

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: Glenwood Homes

Model: Forsyth 3 GLH Lot 1 Carolina Seasons

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death. 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

*

ERWISE.		-		59-11-00
NOTED OTHE		B01		
ED, UNLESS			2-00-00	
RE TOE-NAIL			Z-00-00	B02
VECTIONS AF			Z-00-00	2
S CONN				
D TRUS			80-10-1	
** TRUSS TO		A04	70-01-1	
ANT.			5-00-00	
MPONENT PL			700-00 500-00	
BY THE CON			5-00-00	
ESS TOLD TC	0		5-00-00	
TALLED UNLF	39-11		5-00-00	
NOT BE INS			کے چے 2-00-00	
NTS SHOULD			2-00-00	МЯОНТАЛ
D COMPONE		A03-3	2-00-00	
** DAMAGEI		A03-3	2-00	
		A03-4	5-00-00	
OMPONENTS			5-00-00	
SETTING CO			4) A02 2-00-00	
LANS WHILE			5-00-00	
REFER TO P			₩ ₩ ₩	
AMER MUST		r0A		

]	F	Revision	S
		I/TP	00/00/	1 00	Name
		ANS			
	Land Land Land Land Land Land Land Land	er /			
-		∕. F >r.			
		only	00/00/		vame
Truss Connector Total List Qty Product Manuf 5 HTU26 Simpson 9 HTU26* Simpson 1 HTU26-2* Simpson	ECOLUAR STUB W. ONERHAND REGULAR STUB W. ONERHAND BECOLUAR STUB W. ONERHAND SUPPORTING SUPPORTING SUPPORTING SUPPORTING	nnectors shown within these documents are recommendations intectors are the responsibility of the bldg designer and or contra	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for each truss	for temporary and permanent bracing of the roof and floor systems and for the overall structure. The disign of the tuss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing of Wood Truss" available	from the I russ Plate Institute, 583 D'Onitrio Drive: Madison, WI 53179
	PORTING COURE COURE COURE CAMIENER CAMIENER CAMIENER CAMIENER CAMIENER CAMIENER	s: FOOT-INCH-SIXTEENTH. 1, all uplift conr			
	COULT OUCHINNE SOFFIT RETURN RETURN	** DIMENSIONS ARE READ A	S		PLAN
	FB# - Flush Beam DB# - Dropped Beam BBO - Beam that is not supplied by the component plant	GETHER PRIOR TO ADDING ANY LOADS.	Glenwood Home:	FORSYTH 3 GLH	ROOF PLACEMENT
	Left	3E FULLY CONNECTED TOO	Scale: Date: 3 Aa	NTS 3/13/202 Designer: ron Rog	5 ers
	Truss Drawing] End Indicato	** GIRDERS MUST E	25	Project Num 030013- Sheet Num	ber: •01 ber:

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 25030013-01 Forsyth 3 GLH

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I72009564 thru I72009587

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

March 14,2025

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Roof-Forsyth 3 GLH	
25030013-01	A01	Common Supported Gable	1	1	Job Reference (optional)	172009564

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu Mar 13 08:47:33 ID:v60T0CbYMGxltalCyVOdn6yUnm9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932

Scale = 1:58

Plate Offsets (X, Y): [30:0-3-0,0-3-0]

Loading TCLL (roof) Snow (Pf) TCDL BCLL		(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2(4 021/TPI2014	CSI TC BC WB Matrix-MR	0.12 0.06 0.22	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(lo	oc) - - 22	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/19	0
BCDL		10.0												Weight: 206 lb	FI = 20	0%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structural 6-0-0 oc p Rigid ceil	o.2 o.3 o.3 I wood shea purlins, exc	athing directly applie cept end verticals. applied or 6-0-0 oc	d or	FORCES	(lb) - Maximum Cor Tension 2-38=-120/75, 1-2= 3-4=-81/73, 4-5=-5; 6-7=-55/160, 7-8=-7 10-11=-108/289, 11 12-14=-91/249, 14- 15-16=-55/160, 16- 17-18=-36/72, 18-1	npressi 0/27, 2- 7/96, 5- 73/203, -12=-1 15=-73, 17=-41, 9=-55/4	on/Maximum 3=-126/67, 6=-47/119, 8-10=-91/249 08/289, /203, /203, /116, .9, 19-20=-94/	, 39,	3) 4) 5)	Truss only. see S or cor TCLL Plate DOL= Cs=1 Unba	s design For str Standar nsult qu : ASCE DOL= =1.15); .00; Ct lanced	ned fo uds ex d Indu ualifie 5 7-16 1.15); Is=1.0 =1.10 snow	r wind loads in til posed to wind (istry Gable End d building desigr ; Pr=20.0 psf (rc Pf=20.0 psf (Lur); Rough Cat B; loads have bee	ne plane c normal to Details as ler as per lof LL: Lur n DOL=1. Fully Exp. n conside	of the truss the face), s applicable, ANSI/TPI 1. m DOL=1.15 .15 Plate .; Ce=0.9; red for this
	bracing.	ing anoonly			:	20-21=0/27, 20-22=	-120/7	1			desig	n.				
WEBS	1 Row at	midpt	11-30		BOT CHORD	37-38=-31/113, 36- 35-3631/113, 34-	37=-31/ 3531	(113, (113		6)	This t	truss ha	as bee	en designed for (reater of	min roof live
REACTIONS	(size) Max Horiz Max Uplift	22=31-11 24=31-11 26=31-11 30=31-11 32=31-11 34=31-11 38=31-11 38=31-11 38=-114 (22=-15 (L 24=-33 (L 26=-42 (L 24=-33 (L 28=-46 (L 31=-39 (L 35=-45 (L 35=-45 (L 37=-97 (L)	-0, 23=31-11-0, -0, 25=31-11-0, -0, 25=31-11-0, -0, 29=31-11-0, -0, 31=31-11-0, -0, 33=31-11-0, -0, 35=31-11-0, -0, 37=31-11-0, -0, 37=31-11-0, -0, 27=384 (LC 1! C 15), 25=-45 (LC 1! C 15), 27=-42 (LC 1! C 15), 29=-38 (LC 1! C 15), 29=-38 (LC 1! C 14), 34=-42 (LC 1! C 14), 34=-42 (LC 1! C 14), 36=-30 (LC 12 C 14), 38=-30 (LC 14) (LC 14) (LC 14), 38=-30 (LC 14) (LC 14) (LC 14), 38=-30 (LC 14) (LC 1	5), 5), 5), 5), 4), 4), 4), 27)	WEBS NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=103mj	33-34=-31/113, 32- 33-34=-31/113, 29- 28-29=-31/113, 27- 26-27=-31/113, 25- 24-25=-31/113, 23- 22-23=-31/113, 23- 22-23=-31/113, 23- 22-23=-31/113, 23- 22-23=-31/113, 23- 22-23=-31/113, 23- 5-35=-192/75, 4-36 12-29=-198/66, 14- 15-27=-131/74, 16- 17-25=-122/76, 18- 19-23=-117/112 roof live loads have 7-16; Vult=130mpl oh; TCDL=6.0psf; E	33=-31, 33=-31, 31=-31, 28=-31, 26=-31, 24=-31, 31=-19, =-131,77 =-123,77 =-123,77 =-123,77 =28=-18, 26=-12, 24=-12, 2	(113, (113,)	75, 107, Cat.	7) 8) 9) 10) 11)	overh All pla Gable Truss brace Gable This t chord	angs r aates arrie e requir s to be ed again e studs truss ha d live lo	e 2x4 res co fully s nst lat space ad no	nourrent with oth MT20 unless oth ntinuous bottom heathed from on eral movement (ed at 2-0-0 oc. en designed for a nconcurrent with OFFESS SEA	er live loa ierwise in chord bea e face or i.e. diagor a 10.0 psf any other	dds. dicated. aring. securely nal web). bottom r live loads.
	Max Grav	22=138 (L 24=159 (L 26=155 (L 28=221 (L 30=183 (L 32=221 (L 34=155 (L 36=159 (L 38=140 (L	C 22), 25=139 (LC 3 C 22), 25=155 (LC 2 C 37), 27=170 (LC 2 C 22), 29=237 (LC 2 C 28), 31=237 (LC 2 C 21), 33=170 (LC 2 C 36), 35=155 (LC 2 C 21), 37=144 (LC 3 C 26)	22), 22), 22), 22), 21), 21), 21), 21),	II; Exp B; En and C-C Cor 2-3-13 to 12. (2N) 19-1-13 zone; cantile and right exp MWFRS for grip DOL=1.	closed; MWFRS (e ner(3E) -0-10-8 to : -9-3, Corner(3R) 12 to 29-7-3, Corner(ver left and right ex bosed;C-C for mem reactions shown; L 60	nvelope 2-3-13, -9-3 to 3E) 29- posed bers an umber I	exterior zon Exterior(2N) 19-1-13, Exte 7-3 to 32-9-8 ; end vertical I d forces & DOL=1.60 plat	e rior eft te			III III			EER.	Automatical States (1997)

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **AMSUTP11 Quility Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof-Forsyth 3 GLH	
25030013-01	A01	Common Supported Gable	1	1	Job Reference (optional)	172009564

- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 37 lb uplift at joint 38, 15 lb uplift at joint 22, 39 lb uplift at joint 31, 45 lb uplift at joint 32, 42 lb uplift at joint 33, 42 lb uplift at joint 34, 45 lb uplift at joint 35, 30 lb uplift at joint 36, 97 lb uplift at joint 37, 38 lb uplift at joint 29, 46 lb uplift at joint 28, 42 lb uplift at joint 27, 42 lb uplift at joint 26, 45 lb uplift at joint 25, 33 lb uplift at joint 24 and 84 lb uplift at joint 23.

LOAD CASE(S) Standard

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu Mar 13 08:47:33 ID:v60T0CbYMGxltalCyVOdn6yUnm9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof-Forsyth 3 GLH	
25030013-01	A02	Common	4	1	Job Reference (optional)	172009565

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu Mar 13 08:47:34 ID:8aXRKTVXFpxRwL8gUpFISQyUnmH-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

TOP CHORD BOT CHORD WEBS SLIDER	2x4 SP 2400F 2.0E 2x6 SP No.2 2x4 SP No.3 Left 2x4 SP No.2 1-6-0, Right 2x4 SP No.2 1-6-0
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 3-11-15 oc purlins.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
REACTIONS	(size) 2=0-3-8, 10=0-3-8
	Max Horiz 2=-133 (LC 15)
	Max Uplift 2=-139 (LC 14), 10=-139 (LC 15) Max Grav 2=1442 (LC 3), 10=1442 (LC 3)
FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=0/23, 2-4=-2532/261, 4-6=-2346/290,
BOT CHORD	6-8=-2346/290, 8-10=-2532/261, 10-11=0/23 2-14=-228/2177, 12-14=-34/1464,
WEBS	10-12=-122/2177 6-14=-117/921, 6-12=-118/921, 4-14=-504/256, 8-12=-504/256

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-3-13, Interior (1) 2-3-13 to 12-9-3, Exterior(2R) 12-9-3 to 19-1-13, Interior (1) 19-1-13 to 29-7-3, Exterior(2E) 29-7-3 to 32-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
 This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

chord and any other members, with BCDL = 10.0psf.
8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to

UPLIFT at jt(s) 10 and 2. This connection is for uplift only and does not consider lateral forces. LOAD CASE(S) Standard

> SEAL 036322 March 14,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Roof-Forsyth 3 GLH	
25030013-01	A03	Common	4	1	Job Reference (optional)	172009566

TCDL

BCLL

BCDL

WEBS

WEBS

NOTES

1)

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Thu Mar 13 08:47:34 ID:jNhIIZEfzYiLqCcUrGt7hHyUnnw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

March 14,2025

Job	Truss	Truss Type	Qty	Ply	Roof-Forsyth 3 GLH	
25030013-01	A03-2	Common	3	1	Job Reference (optional)	172009567

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu Mar 13 08:47:34 ID:CfMqn93xjlOYbpNINFcl_qvUnmr-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

March 14,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Roof-Forsyth 3 GLH	
25030013-01	A03-3	Common	2	1	Job Reference (optional)	172009568

8-9-12

0-10-0

Run; 8,73 S Feb 19 2025 Print; 8,730 S Feb 19 2025 MiTek Industries, Inc. Thu Mar 13 08:47:34

Page: 1 ID:CfMqn93xjIOYbpNINFcI_qyUnmr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 0-10-8 31-7-8 8-1-8 15-11-8 23-9-8 8-1-8 7-10-0 7-10-0 7-10-0 4x6= 6 4x8 🚽 4x8~ 24⁵ 7₂₅ 12 61 23 26 2x4 💊 2x4 " 4 8 3x5 🦗 27 4x5 👟 22 9 3 10 0-11-12 T 13 28 12 29 11 5x10 II 3x5= 4x6= 3x5= 5x6 II 10-8-4 21-2-12 31-7-8 10-8-4 10-6-8 10-4-12

Scale = 1:61.7 Plate Offsets (X, Y): [5:0-4-0,Edge], [7:0-4-0,Edge], [10:0-6-9,0-0-5]

														_
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-MSH	0.74 0.80 0.37	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.22 -0.36 0.07	(loc) 11-13 11-13 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 177 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES	2x4 SP 2400F 2.0E 2x6 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1 1-5-5 Structural wood shea 3-11-15 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 1 Max Horiz 2=1431 (L Max Grav 2=1431 (L (lb) - Maximum Com Tension 1-2=0/23, 2-4=-2506 6-8=-2269/289, 8-10 2-13=-236/2153, 11- 10-11=-148/2095 6-13=-117/933, 6-11 4-13=-503/256, 8-11	I-6-0, Right 2x6 SP N athing directly applied applied or 10-0-0 oc (0= Mechanical C 14), 10=-119 (LC 1 .C 5), 10=1386 (LC 3), pression/Maximum 5/259, 4-6=-2321/289, u=-2449/259 13=-43/1435, =-112/849, =-482/251	3) o.2 4) 5) lor 6) 7) 5) 9) 8) 9) 10] LO	TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 p overhangs nd This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Refer to girde Provide mecl bearing plate 10.) One H2.5A S recommende UPLIFT at jt((does not con	7-16; Pr=20.0 psf (.15); Pf=20.0 psf (.15); Pf=20.0 psf (.110) snow loads have be s been designed fo obsf or 1.00 times fla on-concurrent with of s been designed fo d nonconcurrent with as been designed for the nonconcurrent with a speen designed for the nonconcurrent with a speen designed for the nonconcurrent with a speen designed for a speen designed for the nonconcurrent with a speen designed for the nonconcurrent with a s	roof LL um DC 3; Fully een cor r great t roof k t roof k t t roof k t any or a liv where fit betw where fit betw where to bear n is for n is for	: Lum DOL= $J_L=1.15$ Plate Exp.; Ce=0.9 asidered for the er of min roof bad of 20.0 pre- re loads. 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf vections. ers) of truss to 19 lb uplift at ctors ng walls due uplift only ar	1.15 e) 9; his f live sf on ods. 0psf om f. to t joint				WHTH CA	ROLLIN	
 Unbalance 	ed roof live loads have	been considered for								4	S.	12 /		

this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone

and C-C Exterior(2E) -0-10-8 to 2-3-7, Interior (1) 2-3-7 to 12-9-9, Exterior(2R) 12-9-9 to 19-1-7, Interior (1) 19-1-7 to 28-5-9, Exterior(2E) 28-5-9 to 31-7-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof-Forsyth 3 GLH	
25030013-01	A03-4	Common	1	1	Job Reference (optional)	172009569

15-11-8

7-10-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

-0-10-8

0-10-8

8-1-8

8-1-8

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu Mar 13 08:47:34 ID:jNhIIZEfzYiLqCcUrGt7hHyUnnw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [5:0-4-0,Edge], [7:0-4-0,Edge]

TCLL (roof) Snow (Pf) TCDL BCLL BCDL		20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr Code	1.15 1.15 YES IRC20	21/TPI2014	TC BC WB Matrix-MSH	0.73 0.68 0.37	Vert(LL) Vert(CT) Horz(CT)	-0.20 -0.33 0.06	11-13 11-13 10	>999 >999 n/a	240 180 n/a	MT20 Weight: 177 lb	244/190 FT = 20%
LUMBER TOP CHOF BOT CHOF WEBS SLIDER BRACING TOP CHOF BOT CHOF REACTION	 D 2x4 SP 240 D 2x6 SP No. 2x4 SP No. Left 2x4 SP 1-6-0 D Structural v 3-11-15 oc D Rigid ceiling bracing. S (size) 2 Max Horiz 2 Max Uplift 2 Max Grav 2 	2x4 SP 2400F 2.0E 2x6 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1-6-0, Right 2x4 SP No.3 1-6-0 Structural wood sheathing directly applied or 3-11-15 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. (size) 2=0-3-8, 10=0-3-8 Max Horiz 2=140 (LC 14) Max Uplift 2=-139 (LC 14), 10=-122 (LC 15) Max Grav 2=1443 (LC 3), 10=1398 (LC 3) (lb) - Maximum Compression/Maximum Tension				 Weight: 177 lb FT = 20% 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. with BCDL = 10.0psf 								
FORCES	(Ib) - Maxim Tension D 1-2=0/23, 2	1um Com	pression/Maximum /262, 4-6=-2347/292	2,	recommende UPLIFT at jt(and does no	ed to connect truss s) 10 and 2. This c t consider lateral fo	to beari onnecti rces.	ng walls due on is for uplifi	to t only					
BOT CHOF	D 2-13=-2349/2 10-11=-151	6-8=-2349/296, 8-10=-2535/266 2-13=-234/2175, 11-13=-41/1463, 10-11=-151/2177				Standard								(1 5)
WEBS NOTES	6-13=-117/ 4-13=-504/	921, 6-11 256, 8-11	=-118/924, =-505/257									and a	TH CA	ROLIN
1) Unbala this des	nced roof live loa ign.	ads have	been considered for	r							4		COPESS.	and the second

Wind: ASCE 7-16; Vult=130mph (3-second gust)
Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-3-13, Interior (1) 2-3-13 to 12-9-3, Exterior(2R) 12-9-3 to 19-1-13, Interior (1) 19-1-13 to 28-8-11, Exterior(2E) 28-8-11 to 31-11-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 SEAL 036322 MGINEER March 14,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Roof-Forsyth 3 GLH	
25030013-01	A04	Common	1	1	Job Reference (optional)	2009570

15-11-8

7-10-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

TCDL

BCLL

BCDL

WEBS

WEBS

NOTES

SLIDER

-0-10-8

0-10-8

3-6-9

3-6-9

8-1-8

4-6-15

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries, Inc. Thu Mar 13 08:47:34 ID:wJLAEGS0vBsqr0bTwgGQv_yUnrV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

28-4-7

4-6-15

31-11-0

3-6-9

Edenton, NC 27932

23-9-8

7-10-0

Page: 1

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof-Forsyth 3 GLH	
25030013-01	B01	Common Supported Gable	1	1	Job Reference (optional)	172009571

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu Mar 13 08:47:35 ID:NmW_5wCr87n_QVjsX3Jtx9yUnmg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:55.1

Plate Offsets (X, Y): [30:0-3-0,0-3-0]

Loading TCLL (roof) Snow (Pf) TCDL BCLL		(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC20	21/TPI2014	CSI TC BC WB Matrix-MR	0.11 0.06 0.20	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 22	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190	,
BCDL		10.0											weight. 100	D FI=20%)
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc	lo.2 lo.2 lo.3 lo.3 l wood shea purlins, exc	athing directly applie	i d or	OP CHORD	(lb) - Maximum Coi Tension 2-38114/45, 1-2= 3-498/65, 4-56 6-7=-41/129, 7-8 10-11=-93/259, 11- 12-14=-75/218, 14- 15-16=-41/129, 16- 16-10-2740, 10-6	mpressi =0/27, 2· 7/77, 5- 57/173, -12=-93, -15=-57, -17=-29,	on/Maximum ·3=-145/63, 6=-49/100, 8-10=-75/218 /259, /173, /85, 17-18=-4:	3, 2/49,	 3) Tru online see or 4) TC Pla DC Cs 	y. For si Standa consult q LL: ASC te DOL= L=1.15); =1.00; C	ned fo tuds ex rd Indu ualifie E 7-16 1.15); Is=1.0 t=1.10	or wind loads in xposed to wind ustry Gable En- d building desig ; Pr=20.0 psf (L Pf=20.0 psf (L 0; Rough Cat E	the plane of t (normal to the d Details as a gner as per Al roof LL: Lum um DOL=1.15 ; Fully Exp.; (he truss e face), pplicable, NSI/TPI 1. DOL=1.15 i Plate Ce=0.9;
BOT CHORD	Rigid ceil	ing directly	applied or 6-0-0 oc			18-19=-67/42, 19-2 20-22=-101/29	20=-109	/43, 20-21=0/2	27,	5) Un de:	balanceo sign.	snow	loads have be	en considered	d for this
REACTIONS	Max Horiz Max Uplift Max Grav	22=29-11: 24=29-11: 28=29-11: 32=29-11: 32=29-11: 34=29-11: 38=29-11: 38=29-11: 38=29-11: 38=29-11: 38=29-11: 38=29-11: 22=-20 (L 22=-20 (L 24=-39 (L 24=-39 (L 23=-42 (L) 33=-44 (L) 33=-44 (L) 33=-44 (L) 33=-42 (L) 24=-130 (L) 24=-130 (L) 33=-127 (l) 24=135 (L) 34=155 (L) 38=150 (L)	-0, 23=29-11-0, -0, 25=29-11-0, -0, 27=29-11-0, -0, 23=29-11-0, -0, 33=29-11-0, -0, 35=29-11-0, -0, 35=30, 23-20, -0, 35=154 (LC 3), -0, 35=154 (LC 3), -0, 35=154 (LC 3), -0, 35=154 (LC 3), -0, 35=154 (LC 3), -0, 35	15), 5), 5), 5), 4), 10) 22), 22), 22), 22), 22), 22), 22), 22	NOTES VEBS VEBS VEBS VIDES	37-38=-29/119, 36 35-36=-29/119, 34 33-34=-29/119, 32 31-32=-29/119, 29 28-29=-29/119, 29 28-29=-29/119, 25 24-25=-29/119, 23 22-23=-29/119 11-30=-166/24, 10 3-32=-182/79, 7-33 5-35=-121/73, 4-36 12-29=-198/68, 14 15-27=-131/74, 16 17-25=-121/73, 18 19-23=-82/101 roof live loads hav 7-16; Vult=130mp b; TCDL=6.0psf; I closed; MWFRS (e ner(3E) -0-10-8 to 20-rer(3R) 11-11-8 7-9-8, Corner(3E) 2 t and right exposed c); C for members shown; Lumber Di	-37=-29, -35=-29, -31=-29, -31=-29, -28=-29, -28=-29, -24=-29, -31=-19, -3=-131/7, 5=-127/8 -28=-18, -26=-12, -24=-12; e been of h (3-sec BCDL=6 envelope 2-1-8, E to 17-1 27-9-8 to d; end v s and fol OL=1.60	(119, (119,	/75, 17, Cat. le 1-8 2N) ; d S	 6) Th loa ove 7) All 8) Ga 9) True 10) Ga 11) Th che 	s truss h d of 12.0 rhangs i plates an ble requi iss to be ced aga ble studd s truss h ord live k	as bee psf on on-cc re 2x4 res co fully s inst lat s spac as bee aad no	en designed foi r 1.00 times flat oncurrent with of MT20 unless of ntinuous botton heathed from of eral movement ed at 2-0-0 oc. en designed foo nconcurrent with SEE 036 SEE 036 Monthe Marrierent	greater of mi roof load of 2 ther live load: therwise indice no chord bearing ne face or se (i.e. diagona a 10.0 psf bo th any other line ARO AL 322 NEEER GILBER	n roof live (0.0 psf on s. ated. ng. curely web). ttom ve loads.

818 Soundside Road Edenton, NC 27932

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **AMSUTP11 Quility Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof-Forsyth 3 GLH				
25030013-01	B01	Common Supported Gable	1	1	Job Reference (optional)	172009571			

- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 55 lb uplift at joint 38, 20 lb uplift at joint 22, 40 lb uplift at joint 31, 44 lb uplift at joint 32, 42 lb uplift at joint 33, 42 lb uplift at joint 34, 44 lb uplift at joint 35, 37 lb uplift at joint 36, 127 lb uplift at joint 37, 39 lb uplift at joint 29, 45 lb uplift at joint 28, 42 lb uplift at joint 27, 42 lb uplift at joint 26, 43 lb uplift at joint 25, 39 lb uplift at joint 24 and 103 lb uplift at joint 23.

LOAD CASE(S) Standard

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu Mar 13 08:47:35 ID:NmW_5wCr87n_QVjsX3Jtx9yUnmg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof-Forsyth 3 GLH	
25030013-01	B02	Common	5	1	Job Reference (optional)	172009572

14-11-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

7-7-8

Run; 8,73 S Feb 19 2025 Print; 8,730 S Feb 19 2025 MiTek Industries, Inc. Thu Mar 13 08:47:35 ID:VGpvpMM?47Q8UVDMnI1wzuyUnmT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

22-3-8

Page: 1 30-9-8 29-11-0

				-	-									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	1/TPI2014	CSI TC BC WB Matrix-MSH	0.62 0.64 0.34	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.27 0.05	(loc) 12-14 12-14 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 168 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASG Vasd=103 II; Exp B; and C-C E to 11-11-8 to 11-11-8 to cantilever right expo for reactio DOL=1.60	2x4 SP 2400F 2.0E 2x6 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 - 1 1-6-0 Structural wood sheat 4-10-3 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 1 Max Horiz 2=125 (LC Max Uplift 2=-131 (L Max Grav 2=1357 (L (lb) - Maximum Com Tension 1-2=0/23, 2-4=-2347 6-8=-2173/271, 8-10 2-14=-211/2018, 12- 10-12=-113/2018 6-12=-109/845, 8-12 6-14=-109/845, 4-14 ed roof live loads have DE 7-16; Vult=130mph imph; TCDL=6.0psf; BC Enclosed; MWFRS (en Exterior(2E) -0-10-8 to 2 5, Exterior(2E) 2 left and right exposed sed;C-C for members a ns shown; Lumber DO	I-6-0, Right 2x4 SP I athing directly applie applied or 10-0-0 oc 10=0-3-8 C 14) C 14), 10=-131 (LC C. 5), 10=1357 (LC 0 pression/Maximum 7/244, 4-6=-2173/271 =-2347/244, 10-11= 14=-31/1364, 2=-477/240, =-477/240, =-477/239 been considered for (3-second gust) CDL=6.0psf; h=25ft; welope) exterior zon 2-1-8, Interior (1) 2-1 to 17-11-8, Interior (2) -98 to 30-9-8 zone; end vertical left and and forces & MWFR L=1.60 plate grip	3) No.3 4) 5) of or 6) 7) 15) 6) 8) 1, 0/23 LC Cat. e -8 1) 3; 5 S	TCLL: ASCE Plate DOL= ² DOL=1.15); CS=1.00; Ct: Unbalanced design. This truss ha chord live loi • This truss lood of 12.0 overhangs n This truss lood of 12.0 overhangs n This truss lood of 12.0 overhangs n This truss lood of 12.0 overhangs n 3.06-00 tall l chord and an One H2.5A S recommended UPLIFT at jt and does no DAD CASE(S)	 7-16; Pr=20.0 psi 1.15); Pf=20.0 psi 1.15); Pf=20.0 psi 1s=1.0; Rough Cat 1.10 snow loads have I as been designed f psi or 1.00 times f fon-concurrent with as been designed f ad nonconcurrent with as been designed f ad nonconcurrent in a seen designed f ad nonconcurrent with as been designed f ad nonconcurrent in a seen designed f ad to connect truss (s) 2 and 10. This of t consider lateral for Standard 	f (roof LL [Lum DC B; Fully been cor for great at roof k or a 10.0 with any I for a liv s where I for a liv s where connection orces.	:: Lum DOL= L=1.15 Plate Exp.; Ce=0. Insidered for t er of min rooid and of 20.0 p re loads. D psf bottom other live load e load of 20.0 a rectangle veen the bottt DL = 10.0ps ctors ing walls due on is for uplif	1.15 9; his f live sf on ads. Opsf om f. t only				SEA OJESS SEA OJESS SEA OJESS SEA OJESS SEA OJESS SEA OJESS SEA OJESS	ROLL 22 LBERT	and an

mmm March 14,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof-Forsyth 3 GLH	
25030013-01	C01	Common Supported Gable	1	1	Job Reference (optional)	172009573

Loading

TCDL

BCLL

BCDL

WFBS

OTHERS

FORCES

WFBS

NOTES

1)

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries, Inc. Thu Mar 13 08:47:35 ID:EmtPvLJx2oAV5hA4PxCEw_yUWDG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Edenton, NC 27932

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof-Forsyth 3 GLH	
25030013-01	C02	Common Girder	1	2	Job Reference (optional)	172009574

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu Mar 13 08:47:35 ID:ec5z5BYULxhfVmiwa7ZwjCyUWCy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:51.8

Plate Offsets (X, Y): [4:Edge,0-4-1],	[5:0-3-8,0-6-0]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOD CHORD	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 NO IRC2021 4)	Vind: ASCE	CSI TC BC WB Matrix-MSH 7-16; Vult=130mp	0.42 0.41 0.73 h (3-sec	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.12 0.00	(loc) 5-6 5-6 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 160 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x8 SP 2400F 2.0E 2x4 SP No.3 *Excep Right: 2x6 SP No.2 Structural wood she 5-4-4 oc purlins, ex Rigid ceiling directly bracing.	t* 5-2:2x4 SP No.2 athing directly applie cept end verticals. applied or 10-0-0 oc	d or 5) ; 6)	Vasd=103mp II; Exp B; En. cantilever lef right exposed TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced	oh; TCDL=6.0ps; t closed; MWFRS (et and right exposed d; Lumber DOL=1. 7-16; Pr=20.0 psf .15); Pf=20.0 psf (ls=1.0; Rough Cat =1.10 snow loads have b	(roof LL Lum DC B; Fully een cor	.upst; h=25tt e) exterior zon vertical left ar grip DOL=1. .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9	; Cat. ne; id 60 1.15 9 9; his					
FORCES TOP CHORD BOT CHORD WEBS	(size) 4=0-3-8, 6 Max Horiz 6=-178 (L Max Grav 4=3716 (L (lb) - Maximum Com Tension 1-2=-146/44, 2-3=-4 1-6=-139/28 5-6=0/400, 4-5=0/43 2-5=0/5974, 3-5=-24	5=0-3-8 C 10) LC 6), 6=4722 (LC 6) pression/Maximum 891/0, 3-4=-4924/0, 842 15/204, 2-6=-2375/0	7) 8) 9)	 6) Unbalanced show loads have been considered for this design. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 9) Use Simpson Strong-Tie HTU26 (10-16d Girder, 14-10dx1 1/2 Truss) or equivalent spaced at 2-0-0 or. 									
 NOTES 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-7-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc. All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. Unbalanced roof live loads have been considered for this design. 				max. starting connect truss:) Fill all nail ho Dead + Sno Increase=1 Uniform Loa Vert: 1-2: Concentrate Vert: 11= 14=-1245	at 0-11-0 from the s(es) to back face of les where hanger Standard ow (balanced): Lun .15 ads (lb/ft) =-58, 2-4=-58, 6-7= ed Loads (lb) -1444 (B), 12=-14- 5 (B), 15=-1245 (B)	==-19 42 (B), 7	1 to 8-11-0 to n chord. Itact with lum rease=1.15, 1 I3=-1442 (B)	ber. Plate		M. CONTRACT		SEA 0363	ROLL L 22 EEBERTUU

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek A 818 Soundside Road Edenton, NC 27932

March 14,2025

Job	Truss	Truss Type	Qty	Ply	Roof-Forsyth 3 GLH	
25030013-01	P01	Monopitch Supported Gable	1	1	Job Reference (optional)	172009575

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Thu Mar 13 08:47:35 ID:7q8tznEjjRkkthhsXVnzxNyUnhT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.9

				_											
Loading TCLL (roof)		(psf) 20.0	Spacing Plate Grip DOL	1-11-4 1.15		CSI TC	0.12	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190	
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.05	Vert(CT)	n/a	-	n/a	999	-		
		10.0	Rep Stress Incr	YES		WB	0.08	Horz(CT)	0.00	2	n/a	n/a			
BCDL		10.0	Code	IRC202	1/1712014	Watrix-IVIP							Weight: 21 lb	FT = 20%	
LUMBER				4) Unbalanced	snow loads have b	been cor	sidered for th	his						_
TOP CHORD	2x4 SP No.2	2			design.										
BOT CHORD	2x4 SP No.2	2		5) This truss ha	s been designed for	or great	er of min roof	live						
WEBS	2x4 SP No.3	3			load of 12.0	ost or 1.00 times the	at root lo	bad of 20.0 p	ston						
OTHERS	2X4 SP NO.	3		6) Gable require	es continuous botto	om chor	d bearing.							
	Structural w	ood she	athing directly applied	dor 7) Gable studs	spaced at 2-0-0 oc).								
	5-0-0 oc pu	rlins, exe	cept end verticals.	8) This truss ha	s been designed fo	or a 10.0) psf bottom							
BOT CHORD	Rigid ceiling bracing.	g directly	applied or 10-0-0 oc	9	chord live loa * This truss h	d nonconcurrent v as been designed	vith any for a liv	other live loa e load of 20.0	ids. Opsf						
REACTIONS	(size) 2	=5-0-0, 6	6=5-0-0, 7=5-0-0		3-06-00 tall b	n chord in all areas	s where Il fit betv	a rectangle	om						
	Max Horiz 2	=89 (LC	13)		chord and ar	y other members.			om						
	Max Uplift 2	=-17 (LC	10), 6=-13 (LC 14),	1	0) Provide mec	nanical connection	ı (by oth	ers) of truss t	to						
	Max Grav 2	=-57 (LC =202 (LC	(14) (12) 6=117 (1 C 21)		bearing plate	capable of withsta	anding 1	7 lb uplift at j	oint						
	7	=299 (LC	C 21)	,	2, 13 lb uplift	at joint 6, 57 lb up	olift at joi	nt / and 1/ It	D						
FORCES	(lb) - Maxim Tension	ium Com	pression/Maximum	LOAD CASE(S) Standard											
TOP CHORD	1-2=0/30, 2- 4-6=-103/56	-3=-115/9 6	95, 3-4=-53/55, 4-5=-	-9/0,											
BOT CHORD WEBS	2-7=-52/89, 3-7=-237/25	6-7=-27/ 52	/49												
NOTES														11111	
1) Wind: ASC	CE 7-16; Vult=	130mph	(3-second gust)										TH UA	Rollin	
Vasd=103	3mph; TCDL=6	6.0psf; B0	CDL=6.0psf; h=25ft; (Cat.								~	Chart Se	12.5/1/2	
II; Exp B;	Enclosed; MW	/FRS (en	velope) exterior zone	9							6	X	ALCO A	X	
exposed :	end vertical le	eft and ric	t exposed:C-C for										:0	N	
members	and forces & I	WWFRS	for reactions shown;								E		CEA	r 1 E	
Lumber D	OL=1.60 plate	e grip DO	L=1.60								=		SEA	L <u>E</u> E	
2) Truss des	igned for wind	loads in	the plane of the truss	S							-		0363	22 : =	
ONIY. FOR	stuas exposed	a to wind	(normal to the face),	ما								0	•	1 E	
or consult	aualified build	lina desid	aner as per ANSI/TPI	10,								5		all S	
3) TCLL: AS	CE 7-16; Pr=2	20.0 psf (roof LL: Lum DOL=1.	.15								2.5	S NGIN	EETAN	
Plate DOL	_=1.15); Pf=20	0.0 psf (L	um DOL=1.15 Plate									11	10	BEN	
DOL=1.15	o); Is=1.0; Rou	gh Cat B	; Fully Exp.; Ce=0.9;										11, A. G	ILLIN	
05=1.00,	01-1.10												in an	UTTS	
													March	14,2025	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) 818 Soundside Road Edenton, NC 27932 and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof-Forsyth 3 GLH	
25030013-01	P02	Monopitch	5	1	Job Reference (optional)	172009576

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu Mar 13 08:47:35 ID:Mlfsl27ib_ktvS3K3qe5chyUnhb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4-10-8

Scale	_	1.29	6
Scale	-	1.23.	0

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.53	Vert(LL)	-0.04	4-7	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.33	Vert(CT)	-0.07	4-7	>833	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.04	Horz(CT)	0.01	2	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 21 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood shea 5-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 4 Max Horiz 2=86 (LC Max Uplift 2=-30 (LC Max Cray, 2=361 (LC	athing directly appli applied or 10-0-0 o 4=0-1-8 14) 2 14), 4=-48 (LC 14) 2 21) 4=266 (LC 24)	6) 7) 8) ed or c 9) 10	* This truss on the botto 3-06-00 tall chord and a Bearings are using ANSI/ designer shu Provide mea bearing plat) One H2.5A recommend UPLIFT at jt and does no	has been design m chord in all are by 2-00-00 wide ny other membe e assumed to be e assumed to be point(s) 4 conside: TPI 1 angle to gr ould verify capac chanical connect e at joint(s) 4. Simpson Strong- ed to connect tr. (s) 2 and 4. This ot consider latera	ed for a liv eas where will fit betv rs. : , Joint 4 S rs parallel t ain formula ity of bear ion (by oth Tie conne- iss to bear connectio I forces.	e load of 20. a rectangle veen the bott SP No.3 . to grain value a. Building ing surface. ers) of truss ctors ing walls due n is for uplift	Opsf com e to e to only					
FORCES	(lb) - Maximum Com	pression/Maximum	γ LC	DAD CASE(S)	Standard								
TOP CHORD	1-2=0/31, 2-3=-183/	148											
BOT CHORD	2-4=-176/115												
WEBS	3-4=-195/128												
NOTEO													

NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

SEAL 036322 MGINEER March 14,2025

111111

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof-Forsyth 3 GLH	
25030013-01	P03	Half Hip	5	1	Job Reference (optional)	172009577

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu Mar 13 08:47:35 ID:mKH8oSIGuSqGhhCMlpaqs9yUni4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

10

Scale = 1:29.4

()												
(pst)	Spacing	1-11-4		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
20.0	Plate Grip DOL	1.15		TC	0.64	Vert(LL)	0.02	7-10	>999	240	MT20	244/190
20.0	Lumber DOL	1.15		BC	0.25	Vert(CT)	-0.02	7-10	>999	180		
10.0	Rep Stress Incr	NO		WB	0.33	Horz(CT)	0.00	2	n/a	n/a		
0.0*	Code	IRC202	21/TPI2014	Matrix-MP								
10.0		-									Weight: 22 lb	FT = 20%
2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Structural wood she 5-0-0 oc purlins, ex 2-0-0 oc purlins: 4-7 Rigid ceiling directly bracing. (size) 2=0-3-8, 6 Max Horiz 2=57 (LC Max Uplift 2=-57 (LC Max Grav 2=472 (LC (lb) - Maximum Com	t* 3-7:2x4 SP No.2 athing directly applie cept end verticals, ar , 4-5. applied or 10-0-0 oc S= Mechanical 11) 2 14), 6=-128 (LC 11) 2 38), 6=863 (LC 43) poression/Maximum	5 6 7 d or 1 3 9 1	 This truss ha load of 12.0 overhangs m Provide adec This truss ha chord live loa This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 6. One H2.5A S 	s been designed for specific of 1.00 times fit pon-concurrent with juate drainage to p s been designed for do nonconcurrent v as been designed n chord in all areas y 2-00-00 wide will y other members. er(s) for truss to tru- nanical connection capable of withstat	or great at roof lo other liv orevent v or a 10.0 vith any for a liv s where I fit betv uss conr (by oth anding 1 e connec to beet	er of min roof pad of 20.0 p ve loads. water ponding 0 psf bottom other live load e load of 20.0 a rectangle veen the botto nections. ers) of truss to 28 lb uplift all ctors	i live sf on g. ds. Dpsf om to to					
Tension 1-2=0/28, 2-3=-619/2 3-436/170, 4-58	237, 4-7=-409/214, 82/379, 5-6957/409	0 1	UPLIFT at jt does not con	d to connect truss s) 2. This connecti sider lateral forces	to bear on is foi	uplift only a	to nd					
2-7=-203/569 6-7=-	11/16		2) Graphical pu	tion of the purlin a	long the	top and/or	size					
5-7=-396/972			bottom chore		iong ine	top anu/or						
0.000,012		1	3) In the I OAD	CASE(S) section	loads a	onlied to the	face					
od roof live loads have	been considered for		of the truss a	re noted as front (F) or ba	ck (B).	luoo					
	been considered for	1		Standard	,	(=)-					minin	11111
CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B(Enclosed; MWFRS (er Exterior(2E) -0-10-8 to - ght exposed ; end vertii c-C for members and fr shown; Lumber DOL= ² 0 CE 7-16; Pr=20.0 psf (L =1-15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat B Ct=1.10 red snow loads have be	(3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zone 4-10-4 zone; cantilev cal left and right orces & MWFRS for 1.60 plate grip roof LL: Lum DOL=1. um DOL=1.15 Plate B; Fully Exp.; Ce=0.9; een considered for thi	1 Cat. e er .15) Dead + Snc Increase=1 Uniform Loa Vert: 1-3:	w (balanced): Lun 15 ads (lb/ft) =-58, 4-5=-458 (F=	nber Inc	rease=1.15, -8=-19	Plate		Walling		SEA 0363	L 22 HBERT
	20.0 20.0 10.0 0.0* 10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Structural wood she 5-0-0 oc purlins; 4-7 Rigid ceiling directly bracing. (size) 2=0-3-8, (Max Horiz 2=57 (LC Max Uplift 2=-57 (LC Max Uplift 2=-57 (LC Max Grav 2=472 (LC (Ib) - Maximum Com Tension 1-2=0/28, 2-3=-619/ 3-4=-36/170, 4-5=-8 2-7=-203/569, 6-7=- 5-7=-396/972 20 ded roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed; MWFRS (er Exterior(2E) -0-10-8 to ght exposed; end verti C-C for members and f shown; Lumber DOL=- 0 CE 7-16; Pr=20.0 psf (L 1=1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E Ct=1.10 20 ds now loads have be	20.0 20.0 20.0 10.0 0.0* 10.0 20.0 10.0 Rep Stress Incr Code 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Except* 3-7:2x4 SP No.2 Structural wood sheathing directly applie 5-0-0 oc purlins; except end verticals, ar 2-0-0 oc purlins; 4-7, 4-5. Rigid ceiling directly applied or 10-0-0 oc bracing. (size) 2=0-3-8, 6= Mechanical Max Horiz 2=57 (LC 11) Max Uplift 2=-57 (LC 14), 6=-128 (LC 11) Max Grav 2=472 (LC 38), 6=863 (LC 43) (lb) - Maximum Compression/Maximum Tension 1-2=0/28, 2-3=-619/237, 4-7=-409/214, 3-4=-36/170, 4-5=-882/379, 5-6=-957/409 2-7=-203/569, 6-7=-11/16 5-7=-396/972 2rd roof live loads have been considered for n. CE 7-16; Vult=130mph (3-second gust) 3mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Enclosed; MWFRS (envelope) exterior zone Exterior(2E) -0-10-8 to 4-10-4 zone; cantilev ght exposed; end vertical left and right C-C for members and forces & MWFRS for shown; Lumber DOL=1.60 plate grip 0 CE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1 L=1.15); Pf=20.0 psf (roof LL: Lum DOL=1.15 Plate 5); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Ct=1.10 red snow loads have been considered for thi	$\begin{array}{c c} 20.0 \\ 20.0 \\ 20.0 \\ 10.0 \\ 0.0^* \\ 10.0 \\ 0.0^* \\ 10.0 \\ 0.0^* \\ 10.0 \\ 0.0^* \\ 0.0^* \\ 10.0 \\ \hline \end{array}$	20.0 20.0 20.0 10.0 0.0*Plate Grip DOL 1.15 Rep Stress Incr NO Code1.15 Image: NO NO Code2x4 SP No.2 2x4 SP No.25) This truss ha load of 12.0 tp overhangs no verhangs no core purlins: 4-7, 4-5. Rigid ceiling directly applied or 10-0-0 oc bracing.5) This truss ha load of 12.0 tp overhangs no core purlins: 4-7, 4-5. Rigid ceiling directly applied or 10-0-0 oc bracing.6) Provide aded (7) This truss ha load of 12.0 tp overhangs no core purlins: 4-7, 4-5. Rigid ceiling directly applied or 10-0-0 oc bracing.5) This truss ha load of 12.0 tp overhangs no chord live load of 0-00 tall b chord and an 9) Refer to girdd 10) Provide medi bearing plate 6.(b) - Maximum Compression/Maximum Tension 1-2-0/28, 2-3=-619/237, 4-7=-409/214, 3-4=-36/170, 4-5=-882/379, 5-6=-957/409 2-7=-203/569, 6-7=-11/16 5-7=-396/9725) This truss ha load of 12.0 tp Provide aded (1) Provide aded (2) Provide aded (2) Provide aded (3) In the LOAD (3) In the LOAD of the truss a LOAD CASE(S)(2) CE 7-16; Pr=20.0 psf (coof LL: Lum DOL=1.15 L=1.16); Pf=20.0 psf (toof LL: Lum DOL=1.15 Pi =20.0 psf (coof LL: Lum DOL=1.15 L=1.16); Pf=20.0 psf (coof LL: Lum DOL=1.15 L=1.10 bed snow loads have been considered for this	20.0 20.0 20.0 10.0Plate Grip DOL Lumber DOL 1.15TC BC BC WB Matrix-MP2x4 SP No.2 2x4 SP No.25)This truss has been designed fr load of 12.0 psf or 1.00 times ft overhangs non-concurrent with 6)2x4 SP No.2 2x4 SP No.3 *Except* 3-7:2x4 SP No.25)This truss has been designed fr load of 12.0 psf or 1.00 times ft overhangs non-concurrent with 6)2x4 SP No.3 *Except* 3-7:2x4 SP No.25)This truss has been designed for load of 12.0 psf or 1.00 times ft overhangs non-concurrent with 6)2x4 SP No.3 *Except* 3-7:2x4 SP No.27)This truss has been designed for chord live load nonconcurrent with 2-00 co purlins: 4-7, 4-5.Structural wood sheathing directly applied or 5-0-0 co purlins: 4-7, 4-5.7)This truss has been designed on the bottom chord in all areas 3-06-00 tall by 2-00-00 wide will chord and any other members.(size)2=0-3-8, 6= Mechanical Max Horiz 2=57 (LC 11)* This truss has been designed for the original pate capable of withsts 6.Max Horiz 2=57 (LC 11)Max Grav 2=472 (LC 38), 6=863 (LC 43) (lb) - Maximum Compression/Maximum Tension 1-2=0/28, 2-3=-619/237, 4-7=-409/214, 3-4=-30/697210 De H2.5A Simpson Strong-Tie recommended to connect truss UPLIFT at jt(s) 2. This connecti does not consider lateral forces 82 (S standard 1)CE 7-16; Vult=130mph (3-second gust) 3mph; TCDL=6.0psf; BCDL=6.0psf; h=25fr; Cat. Enclosed; MWFRS (envelope) exterior zone shown; Lumber DOL=1.60 plate grip 00 CE 7-16; Pr=20.0 psf (toof LL: Lum DOL=1.15 L=1.15); Pf=20.0 psf (toof LL: Lum DOL=1.15 L=1.10Dead + Snow (balanced): Lum Increase=1.15 U	20.0 20.0 20.0 20.0Plate Grip DOL Lumber DOL Lumber DOL 1.15TC BC 0.240.64 BC C 0.252x4 SP No.2 2x4 SP No.2(CodeIRC2021/TPI2014Matrix-MP2x4 SP No.3 *Except* 3-7:2x4 SP No.2 2x4 SP No.3 *Except* 3-7:2x4 SP No.2.5) This truss has been designed for greater load of 12.0 psf or 1.00 times flat roof I overhangs non-concurrent with other lin or orboic purlins: 4-7, 4-5.Rigid ceiling directly applied or 5-0-0 oc purlins: 4-7, 4-5.5) This truss has been designed for a liv or the bottom chord in all areas where 3-06-00 tall by 2-00-00 wide will fit betw chord and any other members.(size) 1-2=0/28, 2-3=-619/237, 4-7=-409/214, 3-4=-36/(70, 4-5=-882/379, 5-6=-957/409 2-7=-203/569, 6-7=-11/16 5-7=-396/972(Connect truss to beari upLIFT at jt(s) 2. This connection (by oth bearing plate capable of withstanding 1 6.(E 7-16; Vult=130mph (3-second gust) 3mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; ccat. Enclosed; MWFRS (envelope) exterior zone Exterior(ZE) -0.10-8 to 4-10-4 zone; cantilever the exposed ; end vertical left and right C-C for members and forces & MWFRS for shown; Lumber DOL=1.60 plate grip 0 CE 7-16; Pr=20.0 psf (corf LL: Lum DOL=1.15 L=1.15); PI=20.0 psf (corf LL: Lum DOL=1.15 L=1.10 red snow loads have been considered for this1) Dead + Snow (balanced): Lumber Inc. Increase=1.15 Uniform Loads (lb/ft) Vert: 1-3=-58, 4-5=-458 (F=-400), 6	20.0 Piate Grip DOL 1.15 TC 0.64 Vert(LL) 20.0 Lumber DOL 1.15 BC 0.25 Vert(LL) 10.0 Code IRC2021/TPI2014 WB 0.33 Vert(LL) 2x4 SP No.2 State SP No State SP No	20.0 Piate Grip DOL 1.15 TC 0.64 Vert(LL) 0.02 10.0 Lumber DOL 1.15 BC 0.25 Vert(CT) -0.02 20.0 NO Code IRC2021/TPI2014 Matrix-MP Horz(CT) 0.00 2x4 SP No.2 Structural wood sheathing directly applied or 50-00 cc purins: 4-7, 4-5. Structural wood sheathing directly applied or 10-0-0 cc bracing. 5) This truss has been designed for a 100 psf bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will the between the bottom chord and any other members. 8) * This truss has been designed for a 100 psf bottom chord and any other members. 8) * This truss has been designed for a 100 psf bottom chord and any other members. 8) * This truss has been designed for a 100 psf bottom chord and any other members. 8) * This truss has been designed for a 100 psf bottom chord and any other members. 8) * This truss to truss to tuss to tusord trus tuss and tuss to uplift any other for 1.00 po	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20.0 Plate Gip DOL 1.15 TC 0.64 Vert(L1) 0.02 7-10 >999 0.0 Rep Stress Inc NO Code IRC2021/TPI2014 WB Vert(C1) 0.02 7-10 >999 2x4 SP No.2 Code IRC2021/TPI2014 Matrix-MP Vert(C1) 0.00 2 n/a 2x4 SP No.2 Structural wood sheathing directly applied or 50-00 cp purlins, except end verticals, and 2-00 oc purlins, except end verticals, and 2-00 co purlins, except end verticals, and 2-00 oc purlins, except end verticals, and 2-00 oc purlins, except end verticals, end	20.0 Piate Grip DOL 1.15 TC 0.64 Vert(L1) 0.02 7-10 >999 240 10.0 Rep Stress Incr NO Code IRC2021/TPI2014 WB 0.33 Vert(L1) 0.02 7-10 >999 180 2v4 SP No.2 Edd Reg Stress Incr NO 2 n/a n/a 2v4 SP No.2 Structural wood sheathing directly applied or 5-0-0 oc purins. except 4 Structural wood sheathing directly applied or 5-0-0 oc purins. For the struss has been designed for a live load of 20.0 psf on over threads there in the load on concurrent with there live loads. 9 Poide adequate drainage to prevent water ponding. 7 This truss has been designed for a live load of 20.0 psf on over threads there interes intrus has been designed for a live load of 20.0 psf on over threads there interes intrus has been designed for a live load of 20.0 psf on over threads there interes intrus has been designed for a live load of 20.0 psf on over threads there interes intrus has been designed for a live load of 20.0 psf on over threads there interes intrus has been designed for the live loads. 8 This truss has been designed for on too psf bottom chord in all areas where a rectangle 3-06-00 all by 2-00-00 purins exactly the struss the been designed for truss to bearing walls due in the load on any other members. 9 10 10 10 10 10 10 10	20.0 Lumber DOL 1.15 TC 0.64 Vert(CT) 0.02 7-10 >999 100 0.0* Code IRC2021/TPI2014 WB 0.33 Horz(CT) 0.00 2 n/a n/a 2x4 SP No.2 Zx4 SP No.2 This truss has been designed for a load of 20.0 per on overhams pro-concurrent with drag segmed for a load of 20.0 per on overhams pro-concurrent with arry other live loads. 6) Provide adequate drainage to prevent water proding. 7) This truss has been designed for a load of 20.0 per on overhams pro-concurrent with arry other live loads. 6) Provide adequate drainage to prevent water proding. 7) This truss has been designed for a load of 20.0 per on overhams pro-concurrent with arry other live loads. 6) Provide adequate drainage to prevent water proding. 7) This truss has been designed for a load of 20.0 per on overhams pro-concurrent with arry other live loads. 6) This truss has been designed for a load of 20.0 per on overhams pro-concurrent with arry other live loads. 6) This truss has been designed for a load of 20.0 per on overhams pro-concurrent with arry other live loads. 6) This truss has been designed for a load of 20.0 per on overhams pro-concurrent with arry other live loads. 6) This truss has been designed for a load of 20.0 per on overhams pro-concurrent with arry other live loads. 6) This truss has been designed for a load or 20.0 per on overhams pr

March 14,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY A MITEK Affiliate

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Roof-Forsyth 3 GLH	
25030013-01	P04	Half Hip Supported Gable	1	1	Job Reference (optional)	172009578

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu Mar 13 08:47:36 ID:oIVHIdqPnJopSxreFJ0dzFyUWFA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

12 5 Г

0-6-3

3-0-0

2x4 II

Scale = 1:28.5

Plate Offsets (X, Y): [4:0-2-8,Edge]

	() () () () ()	,											
Loading	(psf)	Spacing Plate Grip DOI	1-11-4		CSI	0.27	DEFL	in n/a	(loc)	l/defl	L/d	PLATES	GRIP 244/190
Snow (Pf	(i) 20.0		1.15		BC	0.27	Vert(CT)	n/a		n/a	999	101120	244/130
TCDI	10.0	Ren Stress Incr	NO		WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCLI	0.01	Code	IRC202	1/TPI2014	Matrix-MP	0.12	11012(01)	0.00	-	n/a	11/0		
BCDL	10.0											Weight: 13 lb	FT = 20%
LUMBEF	ł		4)	TCLL: ASCE	7-16; Pr=20.0 p	sf (roof LL	: Lum DOL=	1.15					
TOP CHO	ORD 2x4 SP No.2			Plate DOL=1	1.15); Pf=20.0 ps	f (Lum DC	L=1.15 Plate						
BOT CHO	ORD 2x4 SP No.2			DOL=1.15);	Is=1.0; Rough Ca	at B; Fully	Exp.; Ce=0.9);					
WEBS	2x4 SP No.3		E)	Use1.00; Ct	=1.10	hoon oor	aidarad for th	io					
OTHERS	5 2x4 SP No.3		5)	docian	Show loads have	been cor		115					
BRACIN	G		. 6)	This trues he	s heen designed	for areat	er of min roof	live					
TOP CHO	ORD Structural wood sh	eathing directly applie	ed or ^o	load of 12 0	nsf or 1 00 times	flat roof le	ad of 20.0 p	sfon					
	3-0-0 oc purlins, e	except end verticals, a	ind	overhangs n	on-concurrent wi	th other liv	/e loads.						
	2-0-0 oc punins: 4	-ə. Iv applied er 10 0 0 e	, 7)	Provide ade	quate drainage to	prevent	water ponding	1.					
BOTON	bracing	iy applied of 10-0-0 0	8)	Gable requir	es continuous bo	ttom chor	d bearing.						
REACTIO	DIGOING . DNS (size) 2-3-0-0	6-3-0-0 7-3-0-0	9)	Gable studs	spaced at 2-0-0	OC.							
NEA011	Max Horiz 2=36 (I	, 0=0 0 0, 7=0 0 0 C 13)	10) This truss ha	as been designed	l for a 10.0) psf bottom						
	Max Uplift 2=-38 (_C 18), 6=-34 (LC 10)		chord live lo	ad nonconcurrent	t with any	other live loa	ds.					
	7=-52 (_C 11)	' 11) ^ I his truss i	has been designe	ed for a liv	e load of 20.0	pst					
	Max Grav 2=106 (LC 38), 6=224 (LC 37	'),	3-06-00 tall	11 chord in all are	as where	a reclangle	m					
	7=356 (LC 38)		chord and a	by 2-00-00 wide v	s	leen me bou	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
FORCES	(Ib) - Maximum Co	mpression/Maximum	12) Provide med	hanical connection	on (by oth	ers) of truss t	0					
	Tension			bearing plate	e capable of with	standing 3	8 lb uplift at j	oint					
TOP CHO	ORD 1-2=0/28, 2-3=-73	/80, 3-4=-53/73,		2, 34 lb uplif	t at joint 6, 52 lb ι	uplift at joi	nt 7 and 38 lt)					
DOTOU	4-5=-21/36, 5-6=-2	259/209		uplift at joint	2.							IIIIII	1111
BOLCH	JRD 2-7=-58/41, 6-7=-7	1/20	13	Graphical pu	Irlin representatio	on does no	ot depict the s	ize				WHILL CA	Dall
WEBS	3-7=-466/397			or the orient	ation of the purlin	along the	top and/or					atrio	10/11/
NOTES				bottom chore	d.						50	O	10. N'L
1) Unba	alanced roof live loads hav	e been considered fo	r 14) In the LOAD	CASE(S) section	n, ioads aj	oplied to the t	ace		4	20	20	1 and
	iesign.	h (2 cocord suct)			Standard	с (г) ог ра	ск (Б).					:0	K. 1.
 Z) Wind Vasd 	I: ASCE 7-16; Vuil=130111 I=103mph: TCDI =6 0pcf:	n (3-second gust) BCDI –6 Opef: h–25ft:	Cot 1)	Dood L So	Stanuaru	mbor loo		Diata				054	n 1 E -
II. Ex	n B: Enclosed: MWERS (envelope) exterior zor	, Cal.)	Increase-1	15		lease=1.15, i	late			1	SEA	4 <u>8 8</u> .
and (C-C Corner(3E) zone: car	tilever left and right			ads (lb/ft)							0363	22 : =
expo	sed ; end vertical left and	right exposed;C-C for		Vert: 1-4	=-58 4-5=-458 (I	F=-400) 6	-819						; :
mem	bers and forces & MWFR	S for reactions shown	;				0 10				-		1 - S - S
Lum	per DOL=1.60 plate grip E	OL=1.60									21	N. ENO	-ERIX S
3) Trus	s designed for wind loads	in the plane of the true	SS								1	S, GIN	Et AN
only.	For studs exposed to wi	nd (normal to the face),								1	CAR	II BEIN
see S	Standard Industry Gable E	nd Details as applical	ble,									1, 4. 6	
or co	nsuit qualified building de	signer as per ANSI/TH	-11.									201111	LI 198

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

March 14,2025

Job	Truss	Truss Type	Qty	Ply	Roof-Forsyth 3 GLH	
25030013-01	P05	Half Hip	5	1	Job Reference (optional)	172009579

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Thu Mar 13 08:47:36 ID: 2ZcXJKLNfWDi6YdvGrHiDKyUWEV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff

12 5 Г

2x4 II

5x6 =

Page: 1

3-0-0

Scale = 1:27.1

Loadi	ng		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	(roof)		20.0	Plate Grip DOL	1.15		тс	0.11	Vert(LL)	0.00	5-8	>999	240	MT20	244/190
Snow	(Pf)		20.0	Lumber DOL	1.15		BC	0.09	Vert(CT)	0.00	5-8	>999	180		
TCDL	· /		10.0	Rep Stress Incr	NO		WB	0.05	Horz(CT)	0.00	5	n/a	n/a		
BCLL			0.0*	Code	IRC202	21/TPI2014	Matrix-MP		- (-)						
BCDL			10.0											Weight: 13 lb	FT = 20%
LUMB	ER				5) This truss ha	as been designed	d for great	er of min root	live					
TOP C	HORD	2x4 SP No.2				load of 12.0	psf or 1.00 times	s flat roof l	oad of 20.0 p	sf on					
BOT C	HORD	2x4 SP No.2	2			overhangs n	on-concurrent wi	ith other liv	ve loads.						
WEBS	;	2x4 SP No.3			6) Provide ade	quate drainage to	o prevent	water ponding	g.					
BRAC	ING				7) This truss ha	as been designed	d for a 10.	0 psf bottom						
TOP C	HORD	Structural wo	ood shea	athing directly applie	d or	chord live lo	ad nonconcurren	nt with any	other live loa	ids.					
		3-0-0 oc pur	lins, exc	cept end verticals, ar	nd 8) * This truss	has been designe	ed for a liv	e load of 20.	Opsf					
		2-0-0 oc purl	lins: 3-4			on the botto	m chord in all are	eas where	a rectangle						
BOT C	HORD	Rigid ceiling	directly	applied or 10-0-0 oc		3-06-00 tall	by 2-00-00 wide	will fit betw	veen the bott	om					
		bracing.				chord and a	ny other member	rs.							
REAC	TIONS	(size) 2=	=0-3-8, 5	5= Mechanical	9) Refer to gird	er(s) for truss to	truss conr	nections.						
		Max Horiz 2=	=37 (LC	13)	1	 Provide med boaring plat 	chanical connecti	on (by our	ers) or truss	oint					
		Max Uplift 2=	=-41 (LC	(LC 11), 5=-59 (LC 11)		5	e capable of with	istanuing a	be in uplin at	om					
		Max Grav 2=	=282 (LC	C 38), 5=400 (LC 37)	1	1) One H2 54 :	Simpson Strong-	Tie conne	ctors						
FORC	ES	(lb) - Maximu	um Com	pression/Maximum		recommend	ed to connect tru	iss to hear	ing walls due	to					
		Tension		•		UPLIFT at it	(s) 2 This conne	ection is for	uplift only a	nd					
TOP C	HORD	1-2=0/29, 2-3	3=-228/	106, 3-4=-22/26,		does not cor	nsider lateral forc	ces.	apint only a						
		4-5=-247/109	9		1	2) Graphical pu	urlin representation	on does no	ot depict the	size					
BOT C	HORD	2-5=-74/212				or the orient	ation of the purlir	n along the	top and/or						
WEBS	;	3-5=-305/13	6			bottom chor	d.	Ŭ	•						
NOTE	s				1	3) In the LOAD	CASE(S) sectio	n, loads a	pplied to the	face					
1) Ur	balance	ed roof live load	ds have	been considered for		of the truss a	are noted as fron	it (F) or ba	ck (B).						1175
, thi	s desigr	n.			L	OAD CASE(S)	Standard								1111
2) W	ind: ASC	CE 7-16; Vult=1	130mph	(3-second gust)	1) Dead + Sn	ow (balanced): L	umber Inc	rease=1.15,	Plate				IN THUA	Rath
Va	asd=103	mph; TCDL=6.	.0psf; B0	CDL=6.0psf; h=25ft;	Cat.	Increase=1	.15						N	A	111's
II;	Exp B; I	Enclosed; MWI	FRS (en	velope) exterior zon	е	Uniform Lo	ads (lb/ft)					/	52	E FOU	
an	d C-C E	Exterior(2E) zor	ne; canti	lever left and right		Vert: 1-3	8=-60, 3-4=-460 ((F=-400), 5	5-6=-20			4	10	181 -	RAN
ex	posed ;	end vertical lef	ft and rig	ght exposed;C-C for								-		2.6	
me	embers	and forces & N	IWFRS	for reactions shown;										SEA	1 1 5
Lu	mber D	OL=1.60 plate	grip DO	L=1.60									:	JLA	·- : =
3) TC	LL: AS	CE 7-16; Pr=20	0.0 psf (I	root LL: Lum DOL=1	.15									0363	22 : =
Pla	ate DOL	_=1.15); Pf=20.	.0 psf (Li	um DOL=1.15 Plate								-			1 - E
DC	JL=1.15	o); Is=1.0; Roug	gn Cat B	; ⊢ully Exp.; Ce=0.9										1. Sec. 1. Sec	- 1 - E -
	5=1.00; (hava k -	on considered for the									10	N. SNOW	-FR. X S
4) Ur	ibalance	eu snow loads	nave be	en considered for th	15								1	SGIN	E. A.S
de	sign.												1	CA C	BEIN

- Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GI A. GIL March 14,2025

Job	Truss	Truss Type	Qty	Ply	Roof-Forsyth 3 GLH	
25030013-01	P06	Half Hip	1	2	Job Reference (optional)	172009580

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu Mar 13 08:47:36 ID:26fOSymifzVtBmERG_ugbVyUWDz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12 5 Г 2x4 II

5x6 =

Page: 1

3-0-0

Scale = 1:27.1

Loading	(psf)	Spacing	1-11-4		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.05	Vert(LL)	0.00	5-8	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.04	Vert(CT)	0.00	5-8	>999	180			
TCDL	10.0	Rep Stress Incr	NO		WB	0.02	Horz(CT)	0.00	5	n/a	n/a			
BCLL	0.0*	Code	IRC2021	/TPI2014	Matrix-MP									
BCDL	10.0						-					Weight: 26 lb	FT = 20%	
LUMBER			4)	Wind: ASCE	7-16; Vult=130mph	n (3-sec	ond gust)							
TOP CHORD	2x4 SP No.2			Vasd=103mp	oh; TCDL=6.0psf; E	CDL=6	.0psf; h=25ft;	; Cat.						
BOT CHORD	2x4 SP No.2			II; Exp B; En	closed; MWFRS (e	nvelope) exterior zor	ne						
WEBS	2x4 SP No.3			and C-C Exte	erior(2E) zone; can	tilever l	eft and right							
BRACING				exposed; en		for roa	osed;C-C lor							
TOP CHORD	Structural wood she	eathing directly applie	ed or		-1 60 plate grin D0	101 1 ea		Ι,						
	3-0-0 oc purlins, ex	cept end verticals, ai	nd 5)		7-16 ⁻ Pr=20.0 psf	(roof LI	, . I um DOI = '	1 15						
	2-0-0 oc purlins: 3-	4. Complied or 10.0.0 oc		Plate DOL=1	.15): Pf=20.0 psf (L		L=1.15 Plate							
BUICHORD	bracing		,	DOL=1.15);	s=1.0; Rough Cat I	B; Fully	Exp.; Ce=0.9	Э;						
REACTIONS	(cizo) 2-0-3-8	5- Mechanical		Cs=1.00; Ct=	■1.10									
REACTIONS	Max Horiz 2=36 (10)	(13)	6)	Unbalanced	snow loads have b	een cor	sidered for th	nis						
	Max Uplift 2=-40 (1)	C(14) = 5 - 59 (I C (11))	-,	design.										
	Max Grav 2=275 (L	C 38). 5=396 (LC 37)) ()	This truss ha	s been designed fo	or greate	er of min roof	live						
FORCES	(lb) - Maximum Cor	noression/Maximum	,	overbangs n	on-concurrent with	at 1001 id other liv	au oi 20.0 p: /e loade	51 011						
	Tension		8)	Provide adec	uate drainage to p	revent v	vater ponding	. .						
TOP CHORD	1-2=0/28, 2-3=-225	/105, 3-4=-21/26,	9)	This truss ha	s been designed fo	or a 10.0) psf bottom	5-						
	4-5=-246/109		,	chord live loa	ad nonconcurrent w	ith any	other live loa	ds.						
BOT CHORD	2-5=-74/210		10)	* This truss h	as been designed	for a liv	e load of 20.0	Opsf						
WEBS	3-5=-301/135			on the bottor	n chord in all areas	where	a rectangle							
NOTES				3-06-00 tall b	y 2-00-00 wide will	fit betv	veen the botto	om						
1) 2-ply truss	s to be connected toge	ether with 10d	44)	chord and an	ly other members.		a ationa					minin	111.	
(0.131"x3	") nails as follows:		- 12)	Refer to gird	er(s) for truss to tru	ss conr	ections.	~				White CA	Dalle	
Top chord	is connected as follow	s: 2x4 - 1 row at 0-6-	0 12)	bearing plate	canable of withsta	nding 5	9 lb unlift at i	oint			1	att	70111	
OC. Bottom ch	ords connected as fol	lowe: 2x4 1 row of		5		nung o	o io upint at j	onn			A	OVEESS	6.14.	1
0-9-0 00	iorus connecteu as ior	10w5. 2x4 - 1 10w at	13)	One H2.5A S	Simpson Strong-Tie	conne	ctors				30		TIM	1
Web conn	nected as follows: 2x4	- 1 row at 0-9-0 oc.	,	recommende	d to connect truss	to bear	ng walls due	to		~	U	.2.		4
2) All loads a	are considered equally	applied to all plies,		UPLIFT at jt(s) 2. This connection	on is for	uplift only an	nd				054	n 1.	3
except if r	noted as front (F) or ba	ack (B) face in the LO	AD	does not con	sider lateral forces							SEA	L :	Ξ.
CASE(S)	section. Ply to ply con	nections have been	14)	Graphical pu	rlin representation	does no	ot depict the s	size		1	:	0363	22 :	-
provided t	to distribute only loads	noted as (F) or (B),		or the orienta	ation of the purlin al	ong the	top and/or			-				-
unless oth	nerwise indicated.				l. Otomological						-	1. Sec. 1. Sec		3
3) Unbalance	ed roof live loads have	e been considered for	· LU	Dood L Spr	Stanuaru	bor Inc	rooso_1 15 [Diato			20	NO.	FRIK	2
uns desigi			1)	Increase-1	15		case=1.13, f	ale			1	P. GIN	c A .	
				Uniform Loa	ads (lb/ft)						1	A G	ILBE IN	
				Vert: 1-3	=-58, 3-4=-458 (F=	-400), 5	-6=-19					11111	in in its	
						,, -						March	1/ 2025	
												ivialCl	114,2023	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Roof-Forsyth 3 GLH	
25030013-01	P07	Monopitch	5	1	Job Reference (optional)	172009581

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Thu Mar 13 08:47:36 ID:H6EDvr40XynBJmDRnRMme_yUWDZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:26.3

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	1-11-4 1.15		CSI TC	0.14	DEFL Vert(LL)	in 0.00	(loc) 4-7	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf) TCDL BCLL BCDL	20.0 10.0 0.0* 10.0	Lumber DOL Rep Stress Incr Code	1.15 YES IRC2021	I/TPI2014	BC WB Matrix-MP	0.08 0.02	Vert(CT) Horz(CT)	-0.01 0.00	4-7 2	>999 n/a	180 n/a	Weight: 12 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 3-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 4 Max Horiz 2=53 (LC	athing directly applie applied or 10-0-0 oc 4=0-1-8 14)	6) rd or 8) ; 9) 10	* This truss h on the bottor 3-06-00 tall b chord and ar Bearings are Bearing at jo using ANSI/I designer sho Provide mec bearing plate) One H2.5A S recommende	as been design n chord in all are by 2-00-00 wide y other member assumed to be assumed to be int(s) 4 consider PI 1 angle to gr uld verify capac hanical connect a t joint(s) 4. Simpson Strong- ed to connect tru	ed for a liv eas where will fit betw rs. : , Joint 4 S rs parallel t ain formul- ity of bear ion (by oth Tie conne- uss to bear	e load of 20. a rectangle veen the bott SP No.3 . o grain value a. Building ng surface. ers) of truss ctors ing walls due	Opsf com e to e to					

and does not consider lateral forces.

LOAD CASE(S) Standard

2-10-8

Max Grav 2=236 (LC 21), 4=138 (LC 21) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/29, 2-3=-87/75 BOT CHORD 2-4=-67/43 WEBS 3-4=-102/70 NOTES

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Roof-Forsyth 3 GLH	
25030013-01	P08	Monopitch Supported Gable	1	1	Job Reference (optional)	172009582

1-11-3

0-6-3

0-2-7 ⊢

Run; 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Thu Mar 13 08:47:36 ID: WrH dowBfP jvwu 9P9 pq 0tW ty UWDQ-RfC?Ps B70 Hq 3NSgPqnL8w 3u ITX bGKWrCDoi7J4z JC? figure 1000 Jacobian Structure 10000 Jacobian Structure 1000 Jacobian Structure 100

2x4 II

Page: 1

Scale = 1:30

		1										i	
Loading	(psf)	Spacing	1-11-4		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.02	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.04	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 13 lb	FT = 20%
LUMBER			4	Unbalanced	snow loads have b	een cor	sidered for th	his					
TOP CHORD	2x4 SP No 2		-,	design.									
BOT CHORD	2x4 SP No.2		5	This truss ha	s been designed for	or great	er of min roof	live					
WEBS	2x4 SP No.3			load of 12.0	osf or 1.00 times fla	at roof l	ad of 20.0 p	sf on					
OTHERS	2x4 SP No.3			overhangs n	on-concurrent with	other liv	/e loads.						
BRACING			6	Gable requir	es continuous botto	om choi	d bearing.						
	Structural wood she	athing directly applie	dor 7	Gable studs	spaced at 2-0-0 oc								
	3-0-0 oc purlins ex	cent end verticals	8	This truss ha	s been designed for	or a 10.) psf bottom						
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc		chord live loa	ad nonconcurrent v	vith any	other live loa	ids.					
201 0110112	bracing.		9	* This truss h	as been designed	for a liv	e load of 20.0	Opsf					
REACTIONS	(size) 2=3-0-0 (6=3-0-0 7=3-0-0		on the bottor	n chord in all areas	s where	a rectangle						
	Max Horiz 2=57 (I C	13)		3-06-00 tall b	y 2-00-00 wide wil	ll fit betw	veen the botte	om					
	Max 1 Inlift 2=-24 (1 C	(10) (10) 6=-11 (1 C 14)		chord and ar	y other members.								
	7=-30 (I C	2 14)	10)) Provide mec	hanical connection	(by oth	ers) of truss t	o					
	Max Grav 2=166 (LC	C(21) = 6 = 78 (I C 21)		bearing plate	capable of withsta	anding 2	4 lb uplift at j	oint					
	7=142 (L0	C 21)		2, 11 lb uplift	at joint 6, 30 lb up	lift at jo	nt 7 and 24 lt	D					
FORCES	(lb) - Maximum Corr	npression/Maximum			z. Standard								
	Tension		-	0/10 0/102(0)	Otandara								
TOP CHORD	1-2=0/29, 2-3=-99/6	0, 3-4=-31/33, 4-5=-9	9/0,										
BOT CHORD	4-0=-09/35 2-7=-32/51 6-7=-17	//30											
WEBS	3-7=-115/149												
NOTES													
1) Wind: ASC	CE 7-16; Vult=130mph	(3-second gust)										IN TH CA	ROUL
Vasd=103	mph; TCDL=6.0psf; B	CDL=6.0psf; h=25ft;	Cat.								AN	A	
II; Exp B;	Enclosed; MWFRS (er	nvelope) exterior zone	е								53	ESS ALSS	ON Ville
and C-C C	Corner(3E) zone; cantil	lever left and right								9			
exposed ;	end vertical left and right	ght exposed;C-C for								1		·Q.	
members	and forces & MWFRS	for reactions shown;								-		SEA	1 1 1
Lumber D	OL=1.60 plate grip DC	DL=1.60								=	:	SLA	5. : =
2) Truss des	igned for wind loads in	the plane of the trus	S								:	0363	22 ; =
only. For	studs exposed to wind	(normal to the face),								-			1 - 2
see Stand	ard industry Gable En	a Details as applicab	ie,							-			- 1 - S
or consult	qualified building design	gner as per ANSI/TP	11.								1.1	N. ENO	- CRIKS
3) TOLL: AS	C = 1 - 16; Pr = 20.0 pst (.15								1	S, GIN	E. A.N
Plate DOL	=1.10); PT=20.0 pst (L										1	/C	BEIN

- 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3)
- Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G

mmm March 14,2025

Job	Truss	Truss Type	Qty	Ply	Roof-Forsyth 3 GLH	
25030013-01	V01	Valley	1	1	Job Reference (optional)	172009583

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu Mar 13 08:47:36 ID:n_Z?tuCPRxSdavS6jrqfcsyUnny-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 8-10-0 2x4 🛛 3 ø 2x4 🛚 11 2 10 4-5-4 4-5-4 8 ⁹ 12 6 Г 0 0-0-4 4 5 2x4 II 3x5 🍃 2x4 II

8-10-0

Scale = 1:31.8

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2021/TPI201	CSI TC BC WB Matrix-MP	0.36 0.21 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 35 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 3OT CHORD WEBS DTHERS BRACING TOP CHORD 3OT CHORD 3OT CHORD REACTIONS FORCES TOP CHORD 3OT CHORD 11; Exp B; E and C-C E 4-5-13, Ex left and rig exposed;C reactions s DOL=1.0; C S=1.00; C	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) 1=8-10-0, Max Horiz 1=150 (LC Max Horiz 1=150 (LC Max Uplift 4=-21 (LC Max Grav 1=149 (LC 5=553 (LC (lb) - Maximum Com Tension 1-2=-252/155, 2-3=- 1-5=-50/282, 4-5=-5 2-5=-424/232 CE 7-16; Vult=130mph mph; TCDL=6.0psf; Bi Enclosed; MWFRS (en xterior(2R) 4-5-13 to 8- terior(2R) 4-5-13 to 8- ht exposed ; end verti terior(2R) 4-5-10 to 8- ht exposed ; end verti terior(2R) 4-5-10 to 8- ht exposed to wind ard Industry Gable En- qualified building desig CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L); Is=1.0; Rough Cat E	athing directly applied cept end verticals. applied or 10-0-0 oc 4=8-10-0, 5=8-10-0 11); 11), 5=-93 (LC 14) 11), 4=156 (LC 20), 20) pression/Maximum 103/84, 3-4=-135/45 0/74 (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zone 0-8, Interior (1) 3-0-8 8-12 zone; cantilever cal left and right proces & MWFRS for 1.60 plate grip the plane of the trus (normal to the face), d Details as applicab gner as per ANS/TPI coof LL: Lum DOL=1. um DOL=1.15 Plate ; Fully Exp.; Ce=0.9;	 4) Unbala design. 5) Gable s 6) Gable s 7) This trinchord li d or 8) * This trinchord li 3-06-00 chord a 9) Provide bearing 4 and 5 LOAD CAS 	nced snow loads hav equires continuous b tuds spaced at 4-0-0 ss has been design vottom chord in all art tall by 2-00-00 wide nd any other membe mechanical connect plate capable of with 3 lb uplift at joint 5. E(S) Standard	e been cor ottom chor oc. d for a 10. ht with any ed for a live ass where will fit betw rs. ion (by oth istanding 2	nsidered for t rd bearing. 0 psf bottom other live loa re load of 20. a rectangle veen the bott ers) of truss 21 lb uplift at	his ads. Opsf to joint				SEA 0363	L L L L BEER	American.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

March 14,2025

Job	Truss	Truss Type	Qty	Ply	Roof-Forsyth 3 GLH	
25030013-01	V02	Valley	1	1	Job Reference (optional)	172009584

3-6-10

0-0-4

3-10-6

14-9-9

7-1-5

16

2x4 II

4

6

WITTEL COMPANYING

2x4 🛛

17

18

15-4-8

0-6-15

5

3x5 👟

2 14 12 6 [13 8 7 2x4 🛛 2x4 🛛 3x5 🍃

7-8-4

7-8-4

2x4 🛚

15

15-4-8

4x5 = 3

-		
600	<u> </u>	1.21
SUd	ie =	1

Loading	(psf) 20.0	Spacing Plate Grin DOI	2-0-0		CSI	0.31	DEFL	in n/a	(loc)	l/defl	L/d	PLATES	GRIP 244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.11	Vert(TL)	n/a	-	n/a	999		21.0.100
TCDL	10.0	Rep Stress Incr	YES		WB	0.08	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MSH								
BCDL	10.0								_			Weight: 55 lb	FT = 20%
LUMBER			3)	Truss design	ed for wind load	s in the pl	ane of the tru	ISS					
TOP CHORD	2x4 SP No.2			only. For stu	ids exposed to w	rind (norm	al to the face	e),					
BOT CHORD	2x4 SP No.2			see Standard	d Industry Gable	End Deta	ils as applica	ble,					
OTHERS	2x4 SP No.3		4)	or consult qu	alified building d	esigner a	s per ANSI/I	PI 1.					
BRACING			4)	Plate DOI =1	15): Pf=20.0 p		.: Lum DOL=	1.15					
TOP CHORD	Structural wood shea 6-0-0 oc purlins.	athing directly applie	d or	DOL=1.15);	ls=1.0; Rough Ca	at B; Fully	Exp.; Ce=0.9	9;					
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc	5)	Cs=1.00; Ct=	=1.10	boon cor	sidered for t	hic					
	bracing.		5)	design	Show loads have	Deen coi		1115					
REACTIONS	(size) 1=15-4-8,	5=15-4-8, 6=15-4-8	, 6)	Gable require	es continuous bo	ttom chor	d bearing.						
	7=15-4-8,	8=15-4-8	7)	Gable studs	spaced at 4-0-0	OC.	5						
	Max Holiz 1=-59 (LC	10) (E) E C (I C 1E) C	8)	This truss ha	s been designed	l for a 10.0) psf bottom						
	(LC 15) 8:	=-99 (I C. 14)	-90	chord live loa	ad nonconcurren	t with any	other live loa	ids.					
	Max Grav 1=96 (LC 3	35), 5=96 (LC 36), 6	i=487 ⁹⁾	* This truss h	as been designe	ed for a liv	e load of 20.	0psf					
	(LC 21), 7:	=341 (LC 20), 8=48	7 (LC	on the bottor	n chord in all are	as where	a rectangle						
	20)			3-06-00 tall t	by 2-00-00 wide v		veen the boll	om					
FORCES	(lb) - Maximum Com	pression/Maximum	1()) Provide med	hanical connection	s. on (by oth	ers) of truss t	to					
	Tension			bearing plate	capable of with	standing 7	' lb uplift at ic	int 1.					
TOP CHORD	1-2=-129/117, 2-3=-5	58/120, 3-4=-58/113	,	6 lb uplift at j	oint 5, 99 lb uplif	t at joint 8	and 98 lb up	lift at					
	4-5=-129/117			joint 6.									
BOT CHORD	1-8=-65/109, 7-8=-65	o/57, 6-7=-65/57,	L	OAD CASE(S)	Standard								11.
WERS	5-6=-65/109	2/160 / 6- 202/16	0									11111 01	11/1 ····
NOTEO	5-1-201/10, 2-0=-38	52/103, 4-0=-392/10	3									TH UF	NOIL
NUIES	ad roof live loade have l	haan aanaidarad far									1	ON JESS	in the
I) Unbalance	eu tool live loads have l	been considered for									<u>~</u> \		

this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) 2)

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 4-8-12, Exterior(2R) 4-8-12 to 10-8-12, Interior (1) 10-8-12 to 12-5-0, Exterior(2E) 12-5-0 to 15-5-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GI mmm March 14,2025

SEAL

036322

anninninn ann

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Roof-Forsyth 3 GLH	
25030013-01	V03	Valley	1	1	Job Reference (optional)	172009585

5-8-4

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu Mar 13 08:47:36 ID:FB7N5DD1CEaUC31IHYLu93yUnnx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-9-9

Page: 1

3x5 🍬

2x4 II

11-4-8

Scala	_	1.20 7
ouale	_	1.63.1

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014 4) TCLL: ASCE	CSI TC BC WB Matrix-MSH	0.57 0.53 0.16 f (roof LI	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01 1.15	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 37 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=11-4-8 Max Horiz 1=43 (LC Max Uplift 1=-55 (LC Max Uplift 1=-55 (LC Max Grav 1=113 (LC Max Grav 1=113 (LC 4=822 (L) (lb) - Maximum Con	eathing directly applie y applied or 6-0-0 oc ; 3=11-4-8, 4=11-4-8 ; 14) C 21), 3=-55 (LC 20), C 14) C 20), 3=113 (LC 21) C 20) npression/Maximum	 Plate DOL=: DOL=1.15); Cs=1.00; Ct Unbalanced design. Gable requir Gable studs This truss h chord live lo * This truss sh on the botto 3-06-00 tall chord and a Provide met bearing plat 1, 55 lb uplif 	1.15); Pf=20.0 psf Is=1.0; Rough Cat =1.10 snow loads have I res continuous bott spaced at 4-0-0 of as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide win y other members chanical connection e capable of withst t at joint 3 and 75	(Lum DC B; Fully been cor tom chor c. for a 10. with any d for a liv s where ill fit betv n (by oth anding f	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the rd bearing. 0 psf bottom other live load re load of 20.0 a rectangle veen the botto ers) of truss t 55 lb uplift at j t ioint 4.	e 9; his dds. Dpsf om to oint					
TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Windt AS(Tension 1-2=-172/510, 2-3=- 1-4=-390/223, 3-4=- 2-4=-690/350 ed roof live loads have n. CE 7-16: \ult=130mpt	-172/510 -390/223 e been considered for	LOAD CASE(S)	Standard							WITH CA	ROM

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-8 to 3-0-8, Exterior(2R) 3-0-8 to 8-5-0, Exterior(2E) 8-5-0 to 11-5-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

SEAL 036322 MGINEER.HT

3x5 👟

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof-Forsyth 3 GLH	
25030013-01	V04	Valley	1	1	Job Reference (optional)	172009586

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Thu Mar 13 08:47:36 ID:CTx6UbhxjQqJDfnYtT0GZayUnm2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-4-8

Scale = 1:24.4				I								I	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TI	PI2014	CSI TC BC WB Matrix-MP	0.22 0.24 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 7-4-8 oc purlins. Rigid ceiling directly bracing. (size) 1=7-4-8, 3 Max Horiz 1=-27 (LC Max Uplift 1=-10 (LC 4=-38 (LC (lb) - Maximum Com Tension 1-2=-125/241, 2-3=- 1-4=-208/141, 3-4=- 2-4=-355/194	athing directly applie applied or 6-0-0 oc 3=7-4-8, 4=7-4-8 2 15) 2 14), 3=-16 (LC 15), 2 14) 2 20), 3=111 (LC 21) 2 20) apression/Maximum 125/241 2 08/141	4) T P D C 5) U d or 6) G 7) G 8) T c 8) T c 8) T 0 9) * 0 3 0 10) P b 1 LOAL	CLL: ASCE Plate DOL=1 DOL=1.15); I Ss=1.00; Ct= Jnbalanced s esign. Sable require Sable studs s his truss ha hord live loa This truss ha hord live loa This truss ha hord live loa This truss ha hord and an Provide mech earing plate at the uplift D CASE(S)	7-16; Pr=20.0 p 15); Pf=20.0 ps s=1.0; Rough Ca 1.10 snow loads have as continuous bc spaced at 4-0-0 s been designed a chord in all are y 2-00-00 wide w y other member nanical connection capable of withs at joint 3 and 38 Standard	sf (roof LL f (Lum DC at B; Fully been cor ottom chor oc. I for a 10.0 t with any as where will fit betv s. on (by oth standing 1 I b uplift a	L: Lum DOL= DL=1.15 Plate Exp.; Ce=0. asidered for t d bearing. D psf bottom other live loa e load of 20. a rectangle veen the bott ers) of truss 0 lb uplift at t joint 4.	1.15 9 9; his opsf om to joint					
1) Unbalance this design	ed roof live loads have n.	been considered for										UNITH CA	Rout

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-8 to 3-0-8, Exterior(2R) 3-0-8 to 4-5-0, Exterior(2E) 4-5-0 to 7-5-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WWWWWWWWW COULD DO DATE SEAL 036322 G minin March 14,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof-Forsyth 3 GLH		
25030013-01	V05	Valley	1	1	Job Reference (optional)	172009587	

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Thu Mar 13 08:47:36 ID:ZQk?XJk4XySbJQfWf0cRGeyUnlz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-9-9

1-1-5

3-4-8

0-6-15

Page: 1

818 Soundside Road Edenton, NC 27932

1-8-4

1-8-4

2x4 ዾ 2x4 👟

3-4-8

Scale = 1:23.4

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading TCLL (roof)		(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.08	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190	
Snow (Pf)		20.0	Lumber DOL	1.15	BC	0.10	Vert(TL)	n/a	-	n/a	999			
TCDL		10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a			
BCLL		0.0*	Code	IRC2021/TPI2014	Matrix-MP									
BCDL		10.0										Weight: 9 lb	FT = 20%	
LUMBER TOP CHORE BOT CHORE	2x4 SP No.2x4 SP No.	2 2		 Gable studs : 8) This truss ha chord live loa 9) * This truss h 	spaced at 4-0-0 oc s been designed fo id nonconcurrent v as been designed	c. or a 10.0 vith any for a liv) psf bottom other live load	ds. Insf						
BRACING 9) This trust has been designed to a live load of 20.0psi														
	3-4-8 oc pu	voou snea Irlins.	aming directly applied	3-06-00 tall b	y 2-00-00 wide wi	II fit betw	veen the botto	m						
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. (b) Provide mechanical connection (by others) of truss to														
REACTIONS	(EACTIONS (size) 1=3-4-8, 3=3-4-8 bearing plate capable of withstanding 14 lb uplift at joint Max Horiz 1=11 (LC 14) 1 and 14 lb uplift at joint 3. Max Uplift 1=-14 (LC 14), 3=-14 (LC 15) LOAD CASE(S) Max Grav 1=150 (LC 20). 3=150 (LC 21)													
FORCES	FORCES (Ib) - Maximum Compression/Maximum Tension													
TOP CHORD 1-2=-248/110, 2-3=-248/110 BOT CHORD 1-3=-85/214														
NOTES														
1) Unbalan	ced roof live loa	ads have	been considered for											
this design.														
2) Wind: AS	SCE 7-16; Vult=	=130mph	(3-second gust)	Det.										
Vasd=10	Vasd=103mph; TCDL=6.0pst; BCDL=6.0pst; h=25ft; Cat.													
and C-C	n, Lap b, Enclosed, Information (Enterloye) exterior 2016													
exposed	exposed ; end vertical left and right exposed;C-C for													
member	members and forces & MWFRS for reactions shown;											/		
Lumber DOL=1.60 plate grip DOL=1.60														
only. For study exposed to wind loads in the plane of the truss										3				
see Star	see Standard Industry Gable End Details as applicable.										- :	=		
or consult qualified building designer as per ANSI/TPI 1.														
4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15											-			
Plate DOL=1.15); PI=20.0 pst (Lum DOL=1.15 Plate														
DOL=1.10; INS=1.0; Rough Calib; Fully Exp.; Ce=0.9; Ce=1.00; Ch=1.10														
5) Unbalanced snow loads have been considered for this														
design.	design.													
o) Gable re	b) Gabe requires continuous bottom chord bearing.													
												ivialCl	114,2020	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

