed ; end C for members and hown; Lumber roof LL: Lum DOL= 2f=7.7 psf (Lum DOL Rough Cat B; Partia sen considered for th r greater of min roof t roof load of 7.7 psf	ne -0 to - = Ily live								And	SEA 0433	EERCALIUM

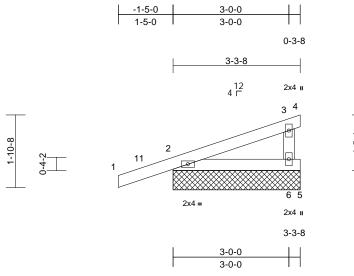
- design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

The J. C. W J. O'F

April 18,2025


Page: 1

Job	Truss	Truss Type	Qty	Ply	1055 Serenity	
P02003-24593	E03E	Monopitch Supported Gable	1	1	Job Reference (optional)	T37046658

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Thu Apr 17 14:09:32 ID:Lj8F5LDEqMFudfAf1BMvFbzQ4LE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 3-3-8

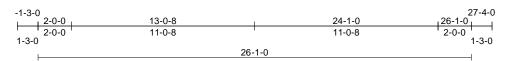
0-3-8

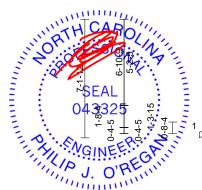
Page: 1

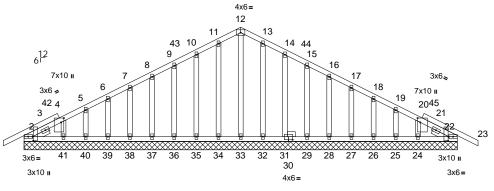
Scale = 1:29.8

00010 - 1.23.0												-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.15 0.06 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
l	3-3-8 oc purlins. Rigid ceiling directly bracing. (size) 2=3-3-8, 4 Max Horiz 2=50 (LC Max Uplift 2=-67 (LC (LC 7), 6- Max Grav 2=193 (LC	eathing directly applied v applied or 10-0-0 oc 4=3-3-8, 5=3-3-8, 6=3 12) C 12), 4=-89 (LC 2), 5= -55 (LC 16) C 2), 4=26 (LC 16), 5= 6=255 (LC 2)	7) 8-3-8 8) 9) =-31 10	design. This truss ha load of 12.0 overhangs n Building Des verifying Rain requirements Gable requiri Gable studs This truss ha chord live loa on the bottor 3-06-00 tall b	snow loads have l s been designed f osf or 1.00 times f on-concurrent with igner/Project engin a Load = 5.0 (psf) s specific to the us es continuous bott spaced at 2-0-0 o s been designed f d nonconcurrent uas been designed n chord in all area by 2-00-00 wide with y other members.	for greate lat roof lo nother lin neer resp covers r se of this tom chor c. for a 10.0 for a 110.0 s where ill fit betw	er of min roof pad of 7.7 psf ve loads. ponsible for ain loading truss compor d bearing.) psf bottom other live load e load of 20.0 a rectangle	live on eent. ds. psf					
Vasd=91m II; Exp B; E and C-C Co to 3-3-8 zo vertical left forces & M DOL=1.60	nclosed; MWFRS (er orner(3E) -1-5-0 to 1- ne; cantilever left and and right exposed;C- WFRS for reactions s plate grip DOL=1.60	: 3, 3-4=-33/28 (3-second gust) CDL=3.0psf; h=25ft; Cr nvelope) exterior zone 7-0, Exterior(2N) 1-7- fright exposed ; end -C for members and	12 at. LC 0	bearing plate 2, 31 lb uplift joint 6 and 6 this truss is International	hanical connection capable of withst at joint 5, 89 lb up 7 lb uplift at joint 2 designed in accor Residential Code nd referenced star Standard	anding 6 olift at joi dance w sections	7 lb uplift at jont nt 4, 55 lb upl ith the 2018 R502.11.1 a	oint ift at			And	OR OF FEES	

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; P=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



Job	Truss	Truss Type	Qty	Ply	1055 Serenity	
P02003-24593	G01E	Common Supported Gable	1	1	Job Reference (optional)	T37046659

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Thu Apr 17 14:09:32 ID:ec7liMjyAyQ32zpYxIbWQFzQ4Kb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

26-1-0

Scale = 1:69.4

Plate Offsets (X, Y): [2:0-3-0,0-0-8], [4:0-3-2,0-2-0], [20:0-3-2,0-2-0], [22:0-3-0,0-0-8], [30:0-3-0,0-1-4]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	7	(psf) 20.0 .7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2	018/TPI2014	CSI TC BC WB Matr	ix-MS	0.18 0.03 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 22	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 186 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	No.2 Left 2x4 SI 1-0-8 Structural 6-0-0 oc p Rigid ceilir bracing. (size) Max Horiz Max Uplift	2.2 .2 .3 *Excep P No.3 1 wood sheaurlins. ng directly 22=26-1-0, 22=26-1-0 32=26-1-0 32=26-1-0 33=26-1-0 33=26-1-0 33=26-1-0 23=26-1-0 23=26-10 23=26-10 23=26-10 23=26-10 23=26-10 23=26-10 23=26-10 23=26-10 23=26-10 23=26-10 23=26-10 23=26-10 23=26-10 23=26-10 23=26-10 25=25-26-10 25=26-10 25-10 25-10 25-10 25-10 25-10 25-10 25-10 25-10 25-10 25-10 25-10 25-10 25-10		No.3 ed or bc -1-0, 5-1-0, 5-1-0, 5-1-0, 5-1-0, 5-1-0, 3), 17),	FORCES TOP CHORD BOT CHORD	(lb) - M Tensic 1-2=0/ 5-6=-5 8-9=-4 11-12= 13-14=1511 13-14=115 13-14=11511 13-14=115 13-14=115 13-14=11511 13-14=115 13-14=115 13-14=11511 13-14=115 13-14=115 13-14=11511 11 11 11 11 11 11 11 11 11 11 11 11	24=86 (l 26=98 (l 26=98 (l 31=99 (l 33=13 35=99 (l 37=99 (l 37=99 (l 37=99 (l 37=99 (l 41=86	LC 7), 2! LC 2), 2' LC 37), : LC 37), : LC 36), : LC 36), : LC 36), : LC 36), : LC 2), 44 LC 7) mpressi 44, 4-5= 3/62, 7- 53/106, -15=-53, 17=-29/5 20=-32/1 1=-39/93 38=-39/9	8=-34/74, 10-11=-66/13 /150,	7), 36),), '1, '35, '25, '3, '93,	Vas II; E and to 1 16- end DO 3) Tru on! So or c 4) TCl Pla 1.1 Exp 5) Uni des 6) Thi loa	sd=91mp Exp B; E I C-C Cc 3-0-8, C 0-8 to 27 I vertical ess & MV L=1.60 p ss desig y For si Standa consult q LL: ASC te DOL= 5 Plate I 0.; Ce=1 colored colored te to Standa colored s truss h d of 12.0	bh; TCI nclose prner(3 corner(7 -4-0 z left an WFRS blate gui ned fo tuds ex rd Indu ualified E 7-16 -1.15); DOL = .0; CS= d snow as bee psf or	; Vult=115mph (; DL=4.2psf; BCDI d; MWFRS (enve E) -1-3-0 to 1-9-1 3R) 13-0-8 to 16 one; cantilever le ld right exposed; for reactions shot rip DOL=1.60 r wind loads in th cosed to wind (r istry Gable End 1 d building design ; Pr=20.0 psf (ro Pg=10.0 psf; Pf= 1.15); Is=1.0; Rc =1.00; Ct=1.10 loads have beer	B-second gust) =3.0psf; h=25ft; Cat. elope) exterior zone D, Exterior(2N) 1-9-0 -0-8, Exterior(2N) eft and right exposed; C-C for members and wn; Lumber he plane of the truss normal to the face), Details as applicable, er as per ANSI/TPI 1. of LL: Lum DOL = 1.15 er.7 psf (Lum DOL = ugh Cat B; Partially in considered for this preater of min roof live pof load of 7.7 psf on
		28=-29 (L 31=-32 (L 34=-23 (L 36=-28 (L 38=-29 (L	C 17), 29–28 (LC C 17), 32–28 (LC C 17), 32–20 (LC C 16), 35–31 (LC C 16), 37–29 (LC C 16), 39–28 (LC C 16), 41–40 (LC	WEBS	28-29= 25-26= 12-33= 9-36=- 6-39=- 13-32= 16-28=	39/93, 27-2 39/93, 24-2 89/28, 11-3 72/41, 8-37= 72/42, 5-40= 75/31, 14-3	28=-39/9 25=-39/9 34=-75/3 =-72/42, =-75/40, 31=-73/4 27=-72/4	3, 29-31=-39/ 13, 26-27=-39/ 13, 22-24=-40/ 11, 10-35=-73/ 7-38=-72/42, 4-41=-61/45, 16, 15-29=-72/ 12, 18-26=-72/ 1	/93, /95 /46, /41,						

NOTES

 Unbalanced roof live loads have been considered for this design.

April 18,2025

Page: 1

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Dracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

AMITEK Affilia 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1055 Serenity	
P02003-24593	G01E	Common Supported Gable	1	1	Job Reference (optional)	T37046659
84 Lumber-2383 (Dunn, NC), Du	inn, NC - 28334,	Run: 8.83 S Apr 11 2	2025 Print: 8.	830 S Apr 11	2025 MiTek Industries, Inc. Thu Apr 17 14:09:32	Page: 2

ID:ec7liMjyAyQ32zpYxIbWQFzQ4Kb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

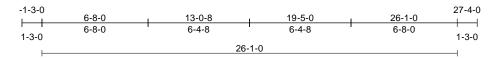
- 7) Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- All plates are 2x4 (||) MT20 unless otherwise indicated. 8)

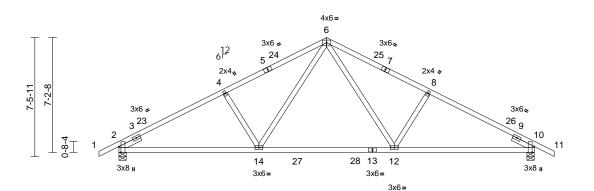
Gable requires continuous bottom chord bearing. 9)

10) Gable studs spaced at 1-4-0 oc.

- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 2, 23 lb uplift at joint 34, 31 lb uplift at joint 35, 28 lb uplift at joint 36, 29 lb uplift at joint 37, 29 lb uplift at joint 38, 28 lb uplift at joint 39, 21 lb uplift at joint 40, 40 lb uplift at joint 41, 20 lb uplift at joint 32, 32 lb uplift at joint 31, 28 Ib uplift at joint 29, 29 Ib uplift at joint 28, 29 Ib uplift at joint 27, 28 Ib uplift at joint 26, 26 Ib uplift at joint 27, 28 Ib uplift at joint 26, 26 Ib uplift at joint 25, 40 Ib uplift at joint 24 and 16 lb uplift at joint 22.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



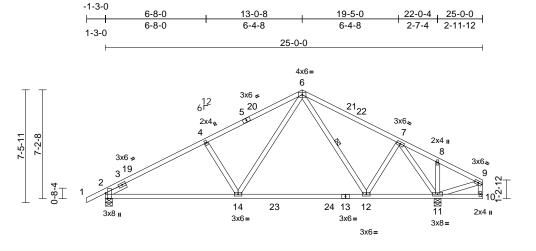
Job	Truss	Truss Type	Qty	Ply	1055 Serenity	
P02003-24593	G02	Common	3	1	Job Reference (optional)	T37046660

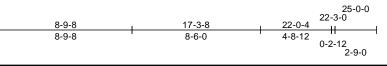
Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Thu Apr 17 14:09:32 ID:Xfui6Yz7EP353BvafCTRmgzQ4KG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

				8-9-8	1	17-3-8		1	2	6-1-0		I	
Scale = 1:72.3				8-9-8	1	8-6-0		1	8	3-9-8			
	(X, Y): [2:0-4-5,Edge],	. [10:0-4-5.Edae]											
		, [-		1							1	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.51	Vert(LL)		12-14	>999	240	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15		BC	0.82	Vert(CT)		12-14	>867	180		
TCDL	7.0	Rep Stress Incr	YES		WB	0.16	Horz(CT)	0.05	10	n/a	n/a		
BCLL	0.0*	Code	IRC2018	3/TPI2014	Matrix-MS								
BCDL	10.0											Weight: 126 lb	FT = 20%
LUMBER			3)	TCLL: ASCE	7-16; Pr=20.0	psf (roof LL	.: Lum DOL=	=1.15					
TOP CHORD	2x4 SP No.2			Plate DOL=1	.15); Pg=10.0	osf; Pf=7.7	psf (Lum DC)L =					
BOT CHORD	2x4 SP No.2				OL = 1.15); Is=		Cat B; Partia	ally					
WEBS	2x4 SP No.2 *Excep	ot* 12-8,14-4:2x4 SF); Cs=1.00; Ct=								
SLIDER	Left 2x4 SP No.3	1-6-0, Right 2x4 SP	No.3 4)		snow loads hav	ve been cor	sidered for t	this					
	1-6-0		5)	design.	as been designe	d for areat	ar of min roo	flivo					
BRACING	•		- /		psf or 1.00 time								
TOP CHORD		athing directly appli	ed or		on-concurrent v								
BOT CHORD	3-11-6 oc purlins. Rigid ceiling directly	copplied or 10.0.0 o	6)		igner/Project er								
BOT CHORD	bracing.	applied of 10-0-0 0	ι ΄	verifying Rai	n Load = 5.0 (p	sf) covers r	ain loading						
REACTIONS	0	10-0-5-8			s specific to the								
REACTIONS	Max Horiz 2=-89 (LC		7)		as been designe								
	Max Uplift 2=-155 (L	,	17)		ad nonconcurre								
	Max Grav 2=1113 (L				nas been desigi			.0psf					
FORCES	(lb) - Maximum Corr		,		m chord in all a by 2-00-00 wide			tom					
TOROLO	Tension	ipression/maximum			by 2-00-00 wide								
TOP CHORD		7/255. 4-6=-1551/26	i9, 9)		hanical connec	,							
	6-8=-1551/269, 8-10	,	, ,		e capable of wit								
BOT CHORD	2-14=-216/1451, 12	-14=-70/1005,			uplift at joint 10								
	10-12=-161/1451		10) This truss is	designed in acc	cordance w	ith the 2018					THUIL I	111
WEBS	6-12=-112/638, 8-12			International	Residential Co	de sections	R502.11.1	and				N''LL CA	Dille
	6-14=-112/638, 4-14	4=-318/168		R802.10.2 a	nd referenced s	standard AN	ISI/TPI 1.					"ath a	TO MA
NOTES			LC	AD CASE(S)	Standard						5	Or ille	in All
	ed roof live loads have	been considered fo	or								22		N. Y.
this desig		(2)									5	SEA 0433	X: =
,	CE 7-16; Vult=115mph		o /										
	mph; TCDL=4.2psf; BC Enclosed; MWFRS (er									-	:	SEA	L : =
	Exterior(2E) -1-3-0 to 1									=		0433	25 =
	xterior(2R) 13-0-8 to 16									-		0+55	
	zone; cantilever left an										-		1. 3
	ft and right exposed;C-										いへ	·	A: 2:
	WWFRS for reactions s										11	GIN	EFTCR
	0 plate grip DOL=1.60										11		DE
												11, J. C)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




0 mmm April 18,2025

Job	Truss	Truss Type	Qty	Ply	1055 Serenity	
P02003-24593	G03	Common	2	1	Job Reference (optional)	T37046661

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Thu Apr 17 14:09:32 ID:?NVwSWO4_AT7mZ5ID3ceh3zQ4Jj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

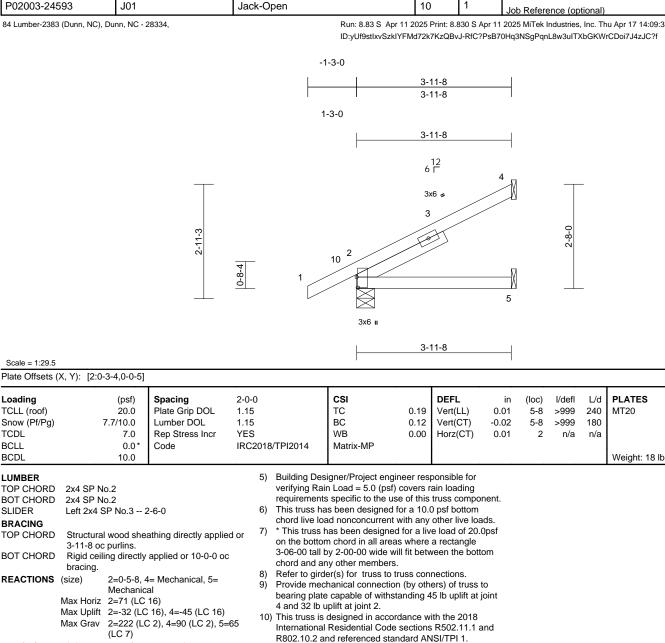
Page: 1

Scale = 1:76.4

Plate Offsets (X, Y): [2:0-4-5,Edge]

	∧, f). [2.0-4-5,⊏uge]											-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018 3)	8/TPI2014 TCLL: ASCE	CSI TC BC WB Matrix-MS 7-16; Pr=20.0 psf	0.45 0.79 0.44 (roof L	DEFL Vert(LL) Vert(CT) Horz(CT)	-0.30 0.03	(loc) 12-14 12-14 11	l/defl >999 >872 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 133 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.3 *Excep Left 2x4 SP No.3 Structural wood she 4-10-7 oc purlins, e Rigid ceiling directly bracing. 1 Row at midpt	athing directly applied xcept end verticals. applied or 10-0-0 oc 6-12 11=0-5-8 20) C 16), 11=-140 (LC 17	4) or 5) 6) 7)	1.15 Plate D Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements This truss ha chord live loa * This truss h	.15); Pg=10.0 psf; OL = 1.15); Is=1.0; O; Cs=1.00; Ct=1.11; snow loads have b s been designed for psf or 1.00 times file on-concurrent with igner/Project engin n Load = 5.0 (psf) of s specific to the use is been designed for ad nonconcurrent v has been designed in a chord in all areas	Rough or great at roof I other li other li e of this or a 10. vith any for a liv	Cat B; Partia nsidered for t er of min roof pad of 7.7 ps ve loads. ponsible for ain loading truss compo 0 psf bottom other live loa e load of 20.1	ally his f live f on nent. ads.					
FORCES TOP CHORD		pression/Maximum /207, 4-6=-1194/221, 33/182, 8-9=-61/159,	9)	chord and ar Provide mec	by 2-00-00 wide wil by other members, hanical connection capable of withsta	with BC (by oth	DL = 10.0ps ers) of truss	f. to					
BOT CHORD WEBS	9-10=-24/56 2-14=-195/1149, 12- 11-12=-54/515, 10-1 6-12=-78/98, 7-12=0	-14=-56/675, 1=-24/25)/345, 6-14=-112/664,		2 and 140 lb) This truss is International R802.10.2 a	uplift at joint 11. designed in accord Residential Code s nd referenced stan	dance w sections	ith the 2018 R502.11.1 a					TH CA	BOL
this design 2) Wind: ASC Vasd=91m II; Exp B; E and C-C E 13-0-8, Ex to 24-10-4 vertical left forces & M	9-11=-151/91 ed roof live loads have	(3-second gust) DL=3.0psf; h=25ft; Ca ivelope) exterior zone -9-0, Interior (1) 1-9-0 -0-8, Interior (1) 16-0- nd right exposed ; end C for members and	t. to 8	DAD CASE(S)	Standard						NV PLIL	SEA 0433	25 EFR. AU

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

O' mmm April 18,2025

Job	Truss	Truss Type	Qty	Ply	1055 Serenity	
P02003-24593	J01	Jack-Open	10	1	Job Reference (optional)	T37046662

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries. Inc. Thu Apr 17 14:09:33

Page: 1

FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/30. 2-4=-154/43

bracing.

Max Grav

BOT CHORD 2-5=-107/61 NOTES

Scale = 1:29.5

Loading

TCDL

BCLL

BCDL

LUMBER

SLIDER

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS (size)

TCLL (roof)

Snow (Pf/Pg)

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-3-0 to 1-9-0, Interior (1) 1-9-0 to 3-10-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.: Ce=1.0: Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 3) design
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.

JOR SEAL 043325 O mm April 18,2025

GRIP

244/190

FT = 20%

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

LOAD CASE(S) Standard

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1055 Serenity	
P02003-24593	J02G	Half Hip Girder	1	1	Job Reference (optional)	T37046663

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Thu Apr 17 14:09:33 ID:1zoPIFjCyDzX8rjaLvZgwJzQ7ko-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

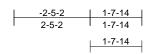
3-11-8 3-8-0 -1-3-0 2-6-2 +2-6-2 1-3-0 1-1-14 0-3-8 3-11-8 NAILED NAILED 6¹² 5x6 = 3x6 u 3 11 4 **ri t**i 2-2-8 1-11-5 1-11-5 -8-4 "nn nn 7 12 65 3x6= 2x4 u 3x6= NAILED NAILED 3-11-8 3-8-0 1-3-10 2-4-6 2-4-6 0-3-8

Scale = 1:51.6

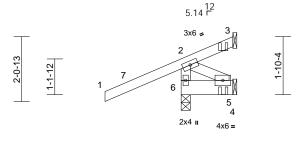
Plate Offsets (X, Y): [3:0-3-0,0-2-0], [4:0-3-0,0-0-8]

				-		· · · · ·					-	-
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.12	Vert(LL)	0.00	7	>999	240	MT20	244/190
Snow (Pf/Pg)	12.7/10.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	0.00	7	>999	180		
TCDL	7.0	Rep Stress Incr	NO	WB	0.09	Horz(CT)	0.00	6	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 24 lb	FT = 20%
											, j	
LUMBER				as been designed fo								
TOP CHORD) psf or 1.00 times fla			on					
BOT CHORD	2x6 SP No.2			non-concurrent with								
WEBS	2x4 SP No.3			signer/Project engin								
BRACING			roquiromor	ain Load = 5.0 (psf) of the use			ont					
TOP CHORD		athing directly applied		equate drainage to p								
	3-11-8 oc purlins, ex			as been designed fo								
B 0 T 0 1 0	2-0-0 oc purlins: 3-4			bad nonconcurrent w			de					
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc		has been designed								
	bracing.			om chord in all areas			P0.					
REACTIONS		4= Mechanical, 6=		by 2-00-00 wide will			m					
	Mechanic			any other members.								
	Max Horiz 2=52 (LC	,		der(s) for truss to tru	iss coni	nections.						
	Max Uplift 2=-76 (LC		11) Refer to gi	der(s) for truss to tru	uss con	nections.						
	6=-210 (L	C 34), 4=25 (LC 41), 6	12) Provide me	chanical connection	(by oth	ers) of truss to	С					
	(LC 72)	5 54), 4=25 (LC 41), 6	bearing pla	te capable of withsta			oint					
FORCES	(lb) - Maximum Com	nroccion/Movimum		ft at joint 4 and 210								
FURGES	(ib) - Maximum Com Tension	pression/waximum		s designed in accord								
TOP CHORD	1-2=0/32, 2-3=-77/1	61 3-1-0/0		al Residential Code s			nd					
BOT CHORD	2-7=-128/49, 6-7=-1			and referenced stan								
WEBS	3-7=-48/44, 4-6=0/0	,		urlin representation			ize				minin	11111
NOTES	0-0/0	, 0 0- 02/210	or the orier bottom cho	tation of the purlin al	iong the	e top and/or					SEA 0433	Bolly
	ed roof live loads have	been considered for		en inside of top chor	d heari	na and first				S'	R	T. Ling
this design		Deen considered 101		vertical web shall no						2.	U STA	AL. VII
	 CE 7-16; Vult=115mph	(3-second quist)		ndicates 3-12d (0.14			٩r			52		A.Y.
	nph; TCDL=4.2psf; BC		,		0 /10.20	, 100 Hailo pe					:21	K : -
	Enclosed; MWFRS (er			D CASE(S) section,	loads a	polied to the fa	ace		-		CE/	u : =
	left and right exposed			are noted as front (F						:	SLF	. : :
	sed; Lumber DOL=1.6								=	:	0433	325 : =
	CE 7-16; Pr=20.0 psf (now (balanced): Lum	nber Inc	rease=1.15. F	Plate					
Plate DOL	_=1.15); Pg=10.0 psf; F	Pf=12.7 psf (Lum DOL		. ,						-		10.3
	DOL = 1.15); Is=1.0; I			pads (lb/ft)						12	· ENG	-6R. 33
	1.0; Cs=1.00; Ct=1.10			3=-29, 3-4=-39, 5-8=	-20					11	Y, GIN	EF. GR.S
,	ed snow loads have be	en considered for this	Concentra	ited Loads (lb)						1	SIP .	REIN
design.			Vert: 7	42 (B), 3=73 (B), 11	=19 (B), 12=21 (B)					111, J. (J IIII
					•						in the second	THE
											۸nr	1 10 2025

April 18,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	1055 Serenity	
P02003-24593	J03G	Jack-Open Girder	1	1	Job Reference (optional)	T37046664

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Thu Apr 17 14:09:33 ID:PUa8s4g7InDIv6S8az1ajAzQ7ok-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

NAILED

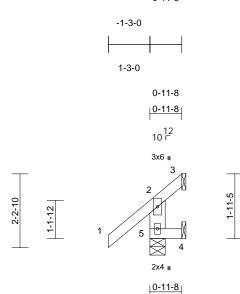
0-3-14

Scale = 1:36.8

Scale = 1:36.8												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		Designer/Project en			in 0.00 0.00 0.00	(loc) 6 5-6 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%
	2x4 SP No.3 2x6 SP No.2 2x4 SP No.3 Structural wood she 2-9-7 oc purlins, ex Rigid ceiling directly bracing. (size) 3= Mecha 6=0-3-8 Max Horiz 6=39 (LC Max Uplift 3=-198 (L 6=-90 (LC Max Grav 3=73 (LC (LC 2))	cept end verticals. • applied or 10-0-0 od anical, 4= Mechanica 11) C 45), 4=-49 (LC 12 2 8)	required 7) This tru chord li 8) * This tru on the b 3-06-00 chord a 9) Refer to 10) Provide bearing 6, 49 lb 11) This tru Internat R802.11	g Rain Load = 5.0 (ps nents specific to the ss has been designed ve load nonconcurrer uss has been design ottom chord in all are tall by 2-00-00 wide nd any other member girder(s) for truss to mechanical connecti plate capable of with uplift at joint 4 and 19 ss is designed in acc onal Residential Coc 2,2 and referenced st	use of this d for a 10. the with any ed for a live eas where will fit betworks. the truss con- ion (by oth standing \$ 98 lb uplift ordance we de sections candard AN	truss compoid of part bottom other live load e load of 20.0 a rectangle ween the botton nections. ers) of truss t 10 lb uplift at j at joint 3. ith the 2018 k R502.11.1 a ISI/TPI 1.	ds. Opsf om oo oint					
 this design Wind: ASC Vasd=91m II; Exp B; E cantilever I right exposion TCLL: ASC Plate DOL: 1.15 Plate Exp.; Ce=' Unbalance design. This truss I load of 12. 	(lb) - Maximum Corr Tension 2-6=-299/91, 1-2=0/ 5-6=-40/2, 4-5=0/0 2-5=-2/46 ed roof live loads have b. CE 7-16; Vult=115mph pph; TCDL=4.2psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 (CE 7-16; Pr=20.0 psf; F DOL = 1.15); Pg=10.0 psf; F DOL = 1.15); Pg=10.0 psf; F DOL = 1.15); Is=1.0; 1.0; Cs=1.00; Ct=1.10 ed snow loads have be has been designed fo 0 psf or 1.00 times fla non-concurrent with o	55, 2-3=-63/17 been considered for (3-second gust) :DL=3.0ps; h=25f; (vvelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 (roof LL: Lum DOL=1 Pf=7.7 psf (Lum DOL Rough Cat B; Partial sen considered for th r greater of min roof t roof load of 7.7 psf	(0.148". 13) Hanger provide down a down a down a down a down a r respons 14) In the L of the tr Cat. LOAD CAS te; 1) Dead d Increa 50 Unifor 1.15 Ver - Conco ly Ver his	^{or} indicates 3-10d (0, i3.25") toe-nails per f is) or other connection a sufficient to support ad 118 lb up at 2-9-4 d 64	NDS guidli on device(s t concentra on top ch on bottom nection de on, loads a tt (F) or ba	nes.) shall be ated load(s) 3 ord, and 9 lb chord. The vice(s) is the oplied to the 1 ck (B).	face				SEA 0433	EER. GAMMAN 0'REGAMMAN 18 2025

- 4 design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

April 18,2025

Job	Truss	Truss Type	Qty	Ply	1055 Serenity	
P02003-24593	J04	Jack-Open	1	1	Job Reference (optional)	T37046665

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Thu Apr 17 14:09:34 ID:98NBZ7KVRhE253Tpa9YYjmzQ7qT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-11-8

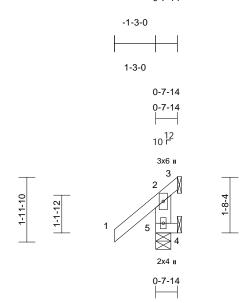
Scale = 1:34.7

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC207	8/TPI2014	CSI TC BC WB Matrix-MR	0.21 0.05 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x6 SP No.2 Structural wood shee 0-11-8 oc purlins, ee Rigid ceiling directly bracing. (size) 3= Mecha 5=0-5-8 Max Horiz 5=40 (LC Max Uplift 3=-31 (LC (LC 14) Max Grav 3=6 (LC 1 (LC 2)	xcept end verticals. applied or 10-0-0 oc nical, 4= Mechanical 11) 2), 4=-25 (LC 2), 5=	: I, 8 9 :- ¹³ 1 :189	verifying Rai requirements This truss ha chord live loa * This truss h on the bottor 3-06-00 tall t chord and ar 9 Refer to gird Provide mec bearing plate 5, 25 lb upliff 0) This truss is International R802.10.2 at	igner/Project engin in Load = 5.0 (psf) of specific to the use is been designed for ad nonconcurrent v has been designed in chord in all areas by 2-00-00 wide will by other members. er(s) for truss to tru- hanical connection o capable of withsta at joint 4 and 31 ll designed in accord Residential Code stan	covers r e of this or a 10.0 vith any for a liv s where l fit betw uss con (by oth anding 1 o uplift a lance w sections	ain loading truss compor 0 psf bottom other live loa e load of 20.0 a rectangle reen the botto nections. ers) of truss t 3 lb uplift at ju t joint 3. th the 2018 R502.11.1 a	ds. Opsf om o oint					
this design 2) Wind: ASC	(Ib) - Maximum Com Tension 2-5=-149/139, 1-2=0 4-5=0/0 d roof live loads have	/51, 2-3=-44/24 been considered for (3-second gust)		OAD CASE(S)	Standard							NUTH CA	Rojin

- Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Ca II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 20 TCLL+ASCE 7.46 pp. 200 pp. for actilution pDOL=1.40
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.

SEAL 043325 MGINEER J. O'REMINING April 18,2025

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	1055 Serenity	
P02003-24593	J05	Jack-Open	1	1	Job Reference (optional)	T37046666

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Thu Apr 17 14:09:34 ID:ADUurN89QapOFVftZRmUT5zQ7pP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-7-14

Scale = 1:35

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 7.0 0.0* 10.0	Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr Y	2-0-0 1.15 1.15 YES RC2018	/TPI2014	CSI TC BC WB Matrix-MR	0.21 0.05 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 5 5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 7 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS (M N	0-7-14 oc purlins, e Rigid ceiling directly bracing. size) 3= Mecha 5=0-5-8 Max Horiz 5=36 (LC Max Uplift 3=-78 (LC (LC 14)	applied or 10-0-0 oc nical, 4= Mechanical, 11) 2), 4=-50 (LC 2), 5=-26 18), 4=11 (LC 12), 5=23	8) 9) 6 10) 38	verifying Rair requirements This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Refer to girdd Provide mech bearing plate 5, 50 lb uplift This truss is International	gner/Project engine h Load = 5.0 (psf) c specific to the use s been designed for d nonconcurrent w as been designed in chord in all areas y 2-00-00 wide will y other members. er(s) for truss to tru- nanical connection capable of withsta at joint 4 and 78 lb designed in accord Residential Code s d referenced stance Standard	overs r of this r a 10.0 ith any for a liv where fit betv uss con (by oth nding 2 uplift a ance w ections	ain loading truss compor 0 ps bottom other live loa e load of 20.0 a rectangle veen the botto nections. ers) of truss t 6 lb uplift at ju t joint 3. th the 2018 R502.11.1 a	ds. Opsf om o oint					

TOP CHORD 2-5=-180/190, 1-2=0/51, 2-3=-64/45 BOT CHORD 4-5=0/0

NOTES

 Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf; Pf=7.7 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

