

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DR Horton Inc 112 Eagle Creek -Model:

Hartwell - C

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

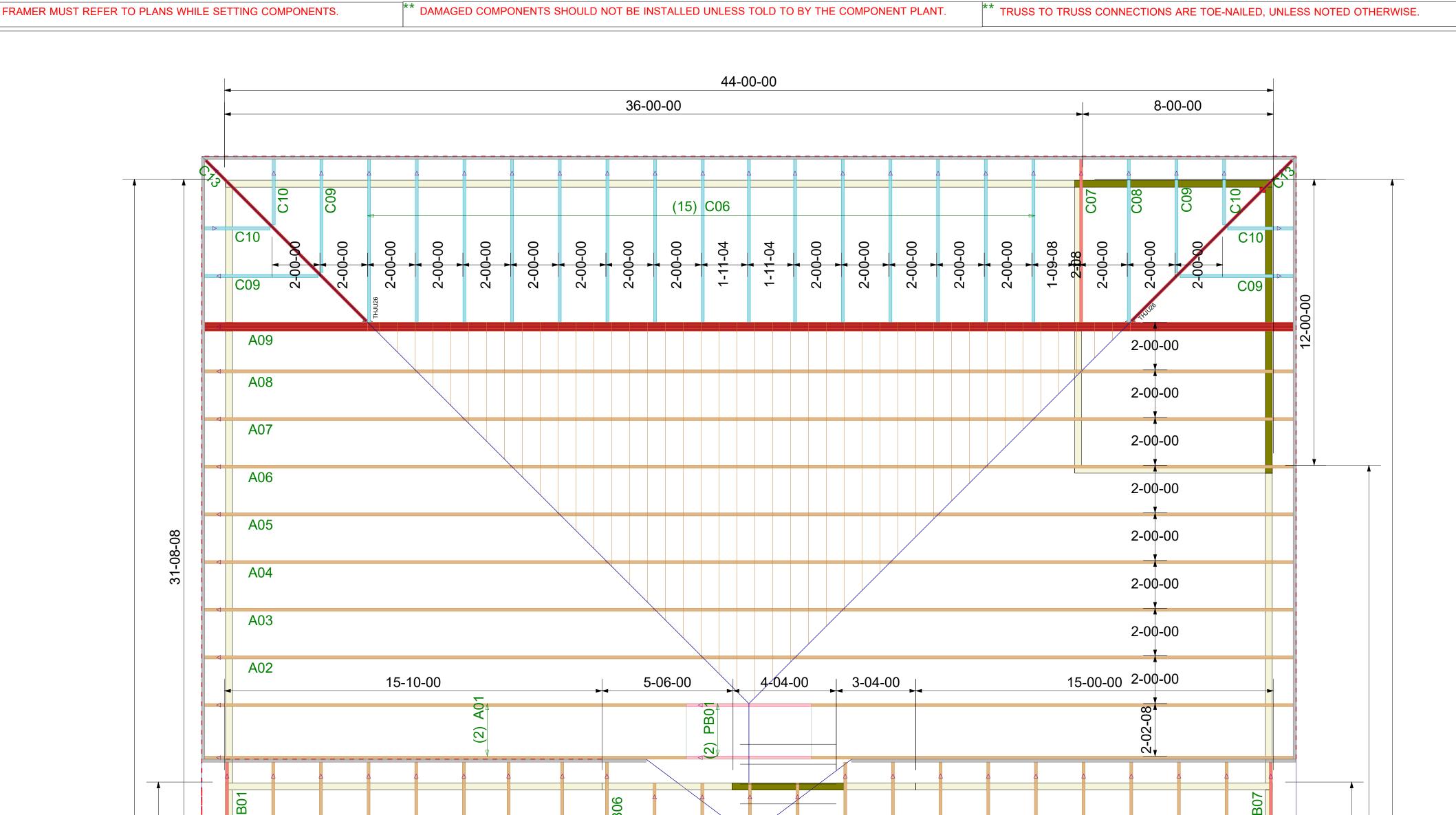
2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.


7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

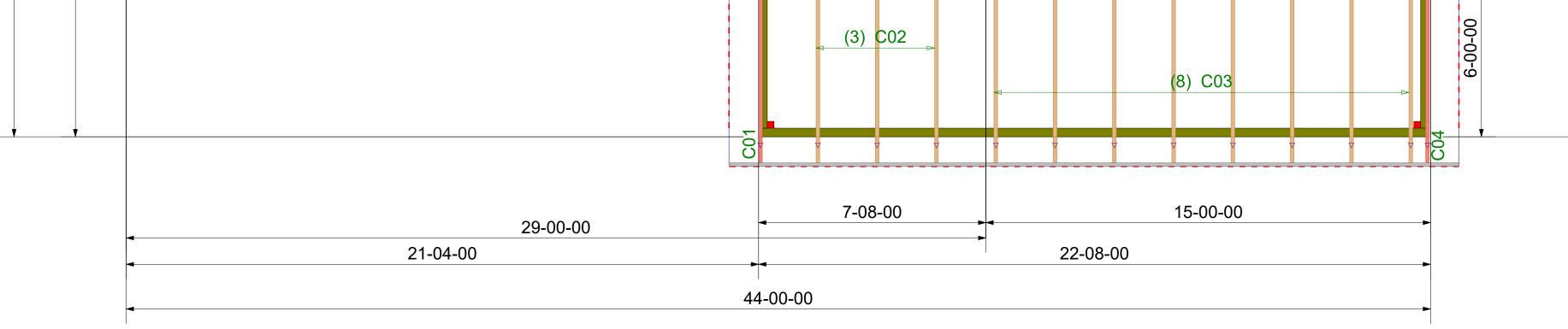
9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

* PLL

	ŭ	ć								BO					-								B(
65-00-00	-	<	4		(7)	B02		Þ	-		(2) B05		(2) B(]4 	- - - -			(9)	B03			Þ			65-00-00
-08-08		1-11-04	2-00-00	2-00-00	2-00-00	2-00-00	1-10-08	2-03-00	1-10-08	2-00-00	2-00-00	- 2-00-00	2-00-00	2-00-00	- - - - - - - - - - - - - - - - - - -	2-00-00	2-00-00	2-00-00	2-00-00	2-00-00	2-00-00	2-00-00	1-08-04 2- 0 0	47-00-00	
27-0													VO	V03	V04	V05	06				2	-00-00 		33-08-08	
12-00-00			Manuf Simpso Simpso Simpso Tru Manuf	uss Connec Produc on LGT3- on One H on THJU2 ss Connecte	ct (SDS2.5 2 I2.5A 26 2 or Total List Ict Qt	Qty 2 110 2			00-00-9				2 01				003			U26	1	-11-04 -09-12 -00-00 -11-04 2-00			_


CUSTOMER TAKES FULL RESPONSIBILITY FOR COMPONENTS IF CUT BEFORE AUTHORIZATION.

General Notes:

** CUTTING OR DRILLING OF COMPONENTS SHOULD NOT BE DONE WITHOUT CONTACTING COMPONENT SUPPLIER FIRST

** ALL BEARING POINTS

MUST BE INSTALLED PRIOR TO SETTING ANY COMPONENTS.

*

Truss Drawing Left End Indicator

** GIRDERS MUST BE FULLY CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS. ** DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH. 1, all uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the bldg designer and or contractor.

RE: 25040128

112 Eagle Creek - Hartwell C - Roof

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:Customer: DR Horton IncProject Name:25040128Lot/Block: 112Model:Hartwell CAddress:Subdivision:Eagle CreekCity:State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2021/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.7 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 37 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	173039209	A01	4/29/2025	21	173039229	C06	4/29/2025
2	173039210	A02	4/29/2025	22	173039230	C07	4/29/2025
3	173039211	A03	4/29/2025	23	173039231	C08	4/29/2025
4	173039212	A04	4/29/2025	24	173039232	C09	4/29/2025
5	173039213	A05	4/29/2025	25	173039233	C10	4/29/2025
6	173039214	A06	4/29/2025	26	173039234	C13	4/29/2025
7	173039215	A07	4/29/2025	27	173039235	D01	4/29/2025
8	173039216	A08	4/29/2025	28	173039236	D02	4/29/2025
9	173039217	A09	4/29/2025	29	173039237	D03	4/29/2025
10	173039218	B01	4/29/2025	30	173039238	PB01	4/29/2025
11	173039219	B02	4/29/2025	31	173039239	V01	4/29/2025
12	173039220	B03	4/29/2025	32	173039240	V02	4/29/2025
13	173039221	B04	4/29/2025	33	173039241	V03	4/29/2025
14	173039222	B05	4/29/2025	34	173039242	V04	4/29/2025
15	173039223	B06	4/29/2025	35	173039243	V05	4/29/2025
16	173039224	B07	4/29/2025	36	173039244	V06	4/29/2025
17	173039225	C01	4/29/2025	37	173039245	V07	4/29/2025
18	173039226	C02	4/29/2025				
19	173039227	C03	4/29/2025				
20	173039228	C04	4/29/2025				

The truss drawing(s) referenced above have been prepared by

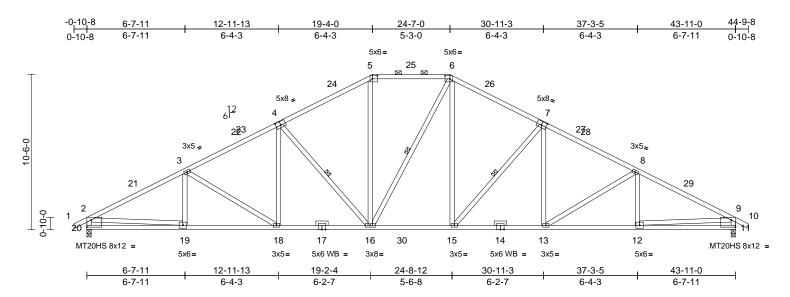
Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Sevier, Scott

My license renewal date for the state of North Carolina is December 31, 2025

North Carolina COA: C-0844


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Sevier, Scott

Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	A01	Piggyback Base	2	1	Job Reference (optional)	173039209

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 13:32:35 ID:ybxcQ5SPAuGgEKRMj6lbhZzuPcy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:78

ading	(psf)	Spacing	2-4-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
LL (roof)	20.0	Plate Grip DOL	1.15		TC	0.74	Vert(LL)		13-15	>999	240	MT20	244/190
ow (Pf)	20.0	Lumber DOL	1.15		BC	0.47	Vert(CT)		13-15	>999	180	MT20HS	187/143
DL	10.0	Rep Stress Incr	NO		WB	0.70	Horz(CT)	0.12	11	n/a	n/a		
LL	0.0*	Code	IRC202	1/TPI2014	Matrix-MSH								FT 000/
DL	10.0		-				-					Weight: 287 lb	FT = 20%
MBER			2)		7-16; Vult=130mp								
P CHORD	2x4 SP 2400F 2.0E				oh; TCDL=6.0psf;								
T CHORD	2x4 SP 2400F 2.0E				closed; MWFRS (
BS	2x4 SP No.3 *Excep				erior(2E) -0-10-8 t								
	16-6,20-2,19-2,11-9,	,12-9:2x4 SP No.2			Exterior(2R) 13-0-1 0-4-13, Exterior(28								
HERS	2x4 SP No.3				t and right expose								
	o				d;C-C for member								
P CHORD	Structural wood she				shown; Lumber D								
	3-8-5 oc purlins, exe 2-0-0 oc purlins (4-9		na	DOL=1.60	,								
T CHORD	Rigid ceiling directly		. 3)	TCLL: ASCE	7-16; Pr=20.0 ps	f (roof LL	.: Lum DOL=	1.15					
1 OHORD	bracing.		,		.15); Pf=20.0 psf								
BS	•	4-16, 6-16, 7-15			ls=1.0; Rough Cat	B; Fully	Exp.; Ce=0.9	Э;					
ACTIONS		20=0-3-8		Cs=1.00; Ct=									
	Max Horiz 20=-166 (4)		snow loads have	been cor	isidered for t	nis					
	Max Uplift 11=-223 (,	5)	design.	s been designed	or groat	or of min root	livo					
	Max Grav 11=2452	(LC 47), 20=2449 (L	C 47) 3)		psf or 1.00 times f								
RCES	(lb) - Maximum Com	pression/Maximum			on-concurrent with			01 011					
	Tension	•	6)		quate drainage to			q.					
P CHORD	1-2=0/32, 2-3=-4510	/358, 3-5=-4139/428	3, 7)́		MT20 plates unle								
	5-6=-2958/424, 6-8=		8)	This truss ha	s been designed	or a 10.0) psf bottom						111.
	8-9=-4513/361, 9-10)=0/32, 2-20=-2566/3	300,		ad nonconcurrent							White CA	Dalle
	9-11=-2569/300		9)		nas been designed			Opsf				"ath on	TO / 11
T CHORD	19-20=-293/837, 18-	,			n chord in all area		0				50/	OVERSS	in A
	16-18=-235/3585, 15 13-15=-113/3591, 12	,			y 2-00-00 wide w					ĺ	<u>.</u>		Zanner
	11-12=-138/824	2-13=-201/3949,	10		y other members			ſ.		-			
BS	4-16=-1087/245, 5-1	6=-55/1100	IL.		Simpson Strong-Ti ed to connect truss			to		12	1 1	()	
	6-16=-284/290, 6-15	,			s) 20 and 11. This						:	SEA SEA	L 🔹
	7-15=-1090/245, 2-1	,			s not consider late							0449	25
	9-12=-100/3138, 3-1		11		rlin representation			size				. 0445	23
	3-18=-446/161, 4-18	8=0/534, 7-13=0/535			ation of the purlin a						-	N	1.1.1
	8-13=-443/161, 8-12	2=-111/136		bottom chore		÷	-					· En	A: 0:
TES			LC	DAD CASE(S)	Standard						1	CONGIN	EF. AN
Unbalance	d roof live loads have	been considered for									1	TT	CEVIN
this design												/ · · / · · · /	

April 29,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek

⁸¹⁸ Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	A02	Нір	1	1	Job Reference (optional)	173039210

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 13:32:36 ID:uz3MrnUghWWOUeblqXn3m_zuPcw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

-0-10-8 0-10-8 44-9-8 0-10-8 6-7-11 12-11-13 19-11-8 23-11-8 30-11-3 37-3-5 43-11-0 6-7-11 6-11-11 4-0-0 6-4-3 6-11-11 6-4-3 6-7-11 5x6= 5x8= 10-9-12 0-1-11 5 25 ⊠ 6 ÷= 24 26 5x8 ዾ 5x8👟 6¹² 4²³ 27 ₇ 22 28 10-9-12 10-8-1 10-8-1 3x5 👟 3x5 ≠ 3 8 29 21 9 0-10-0 10 20 শ 19 18 17 16 30 15 14 13 12 MT20HS 8x12 = MT20HS 8x12 = 5x6= 3x5= 4x6= 3x8= 3x5= 4x6= 3x5= 5x6= 6-7-11 12-11-13 19-9-12 30-11-3 43-11-0 24-1-4 37-3-5 6-7-11 4-3-8 6-4-3 6-7-11 6-4-3 6-9-15 6-9-15

Scale = 1:81

Plate Offsets ()	X, Y): [4:0-4-0,0-3-0],	[6:0-4-0,0-1-15], [7:0)-4-0,0-3-(0], [11:Edge,0-	5-13], [20:Edge,0-	5-13]							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.59 0.39 0.60	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 13-15 13-15 13	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 287 lb	GRIP 244/190 187/143 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS	No.2 Structural wood she 4-0-8 oc purlins, exi 2-0-0 oc purlins (5-2 Rigid ceiling directly bracing. 1 Row at midpt (size) 11=0-3-8, Max Horiz 20=146 (L Max Uplift 11=-191 (Max Grav 11=2112 (L) (lb) - Maximum Com Tension 1-2=0/27, 2-3=-3883 5-6=-2527/358, 6-8= 8-9=-3884/302, 9-10 9-11=-2212/253 19-20=-256/730, 18- 16-18=-91/3109, 12- 11-12=-120/720 4-16=-949/216, 5-16 6-16=-251/259, 6-15 7-15=-953/216, 2-19 9-12=-78/2689, 3-19	(19-2,11-9,12-9:2x4 \$ athing directly applie cept end verticals, ar -0 max.): 5-6. applied or 10-0-0 oc 4-16, 6-16, 7-15 20=0-3-8 	d or id 3) 4) (14) 5) (247) 5) (47) 6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	Vasd=103mj II; Exp B; En and C-C Ext to 13-9-0, Ex 30-2-0 to 40- cantilever lef right expose- for reactions DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n Provide aded All plates are This truss ha chord live loa * This truss for a 06-00 tall b chord and ar 0) One H2.5A S recommendd UPLIFT at jt(only and doe 0) Graphical pu	snow loads have I as been designed f psf or 1.00 times f on-concurrent with quate drainage to a MT20 plates unle as been designed f ad nonconcurrent has been designed n chord in all area by 2-00-00 wide winy other members, Simpson Strong-Ti ed to connect truss (s) 20 and 11. This is not consider late rilin representation at	BCDL=6 envelope o 3-6-3, to 30-2-2, 4 40-4-13 d; end v s and foi OCL=1.6(f (roof LL (Lum DC) a B; Fully been cor for great lat roof h to other lin prevent v ses other for a 10.4 with any d for a liv s where ill fit betw, with at vorte e connec eral force to does no	.0psf; h=25ft) exterior zointerior (1) 3- (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	ne 6-3 nne; nd RS 1.15 9; his f live sf on g. g. d. ads. Opsf om f. e to ift				SEA 0449	• •
this design												M.M.	Shinn

April 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	A03	Нір	1	1	Job Reference (optional)	73039211

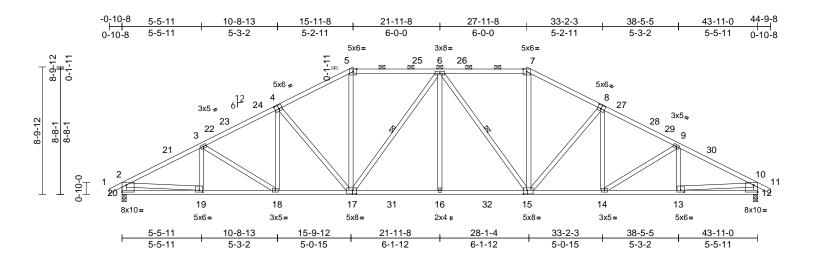
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 13:32:36 ID:qMB7GTWwD7m6jyl7yxqXrPzuPcu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

-0-10-8 0-10-8 44-9-8 13-1-10 21-11-8 6-4-3 17-11-8 25-11-8 30-9-6 37-6-13 43-11-0 6-4-3 6-9-8 4-9-14 4-0-0 4-0-0 4-9-14 6-9-8 6-4-3 0-10-8 5x6= 3x5= 5x6= 9-9-12 0-1-11 <u>-</u>+ 5 26 27 7 6 5x8 ≠ 5x8 👟 4 8 612 61 25 28 ²⁹30 23²⁴ 9-9-12 3x5 ≉ 3x5👟 9-8-1 9-8-1 3 9 22 31 2 10 0-10-0 11 12 2 20 17 19 18 32 33 16 15 14 13 8x12= 8x12= 5x6= 3x5= 4x6= 3x8= 3x8= 4x6= 3x5= 5x6= 6-4-3 13-1-10 17-9-12 26-1-4 30-9-6 37-6-13 43-11-0 -6-4-3 6-9-8 4-8-2 8-3-8 4-8-2 6-9-8 6-4-3

Scale = 1:79.8

Plate Offsets (X, Y): [4:0-4-0,0-3-0], [[8:0-4-0,0-3-0], [12:Edge,0	0-5-13], [13:0-	3-0,0-1-8], [20:0-3-0,0-	1-8], [21	:Edge,0-5-13]					
Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing2-0-Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC	5	CSI TC BC WB Matrix-MSH	0.87 0.44 1.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.27 -0.47 0.10	(loc) 16-17 16-17 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 293 lb	GRIP 244/190 FT = 20%
4-1-12 oc purlins, ex 2-0-0 oc purlins, (5-2- BOT CHORD BOT CHORD Rigid ceiling directly a bracing. WEBS 1 Row at midpt REACTIONS (size) 12=0-3-8, 2 Max Horiz Max Horiz 21=-129 (L Max Uplift 12=0-3-8, 2 Max Horiz FORCES (lb) - Maximum Comp Tension TOP CHORD 1-2=0/27, 2-3=-3760/ 5-6=-2568/367, 6-7=- 7-9=-3397/383, 9-10= 2-21=-2147/261, 10-1 BOT CHORD 20-21=-221/643, 19-2 17-19=-192/2936, 16 14-16=-109/2936, 13 12-13=-101/632 WEBS 4-17=-773/195, 5-17= 7-16=-78/1034, 8-16= 2-20=-128/2664, 10-1 4-19=-9/365, 8-14=-9 6-16=-338/138, 3-19=	applied or 10-0-0 oc 4-17, 8-16, 6-17, 6-16 21=0-3-8 .C 15), 21=-194 (LC 14) LC 47), 21=2037 (LC 47) pression/Maximum '320, 3-5=-3398/383, -2568/367, -3758/323, 10-11=0/27, 12=-2147/261 20=-317/3295, -17=-61/2534, -14=-188/3294, =-78/1034, =-773/195, 13=-114/2674, /365, 6-17=-338/138, =-414/143, 413/142, 9-13=-99/122	 Vasd=1 II; Exp F and C-C to 11-9- 32-2-01 cantilev right exx for reac DOL=1. TCLL: A Plate D Other A Provide This tru to the b 3-06-00 chord a Chore H2 recomm UPLIFT only anni Graphic or the o bottom 	ASCE 7-16; Pr=20.0 ps OL=1.15); Pf=20.0 psf (15); Is=1.0; Rough Car 0; Ct=1.10 need snow loads have ss has been designed 12.0 psf or 1.00 times f ngs non-concurrent with adequate drainage to ss has been designed ve load nonconcurrent uss has been designed tall by 2-00-00 wide w nd any other members .5A Simpson Strong-Ti nended to connect truss at j(s) 21 and 12. This d does not consider lat al purlin representation rientation of the purlin	BCDL=6 envelope o 3-6-3, to 32-2-(2) 40-4-13 ed; end v s and fo DOL=1.6(f (roof LL (Lum DC t B; Fully been cor for great lat roof lh n other lin prevent v for a 10.0 with any d for a livu s where ill fit between s to bear s connec eral force n does n	6.0psf; h=25ft a) exterior zoon Interior (1) 3- b) (Interior (1)) to 44-9-8 zoo vertical left ar cress & MWFF b) plate grip c: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 misidered for the er of min roof pad of 20.0 p ve loads. water ponding. D psf bottom other live load e load of 20.0 p ve loads. water ponding. D psf bottom other live load e load of 20.1 a a rectangle ueveen the bottom DL= 10.0psi ctors ing walls due tion is for upl as.	ne 6-3 ne; Id RS 1.15 ? ; his five sf on g. ds. Opsf om f. to ift				SEA 0449	ROLINA 25 SEVILI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	A04	Нір	1	1	Job Reference (optional)	39212

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 13:32:36 ID:nkJth8XAlk0pyFuW3Ms?xqzuPcs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:79.6

Plate Offsets ((X, Y): [4:0-3-0,0-3-0],	[8:0-3-0,0-3-0], [12:Ed	lge,0-5-	13], [13:0-3-0,0)-1-8], [15:0-3-4,0	-3-0], [17	:0-3-4,0-3-0]	, [19:0-3-	-0,0-1-8]	, [20:Ed	ge,0-5-	-13]	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.76 0.34 0.99	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.33 0.11	15-16	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 287 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP 2400F 2.0E 2x4 SP No.3 *Except Structural wood shea 4-2-13 oc purlins, ex 2-0-0 oc purlins (4-1	athing directly applied kcept end verticals, an 1-14 max.): 5-7.		Vasd=103m II; Exp B; En and C-C Ext to 9-9-0, Ext to 40-4-13, E cantilever let right expose	7-16; Vult=130m oh; TCDL=6.0psf; closed; MWFRS (erior(2E) -0-10-8 ; erior(2R) 9-9-0 to ixterior(2E) 40-4- t and right expose (c;C-C for member shown; Lumber []	BCDL=6 (envelope to 3-6-3, 34-2-0, I 13 to 44- ed ; end y rs and fo	6.0psf; h=25f e) exterior zo Interior (1) 3- nterior (1) 34 9-8 zone; vertical left au rces & MWF	ne -6-3 I-2-0 nd					
BOT CHORD WEBS REACTIONS		6-17, 6-15 20=0-3-8 LC 12) LC 15), 20=-198 (LC 1		DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced	7-16; Pr=20.0 ps 1.15); Pf=20.0 psf Is=1.0; Rough Ca	sf (roof Ll (Lum DC t B; Fully	.: Lum DOL= DL=1.15 Plate Exp.; Ce=0.	e 9;					
FORCES	(lb) - Maximum Com Tension		5)		as been designed psf or 1.00 times								
TOP CHORD	1-2=0/27, 2-3=-3645 5-6=-2659/384, 6-7=	-2659/385, =-3643/337, 10-11=0/2	6) 27, 7)	overhangs n Provide adeo This truss ha	on-concurrent wit quate drainage to as been designed ad nonconcurrent	h other li prevent for a 10.	ve loads. water pondin 0 psf bottom	ıg.					
BOT CHORD	19-20=-189/586, 18- 16-18=-225/3037, 14 13-14=-198/3196, 12	19=-311/3198, I-16=-153/3036,	8)	* This truss I on the bottor	nas been designe m chord in all area	d for a liv as where	e load of 20. a rectangle	0psf			and i	TH CA	ROUT
WEBS	5-17=-57/1010, 6-17 6-15=-554/121, 7-15 2-19=-160/2629, 10- 4-17=-671/163, 3-19 3-18=-199/101, 4-18 8-14=0/280, 9-14=-1	=-553/121, 6-16=0/35 =-57/1010, 13=-148/2644, =-163/89, =0/280, 8-15=-670/16 99/101, 9-13=-163/88	9) 3,	chord and an One H2.5A S recommende UPLIFT at jti only and doe) Graphical pu or the orients	by 2-00-00 wide way other members Simpson Strong-T ed to connect trus (s) 20 and 12. This is not consider lat Irlin representation ation of the purlin 1.	s, with BC ie conne s to bear s connec eral force n does ne	CDL = 10.0ps ctors ing walls due tion is for up es. ot depict the	sf. e to lift			Ø	SEA 0449	• •
	ed roof live loads have	been considered for		bottom chore	J	Ū	·				Ξ.		

this design.

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

Annun April 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	A05	Нір	1	1	Job Reference (optional)	3039213

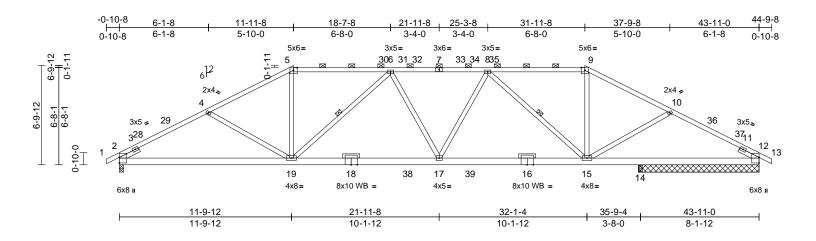
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 13:32:37 ID:j7Qe6qZQHMGXCZ2uBnuT0FzuPcq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

44-9-8 0-10-8 19-2-15 29-11-8 36-9-12 43-11-0 7-1-4 13-11-8 24-8-1 7-1-4 6-10-4 5-3-7 5-3-7 6-10-4 5-5-3 7-1-4 5x8= 3x5= 5x6= 5x8= 7-9-12 0-1-11 <u>-</u>--5 25 262728 29 6 4 7 6¹² Ξ 5x8 🞜 5x8 👟 3²⁴ 30₈ 7-9-12 7-8-1 31 23 32₃₃ 21²² 9 2 0-10-0 10 The second 20 ш ш 19 18 1784 16 35 15 3614 13 12 8x10= 8x10= 5x6= 4x6 =3x5= 3x8= 3x5= 5x6= 3x5= 4x6= 7-1-4 13-9-12 19-2-15 24-8-1 30-1-4 36-9-12 43-11-0 H -7-1-4 6-8-8 5-5-3 5-5-3 5-5-3 6-8-8 7-1-4

Scale = 1:79.3

		[4:0-4-0,0-1-15], [6:0-3		27 E				,-					
oading	(psf)		2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0		.15		TC	0.59	Vert(LL)		15-16	>999	240	MT20	244/190
now (Pf)	20.0		.15		BC	0.35	Vert(CT)		15-16	>999	180		
CDL	10.0		'ES		WB	0.93	Horz(CT)	0.10	11	n/a	n/a		
CLL	0.0*	Code I	RC202	1/TPI2014	Matrix-MSH								
CDL	10.0											Weight: 275 lb	FT = 20%
JMBER			2)		7-16; Vult=130mp								
OP CHORD	2x4 SP 2400F 2.0E				oh; TCDL=6.0psf;								
OT CHORD	2x4 SP 2400F 2.0E				closed; MWFRS (
EBS	2x4 SP No.3 *Excep	t* 20-2,11-9:2x4 SP No	.2		erior(2E) -0-10-8 t								
RACING					erior(2R) 7-9-0 to)-2-0					
OP CHORD		athing directly applied o	r		terior(2R) 23-9-0 4-13, Exterior(2E)								
		cept end verticals, and			t and right expose								
	2-0-0 oc purlins (4-4				d;C-C for member								
OT CHORD		applied or 10-0-0 oc			shown; Lumber D								
	bracing.			DOL=1.60	onown, Eambor E	02-1.00	plate grip						
EBS		5-15	3)		7-16; Pr=20.0 ps	f (roof Ll	.: Lum DOL=	1.15					
EACTIONS	(size) 11=0-3-8,		-,		.15); Pf=20.0 psf								
	Max Horiz 20=-105 (DOL=1.15);	s=1.0; Rough Cat	B; Fully	Exp.; Ce=0.	9;					
		LC 15), 20=-200 (LC 14		Cs=1.00; Ct=	=1.10								
		(LC 47), 20=1977 (LC 4	() 4)		snow loads have	been cor	nsidered for t	his					
ORCES	(lb) - Maximum Com	pression/Maximum		design.									
	Tension	0000 4 5 0074/445	5)		s been designed								
OP CHORD	,	3/382, 4-5=-3371/415,			psf or 1.00 times f			osf on					
	,	-3652/382, 9-10=0/27,			on-concurrent with								
OT CHORD	2-20=-2073/280, 9-1 19-20=-222/751, 18-		6)		uate drainage to			g.					
OT CHORD	16-18=-148/2812, 15	,	7)		s been designed t ad nonconcurrent			ada				, mining	ing.
	13-15=-104/2807, 12	,	8)		as been designed							WAH CA	Rolly
	11-12=-131/740	2 10- 100/0101,	0)		n chord in all area			opsi				A	. Lille
/EBS	4-18=-17/559, 7-13=	-17/561.			y 2-00-00 wide w			om			0	O FESS	0: 1/2
	2-19=-139/2475, 9-1	,			y other members					1	XX		The los
	5-16=-524/177, 4-16	5=-138/864,	9)		Simpson Strong-Ti						SC		Seven a
	5-15=-152/153, 6-15	5=-524/145,	- /		ed to connect truss			e to		2		SEA	
	7-15=-137/854, 3-19) =-50/152,		UPLIFT at jt(s) 20 and 11. This	connec	tion is for up	lift					•
	3-18=-626/166, 8-13	8=-625/165, 8-12=-50/15			s not consider late						6	0449	25 : :
OTES			10		rlin representatior			size					
Unbalance	ed roof live loads have	been considered for			ation of the purlin a	along the	e top and/or				-	A	- 1 - S
this design	n.			bottom chore								P. SNOW	ER: AS
			LC	DAD CASE(S)	Standard						11.	COUGIN	E. W. N
											1	TTN	CEVIN
												M.M.	Sum
													111.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention.


and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO A MiTek Affiliate

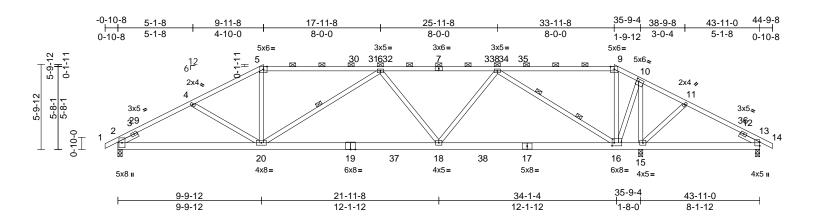
April 29,2025

Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	A06	Нір	1	1	Job Reference (optional)	173039214

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 13:32:37 ID:ysT1?vg497PFnxEdCAZat9zuPch-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:79.1

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI201	CSI TC BC WB Matrix-MSH	0.59 0.40 0.60	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.28 -0.50 0.11	(loc) 15-17 15-17 12	l/defl >999 >864 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 267 lb	GRIP 244/190 FT = 20%
	 3-9-12 oc purlins, ex 2-0-0 oc purlins (4-1 Rigid ceiling directly bracing. 1 Row at midpt 	eathing directly applie (-2 max.): 5-9. (-2 max.): 5-9. (-2 max.): 5-9. (-2 max.): 5-9. (-2 max.): 5-9. (-19. 8-15 12=8-3-8. 14=0-3-8. (-15.) (-14.), 12=-222 (LC - (-14.), 12=-1631 (LC - (-14.)) (-12=-1631 (LC - (-14.)) (-14.)) (-14.)) (-14.) (-14.)) (-14.) (-14.)) (-14.)) (-14.) (-14.)) (-14.) (-14.)) (-14.)) (-14.) (-14.)) (-14.) (-14.)) (-14.)) (-14.) (-14.)) (-14.)) (-14.)) (-14.)) (-14.)) (-14.)) (-14.)) (-14.)) (Vasd= II; Exp and C- to 5-9- No.3 to 25-9 37-11- cantile d or right ex for rea DOL=1 Cs=1.0 4) Unbala design 15) 5) This tru b), load of overha	SCE 7-16; Vult=130r 03mph; TCDL=6.0ps B; Enclosed; MWFRS C Exterior(2R) -0-10-6 0, Exterior(2R) 5-9-0 t 0, Exterior(2R) 25-9- is to 40-4-13, Exterior(rer left and right exposi- posed;C-C for memb- tions shown; Lumber 60 ASCE 7-16; Pr=20.0 ps 0L=1.15); Pf=20.0 ps 0L=1.10 nced snow loads have us has been designed 12.0 psf or 1.00 times adequate drainage t	f; BCDL=6 § (envelops 3 to 3-6-3, o 0 to 37-11 2E) 40-4- sed; end 1 ers and fo DOL=1.6 DSf (roof Ll sf (Lum DC cat B; Fully e been co d for great s flat roof I ith other li	6.0psf; h=25ft; e) exterior zor Interior (1) 3-6 interior (1) 18- -5, Interior (1) 13 to 44-9-8 zo vertical left an rcces & MWFR 0 plate grip L: Lum DOL= DL=1.15 Plate v Exp.; Ce=0.9 insidered for the re of min roof oad of 20.0 ps ve loads.	ne 6-3 -2-0) one; id 8S 1.15 					
TOP CHORD	Tension 1-2=0/23, 2-4=-3538 5-6=-2987/361, 6-8= 8-9=-2637/374, 9-10 10-12=-3115/434, 12	=-3847/424,)=-2953/378,	2, chord l 8) * This t on the	ss has been designer ve load nonconcurrer russ has been design pottom chord in all are to tall by 2-00-00 wide	nt with any ed for a liv eas where	other live load ve load of 20.0 a rectangle	Opsf				TH CA	Ro
BOT CHORD		-19=-280/3704,	chord a 9) One H	and any other member 2.5A Simpson Strong- nended to connect tru	rs, with BC	CDL = 10.0psf ctors			لمر		O HESS	entres
WEBS NOTES	4-19=-524/196, 5-19 6-19=-1059/224, 6-1 8-17=-26/473, 8-15= 9-15=-23/905, 10-15	17=-43/266, =-1377/199,	UPLIF and do 10) Graphi	at jt(s) 2 and 12. Thi as not consider latera cal purlin representati prientation of the purli	s connecti I forces. on does n	ion is for uplift ot depict the s	only		THE PARTY OF THE P		SEA 0449	• •
	d roof live loads have	been considered for	LOAD CAS	E E(S) Standard							Min M.	CE N



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

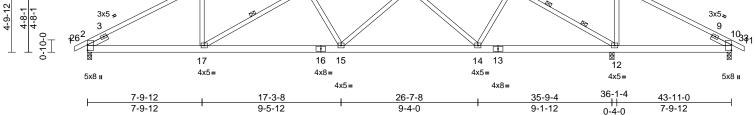
Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	A07	Нір	1	1	Job Reference (optional)	173039215

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 13:32:37 ID:JpGw2ckD_f1Ytj7b?j8laCzuPcc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:78.8

Plate Offsets (2	X, Y): [2:0-4-9,0-0-13	s], [10:0-1-12,0-2-0], [16:0-1-12	,0-2-8]									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.71 0.36 0.94	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.20 -0.36 0.05	(loc) 18-20 18-20 15	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 268 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS	1-6-0 Structural wood she 4-8-4 oc purlins, exc 2-0-0 oc purlins (4-3 Rigid ceiling directly bracing. 1 Row at midpt 2 Rows at 1/3 pts (size) 2=0-3-8, 7 Max Horiz 2=84 (LC Max Uplift 2=-182 (L 15=-220 (Max Grav 2=1575 (I 15=2547 (lb) - Maximum Com Tension 1-2=0/37, 2-4=-2724 5-6=-2360/273, 6-8= 9-10=-54/168, 10-11 11-13=-188/752, 13 2-20=-292/2359, 18 16-18=-198/2068, 1: 13-15=-637/153	B-8 max.): 5-9. applied or 6-0-0 oc 6-20 8-16 13=0-3-8, 15=0-3-8 14) C 14), 13=-213 (LC 4 (LC 10) C 37), 13=317 (LC 4 (LC 46) npression/Maximum 4/321, 4-5=-2633/266 2713/243, 8-9=-32/ I=-132/876, -14=0/37 -20=-278/2864, 5-16=-820/185,)=0/717, 6-20=-662/2 3=-39/990, 16=-528/136,	d or 3) 58), 5) 55), 6) 7) 55), 7) 8) 110, 9) 06, 10	Vasd=103m II; Exp B; Er and C-C Ext to 16-2-0, In 27-9-0 to 40 cantilever ler right expose for reactions DOL=1.60 TCLL: ASCE Plate DOL=* DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n Provide ade This truss ha chord live lo * This truss ha chord live lo * This truss a chord live lo * This truss a chord and al One H2.5A s recommend UPLIFT at jt only and doo	snow loads have as been designed psf or 1.00 times i ion-concurrent witi quate drainage to as been designed ad nonconcurrent has been designee m chord in all area by 2-00-00 wide w ny other members Simpson Strong-T ed to connect trus (s) 2, 13, and 15. as not consider lat urlin representation ation of the purlin d.	BCDL=6 (envelope to 3-6-3,) 27-9-0,) 40-4-13 ed ; end v rs and fo DOL=1.6(af (roof LL (Lum DC t B; Fully been cor for great flat roof lk h other lip prevent t for a 10.1 with any d for a liv as where iill fit betw with BC ie conne s to bear This conne real forcor n does no	i.Opsf; h=25f e) exterior zc Exterior(2R) is to 44-9-8 zc vertical left al cress & MWF D plate grip c: Lum DOL= DL=1.15 Plate Exp.; Ce=0. hsidered for the er of min roo bad of 20.0 p ve loads. water pondin D psf bottom other live load e load of 20. a rectangle veen the bott CDL = 10.0ps ctors ing walls due hection is for s5.	ne 3-6-3 one; nd RS =1.15 e 9; this f live sof on g. ads. Opsf tom if. e to uplift				SEA 0449	
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for										Manual Manual April	SEV


April 29,2025

Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	A08	Нір	1	1	Job Reference (optional)	73039216

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 13:32:37 ID:BbWRu_nj2uX_MKQMEZDhl2zuPcY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-11-8 14-11-8 21-11-8 28-11-8 35-11-8 43-11-0 7-11-8 7-0-0 7-0-0 7-0-0 7-0-0 7-11-8 5x6= 3x5= 5x6= 3x5= 5x6= 0-1-11 4 ⊴27 528 29 6 ⊠ 30 317 32 8 ÷__ 672 3x5 👟 3x5 🞜

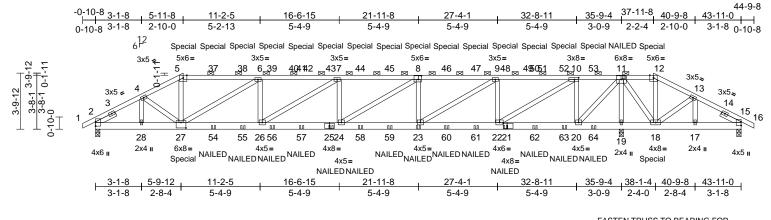
Scale = 1:78.6

4-9-

Plate Offsets (X, Y): [6:0-3-0,0-3-0]

l a a din n	(6)	Question			001		DEEL		(1	1/-10	1.74		0.010
Loading	(psf)	Spacing	2-0-0		CSI	0.54	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.54	Vert(LL)		15-17	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.33	Vert(CT)		15-17	>999	180		
TCDL	10.0	Rep Stress Incr	YES	TDIOCAL	WB	0.87	Horz(CT)	0.06	12	n/a	n/a		
BCLL BCDL	0.0*	Code	IRC202	21/TPI2014	Matrix-MSH							Maisht 040 lb	FT 200/
BCDL	10.0		-									Weight: 246 lb	FT = 20%
UMBER			2)		7-16; Vult=130m								
FOP CHORD	2x4 SP 2400F 2.0E				ph; TCDL=6.0psf;								
BOT CHORD	2x6 SP 2400F 2.0E				closed; MWFRS (
NEBS	2x4 SP No.3				erior(2E) -0-10-8 t			3-6-3					
SLIDER	Left 2x4 SP No.3	1-6-0, Right 2x4 SP	No.3		terior (1) 14-2-0 to -4-13, Exterior(2E			ne.					
	1-6-0				ft and right expose								
BRACING	Structural wood she	athing directly applie	ad or		d;C-C for member								
	4-7-12 oc purlins, ex		54 01		shown; Lumber D	OL=1.6) plate grip						
	2-0-0 oc purlins (4-6			DOL=1.60									
BOT CHORD	Rigid ceiling directly		c 3)		E 7-16; Pr=20.0 ps								
	bracing, Except:				1.15); Pf=20.0 psf								
	6-0-0 oc bracing: 10	-12.		DOL=1.15); Cs=1.00; Ct	Is=1.0; Rough Ca	t B; Fully	Exp.; Ce=0.9	9;					
WEBS	1 Row at midpt	5-17	4		snow loads have	hoon co	cidorod for t	hic					
WEBS	2 Rows at 1/3 pts		7,	design.	Show loads have	Deen co		113					
REACTIONS		10=0-3-8, 12=0-3-8	5		as been designed	for areat	er of min root	live					
	Max Horiz 2=-68 (LC	,			psf or 1.00 times f								
	Max Uplift 2=-195 (L		40),		ion-concurrent with								
	12=-279 (4E) 6)		quate drainage to			g.					
	Max Grav 2=1408 (I 12=2715		45), 7 <u>)</u>		as been designed								
FORCES	(lb) - Maximum Corr	()	8		ad nonconcurrent has been designed							, mining	1111
ONOLO	Tension		0		m chord in all area			Jpsi				WAH CA	Rollin
TOP CHORD	1-2=0/38, 2-4=-228	1/304, 4-5=-2000/31	6,		by 2-00-00 wide w			om		<u> </u>	1	R	
	5-7=-2848/349, 7-8=	-152/1049,			ny other members						20-	U.FESS	00.15
	8-10=-381/1278, 10		9		Simpson Strong-T		ctors			6			Drille
BOT CHORD	2-17=-227/2000, 15			recommend	ed to connect trus	s to bear	ing walls due	to				.प	
	14-15=-322/2513, 1	2-14=-168/1320,			(s) 2 and 12. This		on is for uplif	t only				SEA	
	10-12=-1079/209	4000/040 545 00	405		t consider lateral f					=			•
WEBS	4-17=-4/628, 5-17=- 6-15=-30/456, 6-14=	,	/165, 10		on Strong-Tie cor							0449	25 :
	7-14=-29/946, 7-12=				s to bearing walls							•	2
	8-12=-961/162	- 21 02/ + 10,		l his connect lateral force	tion is for uplift on	iy and do	ies not consid	Jer			5.	· •	ains
NOTES	5 .L- 001/10L		1		s. Jrlin representation	n does n	nt denict the	size				O'SNGINI	ENINS
	ed roof live loads have	heen considered for			ation of the purlin			5120			11	0	The second
this design				bottom chor		along th						TM	SEIN
and debigi			L	OAD CASE(S)								in min	in the second se
			-									Apri	20 2025

April 29,2025


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	A09	Hip Girder	1	3	Job Reference (optional)	173039217

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 13:32:39 ID:Y5NB3JFBstSSXJvs0FQrqHzuPbx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

FASTEN TRUSS TO BEARING FOR THE UPLIFT REACTION SHOWN WHILE PERMITTING NO UPWARD MOVEMENT OF THE BEARING.

Page: 1

Scale = 1:78.4	
Plate Offsets (X, Y):	[8:0-2-8,0-3-0], [10:0-3-8,0-1-8], [21:0-3-3,0-2-0], [27:0-4-0,0-4-8]

Continued on page 2

WARNING

	X, Y): [8:0-2-8,0-3-0],	[10:0-3-8,0-1-8], [21:0	J-3-3,0-2·	·0j, [27:0-4-0,0	U-4-δj									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC202 ⁻	I/TPI2014	CSI TC BC WB Matrix-MSH	0.20 0.19 0.82	· · ·	17	(loc) 24 3-24 19	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 844 I	GRIP 244/190 b FT = 20%	
LUMBER TOP CHORD 2x4 SP 2400F 2.0E BOT CHORD 2x6 SP 2400F 2.0E WEBS 2x4 SP No.3 SLIDER Left 2x4 SP No.3 1-6-0, Right 2x4 SP No.3 1-6-0 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 5-12. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 2=0-3-8, 15=0-3-8, 19=0-3-8 Max Horiz 2=-52 (LC 17) Max Uplift 2=-496 (LC 12), 15=-1870 (LC 36) 19=-1127 (LC 8) Max Grav 2=3056 (LC 39), 15=350 (LC 9), 19=7354 (LC 36)				DTES	4-28=-751/135, 4-2 5-27=-181/1699, 12 13-18=-1398/231, 1 6-26=0/532, 6-27=- 7-24=-571/278, 8-2 8-23=-1677/438, 9- 9-22=-2793/617, 1(10-20=-3803/739, 1 11-19=-6284/992, 1	2-18=-2 13-17=- 2778/4 44=-298 23=-59 23=-59 22=-9 11-20=- 11-18=-	016/359, 100/870, 59, 7-26=-550/104 /1633, 5/3696, 43/5934, 780/4973, 434/2903	-, 8) 9) 10	load over Prov This chor 0) * Th on th 3-06 chor	of 12.0 hangs r ride ade truss h d live lo is truss he botto 6-00 tall d and a	psf or on-co quate as bee ad nor has be m cho by 2-0 ny oth	1.00 times flat ncurrent with o drainage to pre- n designed for nconcurrent with een designed for rd in all areas v 0-00 wide will f er members.	event water ponding. a 10.0 psf bottom h any other live loads. or a live load of 20.0psf where a rectangle it between the bottom	
				 3-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc. All loads are considered equally applied to all plies, 						 One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces. LGT3-SDS2.5 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 15 and 19. This connection is for uplift only and does not consider lateral forces. Graphical purlin representation does not depict the size 				
FORCES	19=7354 (LC 36) (Ib) - Maximum Compression/Maximum Tension DP CHORD 1-2=0/38, 2-4=-4574/774, 4-5=-5380/908, 5-6=-4825/839, 6-7=-7189/1176, 7-9=-7605/1239, 9-10=-3061/534, 10-11=-281/2028, 11-12=-568/3724, 12-13=-655/4202, 13-15=-547/3170,			 CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. 					or the orientation of the purlin along the top and bottom chord.					
BOT CHORD	15-16=0/38 DT CHORD 2-28=-675/3968, 27-28=-675/3968, 26-27=-1126/7189, 24-26=-1200/7605, 23-24=-986/6213, 22-23=-486/3061, 20-22=-2028/348, 19-20=-5375/848, 18-19=-5375/848, 17-18=-2741/493, 15-17=-2741/493				103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. B; Enclosed; MWFRS (envelope) exterior zone; ver left and right exposed ; end vertical left and sposed; Lumber DOL=1.60 plate grip DOL=1.60 ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 ODL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate .15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 0; Ct=1.10 nced snow loads have been considered for this					SEAL				

design.

M. SEM (IIIIIIII) April 29,2025

Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 1/2/2023 BEFORE USE

Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	A09	Hip Girder	1	3	Job Reference (optional)	173039217

14) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.
15) "NAILED" indicates 3-10d (0.148"x3") or 3-12d

(0.148"x3.25") toe-nails per NDS guidlines.

 LGT3 Hurricane ties must have three studs in line below the truss.

17) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 214 Ib down and 83 lb up at 5-11-8, 214 lb down and 83 lb up at 8-0-4, 214 lb down and 83 lb up at 10-0-4, 214 lb down and 83 lb up at 12-0-4, 214 lb down and 83 lb up at 14-0-4, 214 lb down and 83 lb up at 16-0-4, 214 lb down and 83 lb up at 18-0-4, 214 lb down and 83 lb up at 20-0-4, 214 lb down and 82 lb up at 21-11-8, 214 lb down and 83 lb up at 23-10-12, 214 lb down and 83 lb up at 25-10-12, 214 lb down and 83 lb up at 27-10-12, 214 lb down and 83 lb up at 29-10-12, 214 lb down and 83 lb up at 31-10-12, and 214 lb down and 83 lb up at 33-10-12, and 214 lb down and 83 lb up at 37-11-8 on top chord, and 515 lb down and 81 lb up at 5-11-8, and 515 lb down and 81 lb up at 37-10-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

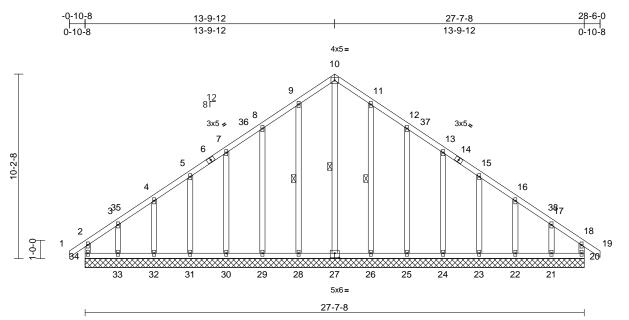
LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-5=-60, 5-12=-60, 12-16=-60, 29-33=-20 Concentrated Loads (lb)

Vert: 5=-186 (B), 25=-60 (B), 27=-515 (B), 18=-515 (B), 12=-186 (B), 21=-60 (B), 8=-186 (B), 23=-60 (B), 37=-186 (B), 38=-186 (B), 39=-186 (B), 41=-186 (B), 43=-186 (B), 44=-186 (B), 45=-186 (B), 46=-186 (B), 47=-186 (B), 54=-60 (B), 55=-60 (B),


57=-60 (B), 58=-60 (B), 59=-60 (B), 60=-60 (B), 61=-60 (B), 62=-60 (B), 63=-60 (B), 64=-60 (B) Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 13:32:39 ID:Y5NB3JFBstSSXJvs0FQrqHzuPbx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	B01	Common Supported Gable	1	1	Job Reference (optional)	173039218

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 13:32:40 ID:fn4p5KnLpBfr_U?YoHkwHGzuPcX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:63.8

Plate Offsets (X, Y): [27:0-3-0,0-3-0]

	(7, 1). [27.000,000									-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC 0.18 BC 0.09 WB 0.18 Matrix-MR	Vert(CT) n/a Horz(CT) 0.01	20	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 199 lb		
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	P CHORD 2x4 SP No.2 F CHORD 2x4 SP No.2 BS 2x4 SP No.3 HERS 2x4 SP No.3 ACING P P CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. F CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.		or BOT CHORD -8, -8, -8, -8, -8 5), , , , , , , , , , , , , , , , , , ,	3-4=-137/131, 4-5=-126/1 7-8=-103/195, 8-9=-137/2 10-11=-166/302, 11-12=- 12-13=-103/195, 13-15=- 15-16=-80/105, 16-17=-9 17-18=-136/122, 18-19=0 0 33-34=-113/129, 32-33=- 31-32=-113/129, 23-24=- 29-30=-113/129, 25-26=- 24-25=-113/129, 21-22=- 24-25=-113/129, 21-22=- 20-21=-113/129, 21-22=- 20-21=-113/129, 21-22=- 20-21=-113/129, 12-26=- 21-27-190, 9-28=-211 7-30=-143/81, 5-31=-143/ 3-33=-147/123, 11-26=-2 12-25=-182/88, 13-24=-14 15-23=-143/84, 16-22=-14 17-21=-136/116 ced roof live loads have been	31-32=-113/129, 30-31=-113/129, overhangs non-concurrent with other live loads 29-30=-113/129, 28-29=-113/129, All plates are 2x4 MT20 unless otherwise indic 26-28=-113/129, 23-24=-113/129, Bable requires continuous bottom chord bearing 24-25=-113/129, 21-22=-113/129, Truss to be fully sheathed from one face or set braced against lateral movement (i.e. diagonal 20-21=-113/129, 10-27=-271/90, 9-28=-219/73, 8-29=-182/87, 7-30=-143/81, 5-31=-143/84, 4-32=-144/75, 3-33=-147/123, 11-26=-219/72, 3-33=-147/123, 11-26=-219/72, 12-25=-182/88, 13-24=-143/81, 15-23=-143/84, 16-22=-145/76, overhangs non-concurrent with other live loads						
FORCES	Max Grav 20=178 (22=166 (24=168 (28=259 (30=168 (32=166 (34=213 ((LC 14), 34=-118 (LC 1 LC 25), 21=198 (LC 26 LC 22), 23=170 (LC 26 LC 22), 25=222 (LC 22 LC 22), 27=252 (LC 15 LC 21), 29=222 (LC 22 LC 25), 31=171 (LC 25 LC 21), 33=217 (LC 25 LC 26) npression/Maximum	5), Vasd=10 5), II; Exp B; 2), and C-C 5), to 10-9-12 t 1), 16-9-12 t 5), right exp for reactin DOL=1.6 3) Truss des only. Foo see Stan	Amph; TCDL=6.0psf; BCDL= ; Enclosed; MWFRS (envelop Corner(3E) -0-10-8 to 2-1-8, 2, Corner(3R) 10-9-12 to 16- to 25-6-0, Corner(3E) 25-6-0 er left and right exposed; end osed;C-C for members and fo ions shown; Lumber DOL=1.6 0 signed for wind loads in the p r studs exposed to wind (norr idard Industry Gable End Det It qualified building designer a	e) exterior zone Exterior(2N) 2-1-8 3-12, Exterior(2N) o 28-6-0 zone; vertical left and vrces & MWFRS 0 plate grip lane of the truss nal to the face), ails as applicable,		- AUTUAN		Minim	25 SEVIEN	

Continued on page 2

April 29,2025

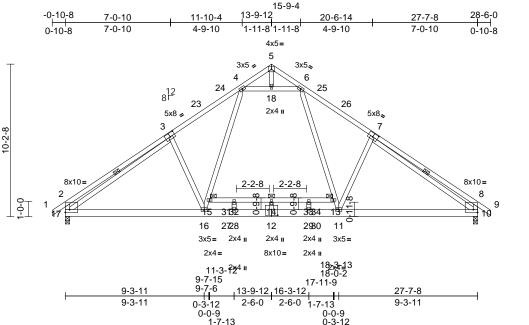
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeR% connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the Section of the prevent collapse contervent for the Sectional temporation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	B01	Common Supported Gable	1	1	Job Reference (optional)	173039218

13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 118 lb uplift at joint 34, 74 lb uplift at joint 20, 49 lb uplift at joint 28, 63 lb uplift at joint 29, 56 lb uplift at joint 30, 62 lb uplift at joint 31, 41 lb uplift at joint 32, 142 lb uplift at joint 33, 48 lb uplift at joint 26, 64 lb uplift at joint 25, 56 lb uplift at joint 24, 62 lb uplift at joint 23, 43 lb uplift at joint 22 and 129 lb uplift at joint 21.

LOAD CASE(S) Standard

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 13:32:40 ID:fn4p5KnLpBfr_U?YoHkwHGzuPcX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof
25040128	B02	Common	7	1	Job Reference (optional)

Run: 8.73 E May 9 2024 Print: 8.730 E May 9 2024 MiTek Industries, Inc. Mon Apr 28 16:46:37 ID:7zeClgozaVnibeakM_F9qTzuPcW-jl2wqvTZS8FZSOn?vQztvQJfyCqTZdQpy0pGC8zM8TH

Page: 1

Scale = 1:77.2 Plate Offsets (X, Y): [2:Edge,0-2-4], [3:0-4-0,0-3-0], [7:0-4-0,0-3-0], [8:Edge,0-2-4], [12:0-5-0,0-4-8]

	(,, , ,). [Z.Euge,o z +],	[0.0 + 0,0 0 0], [<i>1</i> .0 -	+ 0,0 0 0]	, [0.Eugo,0 2 -	i, [12.0 0 0,0 4 0	1							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.83 0.90 0.59	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.35 0.04	(loc) 16-17 13-14 10	l/defl >999 >931 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 207 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x6 SP No.2 *Excep 2x4 SP No.3 Structural wood she 3-6-10 oc purlins, e Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 10=1341/ Max Grav 10=1604 (lb) - Maximum Corr Tension 1-2=0/34, 2-4=-2240 5-6=-311/51, 6-8=-2 2-17=-692/228, 8-10 16-17=0/1831, 11-11 14-15=-79/0, 13-14= 6-13=0/977, 11-13= 15-16=0/859, 4-15= 3-17=-1557/0, 7-10=	applied or 6-0-0 oc 3-17, 7-10 0-3-8, 17=1341/0-3-8 LC 12) (LC 26), 17=1604 (LC pression/Maximum 0/259, 4-5=-311/51, 239/259, 8-9=0/34,)=-685/228 6=0/1518, 10-11=0/18	4) f or 5) 6) 225) 7) 8) 9) 330, LC , '37,	Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced design. This truss ha load of 12.0 overhangs n 200.0lb AC u 13-9-12 from apart. All plates are This truss ha chord live loa * This truss ha chord live loa * This truss ha	snow loads have as been designed psf or 1.00 times i on-concurrent with unit load placed or left end, supporte e 2x4 MT20 unless as been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w hy other members	(Lum DC t B; Fully been cou for great flat roof I h other li h other li h other li h other li h other li h other li a two for a 10. with any d for a liv as where rill fit betw	DL=1.15 Plate Exp.; Ce=0.1 nsidered for t er of min rool oad of 20.0 p ve loads. tom chord, p points, 5-0-0 se indicated. 0 psf bottom other live loa re load of 20.1 a rectangle veen the bott	e 9; his f live sf on 0 0 ads. 0 psf				WITH CA	ROLA
this design 2) Wind: AS(Vasd=103 II; Exp B; and C-C B to 10-9-12 16-9-12 to cantilever right expo	CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; B Enclosed; MWFRS (er Exterior(2E) -0-10-8 to 2, Exterior(2R) 10-9-12 0 25-6-0, Exterior(2E) 2 left and right exposed sed;C-C for members ins shown; Lumber DC	(3-second gust) CDL=6.0psf; h=25ft; (velope) exterior zone 2-1-8, Interior (1) 2-1- to 16-9-12, Interior (1) 5-6-0 to 28-6-0 zone; ; end vertical left and and forces & MWFRS	8)							and the second se		Min M.	25 EER HALL

April 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	B03	Common	9	1	Job Reference (optional)	173039220

13-9-12

Carter Components (Sanford, NC), Sanford, NC - 27332,

Loading

Snow (Pf)

LUMBER

TCDL

BCLL

BCDL

WEBS

WEBS

FORCES

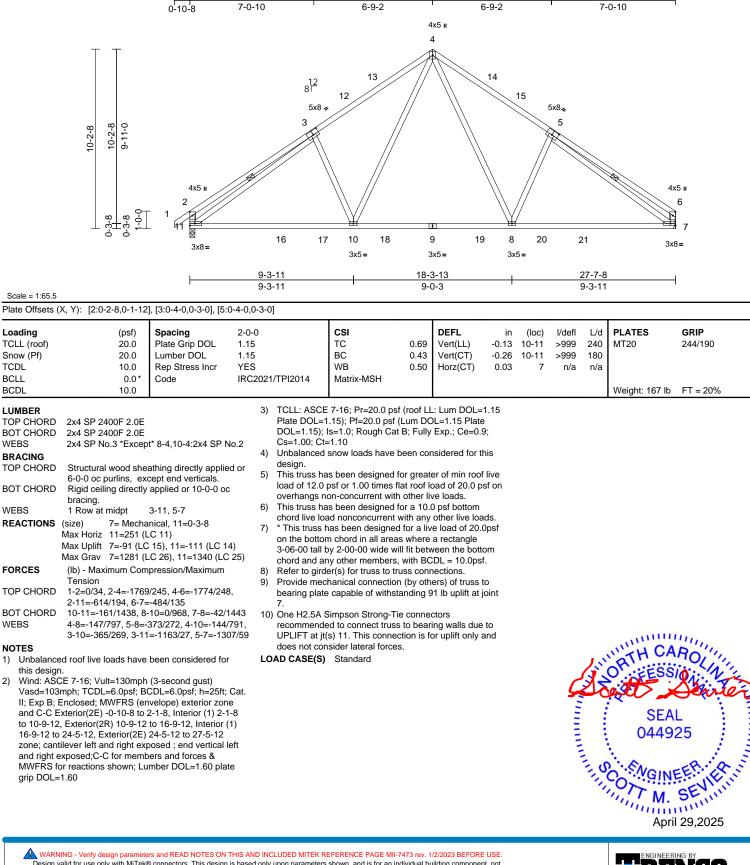
WEBS

NOTES

1)

2)

-0-10-8


7-0-10

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 13:32:40 ID:J5oMcQxt_tA8QKwsVoykmozuPcL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

20-6-14

27-7-8

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	B04	Common	2	1	Job Reference (optional)	173039221

Scale = 1:65.5

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

BRACING

TCDL

BCLL

BCDL

WEBS

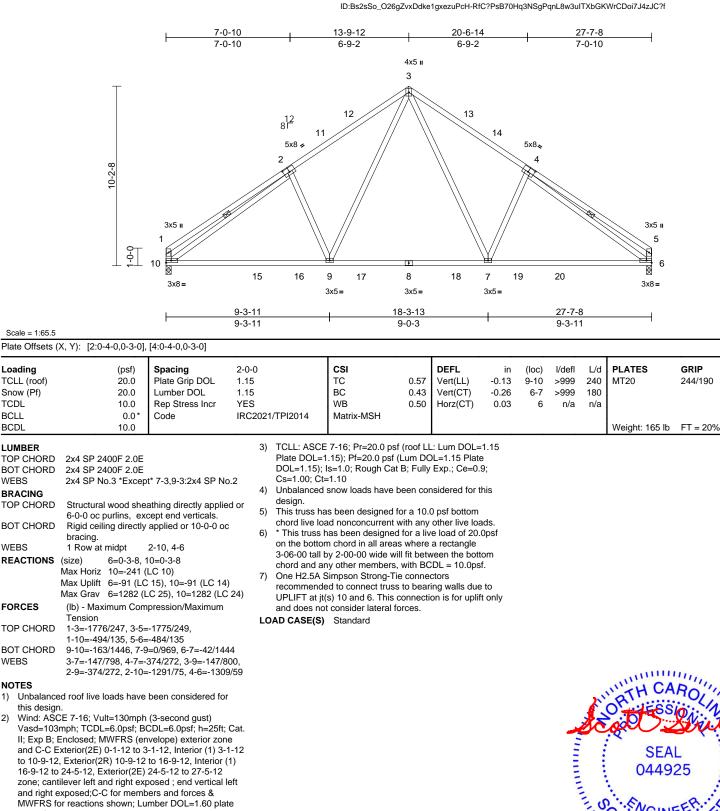
WEBS

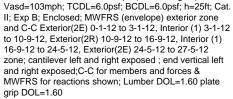
FORCES

TOP CHORD

BOT CHORD

this design


WEBS


NOTES 1)

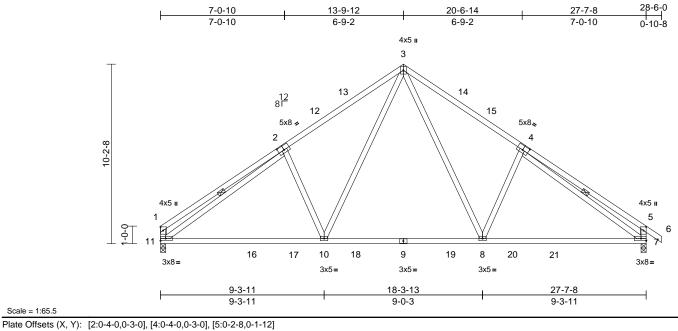
2)

Run: 8 73 S. Feb 19 2025 Print: 8 730 S. Feb 19 2025 MiTek Industries. Inc. Fri Apr 25 13:32:40

Page: 1

mm April 29,2025

044925


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a futs system. Denote use, the building designer inder very the applications of design had needed an intervent with a policitation of the system of the state of the system of the syste and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	B05	Common	2	1	Job Reference (optional)	173039222

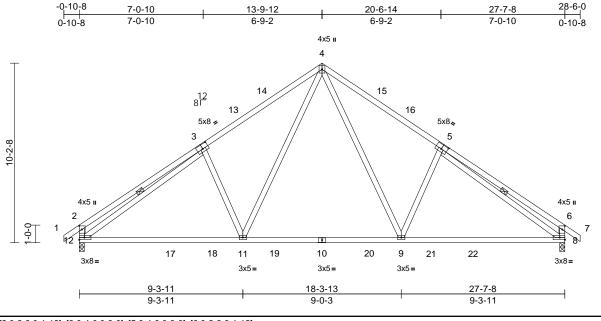
Scale = 1:65.5

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 13:32:40 ID:4MlyjMqE562Prxk7TPIdvuzuPcU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	(A, T). [2.0-4-0,0-3-0],	[4.0-4-0,0-3-0], [3.0	-2-0,0-1-12]										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD		Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	Í F	TCLL: ASCE Plate DOL=1	CSI TC BC WB Matrix-MSH 7-16; Pr=20.0 psf .15); Pf=20.0 psf	Lum DC	L=1.15 Plate	Э	(loc) 7-8 7-8 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 167 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.3 *Excep Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly	athing directly applie cept end verticals.	No.2 (4) (ed or 5) -	Cs=1.00; Ct= Unbalanced design. This truss ha oad of 12.0	Is=1.0; Rough Cat =1.10 snow loads have b is been designed f psf or 1.00 times fl on-concurrent with	oeen cor or great at roof l	nsidered for t er of min roo pad of 20.0 p	his f live					
WEBS REACTIONS		LC 10) C 15), 11=-91 (LC 1	6) 7 7) *	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b	s been designed f ad nonconcurrent y has been designed n chord in all area by 2-00-00 wide wi hy other members.	or a 10. with any I for a liv s where Il fit betw	D psf bottom other live loa re load of 20. a rectangle veen the bott	0psf .om					
FORCES TOP CHORD BOT CHORD WEBS	1-11=-494/135, 5-7=	1768/247, 5-6=0/34 604/194 -10=0/976, 7-8=-19/′	8) (1, l 1444 LOA	One H2.5A S recommende JPLIFT at jt(Simpson Strong-Ti ed to connect truss s) 11 and 7. This o t consider lateral fo	e conne to bear connecti	ctors ing walls due	e to					
this design 2) Wind: ASG Vasd=103 II; Exp B; and C-C E to 10-9-12 16-9-12 to cantilever right expo	CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; Bd Enclosed; MWFRS (en Exterior(2E) 0-1-12 to 3 2, Exterior(2R) 10-9-12 2, Exterior(2R) 10-9-12 0 25-6-0, Exterior(2E) 2 1 left and right exposed used;C-C for members a ons shown; Lumber DO	been considered for (3-second gust) CDL=6.0psf; h=25ft; velope) exterior zon -1-12, Interior (1) 3- to 16-9-12, Interior (5-6-0 to 28-6-0 zone ; end vertical left ann and forces & MWFR	Cat. e 1-12 1) \$; d									SEA 0449	• • •

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

S mm April 29,2025

Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	B06	Common	1	1	Job Reference (optional)	173039223

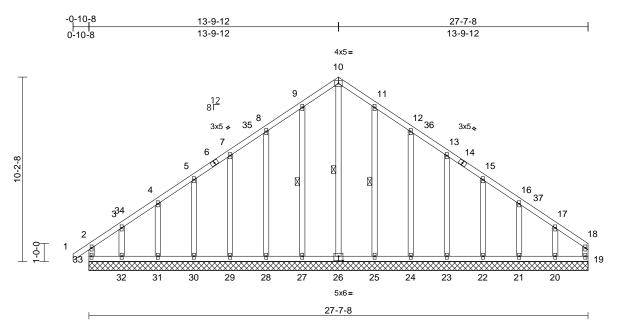
Scale = 1:65.5

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 13:32:40 ID:79iMI2w2I68PpE6UtRVbBwzKxHH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [2:0-2-8,0-1-12], [3:0-4-0,0-3-0], [5:0-4-0,0-3-0], [6:0-2-8,0-1-12]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.69 0.43 0.45	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.26 0.03	(loc) 11-12 8-9 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 168 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS FORCES TOP CHORD BOT CHORD WEBS	 2x4 SP 2400F 2.0E 2x4 SP No.3 *Excep Structural wood she 6-0-0 cc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 8=0-3-8, Max Horiz 12=-257 (Max Uplift 8=-111 (L Max Grav 8=1339 (L (Ib) - Maximum Com Tension 1-2=0/34, 2-4=-1767 6-7=0/34, 2-12=-614 	athing directly applie cept end verticals. applied or 10-0-0 or 3-12, 5-8 [2=0-3-8 LC 12] C 15), 12=-111 (LC C 26), 12=1339 (LC pression/Maximum //245, 4-6=-1766/246 //194, 6-8=-605/194 .11=0/975, 8-9=-19/ 365/269, 4-11=-144/	No.2 4) ed or 5) c 6) 7) 14) 2 25) 8) 6, 1443 LG	Plate DOL= ⁴ DOL=1.15); Cs=1.00; Ct: Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss ha on the botton 3-06-00 tall H chord and an One H2.5A S recommended UPLIFT at jt	snow loads have l as been designed f psf or 1.00 times f on-concurrent with as been designed ad nonconcurrent in has been designed in chord in all area by 2-00-00 wide wi hy other members, Simpson Strong-Ti ed to connect truss (s) 12 and 8. This t consider lateral fit	(Lum DC B; Fully been col for great lat roof I o other I or a 10. with any I for a liv s where ill fit betv with BC e conne s to bear connecti	DL=1.15 Plate Exp.; Ce=0.1 hsidered for t er of min rool bad of 20.0 p ve loads. 0 psf bottom other live loa e load of 20.1 a rectangle veen the bott CDL = 10.0ps ctors ing walls due	e 9; his f live sf on ads. Opsf om f. e to					
this desig 2) Wind: AS Vasd=10 II; Exp B; and C-C to 10-9-1 16-9-12 t cantileve right expo	ced roof live loads have gn. SCE 7-16; Vult=130mph (3mph; TCDL=6.0psf; Bi (5mc) (2E) -0-10-8 to 2, Exterior(2E) -0-10-8 to 2, Ext	been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zon 2-1-8, Interior (1) 2-1 to 16-9-12, Interior (5-6-0 to 28-6-0 zone ; end vertical left ann and forces & MWFR	r Cat. iee 1-8 (1) e; d							Yunnes		SEA 0449	• •

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



818 Soundside Road Edenton, NC 27932

S mm April 29,2025

Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	B07	Common Supported Gable	1	1	Job Reference (optional)	173039224

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 13:32:41 ID:8F9dtU?eZjwH8FN0r33803zuPcF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:63.8 Plate Offsets (X, Y): [6:0-0-0,0-0-0], [26:0-3-0,0-3-0]

Continued on page 2

	(X, 1). [0.0 0 0,0 0	0], [20:0 0 0,0 0 0]							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr * Code	2-0-0 1.15 1.15 YES IRC2021/TPI207	CSI TC 0.18 BC 0.09 WB 0.18 Matrix-MR	DEFL in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.01	- n/a - n/a	a 999 a 999	PLATES MT20 Weight: 198 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood s 6-0-0 oc purlins, Rigid ceiling direc bracing. 1 Row at midpt (size) 19=27 25=27 25=27 28=27 31=27 Max Horiz 33=25 Max Uplift 19=-71 21=43 23=-56 25=-48 28=-63 30=-65 32=-14 Max Grav 19=12 21=16 23=16i 25=255 27=25	heathing directly applie except end verticals. tly applied or 6-0-0 oc 10-26, 9-27, 11-25 7-8, 20=27-7-8, 21=27- 7-8, 23=27-7-8, 24=27- 7-8, 26=27-7-8, 33=27- 7-8, 32=27-7-8, 33=27- 1 (LC 11), 20=-129 (LC 14 (LC 15), 22=-62 (LC 15 (LC 15), 24=-64 (LC 15 (LC 15), 24=-64 (LC 15 (LC 15), 24=-64 (LC 15 (LC 15), 27=-50 (LC 14 (LC 14), 31=-40 (LC 14 (LC 14), 33=-122 (LC 7 (LC 22), 20=216 (LC 2 1 (LC 26), 24=222 (LC 2 3 (LC 26), 24=222 (LC 2 3 (LC 25), 30=171 (LC 2	BOT CHO 7-8, 7-8, 7-8, 5), i), b), 1) Unbala b), 1) Unbala b), 2) Wasd= b), 1) Unbala b), 2), 1) Unbala b), 1] Exp 2), 1] Cho-S 1], 5), 1] Cho-S 1], 1] Cho-S 1], 1] Cho-S 1], 1] Cho-S 1], 1] Cho-S 1], 1] Cho-S 1], 1] Cho-S 1], 1] Cho-S 1], 1] Cho-S 1], 1] Cho-S 1], 2] Cho-S 1], 2] Cho-S 2]	$\begin{array}{c} 3-4=-144/134, 4-5=-133/13\\ 7-8=-109/195, 8-9=-143/22\\ 10-11=-172/298, 11-12=-1\\ 12-13=-109/191, 13-15=-8\\ 15-16=-83/101, 16-17=-93\\ 17-18=-129/115, 18-19=-9\\ RD \ 32-33=-101/115, 29-30=-1\\ 30-31=-101/115, 27-28=-1\\ 28-29=-101/115, 27-28=-1\\ 23-24=-101/115, 22-23=-1\\ 21-22=-101/115, 20-21=-1\\ 19-20=-101/115\\ 10-26=-267/96, 9-27=-219\\ 7-29=-143/81, 5-30=-143/3\\ 3-32=-146/125, 11-25=-21\\ 12-24=-182/88, 13-23=-14\\ 15-22=-143/84, 16-21=-14\\ 17-20=-149/114\\ \end{array}$	35, 5-7=-116/163, 51, 9-10=-172/298, 43/251, 2/137, /82, 1/55 01/115,	 Plate DO DOL=1.1: Cs=1.00; Unbalance design. This truss load of 12 overhang All plates Gable rec Truss to 1 braced ag Gable stu This truss chord live * This truss on the bo 3-06-00 tichord and 	L=1.15); 5); Is=1.1 Ct=1.10 ced snow s has bee 2.0 psf o is non-cc as has bee 2.0 psf o is non-cc be fully s gainst lai dds spac s has be a load no ss has be a load no ss has be d load n	Pf=20.0 psf (Lur 0; Rough Cat B; v loads have been en designed for g r 1.00 times flat r oncurrent with oth MT20 unless oft ontinuous bottom sheathed from on teral movement (ed at 2-0-0 oc. en designed for a onconcurrent with een designed for a onconcurrent with the members.	erwise indicated. chord bearing. e face or securely i.e. diagonal web). a 10.0 psf bottom any other live loads. a live load of 20.0psf between the bottom
FORCES	33=223	6 (LC 21), 32=215 (LC 2 3 (LC 26) ompression/Maximum	for rea DOL= 3) Truss only.	ctions shown; Lumber DOL=1.6 1.60 designed for wind loads in the pl For studs exposed to wind (norm	ane of the truss al to the face),			CONGIN	EERINA

(3) Thus designed for which loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

April 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria and DSR-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

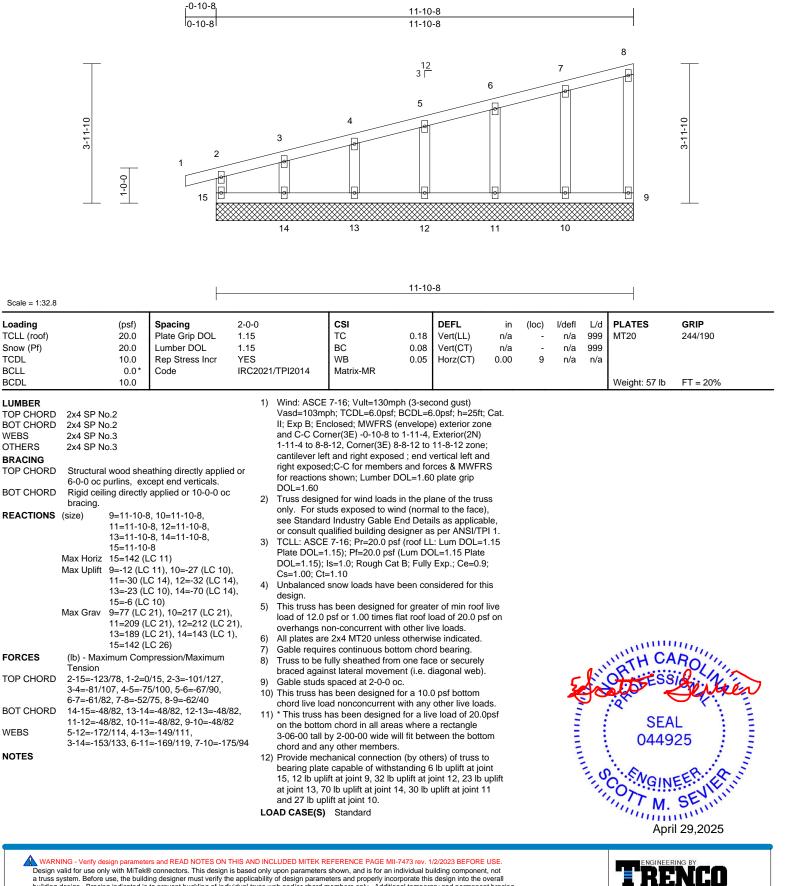
Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	B07	Common Supported Gable	1	1	Job Reference (optional)	173039224

13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 122 lb uplift at joint 33, 71 lb uplift at joint 19, 50 lb uplift at joint 27, 63 lb uplift at joint 28, 56 lb uplift at joint 29, 63 lb uplift at joint 30, 40 lb uplift at joint 31, 145 lb uplift at joint 32, 48 lb uplift at joint 25, 64 lb uplift at joint 24, 56 lb uplift at joint 23, 62 lb uplift at joint 22, 43 lb uplift at joint 21 and 129 lb uplift at joint 20.

LOAD CASE(S) Standard

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 13:32:41 ID:8F9dtU?eZjwH8FN0r33803zuPcF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	C01	Monopitch Supported Gable	1	1	Job Reference (optional)	173039225

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 13:32:41 ID:4MlyjMqE562Prxk7TPIdvuzuPcU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

818 Soundside Road

Edenton, NC 27932

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	C02	Monopitch	3	1	Job Reference (optional)	173039226

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 13:32:41

ID:4MlyjMqE562Prxk7TPIdvuzuPcU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Carter Components (Sanford, NC), Sanford, NC - 27332,

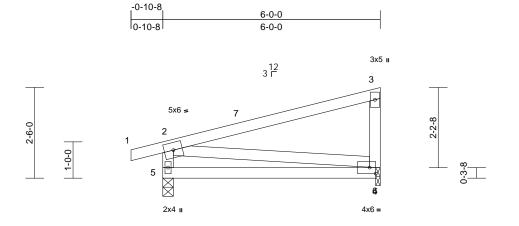
-0-10-8 6-0-0 12-0-0 6-0-0 6-0-0 0-10-8 3x5 II 12 3 Г 4 10 3x5 = 3 9 3-8-8 4-0-0 I. 3x6 = 8 2 1-0-0 0-3-8 0 7 5 20 \mathbb{X} 6 2x4 🛛 3x8 🍬 4x5 =

6-0-0	11-10-8	12-0-0
6-0-0	5-10-8	0-1-8

Scale = 1:38

Scale = 1:38												
Loading	(psf)	Spacing	2-0-0	CSI	-	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.56	Vert(LL)	-0.03	5-6	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.38	Vert(CT)	-0.07	5-6	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.69	Horz(CT)	0.01	5	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								FT 000/
BCDL	10.0	-									Weight: 63 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-8-12 oc purlins, e Rigid ceiling directly	xcept end verticals.	chord lin 6) * This tr on the b 3-06-00 chord a 7) Bearing using A	ss has been designed le load nonconcurren uss has been designed ottom chord in all are tall by 2-00-00 wide to and any other member at joint(s) 5 consider: NSI/TPI 1 angle to gra r should verify capaci	it with any ed for a liv eas where will fit betv 's. s parallel ain formul	other live loa e load of 20. a rectangle veen the bott to grain value a. Building	ads. .0psf tom					
	bracing.			mechanical connection			to					
	(size) 5=0-1-8, 5 Max Horiz 7=143 (LC Max Uplift 5=-83 (LC Max Grav 5=594 (LC	C 13) C 14), 7=-104 (LC 10) 9) One H2 recomm	plate at joint(s) 5. 5A Simpson Strong- ended to connect true at jt(s) 7 and 5. This	Tie conne ss to bear	ctors ing walls due	e to					
FORCES	(lb) - Maximum Corr	· · · · ·		s not consider lateral		n is for uplift	Only					
TOP CHORD BOT CHORD WEBS	Tension 1-2=0/15, 2-3=-963/ 4-5=-213/114, 2-7=- 6-7=-135/342, 5-6=- 3-6=0/212, 3-5=-922	536/257 196/896		E (S) Standard								
NOTES												
Vasd=103 II; Exp B; E and C-C E to 8-10-4, left and rig exposed;C	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er ixterior(2E) -0-10-8 to Exterior(2E) 8-10-4 to th exposed ; end verti C-C for members and f shown; Lumber DOL=	CDL=6.0psf; h=25ft; nvelope) exterior zor 2-1-8, Interior (1) 2- 11-10-4 zone; canti cal left and right orces & MWFRS for	ne 1-8 lever						ور	Sc	ORTH CA	AROLINIA
Plate DOL	CE 7-16; Pr=20.0 psf (=1.15); Pf=20.0 psf (L ;); Is=1.0; Rough Cat E Ct=1.10	um DOL=1.15 Plate	1						THURSE.		0449	• •
3) Unbalance	ed snow loads have be	en considered for th	nis							- 5		ER. R.
load of 12.	has been designed fo .0 psf or 1.00 times fla s non-concurrent with o	t roof load of 20.0 ps								1111	Api	SEVIE:

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	C03	Monopitch	8	1	Job Reference (optional)	173039227

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 13:32:41 ID:Aw3hNv5HKDtMR6XYYBKLTqzuBPC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

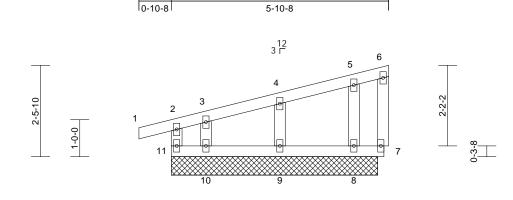
Page: 1

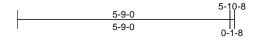
Scale = 1:31.8

Scale = 1:31.8										
Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing 2-0 Plate Grip DOL 1.11 Lumber DOL 1.11 Rep Stress Incr YES Code IRC	5 5	BC	0.68 V 0.28 V	Vert(CT) -0	in (loc).03 4-).07 4-).00 4	5 >999 5 >999	L/d 240 180 n/a	PLATES MT20 Weight: 31 lb	GRIP 244/190 FT = 20%
BOT CHORD 6-0-0 oc purlins, ex Rigid ceigiling directly bracing. REACTIONS (size) 4=0-1-8, Max Horiz 5=85 (LC Max Uplif 4=-41 (LC Max Grav 4=292 (L	y applied or 10-0-0 oc 5=0-3-8 (11) C 14), 5=-71 (LC 10) C 21), 5=395 (LC 21) npression/Maximum (41, 2-5=-344/255, -210/137 n (3-second gust) SCDL=6.0psf; h=25ft; Cat. nvelope) exterior zone 2-1-8, Interior (1) 2-1-8 dright exposed ; end -C for members and shown; Lumber (roof LL: Lum DOL=1.15 Lum DOL=1.15 Plate B; Fully Exp.; Ce=0.9; een considered for this or greater of min roof live at roof load of 20.0 psf on	 chord live loa * This truss h on the botton 3-06-00 tall b chord and an 7) Bearing at jo using ANSI/T designer sho 8) Provide mecl bearing plate 9) One H2.5A S recommende UPLIFT at jt(timpson Strong-Tie c d to connect truss to s) 5 and 4. This conr consider lateral forc	h any oth or a live I where a r it betweet rallel to g ormula. f bearing by others connecto b bearing nection is	ther live loads. load of 20.0ps rectangle en the bottom grain value Building g surface. s) of truss to ors g walls due to		Ŷ		SEA 0449	ROLL 25 SEWILL 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	C04	Monopitch Supported Gable	1	1	Job Reference (optional)	173039228


5-10-8


-0-10-8

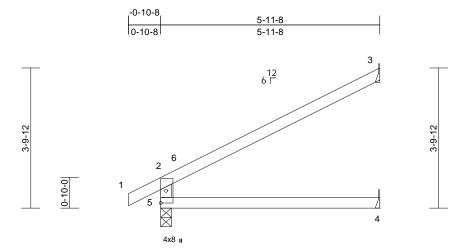
Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 13:32:41 ID:YYJKxhrssQAGS5JJ16psR6zuPcT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.2

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf 20.0 20.0 10.0 0.0 10.0	 Plate Grip DOL Lumber DOL Rep Stress Incr Code 	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MR	0.15 0.05 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%
	5-10-8 oc purlins Rigid ceiling dire bracing. (size) 7=5-7- 10=5-7 Max Horiz 11=84 Max Uplift 7=-14 9=-32 11=-22 Max Grav 7=10 (9=230 11=15 (lb) - Maximum C Tension	sheathing directly applie , except end verticals. ctly applied or 6-0-0 oc 0, 8=5-7-0, 9=5-7-0, 7-0, 11=5-7-0 (LC 11) (LC 11), 8=-18 (LC 10), (LC 10), 10=-60 (LC 11) 8 (LC 10) LC 21), 8=170 (LC 21), (LC 21), 10=107 (LC 2 8 (LC 21) compression/Maximum -2=0/21, 2-3=-69/83,	 only. For see Stand or consult 3) TCLL: AS Plate DO ad or DOL=1.12 Cs=1.00; 4) Unbalance design. 5) This truss load of 12 overhang 6) All plates 7) Truss to b braced ag 8) Gable stu 1), 9) This truss chord live 10) * This truss on the bo 3-06-00 ta 	ed snow loads have has been designer. 0 psf or 1.00 times s non-concurrent w are 2x4 MT20 unle e fully sheathed fro ainst lateral mover ds spaced at 2-0-0 has been designer load nonconcurrer s has been design tom chord in all are ull by 2-00-00 wide	vind (norm End Deta designer a bosf (roof Ll of (Lum DC tat B; Fully e been coo d for great s flat roof I ith other li ss otherw om one fac nent (i.e. c oc. d for a 10. tt with any ed for a lin ass where will fit beth	al to the face iils as applica s per ANSI/TI :: Lum DOL= :: Lum DOL= : DL=1.15 Plate r Exp.; Ce=0.9 ensidered for tl er of min roof oad of 20.0 p ve loads. ise indicated. : e or securely diagonal web) 0 psf bottom other live loa e load of 20.0 a rectangle), ble, PI 1. 1.15 e 9; his f live sf on f. uds. 0psf					
BOT CHORD	3-4=-41/64, 4-5= 6-7=-13/17	-2=0/21, 2-3=-69/83, -36/50, 5-6=-28/48, 10=-30/45, 8-9=-30/45,	11) One H2.5 recomme UPLIFT a	any other member A Simpson Strong- nded to connect tru t jt(s) 11, 7, 9, 10, a and does not cons	Tie conne Iss to bear and 8. This	ing walls due connection i				G	NITH CA	ROLINIA
Vasd=103 II; Exp B; I and C-C C to 2-8-12,	4-9=-186/183, 3- CE 7-16; Vult=130n mph; TCDL=6.0psi Enclosed; MWFRS Corner(3E) -0-10-8 Corner(3E) 2-8-12	10=-124/120, 5-8=-135, ph (3-second gust) ; BCDL=6.0psf; h=25ft; (envelope) exterior zon o 2-1-8, Exterior(2N) 2- to 5-8-12 zone; cantilev to 5-8-12 zone; cantilev	(112 12) Non Stan LOAD CASE Cat. 1-8	dard bearing condit					4 -11111	Øc	SE/ 0449	• • •


left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Minimum April 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	C06	Jack-Open	15	1	Job Reference (optional)	173039229

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 13:32:41 ID:YYJKxhrssQAGS5JJ16psR6zuPcT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-11-8

Scale =	1:31.3
---------	--------

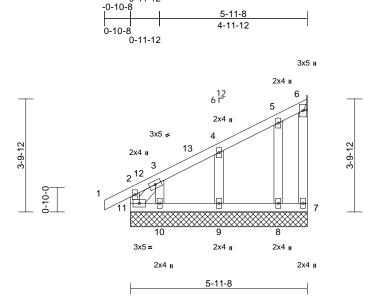
Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL1.Lumber DOL1.Rep Stress IncrYE	-0-0 .15 .15 ES RC2021/TPI2014	BC	0.85 0.45 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.07 -0.13 0.06	(loc) 4-5 4-5 3	l/defl >999 >537 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
except end verticals BOT CHORD Rigid ceiling directly bracing.	v applied or 10-0-0 oc anical, 4= Mechanical, C 14) C 14), 5=-20 (LC 14) C 21), 4=109 (LC 7),	 on the bottom 3-06-00 tall b chord and an 7) All bearings a 8) Refer to girde 9) Provide mech bearing plate 3. 10) One H2.5A S recommende UPLIFT at jt(s 	as been designed for a chord in all areas w y 2-00-00 wide will fir y other members. are assumed to be U: er(s) for truss to truss nanical connection (b) capable of withstance impson Strong-Tie c d to connect truss to s) 5. This connection sider lateral forces. Standard	where a t betw ser De conn by othe ding 8 onnec bearin	a rectangle een the botto efined . ections. ers) of truss to 7 lb uplift at jo etors ng walls due :	bm po point to					
FORCES (lb) - Maximum Con Tension TOP CHORD 2-5=-350/180, 1-2= BOT CHORD 4-5=0/0 NOTES 1) Wind: ASCE 7-16; Vult=130mph Vasd=103mph; TCDL=6.0psf; B II; Exp B; Enclosed; MWFRS (ei and C-C Exterior(2E) zone; can exposed ; end vertical left and ri members and forces & MWFRS Lumber DOL=1.60 plate grip DO	0/27, 2-3=-129/85 n (3-second gust) iCDL=6.0psf; h=25ft; Cat. nvelope) exterior zone tilever left and right ight exposed;C-C for for reactions shown;								B	ORTH CA	ROLIN

- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15) Plate DOL=1.15; Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

SEAL 044925 MGINEEP, HANNIN April 29,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)


Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	C07	Jack-Open Supported Gable	1	1	Job Reference (optional)	173039230

0-11-12

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 E May 9 2024 Print: 8.730 E May 9 2024 MiTek Industries, Inc. Mon Apr 28 16:48:07 ID:YYJKxhrssQAGS5JJ16psR6zuPcT-Zo2Jw0Ze15iftNEUk16C5caLMu3jOv5CthMbtNzM8Rs

Page: 1

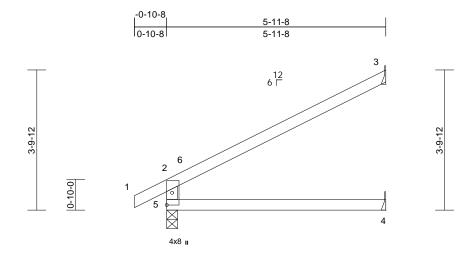
Scale = 1:38.8

Loading TCLL (roof)(psf) 20.0Spacing Plate Grip DOL2-0-0 1.15CSI TCDEFLin(loc)l/deftL/dPLATES MT20GRP 244/1Snow (Pf)20.0Lumber DOL1.15BC0.13Vert(CT)0.009-10>999240MT20244/1TCDL10.0Rep Stress IncrYESWB0.07Horz(CT)0.016n/an/aBCLL0.0*CodeIRC2021/TPI2014Matrix-MPWB0.07Horz(CT)0.016n/an/aIUMBER TOP CHORD2x4 SP No.2Soco 2Vind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. I; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 2-9-12 to 5-9-12 zone; cantilever lef and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.6013) N/ABOT CHORDStructural wood sheathing directly applied or bracing.70-S-11-8, 0-250/5-11-8, 10-260/5-11-8, 10-260/5-11-8, 10-260/5-11-8, 10-260/5-11-8, 10-260/5-11-8,1)Vind: ASCE 7-16; PriceOut on the plane of the truss only. For studs exposed to wind loads in the plane of the truss only. For studs exposed to wind loads in the plane of the truss only. For studs exposed to wind loads in the plane of the truss only. For studs exposed to wind loads in the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP11.Hord CHORDKibsic Might exposed to wind loads in the plane of the truss or trust qualified building designer as per ANSI/TP1	
TOP CHORD2x4 SP No.2Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat.BOT CHORD2x4 SP No.2II; Exp B; Enclosed; MWFRS (envelope) exterior zoneWEBS2x4 SP No.3and C-C Corner(3E) -0.10-8 to 2-1-8, Exterior(2N) 2-1-8OTHERS2x4 SP No.3BRACINGStructural wood sheathing directly applied or 5-11-8 oc purlins, except end verticals.BOT CHORDStructural wood sheathing directly applied or 5-11-8 oc purlins, except end verticals.BOT CHORDRigid ceiling directly applied or 10-0-0 oc bracing.REACTIONS(lb/size)6=7/ Mechanical, 7=-3/5-11-8, 8=152/5-11-8, 9=99/5-11-8, 10-290/5 11-8,6=7/ Mechanical, 7=-3/5-11-8, 11-9/280/5 11-8,010-290/5 11-8, 10-290/5 11-8,101111101010101010101110	90
 Max Horiz 10=135 (LC 11) Max Uplif 6=-25 (LC 13), 7=-5 (LC 31), 8=-20 (LC 14), 9=-87 (LC 14), 10=-4 (LC 10) Max Grav 6=17 (LC 10), 7=3 (LC 7), 8=-207 (LC 21), 9=179 (LC 21), 10=308 (LC 21) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 2-11=-91/240, 1-2=0/27, 2-3=-33/110, 3-4=-109/149, 4-5=67/97, 5-6=58/80, 6-7=-00 BOT CHORD 10-11=-143/205, 9-10=-44/80, 8-9=-44/80, 7-8=-44/80 WEBS 4-9=-177//220, 3-10=-185/189, 5-8=-159/149, 3-11=-335/208 WEBS 4-9=-177//220, 3-10=-185/189, 5-8=-159/149, 3-11=-335/208 WEBS 4-9=-177/220, 3-10=-185/189, 5-8=-159/149, 3-11=-335/208 NOTES On RT3A MiTek connectors recommended to connect truss to be fully sheathed for uplift only and does not consider This truss has been designed for a live load of 20.0.psf or the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. On ReT3A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at j(s) 6 and 8. This connection is for uplift only and does not consider 	

- bearing plate capable of withstanding 5 lb uplift at joint 7. 12) One RT3A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 6 and 8.
- This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932


mm April 29,2025

Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	C08	Jack-Open	1	1	Job Reference (optional)	173039231

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 13:32:41 ID:yPXu7X4P9ZhRsAr9CJAYFKzuPc9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

i7J4zJC?f

5-11-8

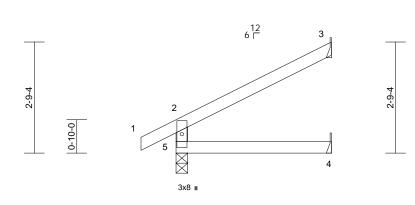
<u> </u>			
Scale	=	1:31.3	

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MR	0.85 0.45 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.07 -0.13 0.06	(loc) 4-5 4-5 3	l/defl >999 >537 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No Structural except en Rigid ceili bracing. (size) Max Horiz Max Uplift	0.2 0.3 wood she d verticals ng directly 3= Mecha 5=0-3-8 5=114 (LC 3=-87 (LC	applied or 10-0-0 oc anical, 4= Mechanical C 14) C 14), 5=-20 (LC 14) C 21), 4=109 (LC 7),	d, 8) Refer to gird 9) Provide mer bearing plat 3. 10) One H2.5A 7 UPLIFT at ji	has been designe m chord in all area by 2-00-00 wide w ny other members are assumed to b ler(s) for truss to t chanical connectic e capable of withs Simpson Strong-T ed to connect trus (s) 5. This connect nsider lateral force Standard	as where vill fit betv s. be User D russ conr on (by oth standing 8 Tie conne as to bear ction is for	a rectangle veen the bott efined . ections. ers) of truss 7 lb uplift at ctors ng walls due	to joint e to					
Vasd=103 II; Exp B; and C-C I exposed ;	Tension 2-5=-350/ 4-5=0/0 CE 7-16; Vul 3mph; TCDL Enclosed; M Exterior(2E) ; end vertical	imum Com 180, 1-2=0 It=130mph =6.0psf; B IWFRS (er zone; cant I left and rig	pression/Maximum)/27, 2-3=-129/85 (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zone ilever left and right ght exposed;C-C for for reactions shown;								(A ¹¹)		ROLIN

- Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

SEAL 044925 MGINEEPHERIN April 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)


Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	C09	Jack-Open	4	1	Job Reference (optional)	173039232

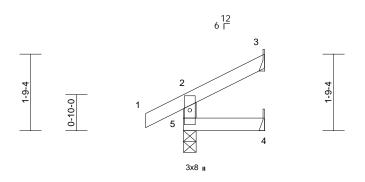
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 13:32:42 ID:YYJKxhrssQAGS5JJ16psR6zuPcT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-10-7

Scale = 1:28.7

Scale = 1:28.7												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MR	0.30 0.16 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.02 0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.3 Structural wood she 3-10-7 oc purlins, e Rigid ceiling directly bracing.	xcept end verticals. applied or 10-0-0 o inical, 4= Mechanica 14) 2 14), 5=-17 (LC 14)	ed or 8) Refer to g 9) Provide m c 3.06-00 tr chord and 8) Refer to g 9) Provide m bearing pl 3. 10) One H2.5 recommen UPLIFT a c cos not c	is has been design tom chord in all are all by 2-00-00 wide any other member gs are assumed to l irder(s) for truss to bechanical connecti ate capable of with A Simpson Strong- nded to connect tru t jt(s) 5. This conne consider lateral forc S) Standard	eas where will fit betw rs. be User D truss conr ton (by oth standing 5 Tie conne ss to bear ection is for	a rectangle veen the botto efined . nections. ers) of truss t iof lb uplift at j ctors ing walls due	o o oint to					
FORCES	(lb) - Maximum Com Tension 2-5=-292/139, 1-2=0											
BOT CHORD		<i>"</i> +0, 2 0= 00/02										
 Vasd=103 II; Exp B; I and C-C E exposed; members Lumber D 2) TCLL: AS Plate DOL 2) TCLL: AS Plate DOL 3) Unbalance design. 4) This truss load of 12 overhange 5) This truss 	CE 7-16; Vult=130mph Smph; TCDL=6.0psf; Bi Enclosed; MWFRS (er Exterior(2E) zone; cant end vertical left and rig and forces & MWFRS OL=1.60 plate grip DC CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L =1.15); Pf=20.0 psf (L ct=1.10) ed snow loads have be has been designed for .0 psf or 1.00 times flat s non-concurrent with of has been designed for load nonconcurrent with	CDL=6.0psf; h=25ft; ivelope) exterior zor ilever left and right ght exposed;C-C for for reactions shown uL=1.60 roof LL: Lum DOL=- um DOL=1.15 Plate B; Fully Exp.; Ce=0.9 een considered for th r greater of min roof t roof load of 20.0 ps ther live loads. r a 10.0 psf bottom	ne 1.15 3); his live sf on						N ations.		SEA 0449	EER. RAIL

April 29,2025


SINEEDING 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	C10	Jack-Open	4	1	Job Reference (optional)	173039233

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 13:32:42 ID:YYJKxhrssQAGS5JJ16psR6zuPcT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

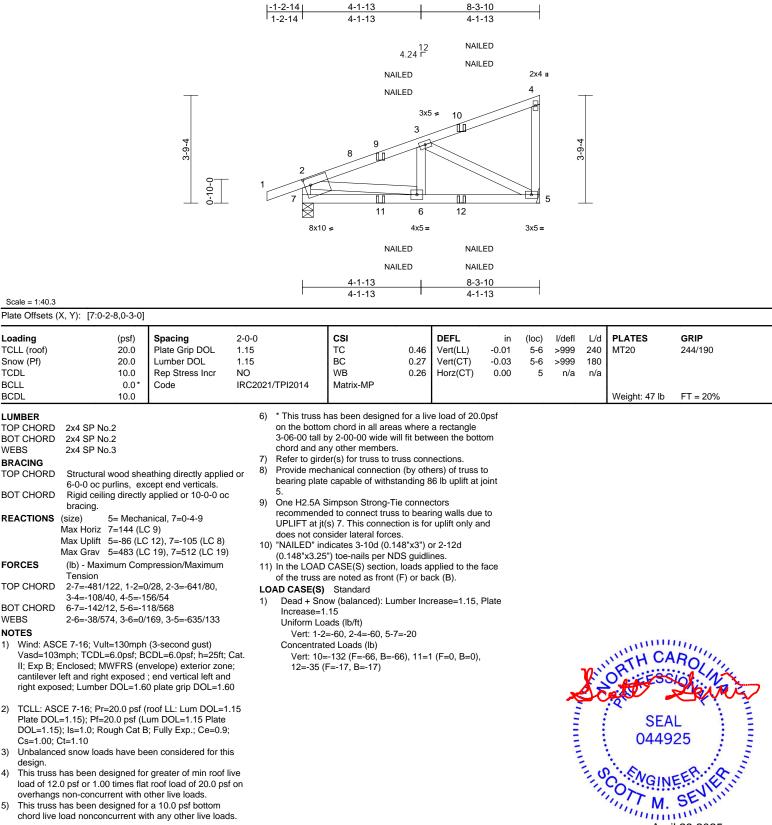
1-10-7

Scale = 1:26.6 _

Scale = 1:26.6			i									
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	0.00	4-5	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	0.00	4-5	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MR								FT 200/
BCDL	10.0		-		-						Weight: 8 lb	FT = 20%
LUMBER				ss has been design			osf					
TOP CHORD	2x4 SP No.2			ttom chord in all are		0						
BOT CHORD	2x4 SP No.2			all by 2-00-00 wide d any other member		ween the botto	m					
NEBS	2x4 SP No.3			igs are assumed to		efined						
BRACING	Structural wood she	athing directly appli	O Defente	girder(s) for truss to								
	1-10-7 oc purlins, e		Provide r	nechanical connecti								
BOT CHORD	Rigid ceiling directly		c bearing p	late capable of with	standing 2	28 lb uplift at jo	int					
	bracing.		3. (10) On a 110 (A O	T :							
REACTIONS	()	anical, 4= Mechanica		A Simpson Strong- ended to connect tru			0					
	5=0-3-8			at jt(s) 5. This conne		0						
	Max Horiz 5=40 (LC		does not	consider lateral for		, , , , , , , , , , , , , , , , , , , ,						
	Max Uplift 3=-28 (LC Max Grav 3=52 (LC			(S) Standard								
	(LC 21)	21), 4=31 (LO 7), 3	-200									
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	2-5=-184/101, 1-2=0)/39. 2-3=-43/21										
BOT CHORD	4-5=0/0	,										
NOTES												
1) Wind: ASC	CE 7-16; Vult=130mph	(3-second gust)										
	mph; TCDL=6.0psf; B											UIL.
	Enclosed; MWFRS (er		ne								" C	AD
	Exterior(2E) zone; cant end vertical left and ri								۱ ا		atho	
	and forces & MWFRS									18	OTEES	Sin
	OL=1.60 plate grip DC		,							1K		XVIII TO S
	CE 7-16; Pr=20.0 psf (1.15						2	KX KX		Delaner
	=1.15); Pf=20.0 psf (L										SE/	AL 1 2
	i); Is=1.0; Rough Cat E	3; Fully Exp.; Ce=0.9	9;						=	:		• •
Cs=1.00; (on considered for th	hin								0449	925 : 3
design.	ed snow loads have be		115									1 E
	has been designed fo	r greater of min roof	live							2.0		ains
	.0 psf or 1.00 times fla									-0	NGIN	JEE
	s non-concurrent with									11	0	" AND
5) This truss	has been designed fo	r a 10.0 psf bottom	de								M. M.	SEIII
chord live	load nonconcurrent w	ith any other live loa	IOS.								Manna M.	mm
											٨n	ril 20 2025

April 29,2025

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	C13	Diagonal Hip Girder	2	1	Job Reference (optional)	173039234

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 13:32:42 ID:FTw616y7WVQsfd4EcD_CrDzuPcJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

April 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

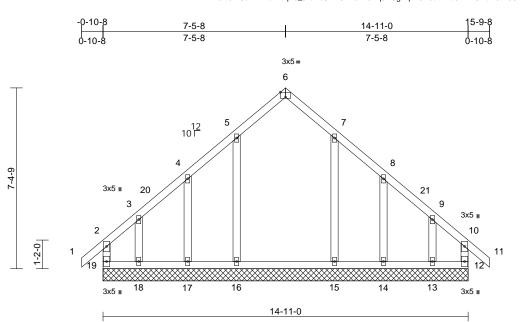
818 Soundside Road Edenton, NC 27932

Loading TCLL (roof)

Scale = 1:40.3

Snow (Pf)

TCDL	10.0 F	Rep Stress Incr	NO		WB	0.26	Horz(CT)	0.00
BCLL	0.0* 0	Code	IRC2021	/TPI2014	Matrix-MP			
BCDL	10.0		-					
LUMBER			6)	* This truss h	as been designe	ed for a liv	e load of 20.0)psf
TOP CHORD	2x4 SP No.2				n chord in all are			
BOT CHORD	2x4 SP No.2				y 2-00-00 wide v		veen the botto	m
WEBS	2x4 SP No.3				y other member			
BRACING			7)		er(s) for truss to			
TOP CHORD			or ⁸⁾		hanical connection capable of with		,	
	6-0-0 oc purlins, excer			5.	capable of with	stanuing c	o in uplit at j	JIII
BOT CHORD	3	plied or 10-0-0 oc	9)	•••	Simpson Strong-	Tie conne	ctors	
DEADTIONO	bracing.		-,		ed to connect true			to
REACTIONS	(size) 5= Mechanic Max Horiz 7=144 (LC 9	, .		UPLIFT at jt(s) 7. This conne	ction is fo	r uplift only an	ıd
	Max Uplift 5=-86 (LC 1)	,			sider lateral forc			
	Max Grav 5=483 (LC 1	,, , ,	10)		dicates 3-10d (0.			
FORCES	(lb) - Maximum Compre	,. , ,			") toe-nails per N			
FORCES	Tension	ession/maximum	11,		CASE(S) section are noted as from			ace
TOP CHORD		8. 2-3=-641/80.		AD CASE(S)		с (г) ог ра	СК (D).	
	3-4=-108/40, 4-5=-156	, ,	1)	• • • •	w (balanced): Lu	imbor Inc	rooco-1 15 E	
BOT CHORD	6-7=-142/12, 5-6=-118	/568	1)	Increase=1			1ease=1.15, r	late
WEBS	2-6=-38/574, 3-6=0/16	9, 3-5=-635/133		Uniform Loa				
NOTES					=-60, 2-4=-60, 5-	7=-20		
1) Wind: AS	CE 7-16; Vult=130mph (3	-second gust)			ed Loads (lb)			
Vasd=103	Bmph; TCDL=6.0psf; BCD	L=6.0psf; h=25ft; C	at.	Vert: 10=	-132 (F=-66, B=	-66), 11=^	1 (F=0, B=0),	


right exposed; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;

- Cs=1.00: Ct=1.10 3) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live 4) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	D01	Common Supported Gable	1	1	Job Reference (optional)	173039235

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 13:32:42 ID:0lti81rUdkI74FuWbqK5_JzuPcS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:47.1

Plate Offsets (X, Y): [6:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*		2-0-0 1.15 1.15 YES	I/TPI2014	CSI TC BC WB Matrix-MR	0.33 0.19 0.15	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	IRC202	1/1712014	Maurix-INIR							Weight: 89 lb	FT = 20%
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				roof live loads have 7-16; Vult=130mp bh; TCDL=6.0psf; E closed; MWFRS (e ner(3E) -0-10-8 to ner(3R) 4-5-8 to 10 rmer(3E) 12-9-8 to exposed ; end ver for members and own; Lumber DOL= ed for wind loads i ids exposed to wind 1 Industry Gable E alified building des 7-16; Pr=20.0 psf .15); Pf=20.0 psf .15); Pf=20.0 psf .15); Pf=20.0 psf .10; Rough Cat .10 snow loads have b s been designed for	cond gust) .0psf; h=25ft; e) exterior zor xiterior(2N) 2 xiterior(2N) 10 zone; cantilev and right & MWFRS for ate grip ane of the tru: at to the face ils as applical s per ANSI/TF .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.5 asidered for th	(Cat. ne -1-8)-5-8 ver , ver , ble, PI 1. 1.15 - ;	 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 52 lb uplift at join 19, 44 lb uplift at joint 12, 19 lb uplift at joint 16, 86 lb uplift at joint 17, 204 lb uplift at joint 18, 16 lb uplift at joint 15, 88 lb uplift at joint 14 and 202 lb uplift at joint 13. LOAD CASE(S) Standard 					
FORCES	(lb) - Maximum Com	.C 25), 19=260 (LC 27 pression/Maximum	()		osf or 1.00 times fla on-concurrent with			sf on			15	RTHUR	TOLIN
TOP CHORD	Tension 2-19=-193/44, 1-2=0 3-4=-126/59, 4-5=-12 6-7=-158/104, 7-8=-	28/57, 5-6=-158/104, 128/57, 8-9=-124/54,	7) 8) 9)	Gable require Truss to be fr braced again	2x4 MT20 unless es continuous botto ully sheathed from st lateral movement	om chor one fac nt (i.e. d	d bearing. e or securely				Śr	SEA	Lortier
BOT CHORD	9-10=-209/94, 10-11 18-19=-89/253, 17-1 16-17=-89/253, 15-1 14-15=-89/253, 13-1 12-13=-89/253	6=-89/253,	11) This truss ha chord live loa) * This truss h	spaced at 2-0-0 oc s been designed fo ad nonconcurrent v has been designed	or a 10.0 vith any for a liv	other live loa e load of 20.0			Contraction of the second s		0449	• •
WEBS	5-16=-259/58, 4-17= 3-18=-135/179, 7-15 8-14=-160/159, 9-13	=-259/56,		3-06-00 tall b	n chord in all areas by 2-00-00 wide wil by other members,	ll fit betv	veen the botto						CEVIENN
NOTES												M.	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

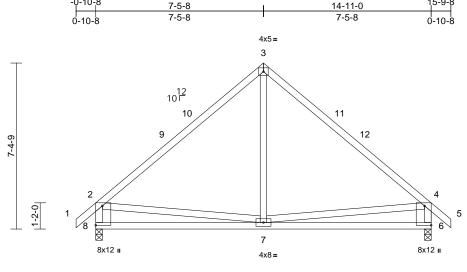
818 Soundside Road Edenton, NC 27932

April 29,2025

Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	D02	Common	2	1	Job Reference (optional)	173039236

-0-10-8

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 13:32:42 ID:JDjFhD4SkalqUUm6L11D9uzuAV6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


14-11-0

7-5-8

Page: 1

0-10-8

15-9-8

7-5-8

7-5-8

Scale = 1:51.2	

Plate Offsets (X, Y): [6:Edge,0-3-8], [4	8:Edge,0-3-8]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		1/TPI2014	CSI TC BC WB Matrix-MSH	0.99 0.48 0.17	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.12 0.01	(loc) 6-7 6-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 88 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	Max Horiz 8=-196 (LC Max Uplift 6=-58 (LC Max Grav 6=717 (LC (lb) - Maximum Comp Tension 1-2=0/39, 2-3=-659/12 4-5=0/39, 2-8=-653/12 7-8=-290/487, 6-7=-2 3-7=0/308, 2-7=-161/3 ed roof live loads have b	thing directly applied applied or 10-0-0 oc =0-3-8 : 12) 15), 8=-58 (LC 14) 22), 8=717 (LC 21) pression/Maximum 26, 3-4=-659/126, 59, 4-6=-653/155 11/449 328, 4-7=-167/331 peen considered for	d, 6) : 7) 8) L	 design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss f on the bottor 3-06-00 tall th chord and ar One H2.5A S recommended UPLIFT at jtt 	snow loads have as been designed psf or 1.00 times f on-concurrent with s been designed ad nonconcurrent has been designed on chord in all area by 2-00-00 wide w by other members Simpson Strong-Ti ad to connect truss (s) 8 and 6. This c t consider lateral f Standard	for great ilat roof I n other li for a 10. with any d for a liv s where ill fit betv ie conne s to bear onnectio	er of min roo bad of 20.0 p ve loads. 0 psf bottom other live loa re load of 20. a rectangle veen the bot ctors ing walls due	of live osf on ads. .0psf tom e to				WITH CA	NROJ MA
Vasd=103	mph; TCDL=6.0psf; BCI Enclosed; MWFRS (env	DL=6.0psf; h=25ft;									Sa	OFESS	ION Na

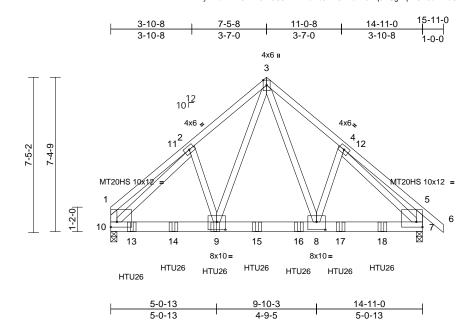
- and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 4-5-8, Exterior(2R) 4-5-8 to 10-5-8, Interior (1) 10-5-8 to 12-9-8, Exterior(2E) 12-9-8 to 15-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI = 1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

S

mm April 29,2025

SEAL


044925

818 Soundside Road Edenton, NC 27932

Contraction of the

Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	D03	Common Girder	1	2	Job Reference (optional)	173039237

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 13:32:42 ID:yPXu7X4P9ZhRsAr9CJAYFKzuPc9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

	5-0-13
	5-0-13
Scale = 1:55.1	
Plate Offsets (X, Y): [1:Edge,0-3-0], [5:Edge,0-3-0], [8:0-5-0),0-4-8], [9:0-5-0,0-4-8]

Plate Offsets (X, Y): [1:Edge,0-3-0],	[5:Edge,0-3-0], [8:0-5	-0,0-4-8]	, [9:0-5-0,0-4-8	3]									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.72 0.39 0.63	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.09 0.02	(loc) 8-9 8-9 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 229 lb	GRIP 244/190 187/143 FT = 20%	
	Structural wood she 5-6-4 oc purlins, ex Rigid ceiling directly bracing. (size) 7=0-3-8, ^ Max Horiz 10=-188 (Max Uplift 7=-401 (L Max Grav 7=4769 (I	applied or 10-0-0 oc 10=0-3-8 LC 8) C 13), 10=-423 (LC 1: LC 23), 10=5248 (LC 2	^{l or} 5) 6) ²⁾ 7)	Vasd=103mg II; Exp B; En cantilever lef right exposed TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0	7-16; Vult=130mp bh; TCDL=6.0psf; E closed; MWFRS (e t and right expose d; Lumber DOL=1. 7-16; Pr=20.0 psf (s=1.0; Rough Cat =1.10 snow loads have b s been designed for psf or 1.00 times file on-concurrent with	BCDL=6 envelope d; end v 60 plate (roof LI Lum DC B; Fully been cor or great at roof le	6.0psf; h=25ft e) exterior zo vertical left ar grip DOL=1 .: Lum DOL= DL=1.15 Plate Exp.; Ce=0. nsidered for t er of min roo bad of 20.0 p	ne; nd 60 1.15 9; his f live				(B), 13=-1089 (B 16=-1088 (B), 17), 14=-1088 (B), '=-1088 (B), 18=-	1088
TOP CHORD	Tension TOP CHORD 1-2=-1230/167, 2-3=-4794/500, 3-4=-4764/497, 4-5=-1260/191, 5-6=0/44, 1-10=-880/136, 5-7=-982/178 SOT CHORD 9-10=-312/3611, 8-9=-189/2709,			 8) All plates are MT20 plates unless otherwise indicated. 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom 										
 a. A. A.			280 11 12 13 LC	chord and any other members.							and a state of the	M.M.	25 SEVIER	A MANUTAL

April 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	PB01	Piggyback	2	1	Job Reference (optional)	173039238

-0-11-1

0-11-1

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8 73 S. Feb 19 2025 Print: 8 730 S. Feb 19 2025 MiTek Industries. Inc. Fri Apr 25 13:32:42 ID:02DJWNN4Om_2XaKzyr?dpfzuAW0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-3-14

1-7-15

4-2-15

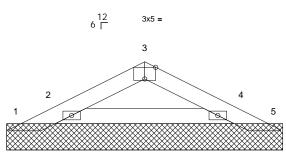
0-11-1

1-7-15

1-7-15

Page: 1

GRIP


244/190

2 4 5 ø Ø 2x4 = 2x4 = 3-3-14 PLATES Spacing 2-0-0 CSI DEFL in l/defl L/d (psf) (loc) Plate Grip DOL 20.0 1.15 тс 0.08 Vert(LL) n/a 999 MT20 n/a 20.0 Lumber DOL 1.15 BC 0.04 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr WB 0.00 Horiz(TL) 9 YES 0.00 n/a n/a 0.0 Code IRC2021/TPI2014 Matrix-MP 10.0 5) Unbalanced snow loads have been considered for this desian. Gable requires continuous bottom chord bearing. 6) 7) Gable studs spaced at 4-0-0 oc. 8) This truss has been designed for a 10.0 psf bottom Structural wood sheathing directly applied or chord live load nonconcurrent with any other live loads. 5-3-0 oc purlins. * This truss has been designed for a live load of 20.0psf 9) Rigid ceiling directly applied or 10-0-0 oc on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom 1=5-3-0, 2=5-3-0, 4=5-3-0, 5=5-3-0 chord and any other members. Max Horiz 1=18 (LC 14) 10) Provide mechanical connection (by others) of truss to 1=-30 (LC 7), 2=-21 (LC 14), 4=-19 bearing plate capable of withstanding 21 lb uplift at joint (LC 15), 5=-28 (LC 7) 2, 19 lb uplift at joint 4, 30 lb uplift at joint 1, 28 lb uplift at 1=6 (LC 14), 2=255 (LC 21), 4=242 joint 5, 21 lb uplift at joint 2 and 19 lb uplift at joint 4. (LC 22), 5=-1 (LC 15) 11) See Standard Industry Piggyback Truss Connection /Maximum Detail for Connection to base truss as applicable, or consult qualified building designer. l=-113/66, LOAD CASE(S) Standard insidered for WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Weight: 14 lb FT = 20%

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

1-2-2 1-3-12

Scale = 1:21.9 Plate Offsets (X, Y): [3:0-2-8,Edge]

Loading

TCLL (roof)

Snow (Pf)

LUMBER

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS

TCDL

BCLL

BCDL

	(LO 22), J=1 (LO
FORCES	(lb) - Maximum Compression/
	Tension
TOP CHORD	1-2=-18/43, 2-3=-112/66, 3-4=
	4-5=-2/39
BOT CHORD	2-4=-2/83
NOTES	
1) Unbalance	d roof live loads have been cor
this design.	

2x4 SP No 2

2x4 SP No.2

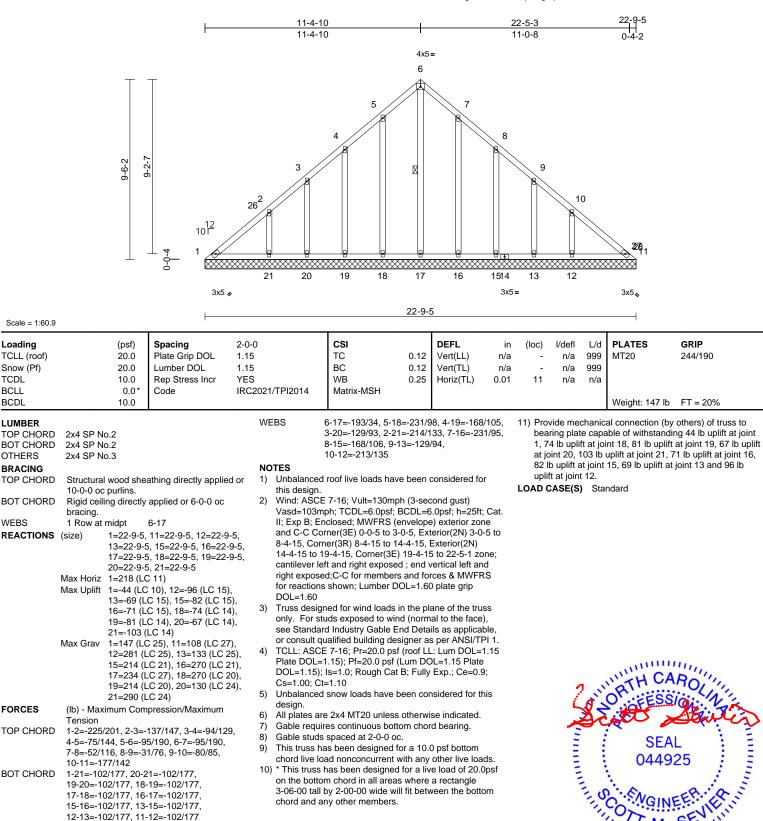
bracing.

Max Uplift

Max Grav

(size)

44925


mm April 29,2025

111111111

Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	V01	Valley	1	1	Job Reference (optional)	173039239

BCDL

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 13:32:42 ID:dSe_?JVksdORLhCGs9s8GvzuPgn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

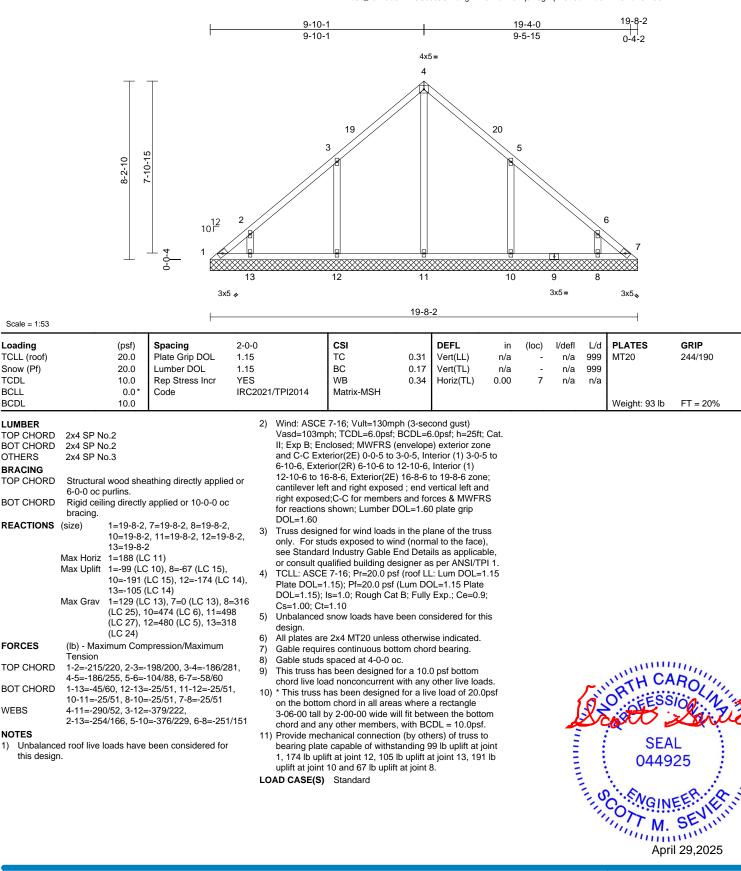
on the bottom chord in all areas where a rectangle

chord and any other members.

3-06-00 tall by 2-00-00 wide will fit between the bottom

19-20=-102/177, 18-19=-102/177, 17-18=-102/177, 16-17=-102/177, 15-16=-102/177, 13-15=-102/177, 12-13=-102/177, 11-12=-102/177

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road

Edenton, NC 27932

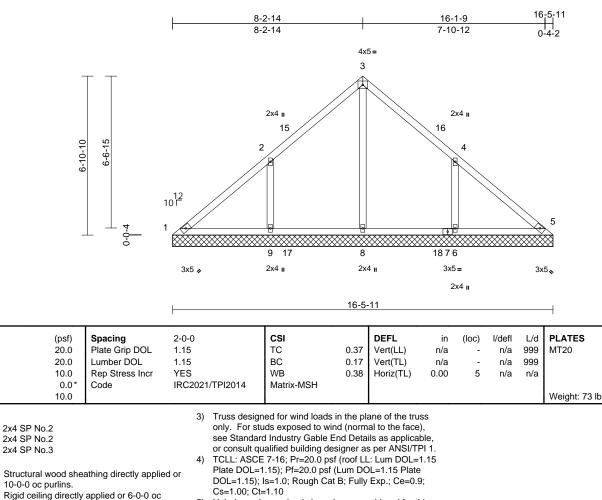
mm April 29,2025

Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	V02	Valley	1	1	Job Reference (optional)	173039240

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 13:32:42 ID:dSe_?JVksdORLhCGs9s8GvzuPgn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	V03	Valley	1	1	Job Reference (optional)	173039241


Run: 8 73 S Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries Inc. Fri Apr 25 13:32:43 ID:ITeoCYiu?YKcBf7FWN7peHzuPdx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

GRIP

244/190

FT = 20%

- bracing. REACTIONS (size) 1=16-5-11, 5=16-5-11, 6=16-5-11, 8=16-5-11, 9=16-5-11 Max Horiz 1=157 (LC 11) 1=-59 (LC 10), 6=-178 (LC 15), Max Uplift 9=-184 (LC 14) 1=80 (LC 13), 5=0 (LC 25), 6=498 Max Grav (LC 6), 8=644 (LC 24), 9=498 (LC
- 5) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-105/356, 2-3=-32/309, 3-4=-6/288, 4-5=-125/286 BOT CHORD 1-9=-186/73, 8-9=-186/70, 6-8=-186/70, 5-6=-186/70
- WEBS 3-8=-457/0. 2-9=-388/216. 4-6=-388/214 NOTES

Scale = 1:49.9 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 5-3-2, Exterior(2R) 5-3-2 to 11-3-2, Interior (1) 11-3-2 to 13-6-0, Exterior(2E) 13-6-0 to 16-6-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

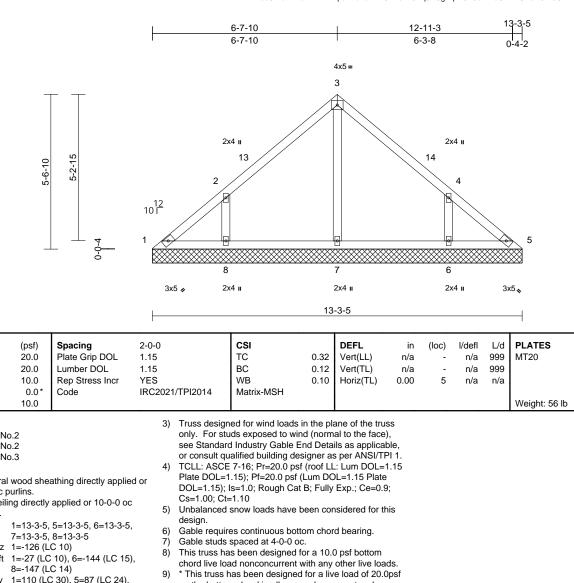
- Unbalanced snow loads have been considered for this 5) desian.
- 6) Gable requires continuous bottom chord bearing. 7)
 - Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 8)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 9)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 10) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 59 lb uplift at joint 1, 184 lb uplift at joint 9 and 178 lb uplift at joint 6.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	V04	Valley	1	1	Job Reference (optional)	173039242


Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 13:32:43 ID:ITeoCYiu?YKcBf7FWN7peHzuPdx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

GRIP

244/190

FT = 20%

LUMBER TOP CHC

Scale = 1:41.4

TCLL (roof)

Snow (Pf)

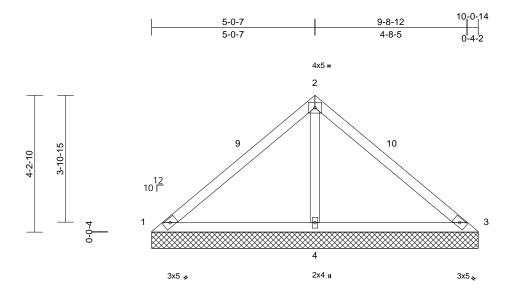
TCDL

BCLL

BCDL

TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural 6-0-0 oc p	wood sheathing directly applied
BOT CHORD		ing directly applied or 10-0-0 oc
REACTIONS	(size)	1=13-3-5, 5=13-3-5, 6=13-3-5, 7=13-3-5, 8=13-3-5
	Max Horiz	1=-126 (LC 10)
	Max Uplift	1=-27 (LC 10), 6=-144 (LC 15), 8=-147 (LC 14)
	Max Grav	1=110 (LC 30), 5=87 (LC 24), 6=439 (LC 21), 7=279 (LC 21), 8=439 (LC 20)
FORCES	(lb) - Max	imum Compression/Maximum

- Tension TOP CHORD 1-2=-138/113, 2-3=-199/115, 3-4=-199/115, 4-5=-109/72 BOT CHORD 1-8=-44/105, 7-8=-44/85, 6-7=-44/85,
- 5-6=-44/85 WEBS 3-7=-195/0, 2-8=-377/195, 4-6=-377/195 NOTES
- Unbalanced roof live loads have been considered for this design.
- 2) Wind: AŠCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 3-7-15, Exterior(2R) 3-7-15 to 9-7-15, Interior (1) 9-7-15 to 10-3-10, Exterior(2E) 10-3-10 to 13-3-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 9) * This truss has been designed for a live load of 20.0pst on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 27 lb uplift at joint 1, 147 lb uplift at joint 8 and 144 lb uplift at joint 6.


LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof	
25040128	V05	Valley	1	1	Job Reference (optional)	173039243

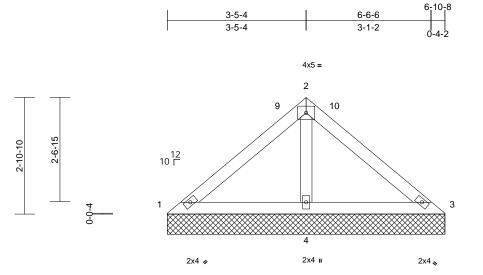
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 13:32:43 ID:ITeoCYiu?YKcBf7FWN7peHzuPdx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

10-0-14

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.50 0.47 0.21	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 38 lb	GRIP 244/190 FT = 20%
this desig	2x4 SP No.2 2x4 SP No.3 Structural wood she 10-0-0 oc purlins. Rigid ceiling directly bracing. (size) $1=10-0.14$ Max Horiz $1=-95$ (LC Max Uplift $1=-60$ (LC 4=-119 (LC (LC 20) (lb) - Maximum Com Tension 1-2=-125/406, 2-3=- 1-4=-265/182, 3-4=- 2-4=-685/286 ed roof live loads have n.	applied or 6-0-0 oc 4, 3=10-0-14, 4=10-0 10) 21), 3=-60 (LC 20), C 14) 20), 3=92 (LC 21), 4 pression/Maximum 125/406 265/182 been considered for	6) 7) 8) 14 9) =828 1(Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall t chord and ar) Provide mec bearing plate	snow loads have es continuous bo spaced at 4-0-0 is been designed ad nonconcurren has been designe n chord in all are by 2-00-00 wide ' hanical connecti e capable of with at joint 3 and 11	If (Lum DC at B; Fully be been cor oc. d for a 10.1 t with any ed for a liv as where will fit betw 's. on (by oth standing 6	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 50 lb uplift at j	e); ds. Dpsf om o					
Vasd=103 II; Exp B; and C-C I to 7-1-3, I and right	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed; MWFRS (er Exterior(2E) 0-0-5 to 3- Exterior(2E) 7-1-3 to 10 exposed; end vertical nbers and forces & MW	CDL=6.0psf; h=25ft; velope) exterior zon 0-5, Exterior(2R) 3-0 I-1-3 zone; cantilevel eft and right exposed	e -5 r left								S	OR FESS	low N

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

shown; Lumber DOL=1.60 plate grip DOL=1.60


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof		
25040128	V06	Valley	1	1	Job Reference (optional)	173039244	

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 13:32:43 ID:mfCAQuiWmrSTooiR44e2AVzuPdw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

WrCDoi7J4zJC?f

6-10-8

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) Spacing 20.0 Plate Grip 20.0 Lumber D 10.0 Rep Strest 0.0* Code 10.0 Image: Code	OOL 1.15 ss Incr YES	21/TPI2014	CSI TC BC WB Matrix-MP	0.22 0.24 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sheathing direct 6-10-8 oc purlins. Rigid ceiling directly applied or bracing. (size) 1=6-10-8, 3=6-10-8, Max Horiz 1=-63 (LC 10) Max Uplift 1=-10 (LC 21), 3=-10 4=-66 (LC 14) Max Grav 1=104 (LC 20), 3=10 4=492 (LC 21)	5 ctly applied or 6-0-0 oc 4=6-10-8 0 (LC 20), 4 (LC 21)	 Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable require Gable studs This truss ha chord live loz * This truss F on the bottor 3-06-00 tall b chord and ar Provide meci 	7-16; Pr=20.0 ps 7-16; Pf=20.0 ps 15; Pf=20.0 ps 15; For 20.0 ps 15; For 20.0 ps 16; F	(Lum DC t B; Fully been cor tom chor oc. for a 10.1 with any d for a liv as where rill fit betv t. n (by oth	DL=1.15 Plate Exp.; Ce=0.9 hsidered for the d bearing. D psf bottom other live loa e load of 20.1 a rectangle ween the botther ers) of truss f	e); ds. Dpsf om					
FORCES TOP CHORD BOT CHORD WEBS NOTES	(lb) - Maximum Compression/IV Tension 1-2=-86/207, 2-3=-86/207 1-4=-163/142, 3-4=-163/142 2-4=-386/184			at joint 3 and 66								
1) Unbalance this design	ed roof live loads have been cons n.	idered for									WHU CA	Dille

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 3-10-13, Exterior(2E) 3-10-13 to 6-10-13 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

SEAL 044925 MGINEER, IKT

USE. , not verall t bracing uss Plate Institute (www.tpinst.org) n) Hitek Aff 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	112 Eagle Creek - Hartwell C - Roof		
25040128	V07	Valley	1	1	Job Reference (optional)	173039245	

12 10 Г 1-10-1

1-10-1

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 13:32:43 ID:mfCAQuiWmrSTooiR44e2AVzuPdw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-4-0

1-5-15

3

2x4 💊

3x5 =

2

Page: 1

 Image: Constraint of the system
 Image: Constand of the system
 Image: Constando

1-2-15

1-6-10

Scale = 1:24.2

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL PCDL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.10 0.09 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103	10.0 2x4 SP No.2 2x4 SP No.2 Structural wood shea 3-8-2 oc purlins. Rigid ceiling directly bracing. (size) 1=3-8-2, 3 Max Horiz 1=-32 (LC Max Uplift 1=-12 (LC Max Grav 1=173 (LC (lb) - Maximum Com Tension 1-2=-225/84, 2-3=-2: 1-3=-51/163 ed roof live loads have	athing directly applie applied or 10-0-0 o 3=3-8-2 : 10) : 14), 3=-12 (LC 15) 2 20), 3=173 (LC 21 pression/Maximum 25/84 been considered fo (3-second gust) CDL=6.0psf; h=25ft;	7) Gable s 8) This trus chord liv 9) * This trus on the b 3-06-00 c chord an 10) Provide bearing 1 and 12 LOAD CASI) r	uds spaced at 4-0-0 s has been designe e load nonconcurrer iss has been design ottom chord in all ard tall by 2-00-00 wide id any other membe mechanical connect plate capable of with the uplift at joint 3. E(S) Standard	d for a 10. nt with any led for a liv eas where will fit betw rs. ion (by oth	other live loa e load of 20.0 a rectangle veen the botto ers) of truss t	Opsf om to				Weight: 11 lb	FT = 20%
and C-C E exposed; members a Lumber D0 3) Truss desi only. For s see Standa or consult 4) TCLL: ASC Plate DOL DOL=1.15 Cs=1.00; C 5) Unbalance design.	ixterior(2E) zone; canti end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO igned for wind loads in studs exposed to wind ard Industry Gable Env qualified building desig CE 7-16; Pr=20.0 psf (L: =1.15); Pf=20.0 psf (L: i); Is=1.0; Rough Cat B	lever left and right that exposed;C-C for for reactions shown L=1.60 the plane of the tru (normal to the face d Details as applical gner as per ANSI/TF roof LL: Lum DOL= um DOL=1.15 Plate ; Fully Exp.; Ce=0.5 then considered for the the second state of the second state of the second the second state of the second state of the second state of the the second state of the second state of the second state of the the second state of the second state of	; ;ss), ble, Pl 1. 1.15 ;							A STATE OF THE STA	M.M.	EER HALL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

