

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DR Horton Inc

Model: 10 Eagle Creek -Edisto - B

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

General Notes:

** CUTTING OR DRILLING OF COMPONENTS SHOULD NOT BE DONE WITHOUT CONTACTING COMPONENT SUPPLIER FIRST.

** GIRDEF	RS MUST BE FULLY CONNECTED	D TOGETHER PRIOR TO ADDING ANY LOADS.	S ARE READ AS: FOOT-INCH-SIXTEENTH. 1, all uplift connect	tors shown within these documents are recommendations tors are the responsibilty of the bldg designer and or cont	s only tractc	. Pe <u>r.</u>	r ANS	SI/TPI	
_	Scale: Date: Vat	DR Horton Inc		THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for each truss		00/00	00/00,	00/00,	
~	NTS 4/24/202 Designer Project Nun 504010	10 Eagle Creek - Edisto - B	CARTER	design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The disign of the tuss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing of Wood Truss" available)00 00	/00	/00 	
	dson	ROOF PLACEMENT PLAN	Lumber	from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179		Name	Name	Name Name	SI SI

ROOF PLACEMENT PLAN

Name	00/00/00
Name	00/00/00
sions	Revi

RE: 25040104 10 Eagle Creek - Edisto B - Roof Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:Customer: DR Horton IncProject Name:25040104Lot/Block: 10Model:Edisto BAddress:Subdivision:Eagle CreekCity:State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2021/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.7 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 47 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. 1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	Seal# I72941905 I72941906 I72941907 I72941909 I72941910 I72941910 I72941911 I72941912 I72941913 I72941913 I72941915 I72941915 I72941916 I72941917 I72941918 I72941919 I72941920 I72941921 I72941922	Truss Name A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 B1 B2 C1 C2 C3 C3 C4	Date 4/23/2025	No. 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 20	Seal# I72941925 I72941926 I72941927 I72941928 I72941929 I72941930 I72941931 I72941932 I72941933 I72941933 I72941935 I72941935 I72941936 I72941937 I72941938 I72941939 I72941940 I72941940 I72941942 I72941942	Truss Name D1 D2 D3 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16	Date 4/23/2025 4/23/2025 4/23/2025 4/23/2025 4/23/2025 4/23/2025 4/23/2025 4/23/2025 4/23/2025 4/23/2025 4/23/2025 4/23/2025 4/23/2025 4/23/2025 4/23/2025 4/23/2025 4/23/2025
18 19 20	I72941922 I72941923 I72941923 I72941924	C3 C4 C5	4/23/2025 4/23/2025 4/23/2025 4/23/2025	38 39 40	I72941942 I72941943 I72941944	E14 E15 E16 E17	4/23/2025 4/23/2025 4/23/2025 4/23/2025

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Galinski, John

My license renewal date for the state of North Carolina is December 31, 2025

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Galinski, John

RE: 25040104 - 10 Eagle Creek - Edisto B - Roof

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Project Customer: DR Horton Inc Project Name: 25040104 Lot/Block: 10 Subdivision: Eagle Creek Address: City, County: State:

No.	Seal#	Truss Name	Date
41	172941945	E18	4/23/2025
42	172941946	V1	4/23/2025
43	172941947	V2	4/23/2025
44	172941948	V3	4/23/2025
45	172941949	V4	4/23/2025
46	172941950	V5	4/23/2025
47	172941951	V6	4/23/2025

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	A1	Common	1	1	Job Reference (optional)	172941905

10-0-12

Scale = 1:71.1

Loading

TCDL

BCLL

BCDL

LUMBER

WEBS

SLIDER

BRACING

TOP CHORD

BOT CHORD

TCLL (roof)

Snow (Pf/Pg)

0-10-0

Page: 1

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:24 ID:C_AxBD2r2jGHKNmWKHJBD0zODp6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 37-9-8 6-4-3 12-9-9 18-5-8 24-1-7 30-6-13 36-11-0 5-7-15 5-7-15 0-10-8 6-4-3 6-5-6 6-5-6 6-4-3 0-10-8 5x6= 6 5x6 🖌 5x6 34 35 33 36 5 6¹² 3x5 🍃 3x5 👟 37 32 3 9 10 11 1हें|॑॑ 12 23 18 14 13 38 22 20 39 12 ^{8x10}**1**5-11-8 4x5= 24-1-7 4x5= 6x8 ı 6x8 II 13-5-15 13-4-14 24-0-0 23-6-2 12-11-0 12-11-0 0-1-7 7-5-10 12-9-9 18-5-8 20-11-8 23-5-1 29-5-6 36-11-0 7-5-10 5-3-14 2-5-9 2-6-0 2-6-0 2 - 5 - 95-3-14 7-5-10 0-1-1 0-5-14 0-1-1 0-5-14Plate Offsets (X, Y): [5:0-3-0,0-3-0], [7:0-3-0,0-3-0], [13:0-5-0,Edge], [22:0-5-0,Edge] Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) (loc) 20.0 Plate Grip DOL 1.15 тс 0.38 Vert(LL) -0.27 17 >999 240 MT20 244/190 13.9/20.0 Lumber DOL 1.15 BC 0.47 Vert(CT) -0.56 17 >786 180 10.0 Rep Stress Incr WB Horz(CT) 10 YES 0.44 0.07 n/a n/a 0.0 Code IRC2021/TPI2014 Matrix-MSH Weight: 260 lb 10.0 FT = 20% 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. 2x4 SP 2400F 2.0E II; Exp B; Enclosed; MWFRS (envelope) and C-C 2x6 SP 2400F 2.0E *Except* 21-15:2x4 SP Exterior(2E) -0-10-1 to 2-10-3, Interior (1) 2-10-3 to No.2 18-5-8, Exterior(2R) 18-5-8 to 22-1-13, Interior (1) 2x4 SP No.3 *Except* 22-6,13-6:2x4 SP No.2 22-1-13 to 37-9-1 zone; cantilever left and right Left 2x4 SP No.3 -- 2-0-0, Right 2x4 SP No.3 exposed ; end vertical left and right exposed;C-C for -- 2-0-0 members and forces & MWFRS for reactions shown:

TOP CHORD	Structural wood sheathing directly applied or
BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc
WEBS	1 Row at midpt 5-23, 7-12
REACTIONS	(size) 2=0-3-8, 10=0-3-8 Max Horiz 2=-98 (LC 13) Max Grav 2=2002 (LC 3), 10=2002 (LC 3)
FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=0/28, 2-4=-3642/0, 4-6=-3575/0, 6-8=-3575/0, 8-10=-3642/0, 10-11=0/28
BOT CHORD	2-23=0/3179, 20-23=0/3009, 18-20=0/2355, 14-18=0/2355, 12-14=0/3009, 10-12=0/3180 19-21=-171/0, 17-19=-171/0, 16-17=-171/0, 15-16171/0
WEBS	4-23=-273/134, 5-23=-182/210, 5-22=-500/257, 21-22=0/1451, 6-21=0/1589, 6-15=0/1589, 13-15=0/1451, 7-13=-500/257, 7-12=-182/210, 8-12=-273/134, 17-18=-90/0 14-16=-135/0, 19-20=-135/0

NOTES

1) Unbalanced roof live loads have been considered for this design.

Lumber DOL=1.60 plate grip DOL=1.33 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on

- overhangs non-concurrent with other live loads. 6) 200.0lb AC unit load placed on the bottom chord, 18-5-8 from left end, supported at two points, 5-0-0 apart.
- All plates are 2x4 MT20 unless otherwise indicated. 7)

* This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 9) All bearings are assumed to be SP 2400F 2.0E .

LOAD CASE(S) Standard

3)

4)

5)

April 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	A2	Common	5	1	Job Reference (optional)	172941906

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:25 ID:ZV1gNYWIsiBIVMF?7zWKIEzODoV-RfC?PsB70Hg3NSgPgnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

April 23,2025

TRENCO A MITEK ATFILIATE

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	A3	Roof Special	2	1	Job Reference (optional)	172941907

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:25 ID:cZs3pE5jKefsBqV50PturfzODp3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	-0-10-8 	3-2-4 7-9-12 3-2-4 4-7-8	<u>13-2</u> 5-5	- <u>15</u> 13-5- -30-2-1	¹² 18-5-8 13 4-11-12	5x6=	24-1-7 5-7-15	30-6	i-13 i-6		<u>36-11-0</u> 6-4-3	37-9-8
10-0-12	8x1 2 2 2 2 10-0 0 10-0 10 0 10-0 12 10 0 10-13 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$3x5 = 0 = 34^{4}$ 3 $4x5 = 5x6 = 2x4 = 2x4 = -3-8 = -4-7-8$ $0-10-12$	6^{12} 3x5 = 5 5 25 4x5 = 13-6	5x6 35 23 23 5x1 5x1 5x1 5x1 5x1 5x1 5x1 5x1 5x1 5x1	36 = 36 36 10 = 21 4x5 = 4x5 = 4x5 = 4x5 = 15 - 17 - 8 = -8 - 10 -8 - 10 -8 - 1 - 2 - 14 - 2 - 6 - 6 = -1 - 2	7 7 19 2x4 II 2x4 II 2x4 II 0 2-6-	37 38 37 38 38 49 15 2x4 = 2x4 2x4 = 2x4 = 2x4 2x4 = 2x4 = 2	5x6x 8 8 4 4 40 40 41 40 41 5-3-11 5-3-11 4 40 40 40 40 41 5-3-11 5-3-11 4 40 40 40 40 40 40 40 40 40		2x4 // 9	3x5 39 10 5 36-11-0 7-5-10	5x10=
Scale = 1:77.9 Plate Offsets ()	X. Y): [2:Edge.0-3-0].	. [3:0-6-12.0-2-15]. [6:0-	-3-0.0-3-0]. [8	:0-3-0.0-3-0)]. [11:Edge.0-2	2-9]. [14:0	0-5 0- 0-5-0.0-4-81, 12	-14 -1-7 24:0-5-0.0-2-1	2]. [27:0-3	3-0.0-1-	.8]	
	(Cassian	2 0,0 0 0], [0		201	- 0], [11.0		in ()		,		
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2	2014 C	CSI C 3C VB Matrix-MSH	0.46 0.97 0.79	DEFL Vert(LL) Vert(CT) Horz(CT)	in (loc -0.21 24-29 -0.43 17-18 0.22 1) I/defl 5 >999 8 >999 1 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 260	GRIP 244/190 Ib FT = 20%
LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	2x4 SP 2400F 2.0E 2x4 SP No.2 *Excep 2.0E, 6-23:2x4 SP No.2 2400F 2.0E 2x4 SP No.3 *Excep Right 2x4 SP No.3 - Structural wood she 3-0-14 oc purlins, e Rigid ceiling directly bracing. (size) 11=0-3-8, Max Horiz 29=-111 (Max Grav 11=1981 (lb) - Maximum Corr Tension 1-2=0/33, 2-3=-492/ 4-5=-4489/0, 5-7=-3 9-11=-3617/0, 11-12 28-29=0/1697, 27-22 26-27=0/5334, 25-22 23-24=0/589, 6-24= 19-21=0/2331, 15-17 11-13=0/3162, 22-22 18-20=-162/0, 17-18 2-25=-1412/29, 5-25 8-14=-559/251, 8-13 9-13=-263/134, 7-16 7-24=0/1859, 4-26= 3-29=-2104/0, 20-21 15-17=-110/0, 22-23	bt* 3-24:2x4 SP 2400F ko.3, 23-14,14-11:2x6 S bot* 14-7:2x4 SP No.2 - 2-6-0 eathing directly applied of except end verticals. / applied or 2-2-0 oc , 29=0-3-8 (LC 3), 29=1990 (LC 3) npression/Maximum (13, 3-4=-5938/0, 3645/0, 7-9=-3559/0, 2=0/28, 2-29=-637/62 8=0/1707, 3-27=0/5114 6=0/5334, 24-25=0/396 -331/155, 21-23=0/107 9=0/2331, 13-15=0/290 (4=0/2110, 20-22=-162// 8=-162/0, 16-17=-162//0 5=-162/0, 16-17=-162//0 5=-169/299, 6=0/1339, 14-16=0/123 0/705, 3-28=-2153/0, 1=-280/0, 18-19=-100//0 3=-1189/0, 21-22=0/154	 2) Win Vas Vis Extended Extended Extended Expense CL Plat DOI Exp 4) Unb desi loac over 6) 200 from 7) All p (a) This (b) construct (b) for (c) for <li(c) for<="" li=""> (c) for<</li(c)>	d: ASCE 7- d=103mph; xp B; Enclo rior(2E) -0- 5-8, Exterior 1-13 to 37-9 based ; end v nbers and fr ber DOL=1 L: ASCE 7- e DOL=1.15 =1.15 Plate .; Ce=0.9; C alanced snd gn. truss has b l of 12.0 psf rhangs non- olb AC unit n left end, su plates are 22 is truss has be bottom c 5-00 tall by 2 rd and any of rings are as 2400F 2.0E CASE(S)	16; Vult=130m, TCDL=6.0psf; sed; MWFRS (10-1 to 2-10-3, (2R) 18-5-8 to -1 zone; cantile vertical left and orces & MWFR 60 plate grip L 16; Pr=20.0 psf e DOL=1.15); l: Cs=1.00; Ct=1.1 ow loads have been designed or 2.00 times i concurrent wit i load placed or upported at two x4 MT20 unless been designed thord in all area 2-00-00 wide w other members ssumed to be: s	ph (3-sec BCDL=6 (envelope, , Interior (22-1-13, ever left a right exp S for rea OOL=1.3(f (roof LL f; Pf=13.5 s=1.0; Rc 10 been cor for greate flat roof lc h other lin h othe bott o points, f s other wid d for a liv as where a, with BC Joint 29 S	ond gust) .0psf; h=25ft;) and C-C 1) 2-10-3 to Interior (1) and right osed;C-C for ctions shown; : : Lum DOL=1 psf (Lum pugh Cat B; Fu isidered for th er of min roof pad of 13.9 ps re loads. om chord, 18- 5-0-0 apart. se indicated. e load of 20.0 DL = 10.0psf. SP No.2, Join	Cat. .15 .15 live if on .5-8 psf m t 11			SE 286 O, SU SE 286 O, SE 286 O, SE 286 O, SE 286 O, SE	AR SUCK AND AL STT SALMUM SALM

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	A4	Нір	1	1	Job Reference (optional)	172941908

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:25 ID:YyzqEw6zsGvZQ8eT7qvMw4zODp1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale	= 1	1.68	2
oouic			~

	[2:Edge, 0-3-0], [3:0-6-8, 0-2-11], [6:0-3-0, 0-3-0], [8:0-1-12, 0-0-12], [10:0-4-0, 0-3-0], [14:Edge, 0-2-8], [15:0-4-0, 0-3-0], [17:0-3-8, 0-1-8], [21:0-3-8, 0-3-0], [15:0-4-0, 0-3-0], [1
Plate Offsets (X, Y):	[21:0-0-8,0-3-12]

	, , L,	1												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MSH	0.78 0.80 0.75	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.22 -0.40 0.22	(loc) 20-21 20-21 14	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 254 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP 2400F 2.0E 2x4 SP 2400F 2.0E SP No.3 2x4 SP No.3 Structural wood shea 3-2-7 oc purlins, exc 2-0-0 oc purlins (5-8 Rigid ceiling directly bracing. 1 Row at midpt (size) 14=0-3-8, Max Horiz 23=-103 (I Max Grav 14=1738 ((lb) - Maximum Com	*Except* 22-21,7-18:2x athing directly applied of cept end verticals, and -10 max.): 8-9. applied or 10-0-0 oc 8-17, 8-16, 10-16, 11-1 23=0-3-8 LC 13) (LC 50), 23=1748 (LC 5 pression/Maximum	1) (4 2) or (4 3) (50)	Unbalanced this design. Wind: ASCE Vasd=103m; II; Exp B; En Exterior(2E) 16-4-0, Exter 20-7-0 to 25- cantilever lef right expose- for reactions DOL=1.33 TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp; Ce=0.2,	roof live loads hav 7-16; Vult=130mp ph; TCDL=6.0psf; I closed; MWFRS (e -0-10-1 to 2-10-3, rior(2E) 16-4-0 to 2 9-10, Interior (1) 2 t and right exposed d;C-C for members shown; Lumber D 5.7-16; Pr=20.0 psf; .15); Pg=20.0 psf; late DOL=1.15); Is b; Cs=1.00; Ct=1.11 show hads have the show	e been of h (3-sec 3CDL=6 nvelope interior 5-9-10 t d; end v and foo DL=1.60 (roof LL Pf=18.9 =1.0; Rc 0, Lu=50	considered fo cond gust) .0psf; h=25ft)) and C-C (1) 2-10-3 to :xterior(2R) o 37-9-1 zonv rertical left an ces & MWFF) plate grip .: Lum DOL=) psf (Lum pugh Cat B; F)-0-0	or ; Cat. dd RS 1.15 Tully						
TOP CHORD	Tension 1-2=0/33, 2-3=-396/4 4-5=-5669/316, 5-7= 7-8=-2981/338, 8-9= 9-11=-3020/268, 11- 12-13=0/33, 2-23=-4	44, 3-4=-5818/286, 3668/286, 2084/278, -12=-886/100, -61/91. 12-14=-612/144	5) 6)	design. This truss ha load of 12.0 overhangs n Provide adeo	is been designed for psf or 2.00 times fl on-concurrent with quate drainage to p	or great at roof lo other liv revent	er of min roof bad of 13.9 p ve loads. water ponding	live sf on g.				THCA	ROUN	
BOT CHORD	22-23=-107/1610, 21 3-21=-185/4593, 20- 19-20=-122/3195, 18 17-18=-5/145, 16-17 14-16=-147/2653	1-22=-77/1447, -21=-227/3989, 3-19=0/31, 7-19=-199/8 2=-21/2002,	88, 8) 9)	on the bottor 3-06-00 tall t chord and ar All bearings	n chord in all areas by 2-00-00 wide wil by other members, are assumed to be rlin representation	where fit betv with BC SP 240	a rectangle ween the botto DL = 10.0psilor	om f. size			And and	OP JOS	ANNA A	ALL DAY
WEBS	6-20=0/637, 6-19=-9 8-19=-139/1692, 8-1 8-16=-161/178, 9-16 10-15=0/330, 11-15= 11-14=-2276/162, 4- 3-22=-1716/102, 5-2	116/78, 17-19=-16/1970 7=-511/52, i=-5/678, 10-16=-800/9 -78/90, 3-23=-1994/13 -21=0/289, i0=-877/115, 5-21=0/14	9, 9, 39, LC 113	or the orienta bottom chore	ation of the purlin a l. Standard	long the	top and/or			1111AA	J. J		FR.SK	Summer .
NOTES												in the second	min	

NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

April 23,2025

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	A5	Нір	1	1	Job Reference (optional)	172941909

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:26 ID:NeOXdcb3RYxuDHi9TDdkYVzODoP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-0-10-8 0-10-8 7-10-8 15-5-8 21-5-8 29-0-8 36-11-0 7-10-8 7-7-0 6-0-0 7-7-0 7-10-8 5x10= 5x6= $\frac{\omega}{2}$ $\pm 30^6$ 7₃₃ 2 0-1-13 31 32 8-6-1 \boxtimes 1<u>2</u> 3x8**≈** 3x6 ≠ 5²⁹ ⁸34 3x5 ≠ 3x5 👟 4 28 35₉ 8-6-12 8-4-15 8-4-15 4x5 ≠ 27 36 4x5 👟 26 3 10 1A 0-10-0 17 16 15 37 14 13 12 2x4 🛛 4x6= 3x5= 3x8= 4x6= 2x4 🛛 6x10 u 7-10-8 15-3-12 21-7-4 29-0-8 36-11-0 F 7-10-8 7-10-8 7-5-4 6-3-8 7-5-4

Scale = 1:67

Plate Offsets (X, Y): [2:0-6-1,Edge], [6:0-5-0,0-1-7], [11:0-6-1,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-MSH	0.89 0.97 0.29	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.22 -0.39 0.14	(loc) 15-17 15-17 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 202 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD	2x4 SP 2400F 2.0E No.2 2x4 SP 2400F 2.0E No.2 2x4 SP No.3 Left 2x6 SP 2400F 2 SP 2400F 2.0E 2-0 Structural wood shea	*Except* 6-7:2x4 SP *Except* 16-13:2x4 S .0E 2-0-0, Right 2x 0-0 athing directly applied	2) P 6 1 or 3)	Wind: ASCE Vasd=103mp II; Exp B; Enc Exterior(2E) · 15-5-8, Exter to 21-5-8, Ext 26-8-2 to 36- exposed ; en members ano Lumber DOL	7-16; Vult=130mp h; TCDL=6.0psf; E closed; MWFRS (e 0-10-1 to 2-10-3, l ior(2R) 15-5-8 to 2 terior(2R) 21-5-8 to 11-0 zone; cantile- d vertical left and r d forces & MWFRS =1.60 plate grip D0 7-16: Pr=20.0 psf	h (3-sec 3CDL=6 invelope Interior (0-8-2, li 2 26-8-2 ver left a ight exp 5 for rea OL=1.33	ond gust) .0psf; h=25ft) and C-C 1) 2-10-3 to terior (1) 20 , Interior (1) ind right osed;C-C for ctions showr }	; Cat. -8-2 r 1;						
BOT CHORD WEBS REACTIONS	3-2-2 oc purlins, exc 2-0-0 oc purlins (2-2 Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=84 (LC	ept -0 max.): 6-7. applied or 2-2-0 oc 4-15, 6-14, 9-14 (1=0-3-8 12)	4) 5)	Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced design. This truss ha load of 12.0 p	11); Pg=20.0 psf; ate DOL=1.15); Is; ; Cs=1.00; Ct=1.10; snow loads have b s been designed fo psf or 2.00 times fla	Pf=18.9 =1.0; Rc), Lu=50 een cor or greate at roof lo	psf (Lum pugh Cat B; F)-0-0 isidered for the pad of 13.9 p	Fully his f live sf on						
FORCES TOP CHORD	Max Grav 2=1740 (L (lb) - Maximum Com Tension 1-2=0/28, 2-4=-3186 6-7=-2168/282, 7-9= 9-11=-3180/253	250), 11=1701 (LC) pression/Maximum 5/252, 4-6=-2537/269, 2528/270,	6) 7)	overhangs no Provide adeo * This truss h on the bottom 3-06-00 tall b chord and an	on-concurrent with uate drainage to p as been designed n chord in all areas y 2-00-00 wide wil y other members.	other liv revent v for a liv where I fit betw with BC	ve loads. vater ponding e load of 20.0 a rectangle veen the botto DL = 10.0ps	g. Opsf om f.				WH CA	Rojin	
BOT CHORD	2-17=-153/2746, 15- 14-15=-52/2094, 12- 11-12=-164/2740 4-17=0/254, 4-15=-7 6-14=-173/174, 7-14 9-12=0/256	17=-153/2746, 14=-148/2740, 246/118, 6-15=0/678, =0/665, 9-14=-748/1	8) 9) ^{19,} LC	All bearings a Graphical pu or the orienta bottom chord	re assumed to be rlin representation tion of the purlin a Standard	SP 240 does no long the	OF 2.0E . of depict the s	size			N.V.	SEAL	7	and the second

NOTES

 Unbalanced roof live loads have been considered for this design.

April 23,2025

Page: 1

11

6x10 II

ng ate Institute (www.tpinst.org)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	A6	Нір	1	1	Job Reference (optional)	172941910

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:26 ID:ColDufgq1Oi2xC9JqUk8nmzODoJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:66.7

Plate Offsets (X, Y): [10:Edge,0-5-1	3], [11:0-3-8,0-3-0], [1	6:0-3-8,0	-3-0], [17:Edg	e,0-5-13]									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-MSH	0.62 0.52 0.80	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.30 -0.52 0.07	(loc) 13-14 13-14 13	l/defl >999 >840 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 217 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD	2x4 SP 2400F 2.0E 2x4 SP 2400F 2.0E 2x4 SP No.3 *Excep 2x4 SP No.3 *Excep 2x4 SP No.3 *Excep 2x4 SP No.3 Structural wood sheat 4-6-9 oc purlins, ext 2-0-0 oc purlins, ext 2-0-0 oc purlins (5-6 Rigid ceiling directly bracing. 1 Row at midpt (size) 10=0-3-8, Max Horiz 17=91 (LC Max Grav 10=1674 ((lb) - Maximum Com Tension 1-2=0/33, 2-3=-3080 5-6=-2210/265, 6-7= 7-8=-2574/258, 8-9= 2-17=-1784/216, 9-1 16-17=-102/747, 14- 13-14=-108/2254, 17 10-11=-64/558 3-16=-35/117, 3-14= 6-14=-336/86, 6-13=	t* 17-2,10-9:2x4 SP N athing directly applied cept end verticals, and -13 max.): 5-7. applied or 10-0-0 oc 6-14, 6-13 17=0-3-8 C14) (LC 50), 17=1715 (LC pression/Maximum /245, 3-5=-2572/257, -2211/264, -3086/244, 0=-1735/174 16=-176/2672, 1-13=-162/2687, -593/115, 5-14=-5/76 -333/86, 7-13=-9/776	2) No.2 I or 3) 50) 4) 5) 6) 7) 9, 9)	Wind: ASCE Vasd=103m II; Exp B; En Exterior(2E) 13-8-0, Exte 18-10-10 to 1 Interior (1) 2 right expose for members Lumber DOL TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.3 Unbalanced design. This truss ha load of 12.0 overhangs n Provide adee * This truss ha to on the bottor 3-06-00 tall I chord and ar All bearings Graphical pu	7-16; Vult=130mp oh; TCDL=6.0psf; closed; MWFRS (r- o-10-1 to 2-10-3, rior(2R) 13-8-0 to 23-3-0, Exterior(2F 8-5-10 to 36-9-4 zd d; end vertical left and forces & MW =1.60 plate grip D ; 7-16; Pr=20.0 psf; late DDL=1.15); Bg=20.0 psf; late DDL=1.15); Pg=20.0 psf; gor Cs=1.00; Ct=1.1 snow loads have I as been designed f psf or 2.00 times f on-concurrent with quate drainage to pas been designed n chord in all area by 2-00-00 wide wi hy other members, are assumed to be rilin representation ation of the purlin a	h (3-sec BCDL=6 envelope Interior (18-10-10 2) 23-3-0 one; can and righ FRS for OL=1.3; (roof LL Pf=18.9 =1.0; RC 0, Lu=50 been cor or greated at roof ld other liv prevent lo for a liv s where 2 SP 240 does no along the does no along the	ond gust) .0psf; h=25ft .0psf; h=25ft .0psf; h=25ft .0psf; h=25ft .1p2-10-3 to .1p2-10-3 to .1p2-10-3 to .1p2-10-3 to .1p3-10-3 to .1p3-10-10-3 to	; Cat. d -C own; 1.15 fully his f live sf on g. 0psf om f. size				ORTH CA	ROLLAS	
NOTES 1) Unbalance this design	8-13=-610/118, 8-11 9-11=-113/2136 ed roof live loads have h.	=-52/109, 2-16=-74/1	943, LO	bottom chord	d. Standard					THILD IN STREET	A A A A A A A A A A A A A A A A A A A	SEA 2867	7 F.P. Chin	

GA 11111

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	A7	Нір	1	1	Job Reference (optional)	172941911

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:26 ID:zXfysy8s9BH8HbN2oyS3YizODp_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = '	1:67.8
-----------	--------

Plate Offsets (X, Y): [2:Edge,0-3-0],	[3:0-6-8,0-2-15], [1	4:0-6-1,Edg	ge], [19:0-3-8,0	-3-0], [21:0-2-12,0	-3-4], [2	3:0-0-8,0-1-1	2]						
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.63 0.98 0.93	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.20 -0.36 0.25	(loc) 22-23 21-22 14	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 230 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x4 SP 2400F 2.0E 2x4 SP 2400F 2.0E * SP No.3 2x4 SP No.3 Right 2x6 SP 2400F : Structural wood shea 3-3-15 oc purlins, ex 2-0-0 oc purlins, (5-3- Rigid ceiling directly : bracing. 1 Row at midpt (size) 14=0-3-8, : Max Horiz 25=-86 (LC Max Grav 14=1699 (I (lb) - Maximum Comp Tension 1-2=0/33, 2-3=-420/5 4-5=-3847/289, 5-7=- 7-8=-2441/283, 8-9=- 9-10=-2189/272, 10- 12-14=-3075/246, 14 2-25=-513/103 24-25=-89/1525, 23- 3-23=-255/4823, 22- 21-22=-159/3380, 20 19-20=-12/143, 18-19 16-18=-141/2641, 14 4-22=-1647/134, 5-22 5-21=-1131/119, 9-19 3-24=-1781/100, 10- 9-18=-369/55, 12-18 19-21=-55/2170, 9-21 3-25=-1887/123	Except* 24-23,7-20 2.0E 2-0-0 thing directly applic cept end verticals, 2 max.): 8-10. applied or 10-0-0 o 9-18 25=0-3-8 C 13) LC 50), 25=1715 (L pression/Maximum i1, 3-4=-5795/344, -2859/279, -2472/280, 12=-2537/264, -15=0/28, 24=-70/1455, 23=-280/5006, -21=0/95, 7-21=-18 9=-63/2265, -16=-141/2641 2=0/521, 9=-275/72, 18=-7/727, =-594/104, 12-16=0 1=-30/304, 4-23=0/	1) 2):2x4 2) ed or and c 3) (-C 50) 4) 5) 6) 7) 8)949, 9) LC D/206, 897,	Unbalanced this design. Wind: ASCE Vasd=103mg II; Exp B; En Exterior(2E) 13-8-0, Exter 18-10-10 to 2 Interior (1) 24 right exposer for members Lumber DOL TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 Unbalanced design. This truss ha load of 12.0 overhangs m Provide adeer * This truss ha load of 12.0 overhangs m Provide ader * This truss for a Of6-00 tall b chord and ar All bearings : Graphical pu or the orient bottom chorc DAD CASE(S)	roof live loads hav 7-16; Vult=130mp bh; TCDL=6.0psf; I closed; MWFRS (e -0-10-1 to 2-10-3, rior(2R) 13-8-0 to 1 23-3-0, Exterior(2R 3-5-10 to 37-9-1 zc d; end vertical left and forces & MWI =1.60 plate grip D 7-16; Pr=20.0 psf; 15); Pg=20.0 psf; 160 plate grip D 7-16; Pr=20.0 psf; 150; Cs=1.00; Ct=1.10; snow loads have b s been designed fip for-concurrent with puste drainage to p fas been designed fip on-concurrent with puste drainage to p as been designed fip on-concurrent with puste drainage to p ras been designed for post or 2.00 times fi on-concurrent with puste drainage to p rior asy 2-00-00 wide will by other members, are assumed to be rlin representation ation of the purlin a d. Standard	e been of h (3-sec 3CDL=6 novelope nterior (8-10-10) 23-3-0 ne; can and righ FRS for DL=1.3; (roof LL Pf=18.9 =1.0; RC 0, Lu=50 een cor or greated at roof k other liv revent v for a liv s where l fit betw with BC SP 240 does no long the	considered for cond gust) .0psf; h=25ft; and C-C (1) 2-10-3 to), Interior (1) to 28-5-10, tilever left an t exposed;C- reactions sho 3: Lum DOL=: p psf (Lum Dugh Cat B; F D-0-0 isidered for th er of min roof pad of 13.9 p; ve loads of 20.0; but depict the se t op and/or t op and/or	r ; Cat. d -C own; 1.15 fully his fully sf on g. Opsf om f. size				SEA 2867	ROUL 7 L ALMSIN	
NULES												111111	IIIII	

April 23,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	A8	Нір	1	1	Job Reference (optional)	172941912

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:27 ID:9BtzJLh4Z?ymBWJixvmctBzODoH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:66.3

Plate Offsets ((X, Y): [4:0-5-0,0-1-7],	[6:0-5-0,0-1-7], [9:Ec	Ige,0-5-13	3], [10:0-3-8,0-	3-0], [16:0-3-8,0-3-0)], [17:E	dge,0-5-13]						
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.77 0.36 0.80	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.29 0.07	(loc) 11-13 11-13 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 211 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP 2400F 2.0E 2x4 SP 2400F 2.0E 2x4 SP No.3 Structural wood shea 4-9-1 oc purlins, exc 2-0-0 oc purlins (4-4 Rigid ceiling directly bracing. (size) 9=0-3-8, 1 Max Horiz 17=77 (LC Max Grav 9=1616 (L	athing directly applied sept end verticals, an 5 max.): 4-6. applied or 10-0-0 oc 7=0-3-8 : 12) C 50), 17=1686 (LC	2) d or d 3) 50)	Wind: ASCE Vasd=103mp II; Exp B; En Exterior(2E) 11-0-0, Exter 16-2-10 to 2! Interior (1) 3 exposed ; en members an Lumber DOL TCLL: ASCE Plate DOL=1.15 P Exp: Co=0.0	7-16; Vult=130mpf bh; TCDL=6.0psf; B closed; MWFRS (el -0-10-1 to 2-10-3, li rior(2R) 11-0-0 to 10 5-11-0, Exterior(2R) 1-3-4 to 36-9-4 zon- d vertical left and ri d forces & MWFRS =1.60 plate grip DC 7-16; Pr=20.0 psf; 1.55); Pg=20.0 psf; late DOL=1.15); Is= 0 - Co-100, Ct-140	a (3-sec CDL=6 nvelope nterior (6-2-10,) 25-11- e; canti ght exp for rea DL=1.33 (roof LL Pf=18.9 =1.0; Rc	cond gust) .0psf; h=25ft; e) and C-C (1) 2-10-3 to Interior (1) 0-to 31-3-4, lever left and lossed;C-C for ctions shown 3 : Lum DOL= 0 psf (Lum ugh Cat B; F	right ; 1.15 fully					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	4)	Unbalanced	snow loads have be	een cor	nsidered for th	nis					
TOP CHORD	1-2=0/37, 2-3=-2921/ 4-5=-3044/295, 5-6= 6-7=-2714/259, 7-8= 2-17=-1774/206, 8-9=	/237, 3-4=-2711/255 -3044/295, -2925/235, =-1698/165	, 5) 6)	This truss ha load of 12.0 overhangs n Provide adeo	s been designed for psf or 2.00 times fla on-concurrent with puate drainage to p	or greate t roof le other liv	er of min roof bad of 13.9 p ve loads. water ponding	live sf on					
BOT CHORD	16-17=-82/561, 15-10 13-15=-109/2362, 11 10-11=-166/2557, 9-	6=-181/2548, -13=-106/2362, 10=-55/444	7)	* This truss h on the bottor 3-06-00 tall b	nas been designed n chord in all areas ov 2-00-00 wide will	for a liv where fit betv	e load of 20.0 a rectangle)psf					
WEBS	3-16=-101/77, 3-15=- 4-13=-53/813, 5-13=- 6-11=0/481, 7-11=-34 2-16=-100/2039, 8-10	-373/86, 4-15=0/473 -769/159, 6-13=-51/8 88/88, 7-10=-112/80 0=-123/2150	, 313, 8) , 9)	chord and ar All bearings Graphical pu or the orienta	by other members, ware assumed to be rlin representation of the purlin al	with BC SP 240 does no ong the	DL = 10.0psf OF 2.0E . ot depict the s top and/or	size			Viel	OPT 65	TIN THE
NOTES				bottom chore	l.	-				-		1	1 N N E
1) Unbalance	ed roof live loads have I	been considered for	LC	DAD CASE(S)	Standard							SEA	

1) Unbalanced roof live loads have been considered for this design.

April 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	A9	Нір	1	1	Job Reference (optional)	172941913

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:27 ID:vwnjHeA6hoXsXvXRwNVXd7zODoy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

22 13:52:27 Page: 1

Scale = 1:67.6

Plate Offsets (X, Y): [2:Edge,0-3-4],	[3:0-6-8,0-3-3], [6:0-	-5-0,0-1-7]	, [13:Edge,0-5	-13], [14:0-3-8,0-3-	0], [15:0)-3-12,0-3-0]	, [18:0-2-	8,0-2-12	2], [21:0-	0-8,0-1	1-12]		
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202 ⁻	1/TPI2014	CSI TC BC WB Matrix-MSH	0.80 1.00 0.77	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.24 -0.45 0.25	(loc) 16-17 16-17 13	l/defl >999 >970 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 235 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 *Excep No.3, 3-18:2x4 SP N 2x4 SP No.3 *Excep Structural wood shea 2-3-6 oc purlins, exc 2-0-0 oc purlins (2-1 Rigid ceiling directly bracing, Except: 1-4-12 oc bracing: 2/1 Row at midpt (size) 13=0-3-8, Max Horiz 23=-76 (L/ Max Grav 13=1664 ((lb) - Maximum Com Tension 1-2=0/37, 2-3=-344/4 4-5=-3818/300, 5-6= 6-7=-3188/296, 7-8= 8-9=-2352/257, 9-10 10-11=-2891/235, 11 11-13=-1760/206 22-23=-103/1484, 21 3-21=-276/4495, 20- 19-20=-191/3389, 11 5-19=-896/111, 6-19 16-18=-124/2719, 8- 8-16=-246/103, 8-15 10-15=-395/84, 10-1 3-23=-1886/134, 11- 3-22=-1718/118, 4-2	t* 22-21,7-17:2x4 SF lo.1 t* 16-18:2x4 SP No. athing directly applie cept end verticals, at 1-5 max.): 6-9. applied or 10-0-0 oc 0-21. 8-15 23=0-3-8 C 13) (LC 50), 23=1670 (L pression/Maximum 46, 3-4=-5437/365, -3140/280, -3176/296, I=-2656/254, 1-12=0/37, 2-23=-47 1-22=-84/1409, .21=-300/4687, 3-19=-98/2739, .452/105, 16-17=0/2 3-14=-47/485 I=-20/649, 6-18=-76/, 18=-13/334, I=-82/54, 9-15=-6/8 4=-95/2079, 14=-95/2079, 11=0/867, 5-20=0/47	1) 2 2 (d or 1) 2 3) C 50) 4) 5) 0/95, 6) 7) 0/95, 7) 889, LC 41, 9,	Unbalanced this design. Wind: ASCE Vasd=103m II; Exp B; En Exterior(2E) 11-0-0, Exte 16-2-10 to 2 Interior (1) 3 exposed ; er members an Lumber DOL TCLL: ASCE Plate DOL=- DOL=1.15 P Exp.; Ce=0.9 Unbalanced design. This truss ha load of 12.0 overhangs n Provide adea * This truss l on the bottoo 3-06-00 tall I chord and ar All bearings Graphical pu or the orient: bottom chore DAD CASE(S)	roof live loads have roof live loads have 7-16; Vult=130mp ph; TCDL=6.0psf; E closed; MWFRS (e -0-10-1 to 2-10-3, 1707(2R) 11-0-0 to 1 5-11-0, Exterior(2R 1-3-4 to 37-9-1 zor d vertical left and rd d forces & MWFRS =1-60 plate grip D 5-7-16; Pr=20.0 psf; late DOL=1.15); Is c; Cs=1.00; Ct=1.11 snow loads have b as been designed ft psf or 2.00 times flic on-concurrent with quate drainage to p has been designed function phas been designed function p	e been of h (3-sec 3CDL=6 nvelope invelope (6-2-10,) 25-11: e; canti ight exp 5 for rea CL=1.3; (roof LL Pf=18.9; =1.0; Rc 0, Lu=50; een cor or great at roof la or great at roof la for a liv s where I fit betw with BC SP No. does no long the	considered for considered for cond gust) .0psf; h=25ff)) and C-C (1) 2-10-3 to Interior (1) -0 to 31-3-4, lever left and obsed;C-C fo cossed;C-C fo cossed;C-C fo cossed;C-C fo tions shown a: Lum DOL= 0 psf (Lum ough Cat B; F) -0-0 -0 -0-0 -0-0 -0-0 -0-0 -0-0 -0-0	r; Cat. right r r; f. f. g. 0psf om f. size			A A A A A A A A A A A A A A A A A A A	SEA 2867	ROUTER STUDIES	
NOTES	120-1000/110											1111111	mm	

April 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	A10	Нір	1	1	Job Reference (optional)	172941914

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:27 ID:1Q3d04KGdnA0av0xBcEaftzODol-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:66.3

Plate Offsets (X, Y): [2:Edge,0-2-12]], [8:0-5-0,0-1-7], [10	0:Edge,0-	3-8]									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	21/TPI2014	CSI TC BC WB Matrix-MSH	0.58 0.96 0.98	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.24 -0.45 0.15	(loc) 14-15 14-15 11	l/defl >999 >974 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 203 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 *Excep 2.0E 2x4 SP No.2 2x4 SP No.3 Structural wood shea 3-5-7 oc purlins, ex 2-0-0 oc purlins (3-9 Rigid ceiling directly bracing. 1 Row at midpt (size) 11=0-3-8, Max Horiz 18=64 (LC Max Grav 11=1464 (t* 4-7,7-8:2x4 SP 24 athing directly applie cept end verticals, a -0 max.): 4-8. applied or 2-2-0 oc 5-17, 5-14, 9-11 18=0-3-8 2 14) (LC 2), 18=1525 (LC	2 400F ed or ind 3 () 2)	 Wind: ASCE Vasd=103m II; Exp B; En Exterior(2E) 8-4-0, Exteri to 28-7-0, Ex 33-9-10 to 3 exposed; er members an Lumber DOL TCLL: ASCE Plate DOL=' DOL=1.15 P Exp.; Ce=0.3 Unbalanced design. 	7-16; Vult=130mp bh; TCDL=6.0psf; closed; MWFRS (¢ -0-10-1 to 2-10-3, or(2R) 8-4-0 to 13- tterior(2R) 28-7-0 t 6-9-4 zone; cantile nd vertical left and d forces & MWFR =1.60 plate grip D =7-16; Pr=20.0 psf; late DOL=1.15); Is 9; Cs=1.00; Ct=1.1 snow loads have b	wh (3-sec BCDL=6 envelope Interior 6-10, In o 33-9-1 ver left a right exp S for rea OL=1.3; 6 (roof LL Pf=18.9 =1.0; RC 0, Lu=50 Deen cor	cond gust) copsf; h=25ft and C-C (1) 2-10-3 to terior (1) 13-6 lo, Interior (1) and right bosed;C-C fo ctions showr 3 : Lum DOL= b psf (Lum bugh Cat B; F D-D-0 nsidered for t	; Cat. 6-10) r 1,15 Fully his					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=0/37, 2-3=-483/5 4-5=-2244/234, 5-6= 6-8=-3389/314, 8-9= 9-10=-413/33, 2-18= 17-18=-206/2057, 15 14-15=-193/3377, 12 11-12=-195/2063	pression/Maximum 55, 3-4=-2520/234, -3388/313, -2523/242, -441/110, 10-11=-3 5-17=-193/3377, 2-14=-126/2267,	5 6 7 17/53	 This truss ha load of 12.0 overhangs n Provide ader * This truss I on the bottoo 3-06-00 tall I chord and at 	is been designed f psf or 2.00 times fl on-concurrent with quate drainage to p as been designed n chord in all areas by 2-00-00 wide wi by other members. are assumed to be	or great at roof k other liv prevent for a liv s where Il fit betv	er of min root bad of 13.9 p ve loads. water pondin e load of 20.0 a rectangle veen the bott	f live sf on g. 0psf om				WITH CA	ROUTE
WEBS	3-17=-104/260, 4-17 5-15=0/132, 5-14=-8 8-14=-93/1362, 8-12 3-18=-2044/209, 9-1	/=-4/769, 5-17=-136 44/106, 6-14=-646/1 :=0/220, 9-12=-117/ 1=-2124/232	4/96, 9 39, 251, L	 An bearings Graphical pu or the orienta bottom chore OAD CASE(S) 	irlin representation ation of the purlin a d. Standard	does no.	 t depict the s top and/or 	size			N	SEA 2867	

Unbalanced roof live loads have been considered for 1) this design.

April 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	A11	Нір	1	1	Job Reference (optional)	172941915

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:27 ID:8NIhcv45ZLX?ZgwuShLfIRzODp4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:67.4

Plate Offsets (X, Y): [2:Edge,0-3-4],	[3:0-6-8,0-3-3], [13:E	dge,0-2-1	2], [16:0-3-8,0)-3-0], [18:0-9-0,Ed	lge], [20	:0-0-8,0-1-10]						
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	1/TPI2014	CSI TC BC WB Matrix-MSH	0.60 0.87 0.98	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.28 -0.53 0.26	(loc) 17 16-17 13	l/defl >999 >836 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 214 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP 2400F 2.0E 2x4 SP 2400F 2.0E 2x4 SP 2400F 2.0E SP No.3 2x4 SP No.3 *Excep Structural wood shea 3-8-6 oc purlins, exi 2-0-0 oc purlins (3-5 Rigid ceiling directly bracing. 1 Row at midpt (size) 13=0-3-8, Max Horiz 22=-62 (L Max Grav 13=1524 0 (lb) - Maximum Com Tension 1-2=0/37, 2-3=-335/3 4-5=-3246/267, 5-6= 6-7=-4229/351, 7-9= 9-10=-2528/235, 10- 2-22=-463/105, 11-1 2-22=-98/1215, 20- 3-20=-332/3859, 19- 18-19=-211/4261, 11	L *Except* 21-20,6-17: t* 16-18:2x4 SP No.2 athing directly applied cept end verticals, an -8 max.): 5-9. applied or 10-0-0 oc 6-19, 7-14 22=0-3-8 C 13) (LC 2), 22=1522 (LC pression/Maximum 55, 3-4=-4596/389, -2901/273, -2255/232, -11=-539/62, 11-12=(3=-467/117 -21=-75/1155, -20=-366/4015, 7-18=0/78, 6-18=0/37 -176/476	2) 2x4 2 d or d or d 2) 4) 5) 0/37, 6) 7) 0/37, 8) 9)	Wind: ASCE Vasd=103m II; Exp B; En Exterior(2E) 8-4-0, Exteri to 28-7-0, Ex 33-9-10 to 3' exposed ; er members an Lumber DOL TCLL: ASCE Plate DOL=1.15 P Exp.; Ce=0.9 Unbalanced design. This truss ha load of 12.0 overhangs n Provide aded * This truss h on the bottor 3-06-00 tall t chord and ar All bearings Graphical pu	7-16; Vult=130mp oh; TCDL=6.0psf; I closed; MWFRS (e -0-10-1 to 2-10-3, or(2R) 8-4-0 to 13- tterior(2R) 28-7-0 t 7-9-1 zone; cantile id vertical left and id d forces & MWFRS =1.60 plate grip D 5-7-16; Pr=20.0 psf; 1.15); Pg=20.0 psf; 1.4te DOL=1.15); Is 3; Cs=1.00; Ct=1.1 snow loads have t as been designed fipsf or 2.00 times fl on-concurrent with quate drainage to p has been designed in chord in all areas by 2-00-00 wide will y other members. are assumed to be urlin representation	h (3-sec BCDL=6 envelope Interior 1 5-12, In o 33-9-1 ver left a right exp S for rea OL=1.33 (roof LL Pf=18.9 =1.0; Rc 0, Lu=50 been cor or great at roof lo other lin for a liv s where Il fit betw S P 240 does no	cond gust) .0psf; h=25ft a) and C-C (1) 2-10-3 to terior (1) 13-5 0, Interior (1) and right bosed;C-C for ctions shown .: Lum DOL= b psf (Lum Dugh Cat B; F) -0-0 lisidered for th sidered for th r of min roof pad of 13.9 p; ve loads. water shown e load of 20.0 a rectangle veen the bottw 10F 2.0E. t depict the s	; Cat. ; ; 1.15 fully his live sf on g. ppsf pom			Annual	Weight 214 ID	ROJ 11	
WEBS NOTES 1) Unbalance this design	13-14=-153/2043 5-19=-10/1146, 6-19 16-18=-181/3251, 7- 7-16=-354/124, 7-14 10-14=-99/283, 10-1 4-20=0/678, 4-19=-1 3-22=-1489/118, 3-2 ed roof live loads have n.)=-1654/114, 18=-51/826, I=-1417/95, 9-14=0/7 3=-1969/197, 504/233, 21=-1424/105 been considered for	LC 25,	bottom chord	3. Standard					CHILLING.	S THE STATE	SEA 2867	FR. ALINST	www.unun

April 23,2025

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	A12	Hip Girder	1	1	Job Reference (optional)	172941916

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:29 ID:Km_HUTQfzx20w_3H5asDRLzODoe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:65.9

Continued on page 2

Plate Offsets (X, Y); [2:Edge.0-2-9], [5:0-6-6.Edge], [14:Edge.0-2-13]

Loading TCLL (roof) (psf) 20.0 Snow (Pf/Pg) Spacing 20.0 18.9/20.0 TCDL 20-0 Plate Grip DOL CSI TC DEFL in (loc) I/deft L/d PLATES GRIP MT20 Snow (Pf/Pg) 18.9/20.0 TCDL 10.0 10.0 11.5 BC 0.44 Vert(LL) -0.30 19-20 >746 180 MT20 244/190 BCDL 0.0* BC 0.44 WB 0.73 Matrix-MSH Vert(CT) -0.59 19-20 >746 180 MT20HS 187/143 BCDL 0.0* BC 0.0* BC 0.44 NP NP PLATES GRIP Matrix-MSH WB 0.73 Matrix-MSH PLATES GRIP MT20HS 187/143 LUMBER 0.0* 2x4 SP 2400F 2.0E KExcept* 5-9.9-11:2x6 SP 5-22=-269/2546, 6-22=-63/4/72, 7-22=-1220/140, 7-20=0/177, 7-19=-34/33, 10-17=0/150, 10-16=-2560/276, 10-17=0/150, 10-16=-2560/276, 10-17=-0/150, 10-16=-2560/276, 10-17=-0/150, 10-16=-2560/276, 10-17=-0/150, 10-16=-2560/276, 12-15=-388/58 12 NMEES 13) Hanger(s) or other connection device(s) is the responsibility of others. 14) In the LOAD CASE(S) s		(X, 1). [2.Euge,0 2 0],	, [0.0 0 0,Euge], [14.	Lugo,o z	10]										
LUMBERWEBS4-24=-400/61, 4-23=-111/790, 5-23=0/224, 5-22=-269/2546, 6-22=-634/172, 7-22=-1220/140, 7-20=0/177, 7-19=-34/33, 7-22=-1220/140, 7-20=0/177, 7-19=-34/33, 7-22=-1220/140, 7-20=0/177, 7-19=-34/33, 8-19=-451/153, 10-19=-132/1218, 10-17=0/150, 10-16=-2560/276, 11-16=-88/1381, 12-16=-110/795, 12-15=-388/5812) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3") or 3-12d 	Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC202	21/TPI2014	CSI TC BC WB Matrix-MSH	0.30 0.44 0.73	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.30 -0.59 0.11	(loc) 19-20 19-20 14	l/defl >999 >746 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 254 lb	GRIP 244/190 187/143 FT = 20%	
 4-0-1 oc purlins, except 2-0-0 oc purlins, (3-10-3 max.): 5-11. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS ReACTIONS (size) 2-0-34, (LC 15) Max Horiz 2-34, (LC 12) Max Grav 2-2-184 (LC 2), 14=-191 (LC 7) Max Grav 2-2-184 (LC 2), 14=-191 (LC 7) Max Grav 2-2-184 (LC 2), 14=-191 (LC 7) Max Grav 2-2-3-371/3492, 20-22-685/6687, 70. 2-24=-305/2896, 23-24=-305/2896, 22-24=-305/2896, 22-23=-371/3492, 20-22-685/6687, 11-23-559/5641, 15-16=-277/2903, 14-15=-277/2903, 14-15=-277/2903 All plates are MT20 plates unless otherwise indicated. This truss has been designed for a liareas where a rectangle 3-0-0-0 our hall marks where a rectangle of withstanding 191 lb uplift at joint 1, 4 and 192 lb uplift at joint 2, 4 and 192 lb uplift at joint 1, 4 and 192 lb uplift at joint 1, 4 and 192 lb uplift at joint 2, 6 and 192 up	LUMBER TOP CHORD 3OT CHORD WEBS DTHERS SLIDER BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP 2400F 2.0E 2400F 2.0E 2x6 SP 2400F 2.0E 2x4 SP No.3 *Excep 22-5,22-7,19-7,19-1(2x4 SP No.3 Left 2x4 SP No.3 2 2-6-0 Structural wood she 4-0-1 oc purlins, exc 2-0-0 oc purlins (3-1 Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, ' Max Horiz 2=34 (LC Max Uplift 2=-192 (L Max Grav 2=2184 (I (Ib) - Maximum Com Tension 1-2=0/32, 2-4=-3346 5-6=-5649/604, 6-7= 7-8=-6684/700, 8-10 10-11=-3444/385, 11 12-14=-3356/347 2-24=-305/2896, 23 22-23=-371/3492, 21 19-20=-685/6687, 11 16-17=-559/5641, 11 14-15=-277/2903	*Except* 5-9,9-11:2) ot* 0,16-10:2x4 SP No.2 2-6-0, Right 2x4 SP athing directly applie pept 0-3 max.): 5-11. applied or 10-0-0 oc 10-16 14=0-3-8 15) C 8), 14=-191 (LC 7 	x6 SP W 2 No.3 N 1; ed or 2; c 3; () 2) 4; 2) 5; 3, 6; 7, 8; 9; 91 11 1	 VEBS OTES Unbalanced this design. Wind: ASCE Vasd=103m II; Exp B; Er and right ext Lumber DOI TCLL: ASCE Plate DOL= DOL=1.15 F Exp.; Ce=0. Unbalanced design. This truss ha load of 12.0 overhangs n Provide ade All plates arr * This truss on the botto 3-06-00 tall chord and a All bearings plate 14 and 192 Graphical pu or the original plate 14 and 192 	4-24=-400/61, 4-23 5-22=-269/2546, 6- 7-22=-1220/140, 7- 8-19=-451/153, 10- 10-17=0/150, 10-16 11-16=-88/1381, 12 12-15=-388/58 roof live loads have 5.7-16; Vult=130mpi ph; TCDL=6.0psf; E toclosed; MWFRS (e posed; end vertical L=1.60 plate grip DC 5.7-16; Pr=20.0 psf; 11.5); Pg=20.0 psf; 12te DDL=1.15); Is= 9; Cs=1.00; Ct=1.10; snow loads have b as been designed fc psf or 2.00 times fi con-concurrent with quate drainage to p e MT20 plates unles has been designed m chord in all areas by 2-00-00 wide will ny other members. are assumed to be chanical connection e capable of withsta lb uplift at joint 2. urlin representation ation of the purlin al d.	=-111/7 22=-63 20=0/1 19=-13 2-2560 2-16=-1 a been of 3CDL=6 a been of 0L=1.33 (roof Ll Pf=18.9 =1.0; RC 0, Lu=50 een cor or great at roof lo other lin revent 's so their for a liv other lin revent 's so their for a liv other lin conditional to the the the the so the the the the the so the the the the the the so the the the the the the the so the the the the the the the the so the	 190, 5-23=0/2 4/172, 77, 7-19=-34, 2/1218, /276, 10/795, considered for considered for s); cantilever d right expose 3); cantilever d right expose a); cantilever d right expose a); cantilever d of 13.9 p ve load of 20.5 e ers) of truss i 91 lb uplift a b) t depict the s t op and/or 	224, /33, /r (33, or ; Cat. left ed; 1.15 Fully his f live sf on g. Qpsf om to t joint size	12) "NA (0.1 13) Har pro lb d lb u of s oth- 14) In ti of ti LOAD (1) De In Ur Co	AlLED" ir 148"x3.2 noger(s) c ivided su lown and p at 31- auch con ers. he LOAE he truss CASE(S ead + Sr crease= hiform Lo Vert: 1-4 oncentra	hdicate r other fficient 1 51 lb 2-4 on nectior 0 CASF are no 0 Star now (bb 5=-48, ted Lo:	s 3-10d (0.148"x: -nails per NDS gu r connection device up at 5-8-0, and bottom chord. T in device(s) is the E(S) section, load ted as front (F) or ndard alanced): Lumber b/ft) 5-11=-58, 11-14= ads (lb) SEA SEA 2867	 inf) or 3-12d iidlines. ie(s) shall be ntrated load(s) 269 lb down ar he design/seler responsibility o s applied to the back (B). Increase=1.15 i-48, 25-29=-20 	269 nd 51 ction f e face , Plate

April 23,2025

Page: 1

Edenton, NC 27932

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 1/2/2023 BEFORE USE. WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	A12	Hip Girder	1	1	Job Reference (optional)	172941916

Vert: 5=-31 (B), 23=-264 (B), 7=-27 (B), 20=-19 (B),
8=-27 (B), 19=-19 (B), 16=-264 (B), 11=-31 (B),
33=-27 (B), 34=-27 (B), 35=-27 (B), 37=-27 (B),
38=-27 (B), 39=-27 (B), 40=-27 (B), 42=-27 (B),
43=-27 (B), 44=-27 (B), 45=-19 (B), 46=-19 (B),
47=-19 (B), 48=-19 (B), 49=-19 (B), 50=-19 (B),
51=-19 (B), 52=-19 (B), 53=-19 (B), 54=-19 (B)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:29 ID:Km_HUTQfzx20w_3H5asDRLzODoe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	A13	Hip Girder	1	2	Job Reference (optional)	172941917

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:30 ID:8wLYIXUQZnpAevWRRqzdhczODoY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:67.2

Plate Offsets ((X, Y): [2:Edge,0-3-4],	[3:0-5-4,0-2-7], [24:0)-3-12,0-3	-0], [27:0-0-8,0	0-2-0]										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC202 ⁻	1/TPI2014	CSI TC BC WB Matrix-MSH	0.26 0.73 0.71	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.29 -0.55 0.18	(loc 1	i) l/defl 7 >999 7 >799 5 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 463	GRIP 244/1 Ib FT =	90 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP 2400F 2.0E 2x4 SP 2400F 2.0E No.3, 23-20,20-15:2: 2x4 SP No.3 *Excep No.2 Right 2x4 SP No.2 Structural wood she 6-0-0 oc purlins, exi 2-0-0 oc p	*Except* 28-27:2x4 S x6 SP 2400F 2.0E t* 22-24,29-2:2x4 SF · 2-6-0 athing directly applie cept end verticals, ar 0-1 max.): 5-12. applied or 10-0-0 oc 29=0-3-8 C 9) LC 7), 29=-255 (LC 8 (LC 2), 29=2199 (LC pression/Maximum 71, 3-4=-6620/851, :-4928/686, i=-8494/1070, ·11=-5351/635, 2-13=-3879/459, 5-16=0/32, 2-29=-587 7-28=-218/1686, :-27=-744/5708, 4-25=-935/7303, :350/106, 1-22=-727/6445, 3-19=-580/5351, 5-17=-293/2886	(d or d or d or d 1) (d NC 1) (d NC 1) (1) (2) (2) (2) (2) (2) (3) (4) (4) (5) (6)	EBS 2-ply truss to (0.131"x3") r Top chords of oc. Bottom chorn 0-9-0 oc, 2x6 Web connect All loads are except if nott CASE(S) see provided to c unless other Unbalanced this design. Wind: ASCE Vasd=103mm II; Exp B; En and right exy Lumber DOL TCLL: ASCE Plate DOL=1.15 P Exp.; Ce=0.5 Unbalanced design.	4-26=-994/121, 5-2 6-26=-2751/348, 6 6-24=-174/1654, 2 8-24=-285/2008, 8 10-22=-60/278, 10 10-19=-1329/181, 11-18=-2296/281, 13-18=-126/816, 1 3-29=-2226/274, 3 4-27=-82/908 b be connected tog nails as follows: connected as follows: connected as follows: connected as follows: connected as follows: 2x4 b considered equally ed as fort (F) or b ction. Ply to ply cord distribute only loads wise indicated. roof live loads have 57-16; Vult=130mp ph; TCDL=6.0psf; f hclosed; MWFRS (eposed; end vertica =1.60 plate grip D 57-16; Pr=20.0 psf; 115); Pg=20.0 psf; 125, Pg=20.0 psf; 135, Pg=20.0 psf; 140 DL=1.15); ls 9; Cs=1.00; Ct=1.1 snow loads have b	26=-255/ 25=0/11 2-24=-6 -22=-13 -22=-13 -22=-13 -22=-13 -22=-13 -22=-13 -22=-13 -22=-13 -22=-20 ether wi ws: 2x4 - llows: 2 d at 0-9 - 1 row y applied ack (B) fi onection s noted : e been of h (3-sec 3-CDL=6 envelope l left and OL=1.3 0, Lu=50 eeen cor	22085, 31, 78/5764, 42/279, 35, 13/830, 103/1388, 47/73, 37/288, 47/73, 37/288, 47/73, 37/288, 47/73, 37/288, 47/73, 37/288, 47/73, 37/288, 47/73, 37/288, 47/73, 37/288, 47/73, 47/73, 37/288, 47/73, 47/73, 47/73, 47/74, 47/73, 47/74, 47/7	0 AD Cat. eft d; .15 Jlly is	7) T c o 8) P 9) * 0 3 c 10) B 11) P b 11) P b 11) C o 0 12) C 13) "I ((1)	his truss I vad of 12. verhangs rovide ad This truss n the bott -06-00 tal hord and earings a oint 15 SF rovide me earing pla 5 and 255 fraphical p r the orier ottom chc NAILED" i 0.148"x3.2	has beed of psf or non-cc equate has by 2-C any oth re asst 2 2400f ichanic te capp i b upli uplin re rt. tation rd. ndicate 55") toe	en designed fic 2.00 times fiz incurrent with drainage to p een designed drd in all areas med to be: Joc 7.00 vide will ter members. Inter members. Inter to be: Joc 7.00 vide will ter members. al connection able of withsta ft at joint 29. presentation of the purlin all as 3-10d (0.14 -nails per ND: SE 28 0 0 0 0 0 0 0 0 0 0 0 0 0	r greater o it roof load other live lo revent wate for a live lo where a re fit betwee int 29 SP 2 (by others) nding 209 does not d ong the top 8"x3") or 3 5 guidlines ARO SI AL 677	of min roof I of 13.9 psf oads. er ponding. ad of 20.0p ectangle n the bottor 2400F 2.0E) of truss to Ib uplift at j epict the si: p and/or -12d	ve on osf m
												in min	mm		

April 23,2025

Page: 1

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 1/2/2023 BEFORE USE. WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	A13	Hip Girder	1	2	Job Reference (optional)	172941917

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:30

ID:8wLYIXUQZnpAevWRRqzdhczODoY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Carter Components (Sanford, NC), Sanford, NC - 27332,

14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 295 lb down and 89 lb up at 5-8-0, and 33 lb down at 13-5-12, and 269 lb down and 42 lb up at 31-2-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-2=-48, 2-5=-48, 5-12=-58, 12-16=-48, 28-29=-20, 24-27=-20, 23-30=-20

Concentrated Loads (lb)

Vert: 5=-19 (F), 24=-22 (F), 7=-23 (F), 26=-292 (F),

6=-17 (F), 25=-30 (F), 22=-22 (F), 8=-23 (F),

18=-269 (F), 12=-28 (F), 34=-17 (F), 35=-17 (F),

37=-23 (F), 38=-23 (F), 39=-23 (F), 40=-23 (F),

42=-23 (F), 43=-23 (F), 44=-23 (F), 45=-30 (F),

46=-30 (F), 47=-22 (F), 48=-22 (F), 49=-22 (F), 50=-22 (F), 51=-22 (F), 52=-22 (F), 53=-22 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	B1	Common	2	1	Job Reference (optional)	172941918

Loading

TCDL

BCLL

BCDL

WFBS

FORCES

WEBS

2)

3)

4)

NOTES 1)

LUMBER

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:31 ID:N6L5VzBkS6fj836dU40mALzODox-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

MANNING THE

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	B2	Hip Girder	1	1	Job Reference (optional)	172941919

Loading

TCDL

BCLL

BCDL

WEBS

SLIDER

BRACING

FORCES

WEBS

NOTES

1)

2)

3)

4)

design.

LUMBER

TCLL (roof)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:31 ID:dNRLWgijKJ4coguuVcHrPPzODoG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	C1	Monopitch	4	1	Job Reference (optional)	172941920

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:31 ID:3upO1vafwlf?GyfBf4lgCWztCnV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	C2	Monopitch	1	1	Job Reference (optional)	172941921

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:31 ID:3upO1vafwlf?GyfBf4IgCWztCnV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:43.4

Plate Offsets (X, Y): [7:0-3-0,0-3-0]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.43	Vert(LL)	-0.02	8-13	>999	240	MT20	244/190	
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.27	Vert(CT)	-0.05	8-13	>999	180			
TCDL	10.0	Rep Stress Incr	YES		WB	0.46	Horz(CT)	0.01	6	n/a	n/a			
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MSH									
BCDL	10.0											Weight: 85 lb	FI = 20%	
LUMBER			4)	* This truss I	nas been designed	l for a liv	e load of 20.	0psf						
TOP CHORD	2x4 SP No.2			on the bottor	n chord in all area	s where	a rectangle							
BOT CHORD	2x4 SP No.2			3-06-00 tall b	oy 2-00-00 wide wi	ll fit betv	veen the bott	om						
WEBS	2x4 SP No.3			chord and ar	ny other members.									
BRACING			5)	Bearings are	assumed to be: J	oint 1 Si	⁻ No.2 , Joint	18						
TOP CHORD	Structural wood shea	athing directly applie	ed or	SP NO.2 . Refer to gird	or(c) for truce to tr		octions							
	6-0-0 oc purlins, exc	cept end verticals.	7)	Provide med	hanical connection	uss com hv oth	ers) of truss	to						
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	; ')	bearing plate	capable of withst	anding 1	7 lb uplift at	ioint						
		Mashariaal 0.04		6, 11 lb uplif	at joint 8 and 1 lb	uplift at	joint 1.							
REACTIONS	(SIZE) 1=0-3-0, 6 Max Horiz 1=122 (LC	= Mechanical, 8=0-	³⁻⁸ LC	DAD CASE(S)	Standard	•								
	Max Holift $1 = 133$ (LC) 14) 11) 617 (I C 15) 8	211											
	(LC 15)	11), 0=-17 (LO 13), C	J11											
	Max Grav 1=268 (LC	2), 6=496 (LC 21),												
	8=690 (LC	2)												
FORCES	(lb) - Maximum Com	pression/Maximum												
	Tension													
TOP CHORD	1-2=-283/82, 2-4=-6	18/123, 4-5=-111/76	,											
	5-6=-168/91	162/570												
	1-0=-100/200, 0-0=-	103/370 5/6/152 2 7- 12/25	0											
WEB3	4-0=-302/110, 2-0=-	540/155, 2-7=-15/55	0,										in the second se	
NOTES	11-0/02											TH UA	ROIL	
1) Wind AS	CE 7-16: Vult=130mph	(3-second qust)									S	ON WING	in the	
Vasd=103	mph: TCDL=6.0psf: B0	CDL=6.0psf: h=25ft:	Cat.								:2		OK. SI	
II; Exp B;	Enclosed; MWFRS (en	velope) and C-C									-	GA XI	12: 3	
Exterior(2	E) 0-0-0 to 3-0-0, Interi	or (1) 3-0-0 to 17-10)-12							-		10.20		-
zone; can	tilever left and right exp	oosed ; end vertical I	eft								:	SEA	L : '	=
and right e	exposed;C-C for memb	ers and forces &								=		2867	7	Ξ
MWFRS f	or reactions shown; Lu	mber DOL=1.60 plat	te							-		2007	1 I I	Ξ
	= 1.33 CE 7 16: Dr - 20 0 pot /	roof Livium DOI -1	15								2	N	1 1	
2) TOLL: AS	CE 7-10, FI=20.0 pSI (I		.15								2 .	1. A.	ains	

grip DOL=1.33 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Unbalanced snow loads have been considered for this 3) design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	C3	Half Hip	1	1	Job Reference (optional)	172941922

10-7-9

4-5-5

Carter Components (Sanford, NC), Sanford, NC - 27332,

-0-10-8

0-10-8

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:31 ID:cPg9Ylb8SUHFIKdf25SXqCzshbc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

15-0-0

4-4-7

9

Page: 1

2x4 II

7

3x5 =

4-2-0

6

18-0-8

3-0-8

 \bowtie

18-0-8

3-2-4

4x5 =

5

8

3x5 =

6-2-4

6-2-4

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MSH	0.41 0.42 0.24	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.11 0.01	(loc) 10-15 8-10 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 90 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0- Rigid ceiling directly	athing directly appliec sept end verticals, an 0 max.): 5-6. applied or 10-0-0 oc	3) 4) I or 5) d 6)	Unbalanced s design. This truss ha load of 12.0 p overhangs no Provide adeq * This truss h on the bottom 3-06-00 tall b	snow loads have b s been designed for ssf or 2.00 times fla on-concurrent with uate drainage to p as been designed o chord in all areas y 2-00-00 wide will	een cor or greate at roof le other liv revent v for a liv where l fit betw	nsidered for t er of min roo bad of 13.9 p ve loads. water pondin e load of 20. a rectangle veen the bott	his f live osf on g. Opsf					
REACTIONS	bracing. (size) 2=0-3-0, 7 Max Horiz 2=115 (LC Max Uplift 2=-35 (LC Max Grav 2=371 (LC 10=806 (L	= Mechanical, 10=0- ; 14) 11), 7=-18 (LC 11) ; 41), 7=465 (LC 2), C 41)	3-8 8) 9)	Bearings are SP No.2. Refer to girde Provide mech bearing plate	er(s) for truss to tru nanical connection capable of withsta	oint 2 SF ss conr (by oth inding 1	P No.2 , Join nections. ers) of truss 8 lb uplift at	t 10 to joint					
FORCES	(lb) - Maximum Com	pression/Maximum	10)	Graphical pu	lin representation	does no	ot depict the	size					
TOP CHORD	1-2=0/16, 2-3=-249/1 5-6=-68/76, 6-7=-10 ⁻ 2-10=-167/253 8-10	109, 3-5=-399/104, 1/49 =-259/570_7-8=-135/	352 LO	or the orienta bottom chord AD CASE(S)	tion of the purlin al Standard	long the	top and/or						
WEBS	3-10=-405/132, 5-8=	0/284, 5-7=-520/143,	002										11111
NOTES 1) Wind: ASC Vasd=103 II; Exp B; I Exterior(2) 15-0-0, Ex left and rig exposed;C reactions s DOL=1.33 2) TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce=	CE 7-16; Vult=130mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (en E) -0-10-5 to 2-1-11, In terior(2E) 15-0-0 to 17 ht exposed ; end vertic C-C for members and fc shown; Lumber DOL=1 CE 7-16; Pr=20.0 psf (r =1.15); Pg=20.0 psf; P Plate DOL=1.15); Is=' 0.9; Cs=1.00; Ct=1.10,	(3-second gust) CDL=6.0psf; h=25ff; C velope) and C-C terior (1) 2-1-11 to -10-12 zone; cantilev al left and right prces & MWFRS for .60 plate grip toof LL: Lum DOL=1. f=18.9 psf (Lum I.0; Rough Cat B; Ful Lu=50-0-0	Cat. er 15 ly							. and the second	and the second second	SEA 2867	E.P. Strunning

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

April 23,2025

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	C4	Half Hip Girder	1	1	Job Reference (optional)	172941923

-0-10-8

0-10-8

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:31 ID:biF0qZZ09?X8eo4_5NnRgJztCnW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

NAILED

NAILED

NAILED

NAILED

NAILED

Scale = 1:37.9 Plate Offsets (X, Y): [4:0-3-0,0-2-12]

Loadir TCLL (Snow (TCDL	1g (roof) (Pf/Pg)	(psf) 20.0 18.9/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO		CSI TC BC WB	0.41 0.34 0.27	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.06 0.00	(loc) 10-13 7-9 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
BCLL BCDL		0.0* 10.0	Code	IRC202	1/TPI2014	Matrix-MSH							Weight: 97 lb	FT = 20%	
LUMB TOP C BOT C WEBS BRAC TOP C BOT C REAC	ER HORD HORD HORD HORD TIONS	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exu 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 2=0-3-0,7 Max Horiz 2=74 (LC Max Uplift 2=-42 (LC 10=-104 (Max Grav 2=302 (LC 10=812 (L (lb) - Maximum Com Tension 1-2=0/16 2-3=-94/1	athing directly applie cept end verticals, ar -0 max.): 4-6. applied or 6-0-0 oc 7= Mechanical, 10=0 10) : 70), 7=-75 (LC 8), LC 7) LC 7) C 61), 7=534 (LC 32) .C 33) pression/Maximum	6) 7) ed or nd 8) 0-3-8 9) 11 11), 11	This truss ha load of 12.0 j overhangs n Provide adec * This truss h on the bottor 3-06-00 tall b chord and ar Bearings are SP No.2 . Refer to gird()) Provide mec bearing plate 7, 104 lb upli 1) Graphical pu or the orientat bottom chorc 2) "NAILED" inc (0.148"x3.25	s been designed for soft or 2.00 times fla on-concurrent with quate drainage to p has been designed in chord in all areas y 2-00-00 wide wil y other members. assumed to be: Jo er(s) for truss to tru hanical connection capable of withsta ft at joint 10 and 42 rlin representation tion of the purlin a l.	or great at roof k other liv revent v for a liv where I fit betw bint 2 SF ss conr (by oth unding 7 2 Ib uplit does no long the 8"x3") c S guidliu	er of min roof pad of 13.9 p ve loads. water ponding e load of 20.1 a rectangle veen the bott P No.2 , Joint P No.2 , Joint ections. ers) of truss (5 lb uplift at j t at joint 2. of depict the s er op and/or or 3-12d nes.	f live sf on g. Opsf om t 10 to joint size						
BOT C WEBS	HORD	4-5=-462/91, 5-6=-50 2-10=-121/102, 9-10 3-10=-632/118, 3-9= 5-9=-184/76, 5-7=-5	6/16, 6-7=-142/49)=-121/24, 7-9=-148/ -87/610, 4-9=-105/5 73/159	/532 i5,	provided suff down and 11 design/selec responsibility	icient to support co 9 lb up at 9-7-2 or tion of such connect of others.	boncentra bottom ction de	ated load(s) 9 a chord. The vice(s) is the	98 lb				TH CA	RO	
NOTE	S			14	1) In the LOAD	CASE(S) section,	loads a	oplied to the	face			1	O HEAS	KIN	
1) Un thi 2) Wi Va II; an	ibalance s desigr nd: AS(sd=103 Exp B; l d right e	ed roof live loads have CE 7-16; Vult=130mph imph; TCDL=6.0psf; B(Enclosed; MWFRS (en exposed ; end vertical l	been considered for (3-second gust) CDL=6.0psf; h=25ft; velope); cantilever le eft and right expose	L 1) Cat. eft d;	of the truss a DAD CASE(S) Dead + Sno Increase=1 Uniform Loa Vert: 1-4	re noted as front (F Standard w (balanced): Lum 15 ads (Ib/ft) =-48, 4-6=-58, 7-11	-) or ba ber Inc	ck (B). rease=1.15,⊺	Plate		and the second	N.	SEA 2867		and a state of the
Lu 3) TC Pla DC Ex 4) Un	mber D CLL: AS ate DOL DL=1.15 p.; Ce= balance	OL=1.60 plate grip DO CE 7-16; Pr=20.0 psf (=1.15); Pg=20.0 psf; F i Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10, ed snow loads have be	L=1.33 roof LL: Lum DOL=1 Pf=18.9 psf (Lum 1.0; Rough Cat B; Fi , Lu=50-0-0 een considered for th	l.15 ully iis	Concentrate Vert: 4=- (B), 18=- 22=-13 (I	ed Loads (lb) 5 (B), 9=51 (B), 15 12 (B), 19=-9 (B), 2 3)	=-5 (B), 20=-9 (E	16=-5 (B), 1 8), 21=-9 (B),	7=-5			anna an	SANGIN	EP. St.	inne.
de	sıgn.												- contra	and the second sec	

April 23,2025

Page: 1

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	C5	Monopitch Girder	1	2	Job Reference (optional)	172941924

6-4-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:32 ID:n5xbi8vbZb39?5DNkFH0pDztCn4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x5 =

Scale = 1:24.7

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2021/TPI2	CSI TC BC WB Matrix-MP	0.29 0.33 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.06 0.00	(loc) 3-8 3-8 1	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 53 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) 2-ply truss t Top chords follows: 2x4 Bottom cho follows: 2x6 Bottom cho follows: 2x6 Dot chORD BOT CHORD SA BOT BOT CHORD SA BOT SA	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. size) 1=0-3-0, 3 Max Horiz 1=46 (LC (dax Grav 1=714 (LC (lb) - Maximum Com Tension 1-2=-197/31, 2-3=-11 1-3=-17/221 to be connected toget connected with 10d (1-1 row at 0-9-0 oc. rds connected with 10d 5-2 rows staggered a e considered equally ted as front (F) or bac ection. Ply to ply conr distribute only loads rwise indicated. E 7-16; Vult=130mph nph; TCDL=6.0psf; BC nclosed; MWFRS (en sposed ; end vertical 1 L=1.60 plate grip DO E 7-16; Pr=20.0 psf (i 1.15); Pg=20.0 psf (i 1.15); Ps=1.00; Ct=1.10 d snow loads have be	athing directly applie cept end verticals. applied or 10-0-0 oc 3=0-3-8 10) 2 2), 3=635 (LC 2) pression/Maximum 62/21 ther as follows: (0.131"x3") nails as 20 (0.131"x3") nai	6) * Thi on th 3-06 chor 7) All b 8) Han, prov bd or (s) is LOAD C 1) De; Inc Uni N Col Col N Col N Col N Col Col Col Col Col Col Col Col Col Col	s truss has been des e bottom chord in all 00 tall by 2-00-00 wi l and any other men varings are assumed er(s) or other conne ded sufficient to supp wn at 0-0-0, 206 lb of at 4-0-1, and 218 ll i. The design/select the responsibility of ASE(S) Standard d + Snow (balanced ease=1.15 orm Loads (lb/ft) ert: 1-2=-48, 3-4=-21 centrated Loads (lb) ert: 3=-183 (F), 4=-1	igned for a liv areas where ide will fit betw bers. I to be SP No. ction device(s port concentra down at 2-0-1 b down at 6-2 ion of such cco others. I): Lumber Inc 0 () 84 (F), 9=-17	e load of 20. a rectangle veen the bott 2 .) shall be tted load(s) 2 , and 210 lb -4 on bottom nnection dev rease=1.15, 1 (F), 10=-17	0psf iom 219 n vice Plate 75 (F)			A MARINE AND AN	SEA 2867	ROUTER ST. P	

April 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	D1	Common Structural Gable	1	1	Job Reference (optional)	172941925

3-3-15

-0-10-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:32 ID:7VhdcEYOOhPH0eVoXfGC75ztCnX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-2-0

Scale = 1:33.1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20)21/TPI2014	CSI TC BC WB Matrix-MR	0.22 0.16 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 0.00	(loc) 9-10 9-10 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 31 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exu Rigid ceiling directly bracing. (size) 7= Mecha Max Horiz 11=68 (LC Max Uplift 11=-2 (LC Max Grav 7=230 (LC	athing directly applie cept end verticals. applied or 10-0-0 or inical, 11=0-3-0 C 10) C 3) C 2), 11=298 (LC 2)	ed or	 TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.5 This truss ha load of 12.0 overhangs n Truss to be f braced again Gable studs * This truss h on the bottor 3-06-00 tall b chord and ar Bearings are 	7-16; Pr=20.0 psf .15); Pg=20.0 psf; late DOL=1.15); Is b; Cs=1.00; Ct=1.11 s been designed for psf or 2.00 times file on-concurrent with ully sheathed from ist lateral movement spaced at 2-0-0 oc nas been designed on chord in all areas by 2-00-00 wide will by other members.	(roof LI Pf=13.9 =1.0; Re 0 or great at roof le other lin one fac nt (i.e. c ; for a liv s where Il fit betw	: Lum DOL=) psf (Lum) pugh Cat B; F er of min roof) pad of 13.9 p ve loads. the or securely liagonal web) e load of 20.0 a rectangle veen the botto SP No 2	1.15 Fully f live sf on , , Dpsf om					
FORCES	CES (lb) - Maximum Compression/Maximum Tension (lb) - Maximum Tension <t< td=""><td></td></t<>												
BOT CHORD	10-11=-57/161, 9-10 7-8=-57/161)=-57/161, 8-9=-57/1	61,										
WEBS	4-9=-35/66, 3-10=-5	6/89, 5-8=-64/112											LL .
NOTES 1) Unbalanci this design 2) Wind: ASG Vasd=100 II; Exp B; (3E) -0-10 Corner(3E) exposed; members Lumber D 3) Truss des only. For see Stance	ed roof live loads have n. CE 7-16; Vult=130mph mph; TCDL=6.0psf; Bf Enclosed; MWFRS (en)-0 to 2-2-0, Exterior(2N E) 3-3-15 to 6-0-4 zone; end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO igned for wind loads in studs exposed to wind lard Industry Gable End	been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) and C-C Cc v) 2-2-0 to 3-3-15, ; cantilever left and r ght exposed;C-C for for reactions shown rL=1.33 the plane of the trus (normal to the face) d Details as applicat	r Cat. prner right ; ss), obe,								and	ORTH CA ORTEESS SEA 2867	L TT EER Stuin

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

April 23,2025

L. GA (IIIIIII)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	D2	Common	2	1	Job Reference (optional)	172941926

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:32 ID:7VhdcEYOOhPH0eVoXfGC75ztCnX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:30.7

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.17 0.05 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 6 6-7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 36 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep	t* 7-2:2x6 SP No.2	5) * This truss h on the bottor 3-06-00 tall b chord and ar 6) Bearings are	has been design in chord in all an by 2-00-00 wide by other member assumed to be	ned for a liv reas where will fit betw ers. e: Joint 7 SF	e load of 20.0 a rectangle reen the botto P No.2 .	Dpsf om						

TOP CHORD	Structural wood sheathing directly applied or
	6-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing

REACTIONS (size) 5= Mechanical, 7=0-3-0 Max Horiz 7=69 (LC 10) Max Uplift 7=-2 (LC 13) Max Grav 5=226 (LC 2), 7=301 (LC 2) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/44, 2-3=-230/82, 3-4=-212/80, 2-7=-325/174, 4-5=-248/105 BOT CHORD 6-7=-85/54, 5-6=-16/18 WEBS 3-6=-7/40, 4-6=-22/149, 2-6=0/137

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-10-0 to 2-2-0, Interior (1) 2-2-0 to 3-3-15, Exterior(2E) 3-3-15 to 6-0-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- This truss has been designed for greater of min roof live 4) load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to 8) bearing plate capable of withstanding 2 lb uplift at joint 7.

LOAD CASE(S) Standard

April 23,2025

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	D3	Common	7	1	Job Reference (optional)	172941927

3-3-15

-0-10-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:32 ID:7VhdcEYOOhPH0eVoXfGC75ztCnX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-2-0

Page: 1

Scale = 1:30.7

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.18 0.06 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 6 6-7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 36 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp B; E Exterior(22 Exterior(22 Fright expos for membe Lumber DO DOL=1.15 Exp.; Ce=(4) This truss load of 12. overhangs	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 5= Mecha Max Horiz 7=68 (LC Max Uplit 7=-2 (LC Max Grav 5=230 (LC (Ib) - Maximum Com Tension 1-2e0/41, 2-3=-235// 2-7=-321/170, 4-5=- 6-7=-84/53, 5-6=-16 3-6=-5/43, 4-6=-24/1 droof live loads have E7-16; Vult=130mph mph; TCDL=6.0psf; Br Enclosed; MWFRS (er c) -0-10-0 to 2-2-0, Int c) 3-3-15 to 6-0-4 zong ed; end vertical left a brs and forces & MWFI DL=1.60 plate grip DC DC 7-16; Pr=20.0 psf; F Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 has been designed for 0 psf or 2.00 times fla non-concurrent with or	athing directly applied cept end verticals. applied or 10-0-0 oc 12) 13) 2 2), 7=298 (LC 2) pression/Maximum 81, 3-4=-219/83, 253/106 18 54, 2-6=0/140 been considered for (3-second gust) CDL=6.0psf; h=25ft; (ivelope) and C-C erior (1) 2-2-0 to 3-3- e; cantilever left and nd right exposed;C-C RS for reactions show L=1.33 roof LL: Lum DOL=1. 2f=3.9 psf (Lum 1.0; Rough Cat B; Fu greater of min roof Ii roof load of 13.9 psf ther live loads.	5) * This tru on the bo 3-06-00 t chord an 6) Bearings d or 7) Refer to 8) Provide r bearing p LOAD CASE LOAD CASE	ss has been design ttom chord in all an all by 2-00-00 wide d any other membe are assumed to be girder(s) for truss to nechanical connect late capable of with (S) Standard	ed for a liv eas where will fit betv rs. : Joint 7 SI truss conr ion (by oth standing 2	re load of 20.0 a rectangle veen the botto P No.2 . nections. ers) of truss t 2 lb uplift at jo	Opsf om int 7.				SEA 2867	EER SK

overhangs non-concurrent with other live loads. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advanciation (www.tpinst.org)

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

April 23,2025

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	E1	Diagonal Hip Girder	1	1	Job Reference (optional)	172941928

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:32 ID:0dj9LjbillyuTjMuEt_IVvzshcu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:39.3

Plate Offsets (X, Y): [8:0-2-12,0-3-4]

		1											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 NO IRC2021	I/TPI2014	CSI TC BC WB Matrix-MP	0.69 0.44 0.15	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 0.02 0.00	(loc) 6-7 6-7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 5= Mecha Max Horiz 7=75 (LC Max Uplift 5=-71 (LC 7=-49 (LC 7=302 (LC 7=302 (LC	athing directly applie cept end verticals. applied or 6-0-0 oc anical, 6=0-3-12, 7=0 8) 2 41), 6=-148 (LC 7), 2 7) 42), 6=-481 (LC 18), 2 41)	5) 6) ed or 7) 8) ¹⁻⁸⁻⁹ 9) 10 LCC	* This truss h on the bottor 3-06-00 tall l chord and ar Bearings are SP No.2. Refer to gird Provide mec bearing plate 5, 148 lb upl "NAILED" in NDS guidline) In the LOAD of the truss a DAD CASE(5)	has been designed in chord in all areas by 2-00-00 wide wi by other members. assumed to be: Jo er(s) for truss to tru- hanical connection capable of withsta fif at joint 6 and 49 dicates 2-12d (0.14 ss. CASE(S) section, are noted as front (Standard	for a liv s where Il fit betv point 7 SI uss conr (by oth anding 7 Ib uplift 18"x3.25 loads a F) or ba	e load of 20.0 a rectangle veen the botto P No.2, Joint nections. ers) of truss t '1 lb uplift at j at joint 7. ") toe-nails p oplied to the l ck (B).	Dpsf om 6 oint er face					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 2-8=-198/53, 1-2=0/- 3-4=-47/20, 4-5=-84, 7-8=-6/4, 6-7=-73/8,	npression/Maximum 44, 2-3=-161/359, /24 5-6=-327/160	1)	Dead + Sno Increase=1 Uniform Lo Vert: 1-2 Concentrat Vert: 12=	ow (balanced): Lun .15 ads (lb/ft) =-46, 2-4=-46, 5-8 ed Loads (lb) ⊧60 (F), 13=-1 (B)	=-19	rease=1.15, 1	Plate					
 NOTES NOTES 1) Wind: AS: Vasd=100 II; Exp B; and right Lumber D 2) TCLL: AS Plate DOI DOL=1.1! Exp.; Ce= 3) Unbalanc design. 4) This truss load of 12 	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Bf Enclosed; MWFRS (er exposed ; end vertical I IOL=1.60 plate grip DO CCE 7-16; Pr=20.0 psf; F 5 Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 ed snow loads have be thas been designed for 0.0 psf or 2.00 times flat	(3-second gust) CDL=6.0psf; h=25ft; ivelope); cantilever le left and right exposed DL=1.33 roof LL: Lum DOL=1 Pf=13.9 psf (Lum 1.0; Rough Cat B; Fu even considered for the r greater of min roof t roof load of 13.9 ps	Cat. eft d; .15 ully is live f on								And	SEA 2867	ROUNT L

- 3) Unbala ed snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on 4) overhangs non-concurrent with other live loads.

mmm April 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	E2	Jack-Closed	1	1	Job Reference (optional)	172941929

0-10-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:32 ID:biF0qZZ09?X8eo4_5NnRgJztCnW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:34.6

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	1/TPI2014	CSI TC BC WB Matrix-MP	0.46 0.35 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.08 0.01	(loc) 6-9 6-9 2	l/defl >999 >982 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 30 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-3-0, 1 Max Horiz 2=57 (LC Max Uplift 2=-26 (LC 6=-1 (LC Max Grav 2=284 (LC (LC 22)	athing directly applie cept end verticals. • applied or 10-0-0 oc 5= Mechanical, 6=0-3 14) 2 11), 5=-104 (LC 22) 15) C 2), 5=-6 (LC 11), 6:	4) 5) d or 5; 6) 3-8 7) 8)), _ =472 LC	This truss ha load of 12.0 µ overhangs no * This truss h on the bottom 3-06-00 tall b chord and an Bearings are SP No.2 . Refer to girdd Provide mecl bearing plate 5, 1 lb uplift a DAD CASE(S)	s been designed for osf or 2.00 times fit on-concurrent with has been designed in chord in all areas by 2-00-00 wide will by other members. assumed to be: Jo er(s) for truss to tru hanical connection is capable of withsta at joint 6 and 26 lb Standard	or great at roof k other liv for a liv s where I fit betv bint 2 SI uss conr (by oth unding 1 uplift at	er of min roo bad of 13.9 p re loads. e load of 20. a rectangle veen the bott P No.2, Join nections. ers) of truss 04 lb uplift a joint 2.	f live ssf on Opsf tom t 6 to t joint					
FORCES	(lb) - Maximum Corr	pression/Maximum											
TOP CHORD	1-2=0/16, 2-3=-167/	54, 3-4=-230/116,											
BOT CHORD WEBS	2-6=-99/160, 5-6=-3 3-6=-511/379, 4-6=-	3/35 180/332											
NOTES 1) Wind: ASC Vasd=103 II; Exp B; E Exterior(2E 7-0-14 zor vertical lef forces & M DOL=1.60 2) TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce=I 3) Unbalance design.	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er E) -0-10-5 to 2-1-11, Ir e; cantilever left and r t and right exposed;C- IWFRS for reactions s plate grip DOL=1.33 CE 7-16; Pr=20.0 psf; F Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 ed snow loads have be	Cat. .15 ılly								and the state	SEA 2867	ROUTE LATER ALING	

April 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	E3	Diagonal Hip Girder	3	1	Job Reference (optional)	172941930

3-3-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:32 ID:crNVO2IOKtoRjRIMVTgt1EzODoo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-6-0

Page: 1

Scale = 1:43.4

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2021	/TPI2014	CSI TC BC WB Matrix-MP	0.24 0.11 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 6 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 40 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 	athing directly appli cept end verticals. applied or 10-0-0 o	6) 7) 8) ed or 9) c 10]	Bearings are Refer to gird Provide mec bearing plate 7 and 33 lb u "NAILED" int NDS guidline) In the LOAD of the truss a	assumed to be: , er(s) for truss to t hanical connectio capable of withs uplift at joint 5. dicates 2-12d (0.1 ss. CASE(S) section are noted as front Standard	Joint 7 SF russ conr on (by oth itanding 3 148"x3.25 a, loads ap (F) or ba	P No.2 lections. ers) of truss 9 lb uplift at ") toe-nails p oplied to the ck (B).	to joint er face					
REACTIONS	(size) 5= Mecha Max Horiz 7=104 (LC Max Uplift 5=-33 (LC Max Grav 5=280 (LC	nical, 7=0-4-13 2 8) 3 8), 7=-39 (LC 7) 2 18), 7=354 (LC 2)	1)	Dead + Sno Increase=1 Uniform Lo Vert: 1-2	ow (balanced): Lu .15 ads (lb/ft) =-48, 2-4=-48, 5-7	imber Inc 7=-20	rease=1.15,	Plate					
TOP CHORD	(Ib) - Maximum Com Tension 2-7=-330/50, 1-2=0/- 3-473/27 4-593	pression/Maximum 44, 2-3=-303/17, /26		Concentrat Vert: 6=-	ed Loads (lb) 3 (F), 3=-12 (F), 1	11=3 (B),	12=-1 (B)						
BOT CHORD WEBS	6-7=-102/14, 5-6=-5 2-6=0/257, 3-6=0/53	1/250 , 3-5=-297/42											
NOTES 1) Wind: AS Vasd=10: II; Exp 8; and right Lumber I 2) TCLL: AS Plate DO DOL=1.1 Exp; Ce= 3) Unbalanc design.	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B/ Enclosed; MWFRS (er exposed ; end vertical I OCL=1.60 plate grip DO SCE 7-16; Pr=20.0 psf (L=1.15); Pg=20.0 psf; F 5 Plate DOL=1.15); Is= =0.9; Cs=1.00; Ct=1.10 zed snow loads have be	(3-second gust) CDL=6.0psf; h=25ft; ivelope); cantilever i eft and right expose L=1.33 roof LL: Lum DOL= Yf=13.9 psf (Lum 1.0; Rough Cat B; F	; Cat. left d; 1.15 fully nis								and a second	OR FEESS SEA	ROUNT L

- This truss has been designed for greater of min roof live 4) load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- * This truss has been designed for a live load of 20.0psf 5) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	E4	Diagonal Hip Girder	1	1	Job Reference (optional)	172941931

Run: 8.73 E May 9 2024 Print: 8.730 E May 9 2024 MiTek Industries, Inc. Wed Apr 23 16:10:28 ID:41xtbOJ05AwILbtY3BB6aSzODon-YJM7GS8btiX4Gw0BGgBdqyrOf2k3YhoxxO5S7kzNoTA

Scale = 1:31.2

Plate Offsets (X, Y): [6:0-5-4,0-2-0]

Loading TCLL (roof) Snow (Pf/Pg)	(psf) 20.0 13.9/20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.24 0.20	DEFL Vert(LL) Vert(CT)	in -0.01 -0.02	(loc) 7 7-8	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 244/190
TCDL	10.0	Rep Stress Incr	NO		WB	0.18	Horz(CT)	0.01	5	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MP		- (-)						
BCDL	10.0											Weight: 43 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASG Vasd=103 II; Exp B; I and right e Lumber DI 2) TCLL: ASG Plate DOL DOL=1.15 Exp.; Ce=I 3) Unbalance design. 4) This truss load of 12. overhangs	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.3 Structural wood she: 6-0-0 oc purlins, exi Rigid ceiling directly bracing. (lb/size) 5=223/ Md Max Horiz 8=93 (LC Max Uplift 5=-50 (LC Max Uplift 5=-50 (LC Max Grav 5=-294 (LC (lb) - Maximum Com Tension 2-8=-323/69, 1-2=0/- 3-4=-58/24, 4-5=-86 7-8=-5/28, 6-7=0/40, 5-6=-100/447 6-8=-97/13, 2-6=-31/- CE 7-16; Vult=130mph imph; TCDL=6.0psf; Bd Enclosed; MWFRS (en exposed ; end vertical I OL=1.60 plate grip DO CE 7-16; Pr=20.0 psf (=1.15); Pg=20.0 psf; [] Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 ed snow loads have be has been designed for .0 psf or 2.00 times flat s non-concurrent with c	t* 7-3:2x4 SP No.3 athing directly applied cept end verticals. applied or 10-0-0 oc echanical, 8=306/0-4 8) (3), 8=-45 (LC 7) (16) (3), 8=362 (LC 2) pression/Maximum 44, 2-3=-492/70, (16) (3-5e-23/111, (423, 3-5=-479/100) (3-second gust) CDL=6.0psf; h=25ft; 0; velope); cantilever le eft and right exposed L=1.33 roof LL: Lum DOL=1. 2f=13.9 psf (Lum 1.0; Rough Cat B; Fu en considered for thi r greater of min roof II toof load of 13.9 psf ther live loads.	5) d or 7) 8) -13 9) LC 1) Cat. (ft 1; 15 lly s ve on	* This truss h on the botton 3-06-00 tall b chord and ar Refer to girdd Provide mecl bearing plate 8 and 50 lb u Hanger(s) or provided suff down and 16 up at 3-3-4, 8 lb down an up at 3-6-1, bottom chorc device(s) is t In the LOAD of the truss a DAD CASE(S) Dead + Snc Increase=1. Uniform Loa Vert: 1-2: Concentrate Vert: 7=-1	as been designed as been designed h chord in all areas y 2-00-00 wide wil y other members. ar(s) for truss to tru- nanical connection capable of withsta plift at joint 5. other connection of cicient to support co lb up at 2-0-6, an and 26 lb down at d 10 lb up at 2-0-6 and 43 lb down an l. The design/selen he responsibility of CASE(S) section, re noted as front (I Standard w (balanced): Lum 15 ads (lb/ft) =-48, 2-4=-48, 7-8= ad Loads (lb) 3 (B), 3=-12 (B), 12	for a liv s where I fit betw (by oth anding 4 device(s oncentra d 44 lb 4-6-6 c 5, and 4 d 46 lb ction of others. loads a F) or ba	e load of 20.1 a rectangle veen the bott ections. ers) of truss : 5 lb uplift at j) shall be tted load(s) 3 down and 37 n top chord, lb down and up at 4-6-6 such connec oplied to the ck (B). rease=1.15, 5=-20 13=-21 (F)	Dpsf om oint 6 lb and 4 lb on face Plate				ORTEESS SEA 2867	RO DEEP. SKIIII

- Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 3) design.
- This truss has been designed for greater of min roof live 4) load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

GA mm April 23,2025

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	E5	Diagonal Hip Girder	2	1	Job Reference (optional)	172941932

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:32 ID:41xtbOJ05AwILbtY3BB6aSzODon-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:41.7

Plate Offsets (X, Y): [7:0-2-8,0-3-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2021	/TPI2014	CSI TC BC WB Matrix-MP	0.19 0.09 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 6 6-7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=103 II; Exp B; I and right e Lumber Di 2) TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce= 3) Unbalance design. 4) This truss load of 12. overhangs	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 5-6-6 oc purlins, exx Rigid ceiling directly bracing. (size) 5= Mecha Max Horiz 7=79 (LC Max Grav 5=233 (LC (lb) - Maximum Com Tension 2-7=-292/50, 1-2=0/3 3-4=-49/20, 4-5=-78/ 6-7=-77/10, 5-6=-17/ 2-6=0/236, 3-6=0/43 CE 7-16; Vult=130mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (en Enclosed; AWFRS (en Enclosed; end vertical I OL=1.60 plate grip DO CE 7-16; Pr=20.0 psf (=1.15); Pg=20.0 psf; [=1.15); Pg=20.0 psf; se Display CS=1.00; Ct=1.10 ad snow loads have be has been designed for 0 psf or 2.00 times flat in non-concurrent with o	athing directly applie sept end verticals. applied or 10-0-0 oc nical, 7=0-4-10 8) 11), 7=-38 (LC 7) 2 18), 7=315 (LC 18) pression/Maximum 34, 2-3=-275/2, /14 230 , 3-5=-265/18 (3-second gust) CDL=6.0psf; h=25ft; velope); cantilever le eft and right exposer L=1.33 roof LL: Lum DOL=1 /f=13.9 psf (Lum 1.0; Rough Cat B; FL en considered for thi r greater of min roof I roof load of 13.9 ps ther live loads.	5) d or 7) 8) 10) LO 1) Cat. eft 3; .15 .15 .15 .15 .15 .15 .15 .15	* This truss h on the botton 3-06-00 tall b chord and ar Refer to girdt Provide meci bearing plate 7 and 8 lb up "NAILED" inc (0.148"x3.25 In the LOAD of the truss a AD CASE(S) Dead + Snot Increase=1. Uniform Loa Vert: 1-2: Concentrate Vert: 6=-	as been designed n chord in all areas y 2-00-00 wide wil y other members. assumed to be: Jo er(s) for truss to tru- nanical connection capable of withsta lift at joint 5. lift at join	for a liv s where I fit betw bint 7 SF iss conr (by oth anding 3 (8"x3") of S guidlii loads ap F) or ba aber Inc =-20	e load of 20.0 a rectangle veen the botto P No.2 . lections. ers) of truss t 8 lb uplift at ju or 2-12d nes. oplied to the f ck (B). rease=1.15, F	Opsf om opint ace Plate				SEA 2867	ROJULA EER.GL	

April 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	E6	Jack-Open	24	1	Job Reference (optional)	172941933

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:33 ID:CGiMI1FV1yQss_ZnqL7APczODor-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.34	Vert(LL)	0.02	4-5	>999	240	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.23	Vert(CT)	-0.02	4-5	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.02	3	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MR								
BCDL	10.0	-									Weight: 16 lb	FT = 20%
LUMBER			4) * This truss	has been design	ed for a liv	e load of 20.	Opsf					
TOP CHORD	2x4 SP No.2		on the botto	om chord in all are	eas where	a rectangle						
BOT CHORD	2x4 SP No.2		3-06-00 tall	by 2-00-00 wide	will fit betw	veen the bott	om					
WEBS	2x4 SP No.3		chord and a	any other membe	rs.							
BRACING			Bearings a	e assumed to be	:, Joint 5 S	SP No.2 .						

4-0-0

Refer to girder(s) for truss to truss connections. 6)

Provide mechanical connection (by others) of truss to 7) bearing plate capable of withstanding 46 lb uplift at joint 3.

LOAD CASE(S) Standard

April 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

TOP CHORD Structural wood sheathing directly applied or

Scale = 1:27.7

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **REACTIONS** (size) 3= Mechanical, 4= Mechanical, 5=0-3-8 Max Horiz 5=73 (LC 13)

Max Uplift 3=-46 (LC 13) Max Grav 3=108 (LC 29), 4=47 (LC 29), 5=218 (LC 2) FORCES (lb) - Maximum Compression/Maximum

4-0-0 oc purlins, except end verticals.

Tension TOP CHORD

2-5=-191/98, 1-2=0/41, 2-3=-91/66 BOT CHORD 4-5=0/0

NOTES

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-10-0 to 2-2-0, Interior (1) 2-2-0 to 3-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- This truss has been designed for greater of min roof live 3) load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	E7	Jack-Open	3	1	Job Reference (optional)	172941934

4-0-0 4-0-0

-0-10-8 0-10-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:33 ID:CGiMI1FV1yQss_ZnqL7APczODor-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:28.4

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MR	0.29 0.19 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.02 -0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=103 II; Exp B; E Exterior(2I 3-11-4 zor vertical left forces & M DOL=1.60 2) TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce= (3) Unbalance design. 4) This truss load of 12. overhangs	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 4-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 3= Mecha 5=0-3-0 Max Horiz 5=55 (LC Max Uplift 3=-35 (LC Max Uplift 3=-35 (LC (lb) - Maximum Com Tension 2-5=-236/137, 1-2=0 4-5=0/0 CE 7-16; Vult=130mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (en Enclosed;	athing directly applied cept end verticals. applied or 10-0-0 oc nical, 4= Mechanical 15) 15) 22), 4=45 (LC 22), 22) pression/Maximum //33, 2-3=-75/50 (3-second gust) CDL=6.0psf; h=25ft; (velope) and C-C terior (1) 2-1-15 to ight exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1. 2f=13.9 psf (Lum 1.0; Rough Cat B; Fu en considered for thi r greater of min roof II toof load of 13.9 psf ther live loads.	5) * This truss on the botto 3-06-00 tall chord and a 6) Bearings ar 8) Provide me bearing plat 3. LOAD CASE(S Cat.	has been designed m chord in all areas by 2-00-00 wide wil ny other members. e assumed to be: , , der(s) for truss to tru chanical connection e capable of withsta) Standard	for a liv s where I fit betw Joint 5 S Iss conr (by oth anding 3	e load of 20.0 a rectangle veen the botto SP No.2 . nections. ers) of truss t 5 lb uplift at j	Dpsf om oont				SEA 2867	ROUNT FRANCISCO STATE	

April 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

L. GAL

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	E8	Jack-Open	4	1	Job Reference (optional)	172941935

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:33 ID:CGiMI1FV1yQss_ZnqL7APczODor-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:33.3

Loading	(psf) 20.0	Spacing Plate Grip DOI	2-0-0 1 15	CSI	0 15	DEFL	in 0.02	(loc)	l/defl ∖aaa	L/d 240	PLATES	GRIP 244/190
Spow (Df/Dg)	12 0/20 0		1.15		0.10	Vert(LL)	0.02	7	>000	100	101120	244/130
	10.0	Rep Stress Incr	VES	WB	0.19	Horz(CT)	-0.02	5	>999 n/a	n/a		
BCU	10.0	Code	IPC2021/TPI201	1 Matrix-MP	0.00	11012(01)	-0.01	5	n/a	n/a		
BCDL	10.0	Code	11(02021/111201)								Weight: 19 lb	FT = 20%
-											- 3	
LUMBER			4) * This t	uss has been designe	ed for a liv	e load of 20.	0psf					
TOP CHORD	2x4 SP No.2			ottom chord in all are	as where	a rectangle						
BOICHORD	2x4 SP No.2 *Excep	t^ 7-3:2x4 SP No.3	3-06-00	nd any other member		veen the boll	om					
WEBS	2X4 5P N0.3		5) Bearing	s are assumed to be:	Joint 8 9	SP No 2						
BRACING		othing discotly opplie	d ar 6) Refer to	airder(s) for truss to	truss conr	nections.						
TOP CHORD	4-0-0 oc purlins, ex	cept end verticals.	7) Provide	mechanical connection	on (by oth	ers) of truss	to					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	bearing 4 and 7	plate capable of with Ib uplift at joint 5.	standing 3	30 lb uplift at j	joint					
REACTIONS	(size) 4= Mecha	nical, 5= Mechanical	I, LOAD CAS	E(S) Standard								
	8=0-3-8											
	Max Horiz 8=73 (LC	13)										
	Max Uplift 4=-30 (LC	: 13), 5=-7 (LC 13)										
	Max Grav 4=93 (LC (LC 2)	29), 5=62 (LC 29), 8	=218									
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension											
TOP CHORD	2-8=-198/85, 1-2=0/-	41, 2-3=-115/0,										
	3-4=-61/59											
BOT CHORD	7-8=-88/83, 6-7=-18	/31, 3-6=-21/52, 5-6=	=0/0									
NOTES												
1) Wind: AS	CE 7-16; Vult=130mph	(3-second gust)									minin	1111
Vasd=103	Bmph; TCDL=6.0psf; B	CDL=6.0psf; h=25ft;	Cat.								I'' H CA	ROUL
II; Exp B;	Enclosed; MWFRS (en	ivelope) and C-C								N	A	" Unit
2-11-4 70	E) -0-10-0 to 2-0-12, If ne: cantilever left and r	idenor (1) 2-0-12 to								3.	O' ESS	10.
vertical let	ft and right exposed C-	C for members and								:5		TYPE -
forces & M	AWFRS for reactions s	hown: Lumber								7		
DOL=1.60	plate grip DOL=1.33	- ,							-		CEA	a 1 1 1
2) TCLL: AS	CE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1	.15						=	:	SLA	·- : :
Plate DOL	_=1.15); Pg=20.0 psf; F	f=13.9 psf (Lum							=		2867	77 ; =
DOL=1.15	5 Plate DOL=1.15); Is=	1.0; Rough Cat B; Fu	ully						-		:	1 3
Exp.; Ce=	0.9; Cs=1.00; Ct=1.10									1	N	- 1 - E
3) I DIS TRUSS	nas been designed for	greater of min foof I	fon							20	O SNGIN	FERRE
overhance	s non-concurrent with c	ther live loads								11	YA, OIN	
overnang.											11 L G	ALILIN

GA mm

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	E9	Jack-Open	5	1	Job Reference (optional)	172941936

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:33 ID:CGiMIFV1yQss_ZnqL7APczODor-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3-0-0

Scal	e =	1:25	.5

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MR	0.20 0.12 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 -0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she: 3-0-0 oc purlins, ex Rigid ceiling directly bracing.	athing directly applie cept end verticals. applied or 10-0-0 or	4) 5) ed or 6) 7) c	* This truss h on the bottor 3-06-00 tall b chord and ar Bearings are Refer to gird Provide mec bearing plate 3.	has been designed in chord in all area by 2-00-00 wide wi by other members. assumed to be: , er(s) for truss to tr hanical connection capable of withst	d for a liv s where ill fit betw Joint 5 S uss conr n (by oth anding 3	e load of 20. a rectangle veen the bott SP No.2 . ections. ers) of truss 4 lb uplift at	0psf .om to joint					
REACTIONS	(size) 3= Mecha 5=0-3-8 Max Horiz 5=57 (LC Max Uplift 3=-34 (LC Max Grav 3=77 (LC (LC 2)	nical, 4= Mechanica 13) 13) 29), 4=33 (LC 29), 5	al, LO 5=181	DAD CASE(S)	Standard								
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 2-5=-162/95, 1-2=0/4 4-5=0/0	pression/Maximum 41, 2-3=-68/49											
NOTES													
 Wind: ASC Vasd=103 II; Exp B; Exterior(2) zone; can and right e MWFRS fi grip DOL= TCLL: AS Plate DOL DOL=1.15 Exp.; Ce= 	CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; B(Enclosed; MWFRS (en E) -0-10-0 to 2-2-0, Intr tilever left and right exp exposed;C-C for memb or reactions shown; Lu =1.33 CE 7-16; Pr=20.0 psf (F = Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10	(3-second gust) CDL=6.0psf; h=25ft; velope) and C-C erior (1) 2-2-0 to 2-1 bosed ; end vertical ers and forces & mber DOL=1.60 pla roof LL: Lum DOL=7 /f=13.9 psf (Lum 1.0; Rough Cat B; F	Cat. 1-4 left te 1.15 ully								North Marine	ORTH CA ORTHESS SEA 2867	ROMAN L

3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

April 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY REENCO A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	E10	Jack-Open	3	1	Job Reference (optional)	172941937

2-3-6

0-10-0

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:33 ID:k38_YhFtGeH0Fq_bGecxtOzODos-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-10-12

Scale = 1:24.3

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 13.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MR	0.17 0.10 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 -0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0										Weight: 11 lb	FT = 20%	
LUMBER TOP CHORD 3OT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 2-10-12 oc purlins, of Rigid ceiling directly bracing.	athing directly applied except end verticals. applied or 10-0-0 oc	5) * This truss on the botto 3-06-00 tall chord and a 6) Bearings ar d or 7) Refer to gird 8) Provide men bearing plat 3.	has been designed m chord in all areas by 2-00-00 wide wil ny other members. e assumed to be:, , ler(s) for truss to tru shanical connection e capable of withsta	for a liv where I fit betw Joint 5 S Iss conr (by oth inding 2	e load of 20. a rectangle veen the both SP No.2 . nections. ers) of truss t 6 lb uplift at j	Opsf om to oint						
REACTIONS	(size) 3= Mecha 5=0-3-8 Max Horiz 5=41 (LC Max Uplift 3=-26 (LC Max Grav 3=82 (LC (LC 22)	nical, 4= Mechanical 12) 15) 22), 4=29 (LC 22), 5:	, LOAD CASE(S,	Standard									
	(lb) - Maximum Com Tension	pression/Maximum											
BOT CHORD	4-5=0/0	/33, 2-3=-32/33											
NOTES													
 Wind: ASC Vasd=103 II; Exp B; I Exterior(2I 2-10-0 zor vertical lef forces & M DOL=1.60 TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce=I Unbalance design. This truss load of 12. overhangs 	CE 7-16; Vult=130mph imph; TCDL=6.0psf; BC Enclosed; MWFRS (en E) -0-10-1 to 2-1-15, In ne; cantilever left and rit t and right exposed;C-1 WFRS for reactions si 0 plate grip DOL=1.33 CE 7-16; Pr=20.0 psf; II =1.15); Pg=20.0 psf; F 5 Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 ed snow loads have be has been designed for .0 psf or 2.00 times flat s non-concurrent with o	(3-second gust) CDL=6.0psf; h=25ft; (velope) and C-C terior (1) 2-1-15 to ight exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1. If=13.9 psf (Lum 1.0; Rough Cat B; Fu en considered for thi r greater of min roof li roof load of 13.9 psf ther live loads.	Cat. .15 Illy s ive i on							and a state of the	SEA 2867	ROUL TALINSIN	A MANDER DE LA COMPANY

April 23,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	E11	Jack-Open	1	1	Job Reference (optional)	172941938

2-10-12

12 6 Г

Carter Components (Sanford, NC), Sanford, NC - 27332,

2-3-6

0-10-0

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:33 ID:8ep6AjHIZZga6Ij9ym9eU1zODop-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2

Page: 1

2-3-6 1 4 3 3x8 II 2-10-12

Scale = 1:21.6 _

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/T	⁻ PI2014	CSI TC BC WB Matrix-MR	0.17 0.10 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 -0.01	(loc) 3-4 3-4 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 2-10-12 oc purlins, of Rigid ceiling directly bracing. (size) 2= Mecha	athing directly applie except end verticals. applied or 10-0-0 oc nical, 3= Mechanica	6) F 7) F t 2 LOA dor t	Refer to girda Provide meci bearing plate 2. D CASE(S)	er(s) for truss to tru nanical connection capable of withsta Standard	ss conr (by oth Inding 2	nections. ers) of truss 6 lb uplift at	to joint					
FORCES TOP CHORD BOT CHORD	Max Horiz 4=34 (LC Max Uplift 2=-26 (LC Max Grav 2=86 (LC (LC 21) (lb) - Maximum Com Tension 1-4=-99/50, 1-2=-54, 3-4=0/0	12) 15) 21), 3=34 (LC 21), 4 pression/Maximum ′37	=119										
 NOTES 1) Wind: ASC Vasd=103 II; Exp B; I Exterior(2I vertical lef forces & M DOL=1.60 2) TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce=I 3) Unbalance design. 4) * This trus on the bott 3-06-00 ta chord and 5) Bearings a 	CE 7-16; Vult=130mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (en E) zone; cantilever left t and right exposed;C- 1WFRS for reactions sl plate grip DOL=1.33 CE 7-16; Pr=20.0 psf; F Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 ad snow loads have be s has been designed fit tom chord in all areas sl Il by 2-00-00 wide will any other members.	(3-second gust) CDL=6.0psf; h=25ft; velope) and C-C and right exposed; C for members and hown; Lumber roof LL: Lum DOL=1 f=13.9 psf (Lum 1.0; Rough Cat B; Fu en considered for th br a live load of 20.0 where a rectangle it between the botto bint 4 SP No.2.	Cat. end .15 JIIy is psf m							. ATTUTAL.	And	SEA 2867	ROUL PHILIPPIN

April 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	E12	Jack-Open	3	1	Job Reference (optional)	172941939

2-8-1

2-8-1

-0-10-8

0-10-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:33 ID:k38_YhFtGeH0Fq_bGecxtOzODos-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 II 2-8-1 Spacing 2-0-0 CSI DEFL l/defl L/d (psf) in (loc) 20.0 Plate Grip DOL 1.15 TC 0.20 Vert(LL) 0.00 4-5 >999 240 BC 13 9/20 0 Lumber DOL 1 15 0.12 Vert(CT) 0.00 4-5 >999 180 10.0 Rep Stress Incr YES WB 0.00 Horz(CT) -0.01 3 n/a n/a 0.0 Code IRC2021/TPI2014 Matrix-MR 10.0 * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 2x4 SP No.2 2x4 SP No.2 3-06-00 tall by 2-00-00 wide will fit between the bottom 2x4 SP No.3 chord and any other members. Bearings are assumed to be: , Joint 5 SP No.2 . 5) Refer to girder(s) for truss to truss connections. 6) Structural wood sheathing directly applied or Provide mechanical connection (by others) of truss to 7) 2-8-1 oc purlins, except end verticals. bearing plate capable of withstanding 32 lb uplift at joint Rigid ceiling directly applied or 10-0-0 oc 3 bracing. LOAD CASE(S) Standard 3= Mechanical, 4= Mechanical, 5=0-3-8 Max Horiz 5=50 (LC 10) Max Uplift 3=-32 (LC 13) Max Grav 3=68 (LC 29), 4=30 (LC 11), 5=169 (LC 2) (lb) - Maximum Compression/Maximum Tension 2-5=-151/89, 1-2=0/41, 2-3=-65/44 4-5=0/0 1) Wind: ASCE 7-16; Vult=130mph (3-second gust)

- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-10-0 to 2-2-0, Interior (1) 2-2-0 to 2-7-5 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15
- Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- This truss has been designed for greater of min roof live 3) load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhands non-concurrent with other live loads.

PLATES

Weight: 11 lb

MT20

GRIP

244/190

FT = 20%

April 23,2025

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Scale = 1:25.8

Loading

TCDL

BCLL

BCDL

WFBS

LUMBER

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

NOTES

TOP CHORD

BOT CHORD

REACTIONS (size)

BRACING

TCLL (roof)

Snow (Pf/Pg)

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	E13	Jack-Open	1	1	Job Reference (optional)	172941940

-0-10-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:33 ID:k38_YhFtGeH0Fq_bGecxtOzODos-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-8-

Page: 1

Scale = 1:32

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI20	CSI TC BC WB 4 Matrix-MR	0.14 0.09 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 7-8 6 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=103i II; Exp B; E	2x4 SP No.2 2x4 SP No.2 *Except 2x4 SP No.2 *Except 2x4 SP No.3 Structural wood sheat 2-8-1 oc purlins, exc Rigid ceiling directly bracing. (size) 4= Mecha 8=0-3-8 Max Horiz 8=50 (LC Max Uplift 5=-31 (LC Max Uplift 5=-31 (LC Max Grav 4=34 (LC) (LC 2) (lb) - Maximum Com Tension 2-8=-152/83, 1-2=0/4 7-8=-47/38, 6-7=-12/ SE 7-16; Vult=130mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (en	t* 7-3:2x4 SP No.3 athing directly applie- cept end verticals. applied or 10-0-0 oc nical, 5= Mechanical 10) 13) 2), 5=67 (LC 29), 8= pression/Maximum 41, 2-3=-63/7, 3-4=-7 (30, 3-6=-63/95, 5-6= (3-second gust) CDL=6.0psf; h=25ft; velope) and C-C	4) * This on the 3-06-0 chord 5) Bearin 6) Refer 7) Provic bearin 5. LOAD CA	truss has been des bottom chord in al 0 tall by 2-00-00 w and any other men gs are assumed to to girder(s) for trus e mechanical conr g plate capable of SE(S) Standard	signed for a liv Il areas where vide will fit betw nbers. b be: , Joint 8 S s to truss conr ection (by oth withstanding 3	e load of 20.0 a rectangle veen the botto SP No.2 . nections. ers) of truss to 11 lb uplift at jo	Dpsf om o oint				weight: 14 ib		
Exterior(2E 2-7-5 zone vertical left forces & M DOL=1.60 2) TCLL: ASC Plate DOL: DOL=1.15 Exp.; Ce= 3) This truss load of 12. overhangs	E) -0-10-0 to 2-0-12, In ;; cantilever left and rig ; and right exposed;C-1 WFRS for reactions sł plate grip DOL=1.33 CE 7-16; Pr=20.0 psf (r =1.15); Pg=20.0 psf; P Plate DOL=1.15); Is=' .9; Cs=1.00; Ct=1.10 has been designed for 0 psf or 2.00 times flat non-concurrent with o	terior (1) 2-0-12 to ht exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1: *f=13.9 psf (Lum 1.0; Rough Cat B; Fu greater of min roof I roof load of 13.9 psf ther live loads.	.15 Illy ive f on							and Street	SEA 2867	L ALINSTII	Mannannan I.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GA mmm

April 23,2025

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	E14	Jack-Open	1	1	Job Reference (optional)	172941941

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:33 ID:biF0qZZ09?X8eo4_5NnRgJztCnW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

3x5 =

0-3-8		2-4-0
	2-2-10	
	1-11-2	
0-3-8		0-1-5

Scale = 1:25.3

Plate Offsets (X, Y): [4:1-5-7,0-2-11]

Loading TCLL (roof) Snow (Pf/Pg)	(psf) 20.0 13.9/20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.06	DEFL Vert(LL) Vert(CT)	in 0.00 0.00	(loc) 4-9 4-9	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 244/190	
BCLL	10.0 0.0*	Code	IRC2021	/TPI2014	Matrix-MP	0.00	Horz(CT)	0.00	3	n/a	n/a		FT 20%	
BCDL	10.0											Weight: 9 lb	FI = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 2-4-0 oc purlins, exx Rigid ceiling directly bracing. (size) 2=1-11-2, Max Horiz 2=21 (LC Max Uplift 2=-31 (LC Max Grav 2=181 (LC (LC 36) (lb) - Maximum Com	athing directly applie cept end verticals. applied or 10-0-0 oc 3= Mechanical, 4=1- 14) 11), 3=-7 (LC 15) 22), 3=41 (LC 22), pression/Maximum	5) 6) 7) d or 8) 9) 10) 4=16 11)	This truss ha load of 12.0 p overhangs no Gable studs a * This truss h on the botton 3-06-00 tall b chord and an Bearings are Refer to girda Provide mech bearing plate 2, 7 lb uplift a See Standare Detail for Con consult qualit	s been designed for osf or 2.00 times fla on-concurrent with spaced at 2-0-0 oc as been designed n chord in all areas y 2-00-00 wide will y other members. assumed to be; , of er(s) for truss to tru nanical connection capable of withsta t joint 3 and 31 lb d Industry Piggyban nection to base tru ied building design	or greate at roof k other liv for a liv where l fit betw loint 2 S ss conr (by oth nding 3 uplift at ck Trus uss as a los a	er of min roof I pad of 13.9 ps ve loads. e load of 20.0 a rectangle veen the botto SP No.2 . vections. ers) of truss to 1 lb uplift at jo joint 2. s Connection applicable, or	live f on psf m o pint						
TOP CHORD	Tension 1-2=0/16, 2-3=-148/*	111, 3-4=0/0	LO	AD CASE(S)	Standard									
BOT CHORD	2-4=-110/177													
 Wind: ASt Vasd=103 Visd=103 (3E) zone left and rig MWFRS f grip DOL= Truss des only. For see Stand or consult TCLL: AS Plate DOL DOL=1.15 Exp.; Ce= Unbalance design. 	CE 7-16; Vult=130mph imph; TCDL=6.0psf; B0 Enclosed; MWFRS (en ; cantilever left and righ pht exposed;C-C for me or reactions shown; Lu =1.33 igned for wind loads in studs exposed to wind lard Industry Gable End qualified building desig CE 7-16; Pr=20.0 psf; P i Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 ed snow loads have be	(3-second gust) CDL=6.0psf; h=25ft; velope) and C-C Con t exposed ; end vert embers and forces & mber DOL=1.60 plat the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TPI roof LL: Lum DOL=1. Ye=13.9 psf (Lum 1.0; Rough Cat B; Fu en considered for thi	Cat. mer ical s le, I 1. .15 illy s								and a start of the	SEA 2867	L ALINST	and an

April 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	E15	Jack-Open	4	1	Job Reference (optional)	172941942

-0-10-8

0-10-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:33 ID:k38_YhFtGeH0Fq_bGecxtOzODos-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1-10-15

1-10-15

Scale = 1:26.6

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2	2014 CS CS TC BC WI	SI C C /B latrix-MR	0.10 0.05 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 1-10-15 oc purlins, of Rigid ceiling directly bracing. (size) 3= Mecha 5=0-3-0 Max Horiz 5=32 (LC Max Grav 3=44 (LC (LC 22)	athing directly applied except end verticals. applied or 10-0-0 oc nical, 4= Mechanical 12) 15) 22), 4=18 (LC 13), 5:	5) * Th on t 3-0(cho 6) Bea d or 7) Ref 8) Pro bea 3. LOAD (is truss has the bottom che bebottom che otal by 2- rd and any ot rings are ass ar to girder (s) vide mechani ring plate cap cASE(S) Sta	been designed for nord in all areas w -00-00 wide will fi ther members. sumed to be: , Jo s) for truss to truss ical connection (t pable of withstand tandard	or a live vhere it betw int 5 S s conn by othe ding 1	e load of 20.0j a rectangle een the botto P No.2. ections. ers) of truss to 8 lb uplift at jo	psf m o nint					
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=103r II; Exp B; E Exterior(2E vertical left forces & M DOL=1.60 2) TCLL: ASC Plate DOL 2) TCLL: ASC Plate DOL 2) Unbalance design. 4) This truss I load of 12.1 overhangs	(lb) - Maximum Com Tension 2-5=-145/98, 1-2=0/3 4-5=0/0 E 7-16; Vult=130mph mph; TCDL=6.0psf; BC inclosed; MWFRS (en E) zone; cantilever left and right exposed; C-I WFRS for reactions sl plate grip DOL=1.33 ZE 7-16; Pr=20.0 psf (I =1.15); Pg=20.0 psf; P late DOL=1.15); Is=).9; Cs=1.00; Ct=1.10 d snow loads have be has been designed for 0 psf or 2.00 times flat non-concurrent with o	pression/Maximum 33, 2-3=-34/22 (3-second gust) CDL=6.0psf; h=25ft; (velope) and C-C and right exposed ; e C for members and hown; Lumber roof LL: Lum DOL=1. If=13.9 psf (Lum 1.0; Rough Cat B; Fu en considered for this greater of min roof li roof load of 13.9 psf ther live loads.	Cat. end 15 Ily s ve on							"THURSE		SEA 2867	ROJUL THURSDAY

April 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	E16	Jack-Open	1	1	Job Reference (optional)	172941943

-0-10-0

0-10-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 E May 9 2024 Print: 8.730 E May 9 2024 MiTek Industries, Inc. Wed Apr 23 16:12:10 ID:ZhSv_xhEnnB8C8Y6fw7YTkztCyz-1743ugOCcLVT7IO_ooYnVhc1dZxXAI15dwYPEGzNoRZ

1-7-6

1-7-6

Page: 1

Scale = 1:23.4

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/T	PI2014	CSI TC BC WB Matrix-MR	0.12 0.05 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 1-7-6 oc purlins, ext Rigid ceiling directly bracing. 3-24/ Mer	athing directly applie cept end verticals. applied or 10-0-0 oc	5) F 6) F b 3 LOAI d or	Refer to girde Provide mech bearing plate 3. D CASE(S)	er(s) for truss to tru nanical connection capable of withsta Standard	ss conr (by oth nding 1	ections. ers) of truss to 9 lb uplift at jo	D Dint					
EODOES	(IDSIZE) 5=24/ Met 5=108/1-6 Max Horiz 5=35 (LC Max Grav 3=-19 (LC Max Grav 3=34 (LC (LC 2)	5-14 10) 23) 29), 4=18 (LC 11), 5	= =132										
TOP CHORD	Tension 2-5=-123/85, 1-2=0/3	39, 2-3=-38/26											
BOT CHORD	4-5=0/0												
NOTES 1) Wind: ASI Vasd=102 II; Exp B; Exterior(2 vertical lei forces & M DOL=1.60 2) TCLL: AS Plate DOI DOL=1.15 Exp.; Ce= 3) This truss load of 12 overhangs 4) * This trus on the boil 3-06-00 ta chord and	CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; B0 Enclosed; MWFRS (en E) zone; cantilever left ft and right exposed;C- MWFRS for reactions si Op late grip DOL=1.33 CE 7-16; Pr=20.0 psf (L=1.15); Pg=20.0 psf (L=1.15); Pg=20.0 psf (0.9; Cs=1.00; Ct=1.10) has been designed for 0.0 psf or 2.00 times flat s non-concurrent with c is has been designed f tom chord in all areas t all by 2-00-00 wide will any other members.	(3-second gust) CDL=6.0psf; h=25ft; ivelope) and C-C and right exposed ; C for members and hown; Lumber roof LL: Lum DOL=1 2f=13.9 psf (Lum 1.0; Rough Cat B; Fu r greater of min roof t roof load of 13.9 ps other live loads. or a live load of 20.0 where a rectangle fit between the botto	Cat. end .15 .19 fon psf m							. and the second s	and	SEA 2867	ROUTE ROUTE

April 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	E17	Jack-Open	1	1	Job Reference (optional)	172941944

2-4-6

2-4-6

-0-10-0

0-10-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:34 ID:ZhSv_xhEnnB8C8Y6fw7YTkztCyz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:27.2

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MR	0.14 0.08 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 2-4-6 oc purlins, ex Rigid ceiling directly bracing.	eathing directly applie cept end verticals. v applied or 10-0-0 oc	5) Bearing: 6) Refer to 7) Provide bearing 3. ed or LOAD CASI	are assumed to be: girder(s) for truss to mechanical connecti- plate capable of with: E(S) Standard	, Joint 5 S truss conr on (by oth standing 2	SP No.2 . nections. ers) of truss t ?7 Ib uplift at j	to joint					
FORCES	(size) 3= Mecha 5=0-3-8 Max Horiz 5=46 (LC Max Uplift 3=-27 (LC Max Grav 3=58 (LC (LC 2) (lb) - Maximum Com	anical, 4= Mechanica 13) 213) 29), 4=25 (LC 11), 5 npression/Maximum	l, i=155									
TOP CHORD	2-5=-140/86, 1-2=0/	/39, 2-3=-55/38										
 NOTES Wind: ASC Vasd=103 II; Exp B; I Exterior(2I vertical lef forces & M DOL=1.60 TCLL: ASC Plate DOL DOL=1.15 TCLL: ASC Plate DOL DOL=1.15 This truss load of 12. overhangs * This truss on the bot 3-06-00 ta chord and 	4-3=0/0 CE 7-16; Vult=130mpf mph; TCDL=6.0psf; B Enclosed; MWFRS (er E) zone; cantilever left t and right exposed; C WFRS for reactions s plate grip DOL=1.33 CE 7-16; Pr=20.0 psf; I Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 .0 psf or 2.00 times flat s non-concurrent with s has been designed 1 tom chord in all areas I by 2-00-00 wide will any other members.	a (3-second gust) CDL=6.0psf; h=25ft; hvelope) and C-C and right exposed; -C for members and shown; Lumber (roof LL: Lum DOL=1 Pf=13.9 psf (Lum 1.0; Rough Cat B; Ft) - r or greater of min roof t roof load of 13.9 ps other live loads. for a live load of 20.0 where a rectangle fit between the botto	Cat. end .15 ully live if on psf m							and summer	SEA 2867	E.E.R. Strum

April 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	E18	Jack-Open	4	1	Job Reference (optional)	172941945

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:34 ID:CGiMI1FV1yQss_ZnqL7APczODor-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

-0-10-8 1-2-1

0-10-8 1-2-1

Scale = 1:27.5

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MR	0.14 0.05 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 6 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 1-2-1 oc purlins, exi Rigid ceiling directly bracing. (size) 3= Mecha	athing directly applie cept end verticals. applied or 10-0-0 or nical, 4= Mechanica	5) Bearings 6) Refer to (7) Provide r bearing p and 16 lb ed or LOAD CASE c al,	are assumed to be: , jirder(s) for truss to t nechanical connectio late capable of withs uplift at joint 3. (S) Standard	, Joint 5 S russ conr on (by oth tanding 5	SP No.2 . nections. ers) of truss i lb uplift at jo	to int 4					
FORCES	5=0-3-8 Max Horiz 5=33 (LC Max Uplift 3=-16 (LC Max Grav 3=16 (LC (LC 19)	10) 2 19), 4=-5 (LC 10) 29), 4=16 (LC 11), 5	5=129									
TOP CHORD	Tension 2-5=-120/88, 1-2=0/4	41, 2-3=-29/23										
 NOTES Wind: AS Vasd=100 II; Exp B; Exterior(2 vertical le forces & N DOL=1.6(TCLL: AS Plate DOI DOL=1.11 Exp.; Cee This truss load of 12 overhang * This trus on the bo 3-06-00 tx chord and 	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Bf Enclosed; MWFRS (er 2E) zone; cantilever left ff and right exposed;C- WWFRS for reactions s 0 plate grip DOL=1.33 3CE 7-16; Pr=20.0 psf (L=1.15); Pg=20.0 psf (L=1.15); Pg=20.0 psf (L=1.15); CS=1.00; Ct=1.10 s has been designed for 2.0 psf or 2.00 times flat s non-concurrent with c ss has been designed f ttom chord in all areas all by 2-00-00 wide will d any other members.	(3-second gust) CDL=6.0psf; h=25ft; ivelope) and C-C and right exposed; C for members and hown; Lumber roof LL: Lum DOL= ² ² f=13.9 psf (Lum 1.0; Rough Cat B; F r greater of min roof t roof load of 13.9 ps other live loads. or a live load of 20.0 where a rectangle fit between the bottom	Cat. end 1.15 fully live sf on Opsf							and summing	SEA 2867	EER. China

April 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	V1	Valley	1	1	Job Reference (optional)	172941946

3x5:

10-2-10

10-2-10

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:34 ID:gSGkzNG7oFYjU88zO2ePypzODoq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

20-0-1

9-9-7

Page: 1

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	V2	Valley	1	1	Job Reference (optional)	172941947

2)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:34 ID:gSGkzNG7oFYjU88zO2ePypzODoq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	V3	Valley	1	1	Job Reference (optional)	172941948

Loading

TCDL

BCLL

BCDL

LUMBER

OTHERS

FORCES

WEBS

NOTES

1)

2)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:34 ID:gSGkzNG7oFYjU88zO2ePypzODoq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Martin Hall

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	V4	Valley	1	1	Job Reference (optional)	172941949

5-8-10

5-8-10

Carter Components (Sanford, NC), Sanford, NC - 27332,

3-6-5

12 8 Г

2-0-0

1.15

1 15

YES

4)

5)

6)

7)

8)

9)

3x5 🍫

3-10-0

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Tue Apr 22 13:52:34 ID:gSGkzNG7oFYjU88zO2ePypzODoq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4x5 =

11-0-1

5-3-7

2 9 10 3 4 2x4 🛛 3x5 🔊 11-5-4 CSI DEFL l/defl L/d PLATES GRIP in (loc) TC 0.39 Vert(LL) n/a 999 MT20 244/190 n/a BC 0.34 Vert(TL) n/a n/a 999 WB 0.20 Horiz(TL) 0.00 3 n/a n/a IRC2021/TPI2014 Matrix-MSH Weight: 41 lb FT = 20%TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. All bearings are assumed to be SP No.2 . Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 53 lb uplift at joint 1, 50 lb uplift at joint 3 and 3 lb uplift at joint 4. LOAD CASE(S) Standard

April 23,2025

Page: 1

11-5-4

0-5-3

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Scale = 1:33.9 Loading

TCLL (roof)

TCDL

BCLL

BCDL

Snow (Pf/Pg)

LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 OTHERS BRACING TOP CHORD Structural wood sheathing directly applied or 10-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. **REACTIONS** (size) 1=11-5-4, 3=11-5-4, 4=11-5-4 Max Horiz 1=-69 (LC 9) Max Uplift 1=-53 (LC 35), 3=-50 (LC 34), 4=-3 (IC 13) Max Grav 1=61 (LC 34), 3=65 (LC 35), 4=899 (LC 2) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-128/487, 2-3=-124/479

(psf)

20.0

10.0

10.0

0.0

13.9/20.0

Spacing

Code

Plate Grip DOL

Rep Stress Incr

Lumber DOL

1-4=-382/174, 3-4=-374/172 BOT CHORD WEBS 2-4=-806/255

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 5-9-0, Exterior(2R) 5-9-0 to 8-9-0, Interior (1) 8-9-0 to 11-5-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	V5	Valley	1	1	Job Reference (optional)	172941950

2-10-0

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:34 ID:8ep6AjHIZZga6Ij9ym9eU1zODop-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

<u> </u>			
Scale	= '	1:28.3	

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	21/TPI2014	CSI TC BC WB Matrix-MP	0.23 0.21 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 8-5-4 oc purlins. Rigid ceiling directly bracing. (size) 1=8-5-4, 3 Max Horiz 1=50 (LC Max Uplift 1=-19 (LC Max Grav 1=65 (LC (LC 2)	athing directly applied applied or 6-0-0 oc 3=8-5-4, 4=8-5-4 12) 2 35), 3=-16 (LC 34) 34), 3=69 (LC 35), 4	4) d or 5) 6) 7) 8) 9) =609 L	 TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 Gable study Gable study This truss h on the bottor 3-06-00 tall b chord and ar All bearings Provide mec bearing plate 1 and 16 b u 	7-16; Pr=20.0 psf; .15); Pg=20.0 psf; late DOL=1.15); Is b; Cs=1.00; Ct=1.1 es continuous bott spaced at 4-0-0 or nas been designed n chord in all area: by 2-00-00 wide wi by other members. are assumed to be hanical connectior e capable of withst: plift at joint 3. Standard	(roof LI Pf=13.9 =1.0; Re om choro: c. for a liv s where Il fit betw SP No. (by oth anding 1	.: Lum DOL=1 9 psf (Lum ough Cat B; Fi d bearing. e load of 20.0 a rectangle veen the botto 2. ers) of truss to 9 lb uplift at jo	.15 ully psf m potint					
FURGES	Tension	pression/waximum											
TOP CHORD BOT CHORD WEBS	1-2=-105/311, 2-3=- 1-4=-265/157, 3-4=- 2-4=-519/202	102/304 259/155											
NOTES 1) Unbalance	ed roof live loads have	been considered for											
this design 2) Wind: ASC Vasd=103 II; Exp B; E Exterior(2E Exterior(2F zone; cant and right e	h. CE 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er E) 0-0-6 to 3-0-6, Inter R) 4-3-0 to 7-6-7, Inter ilever left and right ex synosed: C-C for memb	(3-second gust) CDL=6.0psf; h=25ft; tvelope) and C-C ior (1) 3-0-6 to 4-3-0, ior (1) 7-6-7 to 8-5-10 posed ; end vertical le pers and forces &	Cat.) eft								New York	ORTH CA	ROJAN

MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss 3)

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

April 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	10 Eagle Creek - Edisto B - Roof	
25040104	V6	Valley	1	1	Job Reference (optional)	172941951

2-8-10

2-8-10

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Apr 22 13:52:34 ID:8ep6AjHIZZga6Ij9ym9eU1zODop-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4x5 =

2

5-0-1

2-3-7

3

2x4 💊

þ 1 0-0-4 4 2x4 II 2x4 🍫 5-5-4

1-6-5

1-10-0

12 8 Г

Scale = 1:24.3

(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/T	PI2014	CSI TC BC WB Matrix-MP	0.08 0.09 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-5-4 oc purlins. Rigid ceiling directly bracing.	eathing directly applied or 6-0-0 oc	6) C 7) * c 3 c ed or 8) A 9) F b	Gable studs s This truss h on the bottom B-06-00 tall b shord and an All bearings a Provide mech bearing plate	spaced at 4-0-0 oc as been designed a chord in all areas y 2-00-00 wide will y other members. are assumed to be nanical connection capable of withsta	for a liv where I fit betw SP No. (by oth unding 2	e load of 20.0 a rectangle veen the botto 2 . ers) of truss to lb uplift at joi	psf om o nt 3.					
EACTIONS (size) 1=5-5-4, 3=5-5-4, 4=5-5-4 LOAD CASE(S) Standard Max Horiz 1=-31 (LC 11) Max Uplift 3=-2 (LC 14) Max Grav 1=64 (LC 34), 3=67 (LC 35), 4=332												
FORCES (lb) - Maximum Compression/Maximum Tension Top CHORD TOP CHORD 1-2=-60/129, 2-3=-66/123 BOT CHORD 1-4=-116/91, 3-4=-111/88 WEPS 2.4 = -38/100												
ed roof live loads have CE 7-16; Vult=130mpt imph; TCDL=6.0psf; B Enclosed; MWFRS (el E) zone; cantilever left t and right exposed; C WFRS for reactions s) plate grip DOL=1.33 igned for wind loads ir studs exposed to wind ard Industry Gable Er qualified building desi CE 7-16; Pr=20.0 psf; i Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 uires continuous botto	been considered for (3-second gust) CDL=6.0psf; h=25ft nvelope) and C-C t and right exposed; C- for members and shown; Lumber the plane of the tru d (normal to the face id Details as applica igner as per ANSI/TI (roof LL: Lum DOL= Pf=13.9 psf (Lum 1.0; Rough Cat B; F m chord bearing.	r ; Cat. end ss), ble, PI 1. 1.15 ;ully							Contraction of the second s	and an annumber	SEA 2867	EER. CL
	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0 0.0* 10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-5-4 oc purlins. Rigid ceiling directly bracing. (size) 1=5-5-4, Max Horiz 1=-31 (LC Max Uplift 3=-2 (LC Max Uplift 3=-2 (LC Max Uplift 3=-2 (LC (LC 2) (lb) - Maximum Con Tension 1-2=-60/129, 2-3=-6 1-4=-116/91, 3-4=-1 2-4=-248/109 ed roof live loads have be conserved to the second CE 7-16; Vult=130mpt mph; TCDL=6.0psf; B Enclosed; MWFRS (er E) zone; cantilever left t and right exposed; C WFRS for reactions of plate grip DOL=1.33 gned for wind loads in studs exposed to wind ard Industry Gable Er plate grip DOL=1.35; Is= 0.9; Cs=1.00; Ct=1.10 0.9; Cs=1.00; Ct=1.10	(psf) 20.0 13.9/20.0 13.9/20.0 10.0 0.0.*Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code2x4 SP No.2 2x4 SP No.2 2x4 SP No.3Structural wood sheathing directly appli 5-5-4 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing.Structural wood sheathing directly applied or 6-0-0 oc bracing.1=5-5-4, 3=5-5-4, 4=5-5-4 Max Horiz 1=-31 (LC 11) Max Uplift 3=-2 (LC 14) Max Grav 1=64 (LC 34), 3=67 (LC 35), (LC 2)(b) - Maximum Compression/Maximum Tension 1-2=-60/129, 2-3=-66/123 1-4=-116/91, 3-4=-111/88 2-4=-248/109ed roof live loads have been considered for b.CE 7-16; Vult=130mph (3-second gust) mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft Enclosed; MWFRS (envelope) and C-C E) zone; cantilever left and right exposed; t and right exposed; C-C for members and WFRS for reactions shown; Lumber plate grip DOL=1.33 gned for wind loads in the plane of the tru studs exposed to wind (normal to the face ard Industry Gable End Details as applica qualified building designer as per ANSI/TI CE 7-16; Pr=20.0 psf; Pf=13.9 psf (Lum Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum Plate DOL=1.15); Is=1.0; Rough Cat B; F 0.9; CS=1.00; Ct=1.10	(psf) 20.0 13.9/20.0 13.9/20.0 10.0Spacing Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr VES Code2-0-0 Plate Grip DOL 1.15 Rep Stress Incr VES Code2x4 SP No.2 2x4 SP No.2 2x4 SP No.36) C C C 2x4 SP No.2 2x4 SP No.36) C C C CodeStructural wood sheathing directly applied or 5-5-4 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing. (size) $1=5-5-4$, $3=5-5-4$, $4=5-5-4$ Max Horiz $1=-31$ (LC 11) Max Uplift $3=-2$ (LC 41) Max Grav $1=64$ (LC 34), $3=67$ (LC 35), $4=332$ (LC 2)LOA C C C C (b) - Maximum Compression/Maximum Tension $1-2=-60/129$, $2-3=-66/123$ $1-4=-116/91$, $3-4=-111/88$ $2-4=-248/109$ LOA C C C C or members and WFRS for reactions shown; Lumber plate grip DOL=1.33 gned for wind loads in the plane of the truss studs exposed to wind (normal to the face), ard Industry Gable End Details as applicable, qualified building designer as per ANSI/TPI 1. CE 7-16; Pr=20.0 psf; Pf=13.9 psf (Lum Plate DOL=1.15; Is=1.0; Rough Cat B; Fully 0.9; Cs=1.00; Ct=1.10 uriers continuous bottom chord bearing.	(psf) 20.0 13.9/20.0 13.9/20.0 13.9/20.0 10.0Spacing Plate Grip DOL 1.15 Lumber DOL Rep Stress Incr YES CodeCode2x4 SP No.2 2x4 SP No.36)Gable studs st on the bottom 3-06-00 tall b ochord and an 3-06-00 tall b ochord and an 3-06-00 tall b ochord and an structural wood sheathing directly applied or 5-5-4 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing.6)Gable studs st on the bottom 3-06-00 tall b ochord and an at lb earings at 9)(size)1=5-5-4, 3=5-5-4, 4=5-5-4 Max Horiz (LC 2)LOAD CASE(S)(b)- 1=5-54, 3=5-5-4, 4=5-5-4 Max Horiz (LC 2)LOAD CASE(S)(b)- 1=5-54, 3=65-14, 4=5-5-4 Max Horiz (LC 2)LOAD CASE(S)(b)- 1=5-54, 3=66/123 1-4=-116/91, 3-4=-111/88 2-4=-248/109LOAD CASE(S)2d roof live loads have been considered for 12E 7-16; Vult=130mph (3-second gust) mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. Enclosed; MWFRS (envelope) and C-C 2) zone; cantilever left and right exposed; end t and right exposed; C-C for members and IWFRS for reactions shown; Lumber plate grip DOL=1.33 gned for wind loads in the plane of the truss studs exposed to wind (normal to the face), ard Industry Gable End Details as applicable, qualified building designer as per ANSI/TPI 1. CE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 =1.15); Pg=20.0 psf; Pf=13.9 psf (Lum Plate grip DOL=1.15); Is=1.0; Rough Cat B; Fully 0.9; Cs=1.00; Ct=1.10 uires continuous bottom chord bearing.	(psf) 20.0 13.9/20.0 10.0 10.0Spacing Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr VES CodeCSI TC BC WB Matrix-MP $2x4$ SP No.2 2x4 SP No.36)Gable studs spaced at 4-0-0 oc 7) * This truss has been designed on the bottom chord in all areas 3-06-00 tall by 2-00-00 wide wil chord and any other members. 8) All bearings are assumed to be 9) Provide mechanical connection bearing plate capable of withsta brains(size) 1=5-54, 3=5-54, 4=5-54 (LC 2)1=5-54, 3=5-54, 4=5-54 (LC 34), 3=67 (LC 35), 4=332 (LC 2)LOAD CASE(S) Standard(b) (b) - Maximum Compression/Maximum Tension 1-2=-60/129, 2-3=-66/123 1-4=-116/91, 3-4=-111/88 2-4=-248/109LOAD CASE(S) 	(psf) 20.0 13.9/20.0 10.0Spacing Plate Grip DOL Lumber DOL 1.15 Lumber DOL 1.15 Lumber DOL 1.15 Rep Stress Incr CodeCSI TC 0.09 WB WB 0.04 Matrix-MP2x4 SP No.2 2x4 SP No.36)Gable studs spaced at 4-0-0 oc. 7 3tructural wood sheathing directly applied or $5-54$ do c purlins.6)Gable studs spaced at 4-0-0 oc. 7 Structural wood sheathing directly applied or $5-54$ do c purlins.6)Gable studs spaced at 4-0-0 oc. 7 Structural wood sheathing directly applied or $5-54$ do c purlins.6)Gable studs spaced at 4-0-0 oc. 7 Structural wood sheathing directly applied or bracing.6)Gable studs spaced at 4-0-0 oc. 7 (size)1=5-5-4, 3=5-5-4, 4=5-5-4 Max Horiz 1=-31 (LC 11) Max Uplift 3=-2 (LC 14)8)Max Uplift 3=-2 (LC 14) Max Grav 1=64 (LC 34), 3=67 (LC 35), 4=332 (LC 2)10AD CASE(S)(b) • Maximum Compression/Maximum Tension 1-2=-60/129, 2-3=-66/123 1-4=-116/91, 3-4=-111/88 2-4=-248/109Standarded roof live loads have been considered for h. E7 -16; Vult=130mph (3-second gust) mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. Enclosed; MWFRS (envelope) and C-C E) zone; cantilever left and right exposed; C-C for members and WWFRS for reactions shown; Lumber plate grip DOL=1.33 gred for wind loads in the plane of the truss studs exposed to wind (normal to the face), ard Industry Gable End Details as applicable, qualified building designer as per ANSI/TPI 1. DE 7-16; Pr=20.0 psf. (F=13.9 psf)(Lum Plate DOL=1.15); Is=1.0; Rough Cat B; Fully D.9; Cs=1.00; Ct=1.10 Lines continuous bottom chord bearing. <td>(psf) 20.0Spacing Plate Grip DOL Lumber DOL 1.15CSI TC CDEFL Vert(TL) Vert(TL) Horiz(TL)13.3/20.0 10.00.0° 10.01.15BC BC0.09 WBVert(TL) Horiz(TL)2x4 SP No.2 2x4 SP No.26)Gable studs spaced at 4-0-0 oc. 7 -5 Hor 27)7)Structural wood sheathing directly applied or 5-5-4 oc purlins.6)Gable studs spaced at 4-0-0 oc. 7)7)Structural wood sheathing directly applied or for acing.6)Gable studs spaced at 4-0-0 oc. 7)7)Structural wood sheathing directly applied or bracing.6)Gable studs spaced at 4-0-0 oc. 7)7)Structural wood sheathing directly applied or bracing.6)Gable studs spaced at 4-0-0 oc. 7)7)Mat Horiz 1=5-54, 3=5-5-4, 4=5-4 Max Horiz 1=531 (LC 11) Max Uplift 3=-2 (LC 14)8)All bearings are assumed to be SP No.2. 9)Max Horiz 1=-331 (LC 11) Max Uplift 3=-2 (LC 14)100LOAD CASE(S)StandardMax Horiz 1=-34 (LC 34), 3=67 (LC 35), 4=332 (LC 2)(LOAD CASE(S)Standard1/2=-60/129, 2-3=-66/123 1-4=-116/91, 3-4=-111/88 2-4=-248/109StandardLOAD CASE(S)ad rof live loads have been considered for 1. 1. 2E 7-16; Vult=130mph (3-second gust) mph; TCDL=6.0psf; b=25ft; Cat. Enclosed: MWFRS (or reactions show; Lumber plate grip DOL=1.33 gred for wind loads in the plane of the truss stude exposed to wind (normal to the face), ard float uping the plate of (Inormal to the face), ard float uping designed as applicable, qualified building designer as per ANS/TP1 1. 2E 7-16; P</td> <td>(pst) Spacing 2-0-0 CSI DEFL in 13.9/20.0 1.15 Lumber DOL 1.15 BC 0.04 Vert(IL) n/a 10.0 0.0* 0.0* 0.0* 0.0 0.0*</td> <td>(psf) Spacing 2-0-0 CSi TC 0.08 DEFL in (loc) 13.9/20.0 Number DOL 1.15 BC 0.09 Vert(LL) n/a - 0.0* 0.0* Code IRC2021/TPI2014 Matrix-MP Wet(TL) n/a - 2x4 SP No.2 Code IRC2021/TPI2014 Matrix-MP Wet(TL) n/a - 2x4 SP No.2 This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle - 2x4 SP No.3 Structural wood sheathing directly applied or 6-0-0 oc This truss has been designed for a live load of 20.0psf - 55-4 oc purilins. 11(LC11) Max Upiti 3-2 (LC 14) Nat Upiti 3-2 (LC 14) Nat Upiti 3-2 (LC 14) Max Upiti 3-2 (LC 14) Max Virti 3-2 (LC 14) Nat Upiti 3-2 (LC 14) - - Max Upiti 3-2 (LC 14) Max Upiti 3-2 (LC 14) - - - Max Upiti 3-2 (LC 14) - - - - Max Upiti 3-2 (LC 14) - - - - Max Upiti 3-2 (LC 14) - - - -</td> <td>(psf) Spacing 2-0-0 CSI TC 0.08 13.9/20.0 Plate Grip DOL 1.15 TC 0.08 Vert(LL) n/a - n/a 0.00* Code IRC2021/TPI2014 WB 0.04 Vert(LL) n/a - n/a 2x4 SP No.2 Code IRC2021/TPI2014 WB 0.04 Vert(LL) n/a - n/a 2x4 SP No.2 .00* Code Vert(L) n/a - n/a 2x4 SP No.3 .00 Socood .00* - N/a Structural wood sheathing directly applied or 6-0-0 oc .7 * This truss has been designed for a live load of 20.0psf 5-5-4 oc purins. .9 Provide mechanical connection (by others) of truss to 9 Structural wood sheathing directly applied or 6-0-0 oc Provide mechanical connection (by others) of truss to 9 Max Horiz 1-31 (LC 11) .15 .15 .20 AD CASE(S) Standard Max Horiz 1-31 (LC 21) .13.9 .24-248/109 .23-66/123 .4-14-116/31, .34-111/88 .24-248/109 .23-66/123 .24-248/10</td> <td>(pst) 200 13.9/200 0.0° Spacing Plate Grip DOL Lumber DOL 0.0° 1.15 1.15 Code CSI TC DEFL 0.08 WG in (toc) //deft L/d 2x4 SP No.2 Rep Stress Incr YES Code IRC2021/TPI2014 BC 0.09 WB Vert(TL) Matrix-MP n/a - n/a 999 2x4 SP No.2 ************************************</td> <td>(psf) Spacing 2-0-0 CSI 0.0 Vert(L) in (toc) Videft L/d PLATES 13.3/20.0 Lumber DOL 1.15 TC 0.08 Vert(L) n/a - n/a 999 MT20 13.3/20.0 0.0 Col Rep Stress Incr YES 0.08 Vert(L) n/a - n/a 999 10.0 0.0 Cole IRG2021/TPI2014 WB 0.04 Vert(L) n/a n/a 999 2x4 SP No.2 7 This trass has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 cut any other methes. 3/46-00 tall by 2-00-00 wide will the bottom chord on all areas summet bits. 8) All bearings are assumed to be SP No.2. 9 Provide mechanical concortion (by others) of truss to bearing plate capable of withistanding 2 lb uplift at joint 3. LOAD CASE(S) Standard Max Fork 1=62, LC 14) Max Fork 1=62, LC 30, J.=67 (LC 35), 4=332 (LC 14) Vertice Maximum Transion LOAD CASE(S) Standard Max Fork 1=62, DC 2, Site SC 1= Co.0psi, h=257t; C.2t. Cast, Site SC 1=00, Site SP = 0.0psi, Site SC 1=0.0psi, h=257t; C.2t. Cast, Site SC 1=0.0psi, h=257t; C.2t. Cast, Site SC 1</td>	(psf) 20.0Spacing Plate Grip DOL Lumber DOL 1.15CSI TC CDEFL Vert(TL) Vert(TL) Horiz(TL)13.3/20.0 10.00.0° 10.01.15BC BC0.09 WBVert(TL) Horiz(TL)2x4 SP No.2 2x4 SP No.26)Gable studs spaced at 4-0-0 oc. 7 -5 Hor 27)7)Structural wood sheathing directly applied or 5-5-4 oc purlins.6)Gable studs spaced at 4-0-0 oc. 7)7)Structural wood sheathing directly applied or for acing.6)Gable studs spaced at 4-0-0 oc. 7)7)Structural wood sheathing directly applied or bracing.6)Gable studs spaced at 4-0-0 oc. 7)7)Structural wood sheathing directly applied or bracing.6)Gable studs spaced at 4-0-0 oc. 7)7)Mat Horiz 1=5-54, 3=5-5-4, 4=5-4 Max Horiz 1=531 (LC 11) Max Uplift 3=-2 (LC 14)8)All bearings are assumed to be SP No.2. 9)Max Horiz 1=-331 (LC 11) Max Uplift 3=-2 (LC 14)100LOAD CASE(S)StandardMax Horiz 1=-34 (LC 34), 3=67 (LC 35), 4=332 (LC 2)(LOAD CASE(S)Standard1/2=-60/129, 2-3=-66/123 1-4=-116/91, 3-4=-111/88 2-4=-248/109StandardLOAD CASE(S)ad rof live loads have been considered for 1. 1. 2E 7-16; Vult=130mph (3-second gust) mph; TCDL=6.0psf; b=25ft; Cat. Enclosed: MWFRS (or reactions show; Lumber plate grip DOL=1.33 gred for wind loads in the plane of the truss stude exposed to wind (normal to the face), ard float uping the plate of (Inormal to the face), ard float uping designed as applicable, qualified building designer as per ANS/TP1 1. 2E 7-16; P	(pst) Spacing 2-0-0 CSI DEFL in 13.9/20.0 1.15 Lumber DOL 1.15 BC 0.04 Vert(IL) n/a 10.0 0.0* 0.0* 0.0* 0.0 0.0*	(psf) Spacing 2-0-0 CSi TC 0.08 DEFL in (loc) 13.9/20.0 Number DOL 1.15 BC 0.09 Vert(LL) n/a - 0.0* 0.0* Code IRC2021/TPI2014 Matrix-MP Wet(TL) n/a - 2x4 SP No.2 Code IRC2021/TPI2014 Matrix-MP Wet(TL) n/a - 2x4 SP No.2 This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle - 2x4 SP No.3 Structural wood sheathing directly applied or 6-0-0 oc This truss has been designed for a live load of 20.0psf - 55-4 oc purilins. 11(LC11) Max Upiti 3-2 (LC 14) Nat Upiti 3-2 (LC 14) Nat Upiti 3-2 (LC 14) Max Upiti 3-2 (LC 14) Max Virti 3-2 (LC 14) Nat Upiti 3-2 (LC 14) - - Max Upiti 3-2 (LC 14) Max Upiti 3-2 (LC 14) - - - Max Upiti 3-2 (LC 14) - - - - Max Upiti 3-2 (LC 14) - - - - Max Upiti 3-2 (LC 14) - - - -	(psf) Spacing 2-0-0 CSI TC 0.08 13.9/20.0 Plate Grip DOL 1.15 TC 0.08 Vert(LL) n/a - n/a 0.00* Code IRC2021/TPI2014 WB 0.04 Vert(LL) n/a - n/a 2x4 SP No.2 Code IRC2021/TPI2014 WB 0.04 Vert(LL) n/a - n/a 2x4 SP No.2 .00* Code Vert(L) n/a - n/a 2x4 SP No.3 .00 Socood .00* - N/a Structural wood sheathing directly applied or 6-0-0 oc .7 * This truss has been designed for a live load of 20.0psf 5-5-4 oc purins. .9 Provide mechanical connection (by others) of truss to 9 Structural wood sheathing directly applied or 6-0-0 oc Provide mechanical connection (by others) of truss to 9 Max Horiz 1-31 (LC 11) .15 .15 .20 AD CASE(S) Standard Max Horiz 1-31 (LC 21) .13.9 .24-248/109 .23-66/123 .4-14-116/31, .34-111/88 .24-248/109 .23-66/123 .24-248/10	(pst) 200 13.9/200 0.0° Spacing Plate Grip DOL Lumber DOL 0.0° 1.15 1.15 Code CSI TC DEFL 0.08 WG in (toc) //deft L/d 2x4 SP No.2 Rep Stress Incr YES Code IRC2021/TPI2014 BC 0.09 WB Vert(TL) Matrix-MP n/a - n/a 999 2x4 SP No.2 ************************************	(psf) Spacing 2-0-0 CSI 0.0 Vert(L) in (toc) Videft L/d PLATES 13.3/20.0 Lumber DOL 1.15 TC 0.08 Vert(L) n/a - n/a 999 MT20 13.3/20.0 0.0 Col Rep Stress Incr YES 0.08 Vert(L) n/a - n/a 999 10.0 0.0 Cole IRG2021/TPI2014 WB 0.04 Vert(L) n/a n/a 999 2x4 SP No.2 7 This trass has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 cut any other methes. 3/46-00 tall by 2-00-00 wide will the bottom chord on all areas summet bits. 8) All bearings are assumed to be SP No.2. 9 Provide mechanical concortion (by others) of truss to bearing plate capable of withistanding 2 lb uplift at joint 3. LOAD CASE(S) Standard Max Fork 1=62, LC 14) Max Fork 1=62, LC 30, J.=67 (LC 35), 4=332 (LC 14) Vertice Maximum Transion LOAD CASE(S) Standard Max Fork 1=62, DC 2, Site SC 1= Co.0psi, h=257t; C.2t. Cast, Site SC 1=00, Site SP = 0.0psi, Site SC 1=0.0psi, h=257t; C.2t. Cast, Site SC 1=0.0psi, h=257t; C.2t. Cast, Site SC 1

April 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

