

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DR Horton Inc 115 Eagle Creek -Model: Hartwell - E

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

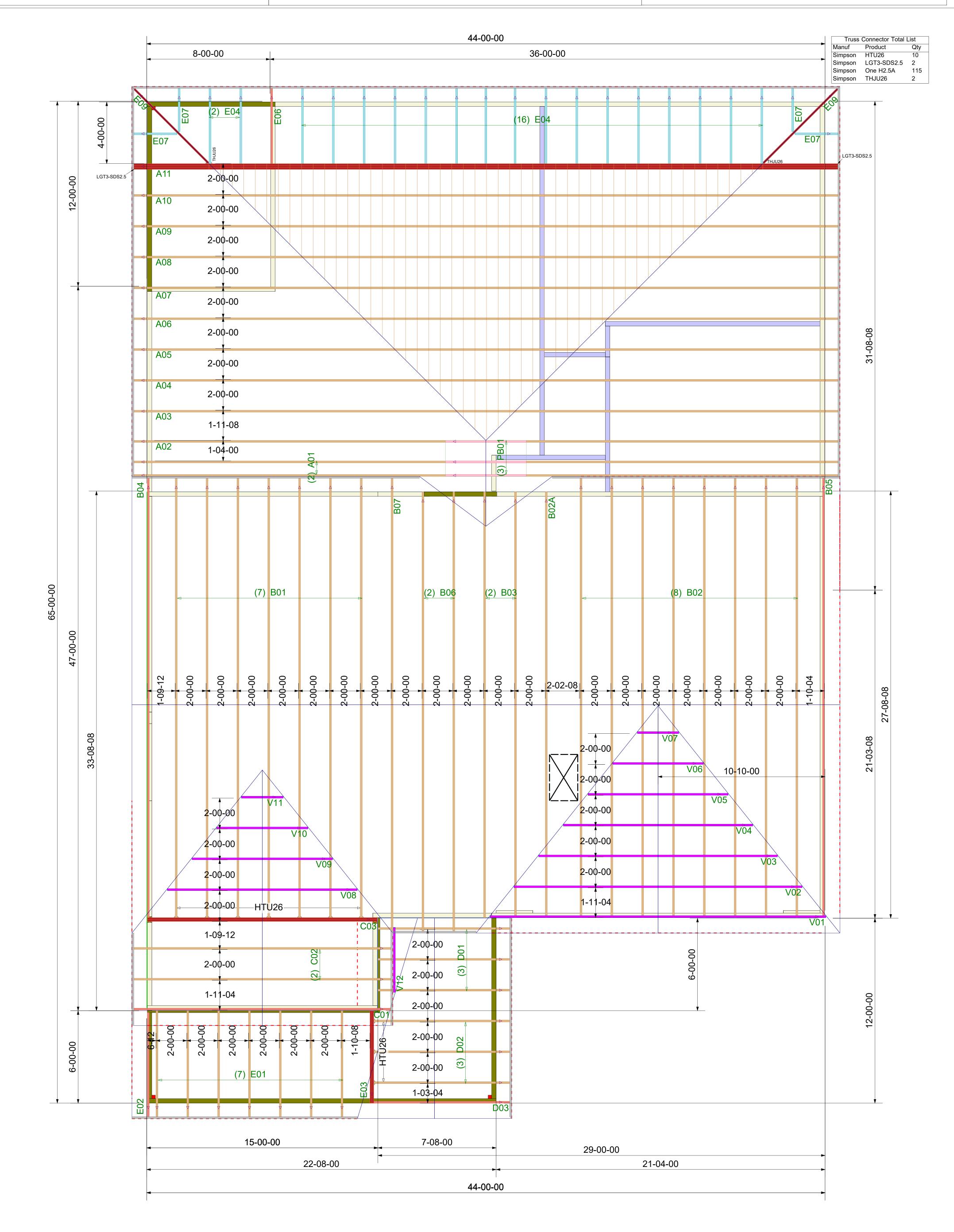
4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.


9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

General Notes:

** CUTTING OR DRILLING OF COMPONENTS SHOULD NOT BE DONE WITHOUT CONTACTING COMPONENT SUPPLIER FIRST

*

** ALL BEARING POINTS MUST BE INSTALLED PRIOR TO SETTING ANY COMPONENTS.

CUSTOMER TAKES FULL RESPONSIBILITY FOR COMPONENTS IF CUT BEFORE AUTHORIZATION.

End Indicator

** GIRDERS MUST BE FULLY CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS.	IENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH.	uplift connectors shown within these documents are recommendations only. Per ANSI/TPI uplift connectors are the responsibility of the bldg designer and or contractor.

Date: 25	DR Horton Inc		THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for each truss	00/00/	00/00/00	00/00/	
NTS Designe Dona Designe Dona Designe Nu Designe Nu Designe	115 Eagle Creek - Hartwell - E	CARTER	design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The disign of the tuss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing of Wood Truss" available	00		000	Revision
aldson nmber:	ROOF PLACEMENT PLAN	Lamoer	from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179	Vame	Vame Vame	Vame	N N

RE: 25040131

115 Eagle Creek - Hartwell E - Roof

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information: Customer: DR Horton Inc Project Name: 25040131 Lot/Block: 115 Model: Hartwell E Address: City: State:

Subdivision: Eagle Creek

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2021/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.7 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 45 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. 1 2 3 4 5 6 7 8 9 10 11	Seal# 173028909 173028910 173028911 173028912 173028913 173028914 173028915 173028916 173028916 173028917 173028918 173028918 173028919	Truss Name A01 A02 A03 A04 A05 A06 A07 A08 A09 A10 A11	Date 4/28/2025 4/28/2025 4/28/2025 4/28/2025 4/28/2025 4/28/2025 4/28/2025 4/28/2025 4/28/2025 4/28/2025 4/28/2025	No. 21 22 23 24 25 26 27 28 29 30 31	Seal# 173028929 173028930 173028931 173028932 173028933 173028934 173028935 173028935 173028936 173028937 173028938 173028938	Truss Name C02 C03 D01 D02 D03 E01 E02 E03 E04 E06 E07	Date 4/28/2025 4/28/2025 4/28/2025 4/28/2025 4/28/2025 4/28/2025 4/28/2025 4/28/2025 4/28/2025 4/28/2025
12	173028920	B01	4/28/2025	32	173028940	E09	4/28/2025
13	173028921	B02	4/28/2025	33	173028941	PB01	4/28/2025
14	173028922	B02A	4/28/2025	34	173028942	V01	4/28/2025
15	173028923	B03	4/28/2025	35	173028943	V02	4/28/2025
16	173028924	B04	4/28/2025	36	173028944	V03	4/28/2025
17	173028925	B05	4/28/2025	37	173028945	V04	4/28/2025
18	173028926	B06	4/28/2025	38	173028946	V05	4/28/2025
19	173028927	B07	4/28/2025	39	173028947	V06	4/28/2025
20	173028928	C01	4/28/2025	40	173028948	V07	4/28/2025
_0			., _0, _0_0				

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Pace, Adam

My license renewal date for the state of North Carolina is December 31, 2025

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Pace, Adam

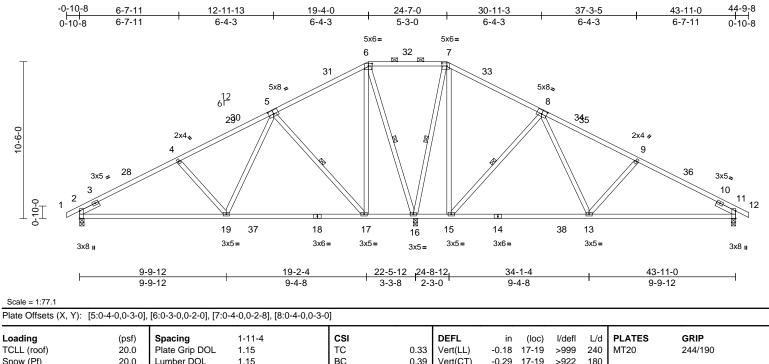
RE: 25040131 - 115 Eagle Creek - Hartwell E - Roof

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Project Customer: DR Horton Inc Project Name: 25040131 Lot/Block: 115 Address: City, County: State:

No.	Seal#	Truss Name	Date
41	173028949	V08	4/28/2025
42	173028950	V09	4/28/2025
43	173028951	V10	4/28/2025
44	173028952	V11	4/28/2025
45	173028953	V12	4/28/2025

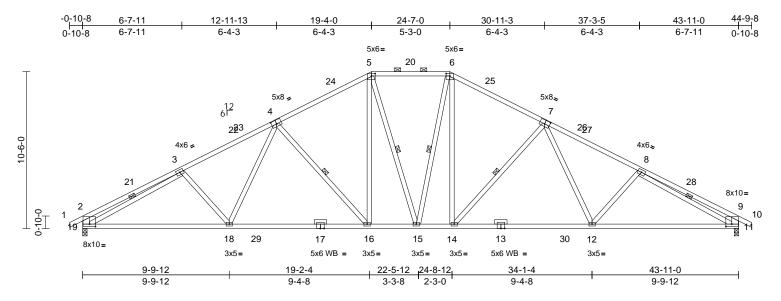

Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	A01	Piggyback Base	2	1	Job Reference (optional)	73028909

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:01 ID:M7m3ryJgz6Q78bfmaorGv1znEgR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

April 28,2025

818 Soundside Road Edenton, NC 27932


Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-MSH	0.33 0.39 0.76	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.29 0.02	(loc) 17-19 17-19 16	l/defl >999 >922 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 268 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS		-6-0, Right 2x4 SP N athing directly applied opt 0-0 max.): 6-7. applied or 6-0-0 oc 5-17, 6-16, 7-16, 8-1: 1=0-3-8, 16=0-3-8 C 15) C 14), 11=-122 (LC 1 LC 14) 37), 11=789 (LC 39 LC 47) pression/Maximum /160, 4-6=-908/325, /440, 9-11=-966/193, 9=-75/496, 16=-355/204, -130/837 =-31/707, =-31/707, =-31/702, 6=-1499/139, =-969/230, -358/184	lo.2 d or 3) 5 (4) 5), 5)), 6) 7) 8) 9) 10	Vasd=103mp II; Exp B; En and C-C Extu to 12-11-1, E 30-11-15 to 4 zone; cantile and right exp MWFRS for 1 grip DOL=1.0 TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs n Provide aded This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar One H2.5A S recommende UPLIFT at jt(only and doe) Graphical pu	7-16; Pr=20.0 psf (15); Pf=20.0	SCDL=6 envelope 0.3-6-3, 1 to 30- E) 40-4- xposed abers an umber I (roof LL Lum DC B; Fully been cor or greate at roof k other lim orevent v for a 10.4 vith any for a liv s where I fit betw with BC e conne- to bear his conne- ral force	.0psf; h=25ft s) exterior zoi Interior (1) 3- 11-15, Interior 13 to 44-9-8 ; end vertical d forces & DOL=1.60 pla :: Lum DOL= DL=1.15 Plate Exp.; Ce=0.1 nsidered for t er of min rool pad of 20.0 p ve loads. water pondin; D psf bottom other live loa e load of 20.0 a rectangle veen the bott DL = 10.0ps ctors ing walls due nection is for ss.	ne 6-3 or (1) left ate 4.1.15 9; his f live sf on g. ads. Opsf f. e to uplift			A State of the sta	SEA 0578	ROLUNA BACELINA

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	A02	Piggyback Base	1	1	Job Reference (optional)	173028910

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:02 ID:j4ZyugNpoe2QFNXjNMRRc5znEgM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:77.1

ading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.37	Vert(LL)		16-18	>999	240	MT20	244/190
now (Pf)	20.0	Lumber DOL	1.15		BC	0.55	Vert(CT)	-0.51		>999	180		
DL	10.0	Rep Stress Incr	YES		WB	0.83	Horz(CT)	0.14	11	n/a	n/a		
CLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MSH								
CDL	10.0											Weight: 289 lb	FT = 20%
MBER			2)		7-16; Vult=130m								
P CHORD	2x4 SP 2400F 2.0E				ph; TCDL=6.0psf;								
DT CHORD	2x4 SP 2400F 2.0E				closed; MWFRS (
EBS		ot* 19-2,11-9:2x6 SP			terior(2E) -0-10-8 t		. ,						
	2400F 2.0E, 15-6,15	5-5:2x4 SP No.2			Exterior(2R) 12-11								
THERS	2x4 SP No.3				40-4-13, Exterior(2 ever left and right e								
RACING	o				posed;C-C for mer			ion					
P CHORD		eathing directly applie			reactions shown;			ate					
	4-2-6 oc purlins, ex 2-0-0 oc purlins (5-3	cept end verticals, a	na	grip DOL=1.									
OT CHORD		applied or 10-0-0 or	3)		E 7-16; Pr=20.0 ps	f (roof LL	: Lum DOL=	1.15					
I CHORD	bracing.				1.15); Pf=20.0 psf								
EBS	1 Row at midpt	3-19, 8-11, 6-15, 7-	14.		Is=1.0; Rough Cat	B; Fully	Exp.; Ce=0.9	9;					
		5-15, 4-16		Cs=1.00; Ct									
ACTIONS	(size) 11=0-3-8	, 19=0-3-8	4)	Unbalanced design.	snow loads have	been cor	isidered for t	nis					
1	Max Horiz 19=-141	(LC 15)	5)	0	as been designed	for groat	or of min root	Flivo					
I	Max Uplift 11=-192	(LC 15), 19=-192 (LC	C 14) ³⁾		psf or 1.00 times f								
I	Max Grav 11=2092	(LC 47), 19=2092 (L	.C 47)		ion-concurrent with								
RCES	(lb) - Maximum Con	npression/Maximum	6)		quate drainage to			a.					
	Tension		7)		as been designed			0					
P CHORD	5-6=-2492/364, 1-2=	=0/30, 2-3=-1058/183	3,	chord live lo	ad nonconcurrent	with any	other live loa	ads.					11.
	3-5=-3694/362, 6-8=	,	8)		has been designed			0psf				White CA	D'''
		0=0/30, 2-19=-713/18	83,		m chord in all area						Ecs	"TH UP	ROIL
TOUGDD	9-11=-708/190	0 40 044/004F			by 2-00-00 wide w						X	ON FESS	A. Mile
T CHORD	18-19=-337/3272, 1	,	0)		ny other members			f.		/	23	OFL	Ni Ti
	15-16=-58/2423, 14 12-14=-104/3014, 1		9)		Simpson Strong-Ti			4.0			50	lin	ave
BS	3-19=-2806/186, 8-				ed to connect truss (s) 19 and 11. This								
		=-15/516, 3-18=-165/	/183.		es not consider late			m		-		SEA	
	5-16=-73/975, 6-14=				urlin representation			size		-		0578	27
	6-15=-244/201, 7-14	,			ation of the purlin			0120				0370	
	8-12=-165/183, 5-1			bottom chor							-	1	
	4-16=-866/228		L	DAD CASE(S)							2	·En	-R
TES			_								11	GIN	87 ACE,
	d roof live loads have	been considered for	r								1	ADA	ACEN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	A03	Нір	1	1	Job Reference (optional)	173028911

10-7-12

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:03

9-2-8

10

10-7-12

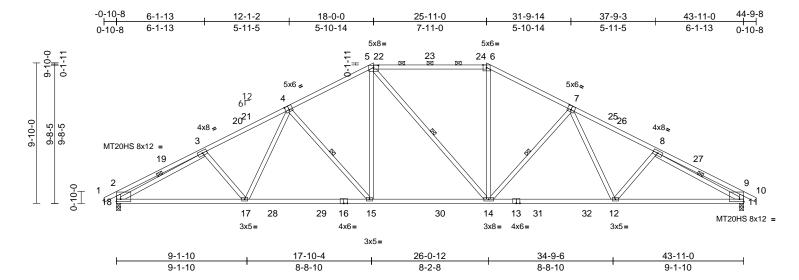
Page: 1 ID:b2DB1bpKsC7568Rh7_5QCAznEh5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 0-10-8 44-9-8 0-10-8 6-10-8 13-5-8 20-0-0 23-11-0 30-5-8 37-0-8 43-11-0 6-10-8 6-7-0 6-6-8 3-11-0 6-6-8 6-7-0 6-10-8 5x8= 5x6= 10-10-0 0-1-11 ÷= 5 23 6 22 24 5x8 👟 5x8 🞜 12 61 ₄21 257 20 26 10-10-0 10-8-5 10-8-5 4x6 🚅 4x6👟 3 8 19 27 8x10= 2 9 0-10-0 Ē Ŕ 18 17 28 1629 15 30 14 3113 32 12 8x10= 3x5= 5x8 WB = 3x5= 3x8= 5x8 WB = 3x5= 10-7-12 19-10-4 24-0-12 33-3-4 43-11-0

4-2-8

9-2-8

Scale = 1:80.1

Plate Offsets (X, Y): [2:Edge,0-2-0],	[4:0-4-0,0-3-0], [5:0-4	4-0,0-1-18	5], [7:0-4-0,0-3	-0], [11:Edge,0-2-0)]							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.42 0.60 0.87	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.31 -0.51 0.14	(loc) 15-17 15-17 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 280 lb	GRIP 244/190 FT = 20%
BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x4 SP 2400F 2.0E 2x4 SP 2400F 2.0E 2x4 SP No.3 *Excep No.2, 18-2,11-9:2x6 2x4 SP No.3 Structural wood she 4-2-3 oc purlins, ex 2-0-0 oc purlins (5-2 Rigid ceiling directly bracing. 1 Row at midpt (size) 11=0-3-8, Max Horiz 18=-145 (Max Uplift 11=-191 (Max Grav 11=2126 I (lb) - Maximum Com Tension 1-2=0/30, 2-3=-1134 5-6=-2536/355, 6-8= 8-9=-1121/185, 9-10 9-11=-747/191 17-18=-341/3321, 19 14-15=-50/2449, 12- 11-12=-196/3316 5-15=-94/927, 5-14= 3-18=-2783/185, 8-1 3-17=-190/192, 4-17	athing directly applied cept end verticals, an -0 max.): 5-6. applied or 10-0-0 oc 5-14, 3-18, 8-11, 4-19 7-14 18=0-3-8 LC 15) LC 15), 18=-191 (LC (LC 47), 18=2128 (LC apression/Maximum 4/185, 3-5=-3730/355, =-3725/355, =0/30, 2-18=-753/184 5-17=-204/3066, -14=-89/3063, =-250/257, 6-14=-57/9 [1=-2791/169, 7=-4/542, 4-15=-895/2	l or d 3) 5, 4) 14) 5) : 47) 6) 7) 4, 8) 4, 9) 18, 26, 10	Vasd=103mj II; Exp B; En and C-C Ext to 13-9-8, Ex 30-1-8 to 40 cantilever lef right expose for reactions DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n Provide ader This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar One H2.5A S recommende UPLIFT at jit only and doe 0) Graphical pu	snow loads have the seven designed find the seven designed find the seven designed find the drainage to provide the seven designed find nonconcurrent the seven designed find nonconcurrent the seven designed find the seven	BCDL=6 envelopp 0.3-6-3, to 30-1-8 40-4-12 d; end v s and fo OL=1.6 f (roof LI (Lum DC B; Fully been con for great fat roof L f (roof LI (Lum DC B; Fully been con for great fat roof I o other li prevent for a liv s where ll fit bett with BC e connec s connec caral forco does no	6.0psf; h=25ft a) exterior zo Interior (1) 3, 8, Interior (1) 8 to 44-9-8 zc vertical left ar rcces & MWFf D plate grip L: Lum DOL= DL=1.15 Plate Exp.; Ce=0. hsidered for t er of min rooi bad of 20.0 p ve loads. water pondin 0 psf bottom other live loa e load of 20. a rectangle veen the bott CDL = 10.0ps ctors ing walls due tion is for upl ss.	ne -6-3 one; nd RS -1.15 e 9; this f live sof on g. ads. 0psf ads. 0psf com .f. e to lift					ROLIN
NOTES 1) Unbalance this design	ed roof live loads have	2=-4/540, 8-12=-190/1 been considered for		or the orienta bottom chord DAD CASE(S)		aiong the	e ιop anα/or				and the second s	ADAM ADA	87 E.P


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

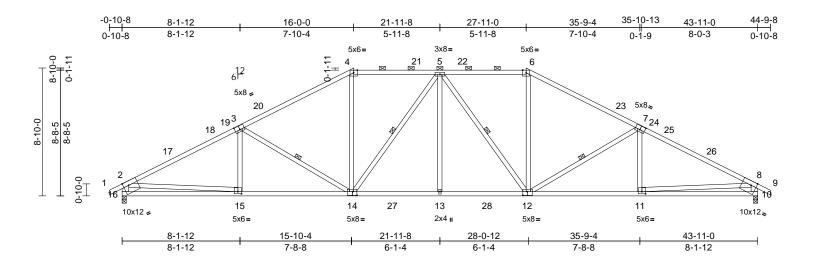
818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	A04	Нір	1	1	Job Reference (optional)	173028912

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:03 ID:x?144JsThklNCvKfvXhbvEznEh0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1	1:80.7
-----------	--------

Plate Offsets ((X, Y): [2:Edge,0-2-0],	[4:0-3-0,0-3-4], [5:0-4-0),0-1-15], [7:0-3-0,0-3	-4], [11:Edge,0-2-(0]							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr Y	2-0-0 15 15 (ES RC2021	/TPI2014	CSI TC BC WB Matrix-MSH	0.88 0.49 0.80	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 15-17 15-17 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 265 lb	GRIP 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP 2400F 2.0E 2x4 SP No.3 *Excep 15-5,14-5,14-6,18-2, Structural wood shea 4-2-2 oc purlins, exc 2-0-0 oc purlins (2-4 Rigid ceiling directly bracing. 1 Row at midpt (size) 11=0-3-8, Max Horiz 18=-130 (Max Uplift 11=-194 (Max Grav 11=2088 ((lb) - Maximum Com Tension 1-2=0/27, 2-3=-992/ 5-6=-2646/369, 6-8= 8-9=-977/156, 9-10= 9-11=-659/174 17-18=-339/3313, 15 14-15=-84/2579, 12-	11-9:2x4 SP No.2 athing directly applied o cept end verticals, and -4 max.): 5-6. applied or 10-0-0 oc 5-14, 3-18, 8-11, 4-15, 7-14 18=0-3-8 LC 15) LC 15), 18=-194 (LC 14 (LC 47), 18=2093 (LC 4 pression/Maximum 157, 3-5=-3752/372, -3740/372, 60/27, 2-18=-665/167, 5-17=-221/3092,	3) 4)	Vasd=103mj II; Exp B; En and C-C Ext to 11-9-8, Ex 31-10-10 to zone; cantile and right exp MWFRS for grip DOL=1.1 TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss he load of 12.0 overhangs n Provide ader All plates are this truss ha chord live loa * This truss ha chord live loa on the bottor	7-16; Pr=20.0 ps I.15); Pf=20.0 psf Is=1.0; Rough Cat	BCDL=6 envelopp o 3-6-3, to 31-10 2E) 40-4 exposed nbers ar Lumber I f (roof LI (Lum DC t B; Fully been cor for great fat roof Li for great for great for a 10.0 with any d for a 11.0 with any s where	i.Opsf; h=25ff e) exterior zo Interior (1) 3- 10, Interior (13 to 44-9-8 ; end vertical d forces & DOL=1.60 pl: L: Lum DOL= DL=1.15 Plate Exp.; Ce=0. asidered for t er of min roo pad of 20.0 p ve loads. water pondin wise indicate 0 psf bottom other live load e load of 20. a rectangle	ne -6-3 (1) 					NROLINIII
WEBS NOTES 1) Unbalance this design	3-18=-2917/213, 8-1 3-17=-140/172, 4-17 4-15=-750/204, 7-14 7-12=-17/451, 8-12= ed roof live loads have	′=-16/451, ==-750/205, ⊧-140/172	11)) One H2.5A S recommende UPLIFT at jt(only and doe) Graphical pu		ie conne s to bear s connec eral force n does no	ctors ing walls due tion is for up es. ot depict the	e to lift		2011111000	C. A.	SEA O578 ADAM	B7 ACE IIIII



818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	A05	Нір	1	1	Job Reference (optional)	3

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:03 ID:MaiDiKvMzf8y3N2EbfElWsznEgz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

April 28,2025

Scale =	1:79.6
---------	--------

Plate Offsets ((X, Y): [3:0-4-0,0-3-4],	[7:0-4-0,0-3-4], [10:0-4	4-6,Edge	e], [11:0-3-0,0-	1-12], [12:0-3-12,0)-3-0], [1	4:0-3-12,0-3-	0], [15:0	-3-0,0-1	-12], [16	:0-4-6,	Edge]	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.76 0.39 0.92	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 12-13 11-12 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 269 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES	2x4 SP 2400F 2.0E 2x4 SP 2400F 2.0E 2x4 SP No.3 *Excep 2400F 2.0E Structural wood shea 3-1-0 oc purlins, exc 2-0-0 co purlins, exc 2-0-0 co purlins, exc 2-0-0 co purlins, exc 2-0-3-8, exc Max Horiz 16=-119 (Max Uplift 10=-198 (Max Grav 10=2007 ((lb) - Maximum Com Tension 1-2=0/30, 2-4=-3695 5-6=-2652/384, 6-8= 2-16=-2089/288, 8-1 15-16=-265/842, 13- 11-13=-181/3225, 10 3-15=-17/211, 3-14= 5-14=-521/120, 5-12 6-12=-24/915, 7-12= 2-15=-120/2429, 8-1	athing directly applied i cept end verticals, and -2 max.): 4-6. applied or 10-0-0 oc 3-14, 5-14, 5-12, 7-12 16=0-3-8 LC 12) LC 15), 16=-198 (LC 1 (LC 47), 16=2007 (LC - pression/Maximum 5/380, 4-5=-2652/384, e-3694/381, 8-9=0/30, 10=-2090/287 -15=-286/3226, 0-11=-160/830 -731/196, 4-14=-24/91 2=-522/120, e-730/196, 7-11=-17/21 (1=-105/2440, 5-13=0)	3) 4) 4) 47) 5) 6) 7) 8) 5, 1, 9) 324	Vasd=103m II; Exp B; En and C-C Ext to 9-9-8, Ext to 40-4-13, E cantilever lef right expose for reactions DOL=1.60 TCLL: ASCE Plate DOL=' DOL=1.15); Cs=1.00; TCL: ASCE Plate DOL=' DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n Provide ade This truss ha chord live loa' * This truss ha chord and ar One H2.5A S recommendd UPLIFT at jt only and doe	snow loads have I as been designed f psf or 1.00 times fi on-concurrent with quate drainage to p as been designed fad nonconcurrent has been designed m chord in all area by 2-00-00 wide wi ny other members, Simpson Strong-Ti ed to connect truss (s) 16 and 10. This as not consider late urlin representation ation of the purlin a	BCDL=6 envelopp o 3-6-3, 34-1-8, I 3 to 44- d; end v s and fo iOL=1.6 f (roof LI (Lum DC B; Fully been con for great lat roof I o other li prevent for a liv s where ill fit bett with BC e connec s connec caral forco a does no	6.0psf; h=25ft a) exterior zoo Interior (1) 3- nterior (1) 3- nterior (1) 3- yertical left ar rces & MWFF D plate grip L: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 nsidered for the er of min roof pad of 20.0 p ve loads. water ponding. D psf bottom other live load the load of 20.1 a rectangle veen the bottom CDL = 10.0psi ctors ing walls due tion is for upl as.	ne 6-3 -1-8 nd RS 1.15 9; his f live sf on g. ads. Opsf om f. to ift					ROLUNE 87 54 CE 11111
			LC	DAD CASE(S)	Standard						in the second second	ADAM M	ACE 1111

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	A06	Нір	1	1	Job Reference (optional)	914

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:03 ID:Ak4UzOz6ZVu6nIWNxwLim7znEgt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:79.3

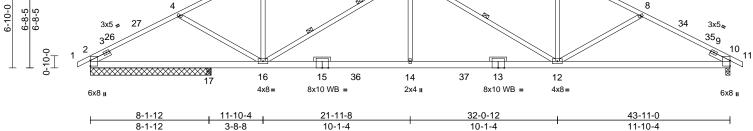
bading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.64	Vert(LL)		14-16	>999	240	MT20	244/190
now (Pf)	20.0	Lumber DOL	1.15		BC	0.49	Vert(CT)	-0.42	14-16	>999	180		
CDL	10.0	Rep Stress Incr	YES		WB	0.93	Horz(CT)	0.11	10	n/a	n/a		
CLL	0.0*	Code	IRC202	I/TPI2014	Matrix-MSH								
CDL	10.0	-										Weight: 257 lb	FT = 20%
JMBER			2)		7-16; Vult=130mp								
OP CHORD	2x4 SP 2400F 2.0E				oh; TCDL=6.0psf;								
OT CHORD	2x4 SP 2400F 2.0E				closed; MWFRS (
EBS	2x4 SP No.3 *Excep				erior(2E) -0-10-8 t erior(2R) 7-9-8 to :								
	16-5,12-5,18-2,10-8	:2x4 SP No.2			terior(2R) 23-8-8			1-2-0					
	o				4-13, Exterior(2E)			one:					
OP CHORD	Structural wood she 4-2-0 oc purlins, ex				t and right expose								
	2-0-0 oc purlins, ex		nu		d;C-C for member								
OT CHORD	Rigid ceiling directly		с		shown; Lumber D	OL=1.60) plate grip						
	bracing.			DOL=1.60									
EBS	1 Row at midpt	5-16, 5-12	3)		7-16; Pr=20.0 ps								
EACTIONS	(size) 10=0-3-8,	18=0-3-8			.15); Pf=20.0 psf s=1.0; Rough Cat								
I	Max Horiz 18=-106 ((LC 12)		Cs=1.00; Ct=		D, Fully	Exp., Ce=0.	9,					
	Max Uplift 10=-200 (snow loads have	been cor	sidered for t	his					
	Max Grav 10=1977	(LC 47), 18=1977 (L	.C 47)	design.									
ORCES	(lb) - Maximum Corr	pression/Maximum	5)	This truss ha	s been designed	or great	er of min roo	f live					
	Tension		_		psf or 1.00 times f			osf on					
OP CHORD	1-2=0/27, 2-4=-3656		_		on-concurrent with								
	5-6=-2867/378, 6-8= 2-18=-2070/281, 8-1		-,		uate drainage to			g.					
OT CHORD	17-18=-223/764, 16		7)		s been designed t ad nonconcurrent			ada					1111.
	14-16=-147/3451, 12		8)		as been designed							"TH CA	Roll
	11-12=-196/3194, 1		0)		n chord in all area			opsi				R	S. Killer
EBS	3-17=-55/141, 3-16=				y 2-00-00 wide w			tom		- 1	11	DEED	A. K.
	4-16=-18/1005, 5-16	6=-870/146, 5-14=0/4	467,		y other members					(SN	1 San Fi	Si.Y :
	5-12=-871/146, 6-12		9)	One H2.5A S	Simpson Strong-Ti	e conne	ctors				0		
	7-12=-620/165, 7-11				ed to connect truss					-		SEA	
	2-17=-141/2464, 8-1	11=-128/2474			s) 18 and 10. This			lift		-		0570	-
DTES			4.0		s not consider late					-	5 7	05/8	8/ : :
Unbalance this design.	d roof live loads have	been considered to	r it		rlin representatior ation of the purlin a			size				SEA 0578	13
0				bottom chord							-	· SNOW	ER. S
			LC	DAD CASE(S)	Standard						11,	GIN	Store N
												DAM I	ACTIN
												1111	

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	A07	Нір	1	1	Job Reference (optional)	173028915

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:04 ID:?uRIDR2t8LeFVDzXIBS60OznEgn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

44-9-8

0-10-8

3x5👟

12-0-0 37-9-6 6-1-10 21-11-8 31-11-0 43-11-0 5-10-6 6-1-10 9-11-8 9-11-8 5-10-6 6-1-10 5x6 =8x10= 5x6= 29_30 ÷± <u>6</u> 5 <u>2</u>8 31_32 33 7 6¹² 2x4 2x4 💋 8 4 3x5 ≉ 27 34 3²⁶

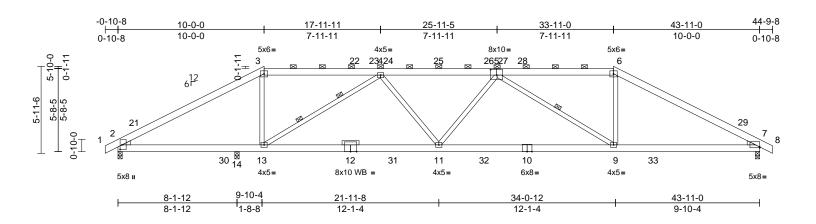
Scale = 1:79.1

6-10-0 0-1-11

Plate Offsets (X, Y): [6:0-5-0,0-4-8]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.59			14-16	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.40	Vert(CT)		14-16	>916	180		210,000
	10.0	Rep Stress Incr	YES		WB	0.77	Horz(CT)	0.10	10	n/a	n/a		
BCLL				21/TPI2014		0.77	11012(01)	0.10	10	n/a	n/a		
	0.0*	Code	IRC202	21/1912014	Matrix-MSH								FT 00%
BCDL	10.0					-						Weight: 280 lb	FT = 20%
LUMBER			2) Wind: ASCE	7-16; Vult=130m	ph (3-se	cond gust)						
TOP CHORD	2x4 SP 2400F 2.0E	*Except* 5-6,6-7:2x	6 SP	Vasd=103m	ph; TCDL=6.0psf;	BCDL=6	6.0psf; h=25ft	t; Cat.					
	2400F 2.0E	· ,			closed; MWFRS								
BOT CHORD	2x6 SP 2400F 2.0E			and C-C Ext	erior(2E) -0-10-8	to 3-6-3,	Interior (1) 3-	-6-3					
NEBS	2x4 SP No.3 *Excep	ot* 16-6,12-6:2x4 SP	No.2		erior(2R) 5-9-8 to								
OTHERS	2x4 SP No.3				xterior(2R) 25-8-8								
SLIDER	Left 2x4 SP No.3 1	1-6-0, Right 2x4 SP	No.3		0-4-13, Exterior(2								
	1-6-0	-			ft and right expose								
BRACING					d;C-C for membe			RS					
FOP CHORD	Structural wood she	athing directly applie	ed or		shown; Lumber [DOL=1.6) plate grip						
	3-9-12 oc purlins, ex	cept		DOL=1.60									
	2-0-0 oc purlins (5-8	8-4 max.): 5-7.	3		E 7-16; Pr=20.0 ps								
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	C		1.15); Pf=20.0 psf								
	bracing.				Is=1.0; Rough Ca	it B; Fully	Exp.; Ce=0.	9;					
VEBS	1 Row at midpt	6-12	4	Cs=1.00; Ct		h		lh:a					
VEBS	2 Rows at 1/3 pts	6-16	4		snow loads have	been co	isidered for t	inis					
REACTIONS	(size) 2=8-3-8, *	10=0-3-8, 17=0-3-8	5	design.	as been designed	for groat	or of min roo	flivo					
	Max Horiz 2=-99 (LC	2 15)	5		psf or 1.00 times								
	Max Uplift 2=-221 (L	C 14), 10=-210 (LC	15)		ion-concurrent wit			51 011					
	Max Grav 2=1656 (I	_C 5), 10=1910 (LC	6), 6		quate drainage to			a					
	17=402 (l		7		as been designed								
ORCES	(lb) - Maximum Com	pression/Maximum	'		ad nonconcurrent								1111
	Tension		8		has been designe							"TH Lit	Roil
TOP CHORD	1-2=0/23, 2-4=-3155	5/441. 4-5=-3000/38			m chord in all area			000				A with	N. C. M.
	5-7=-3004/383, 7-8=	-3363/366,	,		by 2-00-00 wide w			tom			51	O FEDS	DA: V.
	8-10=-3544/420, 10	-11=0/23			ny other members						SK		1. 7
BOT CHORD	2-17=-369/2723, 16	-17=-369/2723,	9) N/A	.,	.,					in the second se	ean a	
	14-16=-290/3999, 12	2-14=-290/3999,	-							-	8 1	CEA.	1 1 1
	10-12=-277/3086									-		SEA	
VEBS	4-16=-480/193, 5-16	6=-20/846,								-		0578	87 : :
	6-16=-1620/202, 6-1	4=0/587,	1	0) Graphical p	urlin representation	n does n	ot depict the	size			9 9		· · :
	6-12=-1246/239, 7-1	2=0/1020,		or the orient	ation of the purlin	along the	e top and/or				-	10.00	1 2
	8-12=-512/190			bottom chor	d.	-	-				2	0578	cR. S
NOTES			L	OAD CASE(S)	Standard						1	GIN	E.F. N
) Unbalance	ed roof live loads have	been considered fo		(-)							1	ADA	ACEN
this desigr	ז.											MM	Phone:
-												· · · · · · · · · · · · · · · · · · ·	mm.
												Apri	1 20 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


April 28,2025

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	A08	Нір	1	1	Job Reference (optional)	173028916

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:04 ID:xHZVe748gzuzIX7wPcUa5pznEgI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

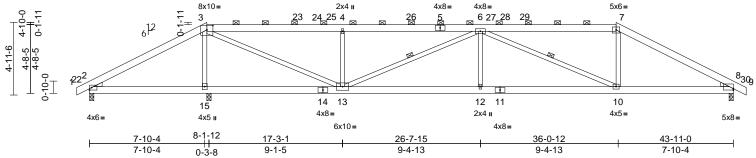
Scale = 1:78.8

BOT CHORD 2x6 S WEBS 2x4 S OTHERS 2x4 S WEDGE Left: Right BRACING TOP CHORD Struc 5-5- 2-0-C BOT CHORD Rigic brac WEBS 1 Ro WEBS 2 Ro REACTIONS (size) Max H	-12 oc purlins, ex -0 oc purlins (5-1- id ceiling directly cing.	Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr Y Code IF	2) pr	Vasd=103mp II; Exp B; En and C-C Exte to 16-2-8, Int 27-8-8 to 40- cantilever lef right exposed for reactions DOL=1.60 TCLL: ASCE	CSI TC BC WB Matrix-MSH 7-16; Vult=130mp ph; TCDL=6.0psf; I closed; MWFRS (e erior(2E) -0-10-8 tc terior (1) 16-2-8 to etrior (1) 16-2-8 to etrior (1) 16-2-8 to etrior (1) 16-2-8 to etrior (2E) -0-10-8 tc terior (2E) -0-10-8 tc t	BCDL=6 envelope o 3-6-3, 27-8-8, 40-4-13 d; end v s and for OL=1.60	6.0psf; h=25ft e) exterior zon Exterior(2R) Exterior(2R) 3 to 44-9-8 zo vertical left ar rces & MWFF	-0.55 0.09 ;; Cat. ne 3-6-3 one; nd	(loc) 11-13 11-13 7	I/defl >999 >782 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 280 lb	GRIP 244/190 FT = 20%
TOP CHORD 2x6 S BOT CHORD 2x6 S WEBS 2x4 S OTHERS 2x4 S WEDGE Left: Right BRACING TOP CHORD Struc 5-5- 2-0-C BOT CHORD Rigic brac WEBS 1 Ro WEBS 2 Ro REACTIONS (size) Max H	SP 2400F 2.0E SP No.3 SP No.3 : 2x4 SP No.3 it: 2x6 SP No.3 it	cept 6 max.): 3-6.) Dr	Vasd=103mp II; Exp B; En and C-C Exte to 16-2-8, Int 27-8-8 to 40- cantilever lef right exposed for reactions DOL=1.60 TCLL: ASCE	bh; TCDL=6.0psf; f closed; MWFRS (e erior(2E) -0-10-8 tc terior (1) 16-2-8 to -4-13, Exterior(2E) t and right exposed d;C-C for members shown; Lumber D 7-16; Pr=20.0 psf	BCDL=6 envelope o 3-6-3, 27-8-8, 40-4-13 d; end v s and for OL=1.60	6.0psf; h=25ft e) exterior zon Exterior(2R) Exterior(2R) 3 to 44-9-8 zo vertical left ar rces & MWFF	ne 3-6-3 one; nd					
	ows at 1/3 pts) 2=0-3-8, 7 Horiz 2=-84 (LC Uplift 2=-130 (L0 14=-99 (L0 Grav 2=1212 (L 14=1090 (C 14), 7=-201 (LC 15), C 11) C 37), 7=1825 (LC 39), LC 46)	5) , 6) , 7)	DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 J overhangs n Provide adec This truss ha chord live loa	snow loads have b as been designed fi psf or 1.00 times fl on-concurrent with quate drainage to p as been designed fi ad nonconcurrent v	Eum DC B; Fully or great at roof la other lip prevent or a 10.0 with any	DL=1.15 Plate ¹ Exp.; Ce=0.9 Insidered for the er of min roof oad of 20.0 p ve loads. water ponding 0 psf bottom other live loa	e 9; his f live sf on g. ads.					
Tens TOP CHORD 1-2=	sion =0/37, 2-3=-2168	215, 3-4=-1884/248,	8)	on the bottor 3-06-00 tall b	nas been designed m chord in all areas by 2-00-00 wide wil	s where Il fit betv	a rectangle veen the bott	om			and the second	HE HESS	ROLIN
BOT CHORD 2-14 11-1	=-4090/354, 6-7= 4=-106/1847, 13- 13=-309/3629, 9- =-183/3001	,	9)	One H2.5A S recommende	ny other members, Simpson Strong-Tie ed to connect truss (s) 2, 7, and 14. Th	e conne to bear	ctors ing walls due	e to			C	a a	NY T
WEBS 3-13	3=0/515, 4-13=-2 1=-120/216, 5-9=	137/310, 4-11=-13/690, 1229/255, 6-9=0/1045 been considered for	10)	only and doe Graphical pu	es not consider late Irlin representation ation of the purlin a d.	eral force does no	es. ot depict the s	•				SEAL 05788	E 87 ACE

818 Soundside Road Edenton, NC 27932

April 28,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	A09	Нір	1	1	Job Reference (optional)	173028917

8-0-0

8-0-0

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:04 ID:mRwmvA8uGpf7TSa4msb_K4znEgf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

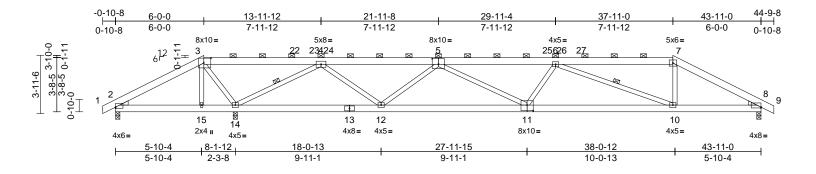
17-3-1 26-7-15 35-11-0 43-11-0 9-3-1 9-4-13 8-0-0 9-3-1 2x4 II 4x8= 4x8= 5x6= 23 24 25 4 26 ⊠ 6 27 28 29 5

Scale = 1:78.6

riale Offsets ((X, Y): [3:0-5-0,0-3-10	ıj, [ö:⊏αge,∪-1-3] ∎	-									1	
oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.91	Vert(LL)		12-13	>999	240	MT20	244/190
now (Pf) CDL	20.0	Lumber DOL	1.15		BC WB	0.66	Vert(CT)		12-13	>999	180		
	10.0	Rep Stress Incr	YES			0.88	Horz(CT)	0.06	8	n/a	n/a		
	0.0* 10.0	Code	IRC2021/	TPI2014	Matrix-MSH							Weight: 284 lb	FT = 20%
	10.0	1			ļ							Wolght. 2011b	11-2070
JMBER			2)		7-16; Vult=130mp								
OP CHORD					oh; TCDL=6.0psf; closed; MWFRS (
		** 12 2 12 6 10 0.0.4			erior(2E) -0-10-8 t								
EBS	2x4 SP No.3 *Excep No.2	ot* 13-3,13-6,10-6:2x4	37		erior (1) 14-2-8 to			000					
EDGE	Left: 2x4 SP No.3				4-13, Exterior(2E)			one;					
LDOL	Right: 2x4 SP No.3				t and right expose								
RACING	J 2. 11010				d;C-C for member			RS					
OP CHORD	Structural wood she	athing directly applied	lor		shown; Lumber D	OL=1.60) plate grip						
	4-4-9 oc purlins, exc			DOL=1.60		.,							
	2-0-0 oc purlins (2-2		3)		7-16; Pr=20.0 ps								
OT CHORD	0 0 ,	applied or 6-0-0 oc			.15); Pf=20.0 psf								
	bracing.			DOL=1.15); Cs=1.00; Ct=	s=1.0; Rough Cat	в; Fully	⊏xp.; Ce=0.	э,					
EBS		6-13, 6-10	4)		snow loads have l	heen cor	nsidered for t	this					
EACTIONS	(8=0-3-8, 15=0-3-8	7)	design.		00011001							
	Max Horiz 2=69 (LC		5)		s been designed	for great	er of min roo	f live					
	Max Uplift 2=-435 (L), '		psf or 1.00 times f								
	15=-282 (Max Cray 2-200 (1)				on-concurrent with								
	Max Grav 2=300 (L0 15=2724		0)		quate drainage to			ıg.					
ORCES	(lb) - Maximum Corr	. ,	7)		s been designed								
JAGES	(ib) - Maximum Con Tension	pression/iviaximum	0)		ad nonconcurrent							minin	11111
OP CHORD		1309, 3-4=-1915/289,	8)		has been designed			upst				A LA CA	Rain
	4-6=-1913/287, 6-7=				n chord in all area by 2-00-00 wide w			tom			5	4	SUL In
	7-8=-2367/309, 8-9=	,			y other members.		veen the bott	lom			E.	Q.LEESS	10: V 1
OT CHORD	2-15=-1103/225, 13	-15=-1019/213,	9)		on Strong-Tie con		recommende	ed to			2 3	UP F	5 4.7
	12-13=-329/3007, 1	0-12=-329/3007,	-,		s to bearing walls							and a	an
	8-10=-168/2070				ion is for uplift onl					1		SEA	
/EBS	3-15=-2452/372, 3-1			lateral forces						=	:	JEA	
		3=-1233/219, 6-12=0/3	389, 10)		Simpson Strong-Ti					-		0578	87 :
	6-10=-1048/234, 7-1	10=0/585			ed to connect truss					-			
DTES	a di na aƙ Kuta Ita a da K	have enabled to			s) 15 and 8. This		on is for uplif	tt only			1	N	A 1 3
	ed roof live loads have	been considered for	14)		t consider lateral f		at doniat the	0170			1	·SNGINI	EH
this desigr	11.		11)		rlin representatior ation of the purlin a			SIZE			11	A	THE N
				bottom chord			, top anu/01				-	0578	PAUTIN
			10	AD CASE(S)								11111	in the second se
			20/		Glandara							Amri	00.0005

April 28,2025

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	A10	Нір	1	1	Job Reference (optional)	73028918

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:04 ID:70jfytC15LHPZDT1YPB918znEga-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:78.4

oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof) Snow (Pf)	20.0 20.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC	0.86 0.56	Vert(LL) Vert(CT)		11-12 11-12	>999 >999	240 180	MT20	244/190
CDL	10.0	Rep Stress Incr	YES		WB	0.98	Horz(CT)	0.05	8	>999 n/a	n/a		
BCLL	0.0*	Code		I/TPI2014	Matrix-MSH	0.00		0.00	0				
BCDL	10.0			.,								Weight: 281 lb	FT = 20%
UMBER TOP CHORD BOT CHORD	No.2 2x4 SP No.3	E *Except* 13-11:2x6 S	2) SP	Vasd=103m II; Exp B; En and C-C Ext to 12-2-8, In	7-16; Vult=130mp ph; TCDL=6.0psf; iclosed; MWFRS (erior(2E) -0-10-8 to terior (1) 12-2-8 to	BCDL=6 envelope o 3-6-3, 31-8-8,	.0psf; h=25fl e) exterior zo Exterior(2R) Exterior(2R)	one 3-6-3					
VEDGE	Left: 2x4 SP No.3 Right: 2x4 SP No.3	1			 -4-13, Exterior(2E) ft and right expose 								
BRACING OP CHORD	0	eathing directly applied	d or 3)	right expose for reactions DOL=1.60	d;C-C for member shown; Lumber D 7-16; Pr=20.0 ps	s and for OL=1.60	ces & MWFI plate grip	RS					
BOT CHORD		y applied or 6-0-0 oc			1.15); Pf=20.0 psf Is=1.0; Rough Cat								
VEBS	1 Row at midpt	4-14, 6-10		Cs=1.00; Ct		, . ,	1,	- ,					
		8=0-3-8, 14=0-3-8	4)		snow loads have	been cor	sidered for t	this					
	Max Horiz 2=-53 (L		5)		as been designed t								
	14=-397		<i>)</i>),		psf or 1.00 times f on-concurrent with			osf on					
		_C 10), 8=1277 (LC 22	⁽⁾ , 6) 7)	Provide ade	quate drainage to	prevent v	vater pondin	ıg.					
ORCES	(lb) - Maximum Cor	mpression/Maximum	()	chord live lo	as been designed ad nonconcurrent	with any	other live loa					mmm	111.
OP CHORD	Tension 1-2=0/38, 2-3=-289 4-6=-3214/417, 6-7 7-8=-2284/283, 8-9	,	, 8)	on the botto 3-06-00 tall	has been designed m chord in all area by 2-00-00 wide w ny other members.	s where ill fit betv	a rectangle	•				O CEESS	ROLIN
3OT CHORD	2-15=-1621/299, 14 12-14=-140/364, 10 8-10=-172/2009	,	9)	Provide med bearing plate	chanical connection e capable of withst ift at joint 14 and 1	n (by oth anding 7	77 [´] lb uplift a				Ċ	Henter	NY
VEBS	3-15=-5/166, 3-14= 4-14=-3334/561, 4- 5-12=-1241/285, 5-	-12=-96/1566, -11=-67/784,) Graphical pu	urlin representation ation of the purlin a	does no	ot depict the	size				0578	87 87 ACE
	0-11=-179/183, 6-1	0=-1425/291, 7-10=0/	⁶⁰⁴ LC	AD CASE(S)	Standard						-	·	A ! 3
NOTES) Unbalance this design		e been considered for									in the	ADA	E.P

April 28,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	A11	Hip Girder	1	3	Job Reference (optional)	173028919

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:06 ID:mzzd1oZDFFxIYgBcl?CyjFznEg7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:78.2 ~ "

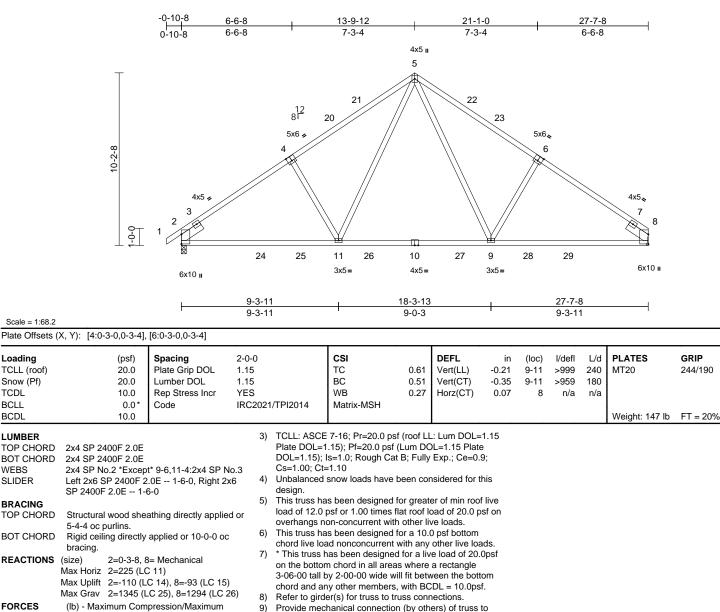
Plate Offsets ((X, Y): [2:Edge,0-0-15], [3:0-2-4,0-1-12], [1	2:0-2-4,0-	1-12], [13:Edg	e,0-0-15], [15:0-3-	8,0-4-4],	[17:0-5-0,0-4-8]], [19:	0-5-0,0-	4-8], [22	:0-3-8,	.0-4-4]	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC202	I/TPI2014	CSI TC BC WB Matrix-MSH	0.51 0.59 0.42	Vert(CT) -		(loc) 17-18 17-18 13	l/defl >999 >959 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 761 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 *Excep 2400F 2.0E 2x6 SP 2400F 2.0E 2x4 SP No.3 Structural wood she 6-0-0 cc purlins, exc 2-0-0 cc purlins (6-0 Rigid ceiling directly bracing.	athing directly applie pept I-0 max.): 3-12. applied or 6-0-0 oc 13=0-3-8, 21=0-3-8 5 59) C 38), 13=-361 (LC	d or 2)	(0.131"x3") r Top chords of staggered at Bottom chord staggered at Web connec Except mem member 12- All loads are except if not CASE(S) see provided to c unless other	be connected tog nails as follows: connected as follo 0-9-0 oc, 2x4 - 1 ds connected as follows: ted as follows: 2x ber 3-22 2x4 - 1 ro 15 2x4 - 1 row at (considered equal ed as front (F) or t tion. Ply to ply co distribute only load wise indicated. roof live loads hav	ws: 2x6 - row at 0- ollows: 2 4 - 1 row ow at 0-8 -8-0 oc. ly applie back (B) innection is noted	2 rows 9-0 oc. x6 - 2 rows at 0-9-0 oc, t-0 oc, Except d to all plies, face in the LOAI s have been as (F) or (B),		bea 2, 3 12) Gra bot 13) "N/ (0. 14) Ha pro lb c des res LOAD	aring pla 361 lb up aphical p the orien tom cho AILED" in 148"x3.2 nger(s) c vided su down and sign/sele ponsibili CASE(S	te capa blift at j burlin re tation rd. ndicate 5") toe or othe ufficient d 46 lb ection c ty of of) Sta	al connection (b) able of withstand oint 13 and 768 l epresentation do of the purlin alon as 3-10d (0.148") -nails per NDS of r connection dev t to support conc up at 4-0-0 on t of such connectio thers. ndard	y others) of truss to ing 715 lb uplift at joint b uplift at joint 21. es not depict the size g the top and/or (3") or 3-12d juidlines. ice(s) shall be entrated load(s) 271 pottom chord. The n device(s) is the
FORCES	Max Grav 2=157 (LC 21=4745 (lb) - Maximum Com Tension 1-2=0/39, 2-3=-419/ 4-5=-472/2971, 5-7= 7-8=-6876/1142, 8-1 10-11=-7166/1140,	(LC 36) ppression/Maximum 2411, 3-4=-321/1963 3712/626, 10=-8160/1334,	4)	Wind: ASCE Vasd=103mp II; Exp B; En cantilever lef right exposed TCLL: ASCE	7-16; Vult=130m bh; TCDL=6.0psf; closed; MWFRS (t and right expose d; Lumber DOL=1 7-16; Pr=20.0 ps .15); Pf=20.0 psf	BCDL=6 envelope ed; end v .60 plate f (roof LL	:.0psf; h=25ft; C e) exterior zone; vertical left and grip DOL=1.60 .: Lum DOL=1.1		, U	crease= niform L	1.15 oads (I 3=-60,	b/ft) 3-12=-60, 12-14	r Increase=1.15, Plate =-60, 23-26=-20
BOT CHORD	12-13=-4336/630, 13 2-22=-2061/393, 21- 20-21=-2690/457, 18 16-18=-1345/8179, 1 13-15=-520/3816	-22=-2690/457, 8-20=-1026/5892,	,	DOL=1.15); Cs=1.00; Ct= Unbalanced design.	ls=1.0; Rough Ca =1.10 snow loads have	t B; Fully been cor	Exp.; Ce=0.9; nsidered for this				Ľ	ALL A	N.N.N.
WEBS NOTES	13-15=-520/3816 3-22=-1604/336, 11- 12-15=-150/1604, 4- 4-20=-982/253, 5-20 5-19=-328/2660, 7-1 7-18=-137/1326, 8-1 8-17=0/458, 10-17=- 10-16=-1193/289, 1	-22=-118/825,)=-5799/1026, 9=-2619/523, 8=-1217/320, -37/162,	7) 8) 9) 10	load of 12.0 overhangs n Provide aded This truss ha chord live loa) * This truss h on the bottor 3-06-00 tall b	is been designed psf or 1.00 times i on-concurrent with quate drainage to is been designed ad nonconcurrent nas been designee n chord in all area by 2-00-00 wide w y other members	ilat roof lo n other li prevent for a 10. with any d for a liv as where ill fit betw	bad of 20.0 psf of ve loads. water ponding. D psf bottom other live loads. e load of 20.0ps a rectangle	on sf				SEA 0578	EER.

April 28,2025

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 1/2/2023 BEFORE USE. WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	A11	Hip Girder	1	3	Job Reference (optional)	173028919
Carter Components (Sanford, N	C), Sanford, NC - 27332,	Run: 8.7	3 S Feb 19 2025 Print:	3.730 S Feb 1	9 2025 MiTek Industries, Inc. Fri Apr 25 10:21:06	Page: 2


Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:06 ID:mzzd1oZDFFxIYgBcl?CyjFznEg7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	B01	Common	7	1	Job Reference (optional)	173028920

Run: 8 73 S. Feb 19 2025 Print: 8 730 S. Feb 19 2025 MiTek Industries. Inc. Fri Apr 25 10:21:07 ID:?tX5fSch5XVuU8A7EATKHeznFSP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Tension TOP CHORD 1-2=0/29, 2-5=-1895/236, 5-8=-1897/236 BOT CHORD 2-11=-238/1466, 9-11=-7/973, 8-9=-96/1469 WEBS 5-9=-129/755, 6-9=-382/258, 5-11=-129/752, 4-11=-379/257

NOTES

FORCES

Scale = 1:68.2

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

WEBS

SLIDER

BRACING

TOP CHORD

BOT CHORD

REACTIONS

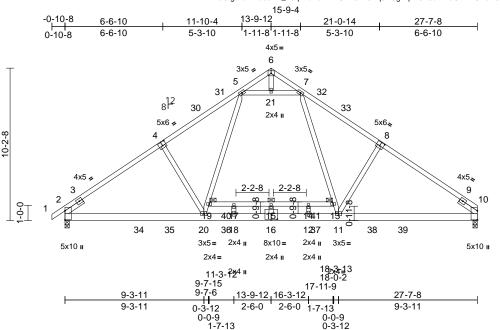
1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II: Exp B: Enclosed: MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8. Interior (1) 2-1-8 to 10-9-12. Exterior(2R) 10-9-12 to 16-9-12. Interior (1) 16-9-12 to 24-7-8, Exterior(2E) 24-7-8 to 27-7-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 93 lb uplift at joint 8 10) One H2.5A Simpson Strong-Tie connectors

recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces. LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	B02	Common	8	1	Job Reference (optional)	173028921

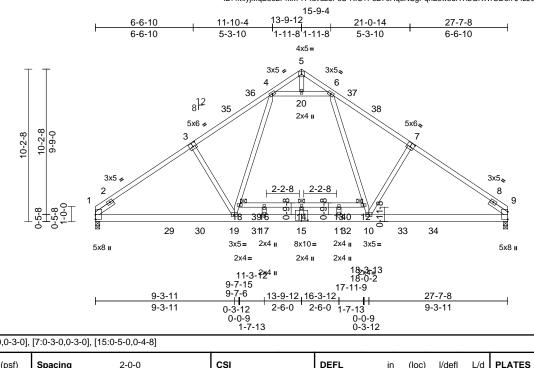
Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:07 ID:7zeClgozaVnibeakM_F9qTzuPcW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:77.2

Plate Offsets (X, Y): [4:0-3-0,0-3-0], [8:0-3-0,0-3-0], [10:0-0-0,0-0-0], [16:0-5-0,0-4-8]

			-		- -		i			-		i	
Loading TCLL (roof)	(psf) 20.0	1 1	2-0-0 1.15		CSI TC	0.43	DEFL Vert(LL)	in -0.18		l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf)	20.0		1.15		BC	0.37	Vert(CT)	-0.34	15-17	>989	180		
TCDL BCLL	10.0 0.0*	Rep Stress Incr Code	YES	1/TPI2014	WB Matrix-MSH	0.42	Horz(CT)	0.06	10	n/a	n/a		
BCDL	10.0	Code	IRC202	1/1912014	Watrix-WSH							Weight: 184 lb	FT = 20%
					ļ		I						
			2)		7-16; Vult=130mp oh; TCDL=6.0psf;			Cot					
TOP CHORD BOT CHORD		*Except* 19-13:2x4 SF			closed; MWFRS (
BOT ONORD	No.2	Except 10 10.2x+ 01			erior(2E) -0-10-8 to								
WEBS	2x4 SP No.3				Exterior(2R) 10-9-1								
SLIDER		1-6-0, Right 2x4 SP No	o.3		4-7-8, Exterior(2E) t and right expose								
DDACING	1-6-0				d;C-C for member								
BRACING TOP CHORD	Structural wood she	athing directly applied	or	for reactions	shown; Lumber D								
	4-9-1 oc purlins.	ag anoony applied		DOL=1.60		.,							
BOT CHORD		applied or 6-0-0 oc	3)		7-16; Pr=20.0 ps 1.15); Pf=20.0 psf								
	bracing.				Is=1.0; Rough Cat								
REACTIONS	(size) 2=0-3-8, 2 Max Horiz 2=225 (LC			Cs=1.00; Ct=	=1.10		•						
	(_C 25), 10=1591 (LC 2	(6) 4)		snow loads have I	been coi	nsidered for t	his					
FORCES	(lb) - Maximum Com	<i>1</i> :	,	design.	as been designed f	for great	er of min root	flivo					
	Tension		5)		psf or 1.00 times f								
TOP CHORD					on-concurrent with								
	6-7=-278/43, 7-10=-		6)		unit load placed on								
BOT CHORD	2-20=-156/1892, 18- 12-18=0/1542, 11-12				left end, supporte	ed at two	points, 5-0-0)					
		-19=-73/0, 15-17=-73/0), 7)	apart. All plates are	e 2x4 MT20 unless	otherwi	se indicated					1111 C	1111
	14-15=-73/0, 13-14=	-73/0	8)		is been designed f							THE	ROIL
WEBS		0/879, 8-11=-330/254,	- /	chord live loa	ad nonconcurrent	with any	other live loa				5	Ø KASS	b: Nº
		0/956, 4-20=-328/254,	9)		nas been designed			0psf			27		Ny 7 :
	5-21=-1436/52, 7-21 15-16=-113/0 6-21=	=-1430/32, =-10/270, 12-14=-110/()		n chord in all area by 2-00-00 wide wi			om				: and	
	17-18=-110/0		- ,		by 2-00-00 wide will a will be					-		SEA	1 1 5
NOTES			LC	DAD CASE(S)						=		0570	
	ed roof live loads have	been considered for		(-)						-	5 1	05/8	8/ : :
this desigr	٦.												- 1 E
											-	· ENG	-ER. S
											11,	GIN	
											1	DAM	DACE
												11111	in the second se
												Anri	L 87 PACE-1111111 128,2025
												Арп	120,2020
	INC Visit, desire secondari	IN AND DEAD NOTES ON TH	IC AND IN	CLUDED MITCH D	FERENCE DACE MU	7470							1110 P. 11


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty Ply 115 Eagle Creek - Hartwell E - Roo		115 Eagle Creek - Hartwell E - Roof	
25040131	B02A	Common	1	1	Job Reference (optional)	173028922

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:07 ID:4MlyjMqE562Prxk7TPIdvuzuPcU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

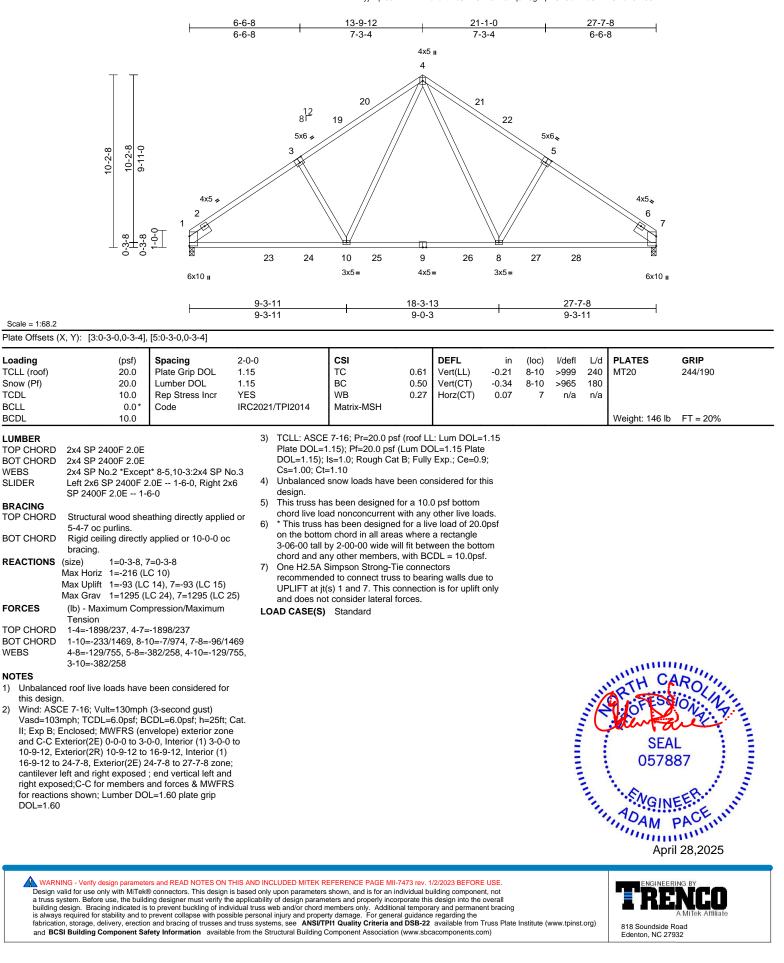
Scale = 1:77.2

Plate Offsets (X, Y): [3:0-3-0,0-3-0], [7:0-3-0,0-3-0], [15:0-5-0,0-4-8]

							i					i	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.42	• • •	-0.18		>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.37	Vert(CT)	-0.33		>991	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.42	Horz(CT)	0.06	9	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 182 lb	FT = 20%
LUMBER			2)	Wind ASCE	7-16; Vult=130m	nh (3-seo	cond aust)						
TOP CHORD	2x4 SP 2400F 2.0E		_/		ph; TCDL=6.0psf;			t; Cat.					
BOT CHORD	2x6 SP 2400F 2.0E	*Except* 18-12:2x4 \$	SP	II; Exp B; En	closed; MWFRS (envelope	e) exterior zo	ne					
	No.2	•		and C-C Ext	erior(2E) 0-0-0 to	3-0-0, In	terior (1) 3-0-	-0 to					
WEBS	2x4 SP No.3				erior(2R) 10-9-12								
SLIDER	Left 2x4 SP No.3 7	1-6-0, Right 2x4 SP N	10.3		4-7-8, Exterior(2E)								
	1-6-0				ft and right expose								
BRACING					d;C-C for member shown; Lumber D			KS					
TOP CHORD	Structural wood she 4-9-3 oc purlins.	athing directly applie	d or	DOL=1.60									
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc	3)		E 7-16; Pr=20.0 ps								
	bracing.			Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;									
REACTIONS	(size) 1=0-3-8, 9	9=0-3-8				t B; Fully	Exp.; Ce=0.	9;					
	Max Horiz 1=-216 (L	C 10)	4)	,		hoon co	cidorod for t	hic					
	Max Grav 1=1591 (L	_C 24), 9=1591 (LC 2	25) ⁴ /		Show loads have	Deen coi		.1113					
FORCES	(lb) - Maximum Com	pression/Maximum	5)	5) 200.0lb AC unit load placed on the bottom chord.									
	Tension		-,		n left end, supporte			0					
TOP CHORD	1-4=-2418/0, 4-5=-2	79/43, 5-6=-279/43,		apart.									
			6)	All plates are	e 2x4 MT20 unless	s otherwi	se indicated.						
BOT CHORD			7)		as been designed								- 20-182 FT
	,	,	1895,									, mining	11111
		=73/0, 13-14=-73/0,	8)					0psf				"TH CA	Roll
WEBS		0-0/870 /-18-0/050	2									A	. Line
WEBS											SA	0.76525	DANK
	,	,	<i>.</i>			, with be	DL = 10.0ps	d.			SK		N. S.
			/0, L	JAD CASE(S)	Standard					-		and o	
	16-17=-110/0	, -	,							-		SFA	1 1
NOTES										=			
1) Unbalance	ed roof live loads have	been considered for									8 8	05/8	87 : E
FORCES TOP CHORD BOT CHORD WEBS NOTES	Max Horiz 1=-216 (L Max Grav 1=1591 (L (lb) - Maximum Com Tension 1-4=-2418/0, 4-5=-2 6-9=-2418/0 1-19=-148/1895, 17- 11-17=0/1543, 10-1 16-18=-73/0, 14-16= 12-13=-73/0 3-19=-330/254, 18-1 6-12=0/959, 10-12=1 4-20=-1436/52, 6-20 14-15=-113/0, 5-20= 16-17=-110/0	C 10) .C 24), 9=1591 (LC 2 pression/Maximum 79/43, 5-6=-279/43, .19=0/1543, 9-10=-14/1 73/0, 13-14=-73/0, 9=0/879, 4-18=0/956 0/879, 7-10=-330/254)=-1436/52, 10/270, 11-13=-110	5) 6) 7) 1895, 8) 0, 4,	Cs=1.00; Čt: Unbalanced design. 200.0lb AC u 13-9-12 from apart. All plates are This truss ha chord live loa * This truss h on the botton 3-06-00 tall h	=1.10 snow loads have unit load placed or h left end, supporte e 2x4 MT20 unless as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members	been cor n the both ed at two s otherwi for a 10. with any d for a liv as where rill fit betw	nsidered for t om chord, points, 5-0-0 se indicated. D psf bottom other live loa e load of 20. a rectangle veen the bott	his D ads. Opsf			in the second se	OTHESS SEA 0578	

1) this design. Some and the second April 28

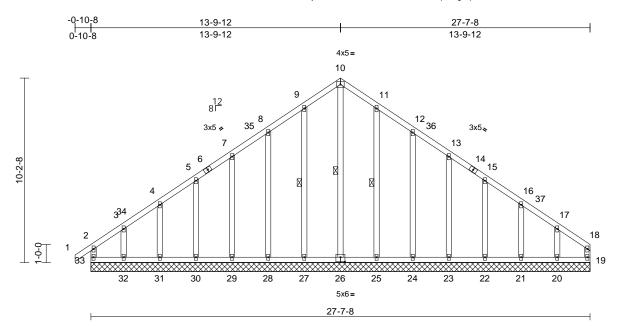
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type Qty Ply 115 Eagle Creek - Hartwell E - Roof				
25040131	B03	Common	2	1	Job Reference (optional)	173028923

2)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:07 ID:4MlyjMqE562Prxk7TPIdvuzuPcU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	B04	Common Supported Gable	1	1	Job Reference (optional)	173028924

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:07 ID:8F9dtU?eZjwH8FN0r33803zuPcF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:63.8

Plate Offsets (X, Y): [26:0-3-0,0-3-0]

		-1 -1												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD	2x4 SP No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI TOP CF	HORD 2-33=-179 3-4=-144/ 7-8=-109/	9/99, 1-2=0/34, 2 134, 4-5=-133/1 195, 8-9=-143/2	Vert(CT) Horz(CT) 0 -3=-194/175, 35, 5-7=-116/163, 51, 9-10=-172/298	n/a n/a 01 4)	Plat DOL	e DOL= L=1.15);	:1.15); ; ls=1.0	Pf=20.0 psf (Lun); Rough Cat B; F	GRIP 244/190 FT = 20% of LL: Lum DOL=1.15 n DOL=1.15 Plate Fully Exp.; Ce=0.9;		
WEBS OTHERS BRACING TOP CHORD BOT CHORD	6-0-0 oc purlins, ex Rigid ceiling directly	^{d or} BOT CI	10-11=-172/298, 11-12=-143/251, Cs=1.00; 12-13=-109/191, 13-15=-82/137, 5) Unbalance 15-16=-83/101, 16-17=-93/82, design. 17-18=-129/115, 18-19=-91/55 6) BOT CHORD 32-33=-101/115, 31-32=-101/115, load of 12 30-31=-101/115, 29-30=-101/115, overhang							iced snow loads have been considered for this as has been designed for greater of min roof live 12.0 psf or 1.00 times flat roof load of 20.0 psf on gs non-concurrent with other live loads.				
WEBS 1 Row at midpt 10-26, 9-27, 11-25 REACTIONS (size) 19=27-7-8, 20=27-7-8, 21=27-7-6 22=27-7-8, 23=27-7-8, 24=27-7-8 22=27-7-8, 23=27-7-8, 24=27-7-8 28=27-7-8, 29=27-7-8, 30=27-7-7 31=27-7-8, 32=27-7-8, 33=27-7-8 Max Horiz 33=251 (LC 11) Max Uplift 19=-71 (LC 11), 20=-129 (LC 15), 21=-43 (LC 15), 22=-62 (LC 15), 23=-56 (LC 15), 24=-64 (LC 15), 23=-56 (LC 15), 24=-64 (LC 15), 23=-56 (LC 15), 24=-64 (LC 15)			7-8, 7-8, WEBS 7-8, 7-8 7-8 (5),	28-29=-101/115, 27-28=-101/115, 7) All plates are 2x4 MT20 unless otherwise 25-27=-101/115, 24-25=-101/115, 8) Gable requires continuous bottom chord I 23-24=-101/115, 20-21=-101/115, 9) Truss to be fully sheathed from one face 21-22=-101/115, 20-21=-101/115, 9) Truss to be fully sheathed from one face 19-20=-101/115 10-26=-267/96, 9-27=-219/74, 8-28=-182/87, 7-29=-143/81, 5-30=-143/84, 4-31=-144/75, 3-32=-146/125, 11-25=-218/72, 12-24=-182/88, 13-23=-143/81, 15-22=-143/84, 16-21=-143/76, 15-22=-143/84, 16-21=-143/76, 3-06-00 tall by 2-00-00 wide will fit between 17-20=-149/114 7								e face or securely .e. diagonal web). 10.0 psf bottom any other live loads. a live load of 20.0psf here a rectangle		
	25=-48 (L 28=-63 (L 30=-63 (L 32=-145 (L 21=161 (l 23=168 (l 27=259 (l 29=168 (l	LC 15), 27=-50 (LC 14), 29=-56 (LC 14), 29=-56 (LC 14), 31=-40 (LC 14), 33=-122 (LC 12), 20=216 (LC 22), 20=2171 (LC 22), 22=171 (LC 22), 24=222 (LC 22), 26=253 (LC 12), 28=222 (LC 22), 30=171 (LC 22), 30=171 (LC 22), 30=171 (LC 22), 32=215 (LC 22), 32=2	P), NOTES i), 1) Unit i), this this i), 2) Wir 60, 2) War 61, Vas and 51, to 1 10 55, right for	balanced roof live l design. dd: ASCE 7-16; Vu dd=103mph; TCDL ixp B; Enclosed; N C-C Corner(3E) - 0-9-12, Corner(3E) 9-12 to 24-5-12, C tillever left and righ t exposed;C-C for reactions shown; L	It=130mph (3-se =6.0psf; BCDL=6 WFRS (envelop 0-10-8 to 2-1-8, I) 10-9-12 to 16-5 orner(3E) 24-5-1 t exposed ; end members and fo	cond gust) 5.0psf; h=25ft; Cat e) exterior zone Exterior(2N) 2-1-8 9-12, Exterior(2N) 2 to 27-5-12 zone vertical left and rces & MWFRS				il.	SEA 0578	L B7 EEF.R. PACE		
FORCES (Ib) - Maximum Compression/Maximum Tension			3) Tru only see	 DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 					ADAM	EEP.				

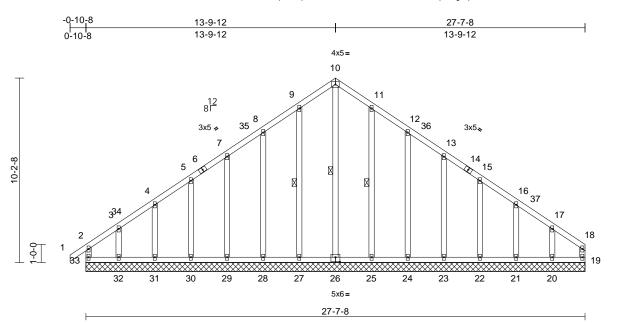
Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeR% connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the Section of the prevent collapse and truss contervers building Company the prevent on the prevent of the prevent for the Section of the prevent of the p 818 Soundside Road Edenton, NC 27932 and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	170000004
25040131	B04	Common Supported Gable	1	1	Job Reference (optional)	173028924

13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 122 lb uplift at joint 33, 71 lb uplift at joint 19, 50 lb uplift at joint 27, 63 lb uplift at joint 28, 56 lb uplift at joint 29, 63 lb uplift at joint 30, 40 lb uplift at joint 31, 145 lb uplift at joint 32, 48 lb uplift at joint 25, 64 lb uplift at joint 24, 56 lb uplift at joint 23, 62 lb uplift at joint 22, 43 lb uplift at joint 21 and 129 lb uplift at joint 20.

LOAD CASE(S) Standard


Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:07 ID:8F9dtU?eZjwH8FN0r33803zuPcF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	B05	Common Supported Gable	1	1	Job Reference (optional)	173028925

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:08 ID:fn4p5KnLpBfr_U?YoHkwHGzuPcX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:63.8

Plate Offsets (X, Y): [26:0-3-0,0-3-0]

	(7, 1). [20.0 0 0,0 0 0												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI20	CSI TC BC WB 14 Matrix-MR	0.18 0.09 0.18	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 19	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 198 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	TOP CHORD 2x4 SP No.2 3OT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 DTHERS 2x4 SP No.3 BRACING 500 CHORD TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.			$\begin{array}{c} 3-4=-144/134, 4-5=\\ 7-8=-109/195, 8-9=\\ 10-11=-172/298, 11\\ 12-13=-109/191, 13\\ 15-16=-83/101, 16-\\ 17-18=-129/115, 18\\ RD & 32-33=-101/115, 22\\ 28-29=-101/115, 22\\ 28-29=-101/115, 22\\ 23-24=-101/115, 22\\ 21-22=-101/115, 22\\ 19-20=-101/115\\ 10-26=-267/96, 9-2\\ 7-29=-143/81, 5-30\\ 3-32=-146/125, 11-\\ 12-24=-182/88, 13-\\ 15-22=-143/84, 16-\\ 17-20=-149/114\\ \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$							n DOL=1.15 Plate Fully Exp.; Ce=0.9; in considered for this reater of min roof live bof load of 20.0 psf on er live loads. erwise indicated. chord bearing. e face or securely .e. diagonal web). 10.0 psf bottom any other live loads. a live load of 20.0psf here a rectangle	
FORCES	28=-63 (L 30=-63 (L 32=-145 (L 21=161 (l 23=168 (l 25=258 (l 25=258 (l 29=168 (l 31=166 (l 33=223 (l (lb) - Maximum Con Tension	7, this de 10) 2) Wind: 6), Vasd= 6), II; Exp 2), to 10- 5), to 10- 1), 16-9- 5), cantic 5), right e for rea DOL= 3) Truss only. see S	Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 10-9-12, Corner(3R) 10-9-12 to 16-9-12, Exterior(2N) 16-9-12 to 24-5-12, Corner(3E) 24-5-12 to 27-5-12 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60					SEAL 057887					

April 28,2025

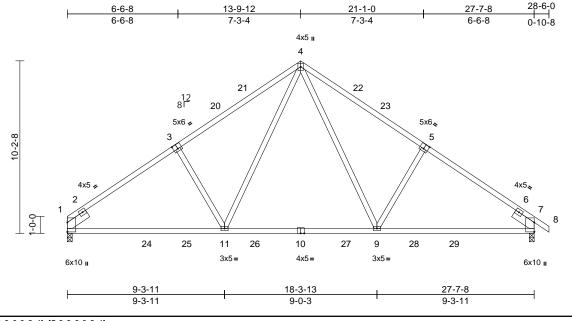
Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeR% connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the Section of the prevent collapse and truss contervers building Company the prevent on the prevent of the prevent for the Section of the prevent of the p and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	17000005	
25040131	B05	Common Supported Gable	1	1	Job Reference (optional)	173028925	

13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 122 lb uplift at joint 33, 71 lb uplift at joint 19, 50 lb uplift at joint 27, 63 lb uplift at joint 28, 56 lb uplift at joint 29, 63 lb uplift at joint 30, 40 lb uplift at joint 31, 145 lb uplift at joint 32, 48 lb uplift at joint 25, 64 lb uplift at joint 24, 56 lb uplift at joint 23, 62 lb uplift at joint 22, 43 lb uplift at joint 21 and 129 lb uplift at joint 20.

LOAD CASE(S) Standard

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:08 ID:fn4p5KnLpBfr_U?YoHkwHGzuPcX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type Qty Ply 1*		115 Eagle Creek - Hartwell E - Roof					
25040131	B06	Common	2	1	Job Reference (optional)	173028926			

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:08 ID:7zeClgozaVnibeakM_F9qTzuPcW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y):	[3:0-3-0,0-3-4], [5:0-3-0,0-3-4]	

Scale = 1:68.2

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.61 0.51 0.27	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.35 0.07	(loc) 9-11 9-11 7	l/defl >999 >959 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 147 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	E 7-16; Pr=20.0 psi =1.15); Pf=20.0 psi ;; Is=1.0; Rough Cat :t=1.10 d snow loads have I has been designed f 0 psi or 1.00 times fi non-concurrent with has been designed oad nonconcurrent t s has been designed om chord in all area I by 2-00-00 wide wi any other members, i Simpson Strong-Ti	(Lum DC B; Fully been col- for great lat roof I o other li for a 10. with any I for a liv s where II fit betw with BC	DL=1.15 Plate Exp.; Ce=0. nsidered for t er of min roo bad of 20.0 p ve loads. 0 psf bottom other live loa re load of 20. a rectangle veen the bott DL = 10.0ps	e 9; his f live osf on ads. 0psf								
Max Grav 1=1294 (LC 25), 7=1345 (LC 26) 8) One H FORCES (lb) - Maximum Compression/Maximum Tension recom UPLIF TOP CHORD 1-4=-1897/236, 4-7=-1895/236, 7-8=0/29 and do			UPLIFT at and does r 73 LOAD CASE(\$ 755, Cat. 6 to	ded to connect truss jt(s) 1 and 7. This cr iot consider lateral fo Standard	onnectio		only		- and the second	in the second second	SEA 0578	ROL 12 87 PACE 1111111 28,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

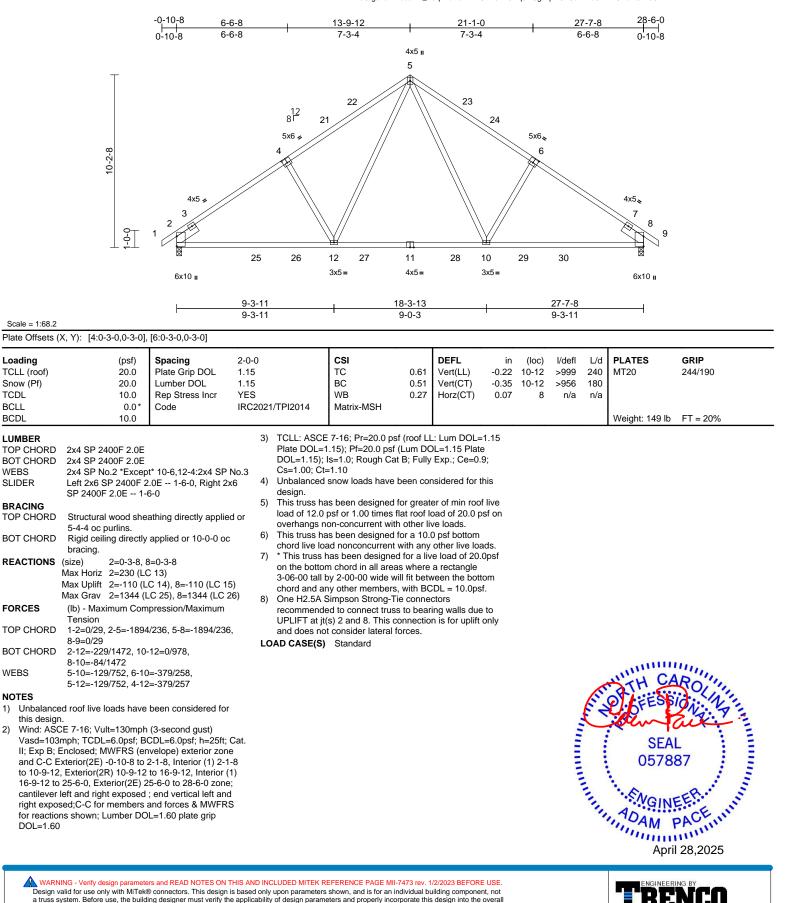
Job	russ Truss Type Qty Ply 115 Eagle Cree		115 Eagle Creek - Hartwell E - Roof			
25040131	B07	Common	1	1	Job Reference (optional)	173028927

TCDL

BCLL

BCDL

WEBS


WEBS

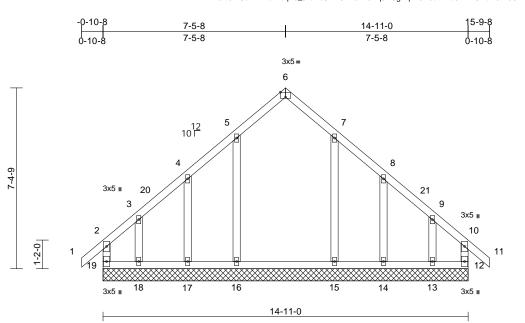
1)

2)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:08 ID:7zeClgozaVnibeakM_F9qTzuPcW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Edenton, NC 27932

Job	Truss	Truss Type Qty		Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	C01	Common Supported Gable	1	1	Job Reference (optional)	173028928

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:08 ID:0lti81rUdkI74FuWbqK5_JzuPcS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

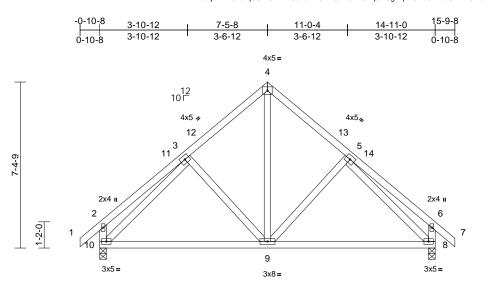
Scale = 1:47.1

Plate Offsets (X, Y): [6:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Lumber DOL	2-0-0 1.15 1.15 YES IRC202 ²	1/TPI2014	CSI TC BC WB Matrix-MR	0.33 0.19 0.15	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 89 lb	GRIP 244/190 FT = 20%
	6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 12=14-11: 14=14-11: 16=14-11: 18=14-11: Max Horiz 19=-196 (Max Uplift 12=-44 (L 14=-88 (L 16=-19 (L 18=-204 (Max Grav 12=257 (L 14=193 (L 16=368 (L	applied or 10-0-0 oc -0, 13=14-11-0, -0, 15=14-11-0, -0, 17=14-11-0, -0, 19=14-11-0 LC 12) C 13), 13=-202 (LC 15 C 15), 15=-16 (LC 14) LC 14), 17=-86 (LC 14) LC 14), 19=-52 (LC 12)	2) or 3) 5), 4) 1, 4) 1, 2) 5), 5) , (6)	this design. Wind: ASCE Vasd=103mg II; Exp B; End and C-C Corr to 4-5-8, Corr to 12-9-8, Co left and right exposed;C-C reactions sho DOL=1.60 Truss design only. For stu see Standarc or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha	roof live loads have 7-16; Vult=130mp bh; TCDL=6.0psf; E closed; MWFRS (e ner(3E) -0-10-8 to ner(3E) 12-9-8 to exposed; end ver for members and own; Lumber DOL= ed for wind loads i ds exposed to win I Industry Gable E alified building des 7-16; Pr=20.0 psf (15); Pf=20.0 psf (s=1.0; Rough Cat 1.10 snow loads have b s been designed for psf or 1.00 times fil	h (3-sec 3CDL=6 envelope 2-1-8, E 15-9-8, E 15-9-8 tical left forces a =1.60 pl n the pl d (norm nd Deta signer as (roof LL Lum DC B; Fully been cor	cond gust) .0psf; h=25ft e) exterior (2N) 2 xterior(2N) 10 zone; cantile and right & MWFRS for ate grip ane of the tru al to the face ils as applica s per ANSI/TI :: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9	; Cat. ne 2-1-8 0-5-8 ver r sss e), bble, PI 1. 1.15 e 9; his f live	bea 19, upli join 13. LOAD (ring plat 44 lb up it at join : 15, 88 : ASE(S)	e capa lift at jo t 17, 20 lb uplif) Star	ible of withstandi pint 12, 19 lb upli 04 lb uplift at join 1 at joint 14 and 2 ndard	vothers) of truss to ng 52 lb uplift at joint ft at joint 16, 86 lb t 18, 16 lb uplift at 202 lb uplift at joint
FORCES	,	•	7) 8) 9)	overhangs no All plates are Gable require Truss to be fi	on-concurrent with 2x4 MT20 unless es continuous botto ully sheathed from st lateral moveme	other liv otherwi om chor one fac	ve loads. se indicated. d bearing. e or securely	/			il	O DEESS	N. N. H.
BOT CHORD	9-10=-209/94, 10-11 18-19=-89/253, 17-1 16-17=-89/253, 15-1 14-15=-89/253, 13-1 12-13=-89/253	6=-89/253,	11) Gable studs :) This truss ha chord live loa) * This truss h	spaced at 2-0-0 oc s been designed for d nonconcurrent v as been designed n chord in all areas	c. or a 10.0 vith any for a liv) psf bottom other live loa e load of 20.0	ads.				0578	EER.
WEBS NOTES	5-16=-259/58, 4-17= 3-18=-135/179, 7-15 8-14=-160/159, 9-13	=-259/56,		3-06-00 tall b	y 2-00-00 wide wil y other members,	ll fit betv	veen the bott				in the second second	SEA 0578	EEF.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	C02	Common	2	1	Job Reference (optional)	173028929

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:08 ID:JDjFhD4SkalqUUm6L11D9uzuAV6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

14-11-0

7-5-8

Page: 1

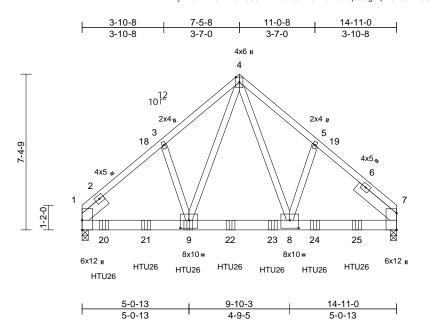
7-5-8

7-5-8

Scale :	= 1.51	2

Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TP		CSI TC BC WB Matrix-MSH	0.27 0.50 0.33	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.12 0.01	(loc) 9-10 9-10 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 8=0-3-8, ' Max Horiz 10=196 (I Max Uplift 8=-58 (LC Max Grav 8=717 (LC (lb) - Maximum Com Tension 1-2=0/39, 2-3=-231/ 4-5=-578/160, 5-6=- 2-10=-266/116, 6-8=	cept end verticals. applied or 10-0-0 oc (C 13) (15), 10=-58 (LC 14 (C 22), 10=717 (LC 2 pression/Maximum 93, 3-4=-578/160, 205/115, 6-7=0/39, -255/138 /470 582/59, 5-8=-582/31	de 5) Th loa ov dor 6) Th ch ; 7) * T on 3-(ch ; 8) Or rec 1) UF an LOAD	sign. is truss has ad of 12.0 p erhangs noi is truss has ord live loac his truss has the bottom 06-00 tall by ord and any commended PLIFT at jt(s	now loads have to been designed f sf or 1.00 times ff h-concurrent with been designed f d nonconcurrent v is been designed chord in all areas v 2-00-00 wide wi v 2-00-00 wide wi v other members. mpson Strong-Tit t to connect truss) 10 and 8. This of consider lateral for Standard	or greate at roof lo other liv or a 10.0 vith any for a liv s where I fit betw e connect to bear	er of min roop aad of 20.0 p ve loads. 0 psf bottom other live loa e load of 20.1 a rectangle veen the bott ctors ng walls due	f live sf on ids. Opsf om to				Weight: 97 lb	FT = 20%
 this design Wind: ASC Vasd=103 II; Exp B; E and C-C E to 4-5-8, E to 12-9-8, left and rig exposed: C EOL=1.60 TCLL: ASC Plate DOL 	CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; Br Enclosed; MWFRS (er Exterior(2E) -0-10-8 to 1 Exterior(2E) 12-9-8 to 10 Exterior(2E) 12-9-8 to ght exposed ; end vertii C-C for members and fr shown; Lumber DOL=') CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E	(3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zon 2-1-8, Interior (1) 2-1 -5-8, Interior (1) 10- 15-9-8 zone; cantile cal left and right orces & MWFRS for 1.60 plate grip roof LL: Lum DOL=1 um DOL=1.15 Plate	Cat. e -8 5-8 ver .15								and the second s	SEA 0578	87 EER.

- to 12-9-8, Exterior(2E) 12-9-8 to 15-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 3) Cs=1.00; Ct=1.10


818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

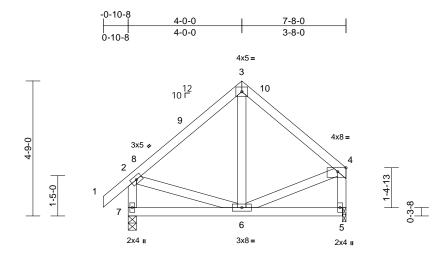
Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	C03	Common Girder	1	2	Job Reference (optional)	173028930

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:08 ID:yPXu7X4P9ZhRsAr9CJAYFKzuPc9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:54.6

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.70 0.45 0.64	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.14 0.02	(loc) 8-9 8-9 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 212 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS 1) 2-ply truss to (0.131"x3") r Top chords o oc. Bottom chorr staggered at	Aax Horiz 1=146 (LC Aax Uplift 1=-426 (L' Aax Grav 1=5282 (L (lb) - Maximum Com Tension 1-3=-5022/445, 3-4= 4-5=-4881/516, 5-7= 1-9=-354/3819, 8-9= 7-8=-286/31713 4-8=-356/31713, 5-8= 3-9=-91/258 o be connected toget nails as follows: connected as follows:	5-0 athing directly applie applied or 10-0-0 oc 2=0-3-8 2 36) C 12), 7=-386 (LC 12 C 21), 7=-386 (LC 12 C 21), 7=4784 (LC 2 pression/Maximum -4896/517, -5014/446 -193/2785, -75/294, 4-9=-357/3 her with 10d :: 2x4 - 1 row at 0-9-0 pws: 2x6 - 2 rows	3) d or 4) : 3) 5) 22) 6) 7) 195, 8) 9)	except if note CASE(S) sec provided to c unless othen Unbalanced this design. Wind: ASCE Vasd=103mp II; Exp B; En cantilever lef right exposed TCLL: ASCE Plate DOL=1 DOL=1.15); I CS=1.00; Ct Unbalanced design. This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar On H2.5A S recommende UPLIFT at jt(considered equal ad as front (F) or b tion. Ply to ply co bistribute only load wise indicated. roof live loads hav 7-16; Vult=130mp bh; TCDL=6.0psf; closed; MWFRS (it and right expose d; Lumber DOL=1 7-16; Pr=20.0 psf s=1.0; Rough Cat 1.10; Rough Cat 1.10 snow loads have l as been designed that have a been designed in chord in all area by 2-00-00 wide will y other members. Simpson Strong-Ti ad to connect truss s) 1 and 7. This ca	ack (B) nnection s noted e been of BCDL=6 envelope d; end \ 60 plate f (roof LL Lum DC B; Fully been cor or a 10.0 with any f for a liv s where Il fit betv e connec to bear	face in the LC s have been as (F) or (B), considered for cond gust) .0psf; h=25ft exterior zor vertical left an grip DOL=1. .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 sidered for th D psf bottom other live loa e load of 20.0 a rectangle veen the botto ctors ing walls due	or ; Cat. ne; nd 60 1.15 2; his ds. Opsf om to	14- max con 11) Fill LOAD (1) De Inc Ur Cc	10dx1 1, k. startin nect trus all nail h CASE(S aad + Sr crease= iform Lo Vert: 1 oncentra Vert: 9= 22=-105 (F)	/2 Trus g at 1- ss(es) looles w ow (br 1.15 	Ing-Tie HTU26 (1 ss) or equivalent : 0-8 from the left to front face of bu here hanger is ir ndard alanced): Lumber b/ft) 4-7=-60, 10-14= ads (Ib) (F), 20=-1098 (F) 23=-1098 (F), 24	0-16d Girder, spaced at 2-0-0 oc end to 13-0-8 to ottom chord. o contact with lumber. r Increase=1.15, Plate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com) **TRENCO**


April 28,2025

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	D01	Common	3	1	Job Reference (optional)	173028931

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:08 ID:70jfytC15LHPZDT1YPB918znEga-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:40.5

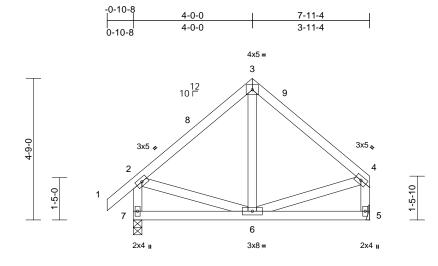
Plate Offsets (X, Y): [4:0-3-8,Edge]

												1	
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.44	Vert(LL)	-0.01	6-7	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.13	Vert(CT)	-0.01	6-7	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.06	Horz(CT)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 49 lb	FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 5=0-1-8, 7 Max Horiz 7=133 (LC Max Uplift 5=-22 (LC	cept end verticals. applied or 10-0-0 or 7=0-3-8 C 11)	7) c 8)	design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall t chord and ar Bearing at jo using ANSI/	snow loads have b so been designed for paf or 1.00 times fl on-concurrent with the been designed for ad nonconcurrent w has been designed on chord in all areas by 2-00-00 wide will by other members. int(s) 5 considers p IFPI 1 angle to grain	or great at roof le other li or a 10. with any l for a liv s where ll fit betw parallel n formul	er of min rooi aad of 20.0 p ve loads. 0 psf bottom other live loa e load of 20. a rectangle veen the bott o grain value a. Building	f live Isf on ads. Opsf					
	Max Grav 5=387 (LC		۱ ۱	designer should verify capacity of bearing surface.9) Provide mechanical connection (by others) of truss to									
FORCES	(lb) - Maximum Corr Tension	pression/Maximum	,	01	e at joint(s) 5.								
TOP CHORD	1-2=0/39, 2-3=-283/ 2-7=-403/177, 4-5=-		10	 One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 7 and 5. This connection is for uplift only 									
BOT CHORD	6-7=-128/108, 5-6=-	19/28		and does no	t consider lateral fo	orces.		,					
WEBS	3-6=-11/106, 2-6=-2	/163, 4-6=-11/156	LC	DAD CASE(S)	Standard								
NOTES													1111
	ed roof live loads have	been considered fo								-	ALL CA	Palle	
this design											6	210	50/ 11
Vasd=103	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B	CDL=6.0psf; h=25ft;								E Z	9 OFESS	NY Y	

II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Exterior(2R) 2-1-8 to 4-6-4, Exterior(2E) 4-6-4 to 7-6-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

JA NGINEER. April 28,20 Torran and the state


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	D02	Common	3	1	Job Reference (optional)	173028932

Scale - 1:38 7

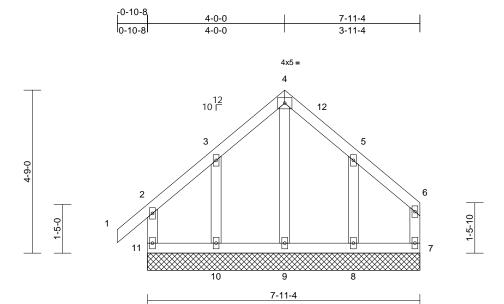
Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:09 ID:3J_cxCCQZagxsgQYcyrpnzznFRe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.50	DEFL Vert(LL)	in -0.01	(loc) 6-7	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.14	Vert(CT)	-0.01	6-7	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.07	Horz(CT)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC20	21/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 50 lb	FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 5= Mechai Max Horiz 7=131 (LC Max Uplift 5=-21 (LC Max Grav 5=407 (LC	cept end verticals. applied or 10-0-0 oc nical, 7=0-3-8 2 11) 14), 7=-36 (LC 14)	d or	 load of 12.0 overhangs n This truss ha chord live loa * This truss f on the bottor 3-06-00 tall t chord and ar 8 Refer to gird Provide mec 	s been designed of or 1.00 times on-concurrent w is been designed ad nonconcurrer aas been design in chord in all are by 2-00-00 wide of the member of the the the beat of the the index of the the constant of the simpson Strong-	a flat roof lo ith other lind d for a 10.0 t with any ed for a liv eas where will fit betw 's. truss conr on (by oth standing 2	bad of 20.0 p ve loads. D psf bottom other live loa e load of 20. a rectangle veen the bot nections. ers) of truss 21 lb uplift at	osf on ads. .0psf tom to					
FORCES	(lb) - Maximum Com Tension	pression/Maximum		recommende	ed to connect tru s) 7. This conne	ss to bear	ing walls due						
TOP CHORD	1-2=0/39, 2-3=-296/1 2-7=-431/177, 4-5=-3				sider lateral for		apint only a						
BOT CHORD WEBS	6-7=-125/108, 5-6=-1 3-6=-4/116, 2-6=0/17				Clandalu								
NOTES													
, this design	ed roof live loads have n.	been considered for										mm	

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Exterior(2R) 2-1-8 to 4-9-8, Exterior(2E) 4-9-8 to 7-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

887 NGINEER DAM PACE April 28,20° 818 Soundside Road Edenton, NC 27932


"Innovements"

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	D03	Common Supported Gable	1	1	Job Reference (optional)	173028933

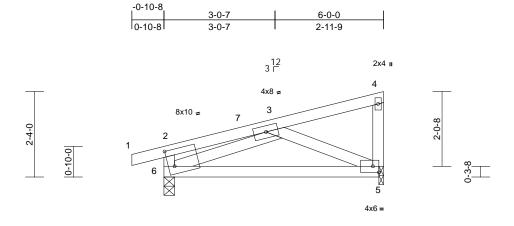
Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:09 ID:75WG0vKPySmiqjBRbiSUikznUtB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

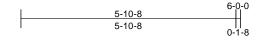
Page: 1

Scale = 1:33.6

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC20	21/TPI2014	CSI TC BC WB Matrix-MR	0.12 0.06 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	6-0-0 oc Rigid cei bracing. (size) Max Horiz Max Uplift	lo.2 lo.2 lo.3 lo.3 ling directly 7=7-11-4, 10=7-11-4 11=126 (L 7=-50 (LC 10=-104 (7=92 (LC	2 14), 8=-92 (LC 15), LC 14), 11=-54 (LC 22), 8=267 (LC 22), C 27), 10=238 (LC 21	4 5 6 7 10) g 9), 1	 only. For str see Standar or consult qu TCLL: ASCE Plate DOL=' DOL=1.15); Cs=1.00; Ct: Unbalanced design. This truss ha load of 12.0 overhangs n All plates are Gable requir Truss to be f braced agair Gable studs 	led for wind load uds exposed to d lndustry Gable alified building c 57-16; Pr=20.0 p 1.15); Pf=20.0 ps ls=1.0; Rough C =1.10 snow loads have as been designed psf or 1.00 times on-concurrent w 2x4 MT20 unle es continuous bo jully sheathed fro st lateral moven spaced at 2-0-0 as been designed	vind (norm End Deta designer a osf (roof Ll of (Lum DC d for great s flat roof I ith other li ss otherwi ottom choi om one fac nent (i.e. c oc.	al to the face ils as applica s per ANSI/T .: Lum DOL= .: Lum DOL= .: Lum DOL= .: Lum DOL= .: Ce=0. hsidered for t er of min roo bad of 20.0 p ve loads. se indicated. d bearing. se or securely liagonal web?	2), bble, Pl 1. 1.15 29; his f live sf on					
FORCES	Tension 2-11=-15	1/205, 1-2= 241, 4-5=-9	pression/Maximum =0/38, 2-3=-83/121, 4/240, 5-6=-62/90,		chord live loa 2) * This truss l on the bottor 3-06-00 tall l	ad nonconcurren nas been design m chord in all are by 2-00-00 wide ny other member	it with any ed for a liv eas where will fit betv	other live loa e load of 20. a rectangle	0psf				mm	um,
this design 2) Wind: ASC Vasd=103 II; Exp B; I and C-C C	7-8=-57/ 4-9=-211 ed roof live 5. CE 7-16; Vu mph; TCDI Enclosed; M Corner(3E)	51 /16, 3-10=- loads have ult=130mph _=6.0psf; B0 /WFRS (en -0-10-8 to 2	57/51, 8-9=-57/51, 199/164, 5-8=-226/2 been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zon -0-0, Corner(3R) 2-0 -8 zone; cantilever le	11 L Cat. ∋ -0	 Provide med bearing plate 	hanical connecti capable of with ift at joint 7, 104 8.	on (by oth standing 5	54 lb uplift at	joint			and the second	SEA 0578	EER.
and right e	exposed ; e bers and fo	nd vertical I prces & MW	left and right exposed /FRS for reactions grip DOL=1.60									in the second se	ADAM	EEF

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	170000004	
25040131	E01	Monopitch	7	1	Job Reference (optional)	173028934	

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:09 ID:baH29DDfrfPGBN2D67iOaLznEgZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

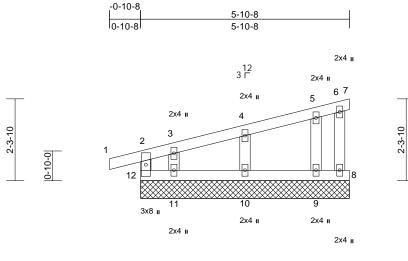
Page: 1

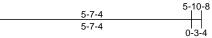
Scale = 1:31.5

Plate Offsets (X, Y): [2:0-2-0,0-5-8]

	X, Y): [2:0-2-0,0-5-8]											-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/	/TPI2014	CSI TC BC WB Matrix-MP	0.14 0.43 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.13 0.00	(loc) 5-6 5-6 5	l/defl >999 >538 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=103 II; Exp B; E and C-C E to 2-10-4, I left and rig exposed;C Plate DOL=1.60 2) TCLL: ASC Plate DOL=1.00; Cs=1.00; C 3) Unbalance	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 5=0-1-8, @ Max Horiz 6=80 (LC Max Uplift 5=-40 (LC Max Uplift 5=-40 (LC Max Uplift 5=-40 (LC (lb) - Maximum Com Tension 1-2=0/21, 2-3=-28/4i 2-6=-200/181, 4-5=- 5-6=-223/303 3-6=-333/189, 3-5=- CE 7-16; Vult=130mph mph; TCDL=6.0psf; Bt Enclosed; MWFRS (er ixterior(2E) -0-10-8 to 12 Exterior(2E) -0-10-8 to 12	applied or 10-0-0 oc 3=0-3-8 11) 14), 6=-72 (LC 10) 2 21), 6=395 (LC 21) pression/Maximum 8, 3-4=-43/39, 100/76 332/285 (3-second gust) CDL=6.0psf; h=25ft; C welope) exterior zone 2-1-8, Interior (1) 2-1- 5-10-4 zone; cantilev cal left and right orces & MWFRS for 1.60 plate grip roof LL: Lum DOL=1. um DOL=1.15 Plate ;; Fully Exp.; Ce=0.9;	5) 6) d or 7) 8) 9) LO Cat. 8 er	load of 12.0 p overhangs no This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and ar Bearing at jo using ANSI/T designer sho Provide mech bearing plate One H2.5A S recommende UPLIFT at jt(impson Strong-Tie d to connect truss s) 6 and 5. This co consider lateral fo	at roof le other lif or a 10. vith any for a liv s where il fit betw parallel of bear l (by oth e conne to bear	bad of 20.0 p ve loads. O psf bottom other live loa e load of 20. a rectangle veen the bott to grain value a. Building ing surface. ers) of truss ctors ing walls due	ads. Opsf to to e to			Current and Curren	RTHC	L 87 FER. ACE
design.												Apri	1 28 2025

818 Soundside Road Edenton, NC 27932


April 28,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof				
25040131	E02	Monopitch Supported Gable	1	1	Job Reference (optional)	173028935			

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:09 ID:YYJKxhrssQAGS5JJ16psR6zuPcT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:32.4

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.14	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Pf)	20.0	· ·	1.15		BC	0.04	Vert(CT)	n/a	-	n/a	999	-	
TCDL	10.0	Rep Stress Incr	YES		WB	0.05	Horz(CT)	0.00	7	n/a	n/a		
BCLL	0.0*	Code	IRC2021/	TPI2014	Matrix-MR								
BCDL	10.0		-									Weight: 27 lb	FT = 20%
BCDL LUMBER TOP CHORE BOT CHORE WEBS OTHERS BRACING TOP CHORE REACTIONS FORCES TOP CHORE BOT CHORE BOT CHORE	 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 5-10-8 oc purlins, e Rigid ceiling directly bracing. (size) 7=5-10-8, 10=5-10-1, 10=5-10-1, 10=5-10-1, 10=5-10-1, 10=5-10-1, 10=5-10-1, 10=5-10-1, 10=5-10-1, 10=5-10-1, 10=5-10-1, (LC 21), ' (LC 21), ' 	applied or 6-0-0 oc ,8=5-10-8, 9=5-10-8, 8, 11=5-10-8, 12=5-10 C 11) C 14), 8=-22 (LC 13), C 10), 10=-32 (LC 10), C 11), 12=-29 (LC 10), B), 8=15 (LC 21), 9=1 10=230 (LC 21), 11=10 12=157 (LC 21) npression/Maximum =0/21, 2-3=-74/77, /48, 5-6=-25/41,	3) or 4) 5) -8 6) 7) 8) 71 9) 77 9) 10) 11) 11)	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs n- All plates are Gable requir Truss to be f braced again Gable studs This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall b chord and ar Provide mec	ed for wind loads uds exposed to wind d Industry Gable E ialified building det ; 7-16; Pr=20.0 psf .15); Pf=20.0 psf (Is=1.0; Rough Cat =1.10 snow loads have the subsect of the subsect of the subsect of the subsect of the subsect of the subsect usly sheathed from the stateral movement spaced at 2-0-0 of the subsect of the subsect ad nonconcurrent with as been designed fad nonconcurrent to as been designed fad nonconcurrent to as been designed in chord in all areas by 2-00-00 wide with y other members. hanical connectior e capable of withst	nd (norm nd Deta signer a: f (roof LL (Lum DC B; Fully been con for great lat roof la o ther lin o the l	al to the face ils as applica is per ANSI/TI L=1.15 Plate Exp.; Ce=0.9 end of 20.0 p ve loads. se indicated. d bearing. se or securely liagonal web) 0 psf bottom other live loa re load of 20.1 e load of 20.2 se indicated. d bearing.), ble, PI 1. 1.15 				Weight: 27 lb	FT = 20%
WEBS	8-9=-28/39 4-10=-186/183 3-11	I=-115/114, 5-9=-133/ [.]			ft at joint 7, 22 lb ι						12	U.SFE90	N. Kai
NOTES				at joint 10, 44	4 lb uplift at joint 1	i and 19	o id uplint at jo	int 9.		5	-)-	in the second	allin
1) Wind: AS Vasd=10 II; Exp B and C-C to 5-10-8 vertical le forces &	SCE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B ; Enclosed; MWFRS (er Corner(3E) -0-10-8 to 2 2 cone; cartilever left and right exposed;C- MWFRS for reactions s 50 plate grip DOL=1.60	CDL=6.0psf; h=25ft; C nvelope) exterior zone 2-1-8, Exterior(2N) 2-1- d right exposed ; end C for members and	at.	AD CASE(S)	Standard						A A A A A A A A A A A A A A A A A A A	SEA 0578 MGIN ADAM	L 87 PACE

DOL=1.60 plate grip DOL=1.60

April 28,2025

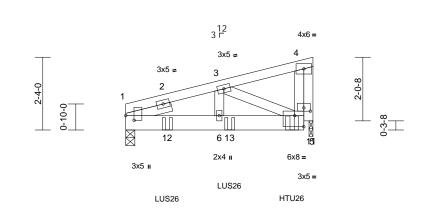
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Oty Ply 115 Eagle Creek - Hartwell E -				
25040131	E03	Monopitch Girder	1	2	Job Reference (optional)	173028936		

6-0-0

3-0-0


3-0-0


3-0-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:09 ID:Aw3hNv5HKDtMR6XYYBKLTqzuBPC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:36.9

Plate Offsets (X, Y): [1:0-1-12,0-3-3], [5:Edge,0-4-4], [5:0-2-8,0-1-4]

Plate Olisets (X, Y) : [1:0-1-12,0-3-3], [5:Edge,0-4-4], [5:0-2-8,0-1-4]	
Loading (psf) Spacing 2-0-0 CSI DEFL in (loc) //de TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.18 Vert(LL) -0.01 6 >99 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.17 Vert(CT) -0.01 6 >99 TCDL 10.0 Rep Stress Incr NO WB 0.10 Horz(CT) 0.00 11 n. BCLL 0.0* Code IRC2021/TPI2014 Matrix-MP Vertice Vertice <td< td=""><td>99 240 MT20 244/190</td></td<>	99 240 MT20 244/190
TOP CHORD2x4 SP No.2Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.Vert:BOT CHORD2x6 SP No.2Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.Vert:BOT CHORD2x4 SP No.3Cat.Vert:OTHERS2x4 SP No.3Cat.Vert:SLIDERLeft 2x4 SP No.3 1-6-0TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15BRACINGTOP CHORDStructural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15BOT CHORDStructural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pl=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Pl=20.0	n Loads (lb/ft) : 1-4=-60, 5-7=-20 htrated Loads (lb) : 5=-390 (F), 12=-387 (F), 13=-387 (F)

April 28,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	17000007	
25040131	E04	Jack-Open	18	1	Job Reference (optional)	173028937	

4-0-0

12 6 Г

4-0-0

-0-10-8 0-10-8

2

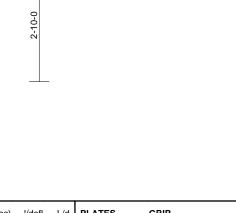
3x8 II

5

Carter Components (Sanford, NC), Sanford, NC - 27332,

Scale = 1:28.8

2-10-0


0-10-0

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:09 ID:baH29DDfrfPGBN2D67iOaLznEgZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3

4

Page: 1

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MR	0.33 0.17 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.02 0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.3 Structural wood she 4-0-0 oc purlins, ex Rigid ceiling directly bracing.	applied or 10-0-0 oc inical, 4= Mechanical 14) 14), 5=-17 (LC 14) C 21), 4=71 (LC 7), 5	d or d	has been designed m chord in all areas by 2-00-00 wide wil ny other members. are assumed to be der(s) for truss to tru- chanical connection e capable of withsta Simpson Strong-Tie ed to connect truss (s) 5. This connection nsider lateral forces) Standard	s where I fit betw User D uss conr (by oth anding 5 e connec to bear on is for	a rectangle veen the botto efined . nections. ers) of truss t is9 lb uplift at j ctors ing walls due	om oo oint to					
Vasd=103 II; Exp B; I and C-C E exposed ; members Lumber D 2) TCLL: AS Plate DOL	2-5=-300/142, 1-2=0 4-5=0/0 CE 7-16; Vult=130mph Enclosed; MWFRS (er Exterior(2E) zone; cant end vertical left and rig and forces & MWFRS OL=1.60 plate grip DC CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L 6); Is=1.0; Rough Cat E	(3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zono ilever left and right ght exposed;C-C for for reactions shown; iL=1.60 roof LL: Lum DOL=1 um DOL=1.15 Plate	e .15								O DE ESS SEA	• -
 Unbalance design. This truss load of 12 overhangs This truss 	Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this											EEP.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	E06	Jack-Open Supported Gable	1	1	Job Reference (optional)	173028938

Run: 8.73 E Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries, Inc. Mon Apr 28 13:46:49 ID:3nrQNZEHcyX7oWcQgqDd6ZznEgY-xOe1ea1W6syP?GSiPBpEn9sgG5KerPI_0_BP7GzMKmc

Page: 1

Scale = 1:30.3

_oading (psf)	Spacing 2-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 20.0	Plate Grip DOL 1.1	15	TC	0.19	Vert(LL)	0.00	6-7	>999	240	MT20	244/190
Snow (Pf) 20.0	Lumber DOL 1.1		BC	0.07	Vert(CT)	0.00	6-7	>999	180		
TCDL 10.0	Rep Stress Incr YE		WB	0.06	Horz(CT)	0.00	4	n/a	n/a		
3CLL 0.0*	Code IR	C2021/TPI2014	Matrix-MR								
3CDL 10.0										Weight: 20 lb	FT = 20%
4-0-0 oc purlins, ex BOT CHORD Rigid ceiling directly bracing. REACTIONS All bearings 4-0-0. ex (lb) - Max Horiz 7=99 (LC Max Uplift All uplift 4, 6, 7 Max Grav All reaction (s) 4, 5, 6	applied or 10-0-0 oc cept 4= Mechanical 11) 00 (lb) or less at joint(s) ns 250 (lb) or less at joint 7 ax. Ten All forces 250 hen shown.	 load of 12.0 overhangs n Truss to be f braced again Gable studs This truss ha chord live los * This truss la on the botton 3-06-00 tall l chord and ar Refer to gird Provide mec bearing plate (s) 7, 4, 6. Gap betwee 	is been designed for psf or 1.00 times fla on-concurrent with a ully sheathed from a stateral movemen spaced at 2-0-0 oc. is been designed for ad nonconcurrent w has been designed for ad nonconcurrent w has been designed for n chord in all areas by 2-00-00 wide will by other members. er(s) for truss to trus hanical connection a capable of withstar in inside of top chord rertical web shall no	t roof lo other liv one fac t (i.e. d r a 10.0 ith any for a liv where fit betw ss conr (by oth nding 1 I bearir	bad of 20.0 ps re loads. e or securely iagonal web) 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto nections. ers) of truss t 00 lb uplift at ng and first	sf on					

4-0-0

ľ

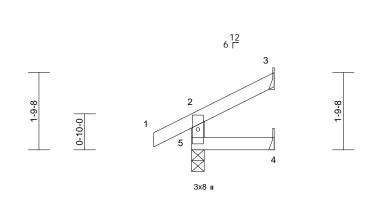
- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 4) design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	E07	Jack-Open	4	1	Job Reference (optional)	173028939

-0-10-8

0-10-8


1-10-15

1-10-15

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:09 ID:3nrQNZEHcyX7oWcQgqDd6ZznEgY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:26.7

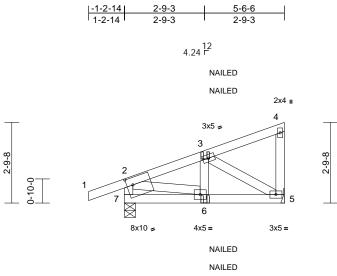
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.10	Vert(LL)	0.00	4-5	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	0.00	4-5	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 8 lb	FT = 20%
LUMBER			6) * This tr	uss has been desigr	ned for a liv	e load of 20.0	Opsf					
TOP CHORD				ottom chord in all ar		0						
BOT CHORD				tall by 2-00-00 wide		veen the botte	om					
WEBS	2x4 SP No.3			id any other membe		ofined						
BRACING	.		0) Defecto	ngs are assumed to girder(s) for truss to								
TOP CHORD	1-10-15 oc purlins,		s. 9) Provide	mechanical connec	tion (by oth	ers) of truss t						
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	3.	plate capable of with			oint					
REACTIONS	(size) 3= Mecha 5=0-3-8	anical, 4= Mechanica	recomm	5A Simpson Strong ended to connect tr	uss to bear	ing walls due						
	Max Horiz 5=41 (LC	14)		at jt(s) 5. This conn		r uplift only ar	nd					
	Max Uplift 3=-28 (LC)	consider lateral for	rces.							
	Max Grav 3=54 (LC (LC 21)	21), 4=32 (LC 7), 5	=208 LOAD CAS	E(S) Standard								
FORCES	(lb) - Maximum Con Tension	npression/Maximum	1									
TOP CHORD BOT CHORD	2-5=-186/101, 1-2=	0/40, 2-3=-44/22										
NOTES												
	CE 7-16; Vult=130mpł	(3-second qust)										
	Bmph; TCDL=6.0psf; B		t: Cat.									11111
	Enclosed; MWFRS (e											
	Exterior(2E) zone; can										"TH C	ARO
	end vertical left and ri									15		Sid Inter
	and forces & MWFRS		ז;							24	Y OFFIC	N. T.
	OL=1.60 plate grip D0 CE 7-16; Pr=20.0 psf		1 15							5 0	12 -	Zitin :
	_=1.15); Pf=20.0 psf (L								2	\smile		
	5); Is=1.0; Rough Cat I								-	:	SE	AL : =
Cs=1.00;		· · · ·	,						=	. (i	0579	887
3) Unbalance	ed snow loads have be	een considered for th	his						-	9 8		: :
design.										-	- Co. 10	
	has been designed fo									2	SE/ 0578	-ER. S
	2.0 psf or 1.00 times fla s non-concurrent with		IST ON							11	GIN	Et a st
	has been designed for									1	DAM	DACE
	load nonconcurrent w		ads.								1111 W	
0												LI LA CALLAR

111111 April 28,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

1-10-15

F Т B


- 2
- Ę

Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof					
25040131	E09	Diagonal Hip Girder	2	1	Job Reference (optional)	173028940				

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:09 ID:QkeJQGIQRVAQvIVNTNpopcznEgT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

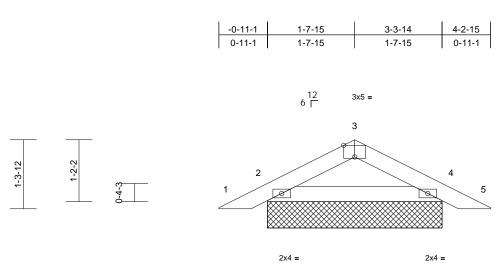
Page: 1

2-9-3 5-6-6 2-9-3 2-9-3

Scale = 1:39.9

Plate Offsets (X, Y): [7:0-2-8,0-3-0]

Plate Olisets (X, Y): [7:0-2-8,0-3	-0]							
Loading (psi TCLL (roof) 20. Snow (Pf) 20. TCDL 10. BCLL 0. BCDL 10.	Plate Grip DOL 1.1 Lumber DOL 1.1 Rep Stress Incr NO Code IRC	5 5	CSI TC 0.22 BC 0.10 WB 0.11 Matrix-MP	DEFL ir Vert(LL) 0.00 Vert(CT) -0.07 Horz(CT) 0.00	6 5-6	l/defl L/ >999 24 >999 18 n/a n/	0 MT20 80	GRIP 244/190 FT = 20%
BOT CHORD 5-6-6 oc purlins, Rigid ceiling dire bracing. REACTIONS (size) 5= Me Max Horiz Max Uplift 5=-40 Max Grav 5=271 FORCES (b) - Maximum O Tension 100 Tension TOP CHORD 2-7=-405/93, 1-2 3-4=-55/25, 4-5= BOT CHORD 6-7=-102/10, 5-6	(LC 12), 7=-81 (LC 8) (LC 12), 7=-81 (LC 8) (LC 19), 7=428 (LC 19) compression/Maximum =0/41, 2-3=-317/26, -99/25 =-45/257 //92, 3-5=-297/56 mph (3-second gust) f; BCDL=6.0psf; h=25ft; Cat. (envelope) exterior zone; sed ; end vertical left and 1.60 plate grip DOL=1.60 ext (roof LL: Lum DOL=1.15 f (Lum DOL=1.15 Plate at B; Fully Exp.; Ce=0.9; e been considered for this d for greater of min roof live flat roof load of 20.0 psf on th other live loads. d for a 10.0 psf bottom	on the bottor 3-06-00 tall to chord and ar 7) All bearings 8) Refer to gird 9) Provide mec bearing plate 5. 10) One H2.5A S recommende UPLIFT at jt(does not cor 11) "NAILED" ind (0.148"x3.25 12) In the LOAD of the truss ar LOAD CASE(S) 1) Dead + Snc Increase=1 Uniform Lo. Vert: 1-2 Concentrate	ow (balanced): Lumber Inc .15	a rectangle ween the bottom hections. hers) of truss to 40 lb uplift at joint ctors ing walls due to r uplift only and or 2-12d ines. pplied to the face ick (B).		the manual and the second seco	MAM	EER.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	PB01	Piggyback	3	1	Job Reference (optional)	173028941

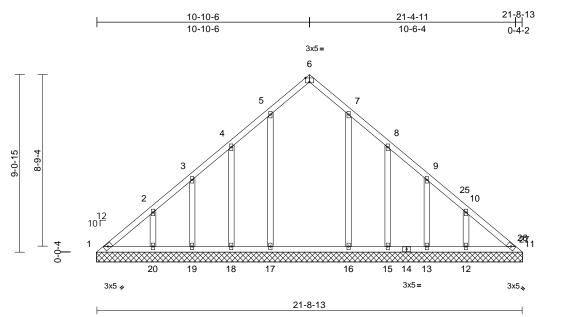
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:09 ID:yY4xDxHogB1ZH8wBvgIZHPznEgU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-3-14

Scale =	1:21.9

Plate Offsets (X, Y): [3:0-2-8.Edge]

Plate Offsets (X, Y): [3:0-2-8,Edge]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC202 ⁻	I/TPI2014	CSI TC BC WB Matrix-MP	0.06 0.06 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
	OP CHORD 2x4 SP No.2 load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. IRACING Structural wood sheathing directly applied or 5-3-0 oc purlins. 7) Gable requires continuous bottom chord bearing. IOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. 7) Gable studs spaced at 4-0-0 oc. IOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 7) Gable studs spaced at 4-0-0 oc. INSTREMENTIONS (size) 2=3-3-14, 4=3-3-14 Max Horiz 7) Gable studs spaced at 4-0-0 oc. Max Horiz 2=-17 (LC 15) Max Grav 2=201 (LC 21), 4=209 (LC 22) 7) This truss has been designed for a live load of 20.0 psf on the bottom chord in all areas where a rectangle on the bottom chord in all areas where a rectangle on the bottom chord in all areas where a rectangle on the bottom chord and any other members. INNA Yammum Compression/Maximum Tension Yammum Compression/Maximum Tension YOP CHORD 1-2=0/23, 2-3=-131/66, 3-4=-131/64, 4-5=0/23 12) See Standard Industry Piggyback Truss Connection to base truss as applicable, or												
TOP CHORD BOT CHORD	1-2=0/23, 2-3=-131/ 4-5=0/23	66, 3-4=-131/64,		Detail for Co consult quali	nnection to base t fied building desig	russ as a							
 this design Wind: ASC Vasd=103 II; Exp B; E and C-C E exposed; members a Lumber Did Truss desi only. For a see Standa or consult TCLL: ASC Plate DOL DOL=1.15 Cs=1.00; C 	CE 7-16; Vult=130mph mph; TCDL=6.0psf; Bt Enclosed; MWFRS (en end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO igned for wind loads in studs exposed to wind ard Industry Gable En- qualified building desig CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L :); Is=1.0; Rough Cat B	(3-second gust) CDL=6.0psf; h=25ft; welope) exterior zone ilever left and right ght exposed;C-C for for reactions shown; DL=1.60 the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP roof LL: Lum DOL=1. um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9;	Cat. 9 s le, 1. .15	OAD CASE(S)	Standard						and the second second	SEA 0578	L BACE


April 28,2025

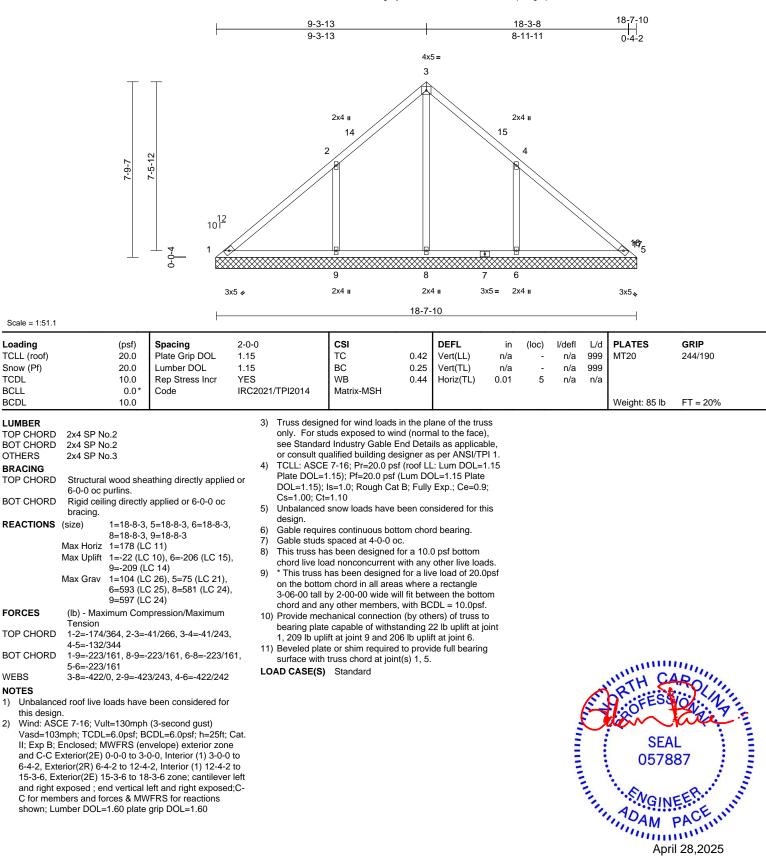
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	V01	Valley	1	1	Job Reference (optional)	173028942

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:10 ID:iznHFFtBg56yu1sKxQHoixznUtm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:58.9 Plate Offsets (X, Y): [6:0-2-8,Edge]

	(A, T). [0.0-2-0,Euge]	-										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.10 0.14 0.24	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 125 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood shee 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=21-9-6, 13=21-9-6 20=21-9-6 20=21-9-6 Max Horiz 1=208 (LC 12=-57 (L 17=-44 (L 19=-76 (L Max Grav 1=191 (LC 12=287 (L 15=193 (L 17=357 (L	C 11) C 12), 11=-3 (LC 13), C 15), 13=-80 (LC 15 C 15), 16=-37 (LC 15 C 14), 18=-91 (LC 14 C 14), 20=-70 (LC 14	this desig 2) Wind: AS Vasd=10 6, II; Exp B; 6-6, and C-C 2-10-11 t Exterior(2 21-4-9 zc vertical le forces &), DOL=1.6), 3) Truss des only. For b, see Stan or consul 5), 4) TCLL: AS Plate DO	5-17=-244/86, 4-1 3-19=-138/100, 2- 8-15=-161/114, 9- 10-12=-190/114 ed roof live loads have n. CE 7-16; Vult=130mg 3mph; TCDL=6.0psf; Enclosed; MWFRS (Corner(3E) 0-0-0 to 2 to 7-10-11, Corner(3R) N) 13-10-11 to 18-4- ne; cantilever left and ft and right exposed; WWFRS for reactions 0 plate grip DOL=1.6i signed for wind loads studs exposed to wind and industry Gable Et t qualified building de SCE 7-16; Pr=20.0 psf L=1.15); Pf=20.0 psf 5); Is=1.0; Rough Cai	20=-192 13=-138 ve been bh (3-see BCDL=6 envelop -10-11, 1 9, Corne 1 right ex C-C for r shown; 0 in the pl nd (norm fnd Deta signer a f (roof Ll (Lum DC	(111, 7-16=-2- (101, considered for cond gust) copsf; h=25ft; exterior zon Exterior zon to 13-10-11, r(3E) 18-4-9 t posed; end nembers and Lumber ane of the trus al to the face) ills as applicat s per ANSI/TF L: Lum DOL=1 DL=1.15 Plate	r Cat. ne ss), oo Ss), ole, , Pl 1. I.15	beau 1, 3 at jo 37 II joint 12) Bev	ring plat Ib uplift bint 18, 7 b uplift a t 13 and eled pla ace with	te capa at join 76 lb uj at joint 57 lb u te or s n truss	able of withstandi it 11, 44 lb uplift a plift at joint 19, 7(16, 94 lb uplift at uplift at joint 12. him required to p chord at joint(s)	others) of truss to ng 10 lb uplift at joint t joint 17, 91 lb uplift) lb uplift at joint 20, joint 15, 80 lb uplift at rovide full bearing I, 11.
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=-293/132, 2-3=- 4-5=-145/41, 5-6=-1 7-8=-145/26, 8-9=-1 10-11=-283/131	pression/Maximum 214/87, 3-4=-157/63, 66/61, 6-7=-166/61, 51/51, 9-10=-207/76, 20=-106/255, -18=-106/255, -16=-106/255,	 Cs=1.00; Unbalanc design. All plates (a) All plates (b) Gable ret (c) Gable stu (c) This truss chord live (c) This tru <l< td=""><td>Ct=1.10 ed snow loads have are 2x4 MT20 unless juires continuous bot ds spaced at 2-0-0 o b has been designed load nonconcurrent ss has been designed all by 2-00-00 wide w d any other members</td><td>s otherwi tom choi c. for a 10. with any d for a liv s where ill fit betv</td><td>se indicated. d bearing. 0 psf bottom other live load e load of 20.0 a rectangle veen the botto</td><td>ds.)psf om</td><td></td><td></td><td>1 Minutes</td><td>SEA 0578</td><td>ACE IIIIII</td></l<>	Ct=1.10 ed snow loads have are 2x4 MT20 unless juires continuous bot ds spaced at 2-0-0 o b has been designed load nonconcurrent ss has been designed all by 2-00-00 wide w d any other members	s otherwi tom choi c. for a 10. with any d for a liv s where ill fit betv	se indicated. d bearing. 0 psf bottom other live load e load of 20.0 a rectangle veen the botto	ds.)psf om			1 Minutes	SEA 0578	ACE IIIIII


April 28,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCERING DE A MiTek Affiliat 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	ty Ply 115 Eagle Creek - Hartwell E - Roof		
25040131	V02	Valley	1	1	Job Reference (optional)	173028943

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:10 ID:iznHFFtBg56yu1sKxQHoixznUtm-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	V03	Valley	1	1	Job Reference (optional)	173028944

Scale = 1:45.3

Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

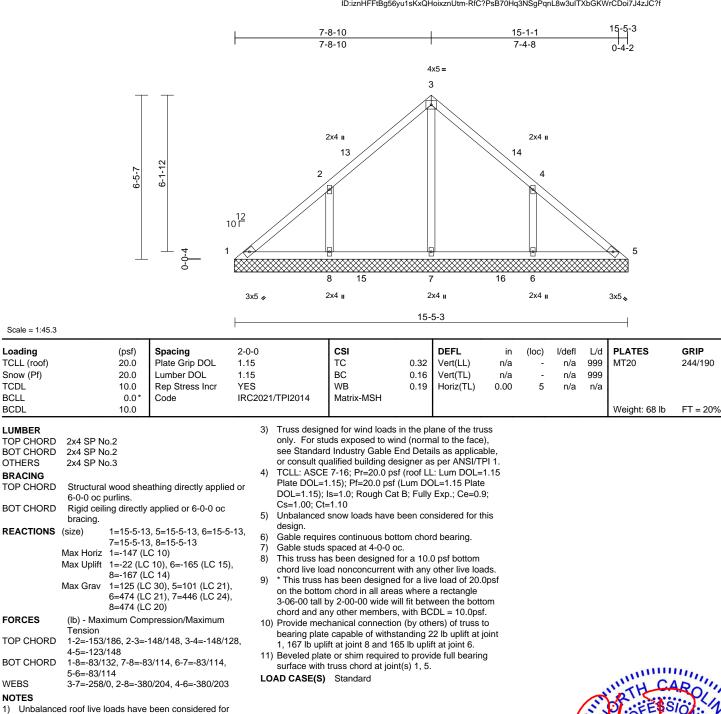
FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES


TCDL

BCLL

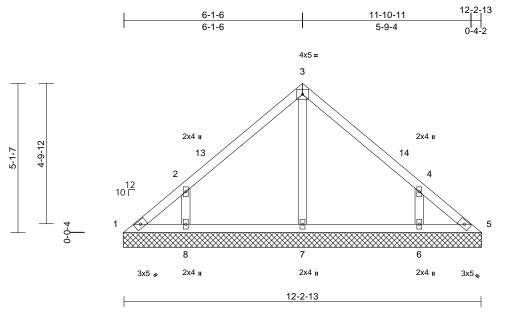
BCDL

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Fri Apr 25 10:21:10 ID:iznHFFtBg56yu1sKxQHoixznUtm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1) this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.

II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 4-8-14, Exterior(2R) 4-8-14 to 10-8-14, Interior (1) 10-8-14 to 12-5-13, Exterior(2E) 12-5-13 to 15-5-13 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	V04	Valley	1	1	Job Reference (optional)	173028945

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:10 ID:A9LfSbupROEpWBRWU8o1E8znUtl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.08	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 51 lb	FT = 20%

BOT CHORD	284 35 11	0.2
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structura	I wood sheathing directly applied or
	6-0-0 oc p	ourlins.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	1=12-3-6, 5=12-3-6, 6=12-3-6,
		7=12-3-6, 8=12-3-6
	Max Horiz	1=116 (LC 11)
	Max Uplift	1=-31 (LC 10), 5=-3 (LC 11),
		6=-136 (LC 15), 8=-140 (LC 14)
	Max Grav	1=95 (LC 25), 5=74 (LC 24), 6=434
		(LC 21), 7=263 (LC 21), 8=434 (LC
		20)
FORCES	(lb) - Max	imum Compression/Maximum

Tension TOP CHORD 1-2=-121/102, 2-3=-215/117, 3-4=-215/117, 4-5=-94/64 BOT CHORD 1-8=-33/82, 7-8=-33/74, 6-7=-33/74, 5-6=-33/74

3-7=-176/0. 2-8=-395/216. 4-6=-395/216

WEBS NOTES

Scale = 1:39.5

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 9-3-6, Exterior(2E) 9-3-6 to 12-3-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15
- Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) desian.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 9)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 31 lb uplift at joint 1, 3 lb uplift at joint 5, 140 lb uplift at joint 8 and 136 lb uplift at joint 6.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 5.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a fuss system. Derive use, the building designer index very the applications of design had very the applications of design index very the applications of design index very the application of the applicat and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	V05	Valley	1	1	Job Reference (optional)	173028946

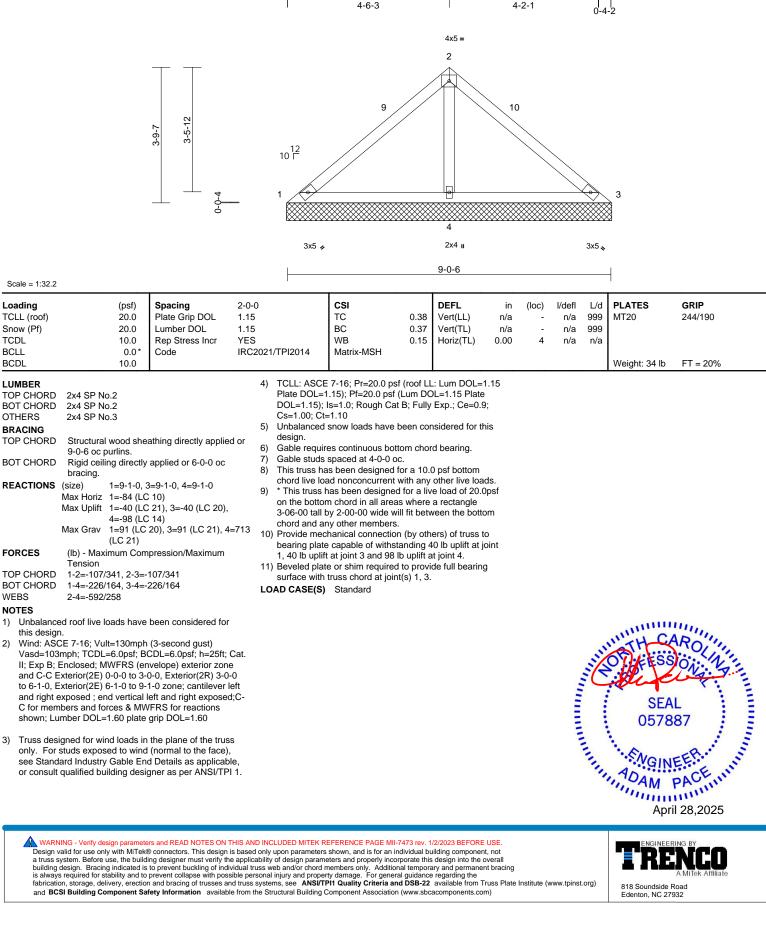
4-6-3

Carter Components (Sanford, NC), Sanford, NC - 27332,

BCLL

BCDL

1)


2)

3)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:10 ID:A9LfSbupROEpWBRWU8o1E8znUtl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-8-4

Page: 1

Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	V06	Valley	1	1	Job Reference (optional)	173028947

2-11-0

2-11-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

2-5-7

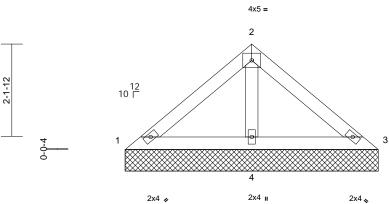
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:10 ID:A9LfSbupROEpWBRWU8o1E8znUtl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-5-14

2-6-14

5-10-0

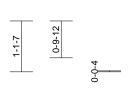
0-0-4 4 2x4 🍫 2x4 🛛 5-10-0

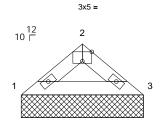

Scale = 1:26.8

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.15 0.17 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-10-0 oc purlins. Rigid ceiling directly bracing. (size) 1=5-10-10 Max Horiz 1=-53 (LC Max Uplift 3=-4 (LC Max Grav 1=97 (LC (LC 20)	applied or 6-0-0 oc 0, 3=5-10-10, 4=5-10 2 12) 15), 4=-49 (LC 14)	design. 6) Gable requi 7) Gable studs 8) This truss h chord live lo 9) * This truss on the botto 3-06-00 tall chord and a 10) Provide mer bearing plat and 49 lb up =393 11) Beveled pla	snow loads have I res continuous bott spaced at 4-0-0 or as been designed f ad nonconcurrent has been designed m chord in all area by 2-00-00 wide wi ny other members. chanical connectior e capable of withst blift at joint 4. te or shim required	tom chor c. for a 10. with any d for a liv s where ill fit betv n (by oth anding 4	d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t I b uplift at jo de full bearing	ids. Opsf om to int 3					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-86/155, 2-3=-8 1-4=-125/119, 3-4=- 2-4=-300/144	6/155	surface with LOAD CASE(S)	truss chord at join Standard	t(s) 1, 3.							
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103r II; Exp B; E and C-C E exposed; (members a Lumber DC 3) Truss desig only. For s see Standa or consult 4) TCLL: ASC Plate DOL:	d roof live loads have E 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er xterior(2E) zone; cant end vertical left and right and forces & MWFRS DL=1.60 plate grip DC gned for wind loads in studs exposed to wind ard Industry Gable En qualified building desi CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L); Is=1.0; Rough Cat E	(3-second gust) CDL=6.0psf; h=25ft; welope) exterior zon- ilever left and right ght exposed;C-C for for reactions shown; u=1.60 the plane of the trus (normal to the face); d Details as applicab gner as per ANSI/TP roof LL: Lum DOL=1 um DOL=1.15 Plate	Cat. e s le, l 1. .15							and the second s	OTH CA OTH CA SEA 0578	EEP. PACE 111111

April 28,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	V07	Valley	1	1	Job Reference (optional)	173028948

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:10 ID:A9LfSbupROEpWBRWU8o1E8znUtl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2x4 🍫 2x4 💊

2-7-10

Scale = 1:25.3

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.06 0.06 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING TOP CHORD Structural wood she 2-7-10 oc purlins. BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 1=2-8-3, 3 Max Horiz 1=-22 (LC Max Uplift 1=-9 (LC Max Grav 1=122 (LC FORCES (lb) - Maximum Com Tension TOP CHORD 1-2=-158/67, 2-3=-1 BOT CHORD 1-3=-38/114 NOTES 1) Unbalanced roof live loads have this design. 2) Wind: ASCE 7-16; Vult=130mph Vasd=103mph; TCDL=6.0psf; Bi II; Exp B; Enclosed; MWFRS (er and C-C Exterior(2E) zone; cant exposed ; end vertical left and rig members and forces & MWFRS Lumber DOL=1.60 plate grip DC 3) Truss designed for wind loads in or (consult qualified building desig 4) TCLL: ASCE 7-16; Pr=20.0 psf (L DOL=1.15); Is=1.0; Rough Cat E Cs=1.00; Ct=1.10	applied or 10-0-0 or 3=2-8-3 (12) 14), 3=-9 (LC 15) C 20), 3=122 (LC 21) pression/Maximum 58/67 been considered for (3-second gust) CDL=6.0psf; h=25ft; nvelope) exterior zon liever left and right ght exposed;C-C for for reactions shown; JL=1.60 the plane of the trust (normal to the face) d Details as applicat gner as per ANSI/TF roof LL: Lum DOL=1 um DOL=1.15 Plate 8; Fully Exp.; Ce=0.9	 8) This truss h chord live lo 9) * This truss 9) * This truss on the botto 3-06-00 tall chord and a 10) Provide me bearing platian and 9 lb upi 11) Beveled pla surface with LOAD CASE(S 	te or shim required truss chord at joint	or a 10. with any for a liv s where Il fit betw a (by oth anding s to provi	other live loa e load of 20.0 a rectangle veen the botto ers) of truss t b lb uplift at jo	Opsf om o int 1				UNTH C	FT = 20%
 Unbalanced snow loads have be design. Gable requires continuous bottom 		6								Apr	PA01111 il 28,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	V08	Valley	1	1	Job Reference (optional)	173028949

Scale = 1:39.5

Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

FORCES

WEBS

NOTES

1)

2)

TOP CHORD

BOT CHORD

this design.

DOL=1.60

REACTIONS (size)

TOP CHORD BOT CHORD 2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

6-0-0 oc purlins.

bracing.

Max Horiz

Max Uplift

Max Grav

Tension

4-5=-94/64

5-6=-33/75

Rigid ceiling directly applied or 10-0-0 oc

7=12-3-13, 8=12-3-13

1=-31 (LC 10), 5=-3 (LC 11),

6=-137 (LC 15), 8=-140 (LC 14)

1=96 (LC 25), 5=75 (LC 24), 6=434

(LC 21), 7=263 (LC 21), 8=434 (LC

1=116 (LC 11)

(Ib) - Maximum Compression/Maximum

1-8=-33/83, 7-8=-33/74, 6-7=-33/74,

Unbalanced roof live loads have been considered for

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.

II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0

Wind: ASCE 7-16; Vult=130mph (3-second gust)

to 9-3-13, Exterior(2E) 9-3-13 to 12-3-13 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

1-2=-122/102, 2-3=-215/117, 3-4=-215/117,

3-7=-176/0. 2-8=-394/215. 4-6=-394/215

20)

1=12-3-13, 5=12-3-13, 6=12-3-13,

TCDL

BCLL

BCDL

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Fri Apr 25 10:21:10 ID:dSe_?JVksdORLhCGs9s8GvzuPgn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

GRIP

244/190

FT = 20%

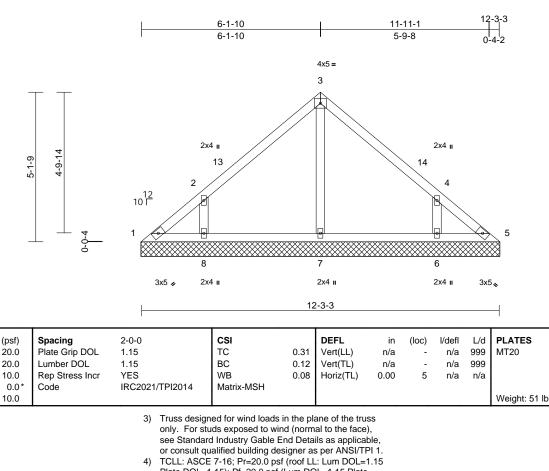


Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate Structural wood sheathing directly applied or DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10

- Unbalanced snow loads have been considered for this 5) desian.
- 6) Gable requires continuous bottom chord bearing.
 - Gable studs spaced at 4-0-0 oc.

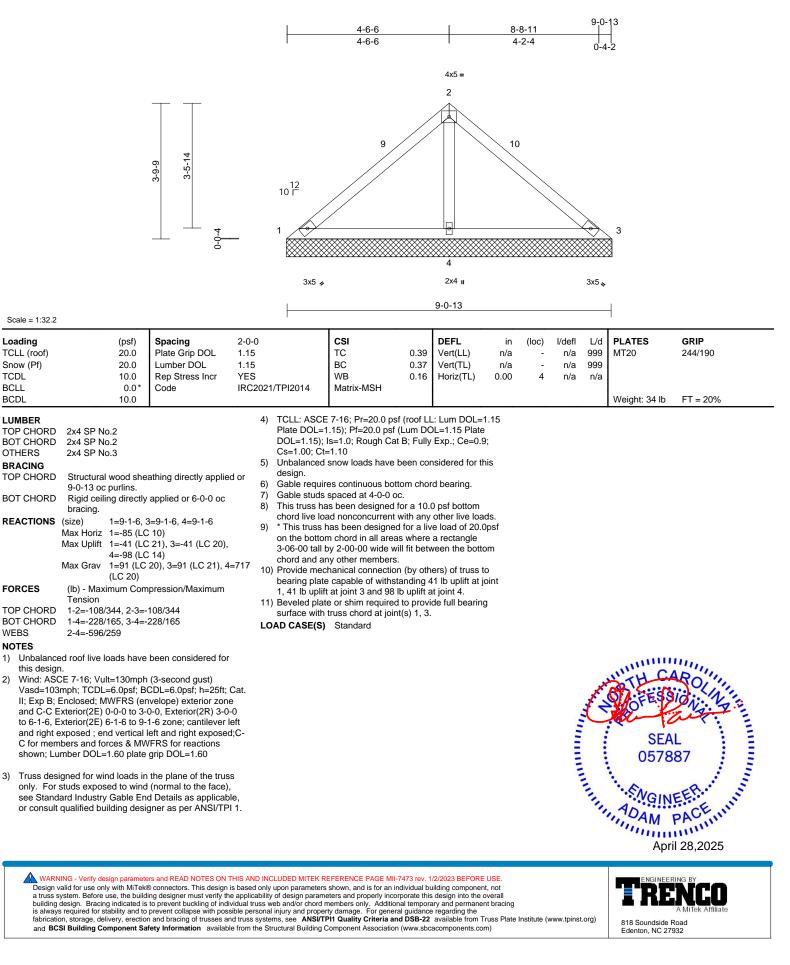
7)

- This truss has been designed for a 10.0 psf bottom 8)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 9)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 31 lb uplift at joint 1, 3 lb uplift at joint 5, 140 lb uplift at joint 8 and 137 lb uplift at joint 6.

11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 5.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

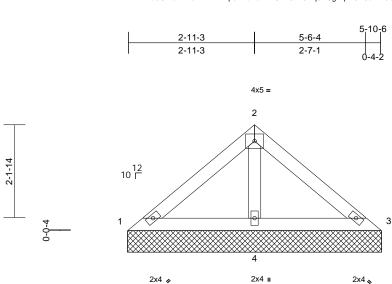


Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	V09	Valley	1	1	Job Reference (optional)	173028950

2)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:10 ID:ITeoCYiu?YKcBf7FWN7peHzuPdx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1


Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	V10	Valley	1	1	Job Reference (optional)	173028951

2-5-9

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:11 ID:ITeoCYiu?YKcBf7FWN7peHzuPdx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 💊

Page: 1

5-10-6

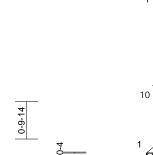
Scale = 1:26.8

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.15 0.17 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL 0.0* BCDL 10.0	Code	IRC2021/TPI2014	Matrix-MP							Weight: 21 lb	FT = 20%
UMBER OP CHORD 2x4 SP No.2 SOT CHORD 2x4 SP No.2 DTHERS 2x4 SP No.3 SRACING OP CHORD Structural wood she 5-10-6 oc purlins. SOT CHORD Rigid ceiling directly bracing.	3=5-11-0, 4=5-11-0 11) 15), 4=-49 (LC 14)	design. 6) Gable requi 7) Gable studs 8) This truss h chord live lo 9) * This truss on the botto 3-06-00 tall chord and a 10) Provide mer bearing plat and 49 lb up 11) Beveled pla	snow loads have res continuous bo spaced at 4-0-0 as been designed ad nonconcurrent has been designed m chord in all are; by 2-00-00 wide v ny other members chanical connection e capable of withs lift at joint 4. te or shim require truss chord at join	ttom chor oc. with any d for a 10. with any d for a liv as where will fit betw s. on (by oth standing 4 d to provi	d bearing.) psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss to Ib uplift at joi	ds. Opsf om ot 3					
 FORCES (Ib) - Maximum Com Tension TOP CHORD 1-2=-87/157, 2-3=-8 BOT CHORD 1-4=-127/120, 3-4=- WEBS 2-4=-303/146 NOTES 1) Unbalanced roof live loads have this design. 2) Wind: ASCE 7-16; Vult=130mph Vasd=103mph; TCDL=6.0psf; Bf II; Exp B; Enclosed; MWFRS (er and C-C Exterior(2E) zone; canti exposed ; end vertical left and rig members and forces & MWFRS Lumber DOL=1.60 plate grip DO 3) Truss designed for wind loads in only. For studs exposed to wind see Standard Industry Gable En- or consult qualified building desig 4) TCLL: ASCE 7-16; Pr=20.0 psf (L Plate DOL=1.15); Pf=20.0 psf (L DOL=1.15); Is=1.0; Rough Cat B Cs=1.00; Ct=1.10 	, 7/157 127/120 been considered for (3-second gust) CDL=6.0psf; h=25ft; C welope) exterior zone lever left and right ght exposed;C-C for for reactions shown; L=1.60 the plane of the truss (normal to the face), d Details as applicable gner as per Applic	LOAD CASE(S) Cat.		n(s) 1, s.					Contraction of the second seco	SEA 0578 ADAM Apr	EER. PACE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org)

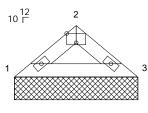
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	V11	Valley	1	1	Job Reference (optional)	173028952


Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:11 ID:ITeoCYiu?YKcBf7FWN7peHzuPdx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

 1-4-0
 2-3-14
 2-8-0

 1-4-0
 0-11-14
 0-4-2


3x5 =

Page: 1

0-0-4

1-1-9

2x4 💊 2x4 🍫

2-8-0

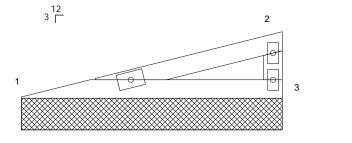
Scale = 1:25.3

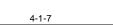
Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.06 0.06 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
 LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING TOP CHORD Structural wood she 2-8-0 oc purlins. BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 1=2-8-10, Max Horiz 1=-22 (LC Max Uplift 1=-9 (LC Max Grav 1=124 (LC FORCES (lb) - Maximum Com Tension TOP CHORD 1-2=-160/68, 2-3=-1 BOT CHORD 1-2=-160/68, 2-3=-1 BOT CHORD 1-3=-39/116 NOTES 1) Unbalanced roof live loads have this design. 2) Wind: ASCE 7-16; Vult=130mph Vasd=103mph; TCDL=6.0psf; BI II; Exp B; Enclosed; MWFRS (er and C-C Exterior(2E) zone; cant exposed; end vertical left and rig members and forces & MWFRS Lumber DOL=1.60 plate grip DO 3) Truss designed for wind loads in only. For studs exposed to wind see Standard Industry Gable En or consult qualified building desi; 4) TCLL: ASCE 7-16; Pr=20.0 psf (L DOL=1.15); Is=1.0; Rough Cat E Cs=1.00; Ct=1.10 5) Unbalanced snow loads have be design. 6) Gable requires continuous bottom 	applied or 10-0-0 oc 3=2-8-10 14), 3=-9 (LC 15) C 20), 3=124 (LC 21) pression/Maximum 60/68 been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zon- ilever left and right ght exposed; C-C for for reactions shown; L=1.60 the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP roof LL: Lum DOL=1.15 Plate s; Fully Exp.; Ce=0.9; een considered for thi	 8) This truss h chord live lo 9) * This truss on the botto 3-06-00 tall chord and a 10) Provide met bearing plat and 9 lb upl 11) Beveled pla surface with LOAD CASE(S) 	e or shim required truss chord at joint	or a 10.0 vith any for a liv s where Il fit betv (by oth anding S to provi	other live loa e load of 20.0 a rectangle veen the bott ers) of truss t l b uplift at jo	Opsf om to vint 1			and the second s	"IIIIII	EER.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	115 Eagle Creek - Hartwell E - Roof	
25040131	V12	Valley	1	1	Job Reference (optional)	173028953


Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:11 ID: E7 liRY iKX j1rQzBkZNg7NGznC4g-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


4-1-7 2x4 II

2x4 u

3x5 =

Scale = 1:18.2												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.18 0.25 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%
BCDL LUMBER TOP CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS (s M M FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASCE Vasd=103m II; Exp B; Er and C-C Ext exposed ; et members ar Lumber Dot 2) Truss design only. For st see Standar or consult qi 3) TCLL: ASCE Plate DOL= DOL=1.15);	10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-1-7 oc purlins, ex Rigid ceiling directly bracing. size) 1=4-1-7, 5 Max Horiz 1=30 (LC Max Grav 1=197 (LC (Ib) - Maximum Com 1-2=-445/230, 2-3=- 1-3=-249/423 E 7-16; Vult=130mph ph; TCDL=6.0ps; Be thelosed; MWFRS (en- terior(2E) zone; canti- nd vertical left and right nd forces & MWFRS L=1.60 plate grip DO ned for wind loads in uds exposed to wind rd Industry Gable En- ualified building desig E 7-16; Pr=20.0 psf (L Is=1.0; Rough Cat E 1-10; Rough Cat	athing directly applie cept end verticals. applied or 10-0-0 oc 3=4-1-7 11) 10), 3=-26 (LC 14) 2 20), 3=197 (LC 20) pression/Maximum 116/80 (3-second gust) CDL=6.0psf; h=25ft; welope) exterior zon lever left and right ght exposed;C-C for for reactions shown; L=1.60 the plane of the trus (normal to the face) d Details as applicat gner as per ANSI/TP roof LL: Lum DOL=1 um DOL=1.15 Plate	 This truss f chord live live live live live live live live	has been designed bad nonconcurrent has been designe om chord in all area by 2-00-00 wide w any other members ochanical connection te capable of withs uplift at joint 1.	with any d for a liv as where vill fit betv s. on (by oth	other live loa e load of 20.0 a rectangle veen the botto ers) of truss t	Dpsf om o					ROLINA
design. 5) Gable requir	I snow loads have be res continuous bottor spaced at 4-0-0 oc.		is							and the second s	ADAM	EEP.

April 28,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

