

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DR Horton Inc 117 Eagle Creek -Norman - B

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date:

Truss Drawing Left End Indicator

AD AS: FOOT-INCH-SIXTEENTH AN UP IN UP IN UP IN UP IN UNIT INCOUNT AND ADD AS FOOT-INCH-SIXTEENTH AND ADD ADD ADD ADD ADD ADD ADD ADD ADD	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for	each truss design loentined on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The disign of the tuss support structure including headers, beams, walls, and columns is the responsibility of the hacing consult "Bracing consult "Bracing the hacing consult the hacing the hacing consult "Bracing the hacing consult the hacing the hacing consult the hacing the hac	Name Name Name Name Nadison, WI 53179 Madison, WI 53179 Section 2010 Section 2010 S
ED TOGETHER PRIOR TO ADDING ANY LOADS.	DR Horton Inc	117 Eagle Creek - Norman - B	Roof Truss Layout
GIRDERS MUST BE FULLY CONNECTE	Scale: Date: 4/ Nate 25	NTS /24/202 Designer Donal Project Nur 040116 Sheet Nur	25 : dson nber: 5-B nber:

ROOF PLACEMENT PLAN

RE: 25040116

117 Eagle Creek - Norman B - Roof

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:Customer: DR Horton IncProject Name:25040116Lot/Block: 117Model: Norman BAddress:Subdivision: Eagle CreekCity:State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2021/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.7 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 46 individual, dated Truss Design Drawings and 0 Additional Drawings.

1 2 3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	I73034328 I73034329 I73034330 I73034331 I73034332 I73034333 I73034333 I73034335 I73034336 I73034336 I73034337 I73034338 I73034339 I73034340 I73034341 I73034342 I73034343 I73034344 I73034345	A01 A01A A02 A03 A04 A04T A05 A05T A06 A06T A07 A07 A07 A07 A08 A08T A09 A10 B01 B02	4/29/2025 4/29/2025 4/29/2025 4/29/2025 4/29/2025 4/29/2025 4/29/2025 4/29/2025 4/29/2025 4/29/2025 4/29/2025 4/29/2025 4/29/2025 4/29/2025 4/29/2025 4/29/2025 4/29/2025 4/29/2025 4/29/2025	 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 	173034348 173034349 173034350 173034351 173034352 173034353 173034354 173034355 173034356 173034357 173034358 173034359 173034360 173034361 173034361 173034363 173034364 173034365	C02 CJ01 CJ02 CJ02T CJ03 D01 D02 D03 J01 J02 J02T J03 J04 J05 J06 PB01 V01 V02	4/29/2025 4/29/2025 4/29/2025 4/29/2025 4/29/2025 4/29/2025 4/29/2025 4/29/2025 4/29/2025 4/29/2025 4/29/2025 4/29/2025 4/29/2025 4/29/2025 4/29/2025 4/29/2025 4/29/2025
17	173034344	B01	4/29/2025	37	173034364	V01	4/29/2025
18	173034345	B02	4/29/2025	38	173034365	V02	4/29/2025
19	173034346	B03	4/29/2025	39	173034366	V03	4/29/2025
20	173034347	C01	4/29/2025	40	173034367	V04	4/29/2025

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2025

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

RE: 25040116 - 117 Eagle Creek - Norman B - Roof

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Project Customer: DR Horton Inc Project Name: 25040116 Lot/Block: 117 Subdivision: Eagle Creek Address: City, County: State:

Seal#	Truss Name	Date
173034368	V05	4/29/2025
173034369	V06	4/29/2025
173034370	V07	4/29/2025
173034371	V08	4/29/2025
173034372	V09	4/29/2025
173034373	V10	4/29/2025
	Seal# 173034368 173034369 173034370 173034371 173034372 173034373	Seal# Truss Name I73034368 V05 I73034369 V06 I73034370 V07 I73034371 V08 I73034372 V09 I73034373 V10

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	A01	Piggyback Base	7	1	Job Reference (optional)	173034328

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:12:49 ID:ARhTLG4gG40CZOUuqLFfRFzuUJ_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

T RENCO A MI Tek Atfiliate

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	A01A	Piggyback Base	1	1	Job Reference (optional)	173034329

Run: 8 73 S. Feb 19 2025 Print: 8 730 S. Feb 19 2025 MiTek Industries. Inc. Fri Apr 25 12:12:51

Page: 1

1) Unbalanced roof live loads have been considered for this design.

and does not consider lateral forces 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

SEAL

036322

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	A02	Нір	1	1	Job Reference (optional)	173034330

Loading

Snow (Pf)

LUMBER

TCDL

BCLL

BCDL

WEBS

WEBS

FORCES

WEBS

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Fri Apr 25 12:12:51 ID:9UhUCJpZiyLtF2HtWCQNR1yNcIA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	A03	Нір	1	1	Job Reference (optional)	173034331

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:12:51 ID:ARhTLG4gG40CZOUuqLFfRFzuUJ_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

a trust system and the solution was the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	A04	Нір	1	1	Job Reference (optional)	173034332

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:12:51 ID:iqBy7bCFx5VBi6JDyeW6H_yNcHf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWcDoi7J4zJC?f Page: 1

818 Soundside Road

Edenton, NC 27932

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	A04T	Нір	1	1	Job Reference (optional)	173034333

10-4-0

Loading

TCDL

BCLL

BCDL

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Fri Apr 25 12:12:51 Page: 1 ID:egFsPeqBTGTksBs34wxc_EyNcl9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-82<u>-5-4</u> 8-2-0 36-9-8 8-0-9 14-0-0 21-11-0 27-9-4 35-11-0 0-10-8 2-5-4 0-1-7 5-10-0 7-11-0 5-10-4 8-1-12 5-7-5 0-10-8 MT20HS 10x12 5x8= 0-1-13 0-1-13 22 23 6 5 10-4 \boxtimes 12 81 5x6 🍫 5x8、 21 24 7 Λ 20 10-2-3 9-2-3 25 3x5 🖌 26 3 6x8= 8 15 9 -- $\dot{\circ}$ $\dot{\circ}$ 1 ę 16 27 18 14 10 Ř 4x8 =13 1121 3x5 II 3x5= 2x4 II 5x8= 5x6= 5x8= 6x12 2x4 ı 4x5 =27-11-8 2-3-8 8-2-0 14-0-8 22-0-12 27-9-4 35-11-0 2-3-8 5-10-8 5-10-8 5-8-8 7-11-8 8-0-4 0-2-4 Scale = 1:70.8 Plate Offsets (X, Y): [2:0-5-13,0-2-8], [4:0-3-0,0-3-4], [5:0-8-13,Edge], [6:0-4-0,0-1-9], [7:0-4-0,0-3-0], [8:0-3-8,Edge], [10:Edge,0-1-8], [11:0-3-0,0-3-0], [15:0-5-8,0-2-8] Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.78 Vert(LL) -0.14 13-14 >999 240 MT20 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.47 Vert(CT) -0.28 13-14 >999 180 MT20HS 187/143 10.0 Rep Stress Incr WB YES 0.54 Horz(CT) 0.12 10 n/a n/a

LUMBER TOP CHORD 2x4 SP 2400F 2 0F 2x4 SP 2400F 2.0E *Except* 18-17,5-14:2x4 BOT CHORD SP No.3 WEBS 2x4 SP No.3 *Except* 5-16,15-6,19-2,10-8:2x4 SP No.2 BRACING TOP CHORD Structural wood sheathing directly applied or 4-3-15 oc purlins, except end verticals, and 2-0-0 oc purlins (4-7-10 max.): 5-6 3) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. Except: 1 Row at midpt 5-15 WEBS 1 Row at midpt 6-15, 7-13 4) **REACTIONS** (size) 10=0-3-8 19=0-3-8 Max Horiz 19=-263 (LC 12) 5) Max Uplift 10=-119 (LC 15), 19=-116 (LC 14) Max Grav 10=1678 (LC 47), 19=1715 (LC 51) FORCES (lb) - Maximum Compression/Maximum 6) Tension 7) TOP CHORD 1-2=0/45, 2-3=-3708/301, 3-5=-2955/357, 8) 5-6=-1800/256, 6-8=-2452/253, 8-9=0/34, 2-19=-1961/143, 8-10=-1720/172 9) 18-19=-196/673, 17-18=-94/395, BOT CHORD 2-17=-321/2958, 16-17=-353/3046, 15-16=-44/1729, 14-15=0/152, 5-15=-23/348, 13-14=0/127, 12-13=-3/1939, 10-12=-171/1939 WEBS 3-16=-783/219, 5-16=-269/1102, 13-15=0/1432, 6-15=-132/352, 6-13=-83/542, 7-13=-592/207, 2-18=-617/186, 8-11=0/1357, 3-17=-41/477, 4-16=-484/254, 7-12=0/193 NOTES

0.0

10.0

Code

IRC2021/TPI2014

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-5-4, Interior (1) 2-5-4 to 9-1-5, Exterior(2R) 9-1-5 to 26-11-15, Interior (1) 26-11-15 to 33-2-6, Exterior(2E) 33-2-6 to 36-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed C-C for members and forces & MWERS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-MSH

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this desian.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 19 and 10. This connection is for uplift only and does not consider lateral forces.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord

LOAD CASE(S) Standard

Weight: 249 lb

FT = 20%

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	A05	Нір	1	1	Job Reference (optional)	173034334

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:12:52 ID:eDijYHEWSilvxQTc33YaMPyNcHd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	A05T	Нір	1	1	Job Reference (optional)	173034335

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:12:52 ID:a3NcqKrR?tjS6V0SBLz43fyNcI7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932

	-0-10-8 2-5-4	4 8-2-0	12-0	0-0	14-2-4	20-8-14		23-11-0	1 2	27-9-4		35-11-	·0	36-9-8
	0-10-8 2-5-4	4 5-8-12	3-1	0-0	2-2-4	6-6-10	ļ	3-2-2	1 :	3-10-4	I	8-1-1	2	0-10-8
				6x8	= 2x4 ı	I	3x5	=	5x6=					
- (2			<u>m</u> 5	6	226272	89 7		8					
T ST -	-													
)		2×4					\ \		\sim	3×5			
		<u>12</u>	2,74	< // \	$\Delta = 11$			<u>}</u>		\square	3,5%			
		81	4					//			y,			
		24		//						,		30		
0 00		3x5 🖌		/	\\ 🖬	\$//		//			/	\sim		
-0-0		23 //			\\]			P				31		
								//						
		3						//					32	
	_ /							//						6x8=
	- 2/2				<u>\</u>	7		\	AH //	/				10
			19	18					\mathcal{M}					11
⊥⊹⊥⊹	· 🕂 🛛 🖉	≝ 21 է⊥	478 -	224	16 🖽						ш			프 12 ⁴
	2x4 u	4x5=	420 =	2,44					15		1143			3x5=
	2.4.1	2×4			5x8=				5x10=		5x6=	•		0/10 -
	6x10 🖌	274 1			4x5 ı	I								
		2x4 u												
	2-3-8	8 8-2-0	11-1	0-4 1	4-0-8	2	4-0-12		1	27-9-4 2	27-11-8	³ 35-11	-0	
	2-3-8	3 5-10-8	3-8	-4	2-2-4	1	0-0-4		1	3-8-8	0-2-4	7-11-	8	i.
Scale = 1:66.6	3													
Plate Offsets	(X, Y): [2:0-4-4,0-2-0], [5:0-2-12,0-0-12], [8:0-	-3-0,0-2-3], [1	0:0-3-8,E	dge], [12:E	dge,0-1-8], [13	0-3-0,0-3-0]	, [15:0-4-	8,0-2-4]	[17:0-2-	-12,0-2	-8]		
			, 1,1	,			, ,							
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.91	Vert(LL)	-0.21	15-16	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.68	Vert(CT)	-0.46	15-16	>930	180			
TCDL	10.0	Rep Stress Incr		0044	WB	0.57	Horz(CT)	0.12	12	n/a	n/a			
BCLL	0.0*	Code	RC2021/TPI	2014	Matrix-M	SH						Waight: 074 lb	ET 200/	
BCDL	10.0											weight. 274 lb	FT = 20%	
LUMBER			1) Unl	balanced	roof live loa	ids have been o	considered for	or						
TOP CHORD	2x4 SP No.2		this	design.	7 16: \/ult	120mph (2 000	and quat)							
BOICHORL	2X4 SP 2400F 2.0E	= "Except" 22-21:2x4 SP	Z) VII Va	id. ASCE sd=103mr	7-10, vull=	30 mpf (3-300) = 6	Onsf: h=25f	t [.] Cat						
WEBS	2x4 SP No 3 *Exce	ent* 12-10:2x4 SP No 2	II; E	Exp B; En	closed; MV	/FRS (envelope) exterior zo	ne						
BRACING	2.00 1000 2.000		and	C-C Exte	erior(2E) -0	-10-8 to 2-5-4, I	nterior (1) 2	-5-4						
TOP CHORD	Structural wood sh	eathing directly applied,	to 6	6-11-1, Ex	terior(2R) 6	6-11-1 to 17-0-1	5, Interior (1)						
	except end vertical	s, and 2-0-0 oc purlins	17-	0-15 to 18	3-10-1, Exte	erior(2R) 18-10-	1 to 28-11-1	5,						
	(3-2-15 max.): 5-8.			9-8 zone:	cantilever	33-2-6, EXterior	(2E) 33-2-61 posed : end	10						
BOT CHORD	Rigid ceiling directl	y applied or 10-0-0 oc	ver	tical left a	nd right ext	osed:C-C for n	nembers and	ł						
1 Pow at mid	bracing. Except:		ford	ces & MW	FRS for rea	actions shown;	Lumber	-						
WEBS	1 Row at midnt	7-17 7-15	DO	L=1.60 pl	ate grip DC	L=1.60								
REACTIONS	(size) 12=0-3-8	3 22=0-3-8	3) TC	LL: ASCE	7-16; Pr=2	0.0 psf (roof LL	: Lum DOL=	=1.15						
	Max Horiz 22=-231	(LC 12)	Pla	te DOL=1	.15); Pf=20	0.0 psf (Lum DC	L=1.15 Plat	e						
	Max Uplift 12=-160	(LC 15), 22=-155 (LC 1-	4) DO	L=1.15);1 -1.00° Ct-	IS=1.0; ROU -1 10	gn Cat B; Fully	Exp.; Ce=0.	9,						
	Max Grav 12=1566	6 (LC 41), 22=1563 (LC 4	41) 4) Uni	alanced	snow loads	have been cor	sidered for t	this						
FORCES	(lb) - Maximum Cor	mpression/Maximum	des	sign.										
	Tension		5) Thi	s truss ha	is been des	igned for greate	er of min roo	f live						
TOP CHORD	1-2=0/45, 2-3=-305	51/362, 3-4=-2334/251,	loa	d of 12.0	psf or 1.00	times flat roof lo	ad of 20.0 p	osf on						
	4-5=-2343/390, 5-6	0=-1/44/268, 0= 1405/245	ove	rhangs n	on-concurre	ent with other liv	e loads.	_				minin	1111	
	8-9-1756/268 9-1)=-1400/240, 102038/208_10-11_0/3	6) Pro 24 7) The	vide adec	quate draina	age to prevent v	vater pondin	ıg.				WAH CA	Ro'l	
	2-22=-1617/173 1	0-12=-1481/206	r=-, () Ihi مص	s truss ha	is been des	urrent with any	other live log	ads			1	R	- Li	1,
BOT CHORD	21-22=-185/509, 20	0-21=-87/294,	8) * TI	nis truss h	as been de	signed for a liv	e load of 20.	.0psf		/	~	U. FESS	10 N.V	11.00
	2-20=-357/2471, 19	9-20=-391/2542,	on	the bottor	n chord in a	all areas where	a rectangle	opo.		6	20		12:	
	18-19=-109/1532,	17-18=-110/1530,	3-0	6-00 tall b	by 2-00-00	wide will fit betw	een the bott	tom				·Q.		
	16-17=0/186, 6-17=	=-550/140, 15-16=0/274	chc	ord and ar	ny other me	mbers.				-	:	SFA	L i	-
WERC	14-15=-40/1569, 12	2-14=-201/1569	9) On	e H2.5A S	Simpson Sti	ong-Tie conne	ctors			Ξ			20	8
WEBS	3-19=-748/230, 5-1	18=0/148, 5-17=-171/651 7-17=-84/284	, rec		ed to conne	ct truss to bear	ng walls due	e to		Ξ	- 1	0363	22	
	7-15=-714/216 8-1	/ - i / =-04/∠04, 5=-104/831	UP	Li⊢i atjt(vand doo	s) 22 and 1	 I his connect der lateral force 	ion is for up	π			6		1	-
	9-15=-482/196. 9-1	4=-19/115.	10) Gra	y and doe	rlin renrese	intation does no	s. ht depict the	size			-	·	air	3
	2-21=-472/172, 10-	-13=-55/1096,	or t	he orienta	ation of the	purlin along the	top and/or	5.20			11	A NGIN	EET	5
	3-20=-26/346, 4-19	9=-458/211, 5-19=-223/8	04 bot	tom chord	d.						11	10	DE	5
NOTES			LOAD	CASE(S)	Standard							11, A. G	ILLIN	
				-								in the second se	um.	
												Apri	I 29,2025	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	A06	Нір	1	1	Job Reference (optional)	173034336

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:12:52 ID:W_YDOeH0WxFLQ1mNIvdWWFyNcHZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:66.9

Plate Offsets	(X, Y): [2:Edge,0-2-8],	[4:0-3-0,0-2-3], [6:0-	-3-0,0-2-3]	, [8:Edge,0-2-8	3], [10:0-3-12,0-3-4]	, [12:0-	3-12,0-3-4]							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.67 0.79 0.48	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.19 -0.40 0.10	(loc) 12-13 12-13 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 215 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 *Excep 2.0E 2x4 SP No.1 2x4 SP No.3 *Excep Structural wood shee 3-6-12 oc purlins, et 2-0-0 oc purlins, (5-4)	t* 4-6:2x4 SP 2400F t* 12-5,10-5:2x4 SP athing directly applie xcept end verticals, a 13 max 1-4-6	2) No.2 Ind or and	Wind: ASCE Vasd=103mµ II; Exp B; En and C-C Ext 2-8-10 to 4-1 (1) 15-0-15 t Interior (1) 3/ 35-9-4 zone; vertical left a	7-16; Vult=130mpl bh; TCDL=6.0psf; E closed; MWFRS (e erior(2E) -0-10-8 to 1-1, Exterior(2R) 4 5 20-10-1, Exteriorr 0-10-12 to 32-2-2, I cantilever left and nd right exposed;C	n (3-sec 3CDL=6 2-8-10 -11-1 to (2R) 20 Exterior right ex -C for n	ond gust) .0psf; h=25ft; exterior zor Interior (1) 15-0-15, Inte .10-1 to 30-11 (2E) 32-2-2 to posed ; end nembers and	; Cat. ne erior 0-12, o	13) Gra or ti bott LOAD (phical pu ne orient om chor CASE(S)	urlin re ation c d.) Star	presentation doe of the purlin along ndard	s not depict th the top and/c	ie size vr
BOT CHORD WEBS REACTIONS	Rigid ceiling directly bracing. 1 Row at midpt (size) 9= Mecha Max Horiz 13=190 (L Max Uplift 9=-144 (LI Max Grav 9=1594 (L	applied or 10-0-0 oc 5-12, 5-10, 3-13, 7-6 nical, 13=0-3-8 .C 11) C 15), 13=-164 (LC .C 6), 13=1646 (LC 6	2) 2) 3) 14) 5) 4)	forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design	FRS for reactions s ate grip DOL=1.60 7-16; Pr=20.0 psf .15); Pf=20.0 psf (I s=1.0; Rough Cat I =1.10 snow loads have b	shown; (roof LL Lum DC B; Fully een cor	Lumber : Lum DOL= L=1.15 Plate Exp.; Ce=0.9 isidered for th	1.15 9 9; nis						
FORCES	(lb) - Maximum Com Tension 1-2=0/34, 2-3=-584/ 4-5=-1933/238, 5-6= 6-7=-2336/233, 7-8= 8-9=-382/78	pression/Maximum 105, 3-4=-2335/232, -1933/238, -492/64, 2-13=-488/	5) (126, 7) 8)	This truss ha load of 12.0 overhangs n Provide adeo All plates are This truss ha	s been designed for psf or 1.00 times fla on-concurrent with quate drainage to p MT20 plates unles s been designed for	or greate at roof lo other liv revent v ss other or a 10 (er of min roof oad of 20.0 ps ve loads. vater ponding wise indicate	live sf on g. d.					11111	
BOT CHORD WEBS NOTES	11-13=-215/2515, 9- 3-12=-238/204, 4-12 5-12=-852/187, 5-11 6-10=-18/873, 7-10= 3-13=-1866/179, 7-9	11=-173/2515 =-18/869, =0/418, 5-10=-852/1 -254/200, =-1961/186	9) 187, 10	* This truss f on the bottor 3-06-00 tall t chord and ar Refer to gird	ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide will by other members, er(s) for truss to tru banical connection	vith any for a liv where l fit betv with BC ss conr	other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf ections.	ds. Opsf om		A	in i	ORTH CA		A. Marine
this desig	ed foot live loads have In.	been considered for	12	bearing plate 9. 2) One H2.5A S	capable of withsta	connect	44 lb uplift at	i joint		IIII		0363	22	unun.

nmended to onnect truss to bearing walls due to UPLIFT at jt(s) 13. This connection is for uplift only and does not consider lateral forces.

818 Soundside Road Edenton, NC 27932

C

Angel GILB

April 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	A06T	Нір	1	1	Job Reference (optional)	173034337

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:12:53

Page: 1 ID:WSUNF0thXUz9LpArJm0Y84yNcl5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 2-5-4 0-10-8 2-5-4 36-9-8 10-0-0 14-2-4 19-8-8 25-11-0 27-9-4 1-10-4 35-11-0 0-10-8 7-6-12 4-2-4 5-6-4 6-2-8 8-1-12 5x6= 4x5= 5x6= 3x8= 0-1-13 H 25 262728 296 4 5 24 30 7 3x5、 8 812 81 23 7-6-3 31 6-9-9 7-8-0 3x5 🗸 ³²33 22³ 9 è 18 20 16 4x8= X 34 15 14 1132 4x5= 2x4 II 10x12= 2x4 ı 6x8= 3x8= 5x6= 5x8= 2x4 II 6x12 🍫 2x4 II

					27-11-8	
2-3-8	9-10-4	14-0-8	19-8-8	26-0-12	27-9-4	35-11-0
2-3-8	7-6-12	4-2-4	5-8-0	6-4-4	1-8-8	7-11-8
					0-2-4	

Scale =	1:66.3
---------	--------

Plate Offsets ((X, Y): [2:0-5-15,0-2-0]], [4:0-3-0,0-2-3], [7:0-3	3-0,0-2-3], [11:Edge,0-8	8-2], [12:0-3-0,0-3	-0], [15:0)-3-8,0-3-0], [17:0-5-8	,0-3-4]					
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-MSH	0.91 0.42 0.89	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.26 0.14	(loc) 18-19 18-19 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 250 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP 2400F 2.0E 2x4 SP 2400F 2.0E No.2, 20-19,5-16:2x4 2x4 SP No.3 *Excep Structural wood shea 4-0-8 oc purlins, exi 2-0-0 oc purlins (4-1 Rigid ceiling directly bracing. 1 Row at midpt (size) 11=0-3-8, Max Horiz 21=-200 (Max Uplift 11=-164 (Max Grav 11=1616 (*Except* 21-20:2x4 SF 4 SP No.3 t* 21-2,11-9:2x4 SP N athing directly applied cept end verticals, and 1.15 max.): 4-7. applied or 10-0-0 oc 3-18, 6-14 21=0-3-8 LC 12) LC 15), 21=-160 (LC 1 (LC 6), 21=1629 (LC 5	2) o.2 or 1 3) (4) (4)	Wind: ASCE Vasd=103mp II; Exp B; En and C-C Extr to 4-11-1, Ex 15-0-15 to 20 Interior (1) 30 36-9-8 zone; vertical left a forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design	7-16; Vult=130mp b; TCDL=6.0psf; closed; MWFRS (erior(2E) -0-10-8 ti tterior(2R) 4-11-1 ti D-10-1, Exterior(2F) D-11-15 to 33-2-6, cantilever left anc nd right exposed; (FRS for reactions ate grip DOL=1.60; 7-16; Pr=20.0 psf .15); Pf=20.0 psf Is=1.0; Rough Cat =1.10 snow loads have I	bh (3-sec BCDL=6 envelope o 2-5-4, to 15-0-1 R) 20-10 Exterior I right ex C-C for m Shown; f (roof LL (Lum DC B; Fully	cond gust) .0psf; h=25ft e) exterior zon Interior (1) 2- 5, Interior (1) -1 to 30-11-1; (2E) 33-2-6 ti posed; end nembers and Lumber .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9	; Cat. ne 5-4) 5, o 1.15 9; his						
FORCES	(lb) - Maximum Com Tension 1-2=0/45, 2-3=-3753 4-5=-2167/261, 5-6= 6-7=-1864/243, 7-8= 8-9=-2339/212, 9-10 9-11=-1648/208	pression/Maximum /377, 3-4=-2633/237, -2625/256, -2234/316, ==0/34, 2-21=-1840/17	5) 6) 7) 4,	This truss ha load of 12.0 overhangs n Provide adeo This truss ha chord live loa	is been designed f psf or 1.00 times f on-concurrent with quate drainage to is been designed f ad nonconcurrent	for great lat roof lo other liv prevent for a 10.0 with any	er of min roof bad of 20.0 p ve loads. water ponding 0 psf bottom other live loa	live sf on g. ids.				WITH CA	BO	
BOT CHORD	20-21=-166/522, 19- 2-19=-379/3144, 18- 17-18=-195/2584, 16 15-16=0/175, 14-15= 13_14=-45/4878, 11-	20=-73/325, 19=-423/3186, 6-17=0/97, 5-17=-39/3 =-141/2368, 13=-186/1878	0) 11, 9)	on the bottor 3-06-00 tall b chord and ar One H2.5A S	n chord in all area by 2-00-00 wide wi by other members, Simpson Strong-Ti	s where Il fit betv with BC e conne	a rectangle veen the bott DL = 10.0ps ctors	om f.		G	i	ORIFES	BE 1	Ann
WEBS	3-18=-1291/326, 4-1 5-18=-829/189, 6-17 6-14=-840/155, 7-14 8-14=-598/181, 2-20 9-12=-107/1373, 3-1 15-17=-143/2231, 8-	=-9/1111, =-102/347, =-139/1052, =-510/143, 9=0/485, 6-15=-232/1 13=-20/171	10) 07, LO	UPLIFT at jt(only and doe) Graphical pu or the orienta bottom chorc	so to connect truss (s) 21 and 11. This (s) not consider late (rin representation ation of the purlin a d. Standard	a to bear connec eral force does no along the	tion is for upl es. ot depict the s top and/or	ift size		THURSE.		SEA 0363	22 EFR A	annun 1
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for		(-)							11	CA. G	ILBEIT	

April 29,2025

10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	A07	Нір	1	1	Job Reference (optional)	173034338

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:12:53 ID:_B6cb_IeHFNC2BLZsc8l3TyNcHY-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:65

Plate Offsets (X, Y): [2:0-3-0,0-2-0],	[3:0-3-0,0-2-3], [5:0)-3-0,0-3-4]	[6:0-3-0,0-2-3], [7:0-3-8,Edge]									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2027	I/TPI2014	CSI TC BC WB Matrix-MSH	0.84 0.60 0.65	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.25 -0.43 0.06	(loc) 9-11 9-11 8	l/defl >999 >984 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 203 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP 2400F 2.0E ⁴ No.1 2x4 SP 2400F 2.0E 2x4 SP No.3 *Excep 2.0E, 8-7:2x4 SP No 2x4 SP No.3 Structural wood shea 2-2-0 oc purlins, exx 2-0-0 oc purlins, exx 2-0-0 oc purlins (2-1) Rigid ceiling directly bracing. 1 Row at midpt (size) 8= Mecha Max Horiz 14=159 (L May Unit 9 = 140 (J	*Except* 3-5,5-6:2x4 t* 14-2:2x6 SP 2400 .1 athing directly applie cept end verticals, a 0-13 max.): 3-6. applied or 10-0-0 or 4-13, 5-9 nical, 14=0-3-8 C 11) C 15, 14= 160 (L C	2) 4 SP DF ed or ind 3) c 4) 14) 5)	Wind: ASCE Vasd=103mp II; Exp B; En and C-C Extt 2-8-10 to 13 Exterior(2R) 35-9-4 zone; vertical left a forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha	7-16; Vult=130mpl bh; TCDL=6.0psf; E closed; MWFRS (e erior(2E) -0-10-8 to 0-15, Interior (1) 1: 22-10-1 to 32-2-2, cantilever left and nd right exposed;C FRS for reactions : ate grip DOL=1.60 7-16; Pr=20.0 psf (15); Pf=20.0 psf (I s=1.0; Rough Cat 1.10 snow loads have b s been designed for	h (3-sec 3CDL=6 nvelope 2-8-10 3-0-15 t Exteriol right ex -C for n shown; (roof LL Lum DC B; Fully een cor or greate	ond gust) .0psf; h=25ft e) exterior zor , Exterior(2R) o 22-10-1, r(2E) 32-2-2 t posed; end nembers and Lumber .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.5 nsidered for the er of min roof	; Cat. ne) to 1.15 9; his	13) Gra or ti bott LOAD (phical pu ne orient om chor CASE(S)	urlin re ation d d. Star	presentation doe of the purlin along ndard	s not depict the size ı the top and/or	
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	Max Grav 8=1589 (L (lb) - Maximum Com Tension 1-2=0/43, 2-3=-2469 4-6=-3009/238, 6-7= 2-14=-1683/208, 7-8 13-14=-311/850, 11- 9-11=-243/2847, 8-9 3-13=-15/934, 4-13= 5-11=-12/311, 5-9=- 2-13=-208/1526, 7-9 ed roof live loads have h.	C 6), 14=1643 (LC pression/Maximum /204, 3-4=-2027/23: -2485/199, =-1651/186 13=-277/2847, =-145/544 -1149/229, 4-11=-1 1124/231, 6-9=-23/5 =-167/1672 been considered fo	5) 6) 7) 3, 8) 0/315, 9) 926, 10 r 11	load of 12:01 overhangs n Provide adeo This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird bearing at jo using ANSI/T designer sho) Provide mec bearing plate 8.	best of 1.00 times fil on-concurrent with juate drainage to p s been designed fi ad nonconcurrent w has been designed n chord in all areas by 2-00-00 wide wil y other members, er(s) for truss to tru int(s) 14 considers TPI 1 angle to grain uld verify capacity hanical connection capable of withsta	at roof is other liv revent y or a 10. <i>i</i> /ith any for a liv is where if the between if the between if the between if the between if or mula of beari (by oth unding 1	vad of 20.0 p. ve loads. vater ponding. D psf bottom other live load e load of 20.0 a rectangle veen the bottic DL = 10.0psf nections. to grain valu a. Building ng surface. ers) of truss t 48 lb uplift at	g. ads. Opsf om f. ie to		William.		SEA 0363		

12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 14. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A. GILP

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	A07T	Нір	1	1	Job Reference (optional)	173034339

2-3-8

5-6-12

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:12:53 ID:w1AVt2vapPLkCGvP_uZFmjyNcl2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-1-0

-0-10-8 2-5-4 0-10-8 2-5-4 8-0-0 14-2-4 20-11-12 27-11-0 35-11-0 5-6-12 6-2-4 6-9-8 6-11-4 8-0-0 5x6= 4x5= 5x8= 5x6= 0-1-13 0-1-13 ____24625, 6-4-0 20 4 _521 22 ⊠ 23 ⊠ 26 7 -8¹² 6-2-3 5-2-3 6-4-0 3x5 -27 3 6x8、 288 29 9 F⊮⊿ 19 29 10 10 16 0-0ę ę ģ 15 48 13 4x8= 12 30 11 4x5= 2x4 u 3x5 II 3x10= 2x4 u 5x6= 6x8= 2x4 II 6x10= 6x12 🍫 35-11-0 || 0-2-12 2-3-8 7-10-4 14-0-8 20-11-12 28-0-12 35-8-4

6-11-4

6-2-4

Scale = 1:66

Plate Offsets (X, Y): [2:0-5-13,0-2-8]], [4:0-3-0,0-2-3], [6:	0-3-12,0-3	-4], [7:0-3-0,0-	2-3], [8:0-3-0,0-2-0], [11:0-	3-4,0-3-0], [1	4:0-7-4,	0-4-8]					
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.62 0.59 0.60	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.17 -0.32 0.15	(loc) 12-13 12-13 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 222 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP 2400F 2.0E 2x4 SP 2400F 2.0E No.2, 17-16,5-13:2x4 2x4 SP No.3 *Excep 18-2:2x4 SP No.1, 10 Structural wood shea 4-4-13 oc purlins, e: 2-0-0 oc purlins (4-3 Rigid ceiling directly bracing.	*Except* 18-17:2x4 5 4 SP No.3 t* 12-14:2x4 SP No. 0-8:2x6 SP No.2 athing directly applie xcept end verticals, a -6 max.): 4-7. applied or 10-0-0 oc	2) SP 2, d or and ; 3)	Wind: ASCE Vasd=103m/ II; Exp B; En and C-C Ext to 13-0-15, II 22-10-1 to 3: cantilever lef right expose for reactions DOL=1.60 TCLL: ASCE Plate DOL=1	7-16; Vult=130mp h; TCDL=6.0psf; E closed; MWFRS (e erior(2E) -0-10-8 to terior (1) 13-0-15 3-2-6, Exterior(2E) t and right exposed d;C-C for members shown; Lumber D(7-16; Pr=20.0 psf .15); Pf=20.0 psf (p=10: Rough Cat	h (3-sec 3CDL=6 nvelope 2-5-4, to 22-10 33-2-6 ; end v ; and foi DL=1.60 (roof LL Lum DC B: Eulto	ond gust) .0psf; h=25ft;) exterior zor Exterior(2R) 2 h-1, Exterior(2 o 36-9-8 zon rertical left an ces & MWFR) plate grip .: Lum DOL=: Exp: (-2-0)	; Cat. ne 2-5-4 2R) e; dd RS 1.15						
WEBS REACTIONS	1 Row at midpt (size) 10=0-3-8, Max Horiz 18=-169 (Max Uplift 10=-169 (Max Grav 10=1616 (5-15, 6-11 18=0-3-8 LC 12) LC 15), 18=-164 (LC (LC 6), 18=1623 (LC	4) ; 14) 5) 5)	DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha	Is=1.0; Rough Cat ₌1.10 snow loads have b is been designed fr	B; Fully een cor or great	Exp.; Ce=0.9 Isidered for the er of min roof); nis live sf on						
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=0/60, 2-3=-3521	pression/Maximum /352, 3-4=-2841/253	6) 3, 7)	overhangs n Provide adeo This truss ha	on-concurrent with quate drainage to p is been designed for	other liver other	ve loads. water ponding) psf bottom	g.						
BOT CHORD	4-5=-2372/259, 5-7= 7-8=-2407/210, 8-9= 8-10=-1642/213 17-18=-156/554, 16-	3447/303, -0/47, 2-18=-1832/18 -17=-72/323,	81, 8)	* This truss h on the bottor 3-06-00 tall b	ad nonconcurrent v has been designed n chord in all areas by 2-00-00 wide wil	vith any for a liv s where I fit betv	other live loa e load of 20.0 a rectangle veen the botto	ds. Opsf om			an'	TH CA	ROL	۶.
WEBS	2-16=-316/2812, 15- 14-15=-326/3449, 12 12-13=-9/181, 10-12 3-15=-882/221, 4-15 5-15=-1409/227, 12- 6-14=-139/674, 6-12 6-11=-1200/207, 7-1 2-17=-492/145, 8-11 3-16=-20/392	16=-346/2900, 3-14=0/126, 5-14=0/ =-231/2862 =-21/187, 14=-226/2722, =-265/125, 1=-14/887, =-224/1476,	385, 9) 1(11	chord and ar Bearing at jo using ANSI/ designer sho)) One H2.5A S recommende UPLIFT at jtt only and doe) Graphical pu	y other members, int(s) 10 considers TPI 1 angle to grain uld verify capacity simpson Strong-Tie ed to connect truss s) 18 and 10. This s not consider late rin representation	with BC parallel of bear of bear to bear connec ral force does no	DL = 10.0psf to grain valu a. Building ng surface. ctors ng walls due tion is for upli ss.	e to ift		Mannun	ZA	SEA 0363	22	
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for	L	or the orienta bottom chore	ation of the purlin a l. Standard	long the	top and/or				till.	A. G	LBERT	12

April 29,2025

Page: 1

7-7-8

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	A08	Нір	1	1	Job Reference (optional)	173034340

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:12:53 ID:xZDM0gJvpsevHVVyz1AD8uyNcHW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:64.8

Plate Offsets (X, Y): [2:0-3-8,Edge],	[3:0-5-0,0-0-14], [5:0	0-5-0,0-4-8	8], [6:0-3-0,0-2	-3], [7:0-3-0,0-1-8],	, [10:0-3	-0,0-3-4], [11	:0-4-0,0-	3-0]					
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202 ⁻	I/TPI2014	CSI TC BC WB Matrix-MSH	0.81 0.36 0.75	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.35 0.08	(loc) 10-11 10-11 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 215 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanca this design	2x4 SP 2400F 2.0E * No.2 2x4 SP 2400F 2.0E 2x4 SP No.3 *Excep Structural wood sheat 5-6-4 oc purlins, exx 2-0-0 oc purlins (2-7 Rigid ceiling directly bracing. 1 Row at midpt (size) 8= Mecha Max Horiz 13=127 (L Max Uplift 8=-151 (LI Max Grav 8=1502 (L (Ib) - Maximum Com Tension 1-2e0/55, 2-3=-2145 4-6=-3208/369, 6-7= 2-13=-1483/197, 7-8 12-13=-166/422, 9-1 8-9=-77/293 3-12=-73/154, 3-11= 4-11=-677/222, 5-11 5-9=-1664/283, 6-9= 2-12=-178/1585, 7-9 ed roof live loads have b.	*Except* 3-5,5-6:2x6 t* 13-2,8-7:2x4 SP N athing directly applie cept end verticals, ar -0 max.): 3-6. applied or 10-0-0 oc 5-11, 5-9 inical, 13=0-3-8 .C 11) C 15), 13=-171 (LC .C 40), 13=1536 (LC pression/Maximum 5/213, 3-4=-3214/372 -2151/214, 3=-1447/179 2=-369/3217, -281/1679, =-137/142, 5-10=0/3 -28/740, been considered for	2) S SP lo.2 d or nd (14) (40) (5) (40) (5) (7) (8) (322, (9) (10) (11) (12) (1	Wind: ASCE Vasd=103mj II; Exp B; En and C-C Ext 2-8-10 to 11. Exterior(2R) 35-9-4 zone; vertical left a forces & MW DOL=1.60; p TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced design. This truss ha load of 12.0 overhangs n Provide adea This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar Refer to gird) Provide mec bearing plate 8.) One H2.5A S recommende UPLIFT at jt does not cor) Graphical pu or the orients bottom chore	7-16; Vult=130mp bh; TCDL=6.0psf; J closed; MWFRS (6 erior(2E) -0-10-8 tc -0-15, Interior (1) 1 24-10-1 to 32-2-2, cantilever left and nd right exposed; C /FRS for reactions late grip DOL=1.6C 5-16; Pr=20.0 psf (-15); Pf=20.0 psf (-15); Pf=20.0 psf (-15); Pf=20.0 psf (-15); Pf=20.0 psf (-15); Pf=20.0 psf (-15); Pf=20.0 psf (-10) snow loads have t as been designed f psf or 1.00 times fl on-concurrent with quate drainage to p as been designed f ad nonconcurrent with quate drainage to p as been designed f ad nonconcurrent with quate drainage to p so been designed n chord in all areas by 2-00-00 wide wi y other members. er(s) for truss to tru hanical connection e capable of withsta Simpson Strong-Tie ed to connect truss (s) 13. This connect usider lateral forces rilin representation ation of the purlin a 3.	h (3-sec BCDL=6 BCDL=6 2-8-10 1-0-15 t Exterior right exc C-C for n shown; (roof LL Lum DC B; Fully been cor or great at roof k other liv orevent to or a 10.0 with any for a liv s where ll fit betw uss conne (by oth anding 1 e conne to bear stion is fe 3. does no along the	ond gust) onpsf; h=25ft;) exterior zor Exterior(2R) o 24-10-1, (2E) 32-2-2 t posed ; end hembers and Lumber :: Lum DOL== L=1.15 Plate Exp.; Ce=0.5 usidered for th er of min roof bad of 20.0 ps re loads. water ponding 0 psf bottom other live loa e load of 20.0 ps re loads. water ponding 0 psf bottom other live loa e load of 20.0 ps re loads. water ponding 0 psf bottom other live loa e load of 20.0 psf bottom other live loas e load of 20.0 psf bottom	; Cat. ne ino 1.15 2); his live sf on g. ds. Dpsf com to and size				SEA 0363	ROLL 22 E.R. F.K.	N. M.
					Clandara								(BC	

April 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof				
25040116	A08T	Hip	1	1	Job Reference (optional)	173034341			

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:12:53 ID:tPIGIjxqL1cSRa2o5Jbjr8yNcI0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:65.9

Plate Offsets ((X, Y): [2:0-4-5,0-2-4],	[4:0-3-0,0-2-3], [10	:0-4-0,0-1	-9], [11:0-3-8,Ec	lge], [14:0-3-4,0-3	-0], [16:0)-3-8,0-3-0], [18:0-3-1	2,0-3-0]	, [20:0-4	-0,0-0-	-14]		
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	21/TPI2014	CSI TC BC WB Matrix-MSH	0.65 0.61 0.87	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.25 -0.48 0.17	(loc) 6 18-19 13	l/defl >999 >882 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 219 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD	2x4 SP 2400F 2.0E * No.2 2x4 SP 2400F 2.0E * SP No.3 2x4 SP No.3 *Excep SP No.2 Structural wood she: 4-9-6 oc purlins, exi 2-0-0 oc purlins (2-5 Rigid ceiling directly bracing. (size) 13=0-3-8, Max Horiz 22=-137 (Max Uplift 13=-171 (Max Grav 13=1535 ((lb) - Maximum Com Tension 1-2=0/74, 2-3=-2951 4-5=-2203/252, 5-6= 6-7=-3911/462, 7-9= 9-10=-2778/325, 10 11-12=0/56, 2-22=-1 11-13=-1474/202 21-22=-142/497, 20- 2-20=-364/2326, 19= -1470/277, 5-1 15-16=-338/126, 16-1 15-16=-334/3021, 7-	*Except* 4-8,8-10:2 *Except* 21-20,6-17 t* 16-18,22-2,13-11 athing directly applic cept end verticals, a -12 max.): 4-10. applied or 10-0-0 o 22=0-3-8 LC 12) LC 15), 22=-166 (L1 (LC 40), 22=1534 (L pression/Maximum //369, 3-4=-2689/28 -3950/459, -2776/324, -11=-2132/218, 604/185, -21=-69/270, -20=-378/2440, 7-18=0/113, 7=-37/209, 3-15=-119/1739 ==87/1222, 8=-112/852, 18=-149/851,	Image: Non-State Spectra in the system of	IOTES) Unbalanced this design.) Unbalanced this design.) Wind: ASCE Vasd=103m II; Exp B; En and C-C Ext 2-8-10 to 11. Exterior(2R) 36-9-8 zone; vertical left a forces & MW DOL=1.60 p) TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct:) Unbalanced design.) This truss ha load of 12.0 overhangs n) Provide aded chord live loa) This truss h chord live loa) This truss h on the bottor 3-06-00 tall t chord and ar) One H2.5A S recommende UPLIFT at jt(only and doe) Graphical pu	roof live loads hav 7-16; Vult=130mp bi; TCDL=6.0psf; closed; MWFRS (erior(2E) -0-10-8 t 0-15, Interior (1) ' 24-10-1 to 33-2-6 cantilever left and nd right exposed; (FRS for reactions ate grip DOL=1.60 : 7-16; Pr=20.0 psf Is=1.0; Rough Cat =1.10 snow loads have l s been designed i psf or 1.00 times f on-concurrent with quate drainage to is been designed ad nonconcurrent tas been designed ad nonconcurrent as been designed ad nonconcurrent is been designed ad nonconcurrent is been designed ad nonconcurrent tas been designed ad nonconcurrent is been designed ad nonconcurrent is been designed ad nonconcurrent is been designed ad nonconcurrent as been designed is been designed ad nonconcurrent is been designed is post for 1.00 times is post for 1.00	ve been of bh (3-sec BCDL=6 envelopp o 2-8-10 11-0-15 t , Exterio d right ex C-C for r shown; 0 f (roof LL (Lum DC t B; Fully been con for great lat roof h for a 10.1 with any d for a liv is where ill fit betw - e connec s to bear s connec eral force n does m o does m	considered for cond gust) 5.0psf; h=25ft 3.0psf; h=25ft 3.0psf; h=225ft 3.0psf; h=225ft 3.0psf; h=225ft 3.0psf; h=225ft 3.0psf; h=225ft 3.0psf; h=25ft 4.0psf; h=25ft 4.0ps	r ; Cat. ne) to 1.15 9; his f live sf on g. uds. 0psf om to ift				NATH CA ORTHESE SEA 0363	RO(11,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1	
	2-16=-411/130, 10-1 2-21=-432/145, 11-1 3-20=-64/200, 9-15= 7-15=-620/108, 10-1	4=-93/103, 4=-193/1534, 493/136, 5=-228/1413	L	or the orienta bottom choro OAD CASE(S)	ation of the purlin a <u>1.</u> Standard	along the	e top and/or				111	A. G	ILBER'	

April 29,2025

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	A09	Half Hip Girder	1	2	Job Reference (optional)	173034342

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:12:55 ID:23WHI6T2IrG3LU?SEGvGAdyNcHJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:66.4

Plate Offsets (X, Y): [3:0-4-0,0-1-9],	[6:0-3-0,0-3-0], [11:	0-3-0,0-2-8	3], [12:0-5-0,0-	4-8], [15:0-5-0,0-4	-8], [17:E	Edge,0-6-12]							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.72 0.27 0.95	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.31 -0.50 0.06	(loc) 13-14 13-14 10	l/defl >999 >861 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 452	GRIP 244/1 Ib FT =	90 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x6 SP 2400F 2.0E 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exc 2-0-0 oc purlins (4-0- Rigid ceiling directly bracing. (size) 10= Mech	athing directly applie sept end verticals, a -8 max.): 3-9. applied or 10-0-0 or anical, 17=0-3-8	2) ed or 3) nd 4) c	All loads are except if note CASE(S) see provided to c unless othern Unbalanced this design. Wind: ASCE Vasd=103mp II; Exp B; En cantilever lef	considered equal ed as front (F) or b ction. Ply to ply co listribute only load wise indicated. roof live loads hav 7-16; Vult=130mp bh; TCDL=6.0psf; closed; MWFRS (t and right expose d	ly applied pack (B) f nnection ls noted f ve been d bh (3-sec BCDL=6 envelope d ; end t	d to all plies, face in the LC s have been as (F) or (B), considered fo cond gust) .0psf; h=25ft; e) exterior zor vertical left an crip DOL =1	DAD r ; Cat. ne; d	 14) Gra or the both 15) "NA (0.1 16) Harring provides respective for the second second	phical pu ne orient om chor ILED" in 48"x3.29 wided sub own and ign/selec consibilit CASE(S)	urlin re tation (rd. dicate 5") toe or othe fficient d 68 lb ction o ty of ot) Sta	apresentation of the purlin al as 3-10d (0.14 -nails per ND r connection d to support cc up at 4-0-0 of such connec thers. ndard	does not de ong the top 8"x3") or 3- 3 guidlines levice(s) sh incentrated in bottom c tion device	epict the size p and/or -12d hall be I load(s) 289 thord. The e(s) is the
FORCES TOP CHORD BOT CHORD	Max Horiz 17=121 (L Max Uplift 10=-621 (I Max Grav 10=2872 ((Ib) - Maximum Com Tension 1-2=0/56, 2-3=-3771 4-5=-6044/1309, 5-7 7-8=-4032/880, 8-9= 9-10=-2717/653, 2-1 16-17=-180/414, 14- 13-14=-1698/7593, 1 10-11=-46/77	9) 5) C 1) 12, 6) 7) 8)	 1) Dead + Snow (balanced): Lumber Increase=1. Increase=1.15 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 6) Unbalanced snow loads have been considered for this design. 7) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 8) Provide adequate drainage to prevent water ponding. 								se=1.15, Plate =-20			
WEBS NOTES 1) 2-ply truss (0.131"x3" Top chord oc. Bottom ch staggered Web conn	3-16=-124/112, 3-15 4-15=-757/292, 5-15 5-13=-26/88, 6-13=-{ 7-13=-288/1278, 7-1 7-11=-2952/662, 8-1 9-11=-983/4596, 2-1 to be connected toget) nails as follows: s connected as follows: s connected as follows: ords connected as follows ords connected as follows: 2x4 -	=-749/3407, =-1824/420, 5-14=0 589/265, 2=0/332, 1=-727/292, 6=-623/2874 ther with 10d :: 2x4 - 1 row at 0-9- ows: 2x6 - 2 rows 1 row at 0-9-0 oc.	9) //341, 10 11 12 .0 13	 a) * This truss has not seen to be a seen to be	ad nonconcurrent had nonconcurrent has been designed n chord in all area by 2-00-00 wide w hanical connection e capable of withst Simpson Strong-Ti ad to connect truss s) 17. This conne- hasider lateral force	ior a 10.0 with any g t for a liv s where uss conre- uss conre- n (by oth anding 6 e connee s to beari ction is fo s.	e load of 20.0 a rectangle veen the botto nections. ers) of truss t i21 lb uplift at ctors ing walls due or uplift only a	ds. opsf om joint to and		Contraction of the second seco	E. M. MILLER	SE 036	AL 322 NEER GILB	HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Dracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	A09	Half Hip Girder	1	2	Job Reference (optional)	173034342

Vert: 3=-106 (F), 16=-289 (F), 6=-106 (F), 13=-29
(F), 18=-106 (F), 19=-106 (F), 20=-106 (F), 23=-106
(F), 24=-106 (F), 25=-106 (F), 26=-106 (F), 27=-106
(F), 28=-106 (F), 29=-106 (F), 30=-106 (F), 32=-106
(F), 33=-106 (F), 34=-106 (F), 35=-125 (F), 36=-29
(F), 37=-29 (F), 38=-29 (F), 39=-29 (F), 40=-29 (F),
41=-29 (F), 42=-29 (F), 43=-29 (F), 44=-29 (F),
45=-29 (F), 46=-29 (F), 47=-29 (F), 48=-29 (F),
49=-29 (F), 50=-35 (F)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:12:55 ID:23WHI6T2IrG3LU?SEGvGAdyNcHJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	A10	Hip Girder	1	2	Job Reference (optional)	173034343

-0-10-8 2-5-4 3-10-8

8¹²

1-5-4

NAILED

0-10-8 2-5-4

8-11-8

5-1-0

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:12:56 ID:23WHI6T2IrG3LU?SEGvGAdyNcHJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

36-9-8

0-10-8

35-11-0

3-10-8

32-0-8 14-2-4 18-5-10 23-0-8 27-7-6 5-2-12 4-3-6 4-6-14 4-6-14 4-5-2 5x8= NAILED NAIL 2x4 II 8x10= 4x8= 4x5= ⊠ 31 33 🖂 327 🖂 34 🖂 8 35,36 3788 6 939 ш

Scale = 1:65.8

Plate Offsets	(X, Y): [2:0-4-1,0-2-8],	[4:0-4-0,0-1-9], [7:0)-5-0,0-4-8]	, [10:0-3-0,0-	2-3], [13:Edge,0-6	6-12], [15:0	0-5-0,0-4-8], [17:0-5-8	8,0-3-0],	[21:0-5-0),0-4-1	2]		
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.40 0.96 0.88	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.37 -0.60 0.18	(loc) 6 13	l/defl >999 >717 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 51	GRIP 244/190 4 lb FT = 20%	9
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 *Excep 2.0E 2x6 SP 2400F 2.0E SP No.2, 23-22:2x4 2x4 SP No.3 *Excep Structural wood sher 5-2-0 oc purlins, exc 2-0-0 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 13=0-3-8, Max Horiz 24=-105 (t* 4-7,7-10:2x6 SP *Except* 24-23,6-18 SP No.3 t* 17-19:2x4 SP No athing directly appli cept end verticals, a -0 max.): 4-10. applied or 10-0-0 o 24=0-3-8 LC 10)	W 2400F 3:2x4 .2 ed or and 1) c	EBS 2-ply truss (0.131"x3") Top chords oc, 2x6 - 2 Bottom chc	3-21=-212/651, 5-21=-4948/121 5-19=-554/2371 7-19=-877/3334 8-17=-228/747, 9-15=-187/1214 10-14=-327/170 3-22=-330/110, to be connected at nails as follows: connected as foll rows staggered a	4-21=-538 7, 5-20=0/, , 17-19=-1 , 7-17=-20 8-16=0/25 9-14=-33 7, 11-14=- 2-23=-104 ogether wi lows: 2x4 t 0-9-0 oc. follows: 2	/2367, 204, 685/7201, 23/618, 8, 8-15=-1933 88/797, 621/2758, 5/328 th 10d - 1 row at 0-9 x4 - 1 row at	9/487, -0	 8) Pro 9) This cho 10) * Th on 1 3-00 cho 11) LG⁻ con and con 12) Gra or ti bott 13) "NA 	vide ade s truss h rd live lc his truss the botto 6-00 tall rd and a T2 Simp: nect trus I 13. This sider lat sphical p he orient tom chor N ED" is	equate as bee bad not has be m cho by 2-0 iny oth son Sti ss to be s conn eral fo urlin re tation of dicate	drainage to an designed in noncurrent een designed rd in all area of all area er members. rong-Tie con earing walls ection is for cres. epresentation of the purlin as 3-10d (0.1	prevent water pc or a 10.0 psf bo with any other liv f for a live load c s where a rectar II fit between the nectors recomm due to UPLIFT a uplift only and do n does not depict along the top an 48"x3") or 3-12d	onding. ttom ve loads. of 20.0psf ngle e bottom rended to at jt(s) 24 oes not t the size d/or
FORCES TOP CHORD BOT CHORD	Max Uplift 13=-600 (Max Grav 13=2698 ((lb) - Maximum Com Tension 1-2=0/82, 2-3=-5138 4-5=-4592/1161, 5-6 6-8=-11182/2696, 8- 9-10=-3068/716, 10- 11-12=0/57, 2-24=-2 11-13=-2606/603 23-24=-333/1097, 22 2-22=-1045/3989, 2' 20-21=-2276/9211, '	LC 13), 24=-648 (LI (LC 20), 24=2706 (I pression/Maximum //1300, 3-4=-5478/1 i=-11395/2746, -9=-5899/1340, .11=-3684/822, .921/718, 2-23=-191/670, 1-22=-1116/4273, 19-20=-2276/9211,	C 12) C 19) 2) 373, 3) 4)	0-9-0 oc, 2: Web conne All loads ar except if nc CASE(S) s provided to unless othe Unbalance this design. Wind: ASC Vasd=103r II; Exp B; E cantilever II.	x6 - 2 rows stagg cted as follows: 2 e considered equ ted as front (F) o ection. Ply to ply o distribute only lo rwise indicated. d roof live loads h E 7-16; Vult=130r nph; TCDL=6.0ps nclosed; MWFRS eft and right expo or during politication.	-0 oc. at 0-9-0 oc. d to all plies, face in the LC s have been as (F) or (B), considered for cond gust) 6.0psf; h=25ft e) exterior zor vertical left ar	oc. 13) INALLED Indicates 3-100 (0.148 x3.25") too-nails per NDS guidlines. 0-9-0 oc. (0.148 x3.25") too-nails per NDS guidlines. 0 all plies, 14) LGT2 Hurricane ties must have two studs i the truss. 14) LGT2 Hurricane ties must have two studs i nave been (F) or (B), nsidered for 14) LGT2 Hurricane ties must have two studs i the truss. 14) LGT2 Hurricane ties must have two studs i the truss. 14) LGT2 Hurricane ties must have two studs i the truss. 14) LGT2 Hurricane ties must have two studs i the truss. 14) LGT2 Hurricane ties must have two studs i the truss. 14) LGT2 Hurricane ties must have two studs i the truss. 16) Hurricane ties must have two studes i tical left and 160						he below	
	18-19=-5/181, 6-19 17-18=-277/1154, 16 14-16=-1722/7507, 1	-424/210, 5-17=-1722/7507, 13-14=-107/395	5) 6) 7)	TCLL: ASC Plate DOL= DOL=1.15) Cs=1.00; C Unbalanced design. This truss H load of 12.0 overhangs	E 7-16; Pr=20.0 p =1.15); Pf=20.0 ps ; Is=1.0; Rough C t=1.10 d snow loads hav has been designe 0 psf or 1.00 times non-concurrent w	e 1.60 plate osf (roof Ll sf (Lum DC cat B; Fully e been cor d for great s flat roof l ith other li	: grip DOL=1. :: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 nsidered for the er of min roof poad of 20.0 p ve loads.	1.15 9 9; his f live sf on		THINKS.		S 03 NG NG	EAL 6322 INEER GILBEN	

April 29,2025

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 1/2/2023 BEFORE USE WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss Truss Type		Qty	Ply	117 Eagle Creek - Norman B - Roof		
25040116	A10	Hip Girder	1	2	Job Reference (optional)	173034343	

15) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 249 Ib down and 77 lb up at 3-10-8, and 276 lb down and 66 Ib up at 31-11-12 on bottom chord. The design/ selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-2=-60, 2-4=-60, 4-10=-60, 10-11=-60, 11-12=-60, 23-24=-20, 19-22=-20, 13-18=-20

Concentrated Loads (lb)

Vert: 4=-129 (B), 6=-129 (B), 21=-249 (B), 14=-276 (B), 10=-99 (B), 25=-129 (B), 26=-129 (B), 27=-129 (B), 30=-129 (B), 31=-99 (B), 32=-99 (B), 33=-99 (B),

- 34=-99 (B), 35=-99 (B), 38=-99 (B), 39=-99 (B),
- 40=-99 (B), 45=-27 (B), 46=-27 (B), 47=-27 (B), 48=-27 (B), 49=-27 (B), 50=-27 (B), 51=-27 (B),
- 52=-27 (B)

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:12:56 ID:23WHI6T2IrG3LU?SEGvGAdyNcHJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	B01	Common Supported Gable	1	1	Job Reference (optional)	173034344

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:12:57 ID:6HIMdKhboF_IjU2kzdh98WzuUJU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:65.2

Plate Offsets (X, Y): [7:0-3-0,0-3-0], [9:0-2-8,Edge], [11:0-3-0,0-3-0]

Loading TCLL (roof)		(psf) 20.0	Spacing Plate Grip DOL	1-11-4 1.15		CSI TC	0.10	DEFL Vert(LL)	in n/a	(oc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190	
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.13	Vert(CT)	n/a		-	n/a	999	-		
TCDL		10.0	Rep Stress Incr	YES		WB	0.18	Horz(CT)	0.01		18	n/a	n/a			
BCLL		0.0*	Code	IRC202	1/TPI2014	Matrix-MSH		- (-)								
BCDL		10.0			.,									Weight: 201 lb	FT = 20%	6
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No. 2x4 SP No. 2x4 SP No. 2x4 SP No. Structural N 6-0-0 oc pu Rigid ceilin bracing. 1 Row at m (size) Max Horiz : Max Uplift	.2 .2 .3 .3 wood shea urlins, exc g directly hidpt 18=28-7-0 21=28-7-0 21=28-7-0 28=28-7-0 28=28-7-0 31=28-7-0 31=28-7-0 32=256 (L 18=-6 (LC	athing directly appliec sept end verticals. applied or 10-0-0 oc 8-26, 10-24 0, 19=28-7-0, 20=28-7 1, 22=28-7-0, 23=28-7 1, 29=28-7-0, 30=28-7 1, 32=28-7-0 C 13) 13), 19=-159 (LC 15	7-0, -0, W -0, W -0, W	OP CHORD	2-32=-129/52, 1-2=(3-4=-232/101, 4-5=- 5-8=-138/60, 8-9=-1 10-12=-138/46, 12 13-14=-175/58, 14 15-16=-46/32, 16-1 31-32=-109/265, 28 29-30=-109/265, 28 29-30=-109/265, 26 24-26=-109/266, 23 22-23=-107/264, 21 20-21=-107/264, 21 18-19=-107/264 3-26=-237/56, 7-27= 5-29=-141/81, 4-30= 10-24=-237/46, 11-2 12-22=-130/70, 13-2 14-20=-136/76, 15-3 -32=-349/155, 15-1 -32=-349/155, 15-1 -32=-32=-32+1 -32=-32+1 -32=-32=-32+1 -32=-32=-32+1 -32=-32+1 -32=-32=-32+1)/33, 2- 184/81 53/75, 13=-14 55=-22 7=0/33, -31=-10 -29=-11 -27=-10 -22=-10 -22=-10 -22=-10 -22=-10 -23=-16 21=-14 19=-153	3=-51/31, , 5-6=-153/60, 9-10=-153/75, 4/37, 0/82, 16-18=-129/6 09/265, 09/265, 09/266, 09/266, 07/264	, 55 71, 180,	4) 5) 6) 7) 8) 9) 10) 11) 12)	TCLL Plate DOL= Cs=1 Unba desig This t load o overh All pla Gable Truss brace Gable This t chorc * This on the on the on the chorc	: ASCE DOL=' =1.15); .00; Ct: .00; Ct: .1anced in. truss ha of 12.0 hangs n ates are e requirs s to be f e d again e studs truss ha d live los s truss l e botto 00 tall	E 7-16 1.15); Is=1.0 =1.10 snow as bee psf or ion-coi e 2x4 I res cor fully sh nst late space as bee ad nor has be m cho hov 2-0	; Pr=20.0 psf (ror Pf=20.0 psf (Lur); Rough Cat B; I loads have been in designed for g 1.00 times flat in ncurrent with oth MT20 unless oth ntinuous bottom neathed from on- eral movement (ad at 2-0-0 oc. in designed for a in concurrent with pen designed for d in all areas with 0-00 wide will fit	of LL: Lum n DOL=1.1 Fully Exp.; (n considere preater of m poof load of ; ier live load nerwise indi- chord bear e face or se i.e. diagona 10.0 psf br any other I a live load here a recta between th	DOL=1.15 5 Plate Ce=0.9; d for this in roof live 20.0 psf on is. cated. ing. curely il web). bottom ive loads. of 20.0psf angle te bottom
FORCES	Max Grav (lb) - Maxin Tension	20=-51 (LI 22=-45 (LC 24=-5 (LC 29=-59 (LC 31=-162 (I 18=277 (L 20=188 (L 22=194 (L 22=194 (L 22=194 (L 22=194 (L 231=225 (L num Com	C 15), 21=-59 (LC 15 C 15), 23=-81 (LC 15 15), 26=-15 (LC 14), C 14), 28=-46 (LC 14 C 14), 30=-51 (LC 14 LC 14), 32=-26 (LC 1 C 28), 19=219 (LC 3 C 31), 21=193 (LC 2) C 6), 26=346 (LC 5), C 21), 28=196 (LC 3) C 30), 30=188 (LC 3) C 30), 32=285 (LC 2) pression/Maximum), N, 1)), 1)), 2) (), 2) (), 2) (), 2) (), 2) (), 2) (), 2) (), 3) (), 3) (), 3)	OTES Unbalanced this design. Wind: ASCE Vasd=103mj II; Exp B; En and C-C Ext to 11-3-8, Ex 17-3-8 to 26- cantilever lef right exposed for reactions DOL=1.60 Truss design only. For stu see Standard or consult qu	roof live loads have 7-16; Vult=130mph oh; TCDL=6.0psf; B closed; MWFRS (er erior(2E) -0-10-8 to 3-8, Exterior(2E) 26 t and right exposed d;C-C for members shown; Lumber DC red for wind loads in ids exposed to wind d Industry Gable En ialified building desi	been of (3-sec CDL=6 velope 2-3-8, 1 17-3-8 5-3-8 to ; end v and for bL=1.60 the pla (norm d Deta gner as	considered for ond gust) .0psf; h=25ft;) exterior zonu Interior (1) 2-3 3, Interior (1) 2-3 3, Interior (1) 2-3 4, Interior (1) 2-3 5, Particle (1) 2-3 4, Interior (1)	I cat. e -8 d S S s , le, I 1.	LOA	chorc D CA	and au SE(S)	ny oth Stand	SEA 0363	IL EFFRER IL BEER	0.0psf.

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

April 29,2025

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	B02	Common	1	1	Job Reference (optional)	173034345

TCDL

BCLL

BCDL

WEBS

WEBS

WEBS

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:12:57 ID:3gt72?jsKsETynB742jdExzuUJS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

G mmm April 29,2025

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	B03	Common Girder	1	3	Job Reference (optional)	173034346

Scale = 1:70

Run: 8.73 E Jan 17 2024 Print: 8.730 E Jan 17 2024 MiTek Industries, Inc. Mon Apr 28 15:28:45 ID:FbcZ3CTlkw2gOJx2i3q9k?zuUIU-oZ4f2tSrwQZ?PdbBsB4vkswPR4zLOjc0SE8YaHzM8k1 Page: 1

Plate Offsets (X, Y): [2:1-0-8,Edge], [4:0-3-8,0-3-0], [6:0-2-4,0-3-0], [11:0-3-8,0-4-12], [13:0-	-4-12,0-5-0], [14:0-3-8,0-4-4], [15:0-3-8,0-4-0]
---	--

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 NO IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.96 0.85 0.93	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.20 -0.37 0.10	(loc) 10-11 10-11 9	l/defl >999 >924 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 672 lb	GRIP 244/190 244/190 FT = 20%		
LUMBER TOP CHORD 2x4 SP 2400F 2.0E BOT CHORD 2x6 SP 2400F 2.0E WEBS 2x4 SP No.3 *Except* 13-5:2x4 SP No.1, 16-2:2x4 SP 2400F 2.0E, 15-2,4-14,6-11:2x4 SP No.2 OTHERS 2x4 SP No.3 SLIDER Right 2x6 SP 2400F 2.0E 4-0-0 BRACING TOP CHORD Structural wood sheathing directly applied or 4-2-11 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. BACTIONS (//jcira)			N(1) 2x4 2) d or	3-ply truss to (0.131"x3") n Top chords c oc. Bottom chord staggered at Web connect All loads are except if note CASE(S) sec provided to d unless otherv	be connected tog ails as follows: connected as follow ds connected as fo 0-4-0 oc. ted as follows: 2x4 considered equally ad as front (F) or bi ction. Ply to ply cor istribute only loads wise indicated.	ether wi vs: 2x4 llows: 2 - 1 row y applie ack (B) nnection s noted	th 10d 1 row at 0-9- x6 - 3 rows at 0-9-0 oc. d to all plies, face in the LC s have been as (F) or (B),	-0 DAD	 12) * Th on 1 3-00 choi 13) Beausir usir des 14) Probeausir 16. 15) Har probeausir lb d 	his truss he botto 5-00 tall rd and a iring at jung ANSI/ igner sh vide me- ring plat nger(s) o vided su own and	has be om cho by 2-0 ny oth oint(s) TPI 1 ould ve chanic re capa or othe fficient 1 633 II	een designed for rd in all areas wh 0-00 wide will fit er members. 16 considers pa angle to grain fo erify capacity of I al connection (by able of withstand r connection dev t to support conc b up at 4-1-8, 14	a live load of 20.0psf here a rectangle between the bottom rallel to grain value rmula. Building bearing surface. y others) of truss to ing 485 lb uplift at joint ice(s) shall be tentrated load(s) 2853 483 lb down and 163			
REACTIONS	bracing. TIONS (lb/size) 9=13161/0-3-8, (min. 0-3-6), 16=11359/0-3-8, (min. 0-1-8) Max Horiz 16=238 (LC 9) Max Uplift 16=-485 (LC 12) Max Grav 9=14476 (LC 6), 16=11488 (LC 22)			3) 4) 222)	Unbalanced roof live loads have been considered for this design.Ib up at 6-0-12, 1570 lb down and 156 lb 1575 lb down and 156 lb and 151 lb up at 12-0-12Wind: ASCE 7-16; Vult=130mph (3-second gust)1575 lb down and 156 lb and 151 lb up at 12-0-12Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.14-0-12, 1717 lb down andII; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left anddown at 18-0-4, 2015 lb at 22-0-4, 2015 lb down							570 lb down and 156 lb up at 10- 12-0-12, 1662 lb lown and 140 lb 2015 lb down at 9 down at 22-10-	160 lb up at 8-0-12, -0-12, 1602 lb down down and 145 lb up at up at 15-9-4, 2015 lb 20-0-4, 2015 lb down -4, and 2015 lb down			
TOP CHORD	(lb) - Max. (lb) or less 2-3=-1629 4-5=-1195 7-8=-1964	Comp./Ma except wh 2/592, 3-4 4/0, 5-6=-1 9/0, 8-9=-9	ax. Ten All forces 2 hen shown. =-14670/46, 11975/0, 6-7=-16153, 9342/0. 2-16=-10904.	50 5) /0, /432	right exposed; Lumber DOL=1.60 plate grip DOL=1.60 at 24-10 chord. Ti 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15; Pf=20.0 psf (Lum DOL=1.15 Plate							at 24-10-4, and 2015 lb down at 26-10-4 on bottom chord. The design/selection of such connection device (s) is the responsibility of others 111111111111111111111111111111111111				
BOT CHORD	16-21=-32 15-22=-56 14-23=-56 24-25=0/12 12-13=0/12 11-26=0/12 27-28=0/19 10-29=0/19 30-31=0/19	4/2348, 15 4/13589, 2 4/13589, 1 2071, 13-2 3306, 12-2 3306, 11-2 5903, 28-2 5903, 10-3 5903, 9-31	5-21=-324/2348, 22-23=-564/13589, 4-24=0/12071, 25=0/12071, 25=0/1306, 27=0/15903, 29=0/15903, 30=0/15903	6) 7) 8) 9)	Cs=1.00; Ct= Unbalanced : design. This truss ha load of 12.0 p overhangs no All plates are The Fabricati	show loads have b s been designed for osf or 1.00 times fit on-concurrent with MT20 plates unle ion Tolerance at jo	or great or great at roof le other li ss other int 13 =	nsidered for the er of min roof pad of 20.0 ps /e loads. wise indicate 8%	9; his f live usf on ed. 036322				L 22			
WEBS	5-13=0/129 3-14=-2160 4-14=-760 6-13=-644 7-10=0/459	/12962, 2-15=-256/11422, Plate must be within 1/4 in of bearing surprised by the plate must be a					urface.) psf bottom other live loa	ə. ds.				ALC A. C	EER. Kunn			

April 29,2025

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quility Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)

Job	Truss	Truss Type		Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	B03	Common Girder		1	3	Job Reference (optional)	173034346
Carter Components (Sanford, NC	C), Sanford, NC - 27332,	Run:	8.73 E Jan 17 2	2024 Print: 8.	730 E Jan 17	2024 MiTek Industries, Inc. Mon Apr 28 15:28:45	Page: 2

Run: 8,73 E Jan 17 2024 Print: 8,730 E Jan 17 2024 MiTek Industries, Inc. Mon Apr 28 15:28:45 ID:FbcZ3CTlkw2gOJx2i3q9k?zuUIU-oZ4f2tSrwQZ?PdbBsB4vkswPR4zLOjc0SE8YaHzM8k1

LOAD CASE(S) Standard

- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15
 - Uniform Loads (lb/ft)
 - Vert: 1-2=-58, 2-5=-58, 5-9=-58, 16-17=-19 Concentrated Loads (lb)
- Vert: 12=-1590 (B), 13=-1529 (B), 21=-2853 (B), 22=-1483 (B), 23=-1438 (B), 24=-1437 (B), 25=-1484 (B), 26=-1741 (B), 27=-1741 (B), 28=-1741 (B), 29=-1741 (B), 30=-1741 (B), 31=-1741 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	C01	Hip Girder	1	2	Job Reference (optional)	173034347

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:12:58 ID:7FKdqaJxDQ1LKkrDf?ITkezuo3z-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 3-4. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing **REACTIONS** (size) 2=0-3-8. 5=0-3-8 Max Horiz 2=-38 (LC 13) Max Uplift 2=-166 (LC 12), 5=-166 (LC 13) Max Grav 2=1100 (LC 37), 5=1100 (LC 37) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/35, 2-3=-1787/269, 3-4=-1519/264, 4-5=-1782/267, 5-6=0/35 BOT CHORD 2-8=-217/1545, 7-8=-217/1520, 5-7=-183/1541 WEBS 3-8=0/367, 3-7=-80/71, 4-7=-3/369 NOTES 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-7-0 oc, Except member 3-7 2x4 - 1 row at 0-9-0 oc. All loads are considered equally applied to all plies, 2)

Loading

TCLL (roof)

Snow (Pf)

TCDL

BCLL

BCDL

except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 5) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 6) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live 7) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom 9)
- chord live load nonconcurrent with any other live loads.

10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 5. This connection is for uplift only and does not consider lateral forces.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 13) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 306 Ib down and 55 lb up at 4-0-0, and 306 lb down and 55 Ib up at 7-11-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

818 Soundside Road

Edenton, NC 27932

Increase=1.15

Uniform Loads (lb/ft)

Concentrated Loads (lb)

15=-94 (B), 16=-43 (B)

Vert: 1-3=-60, 3-4=-60, 4-6=-60, 9-12=-20

Vert: 4=-94 (B), 8=-306 (B), 7=-306 (B), 3=-94 (B),

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	C02	Common	3	1	Job Reference (optional)	173034348

6-0-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

TCDL

BCLL

BCDL

WEBS

WEBS

NOTES

1)

2)

0-10-8

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:12:58 ID:WabKM7rMyGEZCuwxHOvYkJyM7xc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12-0-0

Page: 1

2-10-8

818 Soundside Road Edenton, NC 27932

MANDER IN THE

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	CJ01	Diagonal Hip Girder	1	1	Job Reference (optional)	173034349

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:12:58 ID:2XSQcU3kIP_uGGOvF7IIoSyNcHr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:41.9

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2021	/TPI2014	CSI TC BC WB Matrix-MP	0.15 0.09 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 6 6-7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 35 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sh 5-6-6 oc purlins, e Rigid ceiling directl bracing. (size) 5= Mech Max Horiz 7=132 (L Max Uplift 5=-62 (L Max Grav 5=289 (L (Ib) - Maximum Con Tension 2-7=-371/71, 1-2=0	eathing directly applie kcept end verticals. y applied or 10-0-0 or anical, 7=0-4-9 .C 9) C 9), 7=-59 (LC 12) C 19), 7=394 (LC 19 npression/Maximum /35, 2-3=-293/49,	6) ed or 8) c 10) () 11) 12)	* This truss h on the bottor 3-06-00 tall b chord and ar All bearings : Refer to girdd Provide mec bearing plate 5. 0 One H2.5A S recommende UPLIFT at jt(does not con " "NAILED" ino (0.148"x3.25 0 In the LOAD of the truss a	has been designed in chord in all areas by 2-00-00 wide will by other members. are assumed to be er(s) for truss to tru- hanical connection e capable of withsta Simpson Strong-Tie ed to connect truss s) 7. This connecti sider lateral forces dicates 3-10d (0.14 ") toe-nails per ND CASE(S) section, ire noted as front ()	for a liv s where I fit betv User D uss conr (by oth anding 6 conne to bear on is for 8"x3") c S guidli loads a F) or ba	e load of 20.0 a rectangle veen the botto efined . ections. ers) of truss t 2 lb uplift at j ctors ng walls due uplift only ar r 2-12d hes. opplied to the f ck (B).	Dpsf om to oint to nd						
BOT CHORD WEBS	3-4=-72/32, 4-5=-1 6-7=-128/17, 5-6=- 2-6=-27/227, 3-6=-	00/28 83/218 4/93. 3-5=-274/84	LO 1)	AD CASE(S) Dead + Sno	Standard ow (balanced): Lum	nber Inc	rease=1.15, F	Plate						
NOTES 1) Wind: AS Vasd=103 II; Exp B; cantilever right expo 2) TCLL: AS Plate DOI DOL=1.19 CS=1.00	CE 7-16; Vult=130mp 3mph; TCDL=6.0psf; E Enclosed; MWFRS (e left and right exposed used; Lumber DOL=1. GCE 7-16; Pr=20.0 psf L=1.15); Pf=20.0 psf (5); Is=1.0; Rough Cat Ct=1 10	h (3-second gust) 3CDL=6.0psf; h=25ft; nvelope) exterior zor d; end vertical left an 60 plate grip DOL=1.1 (roof LL: Lum DOL=1.15 Plate B; Fully Exp.; Ce=0.9	Cat. ne; d 60 1.15	Vert: 1-2: Concentrate Vert: 6=1	ads (lb/ft) =-60, 2-4=-60, 5-7= ed Loads (lb) (F=0, B=0)	=-20				Marin Marin		ORTH CA	ROLIN	7
 3) Unbalanc design. 4) This truss 	ed snow loads have b has been designed for	een considered for th or greater of min roof	nis live							IIII.		0363	22	
load of 12 overhang 5) This truss	2.0 psf or 1.00 times fla s non-concurrent with s has been designed for	at roof load of 20.0 ps other live loads. or a 10.0 psf bottom	sf on									A SNGIN	EERER	

- 2 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

GI 11111111 April 29,2025

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	CJ02	Diagonal Hip Girder	1	1	Job Reference (optional)	173034350

5-4-4

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:12:58 ID:xZDM0gJvpsevHVVyz1AD8uyNcHW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-4-4

Scale = 1:37.3

Loading	(psf)	Spacing	2-0-0		CSI	0.83	DEFL	in -0.04	(loc)	l/defl	L/d	PLATES	GRIP
Spow (Pf)	20.0		1.15		BC	0.00	Vert(CT)	-0.04	4-5	~771	180	101120	244/130
	10.0	Ren Stress Incr	NO		WB	0.00	Horz(CT)	0.00	4-J 4	//2	n/a		
BCLL	0.0*	Code	IRC2021	/TPI2014	Matrix-MP	0.00	11012(01)	0.00	-	Π/α	Π/a		
BCDL	10.0	Code	11(02021	/1112014								Weight: 31 lb	FT = 20%
LUMBER			6)	* This truss I	nas been designed	d for a liv	e load of 20.0	Opsf					
TOP CHORD	2x4 SP No.2		,	on the bottor	m chord in all area	s where	a rectangle						
BOT CHORD	2x4 SP No.2			3-06-00 tall I	oy 2-00-00 wide w	ill fit betv	veen the bott	om					
WEBS	2x4 SP No.3			chord and a	ny other members.								
BRACING			7)	All bearings	are assumed to be	e User D	efined .						
TOP CHORD	Structural wood sheat 5-4-4 oc purlins. exce	thing directly applie ept end verticals.	edor 8) 9)	Refer to gird Provide med	er(s) for truss to tr hanical connection	uss conr n (by oth	nections. ers) of truss t	0					
BOT CHORD	Rigid ceiling directly a bracing.	applied or 10-0-0 or	;	bearing plate capable of withstanding 58 lb uplift at joint 4.									
REACTIONS	bracing. bracing. 1 REACTIONS (size) 4= Mechanical, 5=0-4-9 1 Max Horiz 5=129 (LC 9) Max Uplift 4=-58 (LC 12), 5=-58 (LC 12) Max Uplift 4=-58 (LC 12), 5=-58 (LC 12) Max Uplift 4=-58 (LC 12), 5=-200 (LC 12)				 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This connection is for uplift only and does not consider lateral forces. 11) INUE TOTIL TOTILOTTICATION TOTILI TOTIL								
FORCES	(lb) - Maximum Comp	pression/Maximum	11,	(0.148"x3.25	5") toe-nails per NE	u v v v v v v v v v v v v v v v v v v v	nes.						
	2-5349/76 1-2-0/43	2 2-3115/76	12	In the LOAD	CASE(S) section,	, loads a	pplied to the i	ace					
	3-4=-227/65	2, 2 0= 110/10,			Standard	(F) 01 ba	СК (D).						
BOT CHORD	4-5=-125/17			AD CASE(S)	Standard								
WEBS	2-4=-15/99		1)	Dead + Shi	ow (balanced): Lui	mber inc	rease=1.15, 1	Plate					
NOTES					ads (lb/ft)								
1) Wind AS	CE 7-16 [.] Vult=130mph ()	3-second gust)		Vert: 1-2	=-60 2-3=-60 4-5	5=-20							
 Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 				Concentrat Vert: 8=1	ed Loads (lb) 1 (F=0, B=0)	- 20					an an	WITH CA	ROLIN

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 3) design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Type Qty Ply		117 Eagle Creek - Norman B - Roof	
25040116	CJ02T	Diagonal Hip Girder	1	1	Job Reference (optional)	173034351

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:12:58 ID:PmnkE0KXaAmmve48XkhSh5yNcHV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:42.2 Plate Offsets (X, Y): [6:0-2-6.0-2-6]

· · · ·		
Loading (psf) Spacing 2-0-0 CSI DEFL in (h TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.15 Vert(LL) -0.01 Vert(LL) -0.01 TC 0.15 Vert(CT) -0.01 Vert(CT) -0.01 TC 0.11 Vert(CT) -0.01 TC TC 0.13 Vert(CT) -0.01 TC TC 0.13 Vert(CT) 0.01 TC	(loc) I/defl L/d 7 >999 240 7-8 >999 180 5 n/a n/a	PLATES GRIP MT20 244/190 Weight: 37 lb FT = 20%
 LUMBER TOP CHORD 2x4 SP No.2 *Except* 7-3:2x4 SP No.3 2x4 SP No.2 *Except* 7-3:2x4 SP No.3 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 5-4-4 oc purlins, except and verticals. BOT CHORD Rigid celling directly applied or 10-0-0 cb bracing. REACTIORS (size) 5= Mechanical, 8=0-4-9 Max Horiz 8=114 (LC 9) Max Grav 5=277 (LC 19), 8=399 (LC 19) Max Grav 5=277 (LC 19), 8=399 (LC 19) Max Grav 5=277 (LC 19), 8=399 (LC 19) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 2-8=-364/91, 1-2=0/42, 2-3=-418/73, -3-4=-56/25, 4-5=-80/27 BOT CHORD 2-8=-364/91, 1-2=0/42, 2-3=-418/73, -3-4=-56/25, 4-5=-80/27 BOT CHORD 2-8=-364/91, 1-2=0/42, 2-3=-418/73, -3-4=-56/25, 4-5=-80/27 MOTES MOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6-0.98; th=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 ps (root LL: um DOL=1.15 Plate DOL=1.15); I=1-0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for greater of min roof live load of 12.0 ps for 1.00 times flat roof load of 20.0 ps for 		SEAL 036322

- Unbalanced snow loads have been considered for this 3) design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on 4) overhangs non-concurrent with other live loads.

818 Soundside Road Edenton, NC 27932

minin April 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust structure Bucking Component Advancement and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	CJ03	Diagonal Hip Girder	2	1	Job Reference (optional)	173034352

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:12:58 ID:J6zMZWEAeaGCcpO3JIB3UNzuo43-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

|-1-2-14| 2-7-8 5-6-6 |-2-14| 2-7-8 2-10-14 |-2-14| 4.24

. .

Scale = 1:38.9

Plate Offsets (X, Y): [2:0-1-15,0-5-4]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2021	/TPI2014	CSI TC BC WB Matrix-MP	0.17 0.15 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01 0.00	(loc) 5-6 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASCE Vasd=103m II; Exp B; Er cantilever le right expose DOL=1.15); Cs=1.00; Ct 3) Unbalanced design. 4) This truss ha load of 12.0 overhangs n	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood sh 5-6-6 oc purlins, e Rigid ceiling direct bracing. size) 2=0-4-9, Aax Horiz 2=93 (LC Aax Uplift 2=-88 (L Aax Grav 2=429 (I (lb) - Maximum Co Tension 1-2=0/37, 2-3=-391 4-5=-107/27 2-6=-60/347, 5-6=- 3-6=-0/104, 3-5=-38 E 7-16; Vult=130mp ph; TCDL=6.0psf; I nclosed; MWFRS (e ft and right exposer ad; Lumber DOL=1. E 7-16; Pr=20.0 psf (1s=1.0; Rough Cat i=1.10 I snow loads have to as been designed ff psf or 1.00 times ff	eathing directly applie xcept end verticals. y applied or 10-0-0 oc 5= Mechanical C 11) C 8), 5=-50 (LC 12) .C 19), 5=292 (LC 19) mpression/Maximum /56, 3-4=-53/27, 60/347 80/87 h (3-second gust) 3CDL=6.0psf; h=25ft; envelope) exterior zon d; end vertical left and 60 plate grip DOL=1.6 (roof LL: Lum DOL=1 Lum DOL=1.15 Plate B; Fully Exp.; Ce=0.9 even considered for th or greater of min roof at roof load of 20.0 ps other live loads.	5) 6) 10) 10) 11) 12) 10) 11) 11) 12) 10) 11) 11) 12) 10) 11) 11) 12) 10) 11) 12) 10) 11) 11) 12) 10) 11) 11) 12) 10) 11) 11) 12) 10) 11) 11) 12) 10) 11) 11) 11) 12) 10) 11) 11) 11) 12) 10) 11) 11) 11) 11) 11) 11) 11	This truss ha chord live loc * This truss h on the bottor 3-06-00 tall k chord and ar All bearings Refer to gird Provide mec bearing plate 5. () One H2.5A S recommende UPLIFT at jtd does not cor "NAILED" ini (0.148"x3.25 In the LOAD of the truss a AD CASE(5) Dead + Smd Increase=1 Uniform Lo Vert: 1-4 Concentrat Vert: 6=-	as been designed as been designed ad nonconcurrent has been designe n chord in all area by 2-00-00 wide w hy other members are assumed to b er(s) for truss to th hanical connection e capable of withs Simpson Strong-T ed to connect trus (s) 2. This connect isider lateral force (cates 3-10d (0.1 ") toe-nails per NI CASE(S) section are noted as front Standard bw (balanced): Lu .15 ads (lb/ft) =-60, 5-7=-20 ed Loads (lb) 18 (F=-9, B=-9)	for a 10.0 with any d for a liv as where vill fit betw s. e User D russ conr on (by oth tanding 5 Tie connec is to bear tion is for s. 148"x3") c DS guidlin h, loads ap (F) or ba) psf bottom other live loa e load of 20. a rectangle veen the bott efined . ections. ers) of truss 0 lb uplift at ctors ing walls due uplift only at or 2-12d nes. oplied to the ck (B). rease=1.15,	ads. Opsf om to joint e to nd face Plate				SEA 0363	EER. AL

April 29,2025

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Aff 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	D01	Monopitch	9	1	Job Reference (optional)	173034353

6-0-8 6-0-8

12 3 Г

9

5-11-0 5-11-0

8

-0-10-8 0-10-8

2

-

Ă

3x5 =

Carter Components (Sanford, NC), Sanford, NC - 27332,

2-0-6

0-5-15

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:12:58 ID:9uJsuE?u7ylsekqE_v7MDryM7xQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 II

Page: 1

3 0 1-8-9 0-3-8 4 2x4 II 6-0-8

Scale = 1:30.1													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.75 0.50 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.15 0.02	(loc) 4-7 4-7 2	l/defl >894 >474 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=103n II; Exp B; E and C-C Ey to 2-10-12, cantilever la right exposs for reaction DOL=1.60 2) TCLL: ASC Plate DOL= DOL=1.60; 2) Unbalanced design. 4) This truss f chord live la	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-3-8, 4 Max Horiz 2=66 (LC Max Uplift 2=-68 (LC Max Uplift 2=-68 (LC Max Grav 2=390 (LC (lb) - Maximum Com Tension 1-2=0/18, 2-3=-119/ 2-4=-86/127 E 7-16; Vult=130mph mph; TCDL=6.0psf; Br inclosed; MWFRS (er kterior(2E) 2-10-12 eft and right exposed ed;C-C for members - is shown; Lumber DO CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L =1.15); Pf=20.0 psf (L =1.15); of 1.00 times fla show loads have be has been designed for 0 psf or 1.00 times fla show loads have be has been designed for 0 psf or 1.00 times fla	athing directly applie cept end verticals. applied or 10-0-0 oc 4=0-1-8 13) : 10), 4=-41 (LC 14) C 21), 4=304 (LC 21) pression/Maximum 55, 3-4=-219/163 (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zone 2-1-8, Interior (1) 2-1 to 5-10-12 zone; ; end vertical left and forces & MWFRS L=1.60 plate grip roof LL: Lum DOL=1 um DOL=1.15 Plate conf LL: Lum DOL=1 um DOL=1.15 Plate conf LL: Lum DOL=1 it roof load of 20.0 psi ther live loads. r a 10.0 psf bottom th any other live load	6) * This truss on the botto 3-06-00 tall chord and a 7) Bearing at j using ANSI designer sh 8) Provide me bearing pla 9) One H2.5A recommend UPLIFT at j and does n LOAD CASE(S	has been designed om chord in all area by 2-00-00 wide wi iny other members. oint(s) 4 considers (TPI 1 angle to grai ould verify capacity chanical connection te at joint(s) 4. Simpson Strong-Ti led to connect truss t(s) 2 and 4. This or of consider lateral fo) Standard	d for a liv s where ill fit betv parallel t n formuli of bearin h (by oth e connectio orces.	e load of 20. a rectangle veen the bott o grain value a. Building ng surface. ers) of truss i ctors ing walls due n is for uplift	Opsf om to to only				SEA 0363	L 22 EFFR-FR- 129,2025	
Design va a truss sy building d is always	NG - Verify design parameter alid for use only with MiTeko rstem. Before use, the build lesign. Bracing indicated is required for stability and to	ers and READ NOTES ON T connectors. This design ing designer must verify th to prevent buckling of indi prevent collapse with poss	THIS AND INCLUDED MITEK is based only upon parameter e applicability of design parar vidual truss web and/or chord sible personal injury and prop	REFERENCE PAGE MII- s shown, and is for an in neters and properly incou members only. Additior rety damage. For genera	7473 rev. 1 Idividual bu Iporate this nal tempora	/2/2023 BEFORE illding component design into the ary and permane	E USE. nt, not overall ent bracing						

is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	D02	Monopitch	5	1	Job Reference (optional)	173034354

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:12:58 ID:2fZNjb2PAAFI6L80DICINhyM7xM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:27.3

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2021/	/TPI2014	CSI TC BC WB Matrix-MP	0.74 0.51 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.15 0.02	(loc) 3-6 3-6 1	l/defl >854 >463 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=0-3-8, 3 Max Horiz 1=60 (LC Max Uplift 1=-32 (LC Max Grav 1=300 (LC (Ib) - Maximum Com Tension 1-2=-76/54, 2-3=-21: 1-3=-138/149	athing directly applied cept end verticals. applied or 10-0-0 oc 3=0-1-8 13) 2 10), 3=-40 (LC 14) C 21), 3=300 (LC 21) apression/Maximum 5/164	6) 7) d or 8) LO	Bearing at jo using ANSI/T designer sho Provide mecl bearing plate One H2.5A S recommende UPLIFT at jt(and does not AD CASE(S)	Int(s) 3 considers P[1 angle to grai uld verify capacity nanical connection at joint(s) 3. simpson Strong-Ti d to connect truss s) 1 and 3. This co consider lateral for Standard	parallel t n formula v of beari n (by oth- e connect to beari ponnection porces.	o grain value a. Building ng surface. ers) of truss t ctors ng walls due n is for uplift (o to only						
 NOTES Wind: ASC Vasd=103r II; Exp B; E and C-C E: exposed; a members a Lumber DC TCLL: ASC Plate DOL: DOL=1.15 Cs=1.00; C Unbalance design. This truss I chord live I This truss on the bott 3-06-00 tal chord and 	CE 7-16; Vult=130mph mph; TCDL=6.0psf; Bu Enclosed; MWFRS (er xterior(2E) zone; canti end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO CE 7-16; Pr=20.0 psf (L); Is=1.0; Rough Cat B Ct=1.10 ed snow loads have be has been designed for load nonconcurrent wi s has been designed for load nonconcurrent wi s has been designed for load nonconcurrent wi s has been designed for load nonconcurrent with thas has has has has has has has has has	(3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zone ilever left and right ght exposed;C-C for for reactions shown; vL=1.60 m DOL=1.15 Plate 8; Fully Exp.; Ce=0.9; even considered for thi r a 10.0 psf bottom th any other live load or a live load of 20.0g where a rectangle fit between the bottom	Cat. 9 15 s s. osf m							Withhar		SEA 0363	L L L L BER L BER L	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

April 29,2025

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	D03	Monopitch Supported Gable	2	1	Job Reference (optional)	173034355

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:12:58 ID:YZUKun89W7GKeanXr32B9hzuo4B-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2x4 II

5-11-0

Scale = 1:28.3	3		I			1			
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2021/TPI2014	CSI TC 0.11 BC 0.06 WB 0.05 Matrix-MP	DEFLinVert(LL)n/aVert(CT)n/aHorz(CT)0.00	(loc) - - 2	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she 5-11-0 oc purlins, e Rigid ceiling directly bracing. (size) 2=5-11-0, 8=5-11-0 Max Horiz 2=62 (LC Max Uplift 2=-37 (LC (LC 10), E Max Grav 2=208 (LC 7=125 (LC 	athing directly applied xcept end verticals. applied or 10-0-0 oc 6=5-11-0, 7=5-11-0, 10) 2 10), 6=-5 (LC 14), 7: 3=-48 (LC 14) 2 21), 6=28 (LC 21), 2 21), 8=299 (LC 21)	 3) TCLL: ASCI Plate DOL= DOL=1.15); Cs=1.00; Ct 4) Unbalanced design. 5) This truss hi load of 12.0 overhangs r 6) Gable requi 7) Gable studs 8) This truss hi chord live lo 9) * This truss on the botto 3-06-00 tall chord and a 	E 7-16; Pr=20.0 psf (roof LL 1.15); Pf=20.0 psf (Lum DC Is=1.0; Rough Cat B; Fully i=1.10 I snow loads have been cor as been designed for great psf or 1.00 times flat roof I non-concurrent with other li res continuous bottom chor is spaced at 2-0-0 oc. as been designed for a 10.0 has been designed for a 10.0 has been designed for a liv m chord in all areas where by 2-00-00 wide will fit betw ny other members.	L: Lum DOL=1.15 DL=1.15 Plate Exp.; Ce=0.9; hsidered for this er of min roof live oad of 20.0 psf on ve loads. d bearing. 0 psf bottom other live loads. re load of 20.0psf a rectangle veen the bottom				
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS Vasd=10: II; Exp 8; and C-C I to 2-9-4, I and right MWFRS i grip DOL 2) Truss des only. For see Stand or consult	(lb) - Maximum Com Tension 0 1-2=0/17, 2-3=-85/3 5-6=-19/15 0 2-8=-41/40, 7-8=0/0 3-8=-224/175, 4-7=- 3CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Bi Enclosed; MWFRS (er Exterior(2E) -0-10-8 to Exterior(2E) 2-9-4 to 5- exposed ;C-C for mem for reactions shown; Lu =1.60 signed for wind loads in r studs exposed to wind dard Industry Gable En It qualified building designed	pression/Maximum 9, 3-4=-35/16, 4-5=-1. , 6-7=0/0 110/98 (3-second gust) CDL=6.0psf; h=25ft; 0 ivelope) exterior zone 2-1-8, Interior (1) 2-1- 9-4 zone; cantilever le bers and forces & imber DOL=1.60 plate the plane of the truss (normal to the face), d Details as applicabl gner as per ANSI/TPI	LOAD CASE(S) 2/3, Cat. 8 8 9ft 9 9 8 9 9 8 9 1.) Standard			Contraction of the second second	SEA 0363	ROWN HUMBER

> April 29,2025 818 Soundside Road Edenton, NC 27932

G minim

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	J01	Jack-Open	17	1	Job Reference (optional)	173034356

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:12:59 ID:HX1F3NN1eOGCNGNvmamOrxyNcHR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:27.7
---------	--------

Scale = 1.27.7														
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/T	PI2014	CSI TC BC WB Matrix-MR	0.35 0.20 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.02 -0.02	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=103 II; Exp B; I and C-C E exposed ; members : Lumber DOL Plate DOL DOL=1.15 Cs=1.00; (3) Unbalance design. 4) This truss load of 12. overhangs 5) This truss chord live	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) 3= Mecha 5=0-3-8 Max Horiz 5=104 (LC Max Uplift 3=-75 (LC Max Uplift 3=-75 (LC Max Grav 3=166 (LC (LC 21) (lb) - Maximum Com Tension 2-5=-318/99, 1-2=0/: 4-5=0/0 CE 7-16; Vult=130mph mph; TCDL=6.0psf; Br Enclosed; MWFRS (er end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L =1.15); Pf=20.0 psf (L ct=1.10 ed snow loads have be has been designed for .0 psf or 1.00 times flat is non-concurrent with c has been designed for load nonconcurrent with c	athing directly applie cept end verticals. applied or 10-0-0 oc unical, 4= Mechanica C 14) C 21), 4=72 (LC 7), 5 apression/Maximum 57, 2-3=-119/71 (3-second gust) CDL=6.0psf; h=25ft; tvelope) exterior zon liever left and right ght exposed;C-C for for reactions shown; JL=1.60 roof LL: Lum DOL=1 um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9 een considered for th r greater of min roof t roof load of 20.0 ps ther live loads. r a 10.0 psf bottom th any other live loads.	6) * 0 3 7) A 8) F 5 3 1, LOAI 5=345 Cat. e .15 ; is live if on ds.	This truss h on the botton 3-06-00 tall b shord and an All bearings a Refer to girda pearing plate 3. D CASE(S)	as been designed a chord in all area y 2-00-00 wide w y other members are assumed to be er(s) for truss to tr anical connection capable of withst Standard	d for a liv is where ill fit betw e User Dr uss conn n (by oth tanding 7	e load of 20.0 a rectangle veen the botto efined . iections. ers) of truss t 5 lb uplift at j	Dpsf om oont				SEA 0363	ROLN L 22 ILBER	
												10111	C. C	

SINEEDING

April 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	J02	Jack-Open	9	1	Job Reference (optional)	173034357

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:12:59 ID:T0LGmOIThUrRcTxkilUS9byMbii-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-0-10-8 0-10-8 3-10-8 3-10-8 3 12 8 □ 3-7-0 3-7-0 2x4 II 2 1-0-0 1 5 \bigotimes 4 3x5 🛛

3-10-8

Scale 1.27 /

Scale = 1.27.4												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TF	PI2014	0.32 0.19 0.00 trix-MR	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.02 -0.02	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 3-10-8 oc purlins, e Rigid ceiling directly bracing. (size) 3= Mecha 5=0-3-8 Max Horiz 5=101 (LC Max Uplift 3=-73 (LC Max Grav 3=159 (LC	athing directly applie xcept end verticals. applied or 10-0-0 oc anical, 4= Mechanica C 14) C 14) C 21), 4=70 (LC 7), 5	6) *- or 3- ct 7) Rt be 3. 3. LOAD	This truss has be the bottom choi 06-00 tall by 2-0 ord and any othe efer to girder(s) f rovide mechanica aaring plate capa CASE(S) Star	een designed for a liv rrd in all areas where 00-00 wide will fit betv er members. for truss to truss conr al connection (by oth able of withstanding 7 ndard	e load of 20.0 a rectangle veen the botto nections. ers) of truss to '3 lb uplift at jo	Dpsf om o oint					
FORCES	(Ib) - Maximum Com Tension 2-5=-310/98, 1-2=0/	npression/Maximum 57, 2-3=-115/68										
 BOT CHORD NOTES 1) Wind: ASG Vasd=103 II; Exp B; and C-C E exposed ; members Lumber D 2) TCLL: AS Plate DOL 2) TCLL: AS Plate DOL 3) Unbalance design. 4) This truss load of 12 overhange 5) This truss chord live 	4-5=0/0 CE 7-16; Vult=130mph Benclosed; MWFRS (er Exterior(2E) zone; cant end vertical left and ri, and forces & MWFRS OL=1.60 plate grip DC CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L =1.15); Pf=20.0 psf (L =1.10; Rough Cat E Ct=1.10 ed snow loads have be has been designed fo load nonconcurrent with of load nonconcurrent with	(3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zon ilever left and right ght exposed;C-C for for reactions shown; D=1.60 iroof LL: Lum DOL=1 um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9 even considered for th r greater of min roof i t roof load of 20.0 ps other live loads. r a 10.0 psf bottom ith any other live loads	Cat. e .15 ; is f on ds.						Manna and and and and and and and and and		SEA 0363	EER. K

April 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	J02T	Jack-Open	6	1	Job Reference (optional)	173034358

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:12:59 ID:HX1F3NN1eOGCNGNvmamOrxyNcHR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.9

Loading	(p	osf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20	0.0	Plate Grip DOL	1.15		TC	0.40	Vert(LL)	0.05	7	>958	240	MT20	244/190
Snow (Pf)	20	0.0	Lumber DOL	1.15		BC	0.04	Vert(CT)	-0.07	7	>657	180		
TCDL	10	0.0	Rep Stress Incr	YES		WB	0.06	Horz(CT)	0.03	5	n/a	n/a		
BCLL	(0.0*	Code	IRC202	1/TPI2014	Matrix-MP							Mainht Of Ih	FT 000/
BCDL	10	0.0											weight: 21 lb	FT = 20%
LUMBER				5)	This truss ha	s been designed fo	r a 10.0) psf bottom						
TOP CHORD	2x4 SP No.2				chord live loa	d nonconcurrent w	ith any	other live loa	ids.					
BOT CHORD	2x4 SP No.2 *E	Except	* 7-3:2x4 SP No.3	6)	* This truss h	as been designed t	or a liv	e load of 20.	0psf					
WEBS	2x4 SP No.3				on the botton	1 chord in all areas	where	a rectangle	~ m					
BRACING	- ·				chord and an	y 2-00-00 wide will	ni beiv	een the boll	om					
TOP CHORD	Structural woo	d shea	thing directly applied	dor 7)	Refer to girde	er(s) for truss to true	ss conr	ections						
	3-10-8 oc puril Bigid coiling di	ins, ex	cept end verticals.	8)	Provide mech	nanical connection	(by oth	ers) of truss	to					
BOTCHORD	bracing.	necuy a		,	bearing plate	capable of withsta	nding 8	1 lb uplift at j	joint					
REACTIONS	(size) 4= N	Mechar	nical, 5= Mechanical,		4.	.								
	8=0-	-3-8		LC	DAD CASE(S)	Standard								
	Max Horiz 8=10	01 (LC	14)											
	Max Uplift 4=-8	31 (LC	14)											
	Max Grav 4=18	89 (LC	21), 5=33 (LC 7), 8=	=336										
FORCES	(LC) (LC)	21) 2 Comr	reasion/Mavimum											
FORCES	Tension	Comp	Jiession/Maximum											
TOP CHORD	2-8=-316/68, 1	-2=0/5	7, 2-3=-118/34,											
	3-4=-92/97													
BOT CHORD	7-8=-185/73, 6	6-7=-60	/49, 3-6=-50/74, 5-6	=0/0										
WEBS	2-7=-81/200													
NOTES		Omenh	(2. a a a a a d a wat)										minin	UIL.
1) Wind: ASC	JE 7-16; Vult=13	ocf: PC	(3-second gust)	Cat									I'''H CA	ROUL
II: Exp B· I	Enclosed: MWFR	RS (env	/elope) exterior zone									N	R	Chille .
and C-C E	Exterior(2E) zone:	; cantil	ever left and right									15	O' FESS	Diz Vil
exposed ;	end vertical left a	and rigl	ht exposed;C-C for								4	0	the 1	City
members	and forces & MW	VFRS f	or reactions shown;								-		2	K
Lumber D	OL=1.60 plate gr	rip DOL	_=1.60	45							-		SEA	L : E
2) TCLL: ASI	_1 15); Pf=20.0	J pst (ro	DOT LL: LUM DOL=1.	15							Ξ.		0262	
DOI = 1.15	5): Is=1 0: Rough	Cat B	Fully Exp · Ce=0.9								1	:	0363.	22 : :
Cs=1.00; (Ct=1.10	Ju. D,	·,,,,,								-	0		1 5
3) Unbalance	ed snow loads ha	ave bee	en considered for this	5							5	-	N. 64.	Airis
design.												25	GINI	EF. AN
4) This truss	has been design	ned for	greater of min roof li	ve								11	C	ILBE IN
overhands	s non-concurrent	with ∩t	her live loads	011									11, A. G	IL IIII
overnange														

April 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	J03	Jack-Open	2	1	Job Reference (optional)	173034359

-0-10-8

0-10-8

1-10-15

1-10-15

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:12:59 ID:IBXn85_LPF6uwBMZK9gf0_yNcHy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

IC?f

1-10-15

-			
Sca	<u>e</u> -	- 1	28

			-											
Loading		(psf)	Spacing Plate Grip DOI	2-0-0		CSI	0 15	DEFL	in 0.00	(loc)	l/defl	L/d	PLATES	GRIP
Spow (Pf)		20.0		1.15		BC	0.15	Vert(CT)	0.00	4-5	~999	180	101120	244/190
		10.0	Ren Stress Incr	YES		WB	0.00	Horz(CT)	0.00		>333 n/a	n/a		
BCLL		0.0*	Code	IRC2021	/TPI2014	Matrix-MR	0.00	11012(01)	0.00	0	Π/α	n/a		
BCDL		10.0	0000	1102021	1112011	Maanx Mite							Weight: 9 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structural 1-10-15 o Rigid ceili bracing. (size)	5.2 5.3 wood she c purlins, ng directly 3= Mecha 5=0-3-8	athing directly applie except end verticals. applied or 10-0-0 oc inical, 4= Mechanica	6) 7) d or 8) 9) : I, 10)	* This truss h on the botton 3-06-00 tall b chord and ar All bearings a Refer to girdd Provide mecl bearing plate and 38 lb upl One H2:5A S recommende UPLIFT at it/	as been designed n chord in all areas y 2-00-00 wide wil y other members. are assumed to be er(s) for truss to tru- nanical connection capable of withsta- ift at joint 3. simpson Strong-Tie d to connect truss s) 5. This connect	for a liv s where Il fit betv User D uss conr (by oth anding 4 e conne to bear	e load of 20.1 a rectangle veen the both efined . nections. ers) of truss i l b uplift at jo ctors ing walls due r uplift only an	Opsf om to tint 4					
	Max Horiz Max Uplift Max Grav	5=54 (LC 3=-38 (LC 3=56 (LC (LC 21)	14) 2 14), 4=-4 (LC 14) 21), 4=32 (LC 7), 5=	217 LO	does not con AD CASE(S)	sider lateral forces Standard	3.	upint only a						
FORCES	(lb) - Max	imum Com	pression/Maximum											
TOP CHORD BOT CHORD	2-5=-196/ 4-5=0/0	88, 1-2=0/	51, 2-3=-57/32											
NOTES														
 Wind: AS Vasd=103 II; Exp B; and C-C E exposed; members Lumber D CLL: AS 	CE 7-16; Vul 3mph; TCDL: Enclosed; M Exterior(2E) : end vertical and forces & OL=1.60 pla CE 7-16: Pr	It=130mph =6.0psf; B0 IWFRS (en zone; canti left and rig MWFRS ite grip DO =20.0 psf ((3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zon ilever left and right ght exposed;C-C for for reactions shown; iL=1.60 roof LL: Lum DCL=1	Cat. e							4	in	TH CA	ROLIN
Plate DOI DOL=1.15 Cs=1.00;	_=1.15); Pf=: 5); Is=1.0; Ro Ct=1.10	20.0 psf (L 20.0 psf (L ough Cat B	um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9	;							11111		SEA 0363	L
3) Unbalanc	ed snow loa	ds have be	en considered for th	is								0	. 0505	
 4) This truss load of 12 overhang 	has been de .0 psf or 1.0 s non-concu	esigned for 0 times flat rrent with c	r greater of min roof l t roof load of 20.0 ps other live loads.	live f on							3		S. S.NGIN	EERCALIN
5) This truss chord live	has been de load noncor	esigned for ncurrent wi	r a 10.0 psf bottom th any other live load	ls.									A. G	ILBERT

April 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	J04	Jack-Open	4	1	Job Reference (optional)	173034360

-0-10-8

0-10-8

1-9-7

1-9-7

1-9-7

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:12:59 ID:IBXn85_LPF6uwBMZK9gf0_yNcHy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:27.8

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(F 20 20 10 11 10	osf) 0.0 0.0 0.0 0.0* 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MR	0.15 0.06 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 9 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural woo 1-9-7 oc purlin Rigid ceiling di bracing. (size) 3= N 5=0 Max Horiz 5=5 Max Uplift 3=-3 (LC Max Grav 3=4	od shea s, exc irectly -3-8 1 (LC -36 (LC 14) 9 (LC 21)	athing directly applied rept end verticals. applied or 10-0-0 oc nical, 4= Mechanical 14) 14), 4=-4 (LC 14), 5 21), 4=30 (LC 7), 5=	5) 6) 5; 8) 1, 9) 5=-1 6210 LO	This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Refer to girdd Provide mecl bearing plate and 36 lb upl One H2.5A S recommende UPLIFT at jt(does not con AD CASE(S)	s been designed for d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide wil y other members. er(s) for truss to tru- nanical connection capable of withsta- ift at joint 3. impson Strong-Tie d to connect truss s) 5. This connection sider lateral forces Standard	or a 10.0 vith any for a liv s where l fit betw uss conr (by oth anding 4 e connec to bear on is for) psf bottom other live loa e load of 20.0 a rectangle veen the botto iections. ers) of truss t lb uplift at jo ctors ng walls due uplift only ar	nds. Dpsf om int 4 to nd						
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASI Vasd=103 II; Exp B; and C-CE exposed ; members Lumber D 2) TCLL: AS Plate DOI DOL=1.16 Cs=1.00; 3) Unbalanc design. 4) This truss load of 12 overhange	(lb) - Maximum Tension 2-5=-189/88, 1 4-5=0/0 CE 7-16; Vult=13 Bmph; TCDL=6.0 Enclosed; MWFF Exterior(2E) zone end vertical left <i>z</i> and forces & MW OL=1.60 plate gr CE 7-16; Pr=20.0 L=1.15); Pf=20.0 D; Is=1.0; Rough Ct=1.10 ed snow loads hat has been design 0.0 psf or 1.00 tim s non-concurrent	n Comp -2=0/5 i0mph psf; BC SS (en' ; cantil and rig VFRS f ip DOI o psf (L Cat B; ave been the d for the st flat with o	(3-second gust) (3-second gust) (2DL=6.0psf; h=25ft; velope) exterior zone ever left and right ht exposed;C-C for or reactions shown; L=1.60 oof LL: Lum DOL=1 im DOL=1.15 Plate ; Fully Exp.; Ce=0.9; en considered for thi greater of min roof I roof load of 20.0 psf ther live loads.	Cat. e .15 ; is live f on							W. HILLING		SEA 0363	L 22 L L BERTINI	

GINEERING

April 29,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	J05	Jack-Open	3	1	Job Reference (optional)	173034361

4-0-0

4-0-0

-0-10-8

0-10-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

2)

3)

4)

Run: 8 73 S. Feb 19 2025 Print: 8 730 S. Feb 19 2025 MiTek Industries. Inc. Fri Apr 25 12:12:59 ID:f3mFdEIJS7vUiaH15InEBQzuo4_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	J06	Jack-Open	4	1	Job Reference (optional)	173034362

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:12:59 ID:3NwyhR7Wlp8U1QCKHMXydTzuo4C-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

i aye

818 Soundside Road Edenton, NC 27932

3x8 II

1-10-15

Scale = 1:25.9

Plate Offsets	(X, Y): [2:0-3-8,Edge]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TI	PI2014	CSI TC BC WB Matrix-MP	0.08 0.04 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-7 4-7 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 9 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Left: 2x4 SP No.3 Structural wood she 1-10-15 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 3 Mechanic Max Horiz 2=49 (LC Max Grav 2=195 (LC Max Grav 2=195 (LC	athing directly applie applied or 10-0-0 or 3= Mechanical, 4= al 14) 2 14), 3=-23 (LC 14) 2 21), 3=58 (LC 21),	5) T cl 6) * o 3 dor 7) R b 3 9) C 9) C U 4=32 d	his truss har hord live loa This truss h n the bottom -06-00 tall b hord and an eafer to girde rovide mech earing plate Dne H2.5A S ecommende IPLIFT at jt(s oes not com	s been designed f d nonconcurrent i as been designed n chord in all area y 2-00-00 wide wi y other members. er(s) for truss to tru- nanical connection capable of withst impson Strong-Ti d to connect truss s) 2. This connect sider lateral forces	for a 10.0 with any d for a liv s where ill fit betv uss conr n (by oth anding 2 e connec s to beari ion is for s.	c) psf bottom other live loa e load of 20.0 a rectangle veen the botto nections. ers) of truss t 3 lb uplift at junct ctors ng walls due uplift only ar	ds.)psf om o pint to					
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: AS Vasd=103 II; Exp B; and C-C F exposed ; members Lumber D DOL=1.12 Cs=1.00; 3) Unbalanc design. 4) This truss load of 12	(lb) - Maximum Com Tension 1-2=0/34, 2-3=-30/20 2-4=-30/29 CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Bf Enclosed; MWFRS (er Exterior(2E) zone; canti ; end vertical left and rig and forces & MWFRS 00L=1.60 plate grip DO OCE 7-16; Pr=20.0 psf (L 5); Is=1.0; Rough Cat B Ct=1.10 ced snow loads have be shas been designed for 2.0 psf or 1.00 times flat	(3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zon ilever left and right ght exposed;C-C for for reactions shown; u=1.60 roof LL: Lum DOL=1 um DOL=1.15 Plate b; Fully Exp.; Ce=0.9 even considered for the r greater of min roof t roof load of 20.0 ps	Cat. e .15 ; is live fon							Marin Marine		SEA 0363	EER-ER-
ward Design a truss	NING - Verify design paramete valid for use only with MiTeki system. Before use, the build	rs and READ NOTES ON © connectors. This design ing designer must verify th	THIS AND INCLU is based only upone applicability of	DED MITEK RE	FERENCE PAGE MII- shown, and is for an in ters and properly incor	7473 rev. 1 Individual bu	/2/2023 BEFORE ilding componen design into the c	USE. t, not overall					

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality** Criteria **and DSE-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof		
25040116	PB01	Piggyback	8	1	Job Reference (optional)	173034363	

2-11-6

-0-8-12

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:12:59 ID:s0NFHZaKSJvGyLAdY7oNGuyM8Gc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-10-12

%

6-7-8

5-10-12

Sca	e –	1.26	2

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.21	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.07	Vert(TL)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES		WB	0.02	Horiz(TL)	0.00	4	n/a	n/a		
BCLL		0.0*	Code	IRC20	21/TPI2014	Matrix-MP								
BCDL		10.0		-									Weight: 24 lb	FT = 20%
LUMBER				3) Truss desigi	ned for wind load	s in the pla	ane of the tru	SS					
TOP CHORD	2x4 SP N	0.2			only. For st	uds exposed to w	ind (norm	al to the face),					
BOT CHORD	2x4 SP N	0.2			see Standar	d Industry Gable	End Deta	ils as applica	ble,					
OTHERS	2x4 SP N	0.3			or consult q	ualified building d	esigner a	s per ANSI/TI	PI 1.					
BRACING				4) TCLL: ASCE	E 7-16; Pr=20.0 p	sf (roof LL	.: Lum DOL=	1.15					
TOP CHORD	Structura	I wood she	athing directly applie	ed or	Plate DOL=	1.15); Pf=20.0 ps	f (Lum DC	DL=1.15 Plate						
	6-0-0 oc	purlins.	• • • •		DOL=1.15);	Is=1.0; Rough C	at B; Fully	Exp.; Ce=0.9	9;					
BOT CHORD	Rigid ceil	ing directly	applied or 10-0-0 or	; _	Cs=1.00; Ct	=1.10								
	bracing.			5) Unbalanced	snow loads have	e been cor	nsidered for t	าเร					
REACTIONS	(size)	1=7-5-0, 2	2=7-5-0, 4=7-5-0, 5=	7-5-0,	Coble requir	an antinuque he	ttom ohor	dhooring						
		6=7-5-0		7) Gable requil	es continuous bu		u bearing.						
	Max Horiz	1=54 (LC	11)	, 8) This trues h	spaceu al 4-0-0	00. I for a 10 () nsf hottom						
	Max Uplift	1=-156 (L	C 21), 2=-99 (LC 14), Ö	chord live lo	ad nonconcurren	t with any	other live loa	eh					
		4=-91 (LC	; 15), 5=-154 (LC 22) g) * This truss	has been designe	ed for a liv	e load of 20.0	Dosf					
	Max Grav	1=70 (LC	14), 2=433 (LC 21),	-	on the botto	m chord in all are	as where	a rectangle						
		4=421 (LC	C 22), 5=49 (LC 15),		3-06-00 tall	by 2-00-00 wide	will fit betv	veen the bott	om					
		6=180 (LC	21)		chord and a	ny other member	s.							
FORCES	(lb) - Max	timum Com	pression/Maximum	1	0) Provide med	hanical connecti	on (by oth	ers) of truss t	0					
TODOUODD	Tension		1 - 100 0 1 11 - 100		bearing plate	e capable of with	standing 9	9 lb uplift at j	oint					
TOP CHORD	1-2=-/1/1	29, 2-3=-1	15/69, 3-4=-115/69,		2, 91 lb uplif	t at joint 4, 156 lb	o uplift at jo	oint 1, 154 lb	uplift					
	4-5=-47/1	17	/42		at joint 5, 99	Ib uplift at joint 2	and 91 lb	o uplift at joint	4.					
	2-0=-49/4	10, 4-0=-49/ 20	/43											111.
VVEBO	3-0=-94/2	2		1	1) Coo Stondo	d Inductor Diam	hook True	o Connoction						

- NOTES
- 1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-3-5 to 3-3-5, Exterior(2R) 3-3-5 to 4-1-11, Exterior(2E) 4-1-11 to 7-1-11 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	V01	Valley	1	1	Job Reference (optional)	173034364

10-0-8

Carter Components (Sanford, NC), Sanford, NC - 27332

TCDL

BCLL

BCDL

WFBS

WEBS

NOTES

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:12:59 ID:DN59MR_zAZEIYLxmusBuYByNcHx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

22-2-15

Page: 1

11111111111

818 Soundside Road

Edenton, NC 27932

22-8-2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	V02	Valley	1	1	Job Reference (optional)	173034365

10-1-5

10-0-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

0-0-13

0-0-13

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:12:59 ID:DN59MR_zAZEIYLxmusBuYByNcHx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

20-3-12

10-2-7

Page: 1

20-8-15 0-5-3

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	V03	Valley	1	1	Job Reference (optional)	173034366

8-7-10

Carter Components (Sanford, NC), Sanford, NC - 27332,

TCDL

BCLL

BCDL

WEBS

1)

2)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:13:00 ID:hZfXZn?bxtMc9VWySZi75PyNcHw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

16-10-1

Page: 1

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	V04	Valley	1	1	Job Reference (optional)	173034367

Loading

Snow (Pf)

LUMBER

OTHERS

FORCES

WEBS

NOTES

1)

2)

BRACING

TCDL

BCLL

BCDL

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:13:00 ID:hZfXZn?bxtMc9VWySZi75PyNcHw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3-8-0, Exterior(2R) 3-8-0 to 9-8-0, Interior (1) 9-8-0 to 10-3-10, Exterior(2E) 10-3-10 to 13-3-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	V05	Valley	1	1	Job Reference (optional)	173034368

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:13:00 ID:hZfXZn?bxtMc9VWySZi75PyNcHw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

VIIIIIIIIIII

April 29,2025

818 Soundside Road

Edenton, NC 27932

Page: 1

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	V06	Valley	1	1	Job Reference (optional)	173034369

1-5-10

1-9-5

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:13:00 ID:AIDvm70DiAUSnf580HDMdcyNcHv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4x5 =

2

4 2x4 II

5-3-4

4-10-1

2-2-7

2-7-10 2-7-10

2x4 🍫

2x4 👟

-3-4

3

Scale = 1:24.1

Scale = 1:24.1														
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/	TPI2014	CSI TC BC WB Matrix-MP	0.10 0.12 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No Structural 5-3-4 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav	0.2 0.2 0.3 wood shea ourlins. ng directly 1=5-3-4, 3 1=-38 (LC 1=-5 (LC (LC 14) 1=91 (LC	athing directly applie applied or 6-0-0 oc 3=5-3-4, 4=5-3-4 ; 10) 14), 3=-11 (LC 15), 4 20), 3=91 (LC 21), 4	5) 6) 7) 8) ed or 9) 10) 4=-29 4=-22 LOA	Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 11 lb uplift at AD CASE(S)	snow loads have es continuous boi spaced at 4-0-0 d s been designed ad nonconcurrent nas been designe n chord in all area by 2-00-00 wide w y other members hanical connectio capable of withs joint 3 and 29 lb Standard	been cor ttom chor oc. with any d for a liv as where will fit betv s. n (by oth standing 5 uplift at jo	hsidered for the d bearing. D psf bottom other live loa e load of 20.(a rectangle veen the botto ers) of truss t i lb uplift at jo bint 4.	his Ids. Dpsf om to int 1,					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig Vasd=103 II; Exp B; and C-C B exposed ; members Lumber D 3) Truss des only. For see Stanc or consult 4) TCLL: AS Plate DOI DOL=1.15 Cs=1.00;	(lb) - Maxi Tension 1-2=-89/1; 1-4=-107/ 2-4=-235/ ed roof live ld n. CE 7-16; Vul 3mph; TCDL: Enclosed; M Exterior(2E) : end vertical and forces & OCL=1.60 pla signed for wir studs expos dard Industry cultified bu cultified b	(LC 21) mum Com 24, 2-3=-8: 25, 3-4=-11 103 bads have t=130mph =6.0psf; BK WFRS (en zone; canti left and rig & MWFRS (en zone; canti left and rig & left	pression/Maximum 9/124 07/85 been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zon ilever left and right ght exposed;C-C for for reactions shown: L=1.60 the plane of the trus (normal to the face) d Details as applicat gner as per ANSI/TF roof LL: Lum DOL=1 um DOL=1.15 Plate s; Fully Exp.; Ce=0.9	r Cat. e ; ; ss ; , ole, ; ! 1. !.15 ;							Charles and a second se		SEA 0363	L 22 L 11 129,2025
							7472 rou: 4							

A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	V07	Valley	1	1	Job Reference (optional)	173034370

4-7-1

4-7-1

2x4 II

2

ø

8

2x4 II

12 8 Г

2x4 🍫

Carter Components (Sanford, NC), Sanford, NC - 27332,

Loading

Snow (Pf)

LUMBER

OTHERS

FORCES

WEBS

NOTES

1)

BRACING

TCDL

BCLL

BCDL

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:13:00 ID:QKjrk9BfaMmm7C4I4v77KXzuo47-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

8-8-15 4-1-14 4x5 = 3 2x4 II 4 5 7 6 2x4 ı 2x4 II 2x4 🔊 9-2-2 l/defl L/d PLATES GRIP in (loc) n/a 999 MT20 244/190 n/a

2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 6-2-14, Exterior(2E) 6-2-14 to 9-2-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	V08	Valley	1	1	Job Reference (optional)	173034371

3-10-6

3-10-6

Carter Components (Sanford, NC), Sanford, NC - 27332,

Scale = 1:27.4 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS

FORCES

WFBS

NOTES

1)

2)

3)

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:13:00 ID:QKjrk9BfaMmm7C4I4v77KXzuo47-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-3-8

3-5-3

Page: 1

4x5 = 2 2-7-2 2-9 12 8 Г 3 0-0-4 4 2x4 🛛 3x5 🦼 3x5 💊 7-8-11 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) Spacing in (loc) 20.0 Plate Grip DOL 1.15 TC 0.29 Vert(LL) n/a 999 MT20 244/190 n/a 20.0 1 15 BC Lumber DOL 0.29 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.09 Horiz(TL) 0.00 4 n/a n/a 0.0 Code IRC2021/TPI2014 Matrix-MP 10.0 Weight: 27 lb FT = 20%TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 2x4 SP No.2 2x4 SP No.2 DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 2x4 SP No.3 Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 5) desian. Structural wood sheathing directly applied or Gable requires continuous bottom chord bearing. 6) 7-8-11 oc purlins. 7) Gable studs spaced at 4-0-0 oc. Rigid ceiling directly applied or 6-0-0 oc 8) This truss has been designed for a 10.0 psf bottom bracing. chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf (size) 1=7-9-7, 3=7-9-7, 4=7-9-7 9) Max Horiz 1=-57 (LC 12) on the bottom chord in all areas where a rectangle Max Uplift 1=-23 (LC 21), 3=-23 (LC 20), 3-06-00 tall by 2-00-00 wide will fit between the bottom 4=-61 (LC 14) chord and any other members. Max Grav 1=103 (LC 20), 3=103 (LC 21), 10) Provide mechanical connection (by others) of truss to 4=576 (LC 21) bearing plate capable of withstanding 23 lb uplift at joint (lb) - Maximum Compression/Maximum 3, 23 lb uplift at joint 1 and 61 lb uplift at joint 4. Tension 11) Beveled plate or shim required to provide full bearing 2-3=-93/277, 1-2=-93/277 surface with truss chord at joint(s) 3, 1. 1-4=-232/145, 3-4=-232/145 LOAD CASE(S) Standard 2-4=-461/186 Unbalanced roof live loads have been considered for this design ORT Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 Manan Manan to 4-9-7, Exterior(2E) 4-9-7 to 7-9-7 zone; cantilever left and right exposed ; end vertical left and right exposed;C-SEAL C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 036322 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. G mmm April 29,2025 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) 818 Soundside Road and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com) Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	V09	Valley	1	1	Job Reference (optional)	173034372

2-1-2

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:13:00 ID:y89TWpA1p2evV2W6WCbunJzuo48-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

6-2-11

Scale = 1:25.3

Loading TCLL (roof) Snow (Pf)	(psf) 20.0 20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.16 0.18	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
TCDL	10.0	Rep Stress Incr	YES		WB	0.06	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI20	14	Matrix-MP							Waisht Od Ib	FT 200/
BCDL	10.0		-									weight: 21 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-2-11 oc purlins. Rigid ceiling directly bracing. (size) 1=6-3-7, 1 Max Horiz 1=-45 (LC Max Uplift 1=-3 (LC (LC 14) Max Grav 1=98 (LC (LC 20)	athing directly applied applied or 6-0-0 oc 3=6-3-7, 4=6-3-7 ; 10) 14), 3=-10 (LC 15), 4 20), 3=98 (LC 21), 4:	5) Unba desig 6) Gable 7) Gable 8) This t chord 10) Provic 5,3 lt =417 11) Bevel surfac	anced s require studs s uss has live load truss has bottom 0 tall by and any le mech g plate uplift a ed plate e with tr	s continuous botte paced at 4-0-0 oc been designed of d nonconcurrent v as been designed chord in all areas / 2-00-00 wide wil / other members. anical connection capable of withsta t joint 1 and 40 lb or shim required russ chord at joint	opeen cor om chor c. or a 10.0 with any I for a liv s where II fit betw h (by oth anding 1 uplift at to provi t(s) 3, 1.	nsidered for th d bearing. D psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss to 0 lb uplift at jo joint 4. de full bearing	his ds.)psf om oint					
FORCES	(lb) - Maximum Corr	pression/Maximum	LOAD CA	SE(S)	Standard								
TOP CHORD BOT CHORD WEBS	Tension 2-3=-96/180, 1-2=-9 1-4=-155/112, 3-4=- 2-4=-322/141	6/180 155/112											
NOTES													
 Unbalance this design Wind: ASC Vasd=103i Exp B; E and C-C E exposed; ; members a Lumber DO Truss desii only. For s see Standd or consult TCLL: ASC Plate DOL: DOL=1.15i Cs=1.00; C 	ad roof live loads have CE 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er ixterior(2E) zone; cant end vertical left and ri and forces & MWFRS DL=1.60 plate grip DC gned for wind loads in studs exposed to wind ard Industry Gable En qualified building desi CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L); Is=1.0; Rough Cat E Ct=1.10	been considered for (3-second gust) CDL=6.0psf; h=25ft; (velope) exterior zone ilever left and right ght exposed;C-C for for reactions shown; V=1.60 (normal to the face), d Details as applicabl gner as per ANSI/TPI coof LL: Lum DOL=1. um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9;	Cat. 9 s 10 1. 15							And the second s	the second se	SEA 0363	L 22 L 129,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	117 Eagle Creek - Norman B - Roof	
25040116	V10	Valley	1	1	Job Reference (optional)	173034373

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 12:13:00 ID:y89TWpA1p2evV2W6WCbunJzuo48-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

4-11-11 2-5-14 4-6-8 2-5-14 2-0-11

4-11-11

3

Scale = 1:23.7

			i											
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.11	Vert(TL)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES		WB	0.04	Horiz(TL)	0.00	4	n/a	n/a		
BCLL		0.0*	Code	IRC202	1/TPI2014	Matrix-MP								
BCDL		10.0											Weight: 16 lb	FT = 20%
LUMBER	UMBER 5) Unbalanced snow loads have been considered for this													
TOP CHORD	IORD 2x4 SP No.2 design.													
BOT CHORD	2x4 SP No.2 6) Gable requires continuous bottom chord bearing.													
OTHERS	2x4 SP N	o.3		7)	Gable studs	spaced at 4-0-0 oc	-							
BRACING				8)	This truss ha	s been designed fo	or a 10.0	0 psf bottom						
TOP CHORD	Structural 4-11-11 o	wood she c purlins.	athing directly applie	d or 9)	* This truss h	as been designed	for a liv	other live loa e load of 20.0	ids. Opsf					
BOT CHORD	Rigid ceili bracing.	ng directly	applied or 6-0-0 oc		on the bottor 3-06-00 tall b	n chord in all areas y 2-00-00 wide wil	s where I fit betv	a rectangle veen the botte	om					
REACTIONS	(size)	1=5-0-7, 3	3=5-0-7, 4=5-0-7	4.0	chord and ar	y other members.	(h) (at 1-	ana) of two 1						
	Max Horiz	1=-35 (LC	C 10)	10) Provide mec	nanical connection	(by oth	ers) of truss t	i0 oint					
	Max Uplift	1=-5 (LC	14), 3=-11 (LC 15), 4	1=-26	3 5 lb unlift a	t joint 1 and 26 lb	unlift at	ioint 4	onn					
		(LC 14)		11) Beveled plate	e or shim required	to provi	de full bearin	a					
	Max Grav	1=88 (LC	20), 3=88 (LC 21), 4	=303	surface with	truss chord at joint	(s) 3, 1.		5					
FORCES	(lb) Mox		proceion/Maximum	LC	DAD CASE(S)	Standard								
FORCES	(ID) - Max		ipression/iviaximum											
TOP CHORD	2-3=-86/1	16. 1-2=-8	6/116											
BOT CHORD	1-4=-100/	80, 3-4=-1	00/80											
WEBS	2-4=-218/	95												
NOTES														
1) Unbalanc	ed roof live l	oads have	been considered for											11
this desig	n.												W'LL CA	Dill
2) Wind: AS	CE 7-16; Vu	lt=130mph	(3-second gust)									1	THUA	TO III
Vasd=103	3mph; TCDL	=6.0pst; B	CDL=6.0pst; h=25ft;	Cat.							/	S	044585	Do Nin
II; EXP B;	Enclosed; IV	IVVERS (en	ivelope) exterior zon	е							L	ÌÀ		No los
exposed :	end vertical	left and rid	abt exposed C-C for									8	ion L	
members	and forces a	MWFRS	for reactions shown.								-			
Lumber D	OL=1.60 pla	te grip DO	L=1.60								=		SEA	L <u>:</u> E
3) Truss des	igned for wi	nd loads in	the plane of the trus	s							Ξ.		0363	22 E
only. For	studs expos	ed to wind	(normal to the face)	,							-		. 0000	: :
see Stand	see Standard Industry Gable End Details as applicable,													
or consult	t qualified bu	Iding desig	gner as per ANSI/TP	11.								3.1	N. ENO	-cRix S
4) ICLL: AS	CE 7-16; Pr	=20.0 psf (root LL: Lum DOL=1	.15								1	S, GIN	Et. A.N
	L≓1.10); PT=. 5)• le=1 0• P.	20.0 psi (L Sugh Cat P										1	CAO	II BEIN
Cs=1 00	Ct=1 10	Jugii Gal E	5, 1 ully Exp., Ce=0.9	,									11, A. G	
00=1.00,	01.10													
													Apri	129,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

