

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DR Horton Inc

Model: 15 Eagle Creek -Hartwell - E

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

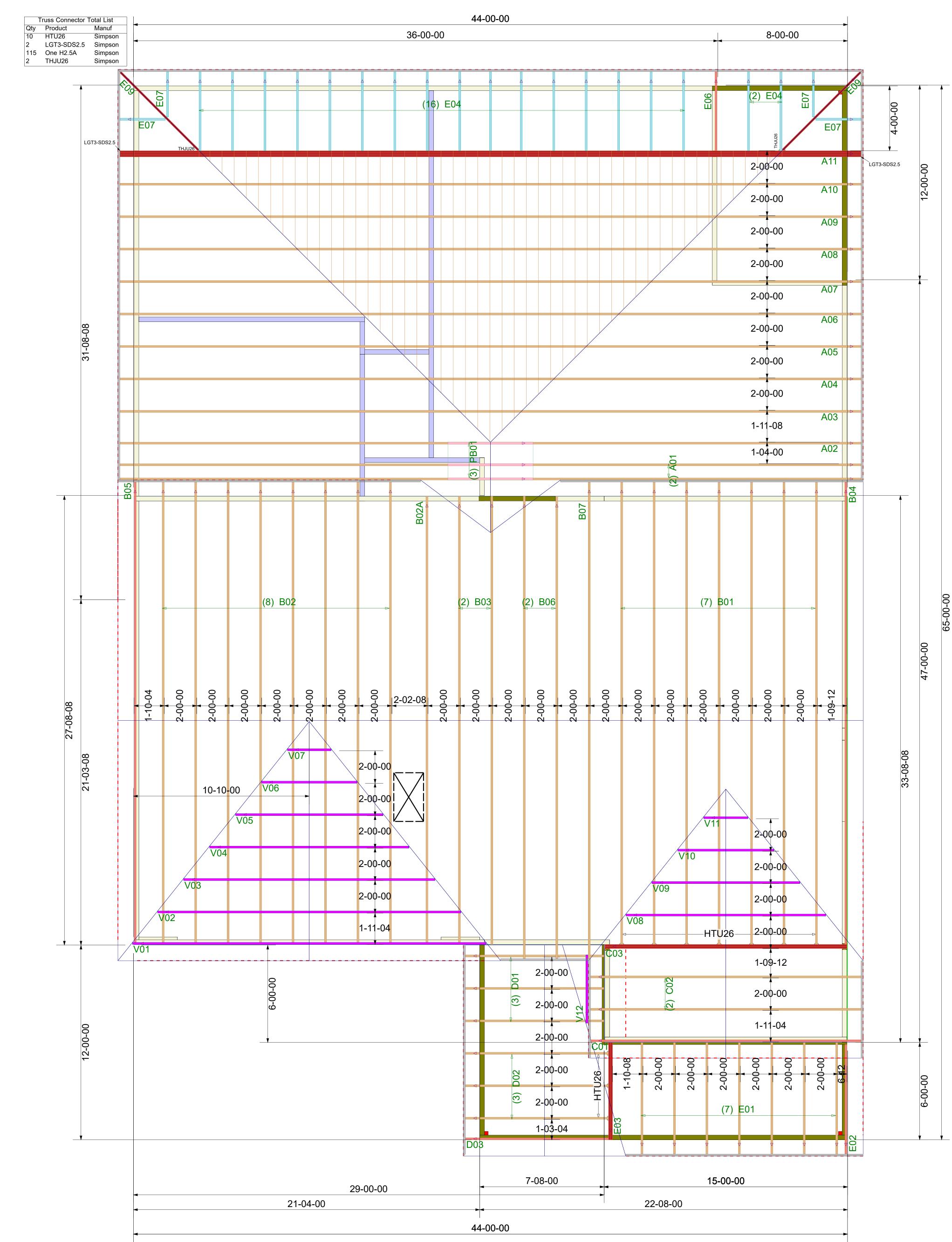
4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.


9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

** DAMAGED COMPONENTS SHOULD NOT BE INSTALLED UNLESS TOLD TO BY THE COMPONENT PLANT.

** TRUSS TO TRUSS CONNECTIONS ARE TOE-NAILED, UNLESS NOTED OTHERWISE.

TRIANGULAR SYMBOL NEAR END OF

TRUSS INDICATES LEFT END OF

TRUSS AS SHOWN ON INDIVIDUAL

TRUSS DRAWINGS

IMBING DROPS NOTED ARE IN THE APPROXIMATE LOCATIONS PER PLAN. BUILDER TO VERIFY LOCATIONS BEFORE SETTING TRUSSES

** ALL BEARING POINTS MUST BE INSTALLED PRIOR TO SETTING ANY COMPONENTS.

** CUTTING OR DRILLING OF COMPONENTS SHOULD NOT BE DONE WITHOUT CONTACTING COMPONENT SUPPLIER FIRST CUSTOMER TAKES FULL RESPONSIBILITY FOR COMPONENTS IF CUT BEFORE AUTHORIZATION

General Notes:

Truss Drawing Left End Indicator

** All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibilty of the bldg designer and or contractor. ** GIRDERS MUST BE FULLY CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS. ** DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH.

Image: Spect Number: With Understand Image: Spect Number: Imag	Nate: Scale:	DR Horton Inc	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for each truss	00/00/
	NTS 4/25/20 Designe e Dona Project Nu 504012 Sheet Nu	15 Eagle Creek - Hartwell - E	overall structure. The disign of the tuss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For	Revisio /00 /00 /00
	T-B	ROOF PLACEMENT PLAN	from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179	ns Name Name Name Name

RE: 25040127 15 Eagle Creek - Hartwell E - Roof Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:Customer: DR Horton IncProject Name:25040127Lot/Block: 15Model:Hartwell EAddress:Subdivision:Eagle CreekCity:State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2021/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.7 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 45 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	173028909	A01	4/28/2025	21	173028929	C02	4/28/2025
2	173028910	A02	4/28/2025	22	173028930	C03	4/28/2025
3	173028911	A03	4/28/2025	23	173028931	D01	4/28/2025
4	173028912	A04	4/28/2025	24	173028932	D02	4/28/2025
5	173028913	A05	4/28/2025	25	173028933	D03	4/28/2025
6	173028914	A06	4/28/2025	26	173028934	E01	4/28/2025
7	173028915	A07	4/28/2025	27	173028935	E02	4/28/2025
8	173028916	A08	4/28/2025	28	173028936	E03	4/28/2025
9	173028917	A09	4/28/2025	29	173028937	E04	4/28/2025
10	173028918	A10	4/28/2025	30	173028938	E06	4/28/2025
11	173028919	A11	4/28/2025	31	173028939	E07	4/28/2025
12	173028920	B01	4/28/2025	32	173028940	E09	4/28/2025
13	173028921	B02	4/28/2025	33	173028941	PB01	4/28/2025
14	173028922	B02A	4/28/2025	34	173028942	V01	4/28/2025
15	173028923	B03	4/28/2025	35	173028943	V02	4/28/2025
16	173028924	B04	4/28/2025	36	173028944	V03	4/28/2025
17	173028925	B05	4/28/2025	37	173028945	V04	4/28/2025
18	173028926	B06	4/28/2025	38	173028946	V05	4/28/2025
19	173028927	B07	4/28/2025	39	173028947	V06	4/28/2025
20	173028928	C01	4/28/2025	40	173028948	V07	4/28/2025

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Pace, Adam

My license renewal date for the state of North Carolina is December 31, 2025

North Carolina COA: C-0844

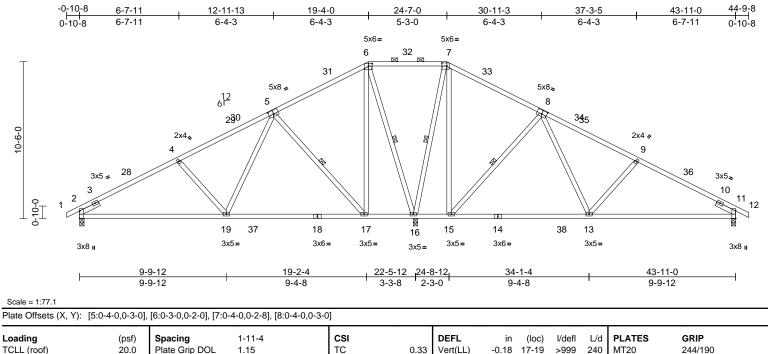
IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Pace, Adam

RE: 25040127 - 15 Eagle Creek - Hartwell E - Roof

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:


Project Customer: DR Horton Inc Project Name: 25040127 Lot/Block: 15 Address: City, County: State:

No.	Seal#	Truss Name	Date
41	173028949	V08	4/28/2025
42	173028950	V09	4/28/2025
43	173028951	V10	4/28/2025
44	173028952	V11	4/28/2025
45	173028953	V12	4/28/2025

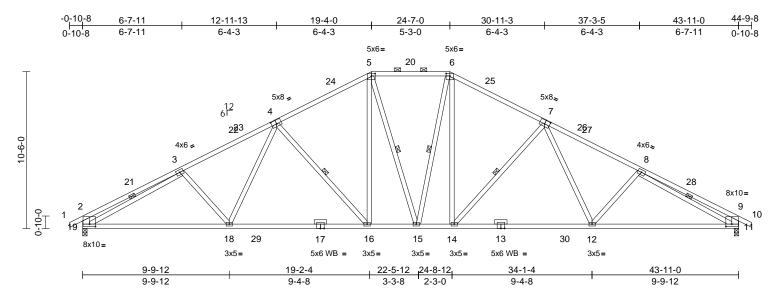
Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	A01	Piggyback Base	2	1	Job Reference (optional)	

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:01 ID:M7m3ryJgz6Q78bfmaorGv1znEgR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0	Spacing1-11Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2	5	BC	0.33 0.39 0.76	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.29 0.02	l/defl >999 >922 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 268 lb	GRIP 244/190 FT = 20%
SLIDER Left 2x4 SP No.2 116-0 BRACING TOP CHORD TOP CHORD Structural wood sheat 6-0-0 oc purlins, exce 2-0-0 oc purlins (10-0 BOT CHORD Rigid ceiling directly a bracing. WEBS 1 Row at midpt 5	-0-0 max.): 6-7. applied or 6-0-0 oc 5-17, 6-16, 7-16, 8-15 1=0-3-8, 16=0-3-8 C 15) C 14), 11=-122 (LC 15), LC 14) 37), 11=789 (LC 39), LC 47) oression/Maximum (160, 4-6=-908/325, '440, 9-11=-966/193, 9=-75/496, 16=-355/204, -130/837 =-31/707, =-31/707, =-31/707, =-31/707, =-969/230, -358/184	 Vasd=103mp II; Exp B; Enand C-C Externand C-C Ext	7-16; Pr=20.0 psf (r. .15); Pf=20.0 psf (L. s=1.0; Rough Cat B; .1.10 snow loads have been snow loads have been so been designed for of uate drainage to pre- s been designed for ad nonconcurrent with as been designed for ad nonconcurrent with as been designed for n chord in all areas v y 2-00-00 wide will fi y other members, w Simpson Strong-Tie of d to connect truss to s) 2, 16, and 11. This s not consider laterar rlin representation do tion of the purlin alo l.	CDL=6 velope3-6-3, to 301 volope3-6-3, to 301 volope3-6-3, to 301 volope3-6-3, to 301 volope3-6-3, to 301 volope3-6-3, the second the	.0psf; h=25ft e) exterior zor interior (1) 3- 11-15, Interior 13 to 44-9-8 e end vertical d forces & DOL=1.60 pla : Lum DOL= DL=1.15 Plate Exp.; Ce=0.5 asidered for the er of min roof pad of 20.0 pro- ve loads. water ponding D psf bottom other live load e load of 20.0 pro- ve loads. water ponding D psf bottom other live load e load of 20.0 pro- ve loads. water ponding D psf bottom other live load e load of 20.0 pro- ve loads. water ponding D psf bottom other live load e load of 20.0 pro- ve loads. water ponding D psf bottom other live load e load of 20.0 pro- ve loads. water ponding D psf bottom other live load e load of 20.0 pro- ve loads. water ponding D psf bottom other live load e load of 20.0 pro- ve loads. water ponding D psf bottom other live load e load of 20.0 pro- ve loads. water ponding D psf bottom other live load e load of 20.0 pro- ve loads. water ponding D psf bottom other live load e load of 20.0 pro- ve load of 20.	ne 6-3 or (1) left ate 1.15 9; his f live sf on g. ds. Opsf om f. to uplift			SEA 0578	PO(1111 B7 PACE 1111 PACE 1111

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



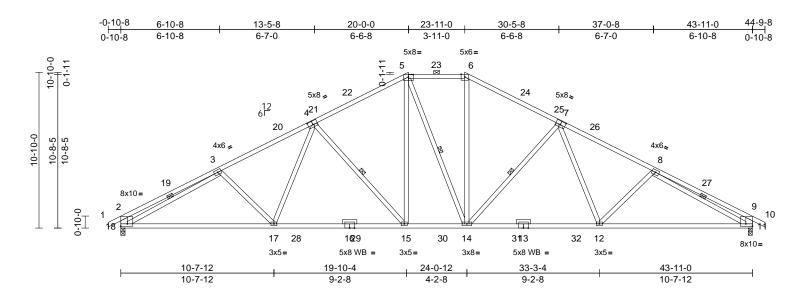
818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	A02	Piggyback Base	1	1	Job Reference (optional)	173028910

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:02 ID:j4ZyugNpoe2QFNXjNMRRc5znEgM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:77.1


ading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.37	Vert(LL)		16-18	>999	240	MT20	244/190
iow (Pf)	20.0	Lumber DOL	1.15		BC	0.55	Vert(CT)	-0.51		>999	180		
DL	10.0	Rep Stress Incr	YES		WB	0.83	Horz(CT)	0.14	11	n/a	n/a		
CLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MSH								
DL	10.0											Weight: 289 lb	FT = 20%
MBER			2)		7-16; Vult=130m								
P CHORD	2x4 SP 2400F 2.0E				ph; TCDL=6.0psf;								
DT CHORD	2x4 SP 2400F 2.0E				closed; MWFRS (
EBS		ot* 19-2,11-9:2x6 SP			erior(2E) -0-10-8 t								
	2400F 2.0E, 15-6,15	5-5:2x4 SP No.2			Exterior(2R) 12-11								
THERS	2x4 SP No.3				40-4-13, Exterior(2 ever left and right e								
RACING					bosed;C-C for mer			ien					
P CHORD		athing directly applie			reactions shown;			ate					
		cept end verticals, a	na	grip DOL=1.			pi						
OT CHORD	2-0-0 oc purlins (5-3	3-0 max.): 5-6. / applied or 10-0-0 or	3)		E 7-16; Pr=20.0 ps	f (roof LL	.: Lum DOL=	1.15					
I CHURD	bracing.	applied of 10-0-0 of	с -,		1.15); Pf=20.0 psf								
EBS	1 Row at midpt	3-19, 8-11, 6-15, 7-	14	DOL=1.15);	Is=1.0; Rough Cat	B; Fully	Exp.; Ce=0.	9;					
	i now at mapt	5-15, 4-16	,	Cs=1.00; Ct									
ACTIONS	(size) 11=0-3-8	, 19=0-3-8	4)		snow loads have	been cor	sidered for t	his					
	Max Horiz 19=-141 (,	-	design.				6 P					
	Max Uplift 11=-192		C 14) 5)		as been designed psf or 1.00 times f								
1	Max Grav 11=2092	(LC 47), 19=2092 (L	C 47)		on-concurrent with			51 011					
RCES	(lb) - Maximum Corr	pression/Maximum	6)		quate drainage to			a					
	Tension		7)		as been designed			9.					
P CHORD	5-6=-2492/364, 1-2=	=0/30, 2-3=-1058/183	3, ′		ad nonconcurrent			ads.					11.
	3-5=-3694/362, 6-8=	=-3693/362,	8)		has been designed							IN CA	
		0=0/30, 2-19=-713/18	83,	on the botto	m chord in all area	s where	a rectangle				F.e.s	TH UA	ROIL
	9-11=-708/190				by 2-00-00 wide w						X	A	A. Inte
T CHORD	18-19=-337/3272, 1				ny other members			f.		/	22	OFL	W. T.
	15-16=-58/2423, 14 12-14=-104/3014, 1		9)		Simpson Strong-Ti						ΞD	IN	ave
EBS	3-19=-2806/186, 8-1				ed to connect truss								
	4-18=-14/519, 7-12=		/183		(s) 19 and 11. This as not consider late			IIIT				SEA	
	5-16=-73/975, 6-14=				Irlin representation			oizo		=		0578	7
	6-15=-244/201, 7-14	,			ation of the purlin			3126		-	8 K	0576	57
	8-12=-165/183, 5-15			bottom chore		along the							
	4-16=-866/228	,	1.0	DAD CASE(S)							-		-a. : :
TES			-		Clandara						11	GIN	E. S
	d roof live loads have	been considered for	r								",	. 40	CF N

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

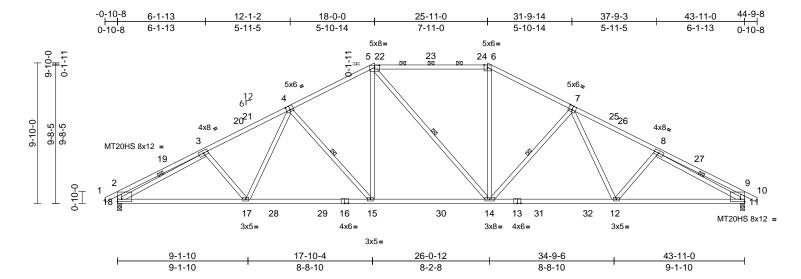
818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	A03	Нір	1	1	Job Reference (optional)	173028911

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:03 ID:b2DB1bpKsC7568Rh7_5QCAznEh5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:80.1

	1 3 7 7 1	, [4:0-4-0,0-3-0], [5:0-	- 0,0 - 10	,	-], [=-9-,- = -							-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.42 0.60 0.87	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 15-17 15-17 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 280 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x4 WEBS 2x4 MODTHERS 2x4 BRACING TOP CHORD Str 4-2 2-0 BOT CHORD Rig WEBS 1 F REACTIONS (size Max Max FORCES (lb) Ter TOP CHORD 1-2 5-6 8-9 9-1 BOT CHORD 1-2 5-6 8-9 9-1 BOT CHORD 1-2 5-6 8-9 9-1 BOT CHORD 1-2 5-6 8-9 9-1 TOP CHORD 1-2 5-6 8-9 9-1 14- 1-2 1-2 5-6 8-9 9-1 14- 14- 12 14- 14- 14- 14- 14- 14- 14- 14- 14- 14-	2, 18-2,11-9:2x6 4 SP No.3 uctural wood she -3 oc purlins, ex -0 oc purlins, (5-2 jid ceiling directly icing. Row at midpt 11=0-3-8. Horiz 18=-145 (Uplift 11=-191 (Grav 11=2126 - Maximum Corr =0/30, 2-3=-1134 =-2536/355, 6-8= =-1121/185, 9-10 18=-341/3321, 1 15=-50/2449, 12 12=-196/3316 5=-94/927, 5-14= 8=-2783/185, 8-7 2=-190/92, 4-17 4=-892/226, 7-12	eathing directly applie cept end verticals, ar 2-0 max.): 5-6. 7 applied or 10-0-0 oc 5-14, 3-18, 8-11, 4-1 7-14 , 18=0-3-8 (LC 15), 18=-191 (LC (LC 15), 18=-191 (LC (LC 47), 18=2128 (L1 npression/Maximum 4/185, 3-5=-3730/355 =-3725/355, 0=0/30, 2-18=-753/18 5-17=-204/3066, -14=-89/3063, =-250/257, 6-14=-57/	d or nd 3) 15, 4) 5, 14) 5) 7, 4) 6) 7, 6) 7, 8) 84, 9) 918, 9918, 226, 10	Vasd=103mp II; Exp B; En and C-C Extt to 13-9-8, Ex 30-1-8 to 40- cantilever lef right exposed for reactions DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 p overhangs n Provide aded This truss ha chord live loa * This truss ha chord and ar One H2.5A S recommende UPLIFT at jt(only and doe) Graphical pu	snow loads have b s been designed f performed for the second second part of the second second second s been designed f ad nonconcurrent to as been designed in chord in all areas by 2-00-00 wide wi y other members, simpson Strong-Ti- d to connect truss s) 18 and 11. This s not consider late rlin representation titon of the purlin a l.	BCDL=6 envelope o 3-6-3, i o 30-1-8 40-4-13 d; end v s and for OL=1-60 f (roof LL Lum DC B; Fully or greate at roof lc o ther liv or event v or a 10.0, with any l for a liv s where ll fit betw with BC e connec connec connec connec connec connec connec connec connec connec	.0psf; h=25ft) exterior zon nterior (1) 3- , Interior (1) 3- , Interior (1) to 44-9-8 zor ertical left ar ces & MWFF) plate grip : Lum DOL= :Lum DOL= :Land DOL=	ne 6-3 ne; Id RS 1.15 ?); his five sf on g. ds. Opsf om f. to ift				SEAL 0578	ROLING B7 ACE


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

TRENCO A MITCH AMILIA

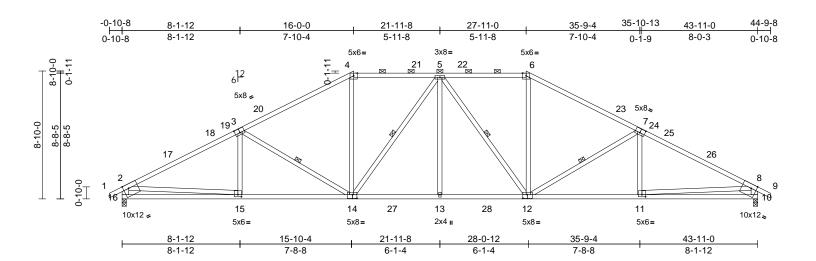
> 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	A04	Нір	1	1	Job Reference (optional)	173028912

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:03 ID:x?144JsThkINCvKfvXhbvEznEh0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1	1:80.7
-----------	--------

Plate Offsets ((X, Y): [2:Edge,0-2-0],	[4:0-3-0,0-3-4], [5:0-4-0),0-1-15], [7:0-3-0,0-3	-4], [11:Edge,0-2-(0]							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr Y	2-0-0 15 15 (ES RC2021	/TPI2014	CSI TC BC WB Matrix-MSH	0.88 0.49 0.80	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 15-17 15-17 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 265 lb	GRIP 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP 2400F 2.0E 2x4 SP No.3 *Excep 15-5,14-5,14-6,18-2, Structural wood shea 4-2-2 oc purlins, exc 2-0-0 oc purlins (2-4 Rigid ceiling directly bracing. 1 Row at midpt (size) 11=0-3-8, Max Horiz 18=-130 (Max Uplift 11=-194 (Max Grav 11=2088 ((lb) - Maximum Com Tension 1-2=0/27, 2-3=-992/ 5-6=-2646/369, 6-8= 8-9=-977/156, 9-10= 9-11=-659/174 17-18=-339/3313, 15 14-15=-84/2579, 12-	11-9:2x4 SP No.2 athing directly applied o cept end verticals, and -4 max.): 5-6. applied or 10-0-0 oc 5-14, 3-18, 8-11, 4-15, 7-14 18=0-3-8 LC 15) LC 15), 18=-194 (LC 14 (LC 47), 18=2093 (LC 4 pression/Maximum 157, 3-5=-3752/372, -3740/372, 60/27, 2-18=-665/167, 5-17=-221/3092,	3) 4)	Vasd=103mj II; Exp B; En and C-C Ext to 11-9-8, Ex 31-10-10 to zone; cantile and right exp MWFRS for grip DOL=1.1 TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss he load of 12.0 overhangs n Provide ader All plates are this truss ha chord live loa * This truss ha chord live loa on the bottor	7-16; Pr=20.0 ps I.15); Pf=20.0 psf Is=1.0; Rough Cat	BCDL=6 envelopp o 3-6-3, to 31-10 2E) 40-4 exposed nbers ar Lumber I f (roof LI (Lum DC t B; Fully been cor for great fat roof Li for great for great for a 10.0 with any d for a 11.0 with any s where	i.Opsf; h=25ff e) exterior zo Interior (1) 3- 10, Interior (13 to 44-9-8 ; end vertical d forces & DOL=1.60 pl: L: Lum DOL= DL=1.15 Plate Exp.; Ce=0. asidered for t er of min roo pad of 20.0 p ve loads. water pondin wise indicate 0 psf bottom other live load e load of 20. a rectangle	ne -6-3 (1) 					NROLINIII
WEBS NOTES 1) Unbalance this design	3-18=-2917/213, 8-1 3-17=-140/172, 4-17 4-15=-750/204, 7-14 7-12=-17/451, 8-12= ed roof live loads have	′=-16/451, ==-750/205, ⊧-140/172	11)) One H2.5A S recommende UPLIFT at jt(only and doe) Graphical pu		ie conne s to bear s connec eral force n does no	ctors ing walls due tion is for up es. ot depict the	e to lift		2011111000	C. A.	SEA O578 ADAM	B7 ACE IIIII


TRENCO A MiTek Affiliate

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	A05	Нір	1	1	Job Reference (optional)	

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:03 ID:MaiDiKvMzf8y3N2EbfEIWsznEgz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

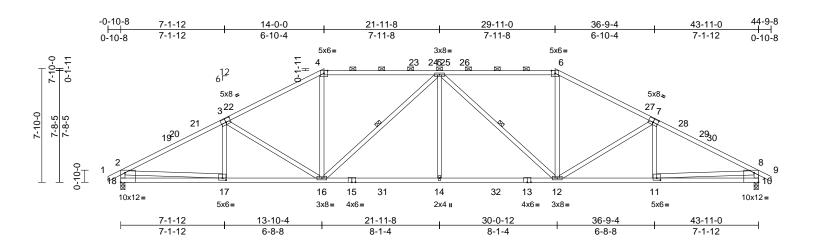
Page: 1

Scale =	1:79.6
---------	--------

Plate Offsets (X,	Y): [3:0-4-0,0-3-4],	[7:0-4-0,0-3-4], [10:0-	4-6,Edge	e], [11:0-3-0,0-	1-12], [12:0-3-12,0	-3-0], [1	4:0-3-12,0-3-	0], [15:0	-3-0,0-1-	-12], [16	:0-4-6,	Edge]	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.76 0.39 0.92	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 12-13 11-12 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 269 lb	GRIP 244/190 FT = 20%
BOT CHORD 22 BRACING TOP CHORD 4 BOT CHORD 4 WEBS REACTIONS (s MM FORCES (s TOP CHORD 4 BOT CHORD 4 BO	3-1-0 oc purlins, exc 2-0-0 oc purlins (5-0 Rigid ceiling directly bracing. 1 Row at midpt size) 10=0-3-8, lax Horiz 16=-119 (1 lax Uplift 10=-198 (1 lax Grav 10=2007 (1) (lb) - Maximum Com Tension 1-2=0/30, 2-4=-3695 5-6=-2652/384, 6-8= 2-16=-2089/288, 8-1 15-16=-265/842, 13- 11-13=-181/3225, 1(1) 3-15=-17/211, 3-14= 5-14=-521/120, 5-12 6-12=-24/915, 7-12= 2-15=-120/2429, 8-1	athing directly applied cept end verticals, and -2 max.): 4-6. applied or 10-0-0 oc 3-14, 5-14, 5-12, 7-12 16=0-3-8 LC 12) LC 15), 16=-198 (LC 1 (LC 47), 16=2007 (LC pression/Maximum /380, 4-5=-2652/384, -3694/381, 8-9=0/30, 0=-2090/287 15=-286/3226, -11=-160/830 -731/196, 4-14=-24/97	3) 4) 4) 47) 5) 6) 7) 8) 15, 8) 15, 324 10	Vasd=103m II; Exp B; En and C-C Ext to 9-9-8, Ext to 40-4-13, E cantilever lef right expose for reactions DOL=1.60 TCLL: ASCE Plate DOL=' DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n Provide ader This truss ha chord live loa' * This truss ha chord and ar One H2.5A s recommendd UPLIFT at jt only and doe	snow loads have I as been designed f psf or 1.00 times f on-concurrent with quate drainage to as been designed f ad nonconcurrent as been designed m chord in all area by 2-00-00 wide wi y other members, Simpson Strong-Ti ed to connect truss (s) 16 and 10. This as not consider late urlin representation ation of the purlin a d.	BCDL=6 envelope o 3-6-3, 34-1-8, I 3 to 44-1 d; end v s and for OL=1.6(f; (roof LL (Lum DC B; Fully been cor for greate a to of la o ther lis prevent v for a 100, with any l for a liv s where II fit between to bear c connec c connec	.0psf; h=25ft a) exterior zoo Interior (1) 3- therior (1) 3	ne 6-3 -1-8 nd RS 1.15 9; his f live sf on g. ds. Opsf om f. to ift				SEA 0578	ROV 12

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org)

818 Soundside Road Edenton, NC 27932


April 28,2025

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	A06	Нір	1	1	I73028914 Job Reference (optional)	

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:03 ID:Ak4UzOz6ZVu6nIWNxwLim7znEgt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

03 Page: 1

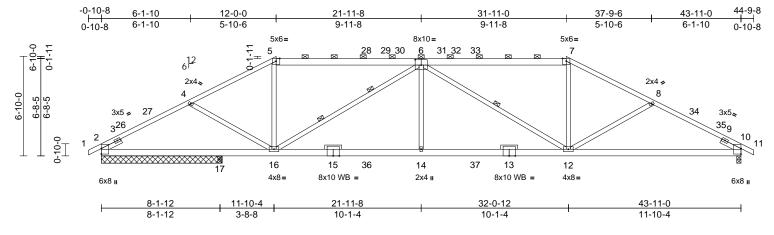
Scale = 1:79.3

Plate Offsets (2	X, Y): [3:0-4-0,0-3-0],	[7:0-4-0,0-3-0], [10:1	Edge,0-7-	13], [11:0-3-0,0)-1-12], [17:0-3-0,0)-1-12], [18:Edge,0-7-	·13]					
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.64 0.49 0.93	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 14-16 14-16 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 257 lb	GRIP 244/190 FT = 20%
		2x4 SP No.2 athing directly applie cept end verticals, ar -6 max.): 4-6. applied or 10-0-0 oc 5-16, 5-12 18=0-3-8 LC 12) LC 15), 18=-200 (LC	nd 3) : 14) 4)	Vasd=103m II; Exp B; Er and C-C Ex to 7-9-8, Ext to 23-8-8, Ex 36-1-8 to 40 cantilever le right expose for reactions DOL=1.60 TCLL: ASCE Plate DOL= DOL=1.15); Cs=1.00; Ct	57-16; Vult=130mp ph; TCDL=6.0psf; iclosed; MWFRS (i erior(2E) -0-10-8 to erior(2R) 7-9-8 to 2 terior(2R) 23-8-8 to -4-13, Exterior(2E) t and right expose d;C-C for members shown; Lumber D E 7-16; Pr=20.0 psf 1.15); Pf=20.0 psf	BCDL=6 envelope o 3-6-3, 20-2-8, I to 36-1-{ to 36-1-{ d; end v s and fo iOL=1.60 f (roof LI (Lum DC B; Fully	.0psf; h=25ft a) exterior zoo Interior (1) 3- nterior (1) 20 a, Interior (1) to 44-9-8 zo rertical left ar ces & MWFF b) plate grip c: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9	ne 6-3 -2-8 nne; nd RS 1.15 9;					
FORCES	(lb) - Maximum Com Tension 1-2=0/27, 2-4=-3656 5-6=-2867/378, 6-8=	5/380, 4-5=-2867/378		This truss ha load of 12.0 overhangs n	as been designed f psf or 1.00 times fl on-concurrent with	lat roof le n other li	oad of 20.0 p /e loads.	sf on					
BOT CHORD	2-18=-2070/281, 8-1 17-18=-223/764, 16- 14-16=-147/3451, 12 11-12=-196/3194, 10	0=-2070/281 -17=-289/3195, 2-14=-147/3451,	7)	This truss ha chord live lo * This truss	quate drainage to p as been designed f ad nonconcurrent has been designed m chord in all area	for a 10.0 with any d for a liv) psf bottom other live loa e load of 20.0	uds.			1	RTH CA	Rollin
,	3-17=-55/141, 3-16= 4-16=-18/1005, 5-16 5-12=-871/146, 6-12 7-12=-620/165, 7-11 2-17=-141/2464, 8-1 ed roof live loads have	e-620/166, 5=-870/146, 5-14=0/4 2=-18/1005, =-55/141, 1=-128/2474	9)	3-06-00 tall chord and a One H2.5A recommend UPLIFT at jt only and doe) Graphical pu	by 2-00-00 wide wi ny other members, Simpson Strong-Ti ed to connect truss (s) 18 and 10. This es not consider late urlin representation	ill fit betw , with BC e conne s to bear s connec eral force n does no	veen the bott DL = 10.0ps ctors ing walls due tion is for upl es. ot depict the s	f. to ift				SEA 0578	•
this design) .			or the orient		along the	e top and/or					-SNGINI	ER

LOAD CASE(S) Standard

April 28,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	A07	Нір	1	1	Job Reference (optional)	

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:04

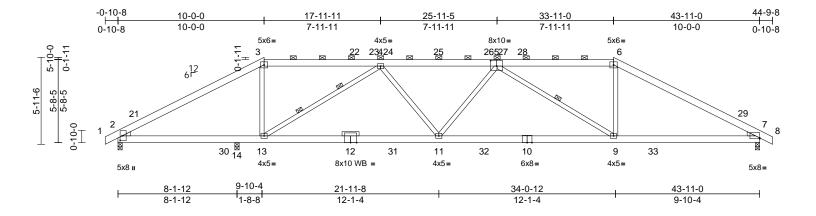
ID:?uRIDR2t8LeFVDzXIBS60OznEgn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:79.1

Plate Offsets (X, Y): [6:0-5-0,0-4-8]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.59	Vert(LL)	-0.27	14-16	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.40	Vert(CT)	-0.47	14-16	>916	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.77	Horz(CT)	0.10	10	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 280 lb	FT = 20%
LUMBER			2)	Wind: ASCE	7-16; Vult=130m	ph (3-seo	cond gust)						
TOP CHORD	2x4 SP 2400F 2.0E	*Except* 5-6,6-7:2x6	S SP		ph; TCDL=6.0psf;								
	2400F 2.0E				closed; MWFRS								
BOT CHORD	2x6 SP 2400F 2.0E				erior(2E) -0-10-8								
NEBS	2x4 SP No.3 *Excep	ot* 16-6,12-6:2x4 SP	No.2		erior(2R) 5-9-8 to								
OTHERS	2x4 SP No.3				kterior(2R) 25-8-8								
SLIDER	Left 2x4 SP No.3 1	1-6-0, Right 2x4 SP	No.3		0-4-13, Exterior(2 ft and right expose								
	1-6-0				d;C-C for membe								
	o				shown; Lumber [
TOP CHORD	Structural wood she		ea or	DOL=1.60	2								
	3-9-12 oc purlins, ex 2-0-0 oc purlins (5-8		3)		E 7-16; Pr=20.0 ps	f (roof Ll	.: Lum DOL=	1.15					
BOT CHORD	Rigid ceiling directly		· ·	Plate DOL=	1.15); Pf=20.0 psf	(Lum DC	DL=1.15 Plate	е					
SOT CHORD	bracing.	applied of 10-0-0 of		DOL=1.15);	Is=1.0; Rough Ca	t B; Fully	Exp.; Ce=0.	9;					
NEBS	1 Row at midpt	6-12		Cs=1.00; Ct									
WEBS		6-16	4)		snow loads have	been cor	nsidered for t	his					
		10=0-3-8, 17=0-3-8		design.									
	Max Horiz 2=-99 (LC		5)		as been designed								
	Max Uplift 2=-221 (L	,	15)		psf or 1.00 times			osf on					
	Max Grav 2=1656 (L		6)		on-concurrent wit								
	17=402 (L		, 0)		quate drainage to as been designed			g.					• 10/18/ FT
FORCES	(lb) - Maximum Com	,	7)		ad nonconcurrent			ade					11111
011020	Tension	procolori/maximum	8)		has been designe						-	"TH CA	Roll
TOP CHORD	1-2=0/23, 2-4=-3155	5/441, 4-5=-3000/38			m chord in all area			opsi			in the second se	A	N. City
	5-7=-3004/383, 7-8=		- ,		by 2-00-00 wide w			om			31	O FESS	DA: V:
	8-10=-3544/420, 10				ny other members						SK		N. Y. F.
BOT CHORD	2-17=-369/2723, 16-	-17=-369/2723,	9)	N/A	,	,						gain of	
	14-16=-290/3999, 12	2-14=-290/3999,	,							-		SEA	1 1 1
	10-12=-277/3086									=	:	SEA	- : :
WEBS	4-16=-480/193, 5-16									=		0578	87 : =
	6-16=-1620/202, 6-1		10		urlin representatio			size		-			
	6-12=-1246/239, 7-1	2=0/1020,			ation of the purlin	along the	e top and/or				-	10.0	
	8-12=-512/190			bottom chore							2	0578	EP.
NOTES				DAD CASE(S)	Standard						11,	GIN	5. E N
	ed roof live loads have	been considered for	r								1	DAM I	DACEN
this desigr	۱.											111 IVI	in the second se
													1 20 2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	A08	Нір	1	1	I73028916 Job Reference (optional)	

Run: 8 73 S Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries Inc. Fri Apr 25 10:21:04 ID:xHZVe748gzuzIX7wPcUa5pznEgl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

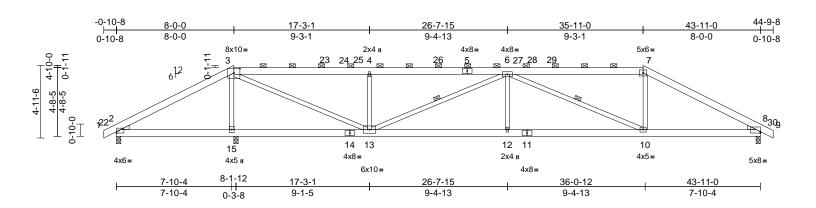
Page: 1

Scale = 1:78.8

Plate Offsets (X, Y): [2:0-3-12,0-1-9], [5:0-5-0,0-4-8], [7:Edge,0-0-11] Loading 2-0-0 CSI DEFL in (loc) l/defl L/d PLATES GRIP (psf) Spacing TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.35 Vert(LL) -0.32 11-13 >999 240 MT20 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.51 Vert(CT) -0.55 11-13 >782 180 TCDL 10.0 Rep Stress Incr WB Horz(CT) YES 0.77 0.09 7 n/a n/a BCLL 0.0 IRC2021/TPI2014 Matrix-MSH Code BCDL 10.0 Weight: 280 lb FT = 20% LUMBER 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) 2x6 SP 2400F 2.0E Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. TOP CHORD 2x6 SP 2400F 2.0E II; Exp B; Enclosed; MWFRS (envelope) exterior zone BOT CHORD and C-C Exterior(2E) -0-10-8 to 3-6-3, Exterior(2R) 3-6-3 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 to 16-2-8. Interior (1) 16-2-8 to 27-8-8. Exterior(2R) Left: 2x4 SP No.3 27-8-8 to 40-4-13, Exterior(2E) 40-4-13 to 44-9-8 zone; WEDGE Right: 2x4 SP No.3 cantilever left and right exposed ; end vertical left and right exposed C-C for members and forces & MWERS BRACING for reactions shown; Lumber DOL=1.60 plate grip TOP CHORD Structural wood sheathing directly applied or DOL=1.60 5-5-12 oc purlins, except 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2-0-0 oc purlins (5-1-6 max.): 3-6. Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate BOT CHORD Rigid ceiling directly applied or 10-0-0 oc DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; bracing. Cs=1.00; Ct=1.10 WEBS 1 Row at midpt 5-9 4) Unbalanced snow loads have been considered for this WEBS 2 Rows at 1/3 pts 4-13 desian. REACTIONS (size) 2=0-3-8, 7=0-3-8, 14=0-3-8 5) This truss has been designed for greater of min roof live Max Horiz 2=-84 (LC 19) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on Max Uplift 2=-130 (LC 14), 7=-201 (LC 15), overhangs non-concurrent with other live loads. 14=-99 (LC 11) Provide adequate drainage to prevent water ponding. 6) 2=1212 (LC 37), 7=1825 (LC 39), Max Grav This truss has been designed for a 10.0 psf bottom 7) 14=1090 (LC 46) chord live load nonconcurrent with any other live loads. FORCES (lb) - Maximum Compression/Maximum 8) * This truss has been designed for a live load of 20.0psf Tension on the bottom chord in all areas where a rectangle NEER M PACE April 28,20° TOP CHORD 1-2=0/37, 2-3=-2168/215, 3-4=-1884/248, 3-06-00 tall by 2-00-00 wide will fit between the bottom 4-6=-4090/354, 6-7=-3450/311, 7-8=0/37 chord and any other members, with BCDL = 10.0psf. BOT CHORD 2-14=-106/1847, 13-14=-106/1847, Annound 18 9) One H2.5A Simpson Strong-Tie connectors 11-13=-309/3629, 9-11=-316/4006, recommended to connect truss to bearing walls due to 7-9=-183/3001 UPLIFT at jt(s) 2, 7, and 14. This connection is for uplift WEBS 3-13=0/515, 4-13=-2137/310, 4-11=-13/690, only and does not consider lateral forces. 5-11=-120/216, 5-9=-1229/255, 6-9=0/1045 10) Graphical purlin representation does not depict the size NOTES or the orientation of the purlin along the top and/or 1) Unbalanced roof live loads have been considered for bottom chord. LOAD CASE(S) Standard

this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	A09	Нір	1	1	Job Reference (optional)	173028917

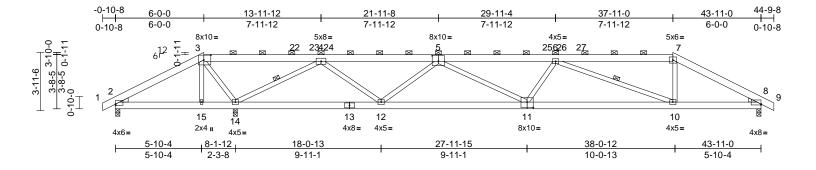
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:04 ID:mRwmvA8uGpf7TSa4msb_K4znEgf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:78.6

Plate Offsets ((X, Y): [3:0-5-0,0-3-10], [8:Edge,0-1-3]				-					-	
oading CLL (roof) CDL CDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL1.Lumber DOL1.Rep Stress IncrYI	0-0 15 15 ES C2021/TPI2014	CSI TC BC WB Matrix-MSH	0.91 0.66 0.88	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 12-13 12-13 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
ICDL	10.0										Weight: 284 lb	FT = 20%
UMBER OP CHORD OT CHORD VEBS VEDGE BRACING OP CHORD	2x6 SP No.2 2x4 SP No.3 *Excep No.2 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she 4-4-9 oc purlins, exc		Vasd=10 II; Exp B; and C-C to 14-2-8 29-8-8 to cantileve right exp for reacti DOL=1.6		BCDL=6 (envelope to 3-6-3, o 29-8-8, o 29-8-8, o 40-4-13 ed ; end v rs and fo DOL=1.6	6.0psf; h=25ff b) exterior zo Exterior(2R) Exterior(2R) B to 44-9-8 zo vertical left an rces & MWFf D plate grip	ne 3-6-3 one; nd RS					
OT CHORD	2-0-0 oc purlins (2-2 Rigid ceiling directly bracing.		Plate DO DOL=1.1	CE 7-16; Pr=20.0 ps _=1.15); Pf=20.0 ps 5); Is=1.0; Rough Ca	(Lum DC	DL=1.15 Plate	е					
VEBS REACTIONS	(size) 2=0-3-8, 8 Max Horiz 2=69 (LC Max Uplift 2=-435 (L 15=-282 (C 40), 8=-198 (LC 15), LC 11) C 43), 8=1403 (LC 45),	design. 5) This truss load of 12 overhang 6) Provide a	Ct=1.10 ed snow loads have has been designed .0 psf or 1.00 times s non-concurrent wit dequate drainage to has been designed	for great flat roof l h other li prevent	er of min roo bad of 20.0 p ve loads. water pondin	f live osf on ig.					
ORCES	4-6=-1913/287, 6-7=	1309, 3-4=-1915/289, 2064/328,	chord live 8) * This tru on the bo 3-06-00 t	load nonconcurrent is has been designe ttom chord in all are all by 2-00-00 wide v	with any d for a liv as where vill fit betv	other live loa e load of 20. a rectangle	ads. .0psf			ALT.	TH CA	ROLIN
OT CHORD	7-8=-2367/309, 8-9= 2-15=-1103/225, 13- 12-13=-329/3007, 10 8-10=-168/2070	15=-1019/213,	 H10A Sir connect f 	I any other members upson Strong-Tie con uss to bearing walls ection is for uplift or	nnectors due to U	PLIFT at jt(s) 2.			E	Ser	ux ?
VEBS IOTES) Unbalance this design	6-10=-1048/234, 7-1 ed roof live loads have	=-1233/219, 6-12=0/389 0=0/585	lateral for , 10) One H2.5 recomme UPLIFT a and does 11) Graphica or the ori bottom cl	ces. A Simpson Strong-T nded to connect trus t jt(s) 15 and 8. This not consider lateral purlin representatio intation of the purlin	ie conne s to bear connecti forces. n does n	ctors ing walls due on is for uplif ot depict the	e to ft only		1111VC	A A A A A A A A A A A A A A A A A A A	SEA 0578 ADAM	B7 EER.

April 28,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


A MITEK Affi

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	A10	Нір	1	1	Job Reference (optional)	8918

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:04 ID:70jfytC15LHPZDT1YPB918znEga-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:78.4

			-								
coading (psf) CLL (roof) 20.0 Snow (Pf) 20.0 CDL 10.0 GCLL 0.0* GCDL 10.0	Spacing2-0Plate Grip DOL1.1Lumber DOL1.1Rep Stress IncrYECodeIRC	5 5	CSI TC BC WB Matrix-MSH	0.86 0.56 0.98	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 11-12 11-12 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 281 lb	GRIP 244/190 FT = 20%
No.2 EBS 2x4 SP No.3 EDGE Left: 2x4 SP No.3 Right: 2x4 SP No.3 Right: 2x4 SP No.3 RACING PCHORD PCHORD Structural wood sheat 4-7-4 oc purlins, excl 2-0-0 oc purlins (3-9- DT CHORD Rigid ceiling directly bracing. EBS 1 Row at midpt EBS 1 Row at midpt EACTIONS (size) 2=0-3-8, 8 Max Horiz 2=-53 (LC Max Horiz 2=-63 (LC Max Grav 2=169 (LC 14=3070 (LC 14=3235 (ORCES (lb) - Maximum Comp Tension 1-2=0/38, 2-3=-289/1 0P CHORD 1-2=0/38, 2-3=-289/1 1-6=-3214/417, 6-7= -7-8=-2284/283, 8-9= 0T CHORD 2-15=-1621/299, 14- 12-14=-140/364, 10- 8-10=-172/2009 EBS 3-15=-5/166, 3-14=-1 4-14=-3334/561, 4-11; 5-12=-1241/285, 5-1	-8 max.): 3-7. applied or 6-0-0 oc 4-14, 6-10 3=0-3-8, 14=0-3-8 15) C 40), 8=-186 (LC 15), LC 11) C 10), 8=1277 (LC 22), (LC 40) pression/Maximum 1879, 3-4=-357/2568, -1984/292, 0/38 15=-1627/299, 12=-415/3306, 1715/280, 2=-96/1566, 1=-67/784, =-1425/291, 7-10=0/604	 Vasd=103mp II; Exp B; Enand C-C Extend to 12-2-8, Int 31-8-8 to 40-cantilever lefright exposed for reactions DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct=4) Unbalanced design. This truss har load of 12.0 poverhangs not overhangs not chord live loa * This truss har chord and an an	snow loads have b s been designed for on-concurrent with juate drainage to p s been designed for d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members. nanical connection capable of withsta ft at joint 14 and 18 ft at joint 14 and 18 ft at joint of the purlin al	CDL=6 nvelope 3-6-3, I 31-8-8, I 40-4-13 I; end v and for DL=1.60 (roof LL um DO 3; Fully een con or greate at roof Ic other Iiv revent v for a liv/ where fit betw nding 7 66 Ib upl does no	Opsf; h=25ft) exterior zor Exterior(2R): Exterior(2R): to 44-9-8 zo ertical left an ces & MWFF plate grip : Lum DOL= L=1.15 Plate Exp.; Ce=0.9 sidered for the er of min roof and of 20.0 p e loads. vater ponding psf bottom other live loa e load of 20.0, a rectangle recen the botth eres of truss to 77 lb uplift at if at joint 8.	ne 3-6-3 ne; id ts st st st st on g. ds. Opsf om to				SEAL 0578	ROX 2

818 Soundside Road Edenton, NC 27932

April 28,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	A11	Hip Girder	1	3	Job Reference (optional)	173028919

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:06 ID:mzzd1oZDFFxIYgBcl?CyjFznEg7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

-0-10-8 4-0-0 44-9-8 9-1-9 14-3-2 19-4-11 24-6-5 29-7-14 34-9-7 39-11-0 43-11-0 4-0-0 5-1-9 5-1-9 5-1-9 5-1-9 5-1-9 5-1-9 5-1-9 4-0-0 0-10-8 0-10-8 Special NAILED NA 6<u></u> 5x6= 3x5= 3x5 = 3x6 =3x5= 3x5= 3x6= 3x5= 3x5= 5x6= 38 8 3 <u>30</u> 4 31 323334 7 36 39 10 404142 43 11 44 12 5 6 9 13 14 00 0.0 0.0 00 Ш 0.0 ш 0.0 0.0 0.0 ₿ 21 22 46 20 47 48 19 49 50 18 51 52 17 53 54 16 55 56 15 4x5= 8x10= 4x5= 8x10= 6x8= NAILED NAI 6x8= Special NAILED 4x5= 4x5= 8-1-12 15-11-1 21-11-8 27-11-15 34-0-5 40-0-12 3-10-4 43-11-0 -3-10-4 4-3-8 6-0-7 6-0-7 6-0-7 6-0-7 6-0-7 3-10-4 1-8-15

Scale = 1:78.2

Plate Offsets ((X, Y): [2:Edge,0-0-15	8,0-4-4],	4], [17:0-5-0,0-4-8], [19:0-5-0,0-4-8], [22:0-3-8,0-4-4]										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.51 0.59 0.42	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 17-18 17-18 13	l/defl >999 >959 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 761 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2400F 2.0E 2x6 SP 2400F 2.0E 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 2=0-3-8, 1 Max Horiz 2=-38 (LC	athing directly applie ept -0 max.): 3-12. applied or 6-0-0 oc 13=0-3-8, 21=0-3-8 2 59)	d or 2)	(0.131"x3") r Top chords of staggered at Bottom chord staggered at Web connect Except mem member 12- All loads are except if not CASE(S) see provided to of unless other	ted as follows: 2x ² ber 3-22 2x4 - 1 ro 15 2x4 - 1 row at 0 considered equal ed as front (F) or b ction. Ply to ply co distribute only load wise indicated.	ws: 2x6 row at 0- bllows: 2 4 - 1 row bw at 0-8 -8-0 oc. y applie back (B) nnection s noted	2 rows 9-0 oc. x6 - 2 rows at 0-9-0 oc, t-0 oc, Excep d to all plies, face in the LC s have been as (F) or (B),	DAD	 bea 2, 3 12) Gra or t bott 13) "NA (0.1 14) Har pro lb d des 	aring plat 361 lb up aphical p he orien tom choi AILED" ir 148"x3.2 nger(s) c vided su lown and	te capa olift at jo ourlin re tation o rd. ndicate 5") toe or other officient d 46 lb ction o	ble of withstand oint 13 and 768 l presentation do of the purlin alon s 3-10d (0.148"x -nails per NDS g connection dev to support conc up at 4-0-0 on h f such connectio	3") or 3-12d uidlines.
FORCES	Tension			 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 					LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plat Increase=1.15 Uniform Loads (lb/ft) Vert: 1-3=-60, 3-12=-60, 12-14=-60, 23-26=-20 Concentrated Loads (lb)				
4-5=-472/2971, 5-7=-3712/626, 7-8=-6876/1142, 8-10=-8160/1334, 10-11=-7166/1140, 11-12=-3715/571, 12-13=-4336/630, 13-14=-0/39 BOT CHORD 2-22=-2061/393, 21-22=-2690/457, 20-21=-2690/457, 18-20=-1026/5892, 16-18=-1345/8179, 15-16=-1081/6923, 13-15=-520/3816			6)	 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 6) Unbalanced snow loads have been considered for this design. 					TH CARO				
WEBS	20-21=-2690/457, 18-20=-1026/5892, 16-18=-1345/8179, 15-16=-1081/6923, 13-15=-520/3816 WEBS 3-22=-1604/336, 11-15=-3503/631, 12-15=-150/1604, 4-22=-118/825, 4-20=-982/253, 5-20=-5799/1026, 5-19=-328/2660, 7-19=-2619/523, 7-18=-137/1326, 8-18=-1217/320, 8-17=0/458, 10-17=-37/162, 10-16=-1193/289, 11-16=-28/807			 This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0 psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 					SEAL 057887				

April 28,2025

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information a valiable from the Structural Building Component Association (www.sbaccomponents.com)

E RENCU A Mi Tek Affilia

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type		Qty	Ply	15 Eagle Creek - Hartwell E - Roof	170000040
25040127	A11	Hip Girder		1	3	Job Reference (optional)	173028919
Carter Components (Sanford, NC), Sanford, NC - 27332,			Run: 8.73 S Feb 19 2	2025 Print: 8.	730 S Feb 1	9 2025 MiTek Industries, Inc. Fri Apr 25 10:21:06	Page: 2

ID:mzzd1oZDFFxIYgBcl?CyjFznEg7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply 15 Eagle Creek - Hartwell E - Roof		
25040127	B01	Common	7	1	Job Reference (optional)	173028920

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TCDL

BCLL

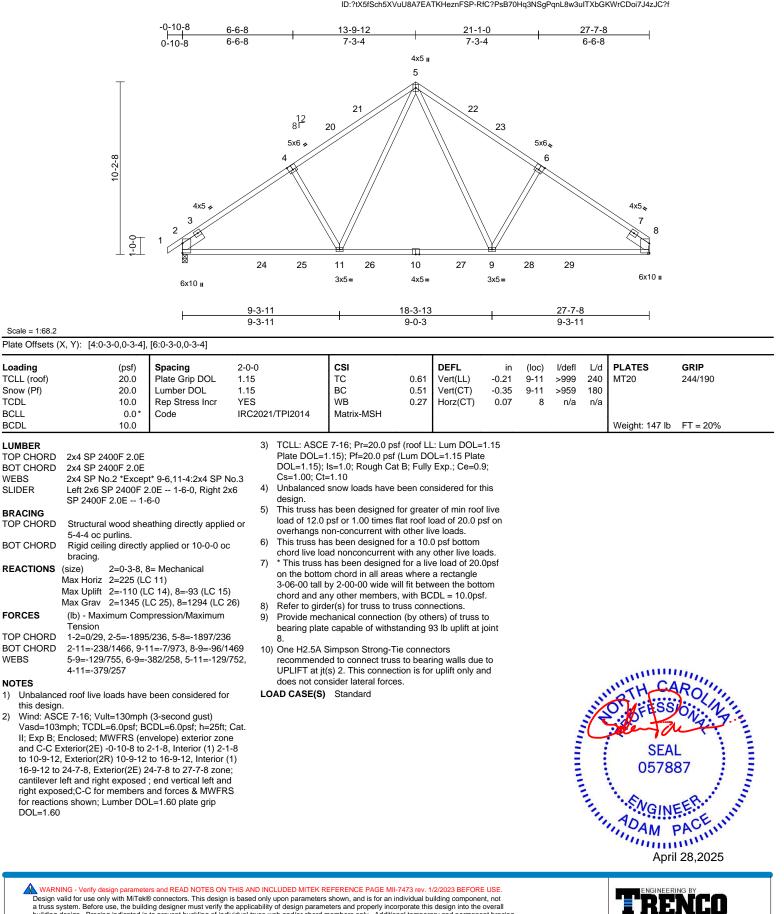
BCDL

WEBS

SLIDER

BRACING

FORCES


WEBS

NOTES

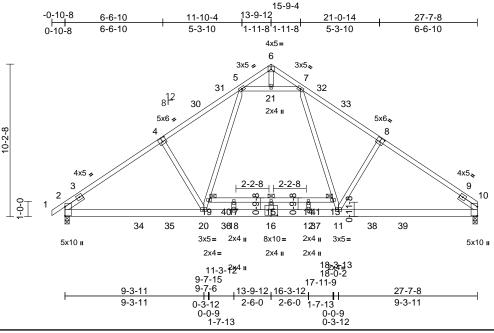
1)

2)

Run: 8 73 S. Feb 19 2025 Print: 8 730 S. Feb 19 2025 MiTek Industries. Inc. Fri Apr 25 10:21:07 ID:?tX5fSch5XVuU8A7EATKHeznFSP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

to 10-9-12. Exterior(2R) 10-9-12 to 16-9-12. Interior (1) 16-9-12 to 24-7-8, Exterior(2E) 24-7-8 to 27-7-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	B02	Common	8	1	Job Reference (optional)	173028921

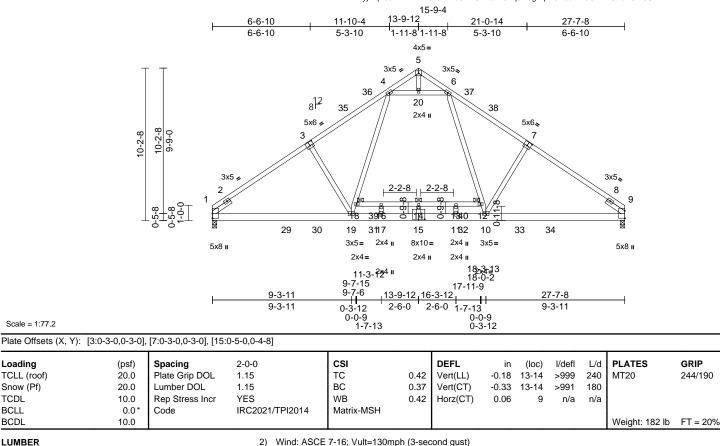
Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:07 ID:7zeClgozaVnibeakM_F9qTzuPcW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:77.2

Plate Offsets (X, Y): [4:0-3-0,0-3-0], [8:0-3-0,0-3-0], [10:0-0-0,0-0-0], [16:0-5-0,0-4-8]

 LUMBER TOP CHORD 24 SP 2400F 2.0E SC CHORD 26 SP 2400F 2.0E X 45 P No.2 Wind: ASCE 7-16; Vull=130mph (3-second gust) Vasd=103mph; TGDL=6.0ps; Heo216; Cet. II: Exp 8; Enclosed: NWFRS (Bcul=6.0ps; H=o216; Cet. II: Exp 8; Enclosed: NWFRS (Bcul=6.0ps; H=o216; Cet. II: Exp 8; Enclosed: NWFRS (Bcul=6.0ps; H=o216; Cet. II: Exp 8; Enclosed: NWFRS hol 2-1.6, Interior (1) 2-1.8 to 10-9-12; Extendr(28; 10-9-12: to 16-9-12; Interior (1) 16-9-12 to 24-7-8; Extendr(28; 10-9-12; to 16-9-12; to 16-9-12; to 16-9-12; Interior (1) 16-9-12 to 24-7-8; Extendr(28; 10-9-12; to 16-9-12; to 16-9-12;	Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	21/TPI2014	CSI TC BC WB Matrix-MSH	0.43 0.37 0.42	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.34 0.06	(loc) 15-17 15-17 10	l/defl >999 >989 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 184 lb	GRIP 244/190 FT = 20%
	TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance	2x6 SP 2400F 2.0E No.2 2x4 SP No.3 Left 2x4 SP No.3 1 1-6-0 Structural wood shea 4-9-1 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 1 Max Horiz 2=225 (LC Max Grav 2=1641 (L (lb) - Maximum Com Tension 1-2=0/29, 2-5=-2416 6-7=-27/8/43, 7-10=- 2-20=-156/1892, 18- 12-18=0/1542, 11-12 10-11=-14/1894, 17- 14-15=-73/0, 13-14= 7-13=0/959, 11-13=(19-20=0/876, 5-19=(5-21=-1436/52, 7-21 15-16=-113/0, 6-21= 17-18=-110/0	1-6-0, Right 2x4 SP N athing directly applied applied or 6-0-0 oc 10=0-3-8 C 13) .C 25), 10=1591 (LC pression/Maximum 5/0, 5-6=-279/43, 2417/0 .20=0/1542, 2=0/1542, 2=0/1542, 2=0/1542, 19=-73/0, 15-17=-73 .73/0 0/879, 8-11=-330/254 J/956, 4-20=-328/254 =-1436/52, 10/270, 12-14=-110	P lo.3 d or 26) 4) 5) 6) (0, 7) 8) 9) (0,	Vasd=103mj II; Exp B; En and C-C Ext to 10-9-12, E 16-9-12 to 2 cantilever lef right expose for reactions DOL=1.60) TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct) Unbalanced design.) This truss ha load of 12.0 overhangs n) 200.0Ib AC u 13-9-12 from apart.) All plates are this truss ha chord live loa) This truss ha chord live loa) This truss ha chord live loa	bh; TCDL=6.0psf; closed; MWFRS (erior(2E) -0-10-8 t :xterior(2R) 10-9-1 4-7-8, Exterior(2E) t and right expose d;C-C for member shown; Lumber D 5-7-16; Pr=20.0 psf I.15); Pf=20.0 psf Is=1.0; Rough Cat =1.10; snow loads have I as been designed i psf or 1.00 times f on-concurrent with unit load placed or a left end, supporte a 2x4 MT20 unless is been designed ad nonconcurrent has been designed ad nonconcurrent in chord in all area by 2-00-00 wide w ny other members.	BCDL=6 envelope o 2-1-8, 2 to 16- 2 2to 7-8 d; end v s and fo IOL=1.60 f (roof LI (Lum DC c B; Fully been con for great lat roof I in the bott ed at two for a 10. with any d for a liv s where ill fit betw	i.0psf; h=25f s) exterior zc Interior (1) 2 9-12, Interior to 27-7-8 zor vertical left al cross & MWF D plate grip .: Lum DOL= DL=1.15 Plat Exp.; Ce=0. hsidered for 1 er of min roo obad of 20.0 p ve loads. om chord, points, 5-0-1 se indicated D psf bottom other live loz e load of 20.0 a rectangle veen the bot	nne -1-8 (1) ne; nd RS =1.15 e 9; this of live psf on 0				SEA 0578 ADAM Apri	ROL 87 87 28,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	B02A	Common	1	1	Job Reference (optional)	173028922

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:07 ID:4MlyjMqE562Prxk7TPIdvuzuPcU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

LUMBER

Scale = 1:77.2

Loading

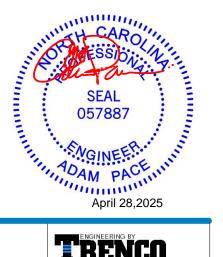
TCLL (roof)

Snow (Pf)

TCDL

BCLL

BCDL

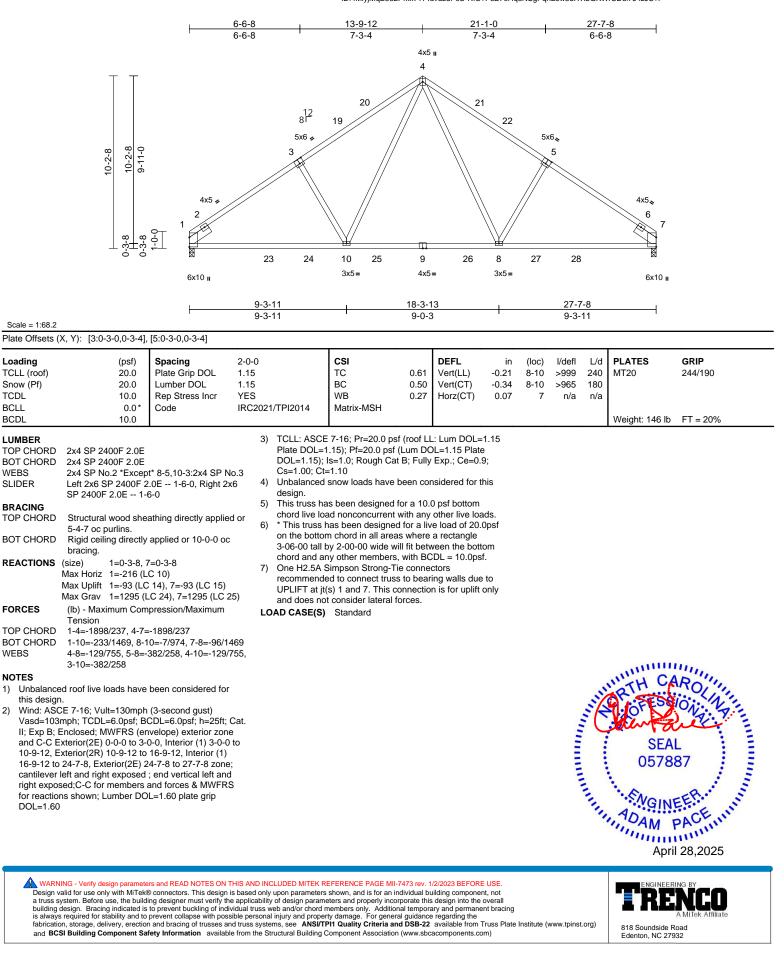

LUMBER	
TOP CHORD	2x4 SP 2400F 2.0E
BOT CHORD	2x6 SP 2400F 2.0E *Except* 18-12:2x4 SP No.2
WEBS	N0.2 2x4 SP No.3
SLIDER	Left 2x4 SP No.3 1-6-0, Right 2x4 SP No.3 1-6-0
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 4-9-3 oc purlins.
BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing.
REACTIONS	(size) 1=0-3-8, 9=0-3-8
	Max Horiz 1=-216 (LC 10)
	Max Grav 1=1591 (LC 24), 9=1591 (LC 25)
FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-4=-2418/0, 4-5=-279/43, 5-6=-279/43,
	6-9=-2418/0
BOT CHORD	1-19=-148/1895, 17-19=0/1543,
	11-17=0/1543, 10-11=0/1543, 9-10=-14/1895,
	16-18=-73/0, 14-16=-73/0, 13-14=-73/0,
	12-13=-73/0
WEBS	3-19=-330/254, 18-19=0/879, 4-18=0/959,
	6-12=0/959, 10-12=0/879, 7-10=-330/254,
	4-20=-1436/52, 6-20=-1436/52,
	14-15=-113/0, 5-20=-10/270, 11-13=-110/0, 16-17=-110/0
NOTES	

1) Unbalanced roof live loads have been considered for this design.

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0. Interior (1) 3-0-0 to 10-9-12, Exterior(2R) 10-9-12 to 16-9-12, Interior (1) 16-9-12 to 24-7-8, Exterior(2E) 24-7-8 to 27-7-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

- 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 200.0lb AC unit load placed on the bottom chord, 5) 13-9-12 from left end, supported at two points, 5-0-0 apart.
- All plates are 2x4 MT20 unless otherwise indicated. 6)
- This truss has been designed for a 10.0 psf bottom 7) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

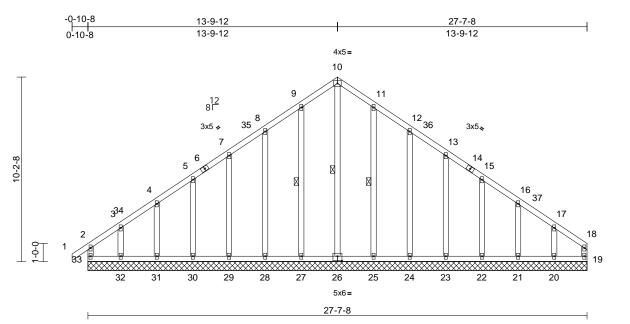
LOAD CASE(S) Standard


GRIP

244/190

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type		Ply	15 Eagle Creek - Hartwell E - Roof			
25040127	B03	Common	2	1	Job Reference (optional)	173028923		


Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:07 ID:4MlyjMqE562Prxk7TPIdvuzuPcU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	B04	Common Supported Gable	1	1	Job Reference (optional)	173028924

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:07 ID:8F9dtU?eZjwH8FN0r33803zuPcF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:63.8

Plate Offsets (X, Y): [26:0-3-0,0-3-0]

	(,,, ,). [20:0 0 0;0 0 0	1							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014 TOP CHOR	TC 0.18 \ BC 0.09 \ WB 0.18 H Matrix-MR	DEFL in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.01	(loc) I/defl L/d - n/a 999 - n/a 999 19 n/a n/a 4) TCLL: ASCE 7-16	PLATES GRIP MT20 244/190 Weight: 198 lb FT = 20% S; Pr=20.0 psf (roof LL: Lum DOL=1.15		
TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 19=27-7-1 22=27-7-1 28=27-7-4 31=27-7-4 Max Horiz 33=251 (L Max Upliff 19=-71 (L 21=-43 (L 23=-56 (L 	applied or 6-0-0 oc 10-26, 9-27, 11-25 3, 20=27-7-8, 21=27-7 3, 26=27-7-8, 27=27-7 3, 29=27-7-8, 30=27-7 3, 32=27-7-8, 33=27-7 .C 11), 20=-129 (LC 1 C 15), 22=-62 (LC 15 C 15), 24=-64 (LC 15	BOT CHOR 7-8, 7-8, 7-8, WEBS 7-8 5),),),	$\begin{array}{r} 3\text{-}4\text{=-}144/134, 4\text{-}5\text{=-}133/135,\\ 7\text{-}8\text{=-}109/195, 8\text{-}9\text{=-}143/251,\\ 10\text{-}11\text{=-}172/298, 11\text{-}12\text{=-}143/251,\\ 12\text{-}13\text{=-}109/191, 13\text{-}15\text{=-}82/15,\\ 15\text{-}16\text{=-}83/101, 16\text{-}17\text{=-}93/82,\\ 17\text{-}18\text{=-}129/115, 18\text{-}19\text{=-}91/5\\ D \ 32\text{-}33\text{=-}101/115, 31\text{-}32\text{=-}101,\\ 30\text{-}31\text{=-}101/115, 27\text{-}28\text{=-}101,\\ 28\text{-}29\text{=-}101/115, 27\text{-}28\text{=-}101,\\ 28\text{-}29\text{=-}101/115, 27\text{-}28\text{=-}101,\\ 28\text{-}22\text{=-}101/115, 22\text{-}23\text{=-}101,\\ 23\text{-}24\text{=-}101/115, 22\text{-}23\text{=-}101,\\ 21\text{-}22\text{=-}101/115, 20\text{-}21\text{=-}101,\\ 19\text{-}20\text{=-}101/115, 20\text{-}21\text{=-}101,\\ 19\text{-}20\text{=-}101/115, 20\text{-}21\text{=-}143/84,\\ 3\text{-}32\text{=-}146/125, 11\text{-}25\text{=-}218/7,\\ 12\text{-}24\text{=-}182/88, 13\text{-}23\text{=-}143/84,\\ 15\text{-}22\text{=-}143/84, 16\text{-}21\text{=-}143/7,\\ 17\text{-}20\text{=-}149/114\\ \end{array}$, 9-10=-172/298, 3/251, 137, 2, 55 1/115, 1/12,	 DOL=1.15); Is=1.1 Cs=1.00; Ct=1.10 Unbalanced snow design. This truss has bee load of 12.0 psf o overhangs non-cc All plates are 2x4 Gable requires cc Truss to be fully s braced against lat Gable studs spac This truss has bee chord live load no This truss has be on the bottom choc 	v loads have been considered for this en designed for greater of min roof live r 1.00 times flat roof load of 20.0 psf on oncurrent with other live loads. MT20 unless otherwise indicated. ontinuous bottom chord bearing. theathed from one face or securely teral movement (i.e. diagonal web). ed at 2-0-0 oc. en designed for a 10.0 psf bottom onconcurrent with any other live loads. een designed for a live load of 20.0psf ord in all areas where a rectangle 20-00 wide will fit between the bottom		
$\begin{array}{c} 25{=}-48 \; (LC\;15), \; 27{=}{-}50 \; (LC\;14), \\ 28{=}{-}63 \; (LC\;14), \; 29{=}{-}56 \; (LC\;14), \\ 30{=}{-}63 \; (LC\;14), \; 31{=}{-}40 \; (LC\;14), \\ 32{=}{-}145 \; (LC\;14), \; 33{=}{-}122 \; (LC\;10) \\ Max\;Grav 19{=}127 \; (LC\;12), \; 20{=}216 \; (LC\;26), \\ 21{=}161 \; (LC\;22), \; 22{=}{-}171 \; (LC\;26), \\ 23{=}168 \; (LC\;22), \; 26{=}253 \; (LC\;15), \\ 27{=}259 \; (LC\;21), \; 28{=}222 \; (LC\;21), \\ 29{=}168 \; (LC\;25), \; 30{=}{-}171 \; (LC\;25), \\ 31{=}166 \; (LC\;26), \; 32{=}{-}215 \; (LC\;25), \\ 33{=}223 \; (LC\;26) \\ \textbf{FORCES} \qquad (lb) - Maximum Compression/Maximum Tension \\ \end{array}$			/, 1) Unbalar, this des, this des, this des, 10) 2) Wind: A Vasd=1 6), I; Exp I Exp, and C-C 5), to 10-9-12 16-9-12 5), right ex, for reac DOL=1. 3) Truss d only. F, see Sta State S	SCE 7-16; Vult=130mph (3-secor 03mph; TCDL=6.0psf; BCDL=6.0 8; Enclosed; MWFRS (envelope) (5; Corner(3E) -0-10-8 to 2-1-8, Ext 12, Corner(3R) 10-9-12 to 16-9-12 to 24-5-12, Corner(3E) 24-5-12 tc r left and right exposed ; end ver posed;C-C for members and force tions shown; Lumber DOL=1.60 p	nd gust))psf; h=25ft; Cat. exterior zone terior(2N) 2-1-8 12, Exterior(2N) to 27-5-12 zone; rtical left and es & MWFRS plate grip ne of the truss to the face), s a sapplicable,	SEAL 057887			

Continued on page 2

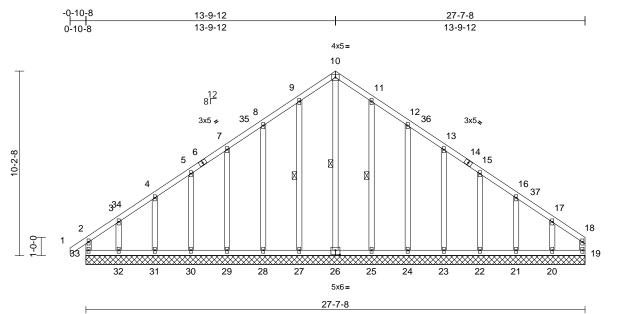
Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeR% connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the Section of the prevent collapse contervent for the Sectional temporation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	170000004
25040127	B04	Common Supported Gable	1	1	Job Reference (optional)	173028924

13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 122 lb uplift at joint 33, 71 lb uplift at joint 19, 50 lb uplift at joint 27, 63 lb uplift at joint 28, 56 lb uplift at joint 29, 63 lb uplift at joint 30, 40 lb uplift at joint 31, 145 lb uplift at joint 32, 48 lb uplift at joint 25, 64 lb uplift at joint 24, 56 lb uplift at joint 23, 62 lb uplift at joint 22, 43 lb uplift at joint 21 and 129 lb uplift at joint 20.

LOAD CASE(S) Standard


Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:07 ID:8F9dtU?eZjwH8FN0r33803zuPcF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	B05	Common Supported Gable	1	1	Job Reference (optional)	173028925

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:08 ID:fn4p5KnLpBfr_U?YoHkwHGzuPcX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:63.8

Plate Offsets (X, Y): [26:0-3-0,0-3-0]

	(,,, 1): [20:0 0 0,0 0 0	5]							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC 0.18 BC 0.09 WB 0.18 Matrix-MR	DEFL in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.01	- n/a - n/a	a 999 a 999	PLATES MT20 Weight: 198 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS TOP CHORD BOT CHORD WEBS REACTIONS	 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 19=27-7- 22=27-7- 22=27-7- 25=27-7- 28=27-7- 31=27-7- Max Horiz 33=251 (Max Uplift 19=-71 (L 21=-43 (L 23=-56 (L 25=-48 (L 	v applied or 6-0-0 oc 10-26, 9-27, 11-25 8, 20=27-7-8, 21=27-7 8, 23=27-7-8, 24=27-7 8, 26=27-7-8, 27=27-7 8, 29=27-7-8, 30=27-7 8, 32=27-7-8, 33=27-7	BOT CHORI 7-8, 7-8, 7-8, 7-8 5), 1, NOTES 1) Unbalan	3-4=-144/134, 4-5=-133/1 7-8=-109/195, 8-9=-143/2 10-11=-172/298, 11-12=-1 12-13=-109/191, 13-15=-8 15-16=-83/101, 16-17=-92 17-18=-129/115, 18-19=-5 D 32-33=-101/115, 31-32=-1 30-31=-101/115, 21-32=-1 25-27=-101/115, 22-23=-1 23-24=-101/115, 22-23=-1 21-22=-101/115, 20-21=-1 19-20=-101/115, 20-21=-1 19-20=-101/115, 20-21=-1 19-20=-101/115, 20-21=-1 19-20=-101/115, 20-21=-1 12-24=-182/88, 13-23=-14 15-22=-143/84, 16-21=-14 17-20=-149/114 weed roof live loads have been	35, 5-7=-116/163, 51, 9-10=-172/298, 43/251, 2/137, 182, 11/55 01/115,	 Plate DOL DOL=1.15 Cs=1.00; Unbalanci design. This truss load of 12 overhange All plates Gable req Truss to b braced ag Gable stu This truss chord live * This truss on the bol 3-06-00 ta 	_=1.15); j); Is=1.0 Ct=1.10 ed snow has bee .0 psf of s non-cc are 2x4 uires co e fully s has bee load no s has b tom chc are b load no s has bec load no s has bec load no s has bec load no s has bec load no	Pf=20.0 psf (Lur 0; Rough Cat B; I v loads have been en designed for g r 1.00 times flat ro oncurrent with oth MT20 unless obtom iheathed from on- teral movement (ed at 2-0-0 oc. en designed for a inconcurrent with een designed for ord in all areas with	erwise indicated. chord bearing. e face or securely i.e. diagonal web). h 10.0 psf bottom any other live loads. a live load of 20.0psf
FORCES	30=-63 (I 32=-145 Max Grav 19=127 (I 21=161 (23=168 (25=258 (27=259 (29=168 (31=166 (33=223 (LC 14), 31=-40 (LC 14) (LC 14), 33=-122 (LC LC 12), 20=216 (LC 24) LC 22), 22=171 (LC 24) LC 26), 24=222 (LC 25) LC 22), 26=253 (LC 14) LC 21), 28=222 (LC 25), 30=171 (LC 24) LC 25), 32=215 (LC 25)	this desi 10) 2) Wind: At 6), 2) Wind: At 6), II; Exp B Exp B 5), II; Exp B And C-C 5), to 10-9-7 I), 16-9-12 5), cantileve For react 5), right exp for react DOL=1.6 3) Truss des only. Fc see Star Star	SCE 7-16; Vult=130mph (3-se D3mph; TCDL=6.0psf; BCDL= b; Enclosed; MWFRS (envelop : Corner(3E) -0-10-8 to 2-1-8, 12, Corner(3R) 10-9-12 to 16- to 24-5-12, Corner(3E) 24-5-1 er left and right exposed; end posed;C-C for members and fo ions shown; Lumber DOL=1.6	6.0psf; h=25ft; Cat. e) exterior zone Exterior(2N) 2-1-8 9-12, Exterior(2N) 2 to 27-5-12 zone; vertical left and rces & MWFRS 0 plate grip lane of the truss nal to the face), nils as applicable,		H. B. Stranger	SEA 0578	EER.

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. 818 Soundside Road Edenton, NC 27932

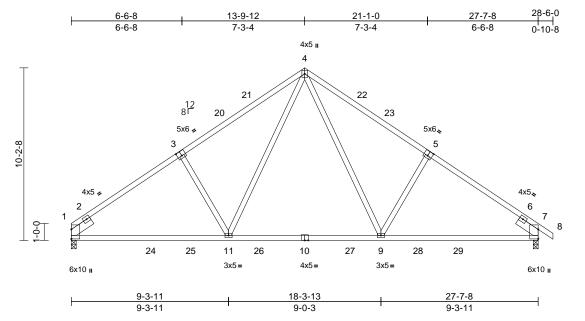
April 28,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeR% connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the Section of the prevent collapse contervent for the Sectional temporation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	B05	Common Supported Gable	1	1	Job Reference (optional)	173028925

13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 122 lb uplift at joint 33, 71 lb uplift at joint 19, 50 lb uplift at joint 27, 63 lb uplift at joint 28, 56 lb uplift at joint 29, 63 lb uplift at joint 30, 40 lb uplift at joint 31, 145 lb uplift at joint 32, 48 lb uplift at joint 25, 64 lb uplift at joint 24, 56 lb uplift at joint 23, 62 lb uplift at joint 22, 43 lb uplift at joint 21 and 129 lb uplift at joint 20.

LOAD CASE(S) Standard


Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:08 ID:fn4p5KnLpBfr_U?YoHkwHGzuPcX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	B06	Common	2	1	Job Reference (optional)	173028926

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:08 ID:7zeClgozaVnibeakM_F9qTzuPcW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:68.2 Plate Offsets (X, Y): [3:0-3-0,0-3-4], [5:0-3-0,0-3-4]

	, i). [3.0-3-0,0-3-4], [[5.0-5-0,0-5-4]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	20.0 20.0 10.0	Plate Grip DOL1.Lumber DOL1.Rep Stress IncrY	-0-0 .15 .15 ES RC2027	I/TPI2014	CSI TC BC WB Matrix-MSH	0.61 0.51 0.27	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.35 0.07	(loc) 9-11 9-11 7	l/defl >999 >959 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 147 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES	Left 2x6 SP 2400F 2.0 SP 2400F 2.0E 1-6 Structural wood shea 5-4-4 oc purlins. Rigid ceiling directly a bracing. (size) 1=0-3-8, 7= Max Horiz 1=-225 (LC Max Uplift 1=-93 (LC (Max Uplift 1=-93 (LC (Ib) - Maximum Comp Tension 1-4=-1897/236, 4-7=- 1-11=-224/1475, 9-11	-0 thing directly applied or applied or 10-0-0 oc =0-3-8 C 10) 14), 7=-110 (LC 15) C 25), 7=1345 (LC 26) pression/Maximum -1895/236, 7-8=0/29 1=0/979, 7-9=-84/1473 379/258, 4-11=-129/755	4) 5) r 6) 7) 8) LC	Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live loo * This truss la on the bottoo 3-06-00 tall I chord and an One H2.5A s recommend- UPLIFT at jt	snow loads have b as been designed for psf or 1.00 times file on-concurrent with as been designed for ad nonconcurrent v has been designed m chord in all areas by 2-00-00 wide will ny other members, Simpson Strong-Tie de to connect truss (s) 1 and 7. This co t consider lateral for	Lum DC B; Fully been col or great at roof I other li or a 10. vith any for a liv s where I fit betv with BC e conne to bear nnectio	DL=1.15 Plate Exp.; Ce=0. Insidered for t er of min rool oad of 20.0 p ve loads. 0 psf bottom other live loa ve load of 20. a rectangle veen the bott CDL = 10.0ps ing walls due	e 9; his f live f live sf on ads. 0psf om f. e to				NUTH C	Roj
this design 2) Wind: ASC	n. CE 7-16; Vult=130mph ((3-second gust)									1	FESS	DN N

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 10-9-12, Exterior(2R) 10-9-12 to 16-9-12, Interior (1) 16-9-12 to 25-6-0, Exterior(2E) 25-6-0 to 28-6-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 SEAL 057887 MGINEER April 28,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	B07	Common	1	1	Job Reference (optional)	173028927

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TCDL

BCLL

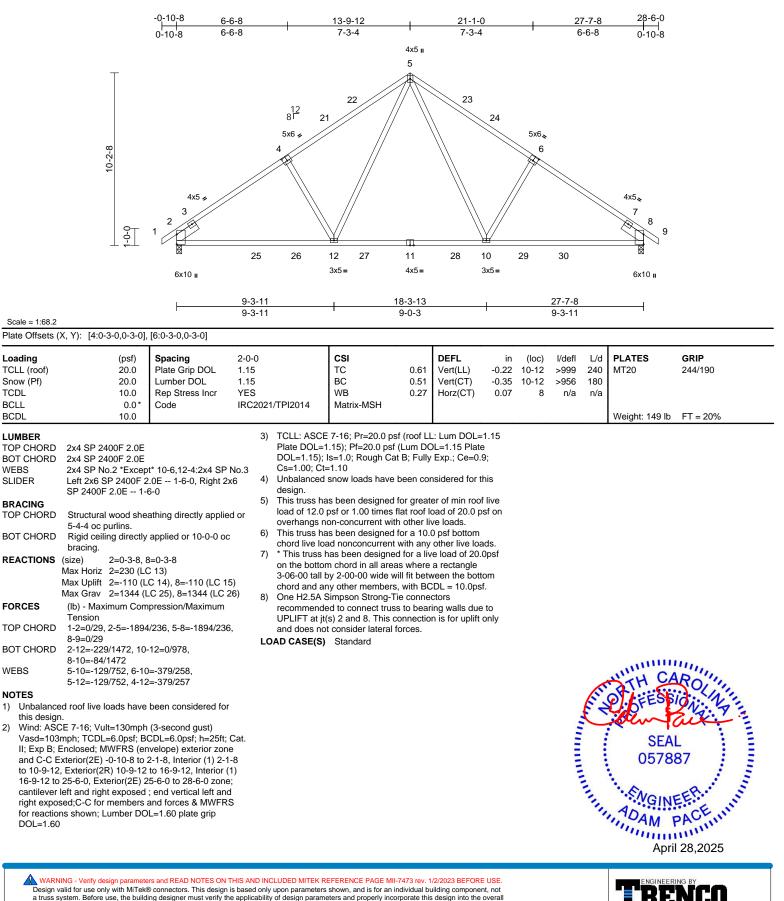
BCDL

WEBS

SLIDER

BRACING

FORCES


WEBS

NOTES 1)

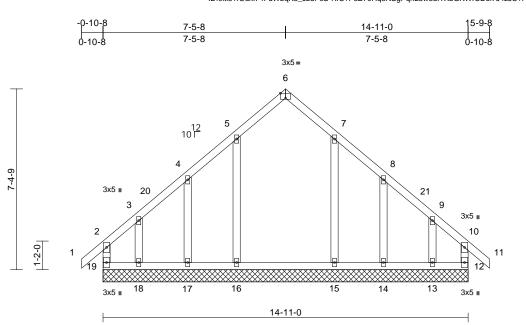
2)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:08 ID:7zeClgozaVnibeakM_F9qTzuPcW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

to 10-9-12, Exterior(2R) 10-9-12 to 16-9-12, Interior (1) 16-9-12 to 25-6-0, Exterior(2E) 25-6-0 to 28-6-0 zone; cantilever left and right exposed : end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	C01	Common Supported Gable	1	1	Job Reference (optional)	173028928

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:08 ID:0lti81rUdkI74FuWbqK5_JzuPcS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

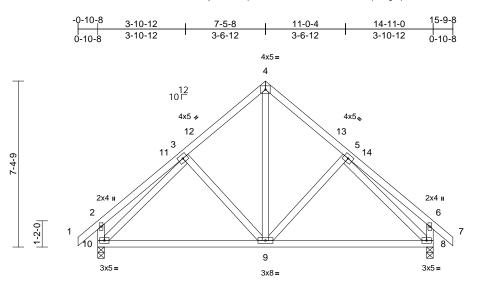
Scale = 1:47.1

Plate Offsets (X, Y): [6:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/	/TPI2014	CSI TC BC WB Matrix-MR	0.33 0.19 0.15	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 89 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 12=14-11 14=14-11 16=14-11 18=14-11 Max Horiz 19=-196 (Max Uplift 12=-44 (L 16=-19 (L 18=-204 (Max Grav 12=257 (L 16=368 (L	applied or 10-0-0 oc -0, 13=14-11-0, -0, 15=14-11-0, -0, 17=14-11-0, LC 12) C 13), 13=-202 (LC 12) C 15), 15=-16 (LC 15) C 14), 17=-86 (LC 14) LC 14), 19=-52 (LC 12)	2) or 3) 5), 4) , 2) 2) 5), 5) , 2)	this design. Wind: ASCE Vasd=103mp II; Exp B; End and C-C Corr to 4-5-8, Corr to 12-9-8, Co left and right exposed;C-C Polet and right exposed;C-C DOL=1.60 Truss design only. For stu see Standarc or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced a design. This truss ha	roof live loads have 7-16; Vult=130mpl h; TCDL=6.0psf; E closed; MWFRS (e her(3E) -0-10-8 to her(3E) 12-9-8 to exposed ; end vert for members and wn; Lumber DOL= ed for wind loads in ds exposed to winn I Industry Gable Er alified building des 7-16; Pr=20.0 psf (15); Pf=20.0 psf (I s=1.0; Rough Cat 1.10 snow loads have b s been designed for spf or 1.00 times fit	h (3-sec 3CDL=6 anvelope 2-1-8, E 15-9-8 tical left forces a -1.60 pl n the pl d (norm nd Deta igner as (roof LL Lum DC B; Fully een cor or great	cond gust) i.Opsf; h=25ft; e) exterior(2N) 2 xterior(2N) 12 zone; cantilev and right & MWFRS for ate grip ane of the tru al to the face ils as applical is per ANSI/TF :: Lum DOL= DL=1.15 Plate Exp.; Ce=0.5 histore of min roof	; Cat. ne 2-1-8 2-5-8 ver r ss), ble, PI 1. 1.15 9 9; his	bea 19, upli join 13. LOAD (ring plat 44 lb up ft at joint t 15, 88 CASE(S)	e capa lift at jo 17, 20 b uplif Star	able of withstandi pint 12, 19 lb upli D4 lb uplift at join t at joint 14 and 2 ndard	vothers) of truss to ing 52 lb uplift at joint ft at joint 16, 86 lb t 18, 16 lb uplift at 202 lb uplift at joint
FORCES	(lb) - Maximum Com Tension	<i></i>	,	overhangs no	on-concurrent with 2x4 MT20 unless	other liv	ve loads.				J.	O DEESS	C. N.
TOP CHORD	2-19=-193/44, 1-2=0 3-4=-126/59, 4-5=-1 6-7=-158/104, 7-8=-	28/57, 5-6=-158/104,	8) 9)	Gable require Truss to be fu braced again	es continuous botto ully sheathed from st lateral movemer	om chor one fac nt (i.e. d	d bearing. e or securely	,			6	SEA 0578	
BOT CHORD	18-19=-89/253, 17-1 16-17=-89/253, 15-1 14-15=-89/253, 13-1	8=-89/253, 6=-89/253,	10) 11) 12)	This truss has chord live loa * This truss h	spaced at 2-0-0 oc s been designed fo d nonconcurrent w as been designed	or a 10.0 vith any for a liv	other live loa e load of 20.0					0578	87
WEBS	12-13=-89/253 5-16=-259/58, 4-17= 3-18=-135/179, 7-15 8-14=-160/159, 9-13	=-259/56,		3-06-00 tall b	n chord in all areas y 2-00-00 wide wil y other members,	l fit betv	veen the botto				inni.	ADAM	L 87 PACE
NOTES												- mun	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	C02	Common	2	1	Job Reference (optional)	173028929

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:08 ID:JDjFhD4SkalqUUm6L11D9uzuAV6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

14-11-0

7-5-8

Page: 1

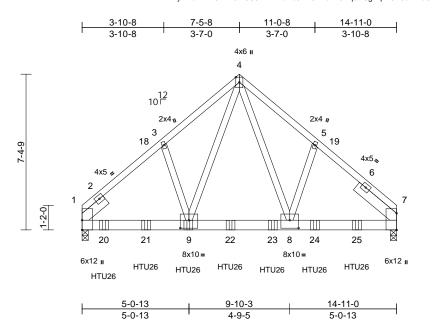
7-5-8

7-5-8

Scale =	1.51 2
Scale =	= 1.31.Z

Loading TCLL (roof) Snow (Pf) TCDL	(psf) 20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.27 0.50 0.33	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.12 0.01	(loc) 9-10 9-10 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC2021/TPI201	4 Matrix-MSH							Weight: 97 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) 8=0-3-8, 1 Max Horiz 10=196 (L Max Uplift 8=-58 (LC Max Grav 8=717 (LC (lb) - Maximum Com Tension 1-2=0/39, 2-3=-231/ 4-5=-578/160, 5-6=- 2-10=-266/116, 6-8= 9-10=-64/470, 8-9=C 4-9=-98/403, 3-10=- 3-9=-190/160, 5-9=-	cept end verticals. applied or 10-0-0 or (0=0-3-8 .C 13) 15), 10=-58 (LC 14 C 22), 10=717 (LC 2 pression/Maximum 93, 3-4=-578/160, 205/115, 6-7=0/39, -255/138 /470 582/59, 5-8=-582/31 190/160 been considered fo (3-second gust)	design 5) This tr load of overha ed or 6) This tr chord I c 7) * This t on the 3-06-00 chord a 8) One H: recomr 1) UPLIF and do LOAD CAS	nced snow loads have ss has been designed 12.0 psf or 1.00 times ings non-concurrent wi ss has been designed ve load nonconcurrent russ has been designed bottom chord in all are to tall by 2-00-00 wide v ind any other members 2.5A Simpson Strong-T nended to connect trus as not consider lateral E(S) Standard	for great flat roof l th other li for a 10. with any d for a liv as where will fit betv 5. Tie conne s to bear connecti	er of min roop and of 20.0 p ve loads. 0 psf bottom other live load e load of 20. a rectangle veen the bott ctors ing walls due	f live osf on ads. Opsf com			الليو	VVeight: 97 lb	F1 = 20%
 II; Exp B; E and C-C E to 4-5-8, E to 12-9-8, I left and rig exposed;C reactions s DOL=1.60 TCLL: ASC Plate DOL: 	Enclosed; MWFRS (er xterior(2E) -0-10-8 to : xterior(2R) 4-5-8 to 10 Exterior(2E) 12-9-8 to fht exposed ; end vertif- C-C for members and fishown; Lumber DOL= CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L i); Is=1.0; Rough Cat B	velope) exterior zor 2-1-8, Interior (1) 2- -5-8, Interior (1) 10- 15-9-8 zone; cantile cal left and right prces & MWFRS for 1.60 plate grip roof LL: Lum DOL=1 um DOL=1.15 Plate	ne 1-8 5-8 evver 1.15								"IIIIIII	87 EER.

- to 12-9-8, Exterior(2E) 12-9-8 to 15-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 3) Cs=1.00; Ct=1.10


818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	C03	Common Girder	1	2	Job Reference (optional)	173028930

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:08 ID:yPXu7X4P9ZhRsAr9CJAYFKzuPc9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

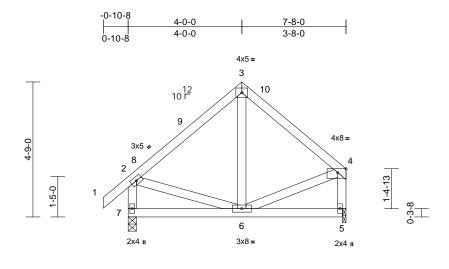
Scale = 1:54.6

F

Plate Offsets (X, Y): [8:0-5-0,0-4-8], [9:0-5-0,0-4-8]	

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0' BCDL 10.0	Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.70 0.45 0.64	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.14 0.02	(loc) 8-9 8-9 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 212 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP 2400F 2.0 WEBS 2x4 SP No.3 SLIDER Left 2x6 SP 2400F SP 2400F 2.0E BRACING TOP CHORD Structural wood sh 4-5-0 oc purlins. BOT CHORD Rigid ceiling direct bracing. REACTIONS (size) 1=0-3-8 Max Horiz 1=146 Max Uplift 1=-426 Max Grav 1=5282 FORCES (lb) - Maximum Cot TOP CHORD 1-3=-5022/445, 3- 4-5=-4881/516, 5- BOT CHORD 1-9=-354/3819, 8- 7-8=-286/3713	2.0E 1-6-0, Right 2x6 2-6-0 eathing directly applied ly applied or 10-0-0 oc .7=0-3-8 .C 36) (LC 12), 7=-386 (LC 13) (LC 21), 7=4784 (LC 22 mpression/Maximum 4=-4896/517, 7=-5014/446 9=-193/2785, 3=-75/294, 4-9=-357/31 ether with 10d vs: 2x4 - 1 row at 0-9-0 llows: 2x6 - 2 rows	6 3) 1 or 4)) 5) 2) 6) 7) 95, 8) 9)	except if note CASE(S) see provided to d unless othern Unbalanced this design. Wind: ASCE Vasd=103mp II; Exp B; En- cantilever lef right exposed TCLL: ASCE Plate DOL=1 DOL=1.15); I CS=1.00; Ct= Unbalanced design. This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar One H2.5A S recommende UPLIFT at jt(considered equali- ed as front (F) or b titon. Ply to ply cor istribute only loads wise indicated. roof live loads hav 7-16; Vult=130mp bh; TCDL=6.0psf; E closed; MWFRS (et and right exposed d; Lumber DOL=1. 7-16; Pr=20.0 psf (15); Pf=20.0 psf (15); Pf=20.0 psf (15); Pf=20.0 psf (15); Pf=20.0 psf (11); Snough Cat e1.10 snow loads have b s been designed find an onconcurrent v ias been designed in chord in all areas by 2-00-00 wide will y other members. Simpson Strong-Tie d to connect truss s) 1 and 7. This cc c consider lateral for	ack (B) nection s noted e been (h (3-sec SCDL=6 nvelope d; end \ 60 plate (roof LL Lum DC B; Fully been cor or a 10.0 vith any for a liv s where l fit betw e connection	face in the LC s have been as (F) or (B), considered fo cond gust) .0psf; h=25ft; exterior zor vertical left an grip DOL=1. .: Lum DOL== DL=1.15 Plate Exp.; Ce=0.5 nsidered for th D psf bottom other live loa e load of 20.6 a rectangle veen the botto ctors ing walls due	r Cat. ne; d 60 1.15 2; his ds. Dpsf com to	14- may con 11) Fill LOAD (1) De Inc Ur Cc	10dx1 1, k. startin nect tru: all nail h CASE(S cad + Sr crease= iform Lo Vert: 1 oncentra Vert: 9= 22=-105 (F)	/2 Trus g at 1- ss(es)) noles w) Sta now (bz 1.15 pads (l 4=-60, -1098 (F),	Ing-Tie HTU26 (1 is) or equivalent : 0-8 from the left it to front face of bo here hanger is in ndard alanced): Lumber b/ft) 4-7=-60, 10-14= ads (lb) (F), 20=-1098 (F), 24	0-16d Girder, spaced at 2-0-0 oc end to 13-0-8 to ottom chord. o contact with lumber. r Increase=1.15, Plate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	D01	Common	3	1	Job Reference (optional)	173028931

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:08 ID:70jfytC15LHPZDT1YPB918znEga-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:40.5

Plate Offsets (X, Y): [4:0-3-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MP	0.44 0.13 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01 0.00	(loc) 6-7 6-7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 49 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 5=0-1-8, 7 Max Horiz 7=133 (LC Max Grav 5=387 (LC (lb) - Maximum Com Tension 1-2=0/39, 2-3=-283/ 2-7=-403/177, 4-5=-	cept end verticals. applied or 10-0-0 od 7=0-3-8 C 11) C 14), 7=-35 (LC 14) C 22), 7=434 (LC 21) pression/Maximum 100, 3-4=-276/105,	7) c 8)) 9)	design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall t chord and ar Bearing at jo using ANSI/ designer sho Provide mec bearing plate) One H2.5A S recommende	snow loads have b as been designed fi psf or 1.00 times fl on-concurrent with as been designed fi ad nonconcurrent w has been designed n chord in all areas y 2-00-00 wide wil hy other members. int(s) 5 considers p ICPI 1 angle to grain uld verify capacity hanical connection at joint(s) 5. Simpson Strong-Tie ed to connect truss (s) 7 and 5. This co	or great at roof lo other li or a 10. with any l for a liv s where Il fit betw parallel of bear h formul of bear h (by oth e conne	er of min rooi oad of 20.0 p ve loads. 0 psf bottom other live loa e load of 20. a rectangle veen the bott to grain value a. Building ng surface. ers) of truss ctors ing walls due	f live ssf on ads. Opsf com to to					
this desigr 2) Wind: AS0 Vasd=103	6-7=-128/108, 5-6=- 3-6=-11/106, 2-6=-2 ed roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B Enclared, MWERS, or	/163, 4-6=-11/156 been considered for (3-second gust) CDL=6.0psf; h=25ft;	r Cat.		t consider lateral fo			,			and the W	OLOFESS	ROLINI

- II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Exterior(2R) 2-1-8 to 4-6-4, Exterior(2E) 4-6-4 to 7-6-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10


JA NGINEER. April 28,20 Torran and the state

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	D02	Common	3	1	Job Reference (optional)	173028932

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:09 ID:3J_cxCCQZagxsgQYcyrpnzznFRe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

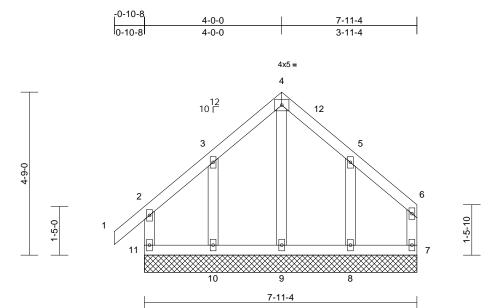
4-0-0	7-11-4	
4-0-0	3-11-4	

Scale = 1:38.7				I	4-0-0	,	3-11-4	4					
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2027	I/TPI2014	CSI TC BC WB Matrix-MP	0.50 0.14 0.07	· · /	in -0.01 -0.01 0.00	(loc) 6-7 6-7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 50 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	6-0-0 oc purlins, exce Rigid ceiling directly a bracing.	ept end verticals. applied or 10-0-0 oc hical, 7=0-3-8 11) 14), 7=-36 (LC 14) 22), 7=461 (LC 21) pression/Maximum 03, 3-4=-301/100, 77/116 6/24	8) 9) 10	load of 12.0 overhangs n This truss ha chord live loa * This truss h on the botton 3-06-00 tall li chord and an Refer to gird Provide mec bearing plate 5.) One H2.5A S recommende UPLIFT at jtt	as been designed psf or 1.00 times to on-concurrent with as been designed ad nonconcurrent has been designee m chord in all area by 2-00-00 wide w hy other members er(s) for truss to the chanical connection e capable of withst Simpson Strong-T ed to connect truss (s) 7. This connec standard	ilat roof lin n other lin for a 10. with any d for a liv is where ill fit betw uss conr n (by oth tanding 2 ie conne s to bear tion is fol	bad of 20.0 per ve loads. 0 psf bottom other live loa re load of 20.0 a rectangle veen the botto nections. ers) of truss t 21 lb uplift at j ctors ing walls due	sf on ds. Dpsf om oint to					
this design 2) Wind: ASC	ed roof live loads have b n. CE 7-16; Vult=130mph (3mph; TCDL=6.0psf; BC	(3-second gust)	Cat.									WITH C	RO

II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Exterior(2R) 2-1-8 to 4-9-8, Exterior(2E) 4-9-8 to 7-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

The state of the s



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

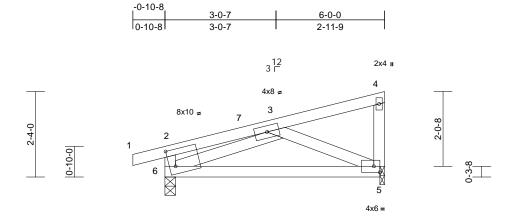
Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	D03	Common Supported Gable	1	1	Job Reference (optional)	173028933

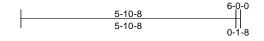
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:09 ID:75WG0vKPySmiqjBRbiSUikznUtB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:33.6

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2021/TPI20	CSI TC BC WB Matrix-MR	0.12 0.06 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 7=7-11-4, 10=7-11 Max Uplift 7=-50 (LC 10=-104 (Max Uplift 7=-50 (LC 9=151 (LC 11=-168 (I (lb) - Maximum Com Tension 2-11=-151/205, 1-2= 3-4=-94/241, 4-5=-9 6-7=-79/93 10-11=-57/51, 9-10= 7-8=-57/51	x applied or 6-0-0 oc , 8=7-11-4, 9=7-11-4 LC 13) C 14), 8=-92 (LC 15), (LC 14), 11=-54 (LC 22), 8=267 (LC 22), C 27), 10=238 (LC 2 LC 21) hpression/Maximum =0/38, 2-3=-83/121, y4/240, 5-6=-62/90,	only. see S or cor 4) TCLL: Plate dor DOL= Cs=1. 5) Unbal design (5) This ti load c overh 7) All pla 8) Gable 10) 9) Truss brace 11) This ti chord 12) * This on the 3-06-(chord 13) Provice bearin 211 11, 50	designed for wind loa For studs exposed to tandard Industry Gabi sult qualified building ASCE 7-16; Pr=20.0 p DOL=1.15); Pf=20.0 p 1.15); Is=1.0; Rough 00; Ct=1.10 anced snow loads ha n. uss has been design f 12.0 psf or 1.00 time angs non-concurrent ' tes are 2x4 MT20 unl requires continuous I to be fully sheathed f d against lateral move studs spaced at 2-0- uuss has been design live load nonconcurre truss has been design live load nonconcurre truss has been design bottom chord in all a 00 tall by 2-00-00 wide and any other memb- le mechanical connec g plate capable of wii I buplift at joint 7, 10- at joint 8.	wind (norm le End Deta designer a psf (roof LI sof (Lum DC Cat B; Fully ve been col ed for great es flat roof I with other li less otherwi bottom choir rom one fac ement (i.e. c 0 oc. ed for a 10. ent with any ned for a 10. reas where e will fit betv ers. tion (by oth thstanding f	al to the face iils as applica s per ANS/T :: Lum DOL= :Lin DOL= :Lin J Plate : Exp.; Ce=0.1 er of min rool oad of 20.0 p ve loads. ise indicated. d bearing. ze or securely diagonal web) 0 psf bottom other live loa re load of 20.1 a rectangle ween the bott ers) of truss i 54 lb uplift at j	e), ble, PI 1. 1.15 e 9; his f live sf on (). om to joint			and a second	WH C	
 Unbalance this desig Wind: AS Vasd=103 II; Exp B; and C-C 	ed roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed; MWFRS (er Corner(3E) -0-10-8 to 2 Corner(3E) 4-9-8 to 7-5	n (3-second gust) CDL=6.0psf; h=25ft; nvelope) exterior zon 2-0-0, Corner(3R) 2-0	Cat. D-0	SE(S) Standard							SEA 0578	•

to 4-9-8, Corner(3E) -0-10-8 to 2-0-9, Corner(3E) 2-0-0 to 4-9-8, Corner(3E) 4-9-8 to 7-9-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)


A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	E01	Monopitch	7	1	Job Reference (optional)	173028934

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:09 ID:baH29DDfrfPGBN2D67iOaLznEgZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

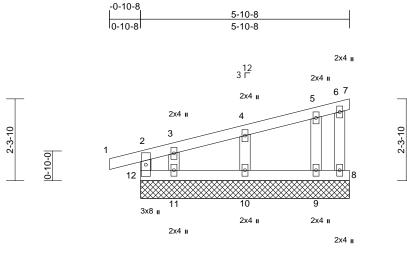
Page: 1

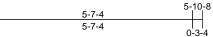
Scale = 1:31.5

Plate Offsets (X, Y): [2:0-2-0,0-5-8]

Plate Offsets (X, Y): [2:0-2-0,0-5-8]											-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/T	rpi2014	CSI TC BC WB Matrix-MP	0.14 0.43 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.13 0.00	(loc) 5-6 5-6 5	l/defl >999 >538 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=103i II; Exp B; E and C-C E to 2-10-4, I left and rig exposed;C reactions s DOL=1.60 2) TCLL: ASC Plate DOL DOL=1.15 Cs=1.00; C	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 5=0-1-8, 6 Max Horiz 6=80 (LC Max Uplift 5=-40 (LC Max Uplift 5=-40 (LC Max Uplift 5=-40 (LC (lb) - Maximum Com Tension 1-2=0/21, 2-3=-28/4i 2-6=-200/181, 4-5=- 5-6=-223/303 3-6=-333/189, 3-5=- CE 7-16; Vult=130mph mph; TCDL=6.0psf; BG Enclosed; MWFRS (er xterior(2E) -0-10-8 to Exterior(2E) -0-10-	applied or 10-0-0 oc 3=0-3-8 11) 14), 6=-72 (LC 10) 21), 6=395 (LC 21) pression/Maximum 8, 3-4=-43/39, 100/76 332/285 (3-second gust) CDL=6.0psf; h=25ft; G velope) exterior zone 2-1-8, Interior (1) 2-1- 5-10-4 zone; cantilev cal left and right proces & MWFRS for 1.60 plate grip roof LL: Lum DOL=1. um DOL=1.15 Plate ; Fully Exp.; Ce=0.9;	Cat. 8 8 15 15 10 10 10 10 10 10 10 10 10 10	oad of 12.0 p overhangs no This truss ha chord live loa This truss h on the botton 3-06-00 tall b chord and an Bearing at joi using ANSI/T designer sho Provide mech opearing plate One H2.5A S cecommende UPLIFT at jt(s been designed for sof or 1.00 times fit non-concurrent with s been designed for d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide wil y other members. nt(s) 5 considers p PI 1 angle to grain uld verify capacity nanical connection at joint(s) 5. impson Strong-Tie d to connect truss s) 6 and 5. This co consider lateral for Standard	at roof le other li or a 10. vith any for a liv s where Il fit betw parallel of bear I (by oth e conne to bear	bad of 20.0 p ve loads. O psf bottom other live loa e load of 20. a rectangle veen the bott to grain value a. Building ing surface. ers) of truss ctors ing walls due	ads. Opsf com e to				SEA 0578	L 87 FEF.R. PACE
												Apri	1111

April 28,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	E02	Monopitch Supported Gable	1	1	Job Reference (optional)	173028935

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:09 ID:YYJKxhrssQAGS5JJ16psR6zuPcT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:32.4

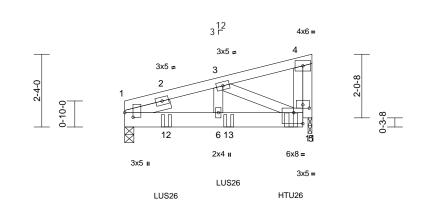
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		CSI TC BC WB Matrix-MR				(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
BOT CHORE WEBS OTHERS BRACING TOP CHORE BOT CHORE	 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 5-10-8 oc purlins, e 		see Standa or consult q 3) TCLL: ASC Plate DOL= d or DOL=1.15): Cs=1.00; C 4) Unbalanced design.	rd Industry Gable ualified building d E 7-16; Pr=20.0 p 1.15); Pf=20.0 ps Is=1.0; Rough Ca	End Deta lesigner a sf (roof Ll f (Lum DC at B; Fully e been col	ils as applica s per ANSI/TI L: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 nsidered for th	ble, PI 1. 1.15 9 9; his					
REACTIONS	10=5-10- Max Horiz 12=79 (L Max Uplift 7=-16 (LC 9=-19 (LC 11=-44 (L Max Grav 7=6 (LC 2 (LC 21), (LC 21),	C 14), 8=-22 (LC 13), C 10), 10=-32 (LC 10) C 11), 12=-29 (LC 10) C 11), 12=-29 (LC 10) 28), 8=15 (LC 21), 9= 10=230 (LC 21), 11=1 12=157 (LC 21)	0-8 load of 12.0 overhangs (6) All plates ar 7) Gable requi 8) Truss to be braced aga 171 9) Gable studt 07 10) This truss h	as been designed psf or 1.00 times non-concurrent wi res continuous bc fully sheathed fro inst lateral movern s spaced at 2-0-0 as been designed ad nonconcurren	flat roof I th other li ss otherwi ottom choi m one fac nent (i.e. c oc. d for a 10.	oad of 20.0 p ve loads. se indicated. rd bearing. ce or securely liagonal web) 0 psf bottom	sf on ,					
FORCES	 (lb) - Maximum Con Tension 2-12=-140/116, 1-2= 3-4=-44/62, 4-5=-34 6-7=-10/1, 6-8=-22/3 	- =0/21, 2-3=-74/77, //48, 5-6=-25/41,	11) * This truss on the botto 3-06-00 tall chord and a	has been designed om chord in all are by 2-00-00 wide v uny other member chanical connection	ed for a live as where will fit betw s.	re load of 20.0 a rectangle veen the botte	Opsf om				und G	
BOT CHORD WEBS NOTES	8-9=-28/39	1=-28/39, 9-10=-28/39 1=-115/114, 5-9=-133	bearing plat 12, 16 lb up	e capable of with lift at joint 7, 22 lb 14 lb uplift at joint	standing 2 o uplift at j	29 lb uplift at j pint 8, 32 lb u	oint Iplift			244	OFFEES	AN A MAN
Vasd=10 II; Exp B; and C-C to 5-10-8 vertical le forces &	SCE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B 5; Enclosed; MWFRS (er Corner(3E) -0-10-8 to 2 zone; cantilever left ar 2 and right exposed;C- MWFRS for reactions s 50 plate grip DOL=1.60	CDL=6.0psf; h=25ft; (nvelope) exterior zone 2-1-8, Exterior(2N) 2-1 id right exposed ; end -C for members and	e I-8) Standard						A A A A A A A A A A A A A A A A A A A	SEA 0578 MGIN ADAM	EER

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	E03	Monopitch Girder	1	2	Job Reference (optional)	173028936

6-0-0

3-0-0


3-0-0


3-0-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:09 ID:Aw3hNv5HKDtMR6XYYBKLTqzuBPC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:36.9

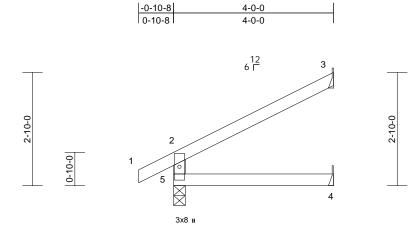
Plate Offsets (X, Y): [1:0-1-12,0-3-3], [5:Edge,0-4-4], [5:0-2-8,0-1-4]

Plate Olisets (X, Y) : [1:0-1-12,0-3-3], [5:Edge,0-4-4], [5:0-2-8,0-1-4]	
Loading (psf) Spacing 2-0-0 CSI DEFL in (loc) //de TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.18 Vert(LL) -0.01 6 >99 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.17 Vert(CT) -0.01 6 >99 TCDL 10.0 Rep Stress Incr NO WB 0.10 Horz(CT) 0.00 11 n// BCLL 0.0* Code IRC2021/TPI2014 Matrix-MP Vertice Vertice <t< td=""><td>99 240 MT20 244/190</td></t<>	99 240 MT20 244/190
TOP CHORD2x4 SP No.2Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.Vert:BOT CHORD2x6 SP No.2Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.Vert:BOT CHORD2x4 SP No.32x4 SP No.3ConcentrestOTHERS2x4 SP No.3catllever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60Vert:SLIDERLeft 2x4 SP No.3 1-6-0TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10TCLL: ASCE 7-16; Pr=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10Tothe tother chord in sets design.REACTIONS(size)1=0-3-8, 11=0-1-8 Max Horiz 1=51 (LC 8) Max Grav 1=805 (LC 18), 11=943 (LC 18)This truss has been designed for a 10.0 psf bottom chord in ela areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.FORCES(lb) - Maximum Compression/Maximum Tension1-3=-1105/98, 3-4=-233/13, 4-5=-73/890 BOT CHORD1-3=-1105/98, 3-4=-233/13, 4-5=-73/890 BOT CHORD8Bearing at joint(s) 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.8	April 28 2025

April 28,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	E04	Jack-Open	18	1	Job Reference (optional)	173028937


4-0-0

4-0-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

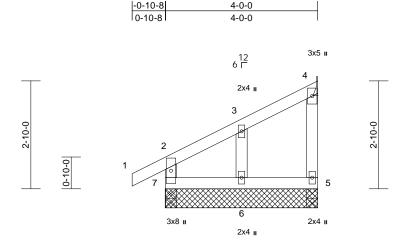
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:09 ID:baH29DDfrfPGBN2D67iOaLznEgZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale	=	1:28.8	

Scale = 1:28.8												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MR	0.33 0.17 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.02 0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
	5=0-3-8 Max Horiz 5=78 (LC Max Uplift 3=-59 (LC Max Grav 3=157 (LC	cept end verticals. applied or 10-0-0 or anical, 4= Mechanica 14) 2 14), 5=-17 (LC 14)	on the bo 3-06-00 f chord an 7) All bearin ed or 8) Refer to 9) Provide f bearing f 3. 10) One H2.: recomme UPLIFT does not	iss has been designed bettom chord in all are all by 2-00-00 wide w d any other members gis are assumed to b girder(s) for truss to to mechanical connection olate capable of withs 5A Simpson Strong-Te ended to connect trus at jt(s) 5. This connec consider lateral force (S) Standard	as where will fit betw s. De User D truss conr on (by oth standing 5 Fie conne ss to bear ction is for	a rectangle veen the both efined . nections. ers) of truss t 59 lb uplift at j ctors ing walls due	om to joint to					
FORCES	(LC 21) (Ib) - Maximum Com	pression/Maximum										
TOP CHORD BOT CHORD	Tension 2-5=-300/142, 1-2=0 4-5=0/0)/43, 2-3=-91/54										
 Vasd=103i II; Exp B; E and C-C E exposed; members a Lumber D0 2) TCLL: ASC Plate DOL DOL=1.15 Cs=1.00; C 3) Unbalance design. 4) This truss load of 12. overhangs 5) This truss 	E 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er end vertical left and rig and forces & MWFRS DL=1.60 plate grip DC CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L =1.15); Pf=20.0 psf (L t=1.10 ed snow loads have be has been designed foi 0 psf or 1.00 times flar non-concurrent with of has been designed foi load nonconcurrent with	CDL=6.0psf; h=25ft; tyelope) exterior zor ilever left and right ght exposed;C-C for for reactions shown DL=1.60 roof LL: Lum DOL=7 um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9 een considered for th r greater of min roof t roof load of 20.0 ps other live loads. r a 10.0 psf bottom	ne ; 1.15); his live sf on						1000	in the second second	SEA 0578	EEP. PACE-11111

April 28,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	E06	Jack-Open Supported Gable	1	1	Job Reference (optional)	173028938

Run: 8.73 E Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries, Inc. Mon Apr 28 13:46:49 ID:3nrQNZEHcyX7oWcQgqDd6ZznEgY-xOe1ea1W6syP?GSiPBpEn9sgG5KerPI_0_BP7GzMKmc

Page: 1

Scale = 1:30.3

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.19	Vert(LL)	0.00	6-7	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.07	Vert(CT)	0.00	6-7	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.06	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021	1/TPI2014	Matrix-MR								
BCDL	10.0											Weight: 20 lb	FT = 20%
	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea 4-0-0 oc purlins, exc	applied or 10-0-0 oc cept 4= Mechanical 11) 00 (Ib) or less at joint ns 250 (Ib) or less at	9) :(s) 10 joint	load of 12.0 overhangs n Truss to be f braced agair Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar) Refer to gird) Provide mec bearing plate (s) 7, 4, 6.	is been designed f psf or 1.00 times fl on-concurrent with ully sheathed from ist lateral moveme spaced at 2-0-0 oc is been designed fad nonconcurrent v nas been designed n chord in all areas by 2-00-00 wide wi yy other members. er(s) for truss to tru hanical connectione capable of withstan	at roof le other li one fac nt (i.e. c or a 10.0 for a liv s where II fit betw uss conr a (by oth anding 1	bad of 20.0 ps re loads. e or securely iagonal web) 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto nections. ers) of truss t 00 lb uplift at	sf on ds. Dpsf om					

4-0-0

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 4) design.

diagonal or vertical web shall not exceed 0.500in.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	E07	Jack-Open	4	1	Job Reference (optional)	173028939

-0-10-8

0-10-8

1-10-15

1-10-15

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:09 ID:3nrQNZEHcyX7oWcQgqDd6ZznEgY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

(loc)

l/defl

L/d PLATES

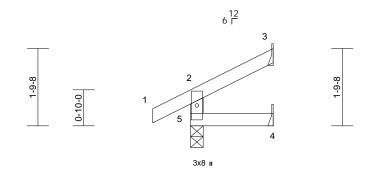
GRIP

Page: 1

CSI Spacing 2-0-0 DEFL in

FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 2-5=-186/101, 1-2=0/40, 2-3=-44/22 BOT CHORD 4-5=0/0

(psf)


NOTES

Scale = 1:26.7

Loading

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.

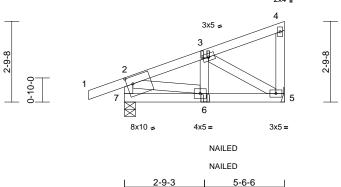
818 Soundside Road Edenton, NC 27932


TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.10	Vert(LL)	0.00	4-5	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.04	Vert(CT)	0.00	4-5	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MR								
BCDL	10.0											Weight: 8 lb	FT = 20%
1	5=0-3-8 Max Horiz 5=41 (LC Max Uplift 3=-28 (LC Max Grav 3=54 (LC (LC 21)	except end verticals. applied or 10-0-0 oc nical, 4= Mechanical 14) 14), 5=-16 (LC 14) 21), 4=32 (LC 7), 5=	9) , 10	on the bottor 3-06-00 tall b chord and ar All bearings Refer to gird Provide mec bearing plate 3. 0) One H2.5A S recommende UPLIFT at jt(as been designed n chord in all area by 2-00-00 wide w ny other members are assumed to b er(s) for truss to tr hanical connectio e capable of withs Simpson Strong-T ed to connect trus: (s) 5. This connec sider lateral force Standard	as where ill fit betw e User D russ conr n (by oth tanding 2 ie conne s to bear tion is for	a rectangle veen the botto efined . nections. ers) of truss t 8 lb uplift at j ctors ing walls due	om oo oint to					
FORCES	(lb) - Maximum Com	pression/Maximum											

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a fuss system. Derive use, the building designer host verify the applications of design had been and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	E09	Diagonal Hip Girder	2	1	Job Reference (optional)	73028940

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:09 ID:QkeJQGIQRVAQvIVNTNpopcznEgT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



2-9-3

2x4 🛛

2-9-3

Scale = 1:39.9

Plate Offsets (X, Y): [7:0-2-8,0-3-0]

Plate Olisets (A, T). [7.0-2-0,0-3-0]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2021/TI	PI2014	CSI TC BC WB Matrix-MP	0.22 0.10 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 6 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=103 II; Exp B; I cantilever right expo: 2) TCLL: ASI Plate DOL DOL=1.15 Cs=1.00; (3) Unbalance design. 4) This truss load of 12 overhange 5) This truss	Max Horiz 7=105 (LC Max Uplift 5=-40 (LC Max Grav 5=271 (LC (lb) - Maximum Com Tension 2-7=-405/93, 1-2=0/ 3-4=-55/25, 4-5=-99 6-7=-102/10, 5-6=-4 2-6=0/264, 3-6=0/92 CE 7-16; Vult=130mph imph; TCDL=6.0psf; Bi Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 CE 7-16; Pr=20.0 psf (L :=1.15); Pf=20.0 psf (L :=1.15); Pf=20.0 psf (L	cept end verticals. applied or 10-0-0 oc inical, 7=0-4-9 (29) (212), 7=-81 (LC 8) (219), 7=428 (LC 19) pression/Maximum 41, 2-3=-317/26, (25 5/257 (3-5e-297/56 (3-5e-297/56 (3-5e-297/56 (3-5e-297/56) (3	o 3 3 7) A 8) R 9) P b 5 10) C re 10) C 12) Ir o LOAI 1) "1 ((12) Ir o LOAI 1) 1) Cat. e; 5 10 .15 .15 .15 .15	n the botton -06-00 tall b hord and an Il bearings a tefer to girde provide mecl earing plate one H2.5A S ecommende IPLIFT at jt(oes not con VAILED" ind .148"x3.25 n the LOAD f the truss a D CASE(S) Dead + Snc Increase=1. Uniform Loa Vert: 1-2= Concentrate	w (balanced): Lui 15	s where ill fit betw b s User D uss common (by oth anding 4 e conne s to bear tion is for s. 48"x3") (0 S guidil loads a (F) or ba	a rectangle veen the bott efined . nections. ers) of truss i 0 lb uplift at j ctors ing walls due r uplift only an or 2-12d nes. pplied to the ck (B).	to joint e to nd face			Contraction of the second seco	SEA 0578	ROLU L 87 FEF. PACE I 128,2025

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	PB01	Piggyback	3	1	Job Reference (optional)	173028941

-0-11-1

0-11-1

Carter Components (Sanford, NC), Sanford, NC - 27332,

1-2-2

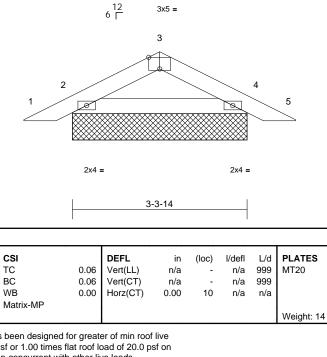
0-4-3

1-3-12

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:09 ID:yY4xDxHogB1ZH8wBvgIZHPznEgU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-3-14

1-7-15


4-2-15

0-11-1

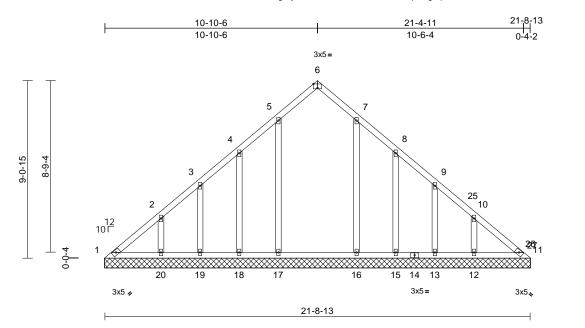
1-7-15

1-7-15

Page: 1

Scale = 1:21.9

	X, Y): [3:0-2-8,Edge]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2021/TI	PI2014	CSI TC BC WB Matrix-MP	0.06 0.06 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. BRACING TOP CHORD Structural wood sheathing directly applied or 5-3-0 oc purlins. 6) This truss has been designed for a 10.0 psf on overhangs non-concurrent with other live loads. BOT CHORD Rigid ceiling directly applied or 5-3-0 oc purlins. 6) This truss has been designed for a 10.0 psf bottom bracing. REACTIONS (size) 2=3-314, 4=3-3:14 Max Horiz 2=-17 (LC 15) Max Uplift 2=-24 (LC 14), 4=-19 (LC 15) Max Grav 2=201 (LC 21), 4=209 (LC 22) 0) * This truss has been designed for a live load of 20.0 psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. FORCES (b) - Maximum Compression/Maximum Tension 1:2 See Standard Industry Piggyback Truss Connection dor Chorne Dive loads have been considered for this design. 1:2 See Standard Industry Piggyback Truss Connection betail for Connection to base truss as applicable, or consult qualified building designer. IOAD CASE(S) Standard													
 members a Lumber DV Truss desi only. For see Stand or consult TCLL: AS(Plate DOL DOL=1.15 Cs=1.00; 0 	end vertical left and rig and forces & MWFRS OL=1.60 plate grip DC gned for wind loads in studs exposed to wind ard Industry Gable En qualified building desi CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L); Is=1.0; Rough Cat E Ct=1.10 ad snow loads have be	for reactions shown; VL=1.60 the plane of the truss; I (normal to the face), d Details as applicabl gner as per ANSI/TPI roof LL: Lum DOL=1. um DOL=1.15 Plate 8; Fully Exp.; Ce=0.9;	le, 1. 15								A A A A A A A A A A A A A A A A A A A	SEA 0578 MGIN ADAM	EER.


"minin April 28,2025

818 Soundside Road Edenton, NC 27932

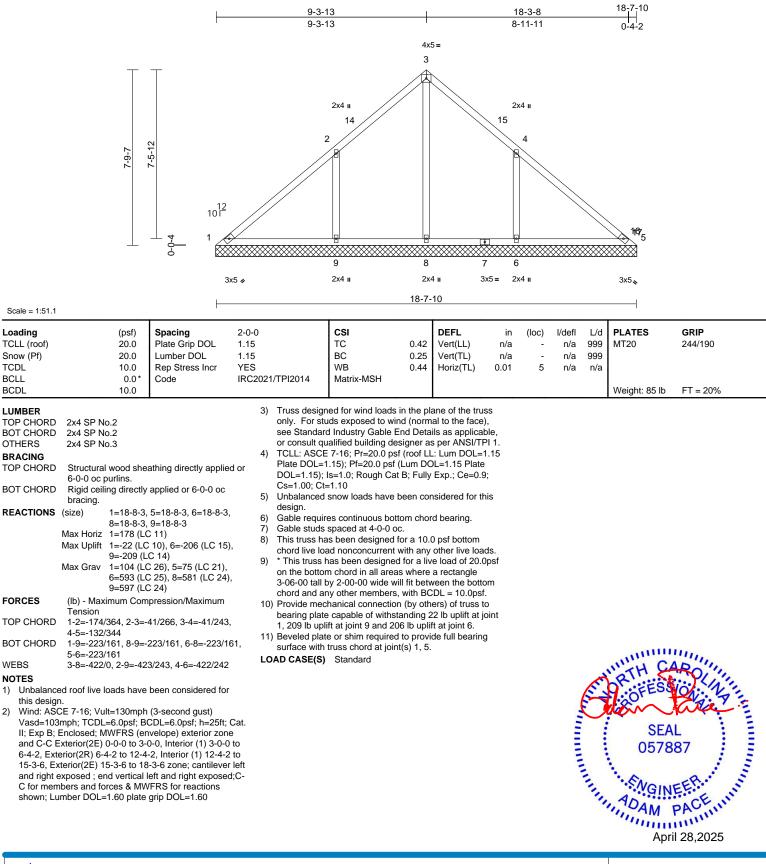
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	V01	Valley	1	1	Job Reference (optional)	173028942

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:10 ID:iznHFFiBg56yu1sKxQHoixznUtm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:58.9 Plate Offsets (X, Y): [6:0-2-8,Edge]

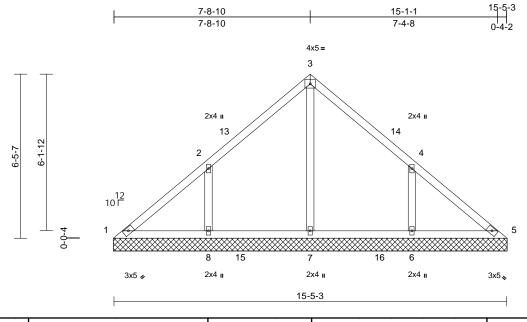
	(X, Y): [6:0-2-8,E0	-90]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(ps 20. 20. 10. 0. 10.	0 Plate Grip DC 0 Lumber DOL 0 Rep Stress Ir 0* Code	ncr YES	21/TPI2014	CSI TC BC WB Matrix-MSH	0.10 0.14 0.24	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 125 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.3 Structural wood 6-0-0 oc purlins Rigid ceiling dire bracing. (size) 1=21. 13=2 17=2 20=2 Max Horiz 1=200 Max Uplift 1=-10 12=-5 15=-4 19=-7 Max Grav 1=19 15=11 17=3	ectly applied or 10-6 -9-6, 11=21-9-6, 12 1-9-6, 15=21-9-6, 1 1-9-6, 18=21-9-6, 1 1-9-6	applied or -0 oc =21-9-6, 6=21-9-6, 9=21-9-6, (LC 15), (LC 15), (LC 14), (LC 14), (LC 27), (LC 25), (LC 20),	NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=103m II; Exp B; En and C-C Con 2-10-11 to 7 Exterior(2N) 21-4-9 zone vertical left a forces & MW DOL=1.60 p 3) Truss design only. For stu see Standar or consult qu Plate DOL= DOL=1.15);	5-17=-244/86, 4-1 5-17=-244/86, 4-1 3-19=-138/100, 2- 8-15=-161/114, 9- 10-12=-190/114 roof live loads have 7-16; Vult=130mp ph; TCDL=6.0psf; iclosed; MWFRS (rner(3E) 0-0-0 to 2 -10-11, Corner(3E) 13-10-11 to 18-4- ; cantilever left and ind right exposed; /FRS for reactions late grip DOL=1.60 ted for wind loads uds exposed to wind d Industry Gable E alified building de 57-16; Pr=20.0 ps 1.51; Pf=20.0 ps 1.55; Nf=20.0 ps 1.55; Nf=20.0 ps	20=-192 13=-138, ve been of bh (3-sec BCDL=6 envelope -10-11, I 9, Corne d right ex C-C for n shown; 0 in the pla d (norm ind Deta signer as f (roof LL) (Lum DC	(111, 7-16=-2 (101, considered fo cond gust) .0psf; h=25ft;) exterior zor Exterior(2N) to 13-10-11 r(3E) 18-4-9 posed; end nembers and Lumber ane of the tru al to the face ills as applical s per ANSI/TF L: Lum DOL=: DL=1.15 Plate	r; Cat. ne , to ss), ble, PI 1. 1.15	bea 1, 3 at jo 37 join 12) Bev	tring plat b lb uplift pint 18, 5 lb uplift a t 13 and veled pla face with	te capa at join 76 lb u at joint 157 lb ate or s a truss	able of withstand it 11, 44 lb uplift a plift at joint 19, 70 16, 94 lb uplift at uplift at joint 12. him required to p chord at joint(s)	rothers) of truss to ng 10 lb uplift at joint at joint 17, 91 lb uplift b uplift at joint 20, joint 15, 80 lb uplift at rovide full bearing 1, 11.
FORCES TOP CHORD BOT CHORD	Tension 1-2=-293/132, 2 4-5=-145/41, 5-6 7-8=-145/26, 8-9 10-11=-283/131 1-20=-106/255 16-17=-106/255	19-20=-106/255, , 17-18=-106/255, , 15-16=-106/255, , 12-13=-106/255,	57/63, 6/61, 07/76,	design. All plates are design. All plates are design. de	=1.10 snow loads have l e 2x4 MT20 unless res continuous bott spaced at 2-0-0 o as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w hy other members.	s otherwi tom chor c. for a 10.0 with any d for a liv s where ill fit betv	se indicated. d bearing.) psf bottom other live loa e load of 20.0 a rectangle veen the botto	ds.)psf om			A MARINE AND A MARINE	SEA 0578	EER.


April 28,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	V02	Valley	1	1	Job Reference (optional)	173028943

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:10 ID:iznHFFtBg56yu1sKxQHoixznUtm-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

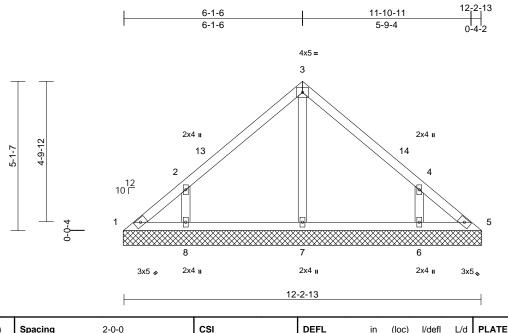
Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	V03	Valley	1	1	Job Reference (optional)	173028944

Scale = 1:45.3

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:10 ID:iznHFFtBg56yu1sKxQHoixznUtm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

TCLL (roof) 20.0 Plate Grip DOL Snow (Pf) 20.0 Lumber DOL TCDL 10.0 Rep Stress Incr BCDL 0.0* Code BCDL 10.0 Rep Stress Incr LUMBER 0.0* Code TOP CHORD 2x4 SP No.2 Code DOT CHORD 2x4 SP No.2 OTHERS OTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc bracing. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 1=15-5-13, 5=15-5-13, 6=15-5-73, 8=15-5-13, Max Horiz Max Horiz 1=-147 (LC 10) Max Uplift Max Uplift 1=-22 (LC 10), 6=-165 (LC 15), 8=-167 (LC 14) Max Grav 1=125 (LC 30), 5=101 (LC 21), 6=474 (LC 21), 7=446 (LC 24), 8=474 (LC 20) FORCES (lb) - Maximum Compression/Maximum Tension	3) 4)	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct=	TC BC WB Matrix-MSH add exposed to wind d Industry Gable E ualified building de : 7-16; Pr=20.0 psf I.15); Pf=20.0 psf Is=1.0; Rough Cat =1.10	nd (norm and Detainsigner as f (roof LL (Lum DC	al to the face ils as applical per ANSI/TF .: Lum DOL= DL=1.15 Plate), ble, 인 1. I.15	5	n/a n/a n/a	999 999 n/a	MT20 Weight: 68 lb	244/190 FT = 20%
TCDL 10.0 BCLL Rep Stress Incr Code BCDL 10.0 Code BCDL 10.0 Code LUMBER 10.0 Code TOP CHORD 2x4 SP No.2 Soft CHORD BOT CHORD 2x4 SP No.2 Soft CHORD OTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc bracing. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 1=15-5-13, 5=15-5-13, 6=15-5-7 3, 8=15-5-13, 8=15-5-13 Max Horiz 1=-147 (LC 10) Max Horiz Max Uplift 1=-22 (LC 10), 6=-165 (LC 15), 8=-167 (LC 14) Max Grav 1=125 (LC 30), 5=101 (LC 21), 6=474 (LC 2) FORCES (lb) - Maximum Compression/Maximum Tension	YES IRC202 3) 4) I or	Truss design only. For stu see Standarc or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct=	WB Matrix-MSH and for wind loads uds exposed to wind d Industry Gable B ralified building de 5 7-16; Pr=20.0 ps .15); Pf=20.0 ps Is=1.0; Rough Cal	0.19 in the pland and (norm and Detail signer as f (roof LL (Lum DC	Horiz(TL) ane of the true al to the face is as applicat per ANSI/TF .: Lum DOL= DL=1.15 Plate	0.00 ss), ble, Pl 1. 1.15	5			Weight: 68 lb	FT = 20%
BCDL 10.0 LUMBER TOP CHORD 2x4 SP No.2 DOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 1=15-5-13, 5=15-5-13, 6=15-5-7-7=15-5-13, 8=15-5-13 Max Horit 1=-22 (LC 10), 6=-165 (LC 15), 8=-167 (LC 14) Max Uplift 1=-22 (LC 10), 6=-165 (LC 21), 6=-474 (LC 21), 7=446 (LC 24), 8=474 (LC 20) FORCES (lb) - Maximum Compression/Maximum Tension 1=0.0	3) 4) I or	Truss design only. For stu see Standarc or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct=	ed for wind loads ids exposed to wind d Industry Gable E ialified building de : 7-16; Pr=20.0 psf .15); Pf=20.0 psf Is=1.0; Rough Cal	nd (norm and Detainsigner as f (roof LL (Lum DC	al to the face ils as applical per ANSI/TF .: Lum DOL= DL=1.15 Plate), ble, 인 1. I.15				Weight: 68 lb	FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 1=15-5-13, 5=15-5-13, 6=15-5- 7=15-5-13, 8=15-5-13 Max Horiz 1=-147 (LC 10) Max Uplift 1=-22 (LC 10), 6=-165 (LC 15), 8=-167 (LC 14) Max Grav 1=125 (LC 30), 5=101 (LC 21), 6=474 (LC 21), 7=446 (LC 24), 8=474 (LC 20) FORCES (lb) - Maximum Compression/Maximum Tension	lor	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct=	uds exposed to win d Industry Gable E ialified building de 7-16; Pr=20.0 ps 1.15); Pf=20.0 psf Is=1.0; Rough Cat	nd (norm and Detainsigner as f (roof LL (Lum DC	al to the face ils as applical per ANSI/TF .: Lum DOL= DL=1.15 Plate), ble, 인 1. I.15				Weight: 68 lb	FT = 20%
TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3 BRACING TOP CHORD TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 1=15-5-13, 5=15-5-13, 6=15-5-73, 8=15-5-13, 8=15-5-13, 8=15-5-13, 8=15-5-13, 8=15-5-13, 8=15-5-13, 8=15-6-165 (LC 10), 8=-167 (LC 10) Max Horiz 1=-147 (LC 10) Max Uplift Max Grav 1=125 (LC 30), 5=101 (LC 21), 6=474 (LC 21), 7=446 (LC 24), 8=474 (LC 20) FORCES FORCES (lb) - Maximum Compression/Maximum Tension Tension	lor	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct=	uds exposed to win d Industry Gable E ialified building de 7-16; Pr=20.0 ps 1.15); Pf=20.0 psf Is=1.0; Rough Cat	nd (norm and Detainsigner as f (roof LL (Lum DC	al to the face ils as applical per ANSI/TF .: Lum DOL= DL=1.15 Plate), ble, 인 1. I.15					
OTHERS 2x4 SP No.3 BRACING Structural wood sheathing directly applied 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 1=15-5-13, 5=15-5-13, 6=15-5- 7=15-5-13, 8=15-5-13 Max Horiz 1=-127 (LC 10) Max Uplift 1=-22 (LC 10), 6=-165 (LC 15), 8=-167 (LC 14) Max Grav 1=125 (LC 30), 5=101 (LC 21), 6=474 (LC 20) FORCES (lb) - Maximum Compression/Maximum Tension	lor	or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct=	ualified building de 7-16; Pr=20.0 ps 1.15); Pf=20.0 psf Is=1.0; Rough Cat	signer as f (roof LL (Lum DC	s per ANSI/TF .: Lum DOL= 0L=1.15 Plate	ิข 1. I.15					
BRACING TOP CHORD Structural wood sheathing directly applied 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 1=15-5-13, 5=15-5-13, 6=15-5- 7=15-5-13, 8=15-5-13 Max Horiz 1=-147 (LC 10) Max Uplift 1=-22 (LC 10), 6=-165 (LC 15), 8=-167 (LC 14) Max Grav 1=125 (LC 30), 5=101 (LC 21), 6=474 (LC 20) FORCES (lb) - Maximum Compression/Maximum Tension	lor	TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct=	: 7-16; Pr=20.0 ps I.15); Pf=20.0 psf Is=1.0; Rough Ca	f (roof LL (Lum DC	.: Lum DOL= 0L=1.15 Plate	1.15					
TOP CHORD Structural wood sheathing directly applied 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 1=15-5-13, 5=15-5-13, 6=15-5- 7=15-5-13, 8=15-5-13 Max Horiz 1=-147 (LC 10) Max Uplift 1=-22 (LC 10), 6=-165 (LC 15), 8=-167 (LC 14) Max Grav 1=125 (LC 30), 5=101 (LC 21), 6=474 (LC 20) FORCES (lb) - Maximum Compression/Maximum Tension	lor	Plate DOL=1 DOL=1.15); Cs=1.00; Ct=	l.15); Pf=20.0 psf ls=1.0; Rough Ca	(Lum DC	L=1.15 Plate						
6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 1=15-5-13, 5=15-5-13, 6=15-5- Max Horiz 1=-147 (LC 10) Max Uplift 1=-22 (LC 10), 6=-165 (LC 15), 8=-167 (LC 14) Max Grav 1=125 (LC 30), 5=101 (LC 21), 6=474 (LC 21), 7=446 (LC 24), 8=474 (LC 20) FORCES (lb) - Maximum Compression/Maximum Tension		DOL=1.15); Cs=1.00; Ct=	Is=1.0; Rough Cat								
BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 1=15-5-13, 5=15-5-13, 6=15-5- 7=15-5-13, 8=15-5-13 Max Horiz 1=-147 (LC 10) Max Uplift 1=-22 (LC 10), 6=-165 (LC 15), 8=-167 (LC 14) Max Grav 1=125 (LC 30), 5=101 (LC 21), 6=474 (LC 21), 7=446 (LC 24), 8=474 (LC 20) FORCES (lb) - Maximum Compression/Maximum Tension	5)	Cs=1.00; Ct=		,	$Fxp \cdot ce=0$						
bracing. REACTIONS (size) 1=15-5-13, 5=15-5-13, 6=15-5-7=15-5-13, 8=15-5-13 Max Horiz 1=-147 (LC 10) Max Uplift 1=-22 (LC 10), 6=-165 (LC 15), 8=-167 (LC 14) Max Grav 1=125 (LC 30), 5=101 (LC 21), 6=474 (LC 21), 7=446 (LC 24), 8=474 (LC 20) FORCES (lb) - Maximum Compression/Maximum Tension	5)	Linholoncod			Exp., 00-0.0	,					
REACTIONS (size) 1=15-5-13, 5=15-5-13, 6=15-5-7=15-5-13, 8=15-5-13 Max Horiz 1=-147 (LC 10) Max Horiz 1=-147 (LC 10) Max Uplift 1=-22 (LC 10), 6=-165 (LC 15), 8=-167 (LC 14) 8=-167 (LC 21), 5=101 (LC 21), 6=474 (LC 20), 5=101 (LC 24), 8=474 (LC 20) FORCES (lb) - Maximum Compression/Maximum Tension 1		Unbalanceu	snow loads have	been cor	sidered for th	nis					
Tension	(((((((((((((((())))))))	Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b	es continuous bot spaced at 4-0-0 o is been designed ad nonconcurrent has been designed in chord in all area by 2-00-00 wide w by other members	c. for a 10.0 with any d for a liv s where ill fit betw) psf bottom other live loa e load of 20.0 a rectangle veen the botto)psf om					
	10		hanical connection								
TOP CHORD 1-2=-153/186, 2-3=-148/148, 3-4=-148/12 4-5=-123/148	,	1, 167 lb upli	e capable of withst ift at joint 8 and 16 e or shim required	5 lb uplif	t at joint 6.						
BOT CHORD 1-8=-83/132, 7-8=-83/114, 6-7=-83/114, 5-6=-83/114		surface with	truss chord at join			9				ann	<u></u>
WEBS 3-7=-258/0, 2-8=-380/204, 4-6=-380/203			Standard							WITH CA	D''I
NOTES 1) Unbalanced roof live loads have been considered for	LC								~	01	

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-16; Vult=130mph (3-second gust)
- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 4-8-14, Exterior(2R) 4-8-14 to 10-8-14, Interior (1) 10-8-14 to 12-5-13, Exterior(2E) 12-5-13 to 15-5-13 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

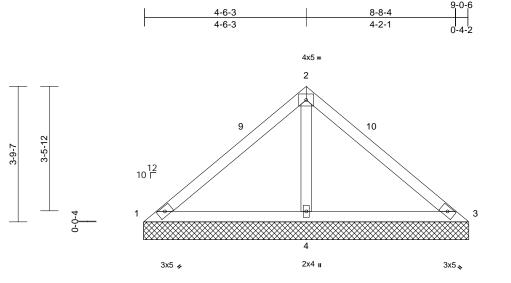
Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	V04	Valley	1	1	Job Reference (optional)	173028945

Scale = 1:39.5

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:10 ID:A9LfSbupROEpWBRWU8o1E8znUtl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.31 0.12 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 51 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wo 6-0-0 oc pulling bracing. (size) 1= 7= Max Horiz 1= Max Uplift 1= 6 Max Grav 1= (L 200	e bood sheat lins. directly =12-3-6, =116 (LC =-31 (LC =-136 (LC =-136 (LC =95 (LC - C 21), 7 D)	athing directly applie applied or 10-0-0 oc 5=12-3-6, 6=12-3-6 2 11) 10), 5=-3 (LC 11), C 15), 8=-140 (LC 1- 25), 5=74 (LC 24), 6 =263 (LC 21), 8=43- pression/Maximum	4) d or ; 5) , 6) 77 8) 4) =434 9) 4 (LC	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall h chord and ar	ed for wind load: dids exposed to w d Industry Gable lalified building d i 7-16; Pr=20.0 ps (1.5); Pf=20.0 ps (1.5); Pf=	ind (norm End Deta esigner a: sf (roof LL f (Lum DC t (Lum DC been cor been cor been cor oc. I for a 10. t with any d for a liv as where will fit betv s.	al to the face ils as applica s per ANS//TI .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 nsidered for the d bearing. 0 psf bottom other live loa re load of 20.0 a rectangle veen the bottom), ble, PI 1. 1.15 9; his ds. Opsf					
TOP CHORD	Tension 1-2=-121/102 4-5=-94/64	2, 2-3=-2	215/117, 3-4=-215/1		bearing plate 1, 3 lb uplift	e capable of with at joint 5, 140 lb i	standing 3	31 lb uplift at j	oint					
BOT CHORD		7-8=-33/	/74, 6-7=-33/74,	1		e or shim require			g				30010	
WEBS		2-8=-395	5/216, 4-6=-395/216	L	surface with DAD CASE(S)	truss chord at joi Standard	nt(s) 1, 5.						WITH CA	RO
this design 2) Wind: ASC Vasd=103 II; Exp B; and C-C E to 9-3-6, E and right e C for mem	n. CE 7-16; Vult=1 Bmph; TCDL=6. Enclosed; MWI Exterior(2E) 0-0 Exterior(2E) 9-3 exposed ; end v abers and force	130mph .0psf; B0 FRS (en)-0 to 3-0 3-6 to 12 vertical le es & MW	been considered for (3-second gust) CDL=6.0psf; h=25ft; velope) exterior zon 0-0, Exterior(2R) 3-0 -3-6 zone; cantileven eft and right expose (FRS for reactions grip DOL=1.60	Cat. e -0 r left								in the second second	SEA 0578	

- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust)
- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 9-3-6, Exterior(2E) 9-3-6 to 12-3-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	V05	Valley	1	1	Job Reference (optional)	173028946

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:10 ID:A9LfSbupROEpWBRWU8o1E8znUtl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Doi7J4zJC?f

9-0-6

Scale = 1:32.2

Loading TCLL (roof) Snow (Pf) TCDL	(psf) 20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.38 0.37 0.15	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC2021/TPI		0.15	HONZ(TE)	0.00	4	n/a	n/a	Weight: 34 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 9-0-6 oc purlins. Rigid ceiling directly bracing. (size) 1=9-1-0, 3 Max Horiz 1=-84 (LC Max Uplift 1=-40 (LC Max Grav 1=91 (LC). (LC 21)	applied or 6-0-0 oc =9-1-0, 4=9-1-0 10) 21), 3=-40 (LC 20), 14)	Plai DO Cs= 5) Unt d or 6) Gat 7) Gat 8) This cho 9) * Tr on 1 3-00 cho =713 10) Pro	LL: ASCE 7-16; Pr=20.0 ps te DOL=1.15); Pf=20.0 ps t= 1.15); Is=1.0; Rough Ca =1.00; Ct=1.10 balanced snow loads have ign. ble requires continuous bol ble studs spaced at 4-0-0 c s truss has been designed trul ive load nonconcurrent nis truss has been designed the bottom chord in all area 6-00 tall by 2-00-00 wide w rd and any other members vide mechanical connectio ring plate capable of withs	(Lum DC t B; Fully been co tom cho c. for a 10. with any d for a liv s where ill fit betv n (by oth	DL=1.15 Plate Exp.; Ce=0. Insidered for t rd bearing. 0 psf bottom other live loa re load of 20. a rectangle ween the bott wers) of truss	e 9; his ads. 0psf om to					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-107/341, 2-3=-7 1-4=-226/164, 3-4=-7 2-4=-592/258	107/341	1, 4 11) Bev surf	to Ib uplift at joint 3 and 98 veled plate or shim required face with truss chord at join CASE(S) Standard	lb uplift a to provi	at joint 4. de full bearin						
this desigr	ed roof live loads have n. CE 7-16: Vult=130mph										MITH C	ARO

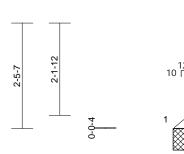
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 6-1-0, Exterior(2E) 6-1-0 to 9-1-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

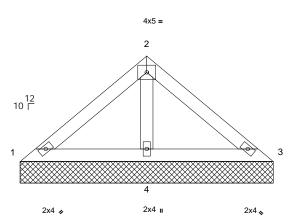
SEAL 057887 NGINEER April 28,2025

Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	V06	Valley	1	1	Job Reference (optional)	173028947

2-11-0

2-11-0


Carter Components (Sanford, NC), Sanford, NC - 27332,


Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:10 ID:A9LfSbupROEpWBRWU8o1E8znUtl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-5-14 2-6-14

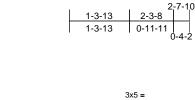
5-10-0

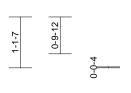
5-10-0

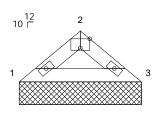
Scale = 1:26.8

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	021/TPI2014	CSI TC BC WB Matrix-MP	0.15 0.17 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 5-10-0 oc purlins. Rigid ceiling directly bracing.	applied or 6-0-0 oc 0, 3=5-10-10, 4=5-10 2 12) 15), 4=-49 (LC 14)	ed or 0-10	 design. Gable requint Gable studs This truss had chord live log This truss on the botto 3-06-00 tall chord and a Provide mec bearing plate and 49 lb up Beveled plat 	snow loads have es continuous be spaced at 4-0-0 as been designer ad nonconcurrer has been design m chord in all are by 2-00-00 wide ny other member thanical connecti e capable of with lift at joint 4. e or shim requirt truss chord at jo	ottom chor oc. d for a 10. nt with any ed for a liv eas where will fit betw rs. ion (by oth istanding 4 ed to provi	d bearing. D psf bottom other live loa e load of 20. a rectangle veen the bott ers) of truss i I b uplift at jo de full bearin	ids. Opsf om to int 3					
FORCES TOP CHORD BOT CHORD	1-4=-125/119, 3-4=-	6/155		LOAD CASE(S)									
this desig 2) Wind: AS Vasd=103 II; Exp B; and C-C F exposed ; members Lumber D 3) Truss des	2-4=-300/144 ed roof live loads have in. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed; MWFRS (er Exterior(2E) zone; cant ; end vertical left and ri ; and forces & MWFRS DOL=1.60 plate grip DC DOL=1.60 plate grip DC signed for wind loads in studs exposed to wind	(3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zor ilever left and right ght exposed;C-C for for reactions shown DL=1.60 the plane of the tru	; Cat. ne r i; ss								and a second	O JEESS SEA 0578	• -

- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15
- Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	V07	Valley	1	1	Job Reference (optional)	73028948

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:10 ID:A9LfSbupROEpWBRWU8o1E8znUtl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

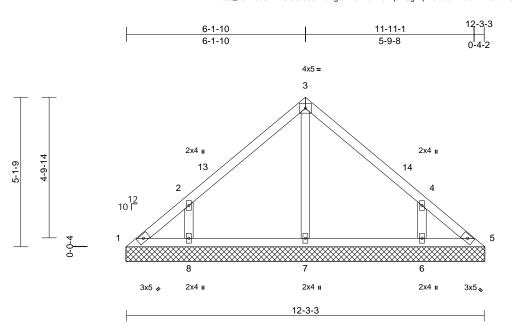
Page: 1

2x4 🍫 2x4 💊

2-7-10

Scale = 1:25.3

Plate Offsets (X, Y): [2:0-2-8,Edge]


Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr 1	2-0-0 1.15 1.15 YES RC2021/TPI2014	BC 0	0.06 0.06 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING	3=2-8-3 ;12) 14), 3=-9 (LC 15) C 20), 3=122 (LC 21) pression/Maximum 58/67 been considered for (3-second gust) CDL=6.0psf; h=25ft; Ca ivelope) exterior zone ilever left and right ght exposed; C-C for for reactions shown; uL=1.60 the plane of the truss (normal to the face), d Details as applicable, gner as per ANSI/TPI 1. roof LL: Lum DOL=1.15 um DOL=1.15 Plate B; Fully Exp.; Ce=0.9; then considered for this	 8) This truss ha chord live loa 9) * This truss h on the bottom 3-06-00 tall b chord and an 10) Provide mech bearing plate and 9 lb uplif 11) Beveled plate surface with LOAD CASE(S) 	e or shim required to p truss chord at joint(s)	any a live here betw y othe ing 9	other live load e load of 20.0 a rectangle reen the botto ers) of truss to lb uplift at joi)psf om o int 1			in the second se	OTH C SEA 0578	ROLINA BRO

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

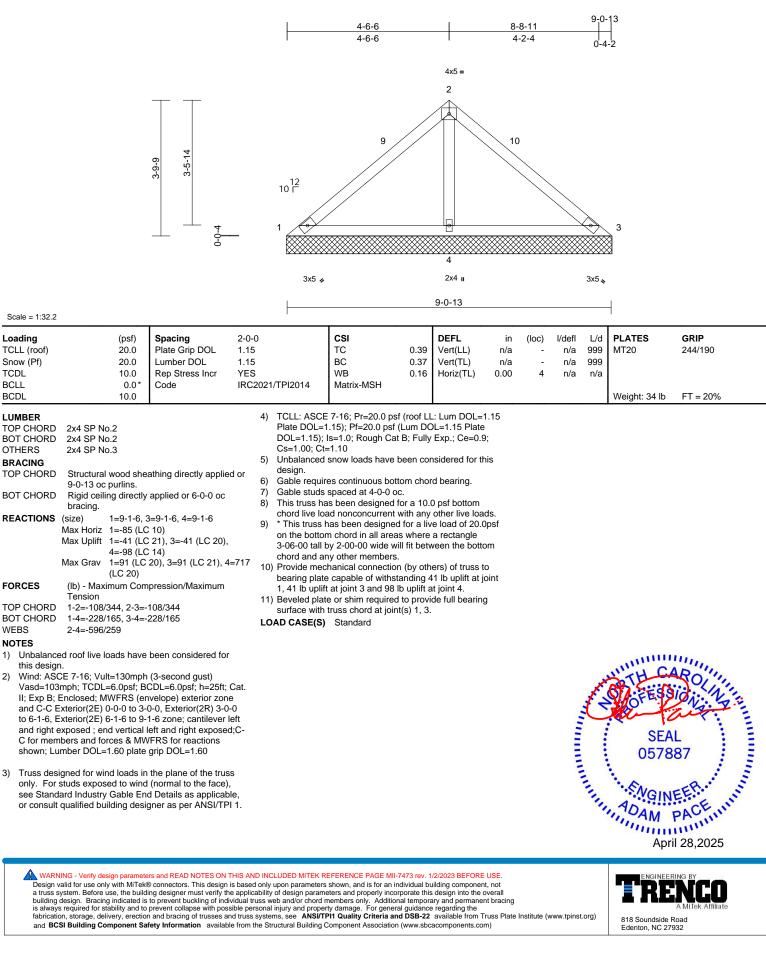
Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	V08	Valley	1	1	Job Reference (optional)	173028949

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:10 ID:dSe_?JVksdORLhCGs9s8GvzuPgn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale	_ 1	.20	5

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.31 0.12 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 51 lb	GRIP 244/190 FT = 20%
	6-0-0 oc ı Rigid ceil bracing. (size) Max Horiz Max Uplift	o.2 o.3 I wood shea purlins. ing directly 1=12-3-13 7=12-3-13 1=116 (LC 1=-31 (LC 6=-137 (L)	athing directly applie applied or 10-0-0 oc 3, 5=12-3-13, 6=12-3 3, 8=12-3-13 2 11) 10), 5=-3 (LC 11), C 15), 8=-140 (LC 14) 25), 5=-75 (LC 24), 6	-13, 6) -13, 6) 7) 8) 4) 9)	only. For stu see Standarr or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss f	snow loads have es continuous bo spaced at 4-0-0 o is been designed ad nonconcurrent has been designe	nd (norm End Deta esigner as sf (roof LL (Lum DC t B; Fully been cor ttom chor cc. for a 10.0 with any d for a liv	al to the face ils as applica s per ANSI/T :: Lum DOL= DL=1.15 Plate Exp.; Ce=0.1 nsidered for t d bearing. 0 psf bottom other live loa e load of 20.1), ble, PI 1. 1.15 9 9; his					
FORCES TOP CHORD BOT CHORD WEBS NOTES	(lb) - Max Tension 1-2=-122/ 4-5=-94/6 1-8=-33/8 5-6=-33/7	(LC 21), 7 20) kimum Com /102, 2-3=-: 34 33, 7-8=-33, 75	20), 9=75 (LC 24), 6 =263 (LC 21), 8=434 pression/Maximum 215/117, 3-4=-215/1 74, 6-7=-33/74, 4/215, 4-6=-394/215	4 (LC 1(17, 1 [,]	3-06-00 tall b chord and ar) Provide mec bearing plate 1, 3 lb uplift a uplift at joint 1) Beveled plate	e or shim require truss chord at joi	vill fit betw s. in (by oth tanding 3 iplift at joi d to provie	veen the bott ers) of truss 11 lb uplift at j nt 8 and 137	to oint Ib				TH C	Roj

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-16; Vult=130mph (3-second gust)
- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 9-3-13, Exterior(2E) 9-3-13 to 12-3-13 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	V09	Valley	1	1	Job Reference (optional)	173028950

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:10 ID:ITeoCYiu?YKcBf7FWN7peHzuPdx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	V10	Valley	1	1	Job Reference (optional)	173028951

2-11-3

2-11-3

Carter Components (Sanford, NC), Sanford, NC - 27332,

2-1-14

0-0-4

2-5-9

(psf)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:11 ID:ITeoCYiu?YKcBf7FWN7peHzuPdx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 4x5 = 2

4

5-6-4

2-7-1

5-10-6

3

L/d PLATES

GRIP

2x4 💊

l/defl

(loc)

2x4 II 2x4 🍬 5-10-6 CSI DEFL Spacing 2-0-0 in

12 10 Г

Scale = 1:26.8

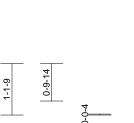
Loading

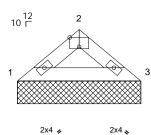
or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 4) DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

April 28,2025


Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	V11	Valley	1	1	Job Reference (optional)	173028952


Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:11 ID:ITeoCYiu?YKcBf7FWN7peHzuPdx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-8-0 1-4-0 2-3-14 1-4-0 0-11-14

3x5 =

Page: 1

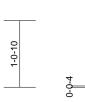
2x4 💊

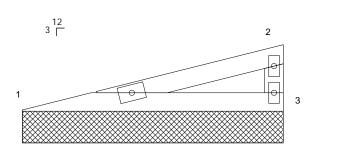
2-8-0

Scale = 1:25.3

Plate Offsets (X, Y): [2:0-2-8,Edge]

					-							
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.06	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0				-						Weight: 8 lb	FT = 20%
LUMBER				uds spaced at 4-0-0								
TOP CHORD	2x4 SP No.2			s has been designed								
BOT CHORD	2x4 SP No.2			e load nonconcurren								
BRACING				iss has been designe			Opst					
TOP CHORD	Structural wood she 2-8-0 oc purlins.	athing directly appli	3-06-00	ottom chord in all are tall by 2-00-00 wide v	will fit betv		om					
BOT CHORD		applied or 10-0-0 o		d any other member mechanical connection		ers) of truss	to					
REACTIONS	0	, 3=2-8-10		plate capable of with	standing §) Ib uplift at jo	pint 1					
	Max Horiz 1=-22 (LC			uplift at joint 3.								
	Max Uplift 1=-9 (LC	,		plate or shim require			g					
	Max Grav 1=124 (L		1	with truss chord at joi	ini(s) 1, 3.							
FORCES	(lb) - Maximum Con		LUAD CASI	(S) Standard								
	Tension	•										
TOP CHORD		60/68										
BOT CHORD	1-3=-39/116											
NOTES												
	ed roof live loads have	been considered fo	r									
this desigr		(a										
	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B		0-1									
	Enclosed; MWFRS (er											
	Exterior(2E) zone; cant		IC								MTH-L	ARO
	end vertical left and ri		r							Y	1.200	in Alate
	and forces & MWFRS									12	OFER	N. S.
	OL=1.60 plate grip DC								1.1	-	du la	- Anger
	igned for wind loads ir									\sim		
	studs exposed to wind								-		SE/	AL 1
	lard Industry Gable En								=	:	0578	
	qualified building desi									6 K	0576	
	CE 7-16; Pr=20.0 psf (_=1.15); Pf=20.0 psf (L											
	5); Is=1.0; Rough Cat E									-	·	a: 5
Cs=1.00; (s, Fully Exp., Ce=0.8	9,							1	VGIN	IEE.
	ed snow loads have be	een considered for th	nis							A A A A A A A A A A A A A A A A A A A	ADA	CE IN
design.											AM	PAULIN
	uires continuous botto	m chord bearing.									DAM	mm
		Ū									ADI	ril 28,2025
												,


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	15 Eagle Creek - Hartwell E - Roof	
25040127	V12	Valley	1	1	Job Reference (optional)	173028953

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Apr 25 10:21:11 ID:E7 liRY iKX j1rQzBkZNg7NGznC4g-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-0-10

4-1-7

2x4 u

2x4 II

Scale	- 1	• 1	0 2

Scale = 1:18.2					_							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.18 0.25 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS K FORCES	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-1-7 oc purlins, ex Rigid ceiling directly bracing. size) 1=4-1-7, 5 Max Horiz 1=30 (LC Max Uplift 1=-23 (LC Max Grav 1=197 (LC (lb) - Maximum Com Tension	cept end verticals. applied or 10-0-0 o 3=4-1-7 11) 2 10), 3=-26 (LC 14) 2 20), 3=197 (LC 20	chord live 8) * This tru on the bo 3-06-00 t chord an 9) Provide r c 3 and 23 LOAD CASE	s has been designed e load nonconcurrent ss has been designe ttom chord in all are- all by 2-00-00 wide v d any other members nechanical connection late capable of withs lb uplift at joint 1. (S) Standard	t with any ed for a liv as where vill fit betw s. on (by oth	other live loa e load of 20.0 a rectangle veen the botto ers) of truss t	Opsf om o					
TOP CHORD	1-2=-445/230, 2-3=- 1-3=-249/423	116/80										
 Wind: ASCE Vasd=103mm II; Exp B; Er and C-C Ex exposed ; ei members ar Lumber DO Truss desig only. For st see Standar or consult q TCLL: ASCI Plate DOL= DOL=1.15); Cs=1.00; CI Unbalanced design. Gable requi 	E 7-16; Vult=130mph nph; TCDL=6.0psf; B nclosed; MWFRS (er terior(2E) zone; cant nd vertical left and rig nd forces & MWFRS L=1.60 plate grip DC ned for wind loads in tuds exposed to wind rd Industry Gable En ualified building desig E 7-16; Pr=20.0 psf (L 1.15); Pf=20.0 psf (L 1.s=1.0; Rough Cat E t=1.10 d snow loads have be res continuous bottous s spaced at 4-0-0 oc.	CDL=6.0psf; h=25ft; velope) exterior zor ilever left and right ght exposed;C-C for for reactions shown pL=1.60 the plane of the tru (normal to the face d Details as applical gner as per ANS/ITT roof LL: Lum DOL=: um DOL=1.15 Plate B; Fully Exp.; Ce=0.5 seen considered for th	ne ss), ble, PI 1. 1.15 9;							and munit	SEA 0578	EER.

April 28,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

