

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DR Horton Inc

Model: 83 Eagle Creek -Norman - C

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

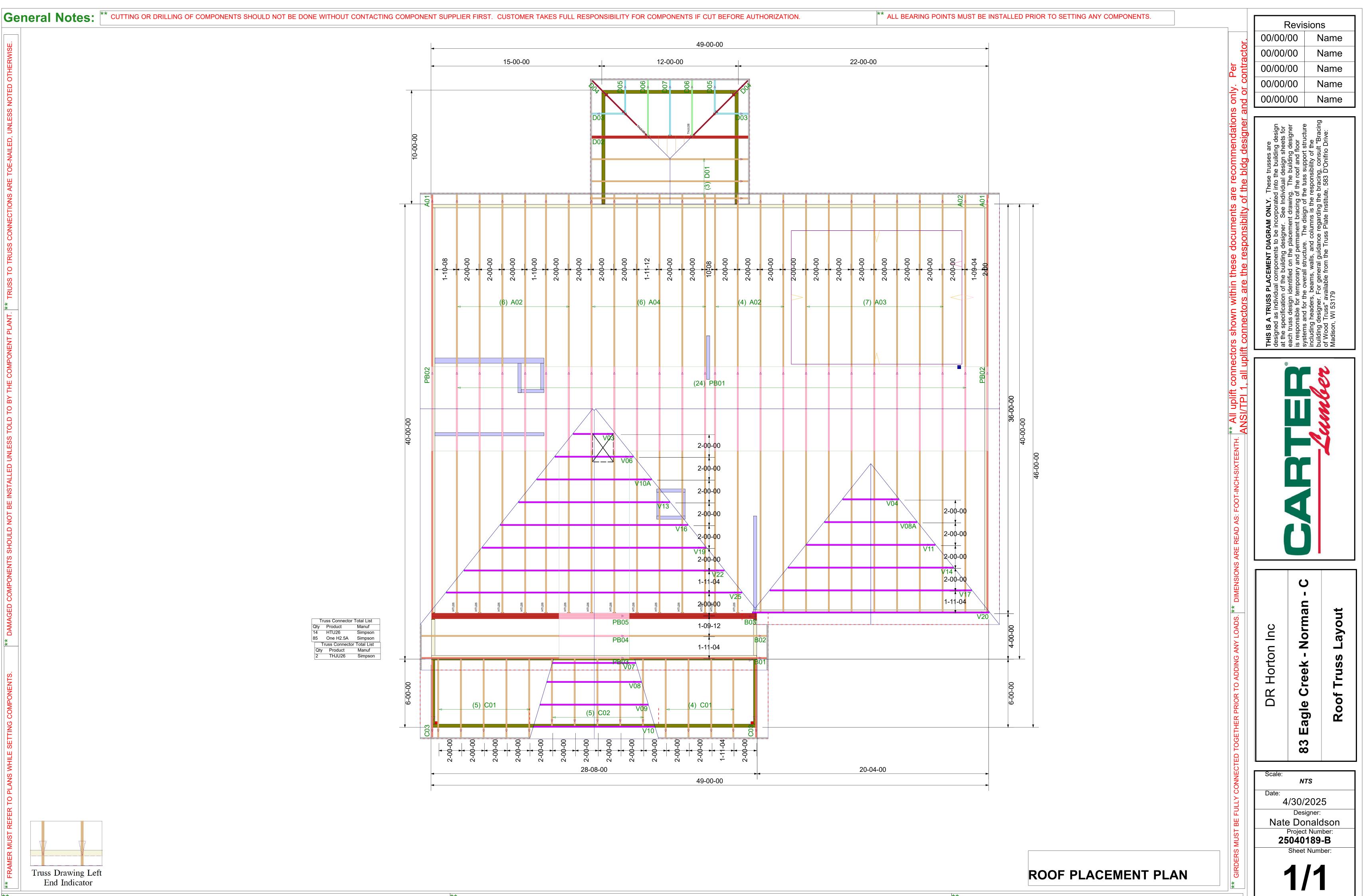
3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.


8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

General Notes:	** CUTTING OR DRILLING OF COMPONENTS SHOULD NOT BE DONE WITHOUT CONTACTING COMPONENT SUPPLIER

** REFER TO FINAL TRUSS ENGINEERING SHEETS FOR PLY TO PLY CONNECTIONS.

RE: 25040189 83 Eagle Creek - Norman C - Roof Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:Customer: DR Horton IncProject Name:25040189Lot/Block: 83Model: Norman CAddress:Subdivision: Eagle CreekCity:State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.7 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 40 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. 1 2 3 4 5 6 7 8 9 10 11 12	Seal# 172269960 172269961 172269962 172269963 172269964 172269965 172269966 172269967 172269968 172269969 172269970 172269970	Truss Name A01 A02 A03 A04 B01 B02 B03 C01 C02 C03 D01 D02	Date 3/26/2025 3/26/2025 3/26/2025 3/26/2025 3/26/2025 3/26/2025 3/26/2025 3/26/2025 3/26/2025 3/26/2025 3/26/2025 3/26/2025	No. 21 22 23 24 25 26 27 28 29 30 31 32	Seal# I72269980 I72269981 I72269983 I72269983 I72269984 I72269985 I72269986 I72269987 I72269988 I72269989 I72269989 I72269990 I72269991	Truss Name PB04 PB05 V03 V04 V06 V07 V08 V08A V08A V09 V10 V10A V11	Date 3/26/2025 3/26/2025 3/26/2025 3/26/2025 3/26/2025 3/26/2025 3/26/2025 3/26/2025 3/26/2025 3/26/2025 3/26/2025
6	172269965	B02	3/26/2025	26	172269985	V07	3/26/2025
7	172269966	B03	3/26/2025	27	172269986	V08	3/26/2025
8	172269967	C01	3/26/2025	28	172269987	V08A	3/26/2025
9	172269968	C02	3/26/2025	29	172269988	V09	3/26/2025
10	172269969	C03	3/26/2025	30	172269989	V10	3/26/2025
11	172269970	D01	3/26/2025	31	172269990	V10A	3/26/2025
12	172269971	D02	3/26/2025	32	172269991	V11	3/26/2025
13	172269972	D03	3/26/2025	33	172269992	V13	3/26/2025
14	172269973	D04	3/26/2025	34	172269993	V14	3/26/2025
15	172269974	D05	3/26/2025	35	172269994	V16	3/26/2025
16	172269975	D06	3/26/2025	36	172269995	V17	3/26/2025
17	172269976	D07	3/26/2025	37	172269996	V19	3/26/2025
18	172269977	PB01	3/26/2025	38	172269997	V20	3/26/2025
19	172269978	PB02	3/26/2025	39	172269998	V22	3/26/2025
20	172269979	PB03	3/26/2025	40	172269999	V25	3/26/2025

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

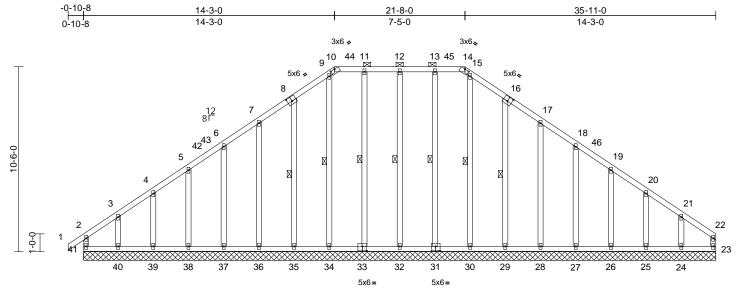
based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2025

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



Gilbert, Eric

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	A01	Piggyback Base Supported Gable	2	1	Job Reference (optional)	172269960

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:41:54 ID:jgeUCYH2wVfnTG7e_tlm6?zuo40-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

35-11-0

Scale = 1.05.4										
Plate Offsets (X, Y):	[8:0-3-0,0-3-0]	, [10:0-3-0,0-0-2], [14:0-	3-0,0-0-2], [16:0-3-0),0-3-0], [31:0-3-0,0-3-0], [33	:0-3-0,0-3-0]				-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES RC2018/TPI2014	CSI TC 0.19 BC 0.10 WB 0.18 Matrix-MR	Vert(LL) n/2 Vert(CT) n/2	a a	oc) l/defl - n/a - n/a 23 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 283 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x4 S WEBS 2x4 S OTHERS 2x4 S BRACING 2x4 S BRACING Struc 6-0-C BOT CHORD Rigid braci) oc purlins, ex) oc purlins (6-0 l ceiling directly	eathing directly applied of teept end verticals, and)-0 max.): 10-14. / applied or 6-0-0 oc 12-32, 11-33, 9-34, 8-3	FORCES	27=218 (LC 39) 29=232 (LC 39) 31=227 (LC 38) 33=227 (LC 38) 35=233 (LC 39) 37=224 (LC 39)	, 26=173 (LC 49), , 28=212 (LC 39), , 30=195 (LC 51), , 32=230 (LC 38), , 36=210 (LC 38), , 36=211 (LC 39), , 38=177 (LC 47), , 40=225 (LC 47),	2)	this design. Wind: ASC Vasd=103n II; Exp B; E and C-C Co to 10-7-15, 25-3-1 to 3 cantilever la right expos for reaction DOL=1.60	E 7-16 nph; T(nclose orner(3 Corne 1-11-8, eft and ed;C-C s show	; Vult=130mph (CDL=6.0psf; BC d; MWFRS (env E) -0-10-8 to 2-{ r(3R) 10-7-15 to Corner(3E) 31- right exposed ; f or members at m; Lumber DOL	een considered for 3-second gust) DL=6.0psf; h=25ft; Cat. elope) exterior zone 3-9, Exterior(2N) 2-8-9 25-3-1, Exterior(2N) 11-8 to 35-9-4 zone; end vertical left and rd forces & MWFRS =1.60 plate grip he plane of the truss
REACTIONS (size)	25=35-11 27=35-11 29=35-11 31=35-11 33=35-11 35=35-11	$\begin{array}{l} 13\text{-}31,\ 15\text{-}30,\ 16\text{-}29\\ -0,\ 24\text{-}35\text{-}11\text{-}0,\\ -0,\ 26\text{-}35\text{-}11\text{-}0,\\ -0,\ 28\text{-}35\text{-}11\text{-}0,\\ -0,\ 30\text{-}35\text{-}11\text{-}0,\\ -0,\ 32\text{-}35\text{-}11\text{-}0,\\ -0,\ 34\text{-}35\text{-}11\text{-}0,\\ -0,\ 36\text{-}35\text{-}11\text{-}0,\\ -0,\ 38\text{-}35\text{-}11\text{-}0,\\ -0,\ 38\text{-}35\text{-}11\text{-}0,\\ \end{array}$		3-4=-148/143, 4-5=-138/14 6-7=-116/199, 7-9=-174/3(10-11=-150/273, 11-12=-1 12-13=-151/273, 13-14=-1 14-15=-150/244, 15-17=-1 17-18=-111/190, 18-19=-7 19-20=-81/99, 20-21=-91/8 21-22=-130/116, 22-23=-9	14, 5-6=-120/165, 01, 9-10=-150/244, 51/273, 51/273, 74/301, 8/134, 32, 2/53	4)	only. For s see Standa or consult of TCLL: ASC Plate DOL= DOL=1.15) Cs=1.00: C	tuds e) rd Indu ualifie E 7-16 1.15); ; Is=1.(t=1 10	kposed to wind (istry Gable End d building design ; Pr=20.0 psf (ro Pf=20.0 psf (Lu); Rough Cat B;	normal to the face), Details as applicable, her as per ANSI/TPI 1. of LL: Lum DOL=1.15 m DOL=1.15 Plate Fully Exp.; Ce=0.9;
	41=35-11 loriz 41=259 (l 25=-41 (L 27=-59 (L 29=-72 (L 32=-30 (L 35=-70 (L 37=-58 (L	LC 11) .C 11), 24=-131 (LC 15), .C 15), 26=-62 (LC 15), .C 15), 28=-49 (LC 15), .C 15), 31=-22 (LC 11), .C 10), 33=-19 (LC 11), .C 14), 36=-49 (LC 14), .C 14), 38=-63 (LC 14), .C 14), 40=-148 (LC 14), .C 140 (LC 14),	WEBS	40-41=-104/115, 39-40=-1 38-39=-104/115, 37-38=-1 36-37=-104/115, 35-36=-1 30-32=-104/114, 32-34=-1 30-32=-104/114, 32-34=-1 28-29=-102/113, 27-28=-1 24-25=-102/113, 25-26=-1 24-25=-102/113, 25-26=-1 24-25=-102/113, 25-26=-1 12-32=-187/64, 11-33=-18 9-34=-168/22, 8-35=-192/5 6-37=-184/83, 5-38=-135/5 3-40=-154/129, 13-31=-18 15-30=-155/5, 16-29=-192	04/115, 04/115, 04/114, 04/113, 02/113, 02/113, 02/113, 7/43, 7/43, 35, 7-36=-171/73, 34, 4-39=-124/74, 7/45, /96,				SEA 0363	AROUNT AL
			NOTES	19-26=-131/83, 20-25=-12 21-24=-154/117					Marc	h 26,2025

Scale = 1:65.4

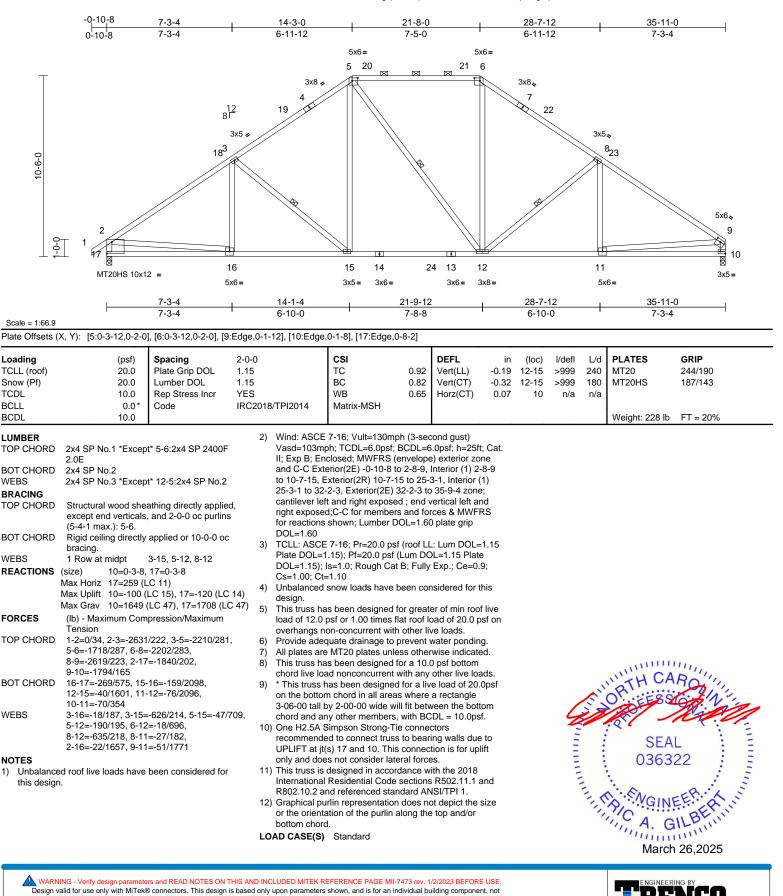
Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeR% connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the Section of the prevent collapse contervent for the Sectional temporation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	A01	Piggyback Base Supported Gable	2	1	Job Reference (optional)	172269960

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhands non-concurrent with other live loads
- Provide adequate drainage to prevent water ponding. 7)
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- 9) Gable requires continuous bottom chord bearing.
- 10) Truss to be fully sheathed from one face or securely
- braced against lateral movement (i.e. diagonal web). 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 124 lb uplift at joint 41, 67 lb uplift at joint 23, 30 lb uplift at joint 32, 19 lb uplift at joint 33, 70 lb uplift at joint 35, 49 lb uplift at joint 36, 58 lb uplift at joint 37, 63 lb uplift at joint 38, 38 lb uplift at joint 39, 148 lb uplift at joint 40, 22 lb uplift at joint 31, 72 lb uplift at joint 29, 49 lb uplift at joint 28, 59 Ib uplift at joint 27, 62 lb uplift at joint 26, 41 lb uplift at joint 25 and 131 lb uplift at joint 24.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Tue Mar 25 10:41:54 ID:jgeUCYH2wVfnTG7e_tlm6?zuo40-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 2

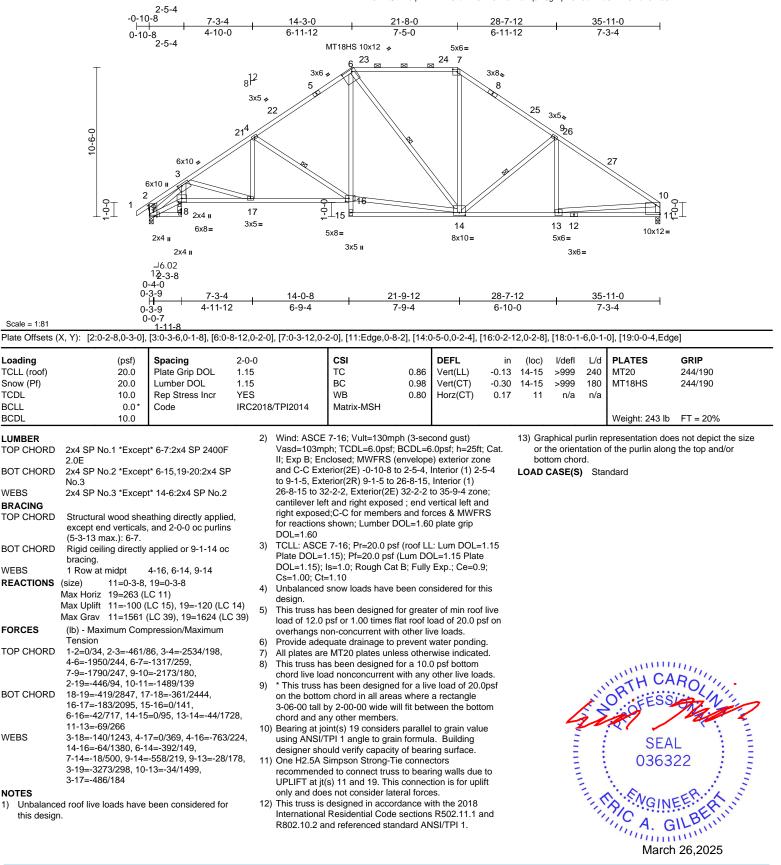
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	A02	Piggyback Base	11	1	Job Reference (optional)	172269961

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:41:55 ID:BtCsPuHghpnd4QiqYaG?fDzuo4?-RfC?PsB70Hg3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

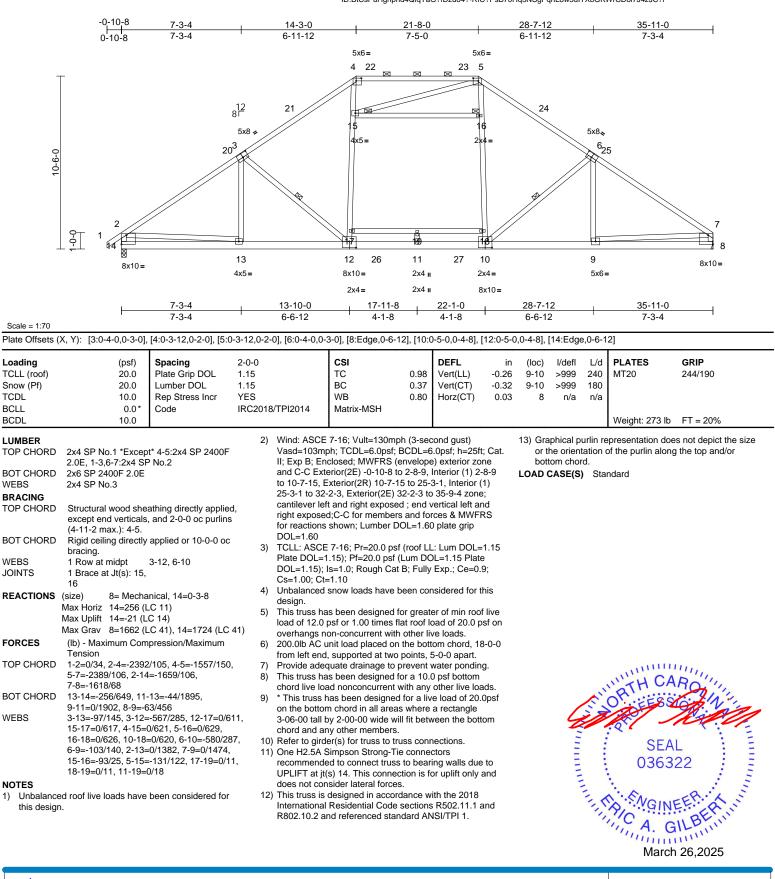
818 Soundside Road


Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	A03	Piggyback Base	7	1	Job Reference (optional)	172269962

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:41:55 ID:PvTtYGHZQvMn0qD4BHzT4SzuWVS-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

818 Soundside Road

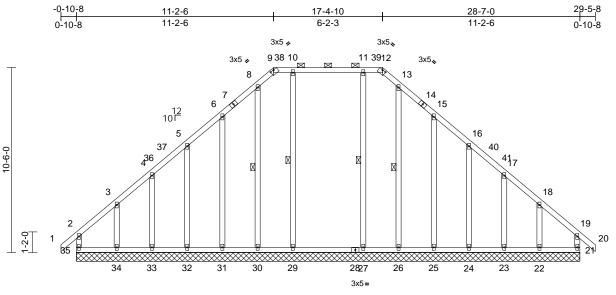

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	A04	Piggyback Base	6	1	Job Reference (optional)	172269963

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:41:56 ID:BtCsPuHghpnd4QiqYaG?fDzuo4?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPH1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)



818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	B01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	172269964

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:41:56 ID:0l2i579nHROBGkMjOnZQiuzuo4A-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

28-7-0	
--------	--

Scale = 1:65.4 Plate Offsets (X, Y): [9:0-2-8,0-0-3], [12:0-2-8,0-0-3]

	(7, 1): [8:8 2 8,8 8 8];	[12:0 2 0;0 0 0]			-							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MR	0.24 0.13 0.25	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 21	n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 218 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she	athing directly applied cept end verticals, an I-0 max.): 9-12.		3-4=-127/123, 4-5 6-8=-166/295, 8-5 10-11=-136/263, 12-13=-136/252, 15-16=-122/202, 17-18=-97/96, 18 19-21=-167/72 34-35=-122/141,	5=-123/15 9=-136/25 11-12=-1 13-15=-1 16-17=-1 -19=-154 33-34=-1	55, 5-6=-123/2 52, 9-10=-136/ 36/263, 66/295, 00/140, /139, 19-20=0 22/141,	263,	 Pla DC Cs 5) Ur de 6) Th loa ov 	ate DOL= DL=1.15) S=1.00; C hbalanced ssign. his truss h ad of 12.0 rerhangs	=1.15); ; Is=1.(it=1.10 d snow has bee) psf or non-co	Pf=20.0 psf (Lurr D; Rough Cat B; F loads have been en designed for g 1.00 times flat ro ncurrent with oth	
BOT CHORD WEBS REACTIONS	Rigid ceiling directly bracing. 1 Row at midpt (size) 21=28-7-(24=28-7-(7-0, 7-0,	32-33=-122/141, 30-31=-122/141, 27-29=-122/141, 25-26=-122/141, 23-24=-122/141, 21-22=-122/141	29-30=-1 26-27=-1 24-25=-1 22-23=-1	22/141, 22/141, 22/141, 22/141,		8) All 9) Ga 10) Tr bra	l plates a able requ uss to be aced aga	re 2x4 ires co fully sl inst lat	MT20 unless oth ntinuous bottom heathed from one	
	31=28-7-(34=28-7-(Max Horiz 35=-262 (Max Uplift 21=-83 (L 23=-49 (L	0, 32=28-7-0, 33=28-7 0, 35=28-7-0 LC 12)	5),), NOTES	10-29=-315/64, 8 5-32=-199/96, 4-3 11-27=-315/57, 1 15-25=-219/125, 17-23=-161/84, 1	33=-159/8 3-26=-15 16-24=-1 8-22=-16	85, 3-34=-173/ 5/4, 99/96, 4/151	(155,	ch 13) * 1 on 3-	ord live lo This truss the botto 06-00 tall	bad no has be om cho by 2-0	een designed for ord in all areas wh 00-00 wide will fit	any other live loads. a live load of 20.0psf ere a rectangle between the bottom
FORCES	29=-23 (L 32=-77 (L 34=-177 (L 23=198 (l 25=266 (l 25=266 (l 27=417 (l 30=194 (l 32=255 (l	C 11), 31=-98 (LC 14 C 14), 33=-46 (LC 14 LC 14), 35=-114 (LC C 51), 22=269 (LC 3 LC 53), 24=253 (LC 5 LC 53), 26=189 (LC 5 LC 53), 29=420 (LC 5 LC 57), 31=264 (LC 5 LC 51), 33=195 (LC 5 LC 51), 35=245 (LC 5	1) Unbalanc), 1) this desig 10) 2) Wind: AS 11, Vasd=10 Vasd=5 13, II; Exp B; S 5), and C-C 6 6), to 8-2-6, 1 11, left and ri 1 3) exposed; reactions	CE 7-16; Vult=130m 3mph; TCDL=6.0psf Enclosed; MWFRS Corner(3E) -0-10-8 t Corner(3E) 26-3-8 ght exposed ; end vc C-C for members an shown; Lumber DO	ph (3-sec BCDL=6 (envelope o 2-3-8, E 20-3-8, E to 29-5-8 ertical left d forces	cond gust) 5.0psf; h=25ft; b) exterior zon Exterior(2N) 2- xterior(2N) 20 zone; cantilev and right & MWFRS for	Cat. e 3-8 -3-8 ver		4	ø	er members, with H CA SEA 0363	L
IUNCES	Tension	ipression/inidanniUlli	only. For see Stand) signed for wind loads studs exposed to w dard Industry Gable	ind (norm End Deta	al to the face)	, ole,			in the second		EER. X

or consult qualified building designer as per ANSI/TPI 1.

March 26,2025

TRENCO AMITEK Atfiliate

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, recetion and bracing of trusses and truss systems, see **ANSI/TP1 Quility Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	B01	Piggyback Base Supported Gable		1 Job Reference (optional)		172269964

- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 114 lb uplift at joint 35, 83 lb uplift at joint 21, 23 lb uplift at joint 29, 98 lb uplift at joint 31, 77 lb uplift at joint 32, 46 lb uplift at joint 33, 177 lb uplift at joint 34, 17 lb uplift at joint 3 uplift at joint 25, 76 lb uplift at joint 24, 49 lb uplift at joint 23 and 169 lb uplift at joint 22.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run; 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:41:56 ID:0l2i579nHROBGkMjOnZQiuzuo4A-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	B02	Piggyback Base	1	1	Job Reference (optional)	172269965

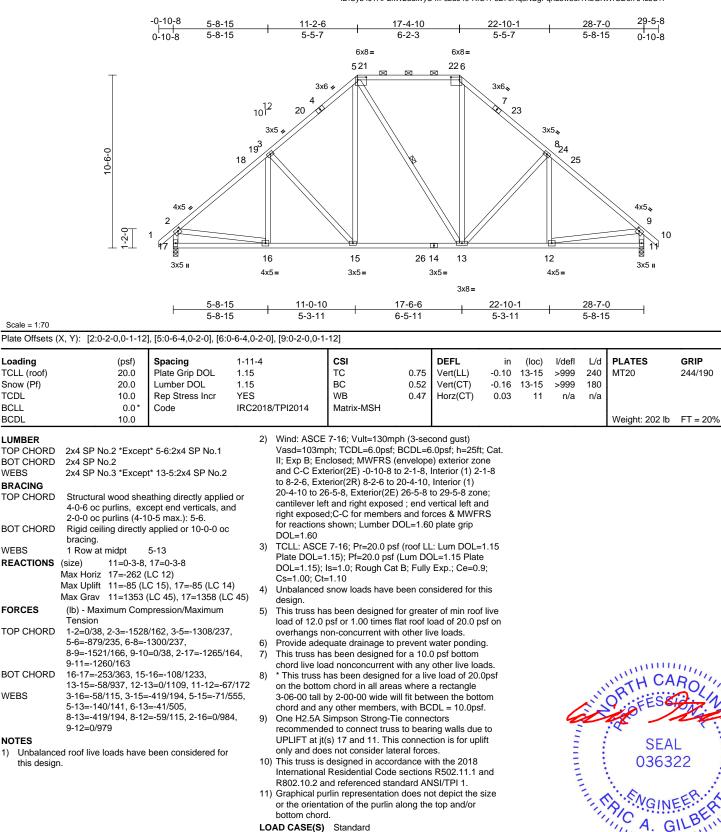
TCDL

BCLL

BCDL

WEBS

WEBS


WEBS

NOTES

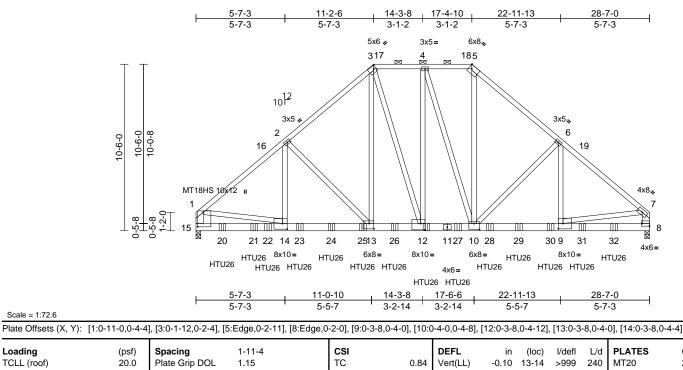
1)

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:41:56 ID:Uyb4JTAP2kW2uuxvyU4fF6zuo49-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road


Edenton, NC 27932

mmm March 26,2025 VIIIIIIIIIIII

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	B03	Piggyback Base Girder	1	4	Job Reference (optional)	172269966

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:41:56 ID:UD7WtHN32zfeQVkASZueRhzuo3u-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 NO IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.84 0.42 0.83	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.20 0.04		l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 995 lb	GRIP 244/190 244/190 FT = 20%
	14-1,9-7,10-4,12-3:2 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing.	et* 15-1,8-7:2x6 SP Ne 2x4 SP No.2 athing directly applied cept end verticals, an I-0 max.): 3-5. applied or 10-0-0 oc 15=0-3-8 LC 55) C 13), 15=-483 (LC 1	2) 2) 2) 3)	(0.131"x3") r Top chords c oc, 2x6 - 2 rc Bottom chord staggered at Web connec Attach BC w, center of the All loads are except if not CASE(S) sed provided to c unless other	be connected tog aails as follows: connected as follow ws staggered at C ds connected as for 0-4-0 oc. ted as follows: 2x4 / 1/2" diam. bolts (member w/washe considered equall ed as front (F) or b titon. Ply to ply cool listribute only load wise indicated. roof live loads hav	ws: 2x4 I-9-0 oc. Illows: 2 I - 1 row ASTM A rs at 4-0 y applie ack (B) nnection s noted	1 row at 0-9- x6 - 3 rows at 0-9-0 oc. -307) in the -0 oc. d to all plies, face in the LC s have been as (F) or (B),	DAD	recc UPI doe 12) LG ⁻ recc UPI doe 13) This Inte R80 14) Gra or ti bott 15) Use	ommence LIFT at j as not co T4-SDS: commence LIFT at j as not co s truss is ernationa 02.10.2 a aphical p he orien tom cholo e Simpso	led to c t(s) 15. nsider 3 Simp led to c t(s) 8. nsider s desig and ref urlin re tation c rd. on Stro	This connection lateral forces. son Strong-Tie cc connect truss to b This connection in lateral forces. ned in accordance dential Code sect erenced standare opresentation doe of the purlin along ng-Tie HTU26 (1	bearing walls due to is for uplift only and onnectors bearing walls due to s for uplift only and ce with the 2018 tions R502.11.1 and d ANSI/TPI 1. es not depict the size g the top and/or
FORCES	36) (Ib) - Maximum Com Tension	pression/Maximum	4)	Vasd=103m	7-16; Vult=130mp oh; TCDL=6.0psf; closed; MWFRS (6	BCDL=6	.0psf; h=25ft;		con	nect tru	ss(es)	8-0 from the left e to back face of be	
TOP CHORD	1-2=-14548/492, 2-3 3-4=-8886/445, 4-5= 5-6=-11404/592, 6-7	-8505/507,		cantilever lef	t and right expose d; Lumber DOL=1.	d;end،	ertical left an	nd	17) LG	T4 Hurri truss.	cane ti	es must have fou	r studs in line below
BOT CHORD	1-15=-11013/384, 7- 14-15=-324/2091, 13 12-13=-311/8647, 10 9-10=-470/10409, 8-	-8=-10384/553 3-14=-422/11094, 0-12=-334/8886,	5)	Plate DOL=1 DOL=1.15);	7-16; Pr=20.0 psf .15); Pf=20.0 psf ls=1.0; Rough Cat	Lum DC	L=1.15 Plate	9	LOAD	SASE(5) Star	OR EESS	ROLATION
WEBS	3-13=-139/6159, 5-1 1-14=-183/9298, 7-9 2-13=-3323/271, 2-1 6-10=-2792/385, 6-9	0=-314/6846, 9=-365/8955, 14=-58/3864,	6) 7) 8) 275 0)	design. Provide adeo All plates are	snow loads have b quate drainage to p MT20 plates unle s been designed f	orevent ss other	water ponding wise indicate	g.		4		SEA	• –
NOTES		o,	5)	chord live loa) * This truss h on the bottor 3-06-00 tall b	is been designed i ad nonconcurrent has been designed n chord in all area by 2-00-00 wide wi hy other members.	with any I for a liv s where Il fit betv	other live loa e load of 20.0 a rectangle	Opsf		110 m	A A A A A A A A A A A A A A A A A A A	SEA 0363 SCA. G March	FERIX

Continued on page 2

Scale = 1:72.6

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

	Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
	25040189	B03	Piggyback Base Girder	1	4	Job Reference (optional)	172269966
(Carter Components (Sanford, NC	c), Sanford, NC - 27332,	Run: 8.73 S Feb 19 2	2025 Print: 8.	730 S Feb 1	9 2025 MiTek Industries, Inc. Tue Mar 25 10:41:56	Page: 2

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

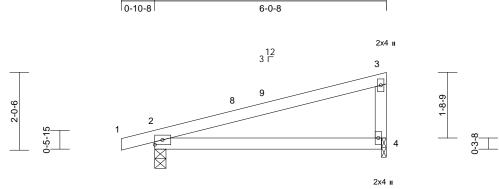
Vert: 1-3=-58, 3-5=-58, 5-7=-58, 8-15=-19 Concentrated Loads (lb)

- Vert: 12=-1643 (B), 20=-1542 (B), 21=-1542 (B),
- 22=-1643 (B), 22=-1643 (B), 24=-1643 (B), 25=-1643 (B), 25=-1643 (B), 25=-1643 (B), 27=-1542 (B), 28=-1542 (B), 29=-1542 (B), 30=-1542 (B), 31=-1542 (B), 32=-1542 (B), 32

(B)

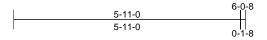
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	C01	Monopitch	9	1	Job Reference (optional)	172269967


6-0-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

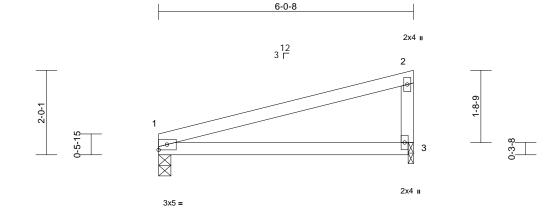
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:41:57 ID:B?wkH7GN3P?6eZhE6U?4VxzuWZL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



3x5 =

-0-10-8

Scale = 1:30.1


Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI201	CSI TC BC WB 4 Matrix-MP	0.75 0.50 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.15 0.02	(loc) 4-7 4-7 2	l/defl >894 >474 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 BRACING TOP CHORD Structural wood shea 6-0-0 oc purlins, exc BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 2=0-3-8, 4 Max Horiz 2=66 (LC Max Uplift 2=-68 (LC Max Uplift 2=-68 (LC Max Uplift 2=-68 (LC Max Grav 2=390 (LC) FORCES (lb) - Maximum Com Tension TOP CHORD 1-2=0/18, 2-3=-119/5 BOT CHORD 2-4=-86/118 NOTES 1) Wind: ASCE 7-16; Vult=130mph Vasd=103mph; TCDL=6.0psf; BC II; Exp B; Enclosed; MWFRS (en and C-C Exterior(2E) 2-10-12 cantilever left and right exposed; C-C for members a for reactions shown; Lumber DOI DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (L DOL=1.15); Is=1.0; Rough Cat B Cs=1.00; Ct=1.10 3) Unbalanced snow loads have be design. 4) This truss has been designed for load of 12.0 psf or 1.00 times flat overhangs non-concurrent with or 5) This truss has been designed for chord live load nonconcurrent with	sept end verticals. applied or 10-0-0 oc =0-1-8 13) 10), 4=-41 (LC 14) 21), 4=304 (LC 21) pression/Maximum 51, 3-4=-219/163 (3-second gust) CDL=6.0psf; h=25ft; (velope) exterior zone >-1-8, Interior (1) 2-1- to 5-10-12 zone; ; end vertical left and and forces & MWFRS L=1.60 plate grip roof LL: Lum DOL=1.15 Plate ; Fully Exp.; Ce=0.9; en considered for this greater of min roof I roof load of 20.0 psf there live loads. a 10.0 psf bottom	con the 3-06-0 chord 7) Bearin dor 8) Provid bearin 9) One H recom UPLIF and do 10) This tr Interna R802.* LOAD CA: 2 8 5 15 s ive on	russ has been designe bottom chord in all area o tall by 2-00-00 wide v and any other members g at joint(s) 4 considers NNSI/TPI 1 angle to gra er should verify capacit e mechanical connectic g plate at joint(s) 4. 2.5A Simpson Strong-T mended to connect trus es not consider lateral uss is designed in acco tional Residential Code 0.2 and referenced sta SE(S) Standard	as where vill fit betw s. parallel fi in formula y of bear n (by oth The conne- s to bear s to bear s to bear s to bear s to bear s to bear s to bear connectio forces. rdance w	a rectangle veen the botto to grain value a. Building ing surface. ers) of truss to ctors ing walls due n is for uplift of ith the 2018 5 R502.11.1 a	o to only		(W.111111)		ORTH CA	ROLUE ROLUE EER.KIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	C02	Monopitch	5	1	Job Reference (optional)	172269968

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:41:57 ID:NRvWGv3OCKKEiPwpSKZ4mYzuknr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:27.3

DEFL in (loc) l/defl L/d PLATES GRIP Vert(LL) -0.08 3-6 >854 240 MT20 244/190 Vert(CT) -0.15 3-6 >463 180 Horz(CT) 0.02 1 n/a n/a Weight: 20 lb FT = 20% FT = 20% FT = 20% FT = 20%
Horz(CT) 0.02 1 n/a n/a
Weight: 20 lb $ET = 20\%$
Wolgin: 2010 11 - 2070
to grain value a. Building ing surface. ers) of truss to ctors ing walls due to n is for uplift only ith the 2018 is R502.11.1 and JSI/TPI 1.
SEAL 036322 MGINEER A. GILBER
i

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

te (www.tpinst.org) 818 Soundside Road Edenton, NC 27932

GINEERING

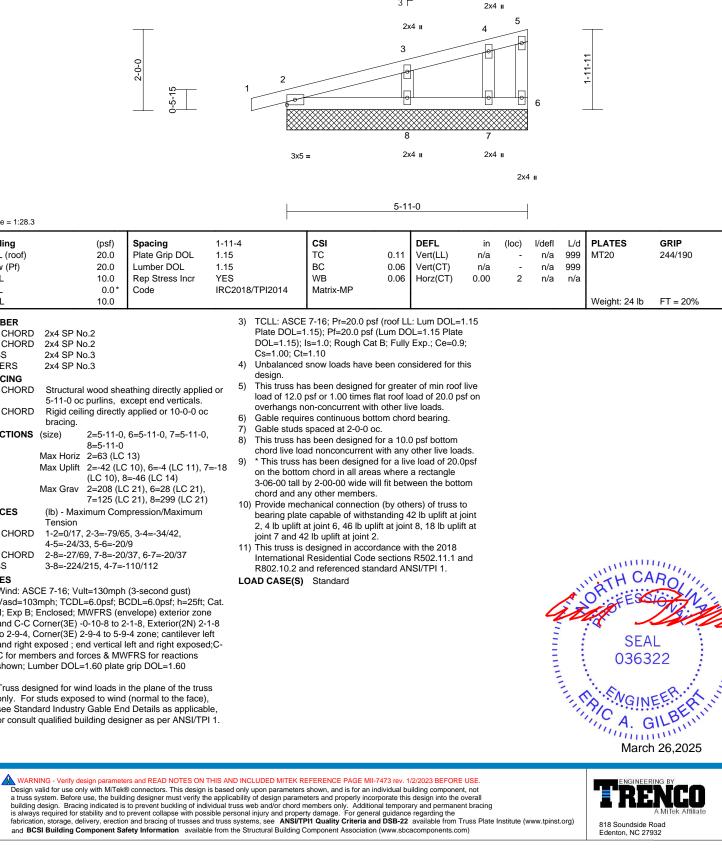
Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	C03	Monopitch Supported Gable	2	1	Job Reference (optional)	172269969

5-11-0

5-11-0

12 3 Г

-0-10-8


0-10-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:41:57 ID:YZUKun89W7GKeanXr32B9hzuo4B-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 🛛

Page: 1

Loading TCLL (roof) Snow (Pf)

Scale = 1:28.3

TCDL

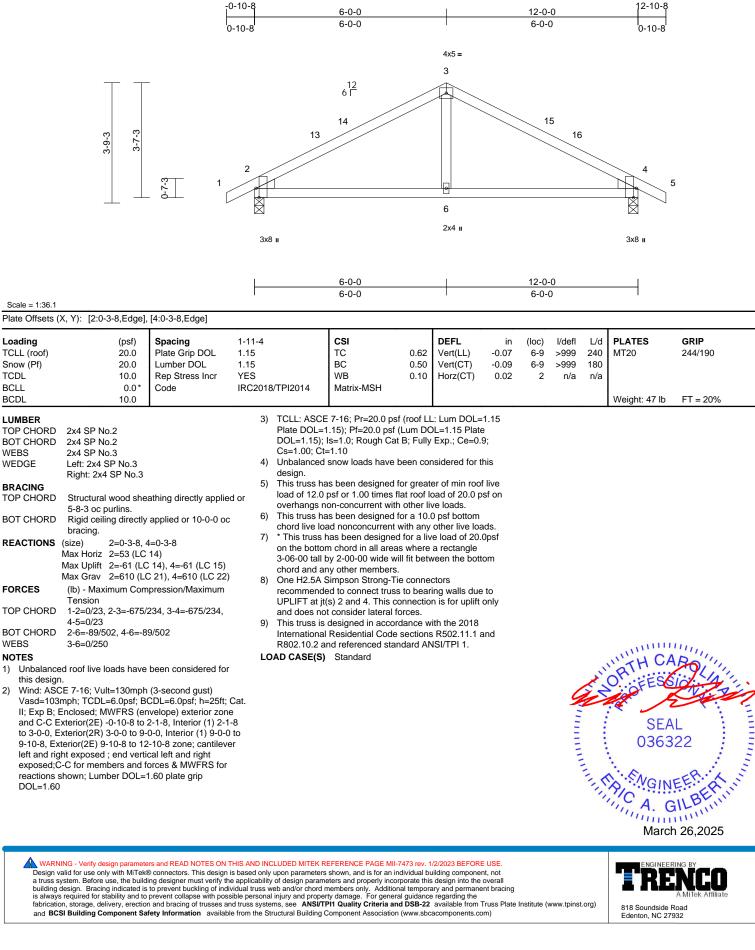
BCLL

BCDL

LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N	o.2 o.3
	5-11-0 oc	purlins, except end verticals.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(size)	2=5-11-0, 6=5-11-0, 7=5-11-0, 8=5-11-0
	Max Horiz	2=63 (LC 13)
	Max Uplift	2=-42 (LC 10), 6=-4 (LC 11), 7 (LC 10), 8=-46 (LC 14)
	Max Grav	2=208 (LC 21), 6=28 (LC 21), 7=125 (LC 21), 8=299 (LC 21)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD		2-3=-79/65, 3-4=-34/42, 3, 5-6=-20/9
BOT CHORD	2-8=-27/6	9, 7-8=-20/37, 6-7=-20/37
WEBS		/215, 4-7=-110/112

NOTES

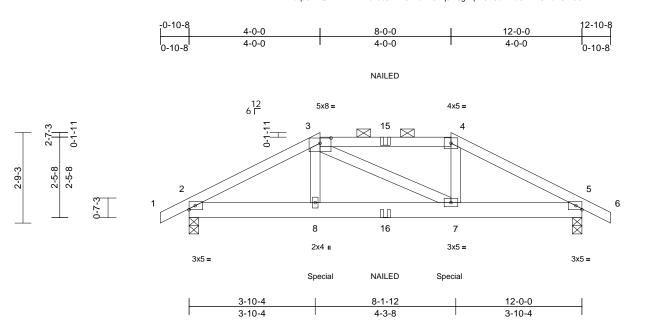
- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 2-9-4, Corner(3E) 2-9-4 to 5-9-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.


Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	D01	Common	3	1	Job Reference (optional)	172269970

1)

2)

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Tue Mar 25 10:41:57 ID:a2jSWEYUjSCTI823tNBKSGzuWIC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	D02	Hip Girder	1	2	Job Reference (optional)	172269971

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:41:57 ID:7FKdqaJxDQ1LKkrDf?ITkezuo3z-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:35.2 Plate Offsets (X, Y): [3:0-4-0,0-1-15]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.29	Vert(LL)	-0.02	7-8	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.22	Vert(CT)	-0.03	7-8	>999	180	-	
TCDL	10.0	Rep Stress Incr	NO		WB	0.08	Horz(CT)	0.01	5	n/a	n/a		
BCLL	0.0*	Code	IRC20 ²	8/TPI2014	Matrix-MSH		- (-)						
BCDL	10.0											Weight: 125 lb	FT = 20%
	2x6 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing.	ept -0 max.): 3-4. applied or 10-0-0 oc 5=0-3-8 : 13) C 12), 5=-134 (LC 1:	5 6 3) 7	Vasd=103mp II; Exp B; Encantilever lef right exposed TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0	7-16; Vult=130m; bh; TCDL=6.0psf; closed; MWFRS (t and right expose d; Lumber DOL=1 7-16; Pr=20.0 psf .15); Pf=20.0 psf is=1.0; Rough Cat =1.10 snow loads have i so been designed i psf or 1.00 times f on-concurrent with	BCDL=6 envelope ed; end \ .60 plate f (roof LL (Lum DC t B; Fully been cor for great	.0psf; h=25ft; exterior zor vertical left an grip DOL=1. .: Lum DOL=: DL=1.15 Plate Exp.; Ce=0.9 nsidered for the er of min roof pad of 20.0 ps	ne; id 60 1.15 9; nis live	pro lb c lb u of s oth LOAD (1) De In U	vided su lown and p at 7-1 such con ers. CASE(S ead + Sr crease= niform Lo Vert: 1-2 oncentra	fficient 155 lb 1-4 on nectior) Stan how (ba 1.15 bads (lt 3=-60, ted Los	up at 4-0-0, and bottom chord. T n device(s) is the ndard alanced): Lumber b/ft) 3-4=-60, 4-6=-60 ads (lb)	entrated load(s) 306 I 306 lb down and 55 The design/selection responsibility of r Increase=1.15, Plate
FORCES	(lb) - Maximum Com	pression/Maximum	8		uate drainage to			q .					
	Tension		9		s been designed			<u> </u>					
TOP CHORD	1-2=0/35, 2-3=-1631		6,	chord live loa	ad nonconcurrent	with any	other live loa	ds.					
	4-5=-1627/202, 5-6=		1		has been designed			Opsf					
BOT CHORD	2-8=-158/1405, 7-8= 5-7=-120/1401	-158/1380,			n chord in all area								
WEBS	3-8=-3/378, 3-7=-96	/80 /-712/301			by 2-00-00 wide will a wide will be wide with a second sec		veen the botto	om					
NOTES	5-6=-5/576, 5-7=-90	109, 4-7=12/391	1		Simpson Strong-Ti		otoro					, unin	unit.
 (0.131"x3" Top chords oc. Bottom chu staggered Web connu Except me 2) All loads a except ifn CASE(S) s provided tu unless oth 	to be connected toget) nails as follows: s connected as follows: ords connected as follows at 0-9-0 oc. ected as follows: 2x4 - ember 3-7 2x4 - 1 row a re considered equally oted as front (F) or ba section. Ply to ply conr o distribute only loads erwise indicated. ed roof live loads have h.	s: 2x4 - 1 row at 0-9- ows: 2x6 - 2 rows 1 row at 0-7-0 oc, at 0-9-0 oc. applied to all plies, ck (B) face in the LO tections have been noted as (F) or (B),	1 1 AD 1	UPLIFT at jt(and does not 2) This truss is International R802.10.2 at 3) Graphical pu or the orienta bottom chore 4) "NAILED" inc	ed to connect truss s) 2 and 5. This c t consider lateral f designed in accor Residential Code nd referenced star rlin representation ation of the purlin a l. dicates 3-10d (0.1 ") toe-nails per NE	onnectio forces. dance w sections ndard AN n does no along the 48"x3") o	n is for uplift o ith the 2018 SR502.11.1 a ISI/TPI 1. ot depict the s top and/or or 3-12d	only		A contraction		SEA 0363	22 EER A LUU

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust Plate Institute (www.tpinst.org)

818 Soundside Road Edenton, NC 27932 and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

March 26,2025

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	D03	Jack-Open	2	1	Job Reference (optional)	172269972

-0-10-8

0-10-8

1-10-15

1-10-15

12 6 Г

3

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:41:57 ID:3NwyhR7Wlp8U1QCKHMXydTzuo4C-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

1-6-10 1-8-10 2 0-7-3 3x8 I 1-10-15 Scale = 1:25.9 Plate Offsets (X, Y): [2:0-3-8,Edge] PLATES Spacing 2-0-0 CSI DEFL l/defl L/d GRIP (psf) in (loc) Plate Grip DOL 20.0 1.15 тс 0.08 Vert(LL) 0.00 4-7 >999 240 MT20 244/190 20.0 Lumber DOL 1.15 BC 0.04 Vert(CT) 0.00 4-7 >999 180 10.0 Rep Stress Incr WB 0.00 Horz(CT) YES 0.00 3 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MP 10.0 Weight: 9 lb FT = 20% 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. TOP CHORD 2x4 SP No 2 * This truss has been designed for a live load of 20.0psf BOT CHORD 2x4 SP No.2 6) on the bottom chord in all areas where a rectangle Left: 2x4 SP No.3 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. TOP CHORD Structural wood sheathing directly applied or All bearings are assumed to be User Defined . 7) 1-10-15 oc purlins. 8) Refer to girder(s) for truss to truss connections. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc 9) Provide mechanical connection (by others) of truss to bracing. bearing plate capable of withstanding 23 lb uplift at joint **REACTIONS** (size) 2=0-3-8, 3= Mechanical, 4= Mechanical 10) One H2.5A Simpson Strong-Tie connectors Max Horiz 2=49 (LC 14) recommended to connect truss to bearing walls due to Max Uplift 2=-18 (LC 14), 3=-23 (LC 14) UPLIFT at jt(s) 2. This connection is for uplift only and Max Grav 2=195 (LC 21), 3=58 (LC 21), 4=32 does not consider lateral forces. (LC 7) 11) This truss is designed in accordance with the 2018 (lb) - Maximum Compression/Maximum International Residential Code sections R502.11.1 and Tension R802.10.2 and referenced standard ANSI/TPI 1. TOP CHORD 1-2=0/34. 2-3=-30/26 LOAD CASE(S) Standard BOT CHORD 2-4=-30/29 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; CHILLING WAY Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 SEAL Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 036322 DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. G mmm March 26,2025 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

818 Soundside Road

Edenton, NC 27932

bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Loading

TCLL (roof)

Snow (Pf)

LUMBER

WEDGE

BRACING

FORCES

NOTES

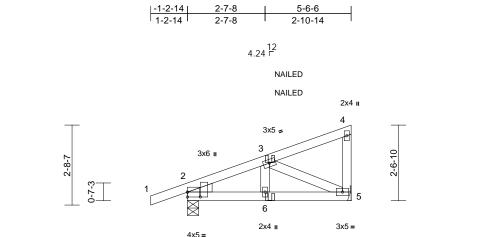
2)

3)

4)

desian.

TCDL


BCLL

BCDL

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	D04	Diagonal Hip Girder	2	1	Job Reference (optional)	2269973

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:41:57 ID:J6zMZWEAeaGCcpO3JIB3UNzuo43-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-7-8

2-7-8

NAILED NAILED

5-6-6

2-10-14

Scale = 1:38.9

Plate Offsets (X, Y): [2:0-1-15,0-5-4]

Plate Olisets ((X, Y): [2:0-1-15,0-5-4	·]										-		
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO RC2018/TP	키2014	CSI TC BC WB Matrix-MP	0.17 0.15 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01 0.00	(loc) 5-6 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%	
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=103 II; Exp B; I cantilever right expo: 2) TCLL: ASI Plate DOL DOL=1.15 Cs=1.00; (3) Unbalance design. 4) This truss load of 12	2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 5-6-6 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-4-9, § Max Horiz 2=93 (LC Max Uplift 2=-88 (LC Max Grav 2=429 (LC (lb) - Maximum Com Tension 1-2=0/37, 2-3=-391/ 4-5=-107/27 2-6=-60/347, 5-6=-6 3-6=0/104, 3-5=-380 CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; Bi Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E Ct=1.10 ed snow loads have be has been designed for	applied or 10-0-0 oc 5= Mechanical 11) 2 (a), 5=-50 (LC 12) C 19), 5=-292 (LC 19) pression/Maximum 56, 3-4=-53/27, 0/347 0/87 (3-second gust) CDL=6.0psf; h=25ft; Ca ivelope) exterior zone; ; end vertical left and 0 plate grip DOL=1.60 roof LL: Lum DOL=1.15 um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9; seen considered for this r greater of min roof live t roof load of 20.0 psf o	ch 6) * 7 on 3-(ch 7) All 8) Re 9) Pr be 5. 10) Or re, UF do 11) Th Int RE 12) "N (0, 13) In of LOAD t. 1) C	nord live loa This truss h n the bottom 06-00 tall b ord and an Il bearings a efer to girde rovide mech earing plate ne H2.5A S commende PLIFT at jt(s bes not cons his truss is of ternational 802.10.2 ar VAILED" ind 0.148"x3.25' the LOAD the truss a 0 CASE(S) Dead + Sno ncrease=1. Juiform Loa Vert: 1-4= Concentrate	w (balanced): Lum 15	vith any for a liv s where I fit betw User D uss conre (by oth anding 5 e conne to bear on is for Jance w sections dard AN (8"x3") of S guidli loads a (F) or ba	other live loa e load of 20.0 a rectangle veen the bott efined . uections. ers) of truss t 0 lb uplift at j ctors ng walls due uplift only ar ith the 2018 R502.11.1 a R502.11.1 a R502.11.1 a ctors. ISJ/TPI 1. or 2-12d nes. oplied to the to ck (B).	Opsf om to joint to nd and face				SEA 0363	EER A	Vanual 11
 cantilever right export 2) TCLL: ASI Plate DOL DOL=1.15 Cs=1.00; (3) Unbalance design. 4) This truss load of 12 	left and right exposed sed; Lumber DOL=1.6 CE 7-16; Pr=20.0 psf (=1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E Ct=1.10 ed snow loads have be has been designed foi .0 psf or 1.00 times fla	; end vertical left and 0 plate grip DOL=1.60 roof LL: Lum DOL=1.15 um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9; een considered for this r greater of min roof live t roof load of 20.0 psf o	L 5	Uniform Loa Vert: 1-4= Concentrate	ads (lb/ft) =-60, 5-7=-20 ed Loads (lb)					T TITLE		SEA 0363	EER A	1 annun an

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Information. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

March 26,2025

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	D05	Jack-Open	2	1	Job Reference (optional)	172269974

-0-10-8

0-10-8

1-10-15

1-10-15

Carter Components (Sanford, NC), Sanford, NC - 27332,

1-8-10

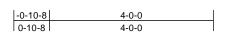
0-7-3

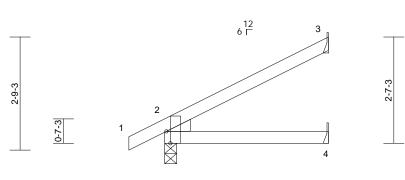
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:41:57 ID:3NwyhR7Wlp8U1QCKHMXydTzuo4C-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

12 6 Г 3 1-6-10 2 4 3x8 II 1-10-15

Scale = 1:25.9

Plate Offsets ((X, Y): [2:0-3-8,Edge]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ²	18/TPI2014	CSI TC BC WB Matrix-MP	0.08 0.04 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-7 4-7 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 9 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP No.2 Left: 2x4 SP No.3 Structural wood she 1-10-15 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 7 Mechanic Max Horiz 2=49 (LC Max Uplift 2=-18 (LC Max Uplift 2=-18 (LC Max Grav 2=195 (LC (LC 7) (lb) - Maximum Com Tension 1-2=0/34, 2-3=-30/2	applied or 10-0-0 or 3= Mechanical, 4= ial 14) 2 14), 3=-23 (LC 14) C 21), 3=58 (LC 21), apression/Maximum	7 8 9 1 4=32 1	 chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings Refer to gird Provide mec bearing plate 3. One H2.5A S recommende UPLIFT at jtt does not cor This truss is International 	as been designed ad nonconcurrent has been designe n chord in all area by 2-00-00 wide w y other members are assumed to b er(s) for truss to t hanical connectic e capable of withs Simpson Strong-T ed to connect trus (s) 2. This connect sider lateral force designed in acco Residential Code nd referenced sta Standard	with any d for a liv as where vill fit betw s. be User D russ conn- run (by oth standing 2 rie conne- s to bear stion is for es. rdance w e sections	other live load e load of 20. a rectangle ween the bott efined . tections. ers) of truss i 3 lb uplift at j ctors ing walls due uplift only at ith the 2018 i R502.11.1 a	0psf om to joint to nd					
 Vasd=103 II; Exp B; and C-C E exposed ; members Lumber D 2) TCLL: AS Plate DOI DOL=1.15 Cs=1.00; 3) Unbalanco design. 4) This truss load of 12 	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed; MWFRS (er Exterior(2E) zone; cant end vertical left and ri, and forces & MWFRS IOL=1.60 plate grip DC CE 7-16; Pr=20.0 psf (L 5); Is=1.0; Rough Cat E Ct=1.10 ed snow loads have be has been designed fo 1.0 psf or 1.00 times fla s non-concurrent with o	CDL=6.0psf; h=25ft; ivelope) exterior zon ilever left and right ght exposed;C-C for for reactions shown; DL=1.60 roof LL: Lum DOL=1 um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9 even considered for th r greater of min roof t roof load of 20.0 ps	e ; .15 ; iis live									SEA 0363	EER ER III




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	D06	Jack-Open	2	1	Job Reference (optional)	172269975

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:41:57 ID:f3mFdEIJS7vUiaH15InEBQzuo4_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x8 II

4-0-0	

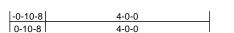
Scale = 1:28.2

Plate Offsets (X, Y): [2:0-3-8,Edge]

	() [; -3-1	-											
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.31	Vert(LL)	-0.02	4-7	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.25	Vert(CT)	-0.03	4-7	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.01	2	n/a	n/a		
BCLL	0.0*	Code	IRC20	18/TPI2014	Matrix-MP								
BCDL	10.0					-						Weight: 15 lb	FT = 20%
LUMBER			5) This truss ha	as been designed	d for a 10.	0 psf bottom						
TOP CHORD	2x4 SP No.2			chord live lo	ad nonconcurren	t with any	other live loa	ads.					
BOT CHORD	2x4 SP No.2		6) * This truss I	has been designe	ed for a liv	e load of 20.	.0psf					
WEDGE	Left: 2x4 SP No.3				m chord in all are								
BRACING					by 2-00-00 wide \		veen the bott	tom					
TOP CHORD	 Structural wood she 4-0-0 oc purlins. 	athing directly appli	ed or 7		ny other member are assumed to b		efined .						
BOT CHORD		applied or 10-0-0 o	c 8 9		er(s) for truss to hanical connection			to					
REACTIONS	0	3= Mechanical, 4=		bearing plate	e capable of with	standing 5	52 lb uplift at	joint					
REACTIONS	(Size) Z=0-5-0, Mechanic			3.									
	Max Horiz 2=86 (LC		1		Simpson Strong-								
	Max Uplift 2=-20 (LC				ed to connect true								
	Max Grav 2=319 (L0 4=72 (LC			does not cor	(s) 2. This conne	es.		na					
FORCES	(lb) - Maximum Corr	,	1	International	designed in acco Residential Cod	e sections	s R502.11.1 a	and					
TOP CHORD	Tension 1-2=0/37, 2-3=-65/5	5			nd referenced sta	andard AN	ISI/TPI 1.						
BOT CHORD	,	5	L	OAD CASE(S)	Standard								
NOTES	2-4=-03/71												
		(2 accord such)										OR FESS	1.1.1
	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B		Cat										in the second se
	Enclosed; MWFRS (er											IN TH UA	ROUL
	Exterior(2E) zone; cant										1	A	1 Alate
	; end vertical left and right									/	52	FESS	NICAS
	and forces & MWFRS									4			4.
	OOL=1.60 plate grip DC											.4	
	SCE 7-16; Pr=20.0 psf (-		SEA	1 1 5
	L=1.15); Pf=20.0 psf (L									=			• -
	5); Is=1.0; Rough Cat E	3; Fully Exp.; Ce=0.9	Э;							=		0363	22 : 3
Cs=1.00;	Ct=1.10									-	- C	.	1 2

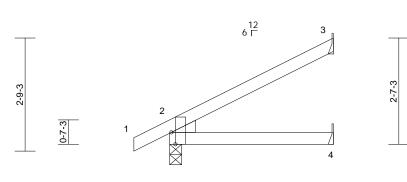
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

SEAL 036322 A. GILBERT


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCIO A MITek Affiliate 818 Soundside Road Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	D07	Jack-Open	1	1	Job Reference (optional)	172269976

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:41:58 ID:f3mFdEIJS7vUiaH15InEBQzuo4_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4-0-0

Scale = 1:28.2

Plate Offsets (X, Y): [2:0-3-8,Edge]

		1											
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.31	Vert(LL)	-0.02	4-7	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.25	Vert(CT)	-0.03	4-7	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.01	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018	3/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 15 lb	FT = 20%
LUMBER			5)	This truss ha	as been designed fo	or a 10.	0 psf bottom						
TOP CHORI	D 2x4 SP No.2				ad nonconcurrent v								
BOT CHORI			6)		nas been designed			.0psf					
WEDGE	Left: 2x4 SP No.3				n chord in all areas								
BRACING					by 2-00-00 wide wil	I fit bety	ween the bot	tom					
TOP CHORI	D Structural wood she 4-0-0 oc purlins.	athing directly applie	()	All bearings	ny other members. are assumed to be								
BOT CHORI	D Rigid ceiling directly	applied or 10-0-0 oc	8) 9)		er(s) for truss to tru hanical connection			to					
REACTION	bracing. S (size) 2-0-3-8 '	3= Mechanical, 4=	,	01	e capable of withsta	anding (52 lb uplift at	joint					
REACTION	Mechanic	,		3.									
	Max Horiz 2=86 (LC		10		Simpson Strong-Tie								
	Max Uplift 2=-20 (LC	C 14), 3=-52 (LC 14)			ed to connect truss (s) 2. This connecti								
	Max Grav 2=319 (L0		,		sider lateral forces		i upint only a	inu					
	4=72 (LC	7)	11		designed in accord		ith the 2018						
FORCES	(lb) - Maximum Corr	pression/Maximum			Residential Code			and					
	Tension	_		R802.10.2 a	nd referenced stan	dard Al	NSI/TPI 1.						
TOP CHORI		5	LC	AD CASE(S)	Standard								
BOT CHORI	D 2-4=-85/71												
NOTES												WITH CA	
	SCE 7-16; Vult=130mph		• •									minin	11111
	03mph; TCDL=6.0psf; B 8; Enclosed; MWFRS (er											WAH CA	Bolly
	Exterior(2E) zone; cant		e								N	R	C. SLIME
	; end vertical left and right										6.	UFESC	10 in the
	s and forces & MWFRS									4		the p	
	DOL=1.60 plate grip DC												
	SCE 7-16; Pr=20.0 psf (.15							-		SEA	1 : E
	DL=1.15); Pf=20.0 psf (L									=			• -
	15); Is=1.0; Rough Cat E	3; Fully Exp.; Ce=0.9;										0363	22 : E
); Ct=1.10										- B	1 .	1 2
 Unbalan design. 	iced snow loads have be	een considered for thi	IS									N. En	- Bix S
	s has been designed fo										3	S, GIN	EFR
	2.0 psf or 1.00 times fla		f on								1	CA -	BEIN
overhan	gs non-concurrent with o	other live loads.										11, A. C	alluni

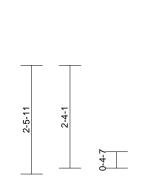
- is have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on 4) overhangs non-concurrent with other live loads.

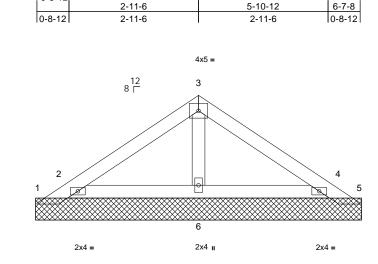
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Information. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

China China March 26,2025

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	PB01	Piggyback	24	1	Job Reference (optional)	172269977


-0-8-12


Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:41:58 ID:eN_rsXBYJSMw3bcYjbqbmmzuWVa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

- 5

5-10-12

Scale = 1:26.2

Scale = 1.20.2													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-MP	0.21 0.07 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
	6=7-5-0 Max Horiz 1=-54 (LC Max Uplift 1=-156 (L 4=-91 (LC Max Grav 1=70 (LC 4=421 (LC 6=180 (LC (lb) - Maximum Com Tension 1-2=-71/129, 2-3=-1	applied or 10-0-0 oc 2=7-5-0, 4=7-5-0, 5= C 12) C 21), 2=-99 (LC 14 C 15), 5=-154 (LC 22 14), 2=433 (LC 21), C 22), 5=49 (LC 15), C 21) appression/Maximum	5) 7-5-0, 6) 7) 8) 9 9)	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall h chord and ar Provide mec bearing plate	eed for wind loads i ids exposed to wind d Industry Gable E ialified building des 7-16; Pr=20.0 psf .15); Pf=20.0 psf (Is=1.0; Rough Cat =1.10 snow loads have b es continuous bott spaced at 4-0-0 oc is been designed f ad nonconcurrent has been designed f ad nonconcurrent has been designed in chord in all areas by 2-00-00 wide wi by other members. hanical connectior e capable of withst at joint 4, 156 lb U	Id (norm nd Deta signer as (roof LL (Lum DC B; Fully been cor om chor c. or a 10.0 with any I for a liv s where II fit betw h (by oth anding 9	al to the face ils as applical s per ANSI/TF JL=1.15 Plate Exp.; Ce=0.9 asidered for th d bearing. D psf bottom other live loa e load of 20.0 a rectangle ween the botto ers) of truss t 19 lb uplift at j), ble, Pl 1. 1.15 9); his ds. 0psf om o					
BOT CHORD WEBS	4-5=-47/117 2-6=-49/43, 4-6=-49 3-6=-94/22	/43	11)		Ib uplift at joint 2 a designed in accord		. ,	4.				mun	11111

NOTES

 Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-3-5 to 3-3-5, Exterior(2R) 3-3-5 to 4-1-11, Exterior(2E) 4-1-11 to 7-1-11 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	PB02	Piggyback	2	1	Job Reference (optional)	172269978

2-11-6

2-11-6

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:41:58 ID:2_C3qgwvPmnNsYGTtLhmGAzunSR-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

5-10-12

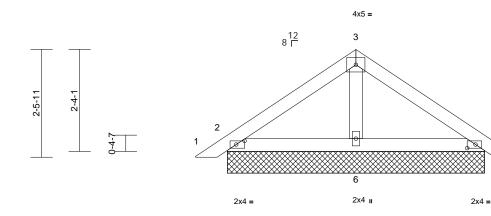
2-11-6

6-7-8

0-8-12

4

5



12 8 Г 3

5-10-12

March 26,2025

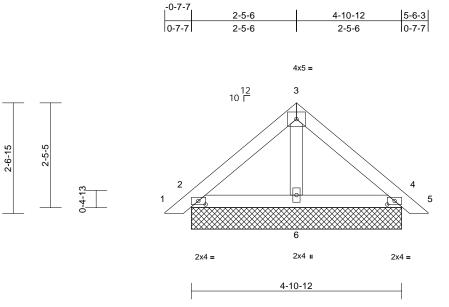
818 Soundside Road Edenton, NC 27932

-0-8-12

0-8-12

Scale = 1:26.4

Plate Offsets (X, Y): [2:0-2-5,0-1-0], [4:0-2-5,0-1-0]


Plate Olisets	(X, Y): [2:0-2-5,0-1-0],	[4:0-2-5,0-1-0]			-									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		/TPI2014	CSI TC BC WB Matrix-MP	0.16 0.17 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a 0.00	(loc) - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES	 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=5-10-12 Max Horiz 2=-54 (LC Max Uplift 2=-31 (LC Max Grav 2=232 (LC 6=212 (LC (lb) - Maximum Com Tension 1-2=0/25, 2-3=-123/ 4-5=0/25 	2, 4=5-10-12, 6=5-10- 2, 12) 2, 14), 4=-38 (LC 15) 2, 21), 4=232 (LC 22), 2, 21) apression/Maximum 78, 3-4=-123/78,	5) or 6) 12 7) 8) 9) 10) 11)	Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 j overhangs ni Gable requirin Gable studs This truss ha chord live loa * This truss ha chord dive loa * This truss ha chord and ar N/A	snow loads have s been designed psf or 1.00 times on-concurrent wi es continuous bo spaced at 2-0-0 is been designed ad nonconcurrent has been designed n chord in all are by 2-00-00 wide w by other members	f (Lum DC at B; Fully been cor I for greate flat roof le th other lin wittom chor oc. I for a 10.0 t with any ed for a liv as where will fit betw s.	DL=1.15 Plate Exp.; Ce=0.9 Isidered for the er of min roof bad of 20.0 ps re loads. d bearing. D psf bottom other live loa e load of 20.0 a rectangle reen the bottom	e); live sf on ds. Dpsf					1117.	
 Unbalanc this desig Wind: AS Vasd=103 II; Exp B; and C-C I to 4-1-11, left and ri exposed; reactions DOL=1.6(Truss des only. For see Stand 	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Bu Enclosed; MWFRS (er Exterior(2E) 0-3-5 to 3 , Exterior(2E) 4-1-11 to ght exposed ; end vertii C-C for members and fr shown; Lumber DOL= ²	(3-second gust) CDL=6.0psf; h=25ft; C ivelope) exterior zone 3-5, Exterior(2R) 3-3-5 7-1-11 zone; cantileve cal left and right orces & MWFRS for 1.60 plate grip the plane of the truss (normal to the face), d Details as applicable	13) Sat. 5 LO Per	International R802.10.2 ar See Standar Detail for Co	Residential Code nd referenced stand d Industry Piggyt nnection to base fied building desi	e sections andard AN back Trus truss as a	R502.11.1 a ISI/TPI 1. s Connection			1	v	SEA 0363	4	M CANDULLIE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	PB03	Piggyback	1	1	Job Reference (optional)	172269979

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:41:58 ID:kdFleFmz45WWO4Jn9eTAWxzulmC-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:26.8

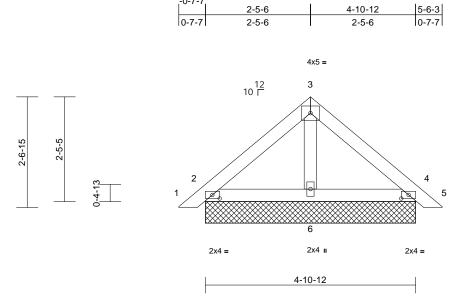
Plate Offsets (X, Y): [2:0-2-1,0-1-0], [4:0-2-1,0-1-0]

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL1.1Lumber DOL1.1Rep Stress IncrYE	5	CSI TC BC WB Matrix-MP	0.10 0.11 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
6-0-0 oc purlins. BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 2=4-10-12 Max Horiz 2=-54 (LC) Max Uplift 2=-2194 (LC) Max Grav 2=194 (LC) 6=159 (LC) FORCES (lb) - Maximum Comp	 4=4-10-12, 6=4-10-12 12) 14), 4=-30 (LC 15) 21), 4=194 (LC 22), 21) pression/Maximum 73, 3-4=-113/73, 4-5=0/24 7 been considered for (3-second gust) CDL=6.0psf; h=25ft; Cat. velope) exterior zone lever left and right ht exposed; C-C for for reactions shown; L=1.60 the plane of the truss (normal to the face), d Details as applicable, 	 Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced design. This truss ha load of 12.0 overhangs n Gable requir Gable studs This truss ha chord live loa * This truss fa chord live loa * This truss fa chord and ar 10) * This truss is international R802.10.2 a See Standar Detail for Co 	snow loads have l s been designed f psf or 1.00 times f pn-concurrent with es continuous bott spaced at 2-0-0 o is been designed in ad nonconcurrent has been designed in chord in all area by 2-00-00 wide w by other members designed in accor Residential Code in dreferenced star d Industry Piggyba nnection to base t fied building desig	(Lum DC B; Fully been cor for great lat roof la other lit com chor c. for a 10. with any d for a liv s where ill fit betw dance w sections ndard AN ack Trus russ as a	DL=1.15 Plate Exp.; Ce=0.9 Insidered for the er of min roof pad of 20.0 prove loads. d bearing. D psf bottom other live loa e load of 20.0 e load of 20.0 psf bottom other live loa e load of 20.0 e load of 20.0 psf bottom other live loa e load of 20.0 e load of 20.0 psf bottom other live loa e load of 20.0 psf bottom e load of 20.0 psf bo	e); live sf on ds. Dpsf om				SEA 0363	EER A U

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com) March 26,2025

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	PB04	Piggyback	1	1	Job Reference (optional)	172269980

2-5-6


-0-7-7

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:41:58 ID:kdFleFmz45WWO4Jn9eTAWxzulmC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

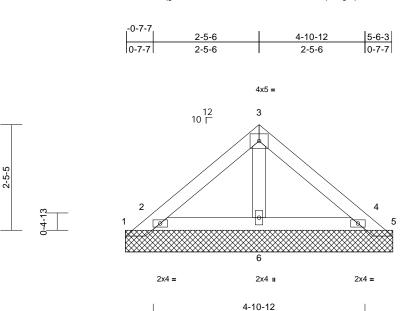
4-10-12

Scale = 1:26.8

Plate Offsets (X, Y): [2:0-2-1,0-1-0], [4:0-2-1,0-1-0]

	(X, T). [2.0-2-1,0-1-0],	[4.0-2-1,0-1-0]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/	TPI2014	CSI TC BC WB Matrix-MP	0.10 0.11 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 cc purlins. Rigid ceiling directly bracing. (size) 2=4-10-12 Max Horiz 2=-54 (LC Max Uplift 2=-23 (LC Max Grav 2=194 (LC 6=159 (LC (lb) - Maximum Com Tension 1-2=0/24, 2-3=-113/	: 14), 4=-30 (LC 15) C 21), 4=194 (LC 22), C 21) pression/Maximum 73, 3-4=-113/73, 4-5=	5) for 6) 12 7) 8) 9) 10)	Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 µ overhangs n Gable requim Gable studs This truss ha chord live loa * This truss h on the bottor on the bottor s-06-00 tall b chord and ar	7-16; Pr=20.0 p .15); Pf=20.0 ps s=1.0; Rough Ci .10 snow loads have s been designed obs or 1.00 times on-concurrent wi as continuous bo spaced at 4-0-0 s been designed d nonconcurren has been designed n chord in all are by 2-00-00 wide with the member	f (Lum DC at B; Fully e been cor d for great filat roof li th other li bttom chor oc. d for a 10. t with any ed for a liv as where will fit betw	DL=1.15 Plate Exp.; Ce=0.5 nsidered for the er of min roof pad of 20.0 ps ve loads. d bearing. D psf bottom other live loa e load of 20.0 a rectangle); live sf on ds. Dpsf					
NOTES 1) Unbalanc this desig 2) Wind: AS: Vasd=103 II; Exp B; and C-C E exposed ; members Lumber D 3) Truss des only. For see Stance	ed roof live loads have	(3-second gust) CDL=6.0psf; h=25ft; C ivelope) exterior zone ilever left and right ght exposed;C-C for for reactions shown; L=1.60 the plane of the truss (normal to the face), d Details as applicable	13) Cat. LOA	International R802.10.2 ar See Standar Detail for Co	designed in accc Residential Cod nd referenced sta d Industry Piggyl nnection to base fied building desi Standard	e sections andard AN back Trus truss as a	R502.11.1 a SI/TPI 1. S Connection					SEA 0363	EEP A LU

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


March 26,2025

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	PB05	Piggyback	1	4	Job Reference (optional)	172269981

2-6-15

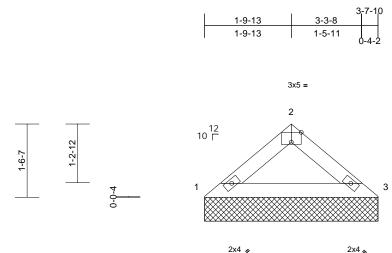
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:41:58 ID:2_C3qgwvPmnNsYGTiLhmGAzunSR-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:26.6

Scale = 1:26.6		i			· · · ·								
Loading	(psf)	Spacing	1-11-4		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.03	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.01	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 87 lb	FT = 20%
LUMBER			4)	Wind: ASCE	7-16; Vult=130mp	h (3-sec	cond aust)						
TOP CHORD	2x4 SP No.2		,		oh; TCDL=6.0psf; I			Cat.					
BOT CHORD				II; Exp B; En	closed; MWFRS (e	envelope	e) exterior zor	ne					
OTHERS	2x4 SP No.3			and C-C Ext	erior(2E) zone; car	ntilever l	eft and right						
BRACING					nd vertical left and								
TOP CHORD	Structural wood she	athing directly applie	ed or		d forces & MWFRS			;					
	6-0-0 oc purlins.	0 , 11			=1.60 plate grip D								
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	_C 5)		ed for wind loads i								
	bracing.				ds exposed to win								
REACTIONS	(size) 1=6-2-3, 2	2=6-2-3, 4=6-2-3, 5=	6-2-3,		d Industry Gable E alified building des								
	6=6-2-3		6)		7-16; Pr=20.0 psf								
	Max Horiz 1=54 (LC	13)	0)		1.15); Pf=20.0 psf (
	Max Uplift 1=-105 (L	C 25), 2=-92 (LC 14	·),		Is=1.0; Rough Cat								
		15), 5=-100 (LC 22		Cs=1.00; Ct		D, I uliy	Lxp., 06-0.3	,					
	Max Grav 1=71 (LC			,	snow loads have b	been cor	sidered for th	nis					
		C 22), 5=46 (LC 15),	• • • •	design.									
	6=148 (L0	,	8)	0	es continuous bott	om chor	d bearing.						
FORCES	(lb) - Maximum Com	pression/Maximum	9)		spaced at 4-0-0 oc		5						
	Tension		10) This truss ha	s been designed f	or a 10.0) psf bottom						
TOP CHORD	1-2=-78/117, 2-3=-1	00/61, 3-4=-100/61,			ad nonconcurrent v			ds.					
	4-5=-49/94	40	11) * This truss I	nas been designed	l for a liv	e load of 20.0)psf					
BOT CHORD	2-6=-33/48, 4-6=-33	/48			m chord in all areas								11.5
WEBS	3-6=-75/9				oy 2-00-00 wide wi		veen the botto	om				WITH CA	1111
NOTES					ny other members.							"TH UP	Dally
	to be connected toge		12	,	hanical connection		,				1	A	in Chile
	s connected with 10d	(0.131"x3") nails as			capable of withst						52	ORTH CA	With sin
	4 - 1 row at 0-9-0 oc.			· ·	t at joint 4, 105 lb u		,			4	V	UP &	Sin 1
	ords connected with 1	ud (0.131"x3") nails	as	at joint 5, 92	lb uplift at joint 2 a	ind 78 lb	uplift at joint	4.					
	4 - 1 row at 0-9-0 oc.	and Bank to all all			deelaned in e		ith the 2010			-		SEA	1 : =
∠) All loads a	re considered equally	applied to all plies,	13) I NIS TRUSS IS	designed in accord	uance w	im the 2018				:	JLA	- : :

- All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof
25040189	V03	Valley	1	1	I72269982 Job Reference (optional)

Run: 8,73 E Nov 16 2023 Print: 8,730 E Nov 16 2023 MiTek Industries, Inc. Wed Mar 26 14:48:08 ID:y89TWpA1p2evV2W6WCbunJzuo48-dtRksAky41RsGfHoEZApK?BndUrR6E4yo4k96rzXBz6

Page: 1

2x4 💊

3-7-10

Scale = 1:24.1

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.10 0.08 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 Structural wood she 3-7-10 oc purlins. Rigid ceiling directly bracing.	applied or 10-0-0 o 7-10, 3=145/3-7-10 11) C 14), 3=-12 (LC 15) C 20), 3=171 (LC 21 ax. Ten All forces	chord live ld 9) * This truss on the botta 3-06-00 tall chord and a c 10) Provide me bearing plat 1 and 12 lb 11) This truss is Internationa R802.10.2 a LOAD CASE(S	as been designed ad nonconcurrent has been designe m chord in all are by 2-00-00 wide v iny other members chanical connection e capable of withs uplift at joint 3. designed in acco l Residential Cod and referenced sta	t with any ed for a liv as where will fit betw s. on (by oth standing 1 ordance w e sections	other live loa e load of 20.1 a rectangle veen the both 2 lb uplift at j ith the 2018 \$ R502.11.1 a	Opsf om to joint					
this design 2) Wind: ASC Vasd=103 II; Exp B; I and C-C E exposed ;	ed roof live loads have n. CE 7-16; Vult=130mph imph; TCDL=6.0psf; B Enclosed; MWFRS (er sxterior(2E) zone; cant end vertical left and rig and forces & MWFRS	(3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zor ilever left and right ght exposed;C-C for	; Cat. ne								WHTH CA	ROL

- Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.

G

minin March 26,2025

SEAL

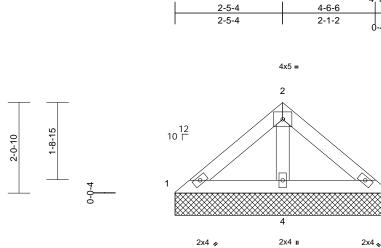
036322

VIIIIIIIIIII

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

VIIIIII


Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	V04	Valley	1	1	I72: Job Reference (optional)	2269983

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:41:58 ID:y89TWpA1p2evV2W6WCbunJzuo48-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-10-8

3

Page: 1

4-10-8

Scale = 1:26.1

		i										
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP		. ,						
BCDL	10.0										Weight: 17 lb	FT = 20%
	4-10-8 oc purlins. Rigid ceiling directly bracing. (size) 1=4-10-8, Max Horiz 1=-44 (LC Max Uplift 3=-7 (LC	3=4-10-8, 4=4-10-8 3 12) 15), 4=-34 (LC 14)	design. 6) Gable requ 7) Gable stud 8) This truss f chord live l 9) * This truss on the botto 3-06-00 tal chord and 10) Provide me bearing pla and 34 lb u	d snow loads have ires continuous bott s spaced at 4-0-0 o has been designed boad nonconcurrent has been designed by 2-00-00 wide w any other members ichanical connection te capable of withst plift at joint 4.	tom choi c. for a 10. with any d for a liv for a liv s where ill fit betv n (by oth canding 7	d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t ' lb uplift at joi	ds.)psf om o					
	Max Grav 1=88 (LC (LC 20)	20), 3=88 (LC 21), 4	11) 1115 (1055)	s designed in accor al Residential Code			nd					
FORCES	(lb) - Maximum Com	pression/Maximum	R802.10.2	and referenced star			ind ind					
TOP CHORD	Tension 1-2=-81/104, 2-3=-8	1/104	LOAD CASE(S) Standard								
BOT CHORD	1-4=-81/89, 3-4=-81											
WEBS	2-4=-184/98	103										
NOTES	2 4= 104/30											
	ed roof live loads have	haan appaidered for										
this design		been considered for										
 Wind: ASC Vasd=103r II; Exp B; E and C-C E exposed ; members a Lumber DC Truss desir 	CE 7-16; Vult=130mph imph; TCDL=6.0psf; B Enclosed; MWFRS (er Exterior(2E) zone; cant end vertical left and ri and forces & MWFRS OL=1.60 plate grip DC igned for wind loads in	CDL=6.0psf; h=25ft; ivelope) exterior zon ilever left and right ght exposed;C-C for for reactions shown; iL=1.60 the plane of the trus	e s						Contraction of the second seco		SEA	• –
see Standa or consult 4) TCLL: ASC Plate DOL	studs exposed to wind ard Industry Gable En qualified building desi CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L =1.10; Rough Cat E Ct=1.10	d Details as applicab gner as per ANSI/TP roof LL: Lum DOL=1 um DOL=1.15 Plate	le, l 1. .15						LINE.	A A A A A A A A A A A A A A A A A A A		EEREAL

March 26,2025

A. GI A. GIL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	V06	Valley	1	1	Job Reference (optional)	172269984

3-5-0

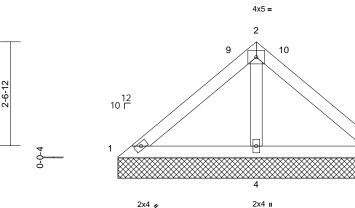
3-5-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

2-10-7

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:41:58 ID:y89TWpA1p2evV2W6WCbunJzuo48-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-5-14


3-0-14

6-10-0

3

2x4 💊

6-10-0

Scale = 1:28.5

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MP	0.22 0.23 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shee 6-10-0 oc purlins. Rigid ceiling directly bracing. (size) 1=6-10-0, Max Horiz 1=63 (LC Max Uplift 1=-10 (LC 4=-65 (LC (Max Grav 1=103 (LC (lb) - Maximum Com Tension 1-2=-87/204, 2-3=-8 1-4=-161/141, 3-4=- 2-4=-382/182	applied or 6-0-0 oc 3=6-10-0, 4=6-10-0 13) 2 21), 3=-10 (LC 20) 2 44) 2 20), 3=103 (LC 21 2 0) pression/Maximum 7/204	6) 7) 8)) 9) ,), 10] 11]	Plate DOL= DOL=1.15); Cs=1.00; Ct: Unbalanced design. Gable requir Gable studs This truss ha chord live lo: * This truss ha chord live lo: * This truss ha chord live lo: 3-06-00 tall I chord and ai) Provide mec bearing plate to the button 1, 10 lb uplif) This truss is International	snow loads have res continuous bo spaced at 4-0-0 as been designed ad nonconcurren has been designed m chord in all are by 2-00-00 wide by 2-00-00 wide hanical connecti e capable of with t at joint 3 and 65 designed in accor Residential Cod nd referenced st	sf (Lum DC at B; Fully e been cor octom chor oc. d for a 10.0 t with any ed for a liv ass where will fit bey rs. ion (by oth standing 1 5 lb uplift a ordance w le sections	DL=1.15 Plate Exp.; Ce=0.9 Isidered for the d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the bott ers) of truss t 0 lb uplift at j t joint 4. It the 2018 R502.11.1 a	e 9; his dds. 0psf om to joint					
 Unbalance this design Wind: ASC Vasd=103 	ed roof live loads have n. CE 7-16; Vult=130mph imph; TCDL=6.0psf; B0 Enclosed: MWERS (an	(3-second gust) CDL=6.0psf; h=25ft;	Cat.								and a	OPTH CA	BOJ II

- II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 3-10-5, Exterior(2E) 3-10-5 to 6-10-5 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

SEAL

036322

anninnin,

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	V07	Valley	1	1	Job Reference (optional)	172269985

3-7-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

Scale = 1:29.2 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

WFBS

NOTES

1)

2)

3)

TOP CHORD

BOT CHORD

this design

REACTIONS (size)

bracing.

Max Uplift

Max Grav

Tension

TCDL

BCLL

BCDL

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Tue Mar 25 10:41:58 ID:y89TWpA1p2evV2W6WCbunJzuo48-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-10-13

Page: 1

3-7-8 3-3-6 4x5 =2 9 10 3-0-8 2-8-12 10 Г 3 4 2x4 ı 3x5 🍫 3x5 💊 7-2-15 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) Spacing in (loc) 20.0 Plate Grip DOL 1.15 TC 0.26 Vert(LL) n/a n/a 999 MT20 244/190 20.0 1 15 BC Lumber DOL 0.27 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.09 Horiz(TL) 0.00 4 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MP 10.0 Weight: 27 lb FT = 20%TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 2x4 SP No.2 2x4 SP No.2 DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 2x4 SP No.3 Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 5) desian. Structural wood sheathing directly applied or Gable requires continuous bottom chord bearing. 6) 7-2-15 oc purlins. 7) Gable studs spaced at 4-0-0 oc. Rigid ceiling directly applied or 6-0-0 oc 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 1=7-2-15, 3=7-2-15, 4=7-2-15 9) Max Horiz 1=67 (LC 11) on the bottom chord in all areas where a rectangle 1=-17 (LC 21), 3=-17 (LC 20), 3-06-00 tall by 2-00-00 wide will fit between the bottom 4=-74 (LC 14) chord and any other members. 1=105 (LC 20), 3=105 (LC 21), 10) Provide mechanical connection (by others) of truss to 4=533 (LC 20) bearing plate capable of withstanding 17 lb uplift at joint (lb) - Maximum Compression/Maximum 1, 17 lb uplift at joint 3 and 74 lb uplift at joint 4. 11) This truss is designed in accordance with the 2018 1-2=-89/229, 2-3=-89/229 International Residential Code sections R502.11.1 and 1-4=-161/152, 3-4=-161/152 R802.10.2 and referenced standard ANSI/TPI 1. 2-4=-380/200 LOAD CASE(S) Standard Unbalanced roof live loads have been considered for ORT Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 WITTER CONTRACTOR to 4-3-4, Exterior(2E) 4-3-4 to 7-3-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-SEAL C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 036322 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. G mmm March 26,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	V08	Valley	1	1	Job Reference (optional)	172269986

4-1-8 4-1-8

10

Carter Components (Sanford, NC), Sanford, NC - 27332,

3-5-8

Run; 8,73 S Feb 19 2025 Print; 8,730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:41:58 ID:y89TWpA1p2evV2W6WCbunJzuo48-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11

2

7-10-13 3-9-6 4x5 =

8-2-15

3-1-13 12 10 Г 9 12 3 0-0-4 4 2x4 II 3x5 💊 3x5 🖌 8-2-15 0 DEEL 2-0-0 (100) I/dof GRIP 244/190 31 lb FT = 20% \cap CHILLING CONTRACT SEAL 036322

Scale = 1:30.9

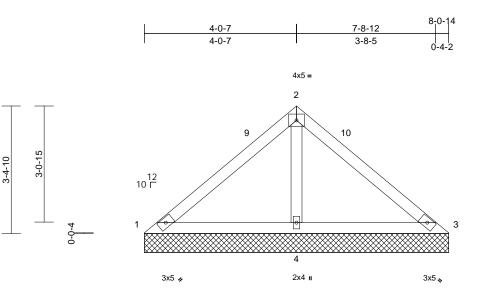
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MP	0.36 0.35 0.12	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 31
	8-2-15 oc purlins. Rigid ceiling directly bracing.	3=8-2-15, 4=8-2-15 5 10) 5 21), 3=-39 (LC 20), 5 14)	6 7 8 9	Plate DOL=1 DOL=1.15); Cs=1.00; Ct=1.00; Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss f on the bottor 3-06-00 tall t chord and ar 0) Provide mec	snow loads have es continuous bot spaced at 4-0-0 o is been designed ad nonconcurrent has been designed in chord in all area by 2-00-00 wide w y other members hanical connection	(Lum DC t B; Fully been cor tom chor c. for a 10.0 with any d for a liv s where ill fit betv n (by oth	DL=1.15 Plate Exp.; Ce=0.9 nsidered for t d bearing. 0 psf bottom other live loa re load of 20. a rectangle veen the bott ers) of truss	e 9; his dds. 0psf om to				
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-117/295, 2-3=- 1-4=-201/178, 3-4=- 2-4=-480/243	117/295		1, 39 lb uplift 1) This truss is International	e capable of withst at joint 3 and 96 designed in accor Residential Code nd referenced star Standard	lb uplift a dance w sections	at joint 4. ith the 2018 s R502.11.1 a					

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 5-3-4, Exterior(2E) 5-3-4 to 8-3-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

G minin March 26,2025 VIIIIIIIIIIII

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	V08A	Valley	1	1	Job Reference (optional)	172269987

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:41:59 ID:QKjrk9BfaMmm7C4I4v77KXzuo47-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

8-0-14

Scale = 1:30.6

LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood shi						Horiz(TL)	0.00	4	n/a	n/a	Weight: 30 lb	FT = 20%
bracing. REACTIONS (size) 1=8-0-14 Max Horiz 1=-75 (L Max Uplift 1=-36 (L 4=-92 (L Max Grav 1=105 (L 4=632 (L	C 21), 3=-36 (LC 20), C 14) C 20), 3=105 (LC 21), C 20) npression/Maximum -112/285	5) 6) 7) 8) 9) 10)	Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. Gable require Gable studs s This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Provide mech bearing plate 1, 36 lb uplift This truss is of International R802.10.2 ar	7-16; Pr=20.0 psi .15); Pf=20.0 psf s=1.0; Rough Cat .1.10 snow loads have l es continuous bott spaced at 4-0-0 of s been designed fad nonconcurrent has been designed n chord in all area by 2-00-00 wide wi y other members. hanical connectior capable of withst at joint 3 and 92 l designed in accor Residential Code nd referenced star Standard	(Lum DC B; Fully been cor om chor c. or a 10.0 with any I for a liv s where Il fit betw h (by oth anding 3 b uplift a dance wi sections	DL=1.15 Plate Exp.; Ce=0.9 Isidered for the d bearing. D psf bottom other live load e load of 20.0 ers) of truss to 6 lb uplift at jo t joint 4. R502.11.1 a	; ds. psf om o					

 Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 5-1-3, Exterior(2E) 5-1-3 to 8-1-3 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

SEAL 036322 MGINEER March 26,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	V09	Valley	1	1	Job Reference (optional)	172269988

4-8-11

Carter Components (Sanford, NC), Sanford, NC - 27332,

3-7-13

0-0-4

3-11-8

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:41:59 ID:QKjrk9BfaMmm7C4I4v77KXzuo47-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-1-4

4-8-11 4-4-9 4x5 = 2 9 10 3 4

3x5 💊

2x4 II

9-5-6

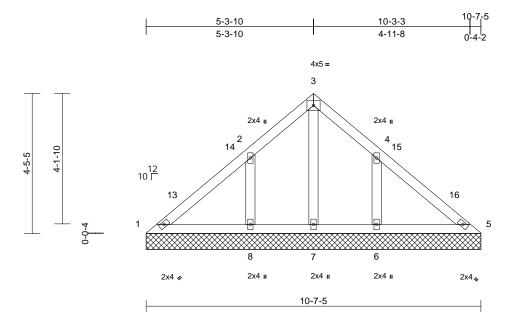
12 10 ∟

1

Scale = 1:32.9

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.43	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.41	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.17	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 36 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 9-5-6 oc purlins. Rigid ceiling directly bracing.	applied or 6-0-0 oc 3=9-5-6, 4=9-5-6 2 10) 2 21), 3=-44 (LC 20), C 14) 20), 3=96 (LC 21), 4	 Plate DOL= DOL=1.15) Cs=1.00; C Unbalanced design. Gable requi Gable studs This truss h chord live lo * This truss h on the botto 3-06-00 tall chord and a Provide me bearing pla 44 lb upli 	d snow loads have res continuous bot s spaced at 4-0-0 o as been designed bad nonconcurrent has been designed om chord in all area by 2-00-00 wide w any other members chanical connectio te capable of withs ft at joint 3 and 104	t (Lum DC at B; Fully been cor ttom chor oc. for a 10. with any d for a liv as where vill fit betv s. on (by oth tstanding 4 4 lb uplift	DL=1.15 Plate Exp.; Ce=0.9 Insidered for the d bearing. D psf bottom other live load e load of 20.0 a rectangle ween the botto ers) of truss to 14 lb uplift at j at joint 4.	e); his ds. Dpsf om					
TOP CHORD	1-2=-110/359, 2-3=-			s designed in accor I Residential Code			ind					
BOT CHORD	1-4=-207/168, 3-4=-	207/168	R802.10.2	and referenced sta	Indard AN	ISI/TPI 1.						
WEBS	2-4=-575/265		LOAD CASE(S) Standard								
NOTES			·									
	ed roof live loads have	been considered for										1111
this desigr											White CA	Dalle
	CE 7-16; Vult=130mph		_								"TH UT	TO MA
II; Exp B; and C-C E to 6-5-10, left and rig exposed;0 reactions DOL=1.60	imph; TCDL=6.0psf; Bi Enclosed; MWFRS (er Exterior(2E) 0-0-5 to 3- Exterior(2E) 6-5-10 to ght exposed ; end vertii C-C for members and fi shown; Lumber DOL=) igned for wind loads in	nvelope) exterior zono 0-5, Exterior(2R) 3-0 9-5-10 zone; cantilev cal left and right orces & MWFRS for 1.60 plate grip	e -5 ver						Wennin	in	SEA 0363	• –
only. For see Stand	studs exposed to wind lard Industry Gable En qualified building desig	(normal to the face) d Details as applicab	, Ie,								NGIN A. C	EER. X

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

GI minimum)

March 26,2025

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	V10	Valley	1	1	Job Reference (optional)	172269989

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:41:59 ID:QKjrk9BfaMmm7C4I4v77KXzuo47-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:36.5

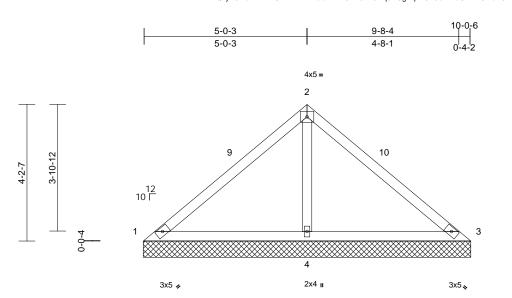
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.19 0.14 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 47 lb	GRIP 244/190 FT = 20%
	10-0-0 oc purlins. Rigid ceiling directly is bracing. (size) 1=10-7-5, 7=10-7-5, 7=10-7-5, 7=10-7-5, 1=97 (LC 4) Max Horiz 1=97 (LC 4) Max Uplift 1=-6 (LC 1) 8=-114 (LC Max Grav 1=89 (LC 2)	5=10-7-5, 6=10-7-5, 8=10-7-5 11) 0), 6=-111 (LC 15), C 14)	only. For s see Standa or consult of Plate DOL= DOL=1.15) Cs=1.00; C 5) Unbalancer design. 6) Gable requ 7) Gable stud: 8) This truss h chord live live 99 on the bott LC 3-06-00 tall	ned for wind loads uds exposed to wird rd Industry Gable E ualified building de E 7-16; Pr=20.0 psf Is=1.0; Rough Cat t=1.10 I snow loads have res continuous bot s spaced at 2-0-0 o as been designed bad nonconcurrent has been designed by 2-00-00 wide w iny other members	nd (norm ind Deta signer as f (roof LL (Lum DC B; Fully been con com chor c. for a 10. with any f for a liv s where ill fit betw	al to the face ils as applica s per ANSI/TI : Lum DOL= :L=1.15 Plate Exp.; Ce=0.9 asidered for the d bearing. D psf bottom other live load e load of 20.0 a rectangle), ble, PI 1. 1.15 e 3; his dds.					
FORCES TOP CHORD	(lb) - Maximum Comp Tension 1-2=-101/165, 2-3=-2		10) Provide me bearing pla	chanical connectio e capable of withs at joint 8 and 111	n (by oth anding 6	b lb uplift at jo						
BOT CHORD WEBS NOTES	4-5=-101/165 1-8=-98/156, 7-8=-98 5-6=-98/156 3-7=-172/0, 2-8=-294	, ,	Internationa	s designed in accor Il Residential Code and referenced star) Standard	sections	s R502.11.1 a	and				WITH CA	ROLIN

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: AŠCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-5 to 3-0-5, Corner(3R) 3-0-5 to 7-7-10, Corner(3E) 7-7-10 to 10-7-10 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A. GIL-

SEAL

036322


anninninn,

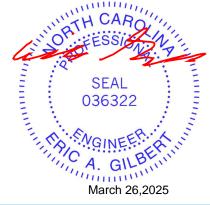
818 Soundside Road Edenton, NC 27932

Contraction of the

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	V10A	Valley	1	1	Job Reference (optional)	172269990

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:41:59 ID:QKjrk9BfaMmm7C4I4v77KXzuo47-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

10-0-6

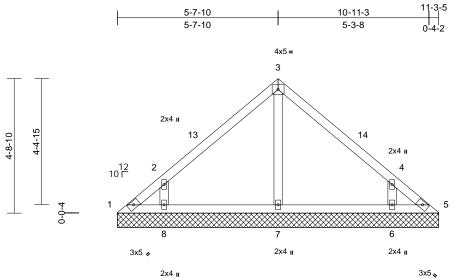

Scale = 1:35.5

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.50 0.46 0.21	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 38 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.3 Structural wood she 10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=10-1-0 Max Horiz 1=94 (LC	,	6) 7) 8) 9)	Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor	snow loads have b es continuous botto spaced at 4-0-0 oc is been designed fo ad nonconcurrent w has been designed n chord in all areas	Lum DC B; Fully een cor om chor c or a 10.0 vith any for a liv s where	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the rd bearing. 0 psf bottom other live load re load of 20.0 a rectangle); nis ds. 0psf					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance	Max Uplift 1=-66 (L0 4=-120 (L Max Grav 1=86 (LC (LC 20) (lb) - Maximum Con Tension 1-2=-130/417, 2-3= 1-4=-275/186, 3-4= 2-4=-700/293 ed roof live loads have	LC 14) 20), 3=86 (LC 21), 4 npression/Maximum -130/417 -275/186	=840 11 1 ⁻ 1:	 3-06-00 tall b chord and ar D) Provide mec bearing plate 1, 66 lb uplift 1) Beveled plat surface with 2) This truss is International 	by 2-00-00 wide wil by other members. hanical connection e capable of withsts at joint 3 and 120 e or shim required truss chord at joint designed in accord Residential Codes and referenced stan	(by oth anding 6 Ib uplift to provi (s) 1, 3. lance w sections	veen the botto ers) of truss to 66 lb uplift at jo at joint 4. de full bearing ith the 2018 5 R502.11.1 a	o pint					1117

 Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 7-1-0, Exterior(2E) 7-1-0 to 10-1-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	V11	Valley	1	1	Job Reference (optional)	172269991

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:41:59 ID: uXHDxVCHLfudlLfUdceMskzuo46-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff

Page: 1

11-3-5

Scale =	1.40.4

Loading TCLL (roof) Snow (Pf)	20	sf) Spacing D.0 Plate Grip DO D.0 Lumber DOL	1.1	5 5		CSI TC BC	0.32 0.12	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
TCDL BCLL		0.0 Rep Stress Ir 0.0* Code			/TPI2014	WB Matrix-MSH	0.09	Horiz(TL)	0.00	5	n/a	n/a		
BCDL		0.0		52010									Weight: 46 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins Rigid ceiling dir bracing. (size) 1=11	d sheathing directly a s. rectly applied or 10-(1-3-5, 5=11-3-5, 6=1 1-3-5, 8=11-3-5)-0 oc	5)	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requir	ed for wind load ds exposed to w d Industry Gable alified building d 7-16; Pf=20.0 ps s=1.0; Rough C; 1.10 snow loads have es continuous bc spaced at 4-0-0	rind (norm End Deta esigner as sf (roof LL f (Lum DC at B; Fully been cor	al to the face ils as applica s per ANSI/T .: Lum DOL= DL=1.15 Plate Exp.; Ce=0. hsidered for t	e), ble, PI 1. 1.15 9;					
	6=-1 Max Grav 1=73	06 (LC 12) 10 (LC 12), 5=-13 (LC 134 (LC 15), 8=-138 3 (LC 24), 5=55 (LC 21), 7=251 (LC 20),	LC 14) 26), 6=443	8) 9)	This truss ha chord live loa * This truss h on the bottor	s been designed ad nonconcurren as been designe n chord in all are	l for a 10.0 t with any ed for a liv as where	other live loa e load of 20. a rectangle	0psf					
	20)	,, ,, ,,	,			y 2-00-00 wide v y other member		veen the bott	om					
FORCES	(lb) - Maximum Tension	Compression/Maxir	num	10)		hanical connection capable of with								
TOP CHORD	1-2=-125/101, 2 4-5=-101/67	2-3=-225/112, 3-4=-	225/112,			at joint 5, 138 lb								
BOT CHORD	1-8=-33/74, 7-8 5-6=-36/74	8=-25/74, 6-7=-25/74	,	11)	This truss is	designed in acco			ام من					U11.
WEBS		8=-440/247, 4-6=-44)/247			Residential Cod nd referenced sta			arid				TH CA	RO
NOTES		have been consider		LO	AD CASE(S)	Standard						15	R	· Stall

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 8-3-10, Exterior(2E) 8-3-10 to 11-3-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	V13	Valley	1	1	Job Reference (optional)	172269992

Scale = 1:41.3 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

WEBS

NOTES

1)

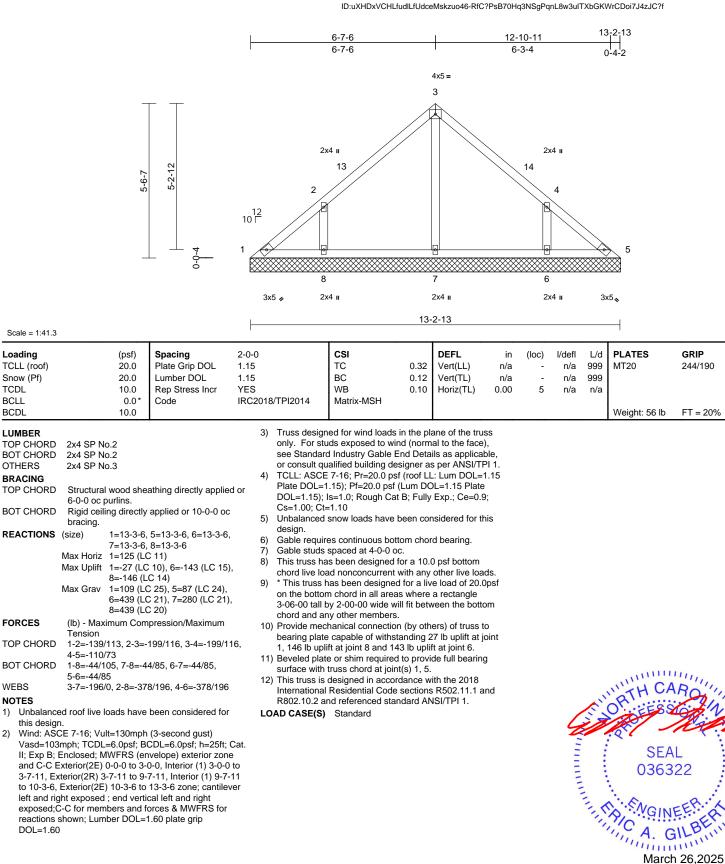
2)

TOP CHORD

BOT CHORD

this design.

DOL=1.60


TCDL

BCLL

BCDL

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:41:59

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	V14	Valley	1	1	Job Reference (optional)	172269993

Scale = 1:43.5 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

WEBS

NOTES

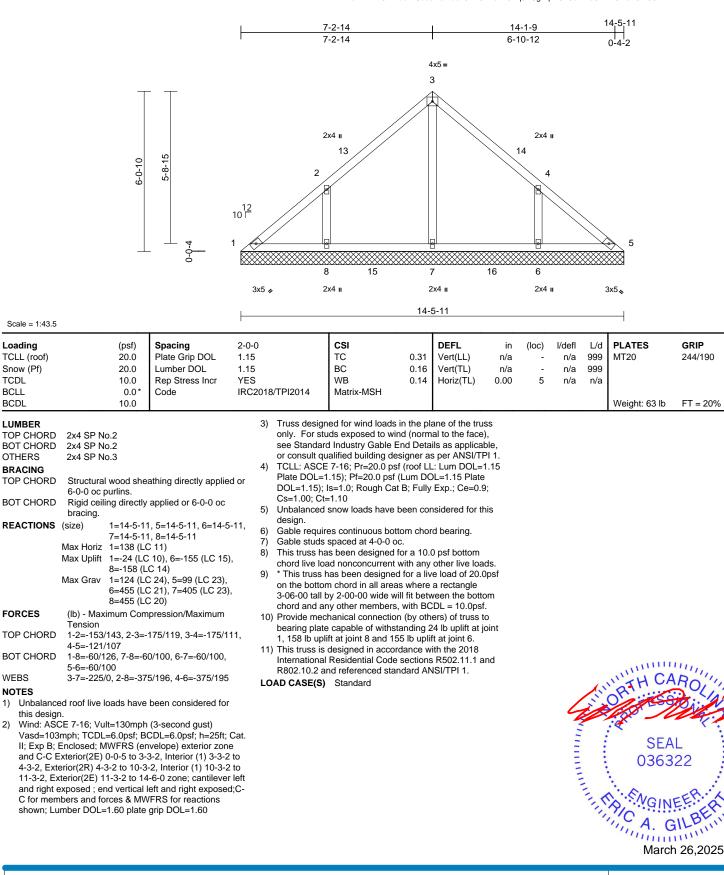
1)

2)

TOP CHORD

BOT CHORD

this design

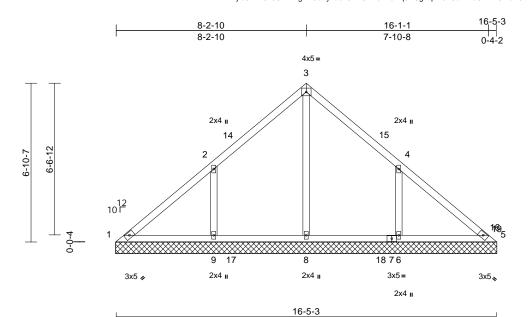

TCDL

BCLL

BCDL

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:41:59 ID:uXHDxVCHLfudlLfUdceMskzuo46-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	V16	Valley	1	1	Job Reference (optional)	172269994

Run; 8,73 S Feb 19 2025 Print; 8,730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:41:59 ID:Mjrb9rDw6z0UMVEgBK9bPyzuo45-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.34 0.17 0.24	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 73 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=16-5-1	,	5) 5-13, 6) 7) 8)	only. For stu see Standard or consult qu TCLL: ASCEP Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requir Gable studs This truss ha	snow loads have es continuous bot spaced at 4-0-0 c as been designed	nd (norm End Deta esigner as if (roof LL (Lum DC t B; Fully been cor been cor tom chor c. for a 10.0	al to the face iils as applica s per ANSI/TI .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 nsidered for the d bearing. 0 psf bottom), ble, PI 1. 1.15 9 9; his					
	9=-180 (I Max Grav 1=123 (L	_C 14) C 25), 5=83 (LC 27), C 6), 8=484 (LC 24),	9)	* This truss h on the bottor 3-06-00 tall b	ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w hy other members	d for a liv as where vill fit betv	ve load of 20.0 a rectangle ween the botto	Opsf om					
FORCES		npression/Maximum	10		hanical connectio								
TOP CHORD	4-5=-111/196	-119/178, 3-4=-120/1 -114/122, 6-8=-114/1	11	1, 180 lb upl Beveled plat	e capable of withs ift at joint 9 and 1 e or shim required truss chord at joir	76 lb upli d to provi	ft at joint 6. de full bearin						
WEBS	5-6=-114/122	90/214, 4-6=-390/213	. 12) This truss is	designed in acco Residential Code	dance w	ith the 2018	ind				THCA	Ro

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 5-2-14, Exterior(2R) 5-2-14 to 11-2-14, Interior (1) 11-2-14 to 13-0-15, Exterior(2E) 13-0-15 to 16-0-15 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	V17	Valley	1	1	Job Reference (optional)	172269995

TCDL

BCLL

BCDL

1)

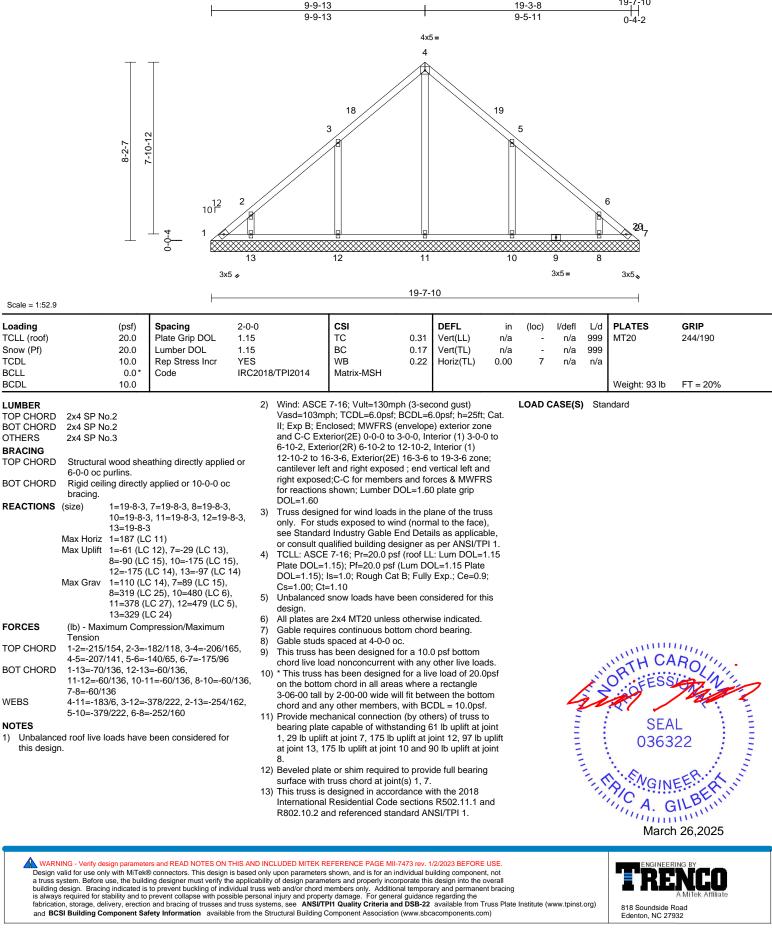
2)

DOL=1.60

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Tue Mar 25 10:41:59

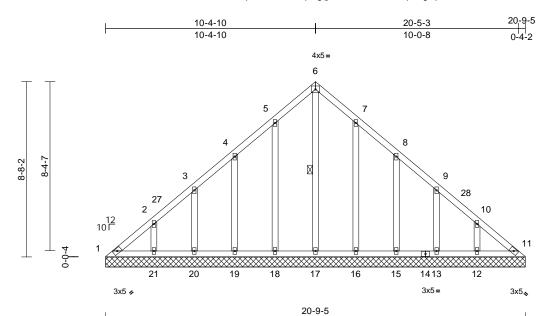
Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


G mmm March 26,2025 VIIIIIIIIIIII

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	V19	Valley	1	1	Job Reference (optional)	172269996

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Tue Mar 25 10:42:00 ID:Mjrb9rDw6z0UMVEgBK9bPyzuo45-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

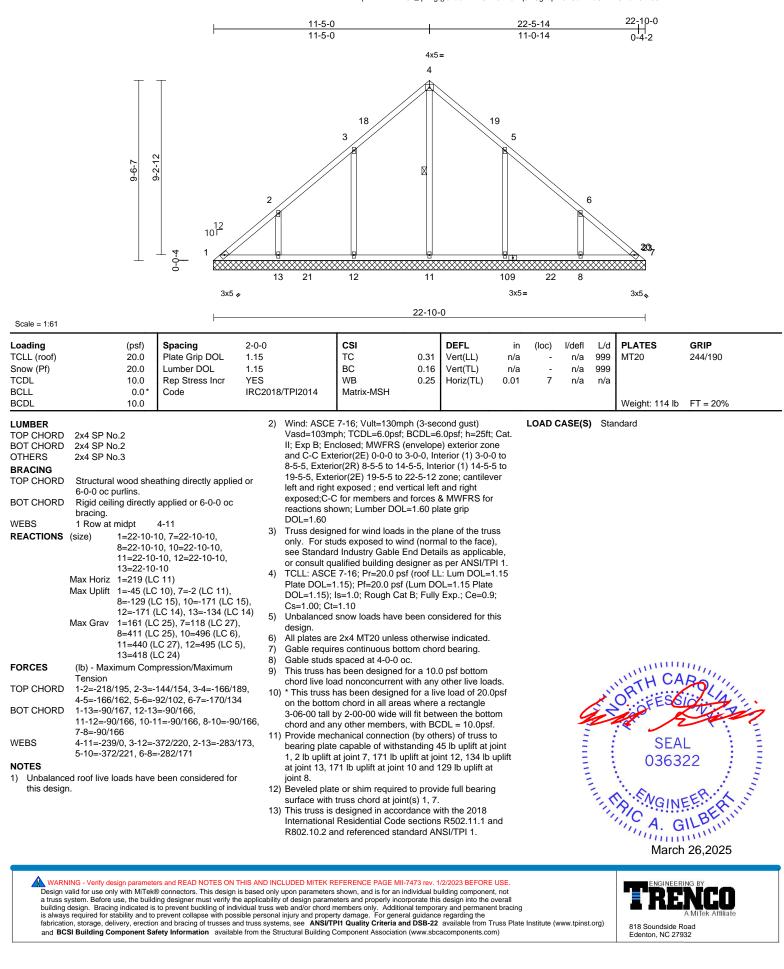
19-7-10

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof		
25040189	V20	Valley	1	1	Job Reference (optional)	172269997	

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:42:00 ID:qvPzMAEYtH8L_fptl1gqy9zuo44-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:57

	· · ·	1					i					i	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.12	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.08	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.20	Horiz(TL)	0.00	11	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH								
BCDL	10.0		_									Weight: 129 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP No.2		N 1)	OTES Unbalanced	roof live loads have	e been	considered fo	or				ned in accordanc dential Code sect	ce with the 2018 tions R502.11.1 and
BOT CHORD			,	this design.					R8	02.10.2 a	and ref	ferenced standar	d ANSI/TPI 1.
OTHERS	2x4 SP No.3		2)		7-16; Vult=130mpl				LOAD	CASE(S) Sta	ndard	
BRACING					oh; TCDL=6.0psf; E								
TOP CHORD	Structural wood she 10-0-0 oc purlins.	athing directly applied	lor	and C-C Cor	closed; MWFRS (e ner(3E) 0-0-5 to 3-	0-5, Ex	érior(2N) 3-0						
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc		13-4-15 to 1	er(3R) 7-4-15 to 13 7-5-1, Corner(3E) 1	7-5-1 t	o 20-5-1 zone						
WEBS	1 Row at midpt	6-17			t and right exposed d;C-C for members								
REACTIONS		, 11=20-9-5, 12=20-9-			shown; Lumber D0			10					
		5, 15=20-9-5, 16=20-9		DOL=1.60			- France 3 . F						
		5, 18=20-9-5, 19=20-9 5, 21=20-9-5	^{9-5,} 3)		ed for wind loads in								
	Max Horiz 1=199 (L0	,			ds exposed to win								
	Max Uplift 1=-94 (LC			see Standard	Industry Gable Er	nd Deta	ils as applica	ble,					
		(LC 15), 15=-73 (LC 1	5)	or consult qu	alified building des	igner a	s per ANSI/I	PI 1.					
		C 15), 18=-73 (LC 14			7-16; Pr=20.0 psf .15); Pf=20.0 psf (I								
		C 14), 20=-76 (LC 14),		s=1.0; Rough Cat								
	21=-75 (L			Cs=1.00; Ct=		B, Fully	Exp., Ce=0.	9,					
	Max Grav 1=127 (L0 13=157 (I	C 13), 12=227 (LC 21) LC 25), 15=211 (LC 2 ⁻		Unbalanced	snow loads have b	een coi	nsidered for t	his					
	(LC 21), 17=346 (LC 2	7)	design.	0 4 MT 00 1								1111
		LC 20), 19=206 (LC 20	ນີ້ 🕬		2x4 MT20 unless							White CA	Dalle
	20=167 (l	LC 24), 21=198 (LC 24	4) 7) 8)		es continuous botto spaced at 2-0-0 oc		d bearing.				1	athor	10/11/
FORCES	(lb) - Maximum Com Tension	pression/Maximum	9)	This truss ha	s been designed fo	or a 10.					1.	OFESS	S. N.
TOP CHORD		156/221, 3-4=-125/20	2, 1		ad nonconcurrent w las been designed					0	72	2/ ~	1 all
		115/292, 6-7=-115/29		,	n chord in all areas			opsi			()	· · ·	1 1 1 E
	7-8=-72/217, 8-9=-2	8/139, 9-10=0/102,			y 2-00-00 wide wil			om		=		SEA	L : :
	10-11=-92/125				y other members.	i int bott		om		=	:	0363	• -
BOT CHORD		-80/78, 19-20=-80/78			hanical connection	(by oth	ers) of truss	to		1		0303	44 <u>;</u> ; ;
		3=-80/78, 16-17=-80/7		bearing plate	capable of withsta	anding §	94 lb uplift at j	joint			8	N	1 - S
		5=-80/78, 12-13=-80/7	δ,		at joint 18, 80 lb u					5	1	· · · ·	Airs
WEBS	11-12=-80/78	=-234/97, 4-19=-164/1	11		5 lb uplift at joint 21						15	S VGIN	EFICAN
WED3	3-20=-148/103, 2-21	,	,		joint 15, 112 lb up	lift at jo	int 13 and 26	lb			11	10	BEN
	7-16=-235/93, 8-15=			uplift at joint	12.							MA. G	ILLIN
	9-13=-143/119, 10-1	,										A. C	IIII.
												March	n 26,2025
													,


RENCO A MiTek Affiliate

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

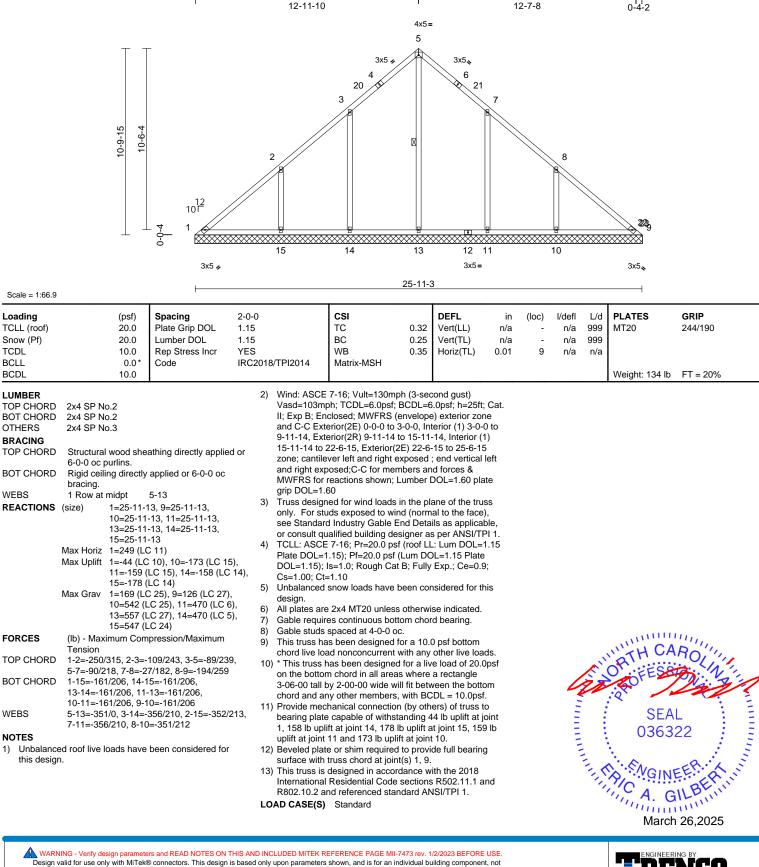
Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	V22	Valley	1	1	Job Reference (optional)	172269998

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:42:00 ID:qvPzMAEYtH8L_fptl1gqy9zuo44-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Job	Truss	Truss Type	Qty	Ply	83 Eagle Creek - Norman C - Roof	
25040189	V25	Valley	1	1	Job Reference (optional)	172269999

12-11-10 12-11-10

Carter Components (Sanford, NC), Sanford, NC - 27332


Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 25 10:42:00 ID:J6zMZWEAeaGCcpO3JIB3UNzuo43-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

25-7-1

12-7-8

Page: 1

25-11-3

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

