

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DR Horton Inc 118 Eagle Creek -Model: Hartwell - E

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

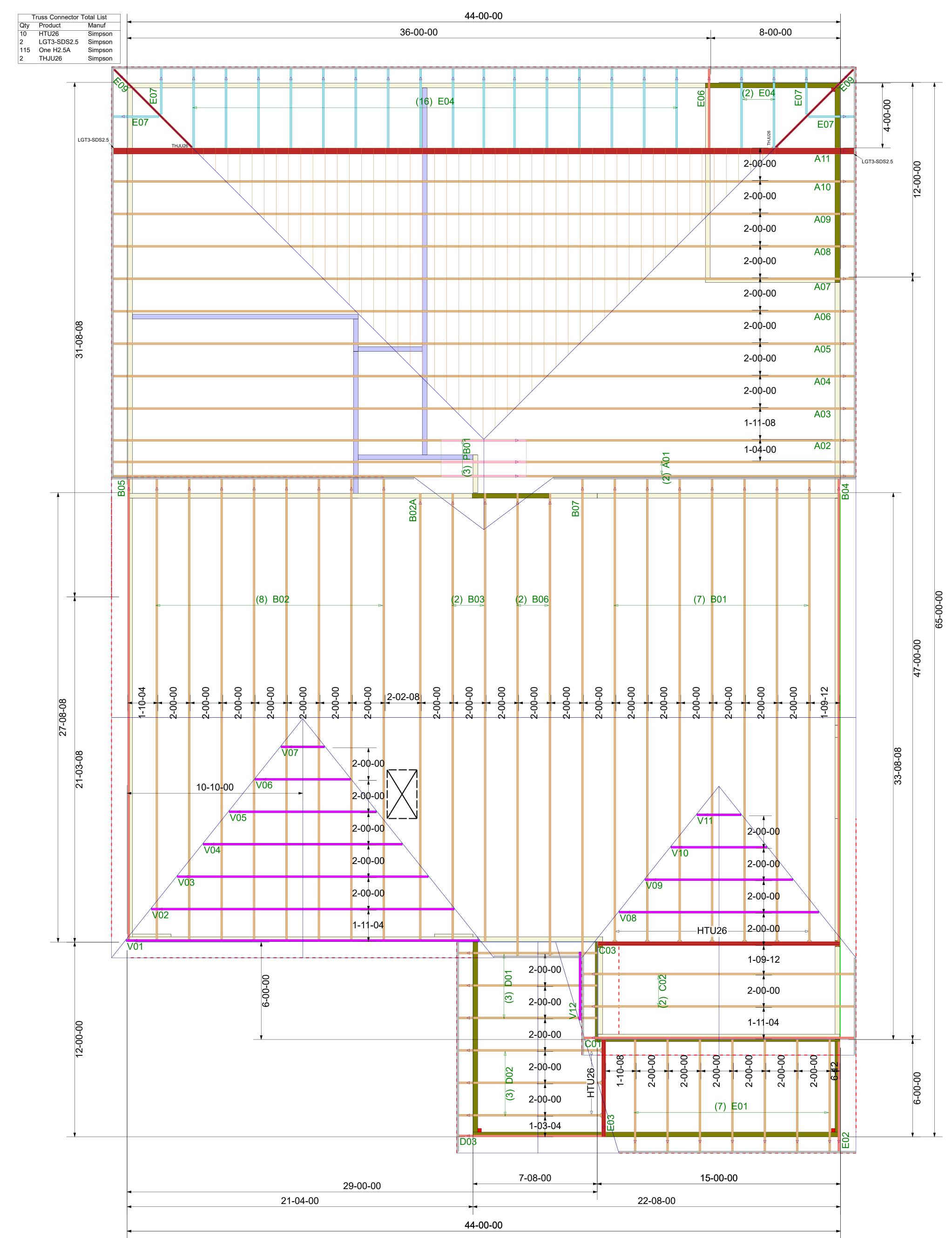
2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.


7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

PLU

IMBING DROPS NOTED ARE IN THE APPROXIMATE LOCATIONS PER PLAN. BUILDER TO VERIFY LOCATIONS BEFORE SETTING TRUSSES

CUSTOMER TAKES FULL RESPONSIBILITY FOR COMPONENTS IF CUT BEFORE AUTHORIZATION

General Notes:

** CUTTING OR DRILLING OF COMPONENTS SHOULD NOT BE DONE WITHOUT CONTACTING COMPONENT SUPPLIER FIRST

ALL BEARING POINTS MUST BE INSTALLED PRIOR TO SETTING ANY COMPONENTS.

Truss Drawing Left End Indicator

** All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibilty of the bldg designer and or contractor. ** GIRDERS MUST BE FULLY CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS. ** DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH.

Scale: Date: 4	DR Horton Inc	8	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for each truss design identified on the placement drawing. The building designer is reaprepriate	R 00/00/0 00/00/0 00/00/0 00/00/0
NTS Designer: Donalo Project Nun 040108 Sheet Num	118 Eagle Creek - Hartwell - E	CARTER	design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The disign of the tuss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing of Wood Truss" available	Revision: /00 N /00 N
ber: b er: 5	ROOF PLACEMENT PLAN	Lumber	from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179	Vame Vame

RE: 25040108

118 Eagle Creek - Hartwell E - Roof

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:Customer: DR Horton IncProject Name:25040108Lot/Block: 118Model:Hartwell EAddress:Subdivision:Eagle CreekCity:State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2021/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.7 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 45 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. 1 2	Seal# I73028909 I73028910	Truss Name A01 A02	Date 4/28/2025 4/28/2025	No. 21 22	Seal# I73028929 I73028930	Truss Name C02 C03	Date 4/28/2025 4/28/2025
3 4	I73028911 I73028912	A03 A04	4/28/2025 4/28/2025	23 24	I73028931 I73028932	D01 D02	4/28/2025 4/28/2025
5	173028913	A05	4/28/2025	25	173028933	D02	4/28/2025
6	173028914	A06	4/28/2025	26	173028934	E01	4/28/2025
7	173028915	A07	4/28/2025	27	173028935	E02	4/28/2025
8	173028916	A08	4/28/2025	28	173028936	E03	4/28/2025
9	173028917	A09	4/28/2025	29	173028937	E04	4/28/2025
10	173028918	A10	4/28/2025	30	173028938	E06	4/28/2025
11	173028919	A11	4/28/2025	31	173028939	E07	4/28/2025
12	173028920	B01	4/28/2025	32	173028940	E09	4/28/2025
13	173028921	B02	4/28/2025	33	173028941	PB01	4/28/2025
14	173028922	B02A	4/28/2025	34	173028942	V01	4/28/2025
15	173028923	B03	4/28/2025	35	173028943	V02	4/28/2025
16	173028924	B04	4/28/2025	36	173028944	V03	4/28/2025
17	173028925	B05	4/28/2025	37	173028945	V04	4/28/2025
18	173028926	B06	4/28/2025	38	173028946	V05	4/28/2025
19	173028927	B07	4/28/2025	39	173028947	V06	4/28/2025
20	173028928	C01	4/28/2025	40	173028948	V07	4/28/2025

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Pace, Adam

My license renewal date for the state of North Carolina is December 31, 2025

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Pace, Adam

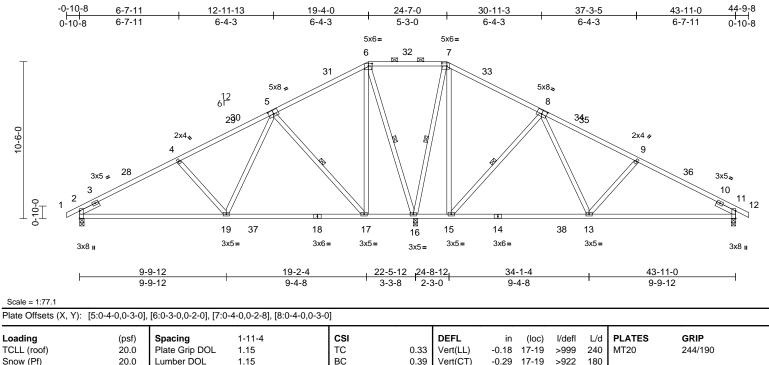
RE: 25040108 - 118 Eagle Creek - Hartwell E - Roof

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Project Customer: DR Horton Inc Project Name: 25040108 Lot/Block: 118 Subdivision: Eagle Creek Address: City, County: State:

Seal#	Truss Name	Date
173028949	V08	4/28/2025
173028950	V09	4/28/2025
173028951	V10	4/28/2025
173028952	V11	4/28/2025
173028953	V12	4/28/2025
	I73028949 I73028950 I73028951 I73028952	I73028949V08I73028950V09I73028951V10I73028952V11

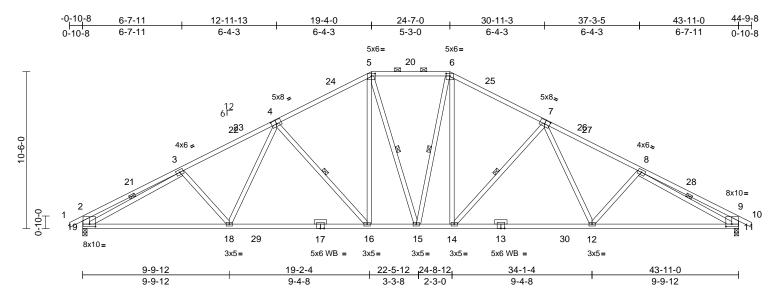

Job)	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
250	040108	A01	Piggyback Base	2	1	Job Reference (optional)	173028909

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:01 ID:M7m3ryJgz6Q78bfmaorGv1znEgR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

April 28,2025

818 Soundside Road Edenton, NC 27932


TCLL (roof) Snow (Pf) TCDL BCLL	20.0 20.0 10.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr Code	1.15 1.15 YES	I/TPI2014	TC BC WB Matrix-MSH	0.33 0.39 0.76	Vert(LL) Vert(CT) Horz(CT)		17-19 17-19 16	>999 >922 n/a	240 180 n/a	MT20	244/190	
BCDL	10.0	Code	IRC202	1/1712014								Weight: 268 lb	FT = 20%	
FORCES TOP CHORD BOT CHORD WEBS NOTES	Left 2x4 SP No.2 1-6-0 Structural wood she 6-0-0 oc purlins, exc 2-0-0 oc purlins, exc 2-0-0 oc purlins (10- Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=-155 (L Max Uplift 2=-105 (L 16=-161 (0 16=2549 (16) - Maximum Com Tension 1-2=0/23, 2-4=-1089 6-7=0/572, 7-9=-803 11-12=0/23 2-19=-263/931, 17-1 16-17=-235/248, 15- 13-15=0/404, 11-13: 4-19=-349/186, 5-19 5-17=-964/231, 6-17 6-16=-1461/168, 7-1 7-15=-64/1011, 8-15 8-13=-28/717, 9-13= ed roof live loads have	0-0 max.): 6-7. applied or 6-0-0 oc 5-17, 6-16, 7-16, 8-19 11=0-3-8, 16=0-3-8 C 15) C 14), 11=-122 (LC 1 LC 14) C 37), 11=789 (LC 39) (LC 47) pression/Maximum 0/160, 4-6=-908/325, 3/440, 9-11=-966/193, 9=-75/496, -16=-355/204, =-130/837 =-31/707, 2=-73/1002, 6=-1499/139, ==969/230, =-358/184	No.2 o.2 I or 3) 5 (, 5), 5), 5), 5), 5), 5), 8) 7) 8) 9)	Vasd=103mp II; Exp B; Enn and C-C Exte to 12-11-1, E 30-11-15 to 4 zone; cantile and right exp MWFRS for n grip DOL=1.6 TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 p overhangs n Provide adec This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar One H2.5A S recommende UPLIFT at jt(only and doe) Graphical pu	7-16; Pr=20.0 p .15); Pf=20.0 ps s=1.0; Rough Ci .1.10 snow loads have snow loads have sof or 1.00 times on-concurrent wi quate drainage to s been designed to concurrent wi quate drainage to s been designed n chord in all are y 2-00-00 wide to y other member simpson Strong- id to connect true s) 2, 16, and 11. s not consider Ia rlin representation titon of the purlir I.	BCDL=6 (envelope to 3-6-3, 1-1 to 30-1 (2E) 40-4 exposed mbers an ; Lumber I sf (roof LL f (Lum DC at B; Fully been cor d for greate flat roof lk th other lin p prevent to d for a liv as where will fit between ss to bear This conru- teral for a no.	.0psf; h=25ft; e) exterior zor interior (1) 3-f 11-15, Interior 13 to 44-9-8 end vertical d forces & DOL=1.60 pla :: Lum DOL= ² L=1.15 Plate Exp.; Ce=0.9 asidered for the er of min roof pad of 20.0 ps veloads. water ponding D psf bottom other live load e load of 20.0 ps vecen the bottom DL = 10.0psf tors ing walls due inection is for the so	ne 6-3 r (1) left ate 1.15 e); nis live sf on g. ds. Opsf com to uplift				SEA 0578	ROLINA BRO L 87 EER	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	A02	Piggyback Base	1	1	Job Reference (optional)	173028910

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:02 ID:j4ZyugNpoe2QFNXjNMRRc5znEgM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:77.1

ading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
LL (roof)	20.0	Plate Grip DOL	1.15		TC	0.37	Vert(LL)	-0.31	16-18	>999	240	MT20	244/190
ow (Pf)	20.0	Lumber DOL	1.15		BC	0.55	Vert(CT)	-0.51	16-18	>999	180		
DL	10.0	Rep Stress Incr	YES		WB	0.83	Horz(CT)	0.14	11	n/a	n/a		
LL	0.0*	Code	IRC202	1/TPI2014	Matrix-MSH								
DL	10.0											Weight: 289 lb	FT = 20%
MBER			2)		7-16; Vult=130m								
P CHORD	2x4 SP 2400F 2.0E				ph; TCDL=6.0psf;								
T CHORD	2x4 SP 2400F 2.0E				closed; MWFRS (
BS	2x4 SP No.3 *Excep				erior(2E) -0-10-8 1								
	2400F 2.0E, 15-6,15	5-5:2x4 SP No.2			Exterior(2R) 12-11								
HERS	2x4 SP No.3				40-4-13, Exterior(2 ever left and right e								
ACING	a				posed;C-C for me			ien					
P CHORD		athing directly applie			reactions shown;			ate					
	4-2-6 oc purlins, ex 2-0-0 oc purlins (5-3	cept end verticals, ar	nd	grip DOL=1.									
T CHORD		applied or 10-0-0 oc	. 3)	01	E 7-16; Pr=20.0 ps	f (roof Ll	.: Lum DOL=	1.15					
	bracing.	applied of 10-0-0 00	, ,	Plate DOL=	1.15); Pf=20.0 psf	(Lum DC	L=1.15 Plate	е					
BS	1 Row at midpt	3-19, 8-11, 6-15, 7-1	14		Is=1.0; Rough Ca	t B; Fully	Exp.; Ce=0.	9;					
	i iton at inapt	5-15, 4-16		Cs=1.00; Ct									
ACTIONS	(size) 11=0-3-8,	19=0-3-8	4)		snow loads have	been cor	isidered for t	his					
	Max Horiz 19=-141 (LC 15)	E)	design.	a haan daalamad			6 live					
	Max Uplift 11=-192 (LC 15), 19=-192 (LC	5) ⁵⁾		as been designed psf or 1.00 times t								
	Max Grav 11=2092	(LC 47), 19=2092 (LC	C 47)		ion-concurrent wit			51 011					
RCES	(lb) - Maximum Com	pression/Maximum	6)		quate drainage to			a.					
	Tension		7)		as been designed			9.					
P CHORD	5-6=-2492/364, 1-2=	=0/30, 2-3=-1058/183	3, [′]		ad nonconcurrent			ads.					
	3-5=-3694/362, 6-8=	-3693/362,	8)		has been designe								
)=0/30, 2-19=-713/18	33,	on the botto	m chord in all area	as where	a rectangle				F.e.s	ITH UP	ROM
	9-11=-708/190				by 2-00-00 wide w						X	A	11.11
T CHORD	18-19=-337/3272, 1	,			ny other members			f.		/	52	OFL	Ni Ti
	15-16=-58/2423, 14	,	9)		Simpson Strong-T						ΞD	IN	ave
BS	12-14=-104/3014, 1 3-19=-2806/186, 8-1				ed to connect trus								
.00		=-15/516, 3-18=-165/	183		(s) 19 and 11. This es not consider lat			IIIT				SEA	L : :
	5-16=-73/975, 6-14=				urlin representation			cizo		=	:	0579	07 :
	6-15=-244/201, 7-14		IC IC		ation of the purlin			5120		-	8 - K	0576	•/
				bottom chor		along ald	100 010/01					•	
	8-12=-165/183, 5-15										-		
	8-12=-165/183, 5-15 4-16=-866/228	,	10	DAD CASE(S)	Standard						-	·	-9.
ſES		,	LC	DAD CASE(S)	Standard						11,	NGIN	EER
TES Unbalance				DAD CASE(S)	Standard						in,	ADAGIN	EER.
	4-16=-866/228 ed roof live loads have			DAD CASE(S)	Standard						in the	ADAM	87 PACE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	A03	Нір	1	1	Job Reference (optional)	173028911

10-7-12

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:03

9-2-8

10

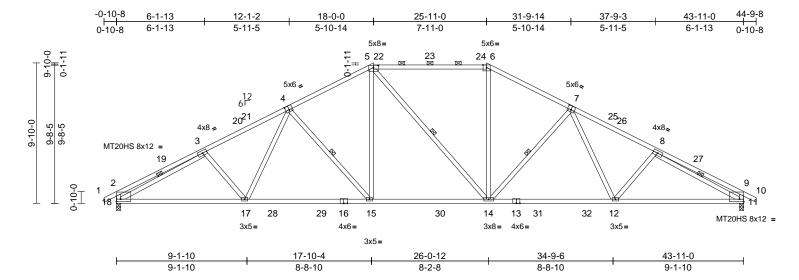
10-7-12

Page: 1 ID:b2DB1bpKsC7568Rh7_5QCAznEh5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 0-10-8 44-9-8 0-10-8 6-10-8 13-5-8 20-0-0 23-11-0 30-5-8 37-0-8 43-11-0 6-10-8 6-7-0 6-6-8 3-11-0 6-6-8 6-7-0 6-10-8 5x8= 5x6= 10-10-0 0-1-11 ÷=-5 23 6 22 24 5x8 👟 5x8 🞜 12 61 ₄21 257 20 26 10-10-0 10-8-5 10-8-5 4x6 🚅 4x6👟 3 8 19 27 8x10= 2 9 0-10-0 Ē Ē Ŕ 18 17 28 1629 15 30 14 3113 32 12 8x10= 3x5= 5x8 WB = 3x5= 3x8= 5x8 WB = 3x5= 10-7-12 19-10-4 24-0-12 33-3-4 43-11-0

4-2-8

9-2-8

Scale = 1:80.1


Leading TCLL (root) (per) 200 Spacing Paile Grip DOL Lumbe DOL 1.15 CSI TC 0.02 DEFL TC in (loc) Vide U PLATES GRIP Some (P) 20.00 Paile Grip DOL 1.15 TC 0.02 Vert(C1) -0.31 15-17 >999 200 TCDL 0.00 Reg Stress Incr YES Code IRC2021/TPI2014 Matrix-MSH WB 0.87 Horz(CT) 0.14 11 n/a n/a LUMBER TOP CHORD 2x4 SP 2400F 2.0E YMid: ASCE 7-16; Vull=130mph (3-second gust) Vsda-133mph; TCDL=6.0psf; h=25f; Cc 4.1 Vsda-133mph; TCDL=6.0psf; h=25f; Cc 4.1 Vsda-13mph; TCDL=6.0psf; h=26f; Cc 4.1 <th>Plate Offsets (</th> <th colspan="11">Plate Offsets (X, Y): [2:Edge,0-2-0], [4:0-4-0,0-3-0], [5:0-4-0,0-1-15], [7:0-4-0,0-3-0], [11:Edge,0-2-0]</th>	Plate Offsets (Plate Offsets (X, Y): [2:Edge,0-2-0], [4:0-4-0,0-3-0], [5:0-4-0,0-1-15], [7:0-4-0,0-3-0], [11:Edge,0-2-0]													
TOP CHORD BOT CHORD2x4 SP 2400F 2.0EVasd=103mph; TCDL=6.0psf; BcDL=6.0psf; bc2Bf; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 3-63, Interior (1) 3-6-3 to 13-9-8, Exterior(2E) -0-10-8 to 3-63, Interior (1) 3-1-8 to 40-4-13, Exterior(2E) -0-10-8 to 3-63, Interior (1) 	TCLL (roof) Snow (Pf) TCDL BCLL	20.0 20.0 10.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 YES	1/TPI2014	TC BC WB	0.60	Vert(LL) Vert(CT)	-0.31 -0.51	15-17 15-17	>999 >999	240 180	MT20	244/190	
11-12=-196/3316 recommended to connect truss to bearing walls due to WEBS 5-15=-94/927, 5-14=-250/257, 6-14=-57/918, 3-18=-2783/185, 8-11=-2791/169, 3-17=-190/192, 4-17=-4/542, 4-15=-895/226, 7-14=-892/226, 7-12=-4/540, 8-12=-190/192 recommended to connect truss to bearing walls due to NOTES 0) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 0) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or NOTES LOAD CASE(S) Standard LOAD CASE(S) Standard	TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance	2x4 SP 2400F 2.0E 2x4 SP No.3 *Excep No.2, 18-2,11-9:2x6 2x4 SP No.3 Structural wood shea 4-2-3 oc purlins, exc 2-0-0 oc purlins (5-2 Rigid ceiling directly bracing. 1 Row at midpt (size) 11=0-3-8, Max Horiz 18=-145 (Max Uplift 11=-191 (Max Grav 11=2126 ((lb) - Maximum Com Tension 1-2=0/30, 2-3=-1134 5-6=-2536/355, 6-8= 8-9=-1121/185, 9-10 9-11=-747/191 17-18=-341/3321, 15 14-15=-50/2449, 12- 11-12=-196/3316 5-15=-94/927, 5-14= 3-18=-2783/185, 8-1 3-17=-190/192, 4-17 7-14=-892/226, 7-12	SP 2400F 2.0E athing directly applie cept end verticals, ar -0 max.): 5-6. applied or 10-0-0 oc 5-14, 3-18, 8-11, 4-1 7-14 18=0-3-8 LC 15), 18=-191 (LC (LC 47), 18=2128 (LC pression/Maximum 1/185, 3-5=-3730/355 -3725/355,)=0/30, 2-18=-753/18 5-17=-204/3066, 14=-89/3063, -250/257, 6-14=-57/ 1=-2791/169, '=-4/540, 8-12=-190/	d or nd 5, 14) 5) (14) (14) (14) (14) (14) (14) (14) (14	Vasd=103m II; Exp B; Ern and C-C Ext to 13-9-8, E: 30-1-8 to 40 cantilever le right expose for reactions DOL=1.60 TCLL: ASCE Plate DOL=- DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n Provide ade This truss la chord live lo * This truss l on the botton 3-06-00 tall II chord and al One H2.5A S recommend UPLIFT at jt only and doo 0) Graphical pu or the orient bottom chore	ph; TCDL=6.0psf; closed; MWFRS (erior(2E) -0-10-8 t kterior(2R) 13-9-8 4-13, Exterior(2E) ft and right expose d;C-C for member shown; Lumber E E 7-16; Pr=20.0 psf 1.15); Pf=20.0 psf Is=1.0; Rough Ca =1.10 snow loads have as been designed psf or 1.00 times t quate drainage to as been designed ad nonconcurrent with quate drainage to as been designed ad nonconcurrent with quate drainage to as been designed ad nonconcurrent with quate drainage to as been designed ad nonconcurrent with quate drainage to as been designed ad nonconcurrent why other members Simpson Strong-T ed to connect trus; (s) 18 and 11. This as not consider lat urlin representation ation of the purlin d.	BCDL=6 envelope o 3-6-3, to 30-1-1 bd ; end v s and fo DOL=1.60 f (roof LI (Lum DC t B; Fully been cou- for great lat roof I n other li prevent for a liv s where ill fit betw , with BC ie connec s to bear s connec enal force n does no	6.0psf; h=25ft a) exterior zoi Interior (1) 3- 3, Interior (1) 4 to 44-9-8 zo vertical left ar rces & MWFF 0 plate grip L: Lum DOL= DL=1.15 Plate Exp.; Ce=0.1 nsidered for t er of min rool oad of 20.0 p ve loads. water pondin. 0 psf bottom other live loa te load of 20.1 a rectangle veen the bottom CDL = 10.0ps ctors ing walls due tion is for upl ss.	ne 6-3 ine; id RS 1.15 9; his f live sf on g. ds. Opsf om f. to ift				SEA 0578	ROLLAND	AMMULTIP.

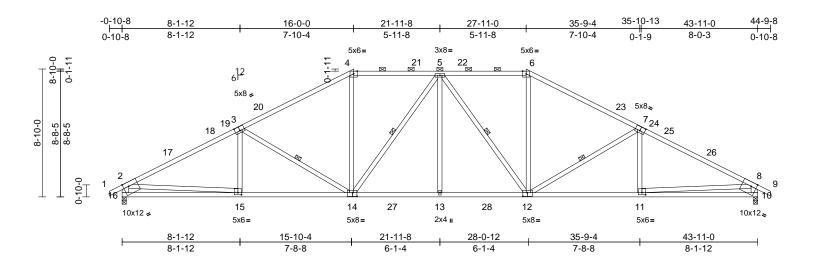
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	A04	Нір	1	1	Job Reference (optional)	173028912

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:03 ID:x?144JsThklNCvKfvXhbvEznEh0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1	1:80.7
-----------	--------

Plate Offsets ((X, Y): [2:Edge,0-2-0],	[4:0-3-0,0-3-4], [5:0-4-0),0-1-15], [7:0-3-0,0-3	-4], [11:Edge,0-2-(0]							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr Y	2-0-0 15 15 (ES RC2021	/TPI2014	CSI TC BC WB Matrix-MSH	0.88 0.49 0.80	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 15-17 15-17 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 265 lb	GRIP 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP 2400F 2.0E 2x4 SP No.3 *Excep 15-5,14-5,14-6,18-2, Structural wood shea 4-2-2 oc purlins, exc 2-0-0 oc purlins (2-4 Rigid ceiling directly bracing. 1 Row at midpt (size) 11=0-3-8, Max Horiz 18=-130 (Max Uplift 11=-194 (Max Grav 11=2088 ((lb) - Maximum Com Tension 1-2=0/27, 2-3=-992/ 5-6=-2646/369, 6-8= 8-9=-977/156, 9-10= 9-11=-659/174 17-18=-339/3313, 15 14-15=-84/2579, 12-	11-9:2x4 SP No.2 athing directly applied o cept end verticals, and -4 max.): 5-6. applied or 10-0-0 oc 5-14, 3-18, 8-11, 4-15, 7-14 18=0-3-8 LC 15) LC 15), 18=-194 (LC 14 (LC 47), 18=2093 (LC 4 pression/Maximum 157, 3-5=-3752/372, -3740/372, 60/27, 2-18=-665/167, 5-17=-221/3092,	3) 4)	Vasd=103mj II; Exp B; En and C-C Ext to 11-9-8, Ex 31-10-10 to zone; cantile and right exp MWFRS for grip DOL=1.1 TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss he load of 12.0 overhangs n Provide ader All plates are this truss ha chord live loa * This truss ha chord live loa on the bottor	7-16; Pr=20.0 ps I.15); Pf=20.0 psf Is=1.0; Rough Cat	BCDL=6 envelopp o 3-6-3, to 31-10 2E) 40-4 exposed nbers ar Lumber I f (roof LI (Lum DC t B; Fully been cor for great fat roof Li for great for great for a fully been cor for a so ther for a 10.0 with any d for a liv s where	i.Opsf; h=25ff e) exterior zo Interior (1) 3- 10, Interior (13 to 44-9-8 ; end vertical d forces & DOL=1.60 pl: L: Lum DOL= DL=1.15 Plate Exp.; Ce=0. asidered for t er of min roo pad of 20.0 p ve loads. water pondin wise indicate 0 psf bottom other live load e load of 20. a rectangle	ne -6-3 (1) 					NROLINIII
WEBS NOTES 1) Unbalance this design	11-12=-209/3303 5-15=-53/932, 5-14= 3-18=-2917/213, 8-1 3-17=-140/172, 4-17 4-15=-750/204, 7-14 7-12=-17/451, 8-12= ed roof live loads have h.	11)) One H2.5A S recommende UPLIFT at jt(only and doe) Graphical pu		ie conne s to bear s connec eral force n does no	ctors ing walls due tion is for up es. ot depict the	e to lift		2011111000	C. A.	SEA O578 ADAM	B7 ACE IIIII	


818 Soundside Road Edenton, NC 27932

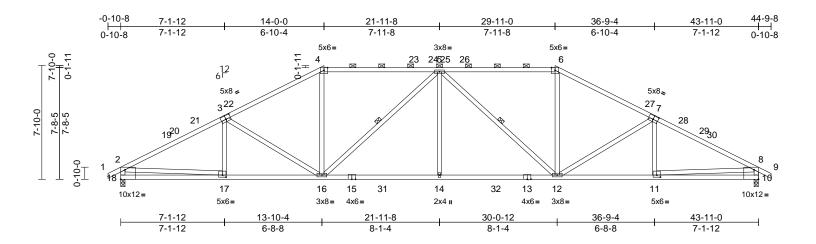
Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	A05	Нір	1	1	Job Reference (optional)	

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:03 ID:MaiDiKvMzf8y3N2EbfElWsznEgz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

April 28,2025

818 Soundside Road Edenton, NC 27932

Scale =	1:79.6
---------	--------


Plate Offsets (X	(, Y): [3:0-4-0,0-3-4],	[7:0-4-0,0-3-4], [10:0-	4-6,Edge	e], [11:0-3-0,0-	1-12], [12:0-3-12,0	-3-0], [1	4:0-3-12,0-3-	0], [15:0	-3-0,0-1	-12], [16	:0-4-6,	Edge]	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0		2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.76 0.39 0.92	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.34 0.10	(loc) 12-13 11-12 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 269 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS BRACING TOP CHORD WEBS FORCES TOP CHORD BOT CHORD WEBS	3-1-0 oc purlins, exc 2-0-0 oc purlins (5-0 Rigid ceiling directly bracing. 1 Row at midpt size) 10=0-3-8, Max Horiz 16=-119 (I Max Uplift 10=-198 (I Max Grav 10=2007 ((Ib) - Maximum Com Tension 1-2=0/30, 2-4=-3695 5-6=-2652/384, 6-8= 2-16=-2089/288, 8-1 15-16=-265/842, 13- 11-13=-181/3225, 1(3-15=-17/211, 3-14= 5-14=-521/120, 5-12 6-12=-24/915, 7-12= 2-15=-120/2429, 8-1 d roof live loads have	athing directly applied cept end verticals, and -2 max.): 4-6. applied or 10-0-0 oc 3-14, 5-14, 5-12, 7-12 16=0-3-8 LC 12) LC 15), 16=-198 (LC 1 (LC 47), 16=2007 (LC pression/Maximum 3/380, 4-5=-2652/384, 3694/381, 8-9=0/30, 0=-2090/287 15=-286/3226, 0-11=-160/830 -731/196, 4-14=-24/9; =-522/120, -730/196, 7-11=-17/2; 1=-105/2440, 5-13=0/	i 3) (47) 47) 5) 6) 7) 8) 15, 11, 9) (324 10	Vasd=103m II; Exp B; En and C-C Ext to 9-9-8, Ext to 40-4-13, E cantilever lef right expose for reactions DOL=1.60 TCLL: ASCE Plate DOL=' DOL=1.15); Cs=1.00; TCL: ASCE Plate DOL=' DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n Provide ade This truss ha chord live loa' * This truss ha chord and ar One H2.5A S recommendd UPLIFT at jt only and doe	snow loads have b as been designed fi psf or 1.00 times fi on-concurrent with quate drainage to p as been designed fi ad nonconcurrent v has been designed m chord in all areas by 2-00-00 wide wi hy other members, Simpson Strong-Tie ed to connect truss (s) 16 and 10. This as not consider late urlin representation ation of the purlin a d.	SCDL=6 envelope 3-6-3, 3-1-8, I 3 to 44-1-8, I 1 to 44-1-1, I 4-1, I 2 to 44-1-1, I 2 to 44-1-1, I 2 to 44-1, I 2	6.0psf; h=25ft a) exterior zoo Interior (1) 3- interior (1) 3- interior (1) 34- 9-8 zone; vertical left ar rces & MWFF D) plate grip L: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 insidered for the er of min roof pad of 20.0 p ve loads. water ponding. D psf bottom other live load e load of 20.0 p ve loads. water ponding. D psf bottom other live load e load of 20.1 a a rectangle DL= 10.0psf ctors ing walls due tion is for upl ss. ot depict the s	ne 6-3 -1-8 nd RS 1.15 9; his f live sf on g. ds. Opsf om f. to ift				SEA 0578	ROL 012 87 ACE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	A06	Нір	1	1	Job Reference (optional)	

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:03 ID:Ak4UzOz6ZVu6nIWNxwLim7znEgt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Apr 25 10:21:03 Page: 1 rCDoi7J4zJC?f

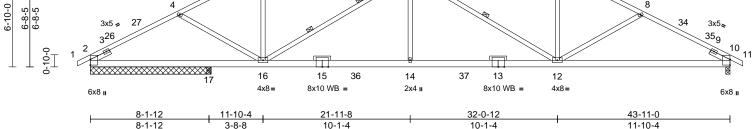
Scale = 1:79.3

Plate Offsets (X, Y): [3:0-4-0,0-3-0],	[7:0-4-0,0-3-0], [10:	:Edge,0-7-	13], [11:0-3-0,0)-1-12], [17:0-3-0,0	-1-12], [18:Edge,0-7-	13]					
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.64 0.49 0.93	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 14-16 14-16 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 257 lb	GRIP 244/190 FT = 20%
		2x4 SP No.2 athing directly applic cept end verticals, a -6 max.): 4-6. applied or 10-0-0 or 5-16, 5-12 18=0-3-8 LC 12) LC 15), 18=-200 (LC	nd c 3) C 14) 4)	Vasd=103m II; Exp B; En and C-C Ext to 7-9-8, Ext to 23-8-8, Ex 36-1-8 to 40 cantilever lef right expose for reactions DOL=1.60 TCLL: ASCE Plate DOL= DOL=1.15); Cs=1.00; Ct:	7-16; Vult=130mp ph; TCDL=6.0ps;t closed; MWFRS (e erior(2E) -0-10-8 to erior(2R) 7-9-8 to 2 kterior(2R) 23-8-8 to -4-13, Exterior(2E) t and right exposec d;C-C for members shown; Lumber Do E 7-16; Pr=20.0 psf 1.15); Pf=20.0 psf (ls=1.0; Rough Cat =1.10 snow loads have b	3CDL=6 envelope 5 3-6-3, 20-2-8, I 6 36-1-8 40-4-13 d; end 5 and fo OL=1.60 (roof LI Lum DC B; Fully	.0psf; h=25ft a) exterior zoo Interior (1) 3- nterior (1) 20 a, Interior (1) 20 certical left ar ces & MWFF b) plate grip c: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9	ne 6-3 -2-8 nne; nd RS 1.15 9;					
FORCES	(lb) - Maximum Com Tension 1-2=0/27, 2-4=-3656 5-6=-2867/378, 6-8= 2-18=-2070/281, 8-1	5/380, 4-5=-2867/37 3655/380, 8-9=0/2	8,	This truss ha load of 12.0 overhangs n Provide ade	as been designed for psf or 1.00 times fla on-concurrent with quate drainage to p as been designed for	at roof le other li prevent	oad of 20.0 p /e loads. water ponding	sf on				*******	
BOT CHORD	17-18=-223/764, 16- 14-16=-147/3451, 12 11-12=-196/3194, 11 3-17=-55/141, 3-16= 4-16=-18/1005, 5-16 5-12=-871/146, 6-12	-17=-289/3195, 2-14=-147/3451, 0-11=-132/753 620/166, 5=-870/146, 5-14=0/4	() 8) 467, 9)	 chord live loa * This truss log on the botton 3-06-00 tall log chord and and 	ad nonconcurrent v nas been designed m chord in all areas by 2-00-00 wide wil ny other members, Simpson Strong-Tie	vith any for a liv s where Il fit betv with BC	other live loa e load of 20. a rectangle veen the bott DL = 10.0ps	0psf om		(J	OR OFESS	BOLINA
NOTES 1) Unbalance this design	7-12=-620/165, 7-11 2-17=-141/2464, 8-1	=-55/141, 1=-128/2474	9) r 10	recommende UPLIFT at its only and doe) Graphical pu	ed to connect truss (s) 18 and 10. This as not consider late urlin representation ation of the purlin a	to bear connec ral force does no	ing walls due tion is for upl es. ot depict the s	ift				SEA 0578	87

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	A07	Hip	1	1	Job Reference (optional)	173028915


Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:04 ID:?uRIDR2t8LeFVDzXIBS60OznEgn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

44-9-8

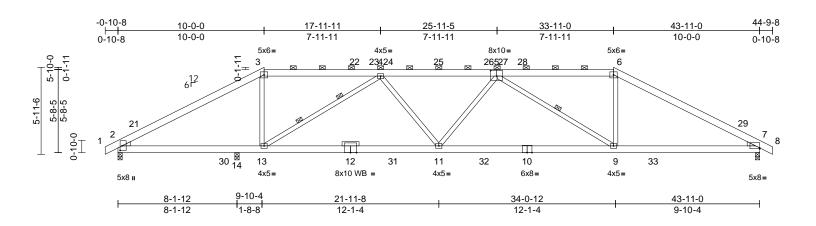
0-10-8

37-9-6 6-1-10 12-0-0 21-11-8 31-11-0 43-11-0 5-10-6 6-1-10 9-11-8 9-11-8 5-10-6 6-1-10 5x6 =8x10= 5x6= 6-10-0 0-1-11 29_30 ÷± <u>6</u> 31_32 5 <u>2</u>8 33 7 6¹² 2x4 2x4 💋 8 4 6-8-5 6-8-5 3x5 ≉ 27 34 3x5👟 3²⁶

Scale = 1:79.1

Plate Offsets (X, Y): [6:0-5-0,0-4-8]

oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.59	Vert(LL)		14-16	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.40	Vert(CT)		14-16	>916	180	11120	211/100
CDL	10.0	Rep Stress Incr	YES		WB	0.40	Horz(CT)	0.10	14 10	n/a	n/a		
	0.0*	Code		1/TPI2014	Matrix-MSH	0.77	11012(01)	0.10	10	n/a	n/a		
	10.0	Code	IRC202	1/1912014	Watrix-WISH							Weight: 280 lb	FT – 20%
	10.0											Weight. 200 lb	11 = 2070
			2)		7-16; Vult=130m			Cat					
OP CHORD	2x4 SP 2400F 2.0E	*Except* 5-6,6-7:2x6	SP		oh; TCDL=6.0psf; closed; MWFRS (
OT CHORD	2400F 2.0E				erior(2E) -0-10-8 t								
EBS	2x6 SP 2400F 2.0E	+* 16 6 10 6.0.4 60			erior(2R) 5-9-8 to								
THERS	2x4 SP No.3 *Excep 2x4 SP No.3	10-0,12-0:2x4 SP	INO.Z		terior(2R) 25-8-8								
LIDER	Left 2x4 SP No.3 1	1 C O Diabt 2v4 CD			0-4-13, Exterior(2)								
LIDER	1-6-0	1-0-0, Right 2x4 3P	NU.3		t and right expose								
RACING	1-0-0				d;C-C for member								
OP CHORD	Structural wood she	athing directly applie	d or		shown; Lumber D								
	3-9-12 oc purlins, ex	0 7 11		DOL=1.60									
	2-0-0 oc purlins (5-8		3)		7-16; Pr=20.0 ps								
OT CHORD	Rigid ceiling directly				.15); Pf=20.0 psf								
	bracing.				ls=1.0; Rough Ca	t B; Fully	Exp.; Ce=0.9	9;					
'EBS	0	6-12		Cs=1.00; Ct		_							
'EBS	2 Rows at 1/3 pts	6-16	4)		snow loads have	been cor	nsidered for t	his					
EACTIONS	(size) 2=8-3-8, 1	10=0-3-8, 17=0-3-8	5	design.				(P					
	Max Horiz 2=-99 (LC		5)		is been designed								
	Max Uplift 2=-221 (L	,	15)		psf or 1.00 times f			sron					
	Max Grav 2=1656 (L				on-concurrent witl quate drainage to			~					
	17=402 (L		7) 7)		is been designed			g.					
ORCES	(lb) - Maximum Com	,	()		ad nonconcurrent			de					1111
	Tension		8)		as been designed							"TH CA	Roll
OP CHORD	1-2=0/23, 2-4=-3155	5/441. 4-5=-3000/38			n chord in all area			opsi				A	N. C.
	5-7=-3004/383, 7-8=	,	,		y 2-00-00 wide w			om			51	O FESS	DA: V:
	8-10=-3544/420, 10-	-11=0/23			y other members						SA		N. Y.
OT CHORD	2-17=-369/2723, 16-	-17=-369/2723,	9)	N/A	,	,						gain of	
	14-16=-290/3999, 12	2-14=-290/3999,	,							-	8	OTHESS SEA	
	10-12=-277/3086									=	:	SEA	- : :
/EBS	4-16=-480/193, 5-16	,								=		0578	87 : :
	6-16=-1620/202, 6-1		1(rlin representation			size		-	200		
	6-12=-1246/239, 7-1	2=0/1020,			ation of the purlin	along the	e top and/or				-	10.0	
	8-12=-512/190			bottom chore							-	0578	ER. S
OTES				OAD CASE(S)	Standard						11	GIN	Etter St
	d roof live loads have	been considered for									1	, DANA	ACEN
this design												I INI	in the
												11111	1111


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof		
25040108	A08	Нір	1	1	Job Reference (optional)	173028916	

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:04 ID:xHZVe748gzuzIX7wPcUa5pznEgI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:78.8

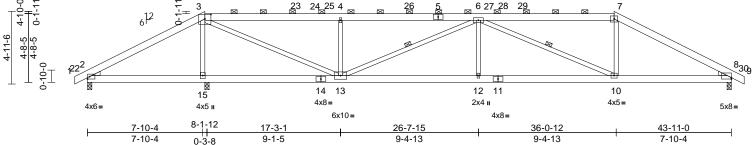
	(X, Y): [2:0-3-12,0-1-9]				1	-						1			
Loading	(psf)	Spacing	2-0-0		CSI	0.05	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP		
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.35	Vert(LL)		11-13	>999	240	MT20	244/190		
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.51	Vert(CT)		11-13	>782	180				
TCDL	10.0	Rep Stress Incr	YES		WB	0.77	Horz(CT)	0.09	7	n/a	n/a	-			
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MSH										
BCDL	10.0											Weight: 280 lb	FT = 20%		
UMBER			2)		7-16; Vult=130n										
TOP CHORD	2x6 SP 2400F 2.0E				ph; TCDL=6.0pst										
BOT CHORD	2x6 SP 2400F 2.0E				closed; MWFRS										
VEBS	2x4 SP No.3				terior(2E) -0-10-8	,	· · ·	3-6-3							
THERS	2x4 SP No.3				terior (1) 16-2-8 t										
/EDGE	Left: 2x4 SP No.3				-4-13, Exterior(2)										
	Right: 2x4 SP No.3			cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS											
RACING								RS							
OP CHORD	Structural wood shea	athing directly applie	d or		s shown; Lumber	DOL=1.60) plate grip								
	5-5-12 oc purlins, ex	cept		DOL=1.60											
	2-0-0 oc purlins (5-1	-6 max.): 3-6.	3)		E 7-16; Pr=20.0 p										
OT CHORD	Rigid ceiling directly	applied or 10-0-0 oc		Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;											
	bracing.					at B; Fully	Exp.; Ce=0.	9;							
VEBS	1 Row at midpt	5-9		Cs=1.00; Ct											
/EBS	2 Rows at 1/3 pts	4-13	4)		snow loads have	e been cor	isidered for t	his							
EACTIONS	(size) 2=0-3-8, 7	/=0-3-8, 14=0-3-8	-	design.											
	Max Horiz 2=-84 (LC		5)		as been designed										
	Max Uplift 2=-130 (L0	,	5)		psf or 1.00 times			ost on							
	14=-99 (L		<i>,</i>		ion-concurrent wi										
	Max Grav 2=1212 (L		39) -)		quate drainage to			g.							
	14=1090 (^{59),} 7)		as been designed										
ORCES	(lb) - Maximum Com	,	•		ad nonconcurren							minin	1111		
ONCLO	Tension	pression/maximum	8)		has been designe			Upst				N'L CA	Palle		
OP CHORD		/215 3-1-1881/218			m chord in all are							a	0/11		
	4-6=-4090/354, 6-7=				by 2-00-00 wide						1	OV EESS	0:11:		
OT CHORD					ny other member			d.			1 -	NO'	1.7:		
	11-13=-309/3629, 9-	,	9)		Simpson Strong-						1	the sa	المستهتر		
	7-9=-183/3001	11- 310/4000,			ed to connect true					2	\sim				
VEBS	3-13=0/515, 4-13=-2	137/310 4-1113/6	an		(s) 2, 7, and 14.			πinqu		-		SEA	L :		
1200	5-11=-120/216, 5-9=				es not consider la					=	:				
	5 11-120/210, 5-9=	1223/233, 0-3=0/10			urlin representation			size			8 8	0578	87		
OTES	a diverse fille and a la	have seeded to be			ation of the purlin	i along the	e top and/or								
,	ed roof live loads have	been considered for		bottom chor							-		a ! .		
this desiar	n.		L(DAD CASE(S)	Standard						-	·	-M		

this design.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof		
25040108	A09	Нір	1	1	Job Reference (optional)	173028917	


8-0-0

8-0-0

8x10=

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:04 ID:mRwmvA8uGpf7TSa4msb_K4znEgf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

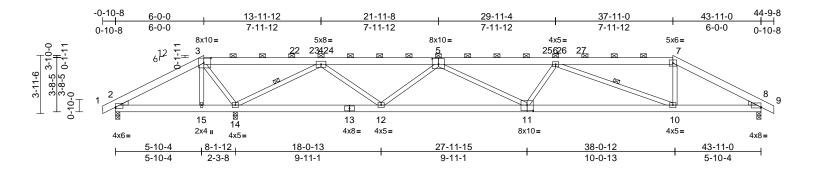
17-3-1 26-7-15 35-11-0 43-11-0 9-3-1 9-4-13 8-0-0 9-3-1 2x4 II 4x8= 4x8= 5x6= 23 24 25 4 26 ⊠ 6 27 28 29 7 5

Scale = 1:78.6

riale Offsets ((X, Y): [3:0-5-0,0-3-10	ıj, [ö:⊏αge,∪-1-3] ∎	-									1	
oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.91	Vert(LL)		12-13	>999	240	MT20	244/190
now (Pf) CDL	20.0	Lumber DOL	1.15		BC WB	0.66	Vert(CT)		12-13	>999	180		
	10.0	Rep Stress Incr	YES			0.88	Horz(CT)	0.06	8	n/a	n/a		
	0.0* 10.0	Code	IRC2021/	TPI2014	Matrix-MSH							Weight: 284 lb	FT = 20%
	10.0	1			ļ							Wolght. 2011b	11-2070
JMBER			2)		7-16; Vult=130mp								
OP CHORD					oh; TCDL=6.0psf; closed; MWFRS (
		** 12 2 12 6 10 0.0.4			erior(2E) -0-10-8 t								
EBS	2x4 SP No.3 *Excep No.2	ot* 13-3,13-6,10-6:2x4	37		erior (1) 14-2-8 to			000					
EDGE	Left: 2x4 SP No.3				4-13, Exterior(2E)			one;					
LDOL	Right: 2x4 SP No.3				t and right expose								
RACING	J 2. 11010				d;C-C for member			RS					
OP CHORD	Structural wood she	athing directly applied	lor		shown; Lumber D	OL=1.60) plate grip						
	4-4-9 oc purlins, exc			DOL=1.60		.,							
	2-0-0 oc purlins (2-2		3)		7-16; Pr=20.0 ps								
OT CHORD	0 0 ,	applied or 6-0-0 oc			.15); Pf=20.0 psf								
	DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10												
EBS		6-13, 6-10	4)		snow loads have l	heen cor	nsidered for t	this					
EACTIONS	(8=0-3-8, 15=0-3-8	7)	design.		00011001							
	Max Horiz 2=69 (LC		5)		s been designed	for great	er of min roo	f live					
	Max Uplift 2=-435 (L), '		psf or 1.00 times f								
	15=-282 (Max Cray 2-200 (1)				on-concurrent with								
	Max Grav 2=300 (L0 15=2724		0)		quate drainage to			ıg.					
ORCES	(lb) - Maximum Corr	. ,	7)		s been designed								
JAGES	(ib) - Maximum Con Tension	pression/iviaximum	0)		ad nonconcurrent							minin	11111
OP CHORD		1309, 3-4=-1915/289,	8)		has been designed			upst				A LA CA	Rain
	4-6=-1913/287, 6-7=				n chord in all area by 2-00-00 wide w			tom			5	4	SUL In
	7-8=-2367/309, 8-9=	,			y other members.		veen the bott	lom			E.	Q.LEESS	10: V 1
OT CHORD	2-15=-1103/225, 13	-15=-1019/213,	9)		on Strong-Tie con		recommende	ed to			2 3	UP F	5 4.7
	12-13=-329/3007, 1	0-12=-329/3007,	-,		s to bearing walls							and a	an
	8-10=-168/2070				ion is for uplift onl					1		SEA	
/EBS	3-15=-2452/372, 3-1			lateral forces						=	:	JEA	
		3=-1233/219, 6-12=0/3	389, 10)		Simpson Strong-Ti					-		0578	87 :
	6-10=-1048/234, 7-1	10=0/585			ed to connect truss					-			
DTES	a di na aƙ Kuta Ita a da K	have enabled to			s) 15 and 8. This		on is for uplif	tt only			1	N	A 1 3
	ed roof live loads have	been considered for	14)		t consider lateral f		at doniat the	0170			1	·SNGINI	EH
this desigr	11.		11)		rlin representatior ation of the purlin a			SIZE			11	A	THE N
				bottom chord			, top anu/01				-	0578	PAUTIN
			10	AD CASE(S)								11111	in the second se
			20/		Glandara							Amri	00.0005

April 28,2025

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type Qty Ply 118 Eagle Creek - Hartwell E - Roof			5	
25040108	A10	Нір	1	1	Job Reference (optional)	173028918

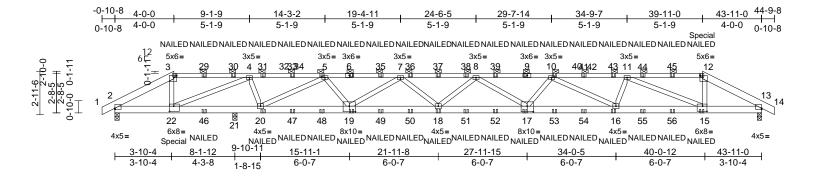
Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:04 ID:70jfytC15LHPZDT1YPB918znEga-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:78.4

· · · · · ·			1								-
Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 3CLL 0.0* 3CDL 10.0	Spacing2-0Plate Grip DOL1.11Lumber DOL1.11Rep Stress IncrYESCodeIRC	5 5	CSI TC BC WB Matrix-MSH	0.86 0.56 0.98	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 11-12 11-12 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 281 lb	GRIP 244/190 FT = 20%
No.2 //EBS 2x4 SP No.3 //EDGE Left: 2x4 SP No.3 Right: 2x4 SP No.3 Right: 2x4 SP No.3 RACING OP CHORD OP CHORD Structural wood shea 4-7-4 oc purlins, exce 2-0-0 oc purlins (3-9- OT CHORD Rigid ceiling directly a bracing. //EBS 1 Row at midpt EACTIONS (size) 2=0-3-8, 8: Max Horiz 2=-53 (LC Max Uplift 2=-777 (LC Max Grav 2=169 (LC 14=-397 (L Max Grav OP CHORD 1-2=0/38, 2-3=-289/1 1-2=0/38, 2-3=-289/1 1-4=-3235 (I ORCES (lb) - Maximum Comp Tension OP OP CHORD 2-15=-1621/29, 14-1 12-14=-140/364, 10-1 8-10=-172/2009 VEBS 3-15=-5/166, 3-14=-1 4-14=-3334/561, 4-12 5-12=-1241/285, 5-11	-8 max.): 3-7. applied or 6-0-0 oc 4-14, 6-10 =-0-3-8, 14=0-3-8 15) C 40), 8=-186 (LC 15), LC 11) C 10), 8=1277 (LC 22), LC 40) pression/Maximum 1879, 3-4=-357/2568, -1984/292, 0/38 15=-1627/299, 12=-415/3306, 1715/280, 2=-96/1566, 1=-67/784, =-1425/291, 7-10=0/604	 Vasd=103m II; Exp B; Er and C-C Ext to 12-2-8, In 31-8-8 to 400 cantilever le right expose for reactions DOL=1.60 TCLL: ASCE Plate DOL= DOL=1.0; Cs=1.00; Ct Unbalanced design. This truss he load of 12.0 overhangs ri Provide ade This truss ha chord live lo * This truss ha chord live lo 8) * This truss ha chord live lo 8) * This truss ha chord and ad Provide mee bearing plate 2, 397 lb up 10) Graphical pu 	snow loads have b as been designed fr psf or 1.00 times fl on-concurrent with quate drainage to p as been designed fr ad nonconcurrent w has been designed m chord in all areas by 2-00-00 wide wil ny other members. chanical connection e capable of withsta iff at joint 14 and 12 urlin representation ation of the purlin a d.	3CDL=6 nvelope 3-6-3, 1 31-8-8, 1 40-4-13 d; end v and for OL=1.6C (roof LL Lum DC B; Fully eeen cor or greate at roof k or a lov vith any for a liv s where I fit betw (by oth- anding 7 86 lb up) does no	.0psf; h=25ft) exterior zo Exterior(2R) to 44-9-8 zc ertical left ar ces & MWFF plate grip : Lum DOL= L=1.15 Plate Exp.; Ce=0.1 sidered for t er of min roof aad of 20.0 p es loads. vater pondin 0 psf bottom other live loa e load of 20.0, a rectangle recen the bott eren of truss i 77 lb uplift ar if at joint 8.	ne 3-6-3 one; nd RS (1.15 e) 9; his f live sf on g. ads. Opsf com to t joint			and the second sec	SEAL 05788	ROLAND OVERAL

April 28,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	A11	Hip Girder	1	3	Job Reference (optional)	173028919

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:06 ID:mzzd1oZDFFxIYgBcl?CyjFznEg7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:78.2 ~ "

Plate Offsets ((X, Y): [2:Edge,0-0-15], [3:0-2-4,0-1-12], [1	2:0-2-4,0-	1-12], [13:Edg	e,0-0-15], [15:0-3-	8,0-4-4],	[17:0-5-0,0-4-8]], [19:	0-5-0,0-	4-8], [22	:0-3-8,	.0-4-4]		
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC202	I/TPI2014	CSI TC BC WB Matrix-MSH	0.51 0.59 0.42	Vert(CT) -		(loc) 17-18 17-18 13	l/defl >999 >959 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 761 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 *Excep 2400F 2.0E 2x6 SP 2400F 2.0E 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 2=0-3-8, Max Horiz 2=-38 (LC Max Uplift 2=-715 (L	athing directly applie pept I-0 max.): 3-12. applied or 6-0-0 oc 13=0-3-8, 21=0-3-8 5 59) C 38), 13=-361 (LC	d or 2)	(0.131"x3") r Top chords of staggered at Bottom chord staggered at Web connec Except mem member 12- All loads are except if not CASE(S) see provided to c unless other	be connected tog nails as follows: connected as follo 0-9-0 oc, 2x4 - 1 ds connected as follows: ted as follows: 2x ber 3-22 2x4 - 1 ro 15 2x4 - 1 row at (considered equal ed as front (F) or t tion. Ply to ply co distribute only load wise indicated. roof live loads hav	ws: 2x6 - row at 0- ollows: 2 4 - 1 row ow at 0-8 -8-0 oc. ly applie back (B) innection is noted	2 rows 9-0 oc. x6 - 2 rows at 0-9-0 oc, t-0 oc, Except d to all plies, face in the LOAI s have been as (F) or (B),		bea 2, 3 12) Gra bot 13) "N/ (0. 14) Ha pro lb c des res LOAD	aring pla 361 lb up aphical p the orien tom cho AILED" in 148"x3.2 nger(s) c vided su down and sign/sele ponsibili CASE(S	te capa blift at j burlin re tation rd. ndicate 5") toe or othe ufficient d 46 lb ection c ty of of) Sta	al connection (b) able of withstand oint 13 and 768 l epresentation do of the purlin alon as 3-10d (0.148") -nails per NDS of r connection dev t to support conc up at 4-0-0 on t of such connectio thers. ndard	y others) of truss to ing 715 lb uplift at joint b uplift at joint 21. es not depict the size g the top and/or (3") or 3-12d juidlines. ice(s) shall be entrated load(s) 271 pottom chord. The n device(s) is the	
FORCES	21=-768 (LC 9) Max Grav 2=157 (LC 8), 13=2396 (LC 20), 21=4745 (LC 36) (lb) - Maximum Compression/Maximum Tension D 1-2=0/39, 2-3=-419/2411, 3-4=-321/1963, 4-5=-472/2971, 5-7=-3712/626, 7-8=-6876/1142, 8-10=-8160/1334, 10-11=-7166/1140, 11-12=-3715/571,			 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 						 Dead + Snow (balanced): Lumber Increase=1.15, Increase=1.15 Uniform Loads (lb/ft) Vert: 1-3=-60, 3-12=-60, 12-14=-60, 23-26=-20 Concentrated Loads (lb) 				
BOT CHORD	12-13=-4336/630, 13 2-22=-2061/393, 21- 20-21=-2690/457, 18 16-18=-1345/8179, 1 13-15=-520/3816	-22=-2690/457, 8-20=-1026/5892,	,	DOL=1.15); Cs=1.00; Ct= Unbalanced design.	ls=1.0; Rough Ca =1.10 snow loads have	t B; Fully been cor	Exp.; Ce=0.9; nsidered for this				Ľ	ALL A	N.N.N.	
WEBS NOTES	13-15=-520/3816 3-22=-1604/336, 11- 12-15=-150/1604, 4- 4-20=-982/253, 5-20 5-19=-328/2660, 7-1 7-18=-137/1326, 8-1 8-17=0/458, 10-17=- 10-16=-1193/289, 1	-22=-118/825,)=-5799/1026, 9=-2619/523, 8=-1217/320, -37/162,	7) 8) 9) 10	load of 12.0 overhangs n Provide aded This truss ha chord live loa) * This truss h on the bottor 3-06-00 tall b	is been designed psf or 1.00 times i on-concurrent with quate drainage to is been designed ad nonconcurrent nas been designee n chord in all area by 2-00-00 wide w y other members	ilat roof lo n other li prevent for a 10. with any d for a liv as where ill fit betw	bad of 20.0 psf of ve loads. water ponding. D psf bottom other live loads. e load of 20.0ps a rectangle	on sf				SEA 0578	EER.	

April 28,2025

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 1/2/2023 BEFORE USE. WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	A11	Hip Girder	1	3	Job Reference (optional)	173028919

97 (B), 22=-271 (B), (B), 5=-97 (B),

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:06 ID:mzzd1oZDFFxIYgBcl?CyjFznEg7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	B01	Common	7	1	Job Reference (optional)	173028920

Loading

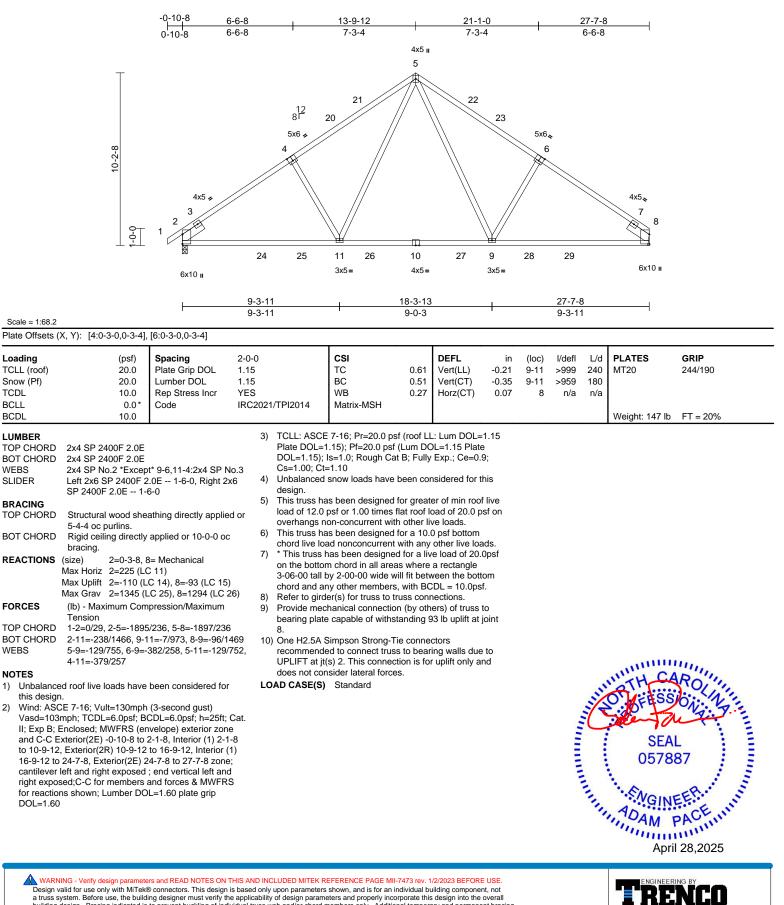
TCDL

BCLL

BCDL

WEBS

WEBS


NOTES

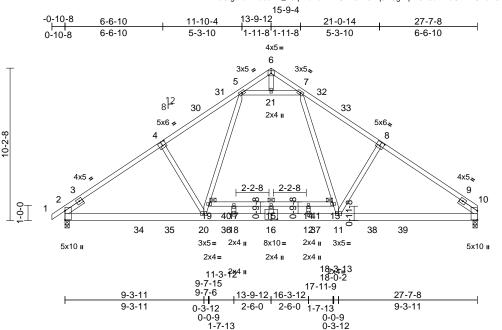
1)

2)

SLIDER

Run: 8 73 S. Feb 19 2025 Print: 8 730 S. Feb 19 2025 MiTek Industries. Inc. Fri Apr 25 10:21:07 ID:?tX5fSch5XVuU8A7EATKHeznFSP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	B02	Common	8	1	Job Reference (optional)	173028921

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:07 ID:7zeClgozaVnibeakM_F9qTzuPcW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:77.2

Plate Offsets (X, Y): [4:0-3-0,0-3-0], [8:0-3-0,0-3-0], [10:0-0-0,0-0-0], [16:0-5-0,0-4-8]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.43 0.37 0.42	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.34 0.06	(loc) 15-17 15-17 10	l/defl >999 >989 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 184 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES	No.2 2x4 SP No.3 Left 2x4 SP No.3 7 1-6-0 Structural wood shee 4-9-1 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 1 Max Horiz 2=225 (LC Max Grav 2=1641 (L (Ib) - Maximum Com Tension 1-2=0/29, 2-5=-2416 6-7=-278/43, 7-10=- 2-20=-156/1892, 18- 12-18=0/1542, 11-11 10-11=-14/1894, 17- 13=0/959, 11-13=(19-20=0/876, 5-19=(5-21=-1436/52, 7-21 15-16=-113/0, 6-21= 17-18=-110/0	10=0-3-8 2 13) IC 25), 10=1591 (LC 2) pression/Maximum 5/0, 5-6=-279/43, 2417/0 20=0/1542, 19=-73/0, 15-17=-73/0 2-73/0 0/879, 8-11=-330/254, 0/956, 4-20=-328/254, =-1436/52, 10/270, 12-14=-110/0	3 or 3) 6) 4) 5) 5) 6) 9) 9)	Vasd=103mj II; Exp B; En and C-C Ext to 10-9-12, E 16-9-12 to 24 cantilever lef right expose for reactions DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n 200.0lb AC u 13-9-12 form apart. All plates are This truss ha chord live loa * This truss ha condor live loa * This truss ha	snow loads have l as been designed f psf or 1.00 times f on-concurrent with init load placed on left end, supporte 2 2x4 MT20 unless is been designed f ad nonconcurrent has been designed n chord in all area y 2-00-00 wide win by other members,	BCDL=6 envelope o 2-1-8, 2 to 16- 2 4-7-8 d; end v s and fo (OL=1.60 f (roof LI (Lum DC B; Fully been con for great lat roof l in the bott of at two s otherwith or a 10. with any f or a liv s where ill fit betw	i.Opsf; h=25ft s) exterior zo Interior (1) 2- 9-12, Interior to 27-7-8 zor vertical left ar cress & MWFf) plate grip .: Lum DOL= L=1.15 Plate Exp.; Ce=0. nsidered for t er of min rooi oad of 20.0 p ve loads. om chord, points, 5-0-0 se indicated. D psf bottom other live loa e load of 20.	ne 1-8 (1) le; id RS 1.15 9; his f live sf on opsf om				SEA 0578 ADAM M April	ROL 87 87 28,2025
													Statucian R

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	B02A	Common	1	1	Job Reference (optional)	173028922

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:07 ID:4MlyjMqE562Prxk7TPIdvuzuPcU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [3:0-3-0,0-3-0], [7:0-3-0,0-3-0], [15:0-5-0,0-4-8]

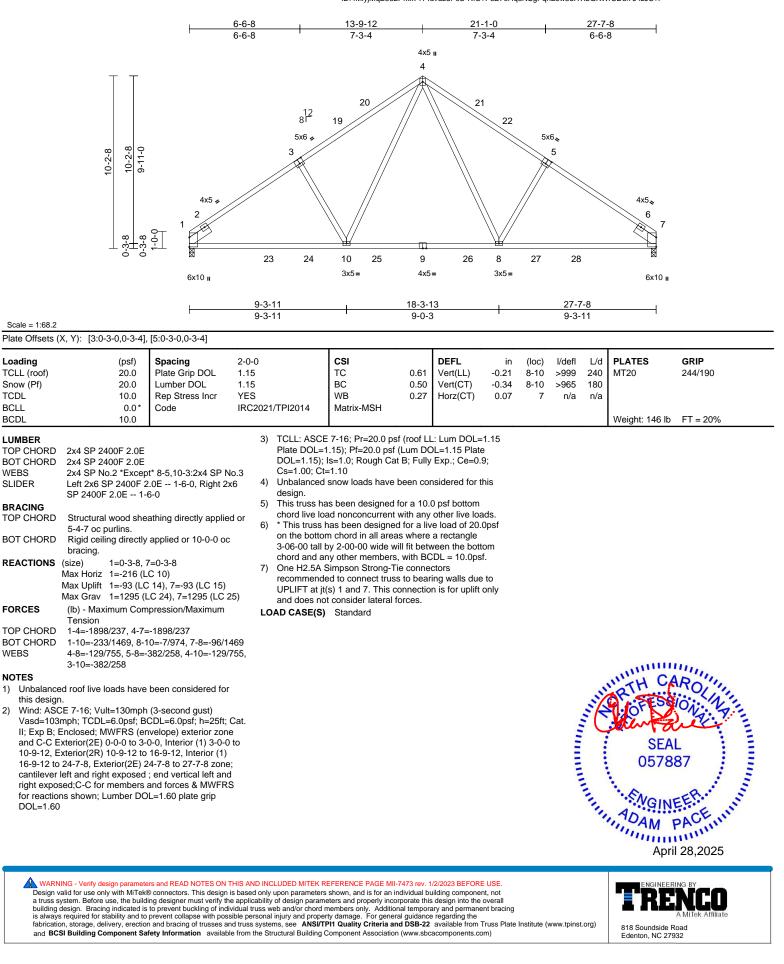
Scale = 1:77.2

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	1 1	1.15		TC	0.42	Vert(LL)	-0.18	13-14	>999	240	MT20	244/190
Snow (Pf)	20.0		1.15		BC	0.37	Vert(CT)	-0.33		>991	180	-	
TCDL	10.0		YES		WB	0.42	Horz(CT)	0.06	9	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 182 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP 2400F 2.0E 2x6 SP 2400F 2.0E No.2 2x4 SP No.3	*Except* 18-12:2x4 SF	2)	Vasd=103m II; Exp B; En and C-C Ext 10-9-12, Ext	7-16; Vult=130mp ph; TCDL=6.0psf; iclosed; MWFRS (erior(2E) 0-0-0 to erior(2R) 10-9-12	BCDL=6 envelope 3-0-0, Int to 16-9-1	0.0psf; h=25ft e) exterior zo erior (1) 3-0- 2, Interior (1	ne 0 to)					
SLIDER	Left 2x4 SP No.3 1-6-0	1-6-0, Right 2x4 SP No	0.3		4-7-8, Exterior(2E) ft and right expose								
BRACING TOP CHORD		athing directly applied	or	for reactions DOL=1.60	d;C-C for member shown; Lumber D	OL=1.60) plate grip						
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc	3)	Plate DOL=1	7-16; Pr=20.0 ps 1.15); Pf=20.0 psf	(Lum DC	L=1.15 Plate	e					
REACTIONS	(size) 1=0-3-8, 9 Max Horiz 1=-216 (L Max Grav 1=1591 (I) 4)	Cs=1.00; Ct	Is=1.0; Rough Cat =1.10 snow loads have	, ,	• *						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	5)	200.0lb AC ເ	unit load placed or			`					
TOP CHORD		79/43, 5-6=-279/43,	0	apart.	n left end, supporte		•						
BOT CHORD	1-19=-148/1895, 17	1=0/1543, 9-10=-14/18	6) 7) 895, 8)	This truss ha chord live loa * This truss l	e 2x4 MT20 unless as been designed ad nonconcurrent has been designed m chord in all area	for a 10.0 with any d for a liv) psf bottom other live loa e load of 20.	ads.				WITH CA	Rout
WEBS	3-19=-330/254, 18-1 6-12=0/959, 10-12= 4-20=-1436/52, 6-20	19=0/879, 4-18=0/959, 0/879, 7-10=-330/254, 0=-1436/52, 10/270, 11-13=-110/0	_{),} L(3-06-00 tall I	by 2-00-00 wide w ny other members	ill fit betv	veen the bott					OTHESS SEA	
NOTES	ad roof live loads have	haan appaidered for									ų (0578	87

1) Unbalanced roof live loads have been considered for this design.

April 28 A MARTINE AND A MARTINE

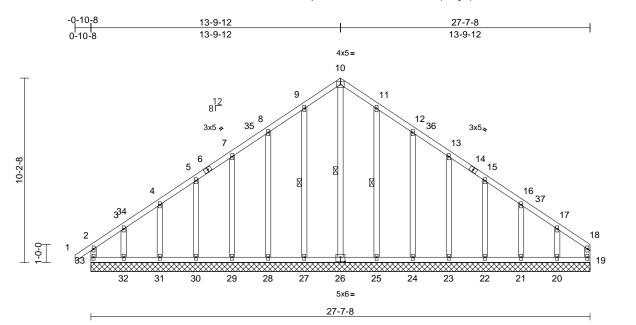
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone 818 Soundside Road Edenton, NC 27932 and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	B03	Common	2	1	Job Reference (optional)	173028923

2)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:07 ID:4MlyjMqE562Prxk7TPIdvuzuPcU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	B04	Common Supported Gable	1	1	Job Reference (optional)	173028924

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:07 ID:8F9dtU?eZjwH8FN0r33803zuPcF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:63.8

Plate Offsets (X, Y): [26:0-3-0,0-3-0]

	(7, 1). [20.000,000	L.								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2021/TPI2014	BC 0.	18 Vert(LL) 09 Vert(CT) 18 Horz(CT)	in n/a n/a 0.01	-	defl L/c n/a 999 n/a 999 n/a n/a	9 MT20	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 19=27-7-1 25=27-7-1 25=27-7-1 25=27-7-1 31=27-7-1 Max Horiz 33=251 (I 23=-56 (L 23=-56 (L 23=-48 (L 30=-63 (L 30=-63 (L 30=-63 (L 30=-61 (L 23=-145 (I 21=161 (I 23=168 (I 25=258 (I 25=2	applied or 6-0-0 oc 10-26, 9-27, 11-25 8, 20=27-7-8, 21=27-7-1 8, 23=27-7-8, 27=27-7-1 8, 26=27-7-8, 30=27-7-1 8, 32=27-7-8, 30=27-7-1 6, 21, 20=-129 (LC 15), C 15), 22=-62 (LC 15), C 15), 22=-62 (LC 15), C 15), 27=-50 (LC 14), C 14), 33=-120 (LC 14), C 14), 33=-120 (LC 14), C 14), 33=-120 (LC 14), C 14), 33=-122 (LC 14), C 14), 33=-122 (LC 14), C 14), 33=-122 (LC 14), C 12), 20=2171 (LC 26), LC 22), 22=171 (LC 26), C 22), 26=253 (LC 15), C 21), 38=222 (LC 21), C 25), 30=171 (LC 25), LC 25), 30=171 (LC 25), LC 25), 30=171 (LC 25), LC 25), 32=215 (LC 25), LC 26),	BOT CHORD 8, 8, 8, 8, 8, 1) Unbalanc this desig 0) 2) Wind: ASI Vasd=103 1, II: Exp B; 1, and C-C C 1, to 10-9-12 tr 1, cantilever 1, cantilever 1, cantilever 1, right expo 5, right expo 1, Truss des 0, only. For see Stance	3-4144/134, 4-5=-13 7-8109/195, 8-9=-14 10-11=-172/298, 11-12 12-13109/191, 13-15 15-16=-83/101, 16-17= 17-18=-129/115, 18-19 32-33=-101/115, 21-32 30-31=-101/115, 29-30 28-29=-101/115, 27-28 25-27=-101/115, 20-21 19-20=-101/115, 20-21 19-20=-101/115, 20-21 19-20=-101/115, 20-21 19-20=-101/115, 20-21 10-26=-267/96, 9-27=- 7-29=-143/81, 5-30=-1 3-32=-146/125, 11-25= 12-24=-182/88, 13-23= 15-22=-143/84, 16-21= 17-20=-149/114 ed roof live loads have be n. CE 7-16; Vult=130mph (3 3mph; TCDL=6.0psf; BCD Enclosed; MWFRS (enve Corner(3E) -0-10-8 to 2-1- 2, Corner(3E) 10-9-12 to - 0 24-5-12, Corner(3E) 24- left and right exposed; 4 left and right exposed; 4 enons shown; Lumber DOL=	5/135, 5-7=-116/163 3/251, 9-10=-172/29 =-143/251, =-82/137, -93/82, =-91/55 =-101/115, =-100, =-100/115, =-10	s, 5 98, 5 6 7 8 9 9 1 37, 1 5, 1 1 37, 1 5, 1 2 4 5 9 9 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 2 1 1 3 7 1 1 3 7 1 1 3 7 1 1 3 7 7 1 3 7 1 3 7 1 3 7 1 3 7 1 3 7 1 3 7 1 3 7 1 3 1 3 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1	 Plate D DOL=1 Cs=1.0 Unbala design. This tru load of overhai All plate Gable r Truss to braced Gable s This tru chord li * This tru this tru 	POL=1.15 .15); Is=1 0; Ct=1.1 nced sno iss has but 12.0 psf ngs non- ces are 2x- requires c o be fully against la studs spa uss has but twe load n russ has bottom ch 0 tall by 2 and any o); Pf=20.0 psf (Lur .0; Rough Cat B; 0 w loads have bee een designed for g or 1.00 times flat r concurrent with oth 4 MT20 unless oth continuous bottom sheathed from on ateral movement (ced at 2-0-0 oc. een designed for onconcurrent with been designed for ord in all areas w -00-00 wide will fit ther members.	nerwise indicated. chord bearing. e face or securely i.e. diagonal web). a 10.0 psf bottom a any other live loads. a live load of 20.0psf
									Apr	il 28 2025

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

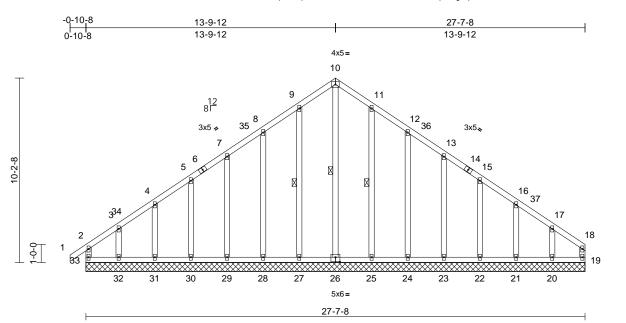
April 28,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeR% connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the Section of the prevent collapse contervent for the Sectional temporation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	B04	Common Supported Gable	1	1	Job Reference (optional)	173028924

13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 122 lb uplift at joint 33, 71 lb uplift at joint 19, 50 lb uplift at joint 27, 63 lb uplift at joint 28, 56 lb uplift at joint 29, 63 lb uplift at joint 30, 40 lb uplift at joint 31, 145 lb uplift at joint 32, 48 lb uplift at joint 25, 64 lb uplift at joint 24, 56 lb uplift at joint 23, 62 lb uplift at joint 22, 43 lb uplift at joint 21 and 129 lb uplift at joint 20.

LOAD CASE(S) Standard


Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:07 ID:8F9dtU?eZjwH8FN0r33803zuPcF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	B05	Common Supported Gable	1	1	Job Reference (optional)	173028925

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:08 ID:fn4p5KnLpBfr_U?YoHkwHGzuPcX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:63.8

Plate Offsets (X, Y): [26:0-3-0,0-3-0]

	(,,, 1): [20:0 0 0,0 0 0	·]						
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	TC 0.18 V BC 0.09 V	DEFL in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.01		L/d PLATES 999 MT20 999 n/a Weight: 198 I	GRIP 244/190 b FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 19=27-7-1 25=27-7-1 28=27-7-4 31=27-7-4 Max Horiz 33=251 (L Max Upliff 19=-71 (L 21=-43 (L 23=-56 (L 	r applied or 6-0-0 oc 10-26, 9-27, 11-25 8, 20=27-7-8, 21=27-7 8, 23=27-7-8, 24=27-7 8, 26=27-7-8, 27=27-7 8, 29=27-7-8, 30=27-7 8, 32=27-7-8, 33=27-7 LC 13) .C 11), 20=-129 (LC 15 .C 15), 22=-62 (LC 15) .C 15), 24=-64 (LC 15)	BOT CHORE -8, -8, -8, WEBS -8 5), -,	3-4=-144/134, 4-5=-133/135, 7-8=-109/195, 8-9=-143/251, 10-11=-172/298, 11-12=-143/ 12-13=-109/191, 13-15=-82/ 15-16=-83/101, 16-17=-93/82 17-18=-129/115, 18-19=-91/5	, 5-7=-116/163, , 9-10=-172/298, 3/251, 137, 2, 55 1/115, 1/12, 1/	 Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs no All plates are Gable require Gable require Truss to be f braced again Gable studs This truss ha chord live loa * This truss r on the bottor 3-06-00 tall b 	1.15); Pf=20.0 psf (LL Is=1.0; Rough Cat B =1.10 snow loads have be as been designed for psf or 1.00 times flat ion-concurrent with o e 2x4 MT20 unless of es continuous bottom fully sheathed from o nst lateral movement spaced at 2-0-0 oc. as been designed for ad nonconcurrent with has been designed for m chord in all areas w	Fully Exp.; Ce=0.9; en considered for this greater of min roof live roof load of 20.0 psf on ther live loads. therwise indicated. n chord bearing. ne face or securely (i.e. diagonal web). a 10.0 psf bottom h any other live loads. or a live load of 20.0psf
FORCES	28=-63 (L 30=-63 (L 32=-145 (21=161 (l 23=166 (l 25=258 (l 27=259 (l 29=168 (l	,	 1) Unbaland, this designed (1, 2) Wind: AS Vasd=10 2) Wind: AS Vasd=10 3), II; Exp B 4), and C-C 5), to 10-9-1 5), to 10-9-1 5), cantileve 5), right exp for reacting 50, point 51, DOL=1.6 3) Truss de only. Foose see Stan 	CE 7-16; Vult=130mph (3-secor 3mph; TCDL=6.0psf; BCDL=6.0 Enclosed; MWFRS (envelope) Corner(3E) -0-10-8 to 2-1-8, Ext 2, Corner(3R) 10-9-12 to 16-9-1 o 24-5-12, Corner(3E) 24-5-12 tr 1 elft and right exposed ; end ver psed;C-C for members and force ons shown; Lumber DOL=1.60 p	nd gust))psf; h=25ft; Cat. exterior zone terior(2N) 2-1-8 12, Exterior(2N) to 27-5-12 zone; wrtical left and es & MWFRS plate grip ne of the truss t ot he face), s as applicable,	100000000	SE O573	AROLINA SIGNATION AL 387 PACE INTERNIT

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeR% connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the Section of the prevent collapse contervent for the Sectional temporation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

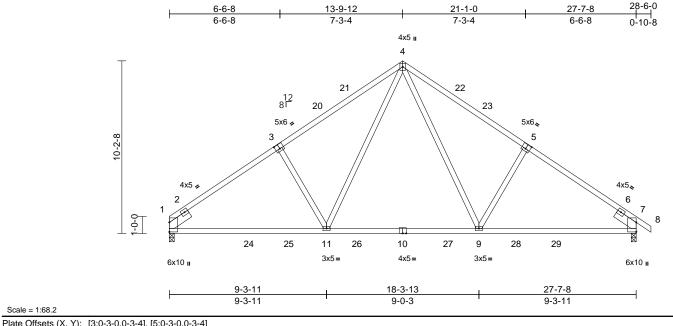
Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	B05	Common Supported Gable	1	1	Job Reference (optional)	173028925

13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 122 lb uplift at joint 33, 71 lb uplift at joint 19, 50 lb uplift at joint 27, 63 lb uplift at joint 28, 56 lb uplift at joint 29, 63 lb uplift at joint 30, 40 lb uplift at joint 31, 145 lb uplift at joint 32, 48 lb uplift at joint 25, 64 lb uplift at joint 24, 56 lb uplift at joint 23, 62 lb uplift at joint 22, 43 lb uplift at joint 21 and 129 lb uplift at joint 20.

LOAD CASE(S) Standard

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:08 ID:fn4p5KnLpBfr_U?YoHkwHGzuPcX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	B06	Common	2	1	Job Reference (optional)	173028926

Scale = 1:68.2

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:08 ID:7zeClgozaVnibeakM_F9qTzuPcW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
FCLL (roof) Snow (Pf)	20.0 20.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC	0.61 0.51	Vert(LL) Vert(CT)	-0.21 -0.35	9-11 9-11	>999 >959	240 180	MT20	244/190
FCDL	10.0	Rep Stress Incr	YES		WB	0.31	Horz(CT)	-0.35	9-11 7	>959 n/a	n/a		
BCLL	0.0*	Code		21/TPI2014	Matrix-MSH	0.27	11012(01)	0.07	'	n/a	n/a		
BCDL	10.0	Code	11(0202	. 1/ 11 12014								Weight: 147 lb	FT = 20%
UMBER OP CHORD OT CHORD VEBS SLIDER BRACING OP CHORD BOT CHORD REACTIONS	2x4 SP 2400F 2.0E 2x4 SP 2400F 2.0E 2x4 SP No.2 *Excep Left 2x6 SP 2400F 2 SP 2400F 2.0E 1-f Structural wood shea 5-4-4 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-8, 7 Max Horiz 1=-225 (L Max Uplift 1=-93 (LC Max Grav 1=1294 (L (lb) - Maximum Com Tension 1-4=-1897/236, 4-7= 1-11=-224/1475, 9=-1	.0E 1-6-0, Right 2 5-0 athing directly applie applied or 10-0-0 or 7=0-3-8 C 10) 14), 7=-110 (LC 15 C 25), 7=1345 (LC pression/Maximum 1895/236, 7-8=0/29 1=0/979, 7-9=-84/14	Io.3 x6 4) 5j dor 6) ; 6) ; 7) 26) 8) 	Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs n chord live loa * This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall b chord and ar One H2.5A S recommende UPLIFT at jt(snow loads have s been designed osf or 1.00 times on-concurrent wi s been designed id nonconcurren nas been designed n chord in all are by 2-00-00 wide y other member simpson Strong- id to connect true s) 1 and 7. This a consider lateral	f (Lum DC at B; Fully been cool for great flat roof I th other li for a 10. th with any d for a li as where will fit betw s, with BC Fie conne ss to beau connectio	DL=1.15 Plate Exp.; Ce=0. Insidered for t er of min rool bad of 20.0 p ve loads. 0 psf bottom other live loa re load of 20. a rectangle veen the bott CDL = 10.0ps ing walls due	e 9; his f live f live sf on ads. 0psf om f. e to					
IOTES	3-11=-382/258												
 Unbalance this design Wind: ASC Vasd=103i II; Exp B; E and C-C E 10-9-12, E 16-9-12 to cantilever I right exposition 	E 7-16; Vult=130mph mph; TCDL=6.0psf; BG Enclosed; MWFRS (en xterior(2E) 0-0-0 to 3- xterior(2R) 10-9-12 to 25-6-0, Exterior(2E) 2 left and right exposed sed;C-C for members a ns shown; Lumber DO	(3-second gust) CDL=6.0psf; h=25ft; velope) exterior zon 0-0, Interior (1) 3-0-0 16-9-12, Interior (1) 5-6-0 to 28-6-0 zone ; end vertical left an- and forces & MWFR	Cat. e) to ;; d								in the second second	SEA 0578 NGIN	RO(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	B07	Common	1	1	Job Reference (optional)	173028927

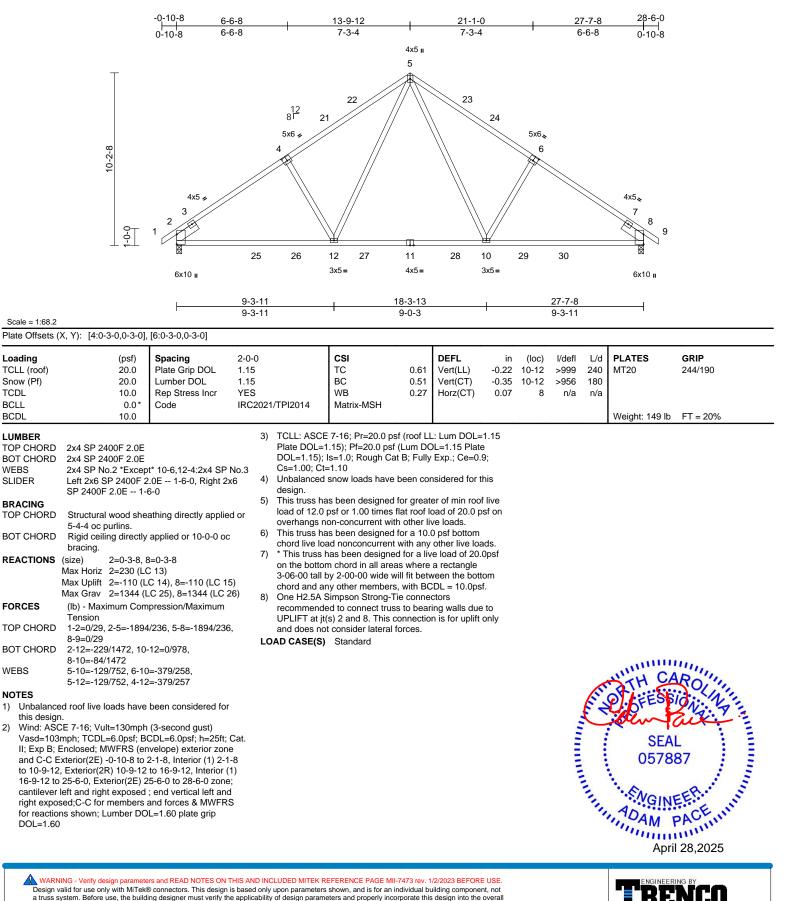
TCDL

BCLL

BCDL

WEBS

WEBS


NOTES 1)

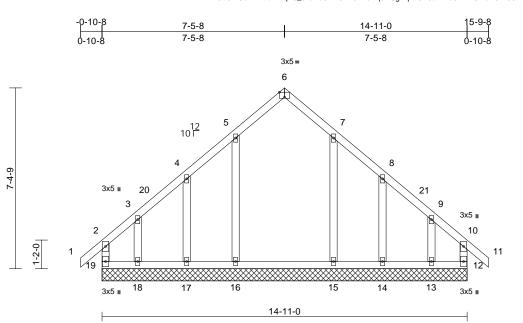
2)

SLIDER

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:08 ID:7zeClgozaVnibeakM_F9qTzuPcW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	C01	Common Supported Gable	1	1	Job Reference (optional)	173028928

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:08 ID:0lti81rUdkI74FuWbqK5_JzuPcS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

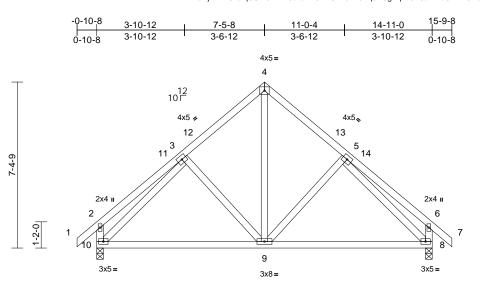
Scale = 1:47.1

Plate Offsets (X, Y): [6:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Lumber DOL	2-0-0 1.15 1.15 YES IRC202 ²	1/TPI2014	CSI TC BC WB Matrix-MR	0.33 0.19 0.15	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 89 lb	GRIP 244/190 FT = 20%
	6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 12=14-11: 14=14-11: 16=14-11: 18=14-11: Max Horiz 19=-196 (Max Uplift 12=-44 (L 14=-88 (L 16=-19 (L 18=-204 (Max Grav 12=257 (L 14=193 (L 16=368 (L	applied or 10-0-0 oc -0, 13=14-11-0, -0, 15=14-11-0, -0, 17=14-11-0, -0, 19=14-11-0 LC 12) C 13), 13=-202 (LC 15 C 15), 15=-16 (LC 15) C 14), 17=-86 (LC 14) LC 14), 19=-52 (LC 12)	2) or 3) 5), 4) 1, 4) 1, 2) 5), 5) , (6)	this design. Wind: ASCE Vasd=103mg II; Exp B; End and C-C Corr to 4-5-8, Corr to 12-9-8, Co left and right exposed;C-C reactions sho DOL=1.60 Truss design only. For stu see Standarc or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha	roof live loads have 7-16; Vult=130mp bh; TCDL=6.0psf; E closed; MWFRS (e ner(3E) -0-10-8 to ner(3E) 12-9-8 to exposed; end ver for members and own; Lumber DOL= ed for wind loads i ds exposed to win I Industry Gable E alified building des 7-16; Pr=20.0 psf (15); Pf=20.0 psf (s=1.0; Rough Cat 1.10 snow loads have b s been designed for psf or 1.00 times fil	h (3-sec 3CDL=6 envelope 2-1-8, E 15-9-8, E 15-9-8 tical left forces a =1.60 pl n the pl d (norm nd Deta signer as (roof LL Lum DC B; Fully been cor	cond gust) .0psf; h=25ft e) exterior (2N) 2 xterior(2N) 10 zone; cantile and right & MWFRS for ate grip ane of the tru al to the face ils as applica s per ANSI/TI :: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9	; Cat. ne 2-1-8 0-5-8 ver r sss e), bble, PI 1. 1.15 e 9; his f live	bea 19, upli join 13. LOAD (ring plat 44 lb up it at join : 15, 88 : ASE(S)	e capa lift at jo t 17, 20 lb uplif) Star	ible of withstandi pint 12, 19 lb upli 04 lb uplift at join 1 at joint 14 and 2 ndard	vothers) of truss to ng 52 lb uplift at joint ft at joint 16, 86 lb t 18, 16 lb uplift at 202 lb uplift at joint
FORCES	,	•	7) 8) 9)	overhangs no All plates are Gable require Truss to be fi	on-concurrent with 2x4 MT20 unless es continuous botto ully sheathed from st lateral moveme	other liv otherwi om chor one fac	ve loads. se indicated. d bearing. e or securely	/			ile	O DEESS	N. N. H.
BOT CHORD	9-10=-209/94, 10-11 18-19=-89/253, 17-1 16-17=-89/253, 15-1 14-15=-89/253, 13-1 12-13=-89/253	6=-89/253,	11) Gable studs :) This truss ha chord live loa) * This truss h	spaced at 2-0-0 oc s been designed for d nonconcurrent v as been designed n chord in all areas	c. or a 10.0 vith any for a liv) psf bottom other live loa e load of 20.0	ads.				0578	EER.
WEBS NOTES	5-16=-259/58, 4-17= 3-18=-135/179, 7-15 8-14=-160/159, 9-13	=-259/56,		3-06-00 tall b	y 2-00-00 wide wil y other members,	ll fit betv	veen the bott				in the second second	SEA 0578	EEF.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	C02	Common	2	1	Job Reference (optional)	173028929

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:08 ID:JDjFhD4SkalqUUm6L11D9uzuAV6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

14-11-0

7-5-8

Page: 1

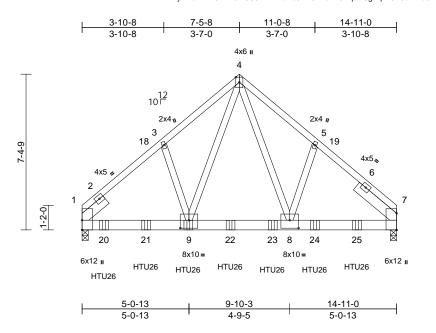
7-5-8

7-5-8

Scale	- 1	1.51	2	

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/T	FPI2014	CSI TC BC WB Matrix-MSH	0.27 0.50 0.33	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.12 0.01	(loc) 9-10 9-10 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 97 lb	GRIP 244/190 FT = 20%	
FORCES TOP CHORD BOT CHORD WEBS NOTES	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 8=0-3-8, -7 Max Horiz 10=196 (I Max Uplift 8=-58 (LC Max Grav 8=717 (LC (Ib) - Maximum Com Tension 1-2=0/39, 2-3=-231/ 4-5=-578/160, 5-6=- 2-10=-266/116, 6-8= 9-10=-64/470, 8-9=(0) 4-9=-98/403, 3-10=- 3-9=-190/160, 5-9=-	cept end verticals. applied or 10-0-0 oc (C 13) (2 15), 10=-58 (LC 14 (2 22), 10=717 (LC 2 (2 2), 10=717 (LC 2) (2 2), 10=717 (LC 2) (L	, of the second	design. This truss ha oad of 12.0 p overhangs m This truss ha schord live loa "This truss h on the bottom 3-06-00 tall b chord and ar One H2.5A S recommende JPLIFT at jt(snow loads have I s been designed f osf or 1.00 times f on-concurrent with s been designed ad nonconcurrent vi- tas been designed in chord in all area by 2-00-00 wide wi- y other members. Simpson Strong-Ti ed to connect truss s) 10 and 8. This consider lateral fr Standard	for great lat roof lo n other lin for a 10. with any d for a liv s where ill fit betv ie connect s to bear connecti	er of min roof oad of 20.0 p ve loads. 0 psf bottom other live loa e load of 20.1 a rectangle veen the bott ctors ing walls due	f live sf on ads. Opsf om						
this design 2) Wind: ASC Vasd=103 II; Exp B; I and C-C E to 4-5-8, E to 12-9-8,		(3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zon 2-1-8, Interior (1) 2-1 -5-8, Interior (1) 10- 15-9-8 zone; cantile	Cat. e -8 5-8								Juli -	SEA 0578	• •	

DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 3) Cs=1.00; Ct=1.10


exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

057887 April 28,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

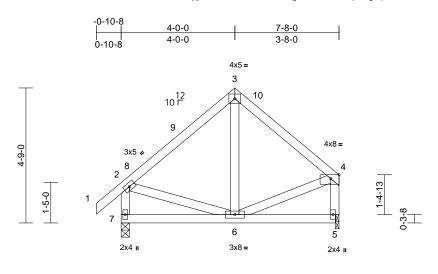
Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	C03	Common Girder	1	2	Job Reference (optional)	173028930

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:08 ID:yPXu7X4P9ZhRsAr9CJAYFKzuPc9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:54.6

Plate Offsets (X, Y): [8:0-5-0,0-4-8], [9:0-5-0,0-4-8]	
--	--

	X, Y): [8:0-5-0,0-4-8],	[9.0-3-0,0-4-0]											-
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.70 0.45 0.64	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.14 0.02	(loc) 8-9 8-9 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 212 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) 2-ply truss (0.131"x3" Top chord oc. Bottom ch staggered	2x6 SP 2400F 2.0E 2x4 SP No.3 Left 2x6 SP 2400F 2 SP 2400F 2.0E 2-6 Structural wood shea 4-5-0 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-8,7 Max Horiz 1=146 (LC Max Uplift 1=-426 (L Max Uplift 1=-426 (L Max Grav 1=5282 (L (lb) - Maximum Com Tension 1-3=-5022/445, 3-4= 4-5=-4881/516, 5-7= 1-9=-354/3819, 8-9= 7-8=-286/3713	athing directly applied applied or 10-0-0 oc 7=0-3-8 2 36) C 12), 7=-386 (LC 13) C 21), 7=4784 (LC 22) pression/Maximum -4896/517, -5014/446 -193/2785, -75/294, 4-9=-357/31 ther with 10d :: 2x4 - 1 row at 0-9-0 pws: 2x6 - 2 rows	3) or 4)) 5) 2) 6) 7) 95, 8) 9)	except if note CASE(S) sec provided to c unless othen Unbalanced this design. Wind: ASCE Vasd=103mp II; Exp B; En cantilever lef right exposed TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha chord live loa * This truss ha chord live loa * Tois truss ha chord live loa * Tois truss ha chord and ar On H2.5A S recommende UPLIFT at jt(considered equal ed as front (F) or b tion. Ply to ply co listribute only load wise indicated. roof live loads haw 7-16; Vult=130mp bh; TCDL=6.0psf; closed; MWFRS (r t and right expose d; Lumber DOL=1 5.7-16; Pr=20.0 psf .15); Pf=20.0 psf .15); P	vack (B) nnection ls noted ve been boh (3-see BCDL=6 envelope d; end v. 60 plate f (roof LL (Lum DC i: B; Fully been cor for a 10. with any d for a liv s where ill fit betv e conne s to bear onnectio	face in the LC is have been as (F) or (B), considered for sond gust) 3.0psf; h=25tH e) exterior zoi vertical left an e grip DOL=1. L: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 nsidered for th 0 psf bottom other live loa re load of 20.0 a rectangle veen the botto ctors ing walls due	or ; Cat. ne; nd 60 1.15 9; his opsf om	14- max con 11) Fill LOAD (1) De In Ur Co	10dx1 1. x. startin nect tru: all nail F CASE(S ead + Sr crease= niform Le Vert: 1 oncentra Vert: 9= 22=-109 (F)	/2 Trus g at 1- ss(es) looles w how (ba 1.15) Sta abov (ba 1.15) Sta bow (ba 1.15) Sta 1.15) S	0-8 from the left of to front face of bo here hanger is in ndard alanced): Lumber b/ft) 4-7=-60, 10-14=- ads (lb) (F), 20=-1098 (F), 24	spaced at 2-0-0 oc end to 13-0-8 to ottom chord. contact with lumber. Increase=1.15, Plate


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCI

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	D01	Common	3	1	Job Reference (optional)	173028931

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:08 ID:70jfytC15LHPZDT1YPB918znEga-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

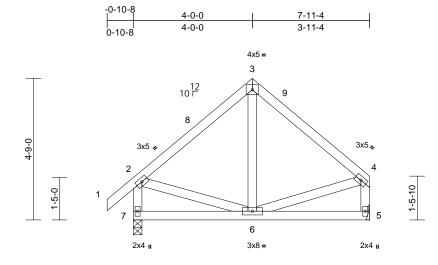
Scale = 1:40.5

Plate Offsets (X, Y): [4:0-3-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MP	0.44 0.13 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01 0.00	(loc) 6-7 6-7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 49 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 5=0-1-8, 7 Max Horiz 7=133 (LC Max Grav 5=387 (LC (lb) - Maximum Com	cept end verticals. applied or 10-0-0 of 7=0-3-8 C 11) C 14), 7=-35 (LC 14) C 22), 7=434 (LC 21)	7) c 8)	design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar Bearing at jo using ANSI/ designer sho	snow loads have to as been designed fipsf or 1.00 times floor- on-concurrent with as been designed find and nonconcurrent was been designed more than the second of the second n chord in all areas by 2-00-00 wide winy other members. int(s) 5 considers (FPI 1 angle to grain build verify capacity hanical connection a ti joint(s) 5.	or great lat roof li o other li or a 10. with any l for a liv s where ll fit betw parallel n formul	er of min roo bad of 20.0 p ve loads. 0 psf bottom other live loa e load of 20. a rectangle veen the bott o grain value a. Building ng surface.	f live osf on ads. Opsf tom					
this desigr 2) Wind: ASC Vasd=103	Tension 1-2=0/39, 2-3=-283/ 2-7=-403/177, 4-5=- 6-7=-128/108, 5-6=- 3-6=-11/106, 2-6=-2 ed roof live loads have n. CE 7-16; Vult=130mph mph; TCDL=6.0psf; Br Exclanged, MWEB2, Br	360/114 19/28 /163, 4-6=-11/156 been considered for (3-second gust) CDL=6.0psf; h=25ft;	r Cat.	vecommende VPLIFT at jt	Simpson Strong-Tie ed to connect truss (s) 7 and 5. This cc t consider lateral fo Standard	to bear	ing walls due				ALL ALL	OLOFES	ROLINA

- Vasue Toshiph, TCDL=0.0pst, BCDL=0.0pst, TE25t, Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Exterior(2R) 2-1-8 to 4-6-4, Exterior(2E) 4-6-4 to 7-6-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

SEAL 057887 NGINEER April 28,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	D02	Common	3	1	Job Reference (optional)	173028932

Scale - 1:38 7

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:09 ID:3J_cxCCQZagxsgQYcyrpnzznFRe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.50	DEFL Vert(LL)	in -0.01	(loc) 6-7	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.14	Vert(CT)	-0.01	6-7	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.07	Horz(CT)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC20	21/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 50 lb	FT = 20%
	Max Horiz 7=131 (LC Max Uplift 5=-21 (LC Max Grav 5=407 (LC	ept end verticals. applied or 10-0-0 oc nical, 7=0-3-8 2 11) 14), 7=-36 (LC 14) 2 22), 7=461 (LC 21)	d or :	 load of 12.0 overhangs n This truss ha chord live loa * This truss f on the bottor 3-06-00 tall t chord and ar 8 Refer to gird Provide mec 	s been designed of or 1.00 times on-concurrent w is been designed ad nonconcurrent has been design in chord in all are by 2-00-00 wide by other member of (s) for truss to hanical connection a capable of with Simpson Strong-	s flat roof lo ith other liv d for a 10.0 it with any ed for a liv eas where will fit betw rs. truss conr on (by oth standing 2	bad of 20.0 p ve loads.) psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss 1 lb uplift at	osf on ads. .0psf tom to					
FORCES	(lb) - Maximum Comp Tension	pression/Maximum		recommende	ed to connect tru s) 7. This conne	ss to bear	ng walls due						
TOP CHORD	1-2=0/39, 2-3=-296/1 2-7=-431/177, 4-5=-3				sider lateral for		.,,.						
BOT CHORD WEBS	6-7=-125/108, 5-6=-1 3-6=-4/116, 2-6=0/17												
NOTES													
 Unbalance this design 	ed roof live loads have b	been considered for										mm	

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Exterior(2R) 2-1-8 to 4-9-8, Exterior(2E) 4-9-8 to 7-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

887 NGINEER DAM PACE April 28,20° "Innovements"


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	D03	Common Supported Gable	1	1	Job Reference (optional)	173028933

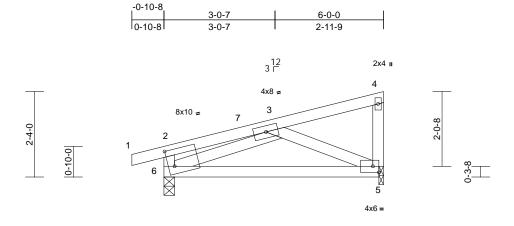
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:09 ID:75WG0vKPySmiqjBRbiSUikznUtB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

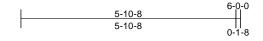
Page: 1

Scale = 1:33.6

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC202	I/TPI2014	CSI TC BC WB Matrix-MR	0.12 0.06 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	6-0-0 oc pu Rigid ceiling bracing.	2 3 rood she rlins, ex g directly	athing directly applied cept end verticals. applied or 6-0-0 oc	4)	only. For str see Standar or consult qu TCLL: ASCE Plate DOL= DOL=1.15); Cs=1.00; Ct: Unbalanced design.	hed for wind loads dids exposed to w d Industry Gable Lalified building d E 7-16; Pf=20.0 psi Is=1.0; Rough Ca =1.10 snow loads have as been designed	ind (norm End Deta esigner as sf (roof LL (Lum DC at B; Fully been cor	al to the face ils as applica s per ANSI/TI .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 nsidered for th), ble, >I 1. 1.15 9; his					
REACTIONS	1 Max Horiz 1 Max Uplift 7 1 Max Grav 7 9	0=7-11-4 1=126 (L =-50 (LC 0=-104 (=92 (LC	: 14), 8=-92 (LC 15), LC 14), 11=-54 (LC 1 22), 8=267 (LC 22), C 27), 10=238 (LC 21)	7) 8) 9)	load of 12.0 overhangs n All plates are Gable requir Truss to be t braced again) Gable studs	psf or 1.00 times on-concurrent wite 2x4 MT20 unles res continuous bo fully sheathed from the lateral movem spaced at 2-0-0 of	flat roof le th other liv s otherwi ttom chor m one fac lent (i.e. d oc.	bad of 20.0 p: ve loads. se indicated. d bearing. e or securely iagonal web)	sf on					
FORCES	Tension 2-11=-151/2 3-4=-94/241	205, 1-2=	pression/Maximum 0/38, 2-3=-83/121, 4/240, 5-6=-62/90,		chord live lo) * This truss l on the botto	as been designed ad nonconcurrent has been designe m chord in all are by 2-00-00 wide v	with any d for a liv as where	other live loa e load of 20.0 a rectangle	Opsf					
BOT CHORD WEBS NOTES	7-8=-57/51	,	:-57/51, 8-9=-57/51, 199/164, 5-8=-226/21) Provide med bearing plate	ny other members chanical connection capable of withs ift at joint 7, 104 I 8.	on (by oth standing 5	i4 lb uplift at j	oint			N. W.	OF HERS	ROLINA
this design 2) Wind: ASC Vasd=103 II; Exp B; I and C-C C	n. CE 7-16; Vult= Imph; TCDL=6 Enclosed; MW Corner(3E) -0- ⁻	130mph 3.0psf; B0 /FRS (er 10-8 to 2	(3-second gust) CDL=6.0psf; h=25ft; (velope) exterior zone -0-0, Corner(3R) 2-0-	Cat. 0	OAD CASE(S)								SEA 0578	L 87

to 4-9-8, Corner(3E) 4-9-8 to 7-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

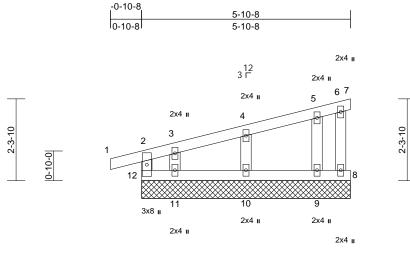
Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	E01	Monopitch	7	1	Job Reference (optional)	173028934

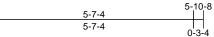
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:09 ID:baH29DDfrfPGBN2D67iOaLznEgZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.5

Plate Offsets (X, Y): [2:0-2-0,0-5-8]


Plate Offsets (X, Y): [2:0-2-0,0-5-8]											-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-MP	0.14 0.43 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.13 0.00	(loc) 5-6 5-6 5	l/defl >999 >538 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=1030 II; Exp B; E and C-C E to 2-10-4, I left and rig exposed;C reactions s DOL=1.60 2) TCLL: ASC Plate DOL DOL=1.15 Cs=1.00; C 3) Unbalance	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 5=0-1-8, 6 Max Uplit 5=-40 (LC Max Uplit 5=-40 (LC Max Uplit 5=-40 (LC (lb) - Maximum Com Tension 1-2=0/21, 2-3=-28/4i 2-6=-200/181, 4-5=- 5-6=-223/303 3-6=-333/189, 3-5=- CE 7-16; Vult=130mph mph; TCDL=6.0psf; BG Enclosed; MWFRS (er xterior(2E) -0-10-8 to Exterior(2E) -0-1	applied or 10-0-0 oc 3=0-3-8 11) 14), 6=-72 (LC 10) 2 21), 6=395 (LC 21) pression/Maximum 8, 3-4=-43/39, 100/76 332/285 (3-second gust) CDL=6.0psf; h=25ft; C welope) exterior zone 2-1-8, Interior (1) 2-1- 5-10-4 zone; cantilev cal left and right proces & MWFRS for 1.60 plate grip roof LL: Lum DOL=1. um DOL=1.15 Plate ;; Fully Exp.; Ce=0.9;	6) i or 7) 8) 9) LO Cat. 8 er 15	load of 12.0 j overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Bearing at jo using ANSI/1 designer sho Provide mec bearing plate One H2.5A S recommende UPLIFT at jt(Simpson Strong-Tie ed to connect truss s) 6 and 5. This co t consider lateral fo	at roof le other lif or a 10. with any l for a liv s where ll fit betw parallel n formul of bear n (by oth e conne to bear panectio	bad of 20.0 p ve loads. O psf bottom other live loa e load of 20. a rectangle veen the bott to grain value a. Building ing surface. ers) of truss ctors ing walls due	ads. Opsf to to e to			Current and Curren	SEA 0578	EFER. PACE 1000
design.												·····	1 28 2025


April 28,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	E02	Monopitch Supported Gable	1	1	Job Reference (optional)	173028935

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:09 ID:YYJKxhrssQAGS5JJ16psR6zuPcT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

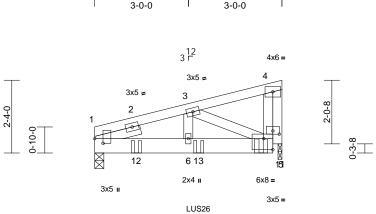
Scale = 1:32.4

Loading (pst) Spacing 2-0-0 CSI 0.14 DEFL in (noc) Videt Utility TCLL 0.00 1.15 BC 0.01 Veri(L) n/a - n/a 998 TCDL 0.00 Code RC2021/TPI2014 Matrix-MR DEFL in (noc) Videt(L) n/a - n/a 998 TCDL 0.00 Code RC2021/TPI2014 Matrix-MR DEFL in (noc) Videt(L) n/a N/a <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>													
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 OTHERS 2x4 SP No.3 BRACING 70P CHORD Structural wood sheathing directly applied or 5-10-8 oc purlins, except end verticals. 30 BOT CHORD (size) 7-5-10-8, 8=5-10-8, 9=5-10-8, 10=5-10-8, 11=5-10-8, 12=5-10-8, 10=5-10-8, 12=5-10-8, 12=5-10-8, 10=5-10-8, 12=5-10-8, 12=5-10-8, 10=5-10-8, 12=5-10-8, 12=5-10-8, 10=5-10-1, 12=5-28, 12=5-10-8, 10=5-10-1, 12=5-28, 12=5-10-8, 10=5-10-1, 12=5-28, 12=5-10-8, 10=5-28/39, 10-11-28/39, 9-11-28/39, 9-11-2-28/39, 9-11-2-28/39, 9-11-2-28/39, 9-11-2-28/39, 9-11-2-28/39, 9-11-2-28/39, 9-11-2-28/39, 9-11-2-28/39, 9-11-2-28/39, 9-11-2-28/39, 9-11-2-28/39, 9-11-2-28/39, 9-11-2-28/39, 9-11-2-28/39, 9-10-2-28/39, 9-11-2-28/39, 9-11-2-28/39, 9-11-2-28/39, 9-11-2-28/39, 9-11-2-28/39, 9-11-2-28/39, 9-11-2-28/39, 9-11-2-28/39, 9-11-2-28/39, 9-11-2-28/39	TCLL (roof) Snow (Pf) TCDL BCLL	20.0 20.0 10.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 YES	TC BC WB	0.04	Vert(LL) Vert(CT)	n/a n/a	-	n/a n/a	999 999	MT20	244/190
TOP CHORD 2x4 SP No.2 only. For stude sepaced to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. OTHERS 2x4 SP No.3 3 OTHERS 2x4 SP No.3 3 BRACING 510-8 oc purlins, except end verticals. 3 BOT CHORD Structural wood sheathing directly applied or 5-10-8, des-f10-8, 9=5-10-8, 11=5-10-8, 11=5-10-8, 12=5-10-8, 11=5-10-8, 12=5-10-1, 12=5-10-8, 12=5-10-1, 12=5-10-8, 12=5-10-1, 12=5-10-8, 12=	BCDL	10.0		-								Weight: 27 lb	F1 = 20%
	TOP CHORD 25 BOT CHORD 25 WEBS 25 OTHERS 25 BRACING TOP CHORD S BOT CHORD R BOT CHORD R BOT CHORD (siz REACTIONS (siz REACTIONS (siz A REACTIONS (siz A REACTIONS (siz A REACTIONS (siz A A Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma	x4 SP No.2 x4 SP No.3 x4 SP No.3 x4 SP No.3 x4 SP No.3 tructural wood she -10-8 oc purlins, e tigid ceiling directly racing. ze) 7=5-10-8, 10=5-10-8 x Horiz 12=79 (LC ST 12=79 (LC ST 12=79 (LC 9=-19 (LC 9=-19 (LC 11=-44 (L 1x Grav 7=6 (LC 2 (LC 21), 1 (LC 21), 1 b) - Maximum Corr ension -12=-140/116, 1-2= -4=-44/62, 4-5=-34 -7=-10/1, 6-8=-22K 1-12=-28/39, 10-11 -9=-28/39 -10=-186/183, 3-11 7-16; Vult=130mph h; TCDL=6.0psf; B losed; MWFRS (er er (ar) -0-10-8 to 2 e; cantilever left an d right exposed; C- FRS for reactions s	xcept end verticals. applied or 6-0-0 oc 8=5-10-8, 9=5-10-8, 3, 11=5-10-8, 12=5-10 C 11) 2 14), 8=-22 (LC 13), 3 (0), 10=-32 (LC 10), C 11), 12=-29 (LC 10), G 11), 12=-29 (LC 10), 93), 8=15 (LC 21), 9=1 10=230 (LC 21), 11=10 12=157 (LC 21) 19pression/Maximum =0/21, 2-3=-74/77, /48, 5-6=-25/41, 5 =-28/39, 9-10=-28/39, 1=-115/114, 5-9=-133/- (3-second gust) CDL=6.0psf; h=25ft; C ivelope) exterior zone 2-1-8, Exterior(2N) 2-1- d right exposed ; end C for members and	 only. For sti see Standar, or consult qu 3) TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct: 4) Unbalanced design. 5) This truss ha load of 12.0 overhangs n 6) All plates are 7) Gable requir 8) Truss to be f braced again 71 9) Gable studs 71 9) Gable studs 71 0) This truss ha chord live load 10) This truss ha chord live load 11) * This truss fu on the bottom 3-06-00 tall fu chord and an 12) Provide med bearing plate 12, 16 lb upl at joint 10, 4 LOAD CASE(S) 	uds exposed to win d Industry Gable Er ualified building des 57-16; Pr=20.0 psf 1.15); Pf=20.0 psf 1.15); Pf=20.0 psf 1.15); Pf=20.0 psf 1.10 snow loads have b as been designed for psf or 1.00 times fit on-concurrent with e 2x4 MT20 unless es continuous bott fully sheathed from nst lateral movemen spaced at 2-0-0 oc as been designed f ad nonconcurrent w has been designed m chord in all areas by 2-00-00 wide will ny other members. thanical connection e capable of withsta ift at joint 7, 22 lb u 4 lb uplift at joint 11	d (norm nd Deta signer a: (roof LL Lum DC B; Fully been cor or great at roof ld other lin other	al to the face ils as applica is per ANSI/TI \perp : Lum DOL= \perp : Lum DOL= \\perp: Lum DOL	e), ble, PI 1. 1.15 e) 9; his f live sf on / ads. opsf om to joint uplift			and the second s	OFFESS SEA 0578	EEP.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	E03	Monopitch Girder	1	2	Job Reference (optional)	173028936


6-0-0

HTU26

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:09 ID:Aw3hNv5HKDtMR6XYYBKLTqzuBPC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

LUS26

3-0-0

Scale = 1:36.9

Plate Offsets (X, Y): [1:0-1-12,0-3-3], [5:Edge,0-4-4], [5:0-2-8,0-1-4]

Loading TCLL (roof) (psf) Spacing 2-0-0 CSI DEFL in (loc) I/defl L/d PLATES GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.18 Vert(LL) -0.01 6 >999 240 MT20 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.17 Vert(CT) -0.01 6 >999 180 TCDL 10.0 Rep Stress Incr NO WB 0.10 Horz(CT) 0.00 11 n/a n/a BCDL 10.0 IRC2021/TPI2014 Matrix-MP Vert (V Vert (V Vert (V Vert (V Vert (V) Ve		,, , ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,	j, [5.⊏uge,0-4-4], [5.0-2	- 0,0 1 4	.1										
	TCLL (roof) Snow (Pf) TCDL BCLL	20.0 20.0 10.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 NO	I/TPI2014	TC BC WB	0.17	Vert(LL) Vert(CT)	-0.01 -0.01	6 6	>999 >999	240 180	MT20	244/190	
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 OTHERS 2x4 SP No.3 OTHERS 2x4 SP No.3 SLIDER Left 2x4 SP No.3 SLIDER Left 2x4 SP No.3 STOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purifies, except in our visual directly applied or 6-0-0 oc purifies, except in our visual directly applied or 6-0-0 oc purifies, except in our visual directly applied or 6-0-0 oc purifies, except in our visual directly applied or 6-0-0 oc purifies, except in our visual directly applied or 6-0-0 oc purifies, except in our visual directly applied or 6-0-0 oc purifies, except in our visual directly applied or 6-0-0 oc purifies, except in our visual directly applied or 6-0-0 oc purifies, except in our visual directly applied or 6-0-0 oc purifies, except in our visual directly applied or 6-0-0 oc purifies, except in our visual directly applied or 6-0-0 oc purifies, except in our visual directly applied or 10-0 CHORD 1-3e-110.5(N-11-943) (LC 18) Max Upit 1=-69 (LC 8), 11-97 (LC 8) Max Upit 1=-105 (LC 8), 11-97 (LC 8) Max Upit 1=-105 (LC 8), 11-97 (LC 8) Max Upit 1=-69 (LC 8), 11-97 (LC 8) Max Upit 1=-105 (LC 8),	TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) 2-ply truss (0.131"x3") Top chords oc. Bottom chor staggered i Web conne 2) All loads an except if no CASE(S) s provided to	2x6 SP No.2 2x4 SP No.3 2x4 SP No.3 Left 2x4 SP No.3 1 Structural wood she 6-0-0 oc purlins, exe Rigid ceiling directly bracing. (size) 1=0-3-8, 1 Max Horiz 1=51 (LC Max Uplift 1=-69 (LC Max Uplift 1=-69 (LC Max Grav 1=805 (LC (Ib) - Maximum Com Tension 1-3=-1105/98, 3-4=- 1-6=-126/1072, 5-6= 3-6=-6/439, 3-5=-95 to be connected toget) nails as follows: s connected as follows: s connected as follows: ords connected as follows ords connected as follows ords connected equally oted as font (F) or bac paction. Ply to ply conr o distribute only loads	athing directly applied of cept end verticals. applied or 10-0-0 oc 11=0-1-8 8) 2 8, 11=-97 (LC 8) 2 18, 11=943 (LC 18) appression/Maximum 233/13, 4-5=-73/890 -127/1074 6/116, $4-11=-964/99ther with 10ds: 2x4 - 1 row at 0-6-0ows: 2x6 - 2 rows-1$ row at 0-9-0 oc. applied to all plies, ck (B) face in the LOAE nections have been	4) or 5) 6) 7) 8) 9) 10) 11) 0 12) 13) LO	Vasd=103mp II; Exp B; Enn cantilever lef right exposed TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha chord live loa * This truss ha on the botton 3-06-00 tall b chord and an Bearing at jo using ANSI/T designer sho Provide meci bearing plate 0 One H2.5A S recommende UPLIFT at jt(and does not) Use Simpsor Truss, Single oc max. start connect truss) Use Simpsor 14-10dx1 1/2 end to come	bh; TCDL=6.0psf; closed; MWFRS (t and right exposed d; Lumber DOL=1 7-16; Pr=20.0 ps .15); Pf=20.0 ps Is=1.0; Rough Cat =1.10 snow loads have I as been designed that been designed tha	BCDL=6 envelope d; end v. 60 plate f (roof LI (Lum DC B; Fully been cor for a 10.0 with any f for a liv for a 10.0 with any f for a liv s where all fit betw s paralle n formul of bear n formul of bear n formul to bear connection cores. 26 (4-100 uivalent the left e of bottor 26 (10-11 ent at 5- nt face o is in cor	.0psf; h=25ft exterior zor rertical left an grip DOL=1. .: Lum DOL= L=1.15 Plate Exp.; Ce=0.9 asidered for th D psf bottom other live load e load of 20.0 a rectangle ween the bottot to grain value a. Building ng surface. ers) of truss t ctors ing walls due on is for upliff d Girder, 3-10 spaced at 2-0 ch dto 3-4-0 to n chord. 3d Girder, 4-0 from the f bottom chor ttact with lum	ne; nd 60 1.15 9; his nds. 0psf om	Co	Vert: 1- oncentra Vert: 5=	4=-60, ated Lo 390 (I	5-7=-20 ads (lb) F), 12=-387 (F),		

April 28,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	E04	Jack-Open	18	1	Job Reference (optional)	173028937

4-0-0 4-0-0

12 6 Г

4-0-0

-0-10-8 0-10-8

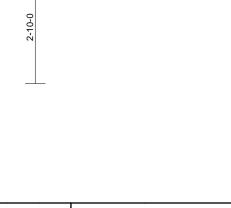
2

3x8 II

5 \bigotimes

Carter Components (Sanford, NC), Sanford, NC - 27332,

2-10-0


0-10-0

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:09 ID:baH29DDfrfPGBN2D67iOaLznEgZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

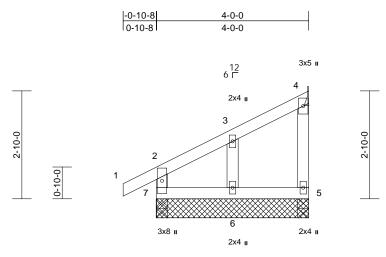
3

4

Page: 1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.33	Vert(LL)	0.01	4-5	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.17	Vert(CT)	-0.02	4-5	>999	180			
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	3	n/a	n/a			
BCLL	0.0		IRC2021/TPI2014	Matrix-MR	0.00		0.01	0		, a			
BCDL	10.0	0000									Weight: 15 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.3 Structural wood s	heathing directly applie	on the bot 3-06-00 ta chord and 7) All bearing ed or 8) Refer to gi	s has been design tom chord in all are any other membe any other membe as are assumed to irder(s) for truss to echanical connect	eas where will fit betw rs. be User D truss conr	a rectangle veen the both efined . nections.	tom						
BOT CHORD		tly applied or 10-0-0 o	c bearing pla 3.	ate capable of with	standing 5	i9 lb uplift at	joint						
REACTIONS	5=0-3-8 Max Horiz 5=78 (L Max Uplift 3=-59 (.C 14) LC 14), 5=-17 (LC 14) (LC 21), 4=71 (LC 7),	upLIFT at does not c	A Simpson Strong- nded to connect tru ; jt(s) 5. This connec consider lateral forc S) Standard	iss to bear action is fo	ing walls due							
FORCES	· · ·	ompression/Maximum											
TOP CHORD BOT CHORD	2-5=-300/142, 1-2	=0/43, 2-3=-91/54											
NOTES													
1) Wind: ASC Vasd=103 II; Exp B; and C-C E exposed ; members Lumber D	Enclosed; MWFRS Exterior(2E) zone; ca end vertical left and and forces & MWFR OL=1.60 plate grip I	BCDL=6.0psf; h=25ft (envelope) exterior zor intilever left and right right exposed;C-C for tS for reactions shown	ne ;									ROLIN	
Plate DOL DOL=1.15 Cs=1.00;	_=1.15); Pf=20.0 psf 5); Is=1.0; Rough Ca Ct=1.10	(Lum DOL=1.15 Plate t B; Fully Exp.; Ce=0.9	9;								SEA 0578	•	111111
 Unbalance design. 	ed snow loads have	been considered for th	nis								0070	· /	H
4) This truss load of 12		for greater of min roof flat roof load of 20.0 p h other live loads								inn.	ENGIN	EEP.	
5) This truss	has been designed	for a 10.0 psf bottom with any other live loa	ds.								"DAM	PACLIN	

April 28,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Scale = 1:28.8

Job	Truss	Truss Type	Qty Ply 118 Eagle Creek - Hartwell E - Roof			
25040108	E06	Jack-Open Supported Gable	1	1	Job Reference (optional)	173028938

Run: 8.73 E Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries, Inc. Mon Apr 28 13:46:49 ID:3nrQNZEHcyX7oWcQgqDd6ZznEgY-xOe1ea1W6syP?GSiPBpEn9sgG5KerPI_0_BP7GzMKmc

Page: 1

Scale = 1:30.3

_oading (psf)	Spacing 2-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 20.0	Plate Grip DOL 1.1	15	TC	0.19	Vert(LL)	0.00	6-7	>999	240	MT20	244/190
Snow (Pf) 20.0	Lumber DOL 1.1		BC	0.07	Vert(CT)	0.00	6-7	>999	180		
TCDL 10.0	Rep Stress Incr YE		WB	0.06	Horz(CT)	0.00	4	n/a	n/a		
3CLL 0.0*	Code IR	C2021/TPI2014	Matrix-MR								
3CDL 10.0										Weight: 20 lb	FT = 20%
4-0-0 oc purlins, ex BOT CHORD Rigid ceiling directly bracing. REACTIONS All bearings 4-0-0. ex (lb) - Max Horiz 7=99 (LC Max Uplift All uplift 4, 6, 7 Max Grav All reaction (s) 4, 5, 6	applied or 10-0-0 oc cept 4= Mechanical 11) 00 (lb) or less at joint(s) ns 250 (lb) or less at joint 7 ax. Ten All forces 250 hen shown.	 load of 12.0 overhangs n Truss to be f braced again Gable studs This truss ha chord live los * This truss la on the botton 3-06-00 tall l chord and ar Refer to gird Provide mec bearing plate (s) 7, 4, 6. Gap betwee 	is been designed for psf or 1.00 times fla on-concurrent with a ully sheathed from a stateral movemen spaced at 2-0-0 oc. is been designed for ad nonconcurrent w has been designed for ad nonconcurrent w has been designed for n chord in all areas by 2-00-00 wide will by other members. er(s) for truss to trus hanical connection a capable of withstar in inside of top chord rertical web shall no	t roof lo other liv one fac t (i.e. d r a 10.0 ith any for a liv where fit betw ss conr (by oth nding 1 I bearir	bad of 20.0 ps re loads. e or securely iagonal web) 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto nections. ers) of truss t 00 lb uplift at ng and first	sf on					

4-0-0

ľ

- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 4) design.

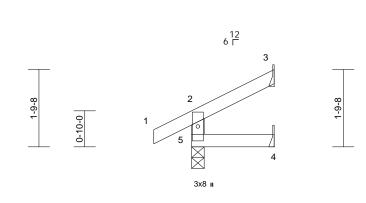
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	E07	Jack-Open	4	1	Job Reference (optional)	173028939

-0-10-8

0-10-8

1-10-15


1-10-15

1-10-15

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:09 ID:3nrQNZEHcyX7oWcQgqDd6ZznEgY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:26.7

				_							
Loading (psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 20.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	0.00	4-5	>999	240	MT20	244/190
Snow (Pf) 20.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	0.00	4-5	>999	180		
TCDL 10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCLL 0.0*	Code	IRC2021/TPI2014	Matrix-MR		,						
BCDL 10.0										Weight: 8 lb	FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 BRACING TOP CHORD Structural wood shea 1-10-15 oc purlins, of BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 3= Mecha 5=0-3-8 Max Horiz 5=41 (LC Max Uplift 3=-28 (LC Max Grav 3=54 (LC (LC 21)	except end verticals. applied or 10-0-0 oc nical, 4= Mechanical 14), 5=-16 (LC 14)	d or 8) Refer to gin 9) Provide me bearing pla 3. 10) One H2.5A recommen UPLIFT at does not co	has been designed om chord in all are by 2-00-00 wide v any other member s are assumed to b der(s) for truss to echanical connective te capable of with Simpson Strong- ded to connect trus (t(s) 5. This conne- onsider lateral forc	as where will fit betw s. De User D truss conr on (by oth standing 2 Fie conne as to bear ction is for	a rectangle veen the botto efined . nections. ers) of truss to 8 lb uplift at jo ctors ng walls due	bm po point to					
FORCES (lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD 2-5=-186/101, 1-2=0 BOT CHORD 4-5=0/0	/40, 2-3=-44/22										
NOTES											
 Wind: ASCE 7-16; Vult=130mph Vasd=103mph; TCDL=6.0psf; B0 II; Exp B; Enclosed; MWFRS (en and C-C Exterior(2E) zone; canti exposed ; end vertical left and rig members and forces & MWFRS Lumber DOL=1.60 plate grip DO TCLL: ASCE 7-16; Pr=20.0 psf (L DOL=1.15); IS=1.0; Rough Cat B Cs=1.00; Ct=1.10 Unbalanced snow loads have be design. This truss has been designed for load of 12.0 psf or 1.00 times flat overhangs non-concurrent with c This truss has been designed for chord live load nonconcurrent with 	DL=6.0psf; h=25ft; velope) exterior zone lever left and right jht exposed;C-C for for reactions shown; L=1.60 roof LL: Lum DOL=1. im DOL=1.15 Plate ; Fully Exp.; Ce=0.9; en considered for thi greater of min roof I roof load of 20.0 psf ther live loads. a 10.0 psf bottom	e .15 s ive f on							and the second second	SEA 0578	AROCINE NEER.

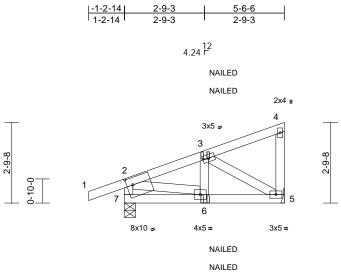
- overhangs non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom 5)
- chord live load nonconcurrent with any other live loads.

April 28,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	E09	Diagonal Hip Girder	2	1	Job Reference (optional)	173028940

2-9-3


Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:09 ID:QkeJQGIQRVAQvIVNTNpopcznEgT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-6-6

Page: 1

2-9-3 5-6-6 2-9-3 2-9-3

Scale = 1:39.9

Plate Offsets (X, Y): [7:0-2-8,0-3-0]

Loading (psf) Spacing 2-0-0 CSI DEFL TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.22 Vert(LL) Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.10 Vert(CT) TCDL 10.0 Rep Stress Incr NO WB 0.11 Horz(CT) BCLL 0.0* Code IRC2021/TPI2014 Matrix-MP Vert(CT)	in (loc) I/defl L/d PLATES GRIP 0.00 6 >999 240 MT20 244/190 -0.01 5-6 >999 180 0.00 5 n/a n/a Weight: 32 lb FT = 20%
 LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. REACTIONS (size) 5= Mechanical, 7=0-4-9 Max Horiz 7=105 (LC 9) Max Grav 5=271 (LC 19), 7=428 (LC 19) Max Grav 5=271 (LC 19), 7=428 (LC 19) Max Grav 5=271 (LC 19), 7=428 (LC 19) Max Grav 5=271 (LC 19), 7=428 (LC 19) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 2-7=-405/93, 1-2=0/41, 2-3=-317/26, -3-4=-55/25, 4-5=-99/25 BOT CHORD 6-7-=102/10, 56=-45/257 WEBS 2-6=0/264, 3-6=0/92, 3-5=-297/56 NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; cand vertical teft and right exposed; Lumber DOL=1.16 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Vrl=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15; Is=1.0; Rully Exp.; Ce=0.3; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 	n nt ce

April 28,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	PB01	Piggyback	3	1	Job Reference (optional)	173028941

-0-11-1

0-11-1

Carter Components (Sanford, NC), Sanford, NC - 27332,

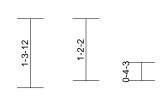
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:09 ID:yY4xDxHogB1ZH8wBvgIZHPznEgU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

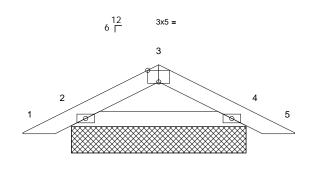
3-3-14

1-7-15

4-2-15

0-11-1


2x4 =


1-7-15

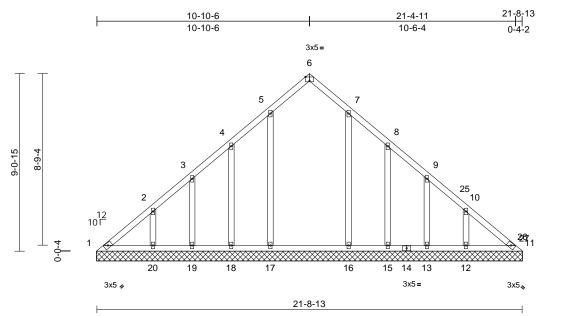
1-7-15

2x4 =

3-3-14

Scale = 1:21.9

Plate Offsets (X, Y): [3:0-2-8,Edge]


	, f). [3.0-2-6,Euge]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MP	0.06 0.06 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS (A FORCES TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 Structural wood she 5-3-0 oc purlins. Rigid ceiling directly bracing.	applied or 10-0-0 oc 4=3-3-14 15) 14), 4=-19 (LC 15) 21), 4=209 (LC 22) pression/Maximum	7) 8) 9) ; 10) 11) 12)	load of 12.0 j overhangs n Gable requir Gable studs This truss ha chord live loa * This truss f on the bottor 3-06-00 tall b chord and ar N/A See Standar Detail for Co consult quali	s been designed psf or 1.00 times on-concurrent wit es continuous boi spaced at 4-0-0 o s been designed ad nonconcurrent nas been designe n chord in all arec by 2-00-00 wide w by other members d Industry Piggyb nnection to base fied building designed	flat roof k th other link ttom chor oc. for a 10.0 with any d for a liv as where as where vill fit betw s.	bad of 20.0 p: ve loads. d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the bottom s Connection	sf on ds. Dpsf om				vveigiit. 14 ID	r τ = 2070
 this design. Wind: ASCE Vasd=103rr II; Exp B; Er and C-C Ex exposed ; e members ar Lumber DO Truss desig only. For st see Standal or consult q TCLL: ASCI Plate DOL= DOL=1.15; Cs=1.00; Cl 	I roof live loads have E 7-16; Vult=130mph ph; TCDL=6.0psf; Br nclosed; MWFRS (er terior(2E) zone; canti nd vertical left and rig nd forces & MWFRS L=1.60 plate grip DO ned for wind loads in uuds exposed to wind rd Industry Gable En- ualified building desig E 7-16; Pr=20.0 psf (L 1.15); Pf=20.0 psf (L 1.15); Pf=20.0 psf (L 1.10; Rough Cat E L=1.10	(3-second gust) CDL=6.0psf; h=25ft; welope) exterior zon lever left and right ght exposed;C-C for for reactions shown; L=1.60 the plane of the trus (normal to the face) d Details as applicab gner as per ANSI/TP roof LL: Lum DOL=1 um DOL=1.15 Plate ;; Fully Exp.; Ce=0.9	Cat. e ss , ole, 1 1. .15 ;	AD CASE(S)	Standard					- CHILLER	and the second s	SEA 0578	L BACE

April 28,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	V01	Valley	1	1	Job Reference (optional)	173028942

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:10 ID:iznHFFtBg56yu1sKxQHoixznUtm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

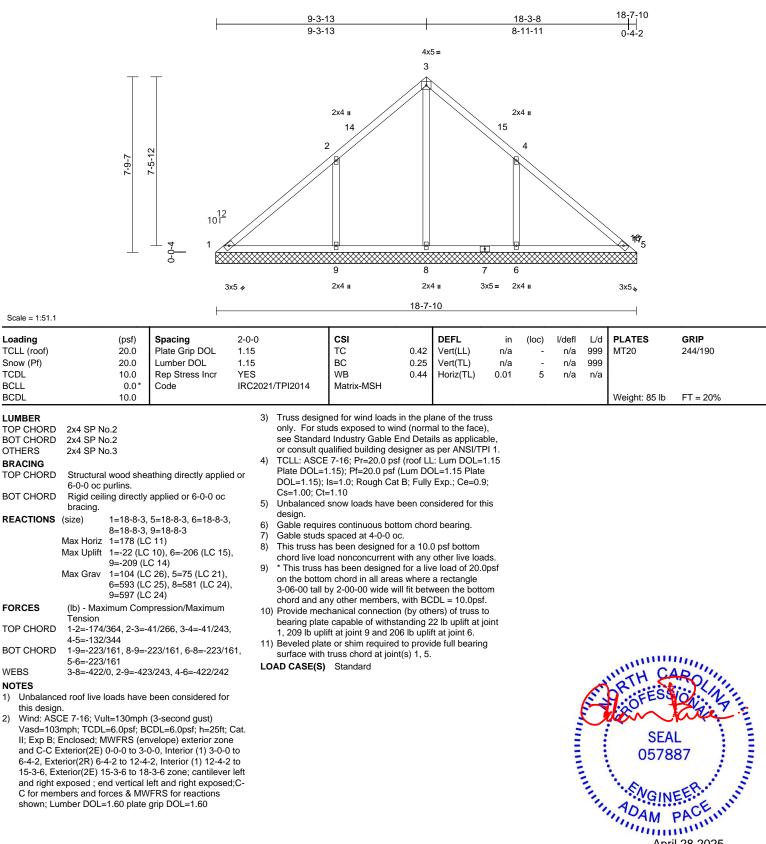
Scale = 1:58.9 Plate Offsets (X, Y): [6:0-2-8,Edge]

	X, 1). [0.0-2-0,Euge]	1			1		-					1	1
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.10	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.10	Vert(TL)	n/a	-	n/a	999 999	IVIT20	244/190
TCDL	10.0	Rep Stress Incr	YES		WB	0.24	Horiz(TL)	0.01	11	n/a	n/a		
BCLL	0.0*	Code	IRC2021	/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 125 lb	FT = 20%
LUMBER			WE		5-17=-244/86, 4-1		,						others) of truss to
TOP CHORD	2x4 SP No.2				3-19=-138/100, 2-			44/78,					ng 10 lb uplift at joint
BOT CHORD	2x4 SP No.2 2x4 SP No.3				8-15=-161/114, 9-13=-138/101, 1, 3 lb uplift at joint 11, 44 lb uplift at joint 10-12=-190/114 at joint 18, 76 lb uplift at joint 19, 70 lb upl								
OTHERS BRACING	2X4 SP N0.5		NC	TES									
TOP CHORD	Structural wood she	athing directly applie			roof live loads hav	/e been	considered fo	r				uplift at joint 12.	, ,
	6-0-0 oc purlins.	at mig anoony applie	u 01 · · /	this design.				-					rovide full bearing
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	2)		7-16; Vult=130mp							chord at joint(s) 1	, 11.
	bracing.				ph; TCDL=6.0psf;				LOAD	ASE(S) Sta	ndard	
REACTIONS	()												
		6, 15=21-9-6, 16=21- 6, 18=21-9-6, 19=21-	,		-10-11, Corner(3R								
	20=21-9-6	, ,	50,	Exterior(2N)	r(3E) 18-4-9 1	to							
	Max Horiz 1=208 (LC				; cantilever left and								
	Max Uplift 1=-10 (LC				and right exposed; VFRS for reactions								
		C 15), 13=-80 (LC 1		DOL=1.60 p	Lumber								
		C 15), 16=-37 (LC 1 C 14), 18=-91 (LC 14			ned for wind loads		ane of the tru	SS					
		C 14), 20=-70 (LC 14			uds exposed to wir								
	Max Grav 1=191 (LC				d Industry Gable E								
		_C 25), 13=185 (LC 2			ualified building de E 7-16; Pr=20.0 ps								
		-C 21), 16=357 (LC 6	<i>'</i> , <i>'</i>		1.15); Pf=20.0 ps							WILL CI	D'III.
		_C 5), 18=193 (LC 20 _C 24), 20=302 (LC 2			Is=1.0; Rough Cat						1	"TH UN	ROIL
FORCES	(lb) - Maximum Com			Cs=1.00; Ct		-	-			/	12	OT LESS	id: Nº
1 On OLO	Tension		5)		snow loads have	been cor	nsidered for th	nis			: 5	0	No. 7 -
TOP CHORD	1-2=-293/132, 2-3=-		6)	design.	e 2x4 MT20 unless	othonwi	so indicated			ų C	0	ac to	the states
	4-5=-145/41, 5-6=-1		zý		es continuous bot					-		SEA	
	7-8=-145/26, 8-9=-1 10-11=-283/131	51/51, 9-10=-207/76	8)		spaced at 2-0-0 o		a boaring.			=		JLA	
BOT CHORD		20=-106/255	9)	This truss ha	as been designed t	for a 10.						05/8	8/ : :
BOT ONORE	18-19=-106/255, 17-18=-106/255, 16-17=-106/255, 15-16=-106/255, 13-15=-106/255, 12-13=-106/255,				ad nonconcurrent							1	1 1 2
				10) * This truss has been designed for a live load of 20.0psf							2	·	.a. 3
				13-15=-106/255, 12-13=-106/255, 14-12 - 106/255 - 3-06-00 tall by 2-00-00 wide will fit between the bottom						1	VGIN	EE	
	11-12=-106/255				ny other members.						11	SEA 0578	ACEIN
					,		F					MM	in the second se
												2000 B	100.0005

April 28,2025

TRENCO A MITCH Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	V02	Valley	1	1	Job Reference (optional)	173028943

1)

2)

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:10 ID:iznHFFtBg56yu1sKxQHoixznUtm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

April 28,2025

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	V03	Valley	1	1	Job Reference (optional)	173028944

Scale = 1:45.3

Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

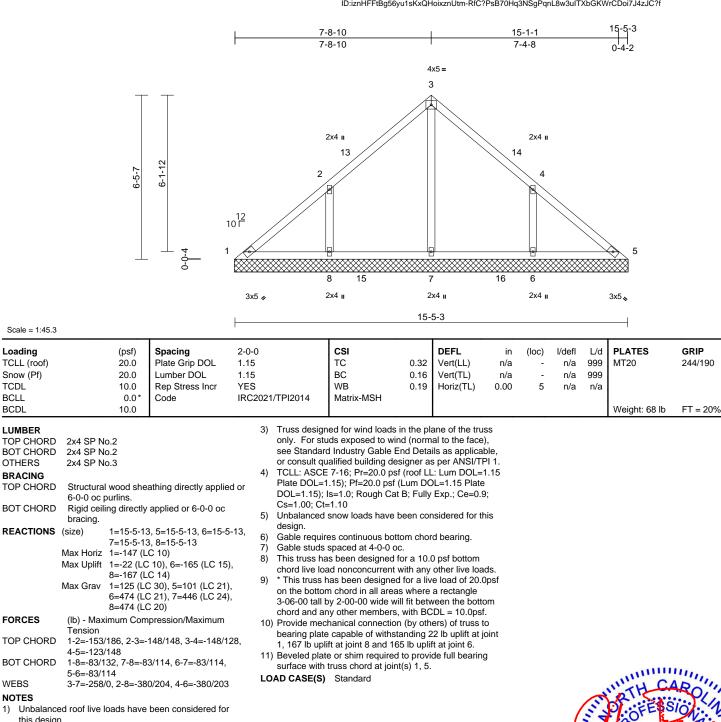
FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES 1)


TCDL

BCLL

BCDL


Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Fri Apr 25 10:21:10 ID:iznHFFtBg56yu1sKxQHoixznUtm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 4-8-14, Exterior(2R) 4-8-14 to 10-8-14, Interior (1) 10-8-14 to 12-5-13, Exterior(2E) 12-5-13 to 15-5-13 zone; cantilever left and right exposed ; end vertical left

and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof				
25040108	V04	Valley	1	1	Job Reference (optional)	173028945			

Loading

Snow (Pf)

LUMBER

OTHERS

BRACING

FORCES

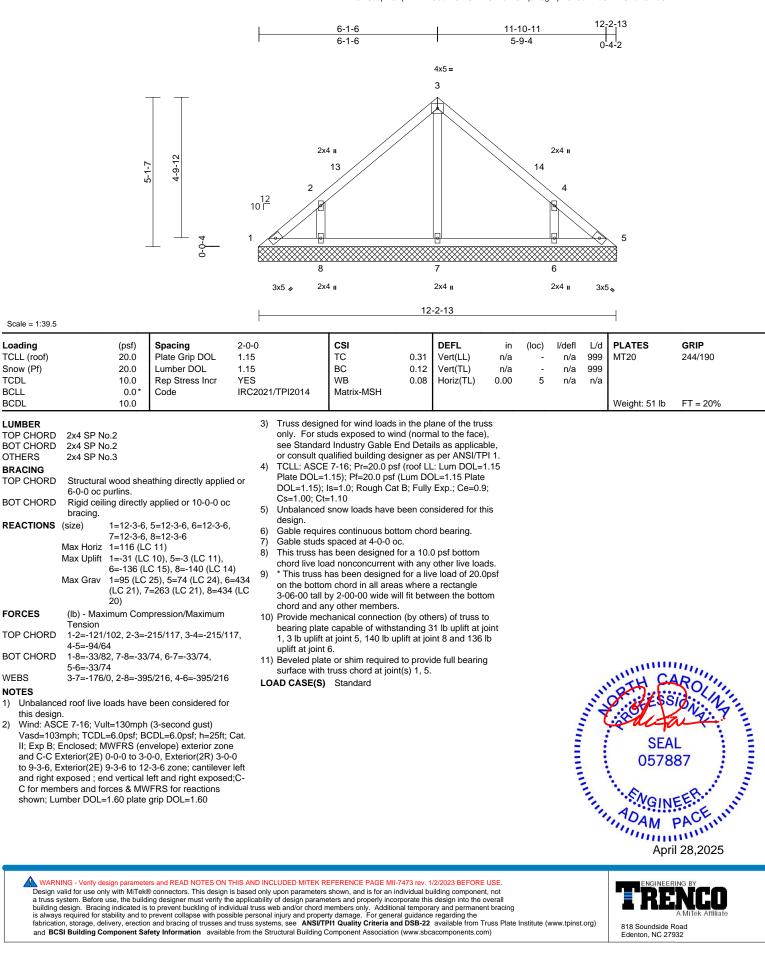
WEBS

NOTES

1)

2)

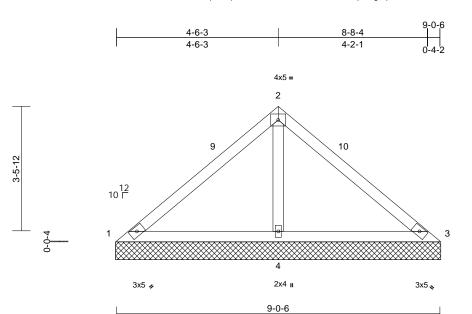
TCDL


BCLL

BCDL

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:10 ID:A9LfSbupROEpWBRWU8o1E8znUtl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



Job	Truss	russ Truss Type		Ply	118 Eagle Creek - Hartwell E - Roof		
25040108	V05	Valley	1	1	Job Reference (optional)	173028946	

3-9-7

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:10 ID:A9LfSbupROEpWBRWU8o1E8znUtl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:32.2

TCLL (roof) 20 Snow (Pf) 20 TCDL 10 BCLL 0	psf) Spacing 20.0 Plate Grip DOL 20.0 Lumber DOL 0.0 Rep Stress Incr 0.0* Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.38 0.37 0.15	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%
9-0-6 oc purlin BOT CHORD Rigid ceiling di bracing. REACTIONS (size) 1=9- Max Horiz 1=-2 Max Uplift 1=-4 4=-5 Max Grav 1=9 (LC	tirectly applied or 6-0-0 oc -1-0, 3=9-1-0, 4=9-1-0 84 (LC 10) 40 (LC 21), 3=-40 (LC 20), 98 (LC 14) 11 (LC 20), 3=91 (LC 21), 4= 21) n Compression/Maximum , 2-3=-107/341	 Plate DOL= DOL=1.15); Cs=1.00; C Unbalanced design. Gable requi Gable studs This truss h chord live l6 * This truss on the botto 3-06-00 tall chord and a 10) Provide me bearing plat 1, 40 lb upli Beveled pla surface with 	I snow loads have res continuous bo as paced at 4-0-0 d as been designed ad nonconcurrent has been designed m chord in all are by 2-00-00 wide v ny other members chanical connection e capable of withs ft at joint 3 and 98 te or shim require truss chord at joint	(Lum DC tt B; Fully been cor ttom chor oc. for a 10. d for a liv as where vill fit betw s. n (by oth tanding 4 lb uplift a d to provi	DL=1.15 Plate Exp.; Ce=0.9 hsidered for the d bearing. D psf bottom other live load e load of 20.0 a rectangle ween the botthers) of truss to 10 lb uplift at j tt joint 4.	e 9; his dds. 0psf om to					
WEBS 2-4=-592/258 NOTES 1) Unbalanced roof live loads this design.		LOAD CASE(S	Standard								

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 6-1-0, Exterior(2E) 6-1-0 to 9-1-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof		
25040108	V06	Valley	1	1	Job Reference (optional)	173028947	

2-11-0

2-11-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:10 ID:A9LfSbupROEpWBRWU8o1E8znUtl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-5-14

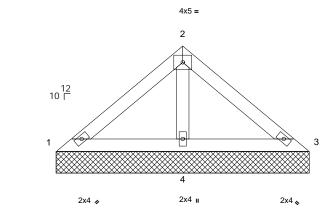
2-6-14

5-10-0

0-0-4 4 2x4 🍫 2x4 🛛 5-10-0

2-1-12

2-5-7

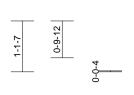

Scale = 1:26.8

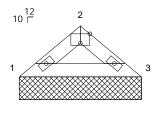
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.15 0.17 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-10-0 oc purlins. Rigid ceiling directly bracing. (size) 1=5-10-10 Max Horiz 1=-53 (LC Max Uplift 3=-4 (LC Max Grav 1=97 (LC (LC 20)	applied or 6-0-0 oc 0, 3=5-10-10, 4=5-10 2 12) 15), 4=-49 (LC 14)	design. 6) Gable requi 7) Gable studs 8) This truss h chord live lo 9) * This truss on the botto 3-06-00 tall chord and a 10) Provide mer bearing plat and 49 lb up =393 11) Beveled pla	snow loads have I res continuous bott spaced at 4-0-0 or as been designed f ad nonconcurrent has been designed m chord in all area by 2-00-00 wide wi ny other members. chanical connectior e capable of withst blift at joint 4. te or shim required	tom chor c. for a 10. with any d for a liv s where ill fit betv n (by oth anding 4	d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t I b uplift at jo de full bearing	ids. Opsf om to int 3					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-86/155, 2-3=-8 1-4=-125/119, 3-4=- 2-4=-300/144	6/155	surface with LOAD CASE(S)	truss chord at join Standard	t(s) 1, 3.							
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103r II; Exp B; E and C-C E exposed; (members a Lumber DC 3) Truss desig only. For s see Standa or consult 4) TCLL: ASC Plate DOL:	d roof live loads have E 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er xterior(2E) zone; cant end vertical left and right and forces & MWFRS DL=1.60 plate grip DC gned for wind loads in studs exposed to wind ard Industry Gable En qualified building desi CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L); Is=1.0; Rough Cat E	(3-second gust) CDL=6.0psf; h=25ft; welope) exterior zon- ilever left and right ght exposed;C-C for for reactions shown; u=1.60 the plane of the trus (normal to the face); d Details as applicab gner as per ANSI/TP roof LL: Lum DOL=1 um DOL=1.15 Plate	Cat. e s le, l 1. .15							and the second s	OTH CA OTH CA SEA 0578	EEP. PACE 111111

818 Soundside Road Edenton, NC 27932

April 28,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	V07	Valley	1	1	Job Reference (optional)	173028948

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:10 ID:A9LfSbupROEpWBRWU8o1E8znUtl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x5 =

2x4 🍫 2x4 💊

2-7-10

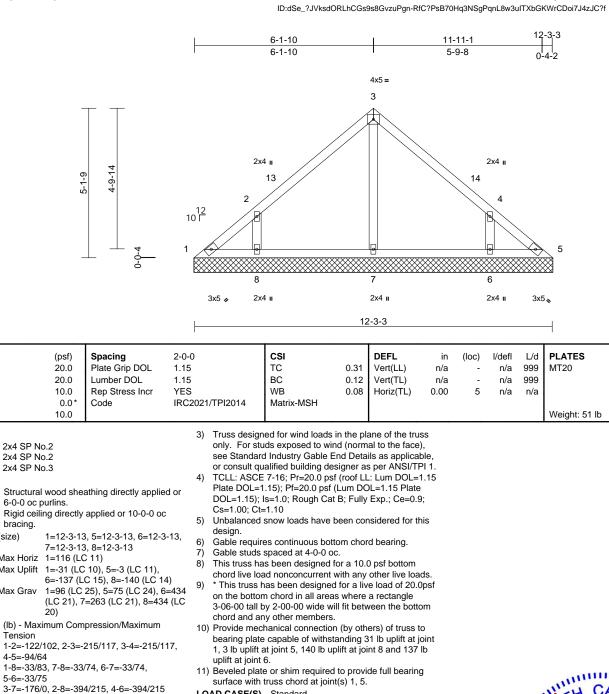
Scale = 1:25.3

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	BC 0.	DEFL 06 Vert(LL) 06 Vert(TL) 00 Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
2-7-10 oc purlins.	2 12) 14), 3=-9 (LC 15) C 20), 3=122 (LC 21) pression/Maximum 58/67 been considered for (3-second gust) CDL=6.0psf; h=25ft; (pvelope) exterior zone ilever left and right ght exposed; C-C for for reactions shown; JL=1.60 the plane of the truss (normal to the face), d Details as applicabl gner as per ANSI/TPI roof LL: Lum DOL=1. um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9; seen considered for this	8) This truss ha chord live lo: 9) * This truss I on the botton 3-06-00 tall i chord and at 10) Provide mec bearing plate and 9 lb upli 11) Beveled plat surface with LOAD CASE(S)	e or shim required to p truss chord at joint(s) 1	any other live loa a live load of 20. ere a rectangle between the bot others) of truss ng 9 lb uplift at jo rovide full bearir	ads. .0psf tom to pint 1				MAM	B7

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof					
25040108	V08	Valley	1	1	Job Reference (optional)	173028949				


Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Fri Apr 25 10:21:10

Page: 1

GRIP

244/190

FT = 20%

WEBS NOTES

FORCES

TOP CHORD

BOT CHORD

Scale = 1:39.5

Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

REACTIONS (size)

bracing.

Max Horiz

Max Uplift

Max Grav

Tension

TOP CHORD BOT CHORD

TCDL

BCLL

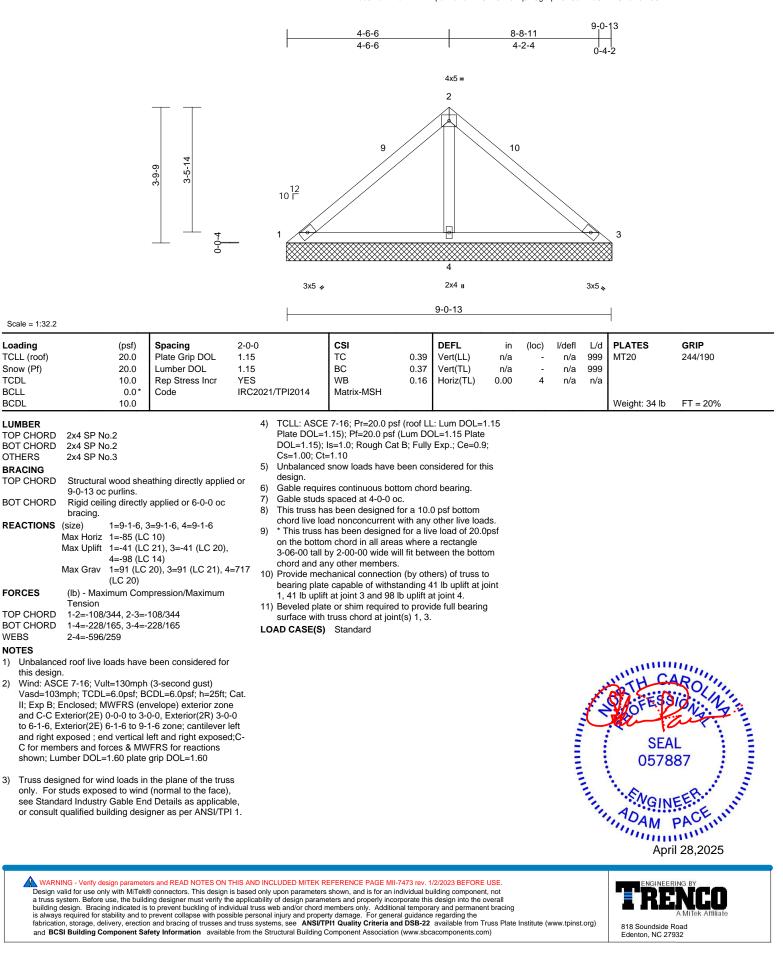
BCDL

- 1) Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) 2)
- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 9-3-13, Exterior(2E) 9-3-13 to 12-3-13 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

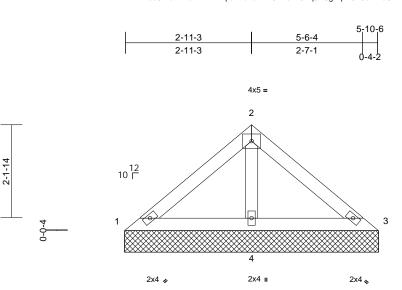
Job	Truss	Truss Type Qty		Ply	118 Eagle Creek - Hartwell E - Roof				
25040108	V09	Valley	1	1	Job Reference (optional)	173028950			


1)

2)

3)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:10 ID:ITeoCYiu?YKcBf7FWN7peHzuPdx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

Job	Truss	Truss Type Qty Ply 118 Eagle Creek - Hartwell E - Roof				
25040108	V10	Valley	1	1	Job Reference (optional)	173028951

2-5-9

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:11 ID:ITeoCYiu?YKcBf7FWN7peHzuPdx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-10-6

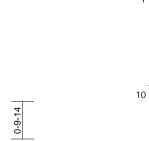
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MP	0.15 0.17 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-10-6 oc purlins. Rigid ceiling directly bracing. (size) 1=5-11-0, Max Horiz 1=53 (LC Max Uplift 3=-4 (LC Max Grav 1=97 (LC (LC 21)	applied or 6-0-0 oc 3=5-11-0, 4=5-11-0 11) 15), 4=-49 (LC 14)	9) 10	design. Gable require Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate and 49 lb upl) Beveled plate	e or shim required	om chor c. or a 10. with any l for a liv s where Il fit betv n (by oth anding 4 to provi	d bearing.) psf bottom other live loa e load of 20.0 a rectangle veen the bott ers) of truss t Ib uplift at jo	ads. 0psf om to vint 3					
FORCES TOP CHORD BOT CHORD WEBS NOTES	(lb) - Maximum Com Tension 1-2=-87/157, 2-3=-8 1-4=-127/120, 3-4=- 2-4=-303/146	7/157	LC	DAD CASE(S)	truss chord at joint Standard	((5) 1, 3.							
 Notes 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right 													

- II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 3) Truss designed for wind loads in the plane of the truss
- only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

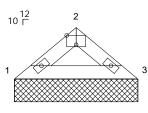
818 Soundside Road Edenton, NC 27932 Page: 1

Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	V11	Valley	1	1	Job Reference (optional)	173028952


Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:11 ID:ITeoCYiu?YKcBf7FWN7peHzuPdx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

 1-4-0
 2-3-14
 2-8-0

 1-4-0
 0-11-14
 0-4-2


3x5 =

Page: 1

-0-4

1-1-9

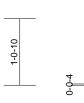
2x4 🍫 2x4 💊

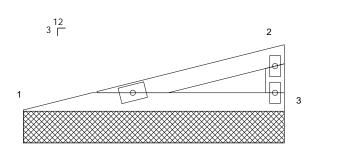
2-8-0

Scale = 1:25.3

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.06 0.06 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
BOT CHORD 2-8-0 oc purlins. Rigid ceiling directly bracing. REACTIONS (size) 1=2-8-10 Max Horiz 1=-22 (L0 Max Uplift 1=-9 (LC Max Grav 1=124 (L0	14), 3=-9 (LC 15) C 20), 3=124 (LC 21) npression/Maximum 160/68 e been considered for n (3-second gust) 3CDL=6.0psf; h=25ft; (nvelope) exterior zone tilever left and right ight exposed;C-C for for reactions shown; DL=1.60 n the plane of the trust d (normal to the face), nd Details as applicab igner as per ANSI/TPI (roof LL: Lum DOL=1. Lum DOL=1.15 Plate B; Fully Exp.; Ce=0.9; een considered for thi	8) This truss ha chord live lo: 9) * This truss I on the botton 3-06-00 tal I chord and at 10) Provide mec bearing plate and 9 lb upli 11) Beveled plat surface with LOAD CASE(S)	e or shim required to truss chord at joint(th any or a liv where fit betw (by oth nding 9 o provi	other live load e load of 20.0 a rectangle veen the botto ers) of truss to lb uplift at joi	opsf om o int 1			A CONTRACT OF CONTRACT.	SEA 0578	87


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Information. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	118 Eagle Creek - Hartwell E - Roof	
25040108	V12	Valley	1	1	Job Reference (optional)	173028953

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:11 ID:E7 liRY iKX j1rQzBkZNg7NGznC4g-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1-0-10

4-1-7

2x4 u

2x4 u

4-1-7		

3x5 =

Scale	- '	1.18	22

Leading (ps) Spacing 1-11-4 CSI DEFL in (loc) I/deft L/d MT20 PLATES GRIP TCLL 0.01 10.0 Reg Stress incr YES WB 0.00 Ver(LL) n/a - n/a 999 MT20 244/190 TCDL 0.01 10.0 Reg Stress incr YES WB 0.00 Ver(LL) n/a - n/a 999 MT20 244/190 ECLL 0.01 10.0 Reg Stress incr YES WB 0.00 No	Scale = 1:18.2												
 TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING 2x4 SP No.3 BRACING 52x4 SP No.3 BRACING 52x4 SP No.3 BOT CHORD 32x4 SP No.3 BOT CHORD 61-12-143 BOT CHORD 71-17-13-24-1-7 Max Horiz 1=30 (LC 11) Max Horiz 1=30 (LC 11) Max Grav 1=197 (LC 20), 3=-97 (LC 20) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1:2445/230, 2-3=-116/80 BOT CHORD 1:3249/423 NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(22) zone; cantilever left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DU-1.60 2) Truss designed for wind loads in the plane of the truss of the function of the function	TCLL (roof) Snow (Pf) TCDL BCLL	20.0 20.0 10.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 YES	TC BC WB	0.25	Vert(LL) Vert(TL)	n/a n/a	-	n/a n/a	999 999	MT20	244/190
 See Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. 	LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS (s M FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASCE Vasd=103m II; Exp B; En and C-C Ext exposed ; er members an Lumber DOI 2) Truss desigr only. For stt see Standar or consult q 3) TCLL: ASCE Plate DOL= DOL=1.15); Cs=1.00; Ct 4) Unbalanced design. 5) Gable requir	2x4 SP No.2 2x4 SP No.3 Structural wood she 4-1-7 oc purlins, ex Rigid ceiling directly bracing. size) 1=4-1-7, ; fax Horiz 1=30 (LC fax Uplift 1=-23 (LC fax Uplift 1=-23 (LC fax Grav 1=197 (LC (Ib) - Maximum Con Tension 1-2=-445/230, 2-3=- 1-3=-249/423 F7-16; Vult=130mph ph; TCDL=6.0psf; B toclosed; MWFRS (er terior(2E) zone; cant nd vertical left and right of forces & MWFRS L=1.60 plate grip DC ned for wind loads in uds exposed to wind d Industry Gable En ualified building desi E7-16; Pr=20.0 psf (L 1:5); Pf=20.0 psf (L 1:5); Con psf (L 1:5); Pf=20.0 psf (L 1:5); Pf=20.0 psf (L 1:5); Pf=20.0 psf (L 1:5); Pf=20.0 psf (L 1:5); Pf=2	cept end verticals. applied or 10-0-0 or 3=4-1-7 11) 2 10), 3=-26 (LC 14) C 20), 3=197 (LC 20) appression/Maximum 116/80 (3-second gust) CDL=6.0psf; h=25ft tivelope) exterior zon ilever left and right ght exposed; C-C for for reactions showr DL=1.60 the plane of the true (normal to the face d Details as applica gner as per ANSI/TI roof LL: Lum DOL= um DOL=1.15 Plate 3; Fully Exp.; Ce=0.5 pen considered for the	chord live 8) * This tru on the bo 3-06-00 chord an 9) Provide r bearing p 3 and 23 LOAD CASE))) ; Cat. ne r h; liss ;), ble, PI 1. 1.15 9;	e load nonconcurrent ss has been designe ttom chord in all are all by 2-00-00 wide v d any other members nechanical connecti late capable of withs lb uplift at joint 1.	t with any ed for a liv as where will fit betv s. on (by oth	other live loa e load of 20.0 a rectangle veen the botto ers) of truss t	Opsf om to				UT HESS	ROLINI

April 28,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Information. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

