

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

RE: 4513022 - Bridgeport, Palmetto, 2 Cameron Hill

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:Project Customer: Bridgeport DevelopmentProject Name:Lot/Block: 2Subdivision: CAMERON HILL RDAddress: 3222 CAMERON HILL RDState: NC

 Name Address and License # of Structural Engineer of Record, If there is one, for the building.

 Name:
 License #:

 Address:
 State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Wind Speed: 130 mph Roof Load: 40.0 psf Design Program: MiTek 20/20 8.8 Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-10

Floor Load: N/A psf

This package includes 22 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Job ID#	Truss N	lame Date
1 2 3	172040080 172040081 172040082	4513022 4513022 4513022	A01 A02 A03	3/14/25 3/14/25 3/14/25
4 5	172040083 172040084	4513022 4513022	A04	3/14/25 3/14/25
6 7	172040085 172040086	4513022 4513022	A06 B01	3/14/25 3/14/25
8 9 10	172040087	4513022 4513022	B02 B03	3/14/25 3/14/25
10 11 12	172040009 172040090 172040091	4513022 4513022	C01 C02	3/14/25
13 14	172040092 172040093	4513022 4513022	D01	3/14/25 3/14/25
16	172040094 172040095	4513022 4513022	D03	3/14/25 3/14/25
17 18 10	172040096	4513022 4513022 4513022	E02 G01 G02	3/14/25 3/14/25
20 21	172040090 172040099 172040100	4513022 4513022	G03 G04	3/14/25
22	172040101	4513022	PB01	3/14/25

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Builders FirstSource-Sumter,SC.

Truss Design Engineer's Name: Galinski, John

My license renewal date for the state of North Carolina is December 31, 2025

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Galinski, John

March 14,2025

RE: \$JOBNAME - \$JOBDESC

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Project Customer: \$SI_CUSTOMER Project Name: \$SI_JOBNAME Lot/Block: \$SI_LOTNUM Subdivision: \$SI_SUBDIV Address: \$SI_SITEADDR City, County: \$SI_SITECITY State: \$SI_SITESTATE

RE: \$JOBNAME - \$JOBDESC

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Project Customer: \$SI_CUSTOMER Project Name: \$SI_JOBNAME Lot/Block: \$SI_LOTNUM Subdivision: \$SI_SUBDIV Address: \$SI_SITEADDR City, County: \$SI_SITECITY State: \$SI_SITESTATE

Job	Truss	Truss Type	Qty	Ply	Bridgeport, Palmetto, 2 Cameron Hill	
4513022	A01	Common Supported Gable	1	1	Job Reference (optional)	172040080

Run: 8.83 S Mar 11 2025 Print: 8.830 S Mar 11 2025 MiTek Industries, Inc. Fri Mar 14 09:13:29 ID:OrXHf0R2GLHTWXMMESje7zyvpiJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

27-11-0

Scale = 1:87.2 Plate Offsets (X, Y): [2:Edge,0-0-11], [18:Edge,0-0-11], [27:0-5-0,0-4-8]

	(, , 1 - 3-	.,			,1													
Loading		(psf)	Spacing	2-0-0		CSI			DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP			
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC		0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190			
TCDL		10.0	Lumber DOL	1.15		BC		0.09	Vert(CT)	n/a	-	n/a	999					
BCLL		0.0*	Rep Stress Incr	YES		WB		0.20	Horz(CT)	0.01	18	n/a	n/a					
BCDL		10.0	Code	IRC20	15/TPI2014	Matrix	-MS							Weight: 232 lb	FT = 20%			
						1-2=0/3	3 2-3=-387	7/262 3-	4289/223		6) G	able stud	s snace	ed at 2-0-0 oc				
TOP CHORD	2x4 SP No 2					4-5=-21	0/189. 5-6=	-171/15	7.6-8=-144/1	178.	7) Th	is truss h	as bee	n designed for a	10.0 psf bottom			
BOT CHORD	2x4 SF No.2					8-9=-19	8/236 9-10)=-269/3	02	,	., ch	ord live l	had not	nconcurrent with	any other live loads			
OTHERS	2x4 SP No 3					10-11=-	269/302.11	1-12=-1	98/218.		8) * 7	This truss	has be	en designed for	a live load of 20.0psf			
WEDGE	Left: 2x4 SP	No 2				12-14=-	118/123. 14	4-15=-10	02/79.		or	the bott	om cho	rd in all areas wh	ere a rectangle			
MEDGE	Right: 2x4 SF	P No 2				15-16=-	137/107, 16	6-17=-23	34/145,		3-	06-00 tal	bv 2-0	0-00 wide will fit I	between the bottom			
RRACING	ragin. Exil of	110.2				17-18=-	331/224, 18	8-19=0/3	33		ch	ord and a	any oth	er members.				
	Structural wa	ood shos	athing directly applie	dor	BOT CHORD	2-32=-2	57/328, 31-	-32=-212	2/328,		9) AI	bearing	s are as	ssumed to be SP	No.2 .			
TOF CHORD		line	aning unecuy applie	u ui		30-31=-	212/328, 29	9-30=-2	12/328,		10) Pr	ovide me	chanic	al connection (by	others) of truss to			
BOT CHORD	Rigid ceiling	directly	applied or 10-0-0 oc			28-29=-	212/328, 26	6-28=-2	12/328,		be	aring pla	te capa	able of withstandi	ng 117 Ib uplift at joint			
BOT ONORD	bracing	uncouy		,		25-26=-	212/328, 24	4-25=-2	12/328,		2,	55 lb upl	ift at joi	nt 18, 108 lb uplit	it at joint 27, 121 lb			
WEBS	1 Row at mic	dot	10-26 9-27 11-25			23-24=-	212/328, 22	2-23=-2	12/328,		up	lift at joir	t 28, 1	12 lb uplift at joint	29, 122 lb uplift at			
REACTIONS	(size) 2-	-27-11-0	18-27-11-0			21-22=-	212/328, 20	0-21=-2	12/328,		joi	nt 30, 90	lb uplif	t at joint 31, 217	lb uplift at joint 32,			
READIIONO	(3120) 2=	-27-11-	0 21-27-11-0			18-20=-	212/328				10	4 lb uplif	t at join	t 25, 122 lb uplift	at joint 24, 112 lb			
	22	2=27-11- 2=27-11-	0 23=27-11-0		WEBS	10-26=-	268/181, 9-	-27=-15	8/132,		up	lift at joir	t 23, 12	21 lb uplift at joint	22, 93 lb uplift at			
	24	1=27-11-	0. 25=27-11-0.		8-28=-174/144, 6-29=-167/138, 5-30=-168/140, 4-31=-168/137,						joint 21, 204 lb uplift at joint 20, 117 lb uplift at joint 2 and							
	26	6=27-11-	0. 27=27-11-0.															
	28	3=27-11-	0, 29=27-11-0,			3-32=-1	/1/14/, 11-	-25=-15	8/128,		LOAD	CASE(S) Sta	ndard				
	30)=27-11-	0, 31=27-11-0,			12-24=-	174/146, 14	9-23=-11	07/138,									
	32	2=27-11-	0			17 20-	108/139, 10 171/1 <i>11</i>	0-21=-10	08/138,									
	Max Horiz 2=	=-372 (LC	C 10)			17-20=-	171/144											
	Max Uplift 2=	=-117 (LC	C 10), 18=-55 (LC 9)),	NOTES										11. S			
	20)=-204 (L	_C 13), 21=-93 (LC 1	13),	1) Unbalance	d roof live	loads have	e been o	considered to	r					1111			
	22	2=-121 (L	_C 13), 23=-112 (LC	; 13),	this design	E 7 40. V	ult 100mm	h (2 aaa						TH UA	ROUT			
	24	1=-122 (L	_C 13), 25=-104 (LC	; 13), '	2) Wind: ASC	E 7-10; V			ond gust)	Cat				A Acto	J. Male			
	27	7=-108 (L	_C 12), 28=-121 (LC	; 12),		npn; TCL	MWEDS (0.0psi; n=25i;	Cal.			22	A A A	Str. St.			
	29)=-112 (L	_C 12), 30=-122 (LC	; 12),	and C-C C	orner (3)	-0-11-0 to 1	1_11_8 F	= 201	11_8			2 7	411	VII: -			
	31	l=-90 (LC	C 12), 32=-217 (LC	12)	to 13-11-8	Corner (-0-11-0101 3)13_11_8 t	to 16-11	-8 Exterior (2)	71-0 2)		1	-	Re	1 N N 1 2			
	Max Grav 2=	=254 (LC	12), 18=219 (LC 22	2),	16-11-8 to	28-10-0 7	one: cantile	ever left	and right	<u>~</u>)		-		SEA	1 : =			
	20)=215 (L	C 20), 21=176 (LC 2	20),	exposed :	and vertic	al left and r	right exr	osed:C-C for					ULA	<u>-</u> : =			
	22	2=186 (L	C 20), 23=183 (LC 2	20),	members a	and forces	& MWFRS	S for rea	ctions shown					2867	7 : 3			
	24	+=185 (L	C 20), 25=189 (LC 2	20),	Lumber D0	DL=1.60 c	late grip D0	OL=1.60)	,					1 5			
	20)=270 (L	C 13), 27=193 (LC 1	19),	 Truss desi 	aned for v	vind loads in	n the pla	ane of the tru	SS			-	N	1. 1. 2			
	20)_187 (L	C 19), 29=103 (LC 1 C 10) 31-173 (LC 1	19), 10)	only. For s	tuds expo	osed to wind	d (norm	al to the face).				6 SNOW	FRULS			
	30	2-107 (L	C 19), 31=173 (LC 1	13),	see Standa	ard Indust	ry Gable Er	nd Deta	ils as applical	ble,			11	Ch. GIN	St. SIN			
FORCES	32 (الم) Mov::	-223 (L	o i J)		or consult	qualified b	building des	signer as	s per ANSI/TF	PI 1.			1	NI C	AL IN IN			
FURGES	Tonsion	(lb) - Maximum Compression/Maximum			4) All plates a	All plates are 2x4 () MT20 unless otherwise indicated.					L. GAL							
	161151011			:	5) Gable requ	ires conti	nuous botto	om chor	d bearing.						111			
														March	14,2025			

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Bridgeport, Palmetto, 2 Cameron Hill	
4513022	A02	Common	5	1	Job Reference (optional)	172040081

Run: 8.83 S Mar 11 2025 Print: 8.830 S Mar 11 2025 MiTek Industries, Inc. Fri Mar 14 09:13:31 ID:8DouoFulP09e9tZmkaQdxzyvpkJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	8-5-12	11-11-8	19-5-4	27-11-0	
Scale = 1:89.4	8-5-12	3-5-12	7-5-12	8-5-12	

Plate Offsets (X, Y): [2:0-5-8,Edge], [8:0-5-8,Edge]

Loa TCL TCE BCL BCE	i ding _L (roof) DL _L DL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MS	0.66 0.42 0.34	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.10 -0.17 0.03 0.06	(loc) 10-12 10-12 8 12-15	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 199 lb	GRIP 244/190 187/143 FT = 20%	
LUN TOF BOT WEI WEI BR/ TOF BOT	MBER P CHORD T CHORD BS DGE P CHORD T CHORD BS ACTIONS	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Left: 2x4 SP N Right: 2x4 SP Structural wo 3-4-12 oc pur Rigid ceiling of bracing. 1 Row at mid (size) 2=I Max Horiz 2= Max Uplift 2= Max Grav 2=	No.2 P No.3 rod shea rlins. directly a lpt { 0-3-8, 8: -372 (LC -297 (LC 1266 (L0	athing directly applie applied or 10-0-0 oc 5-10, 5-12 =0-3-8 C 10) C 12), 8=-297 (LC 1: C 19), 8=1266 (LC 2	2 4 6 or 7 2 1 2 1 2 0)	 This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an All bearings a Provide mech bearing plate 2 and 297 lb LOAD CASE(S) 	s been designed fo d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members, a re assumed to be nanical connection capable of withsta uplift at joint 8. Standard	or a 10.0 vith any for a liv where I fit betw with BC SP No. (by oth nding 2) psf bottom other live loa e load of 20.0 a rectangle veen the bottt DL = 10.0psf 2. ers) of truss t 97 lb uplift at	ids. Dpsf om f. to t joint						
f of Tof	RCES P CHORD	(lb) - Maximu Tension 1-2=0/33, 2-3	m Comp 3=-1584/	oression/Maximum /381, 3-5=-1575/587 1581/281 8 0-0/23	, ,											
BOT	T CHORD	2-12=-352/14 8-10=-159/12	127, 10-1 127 12	12=-72/904,)										<u>ц.,</u>	
WEI	BS	5-10=-391/91 5-12=-391/91	6, 7-10= 9, 3-12=	=-531/453, =-530/452										"TH CA	RO	
NOT	TES												5.	OVEESS	din	
1)	Unbalance	ed roof live load	ls have l	been considered for									24	AV M	VA: Y	1
2)	this design Wind: ASC Vasd=103 II; Exp C; I and C-C E 13-11-8, E 16-11-8 to exposed ; members a Lumber DC	n. CE 7-10; Vult=1: mmph; TCDL=6.0 Enclosed; MWF Exterior (2) -0-11 Exterior (2) 13-1 0 28-10-0 zone; end vertical left and forces & M OL=1.60 plate <u>c</u> or MT70 plate	30mph (0psf; BC FRS (env 1-0 to 2- 1-8 to 10 cantilev t and rig WFRS for grip DOL	(3-second gust) DL=6.0psf; h=25ft; velope) exterior zon 1-0, Interior (1) 2-1- 6-11-8, Interior (1) er left and right ht exposed;C-C for or reactions shown; =1.60 . there is policities indicated	Cat. e 0 to							THUNDER .	S. S		F.P. St.	and the second s

members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) All plates are MT20 plates unless otherwise indicated.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

L. GA

(IIIIIII) March 14,2025

Job	Truss	Truss Type	Qty	Ply	Bridgeport, Palmetto, 2 Cameron Hill	
4513022	A03	Common	5	1	Job Reference (optional)	172040082

Run: 8.83 S Mar 11 2025 Print: 8.830 S Mar 11 2025 MiTek Industries, Inc. Fri Mar 14 09:13:31 ID:RfqFXuool2b_fOoAdqGDUnyvpj8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:89.4 0.012 0.012 0.012 0.012 Plate Offsets (X, Y): [2:0-5-8,Edge], [8:Edge,0-0-11] [3:0-12] [3:0-12] [3:0-12]		8-5-12	3-5-12	7-5-12	8-5-12	
Plate Offsets (X, Y): [2:0-5-8,Edge], [8:Edge,0-0-11]	Scale = 1:89.4	0012	0012	1012	0 0 12	
	Plate Offsets (X, Y): [2:0-5-8,Edge], [8:Edge,0-0-11]					

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI	2014	CSI TC BC WB Matrix-MS	0.63 0.43 0.44	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.05 -0.08 0.01 0.06	(loc) 10-12 10-12 8 10-18	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 199 lb	GRIP 244/190 187/143 FT = 20%
LUMBER TOP CHORD 2x4 SP N BOT CHORD 2x6 SP N WEBS 2x4 SP N WEDGE Left: 2x4 Right: 2x BRACING TOP CHORD Structure 4-8-14 o BOT CHORD Rigid cei bracing. WEBS 1 Rew at REACTIONS (size) Max Horiz Max Uplift	lo.2 lo.2 lo.3 SP No.3 4 SP No.3 l wood sheati c purlins. ing directly aj midpt 5- 2=0-3-8, 8= 2=-372 (LC 2=-97 (LC 1 12=-287 (LC 2=446 (LC 7 12=1265 (l)	hing directly applied pplied or 10-0-0 oc -12, 5-10 -0-3-8, 12=0-3-8 10) I2), 8=-245 (LC 13), C 12) 1), 8=921 (LC 20), C 19)	4) Thi chc 5) * Tl on 3-00 chc 6) All or 7) Pro bes 2, 2 LOAD (s truss ha ord live loa his truss h the botton 6-00 tall b ord and an bearings a wide mech aring plate 287 lb uplit CASE(S)	s been designed for d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide wil y other members, are assumed to be nanical connection capable of withsta ft at joint 12 and 24 Standard	or a 10.0 vith any for a liv s where I fit betw with BC SP No. (by oth anding 9 45 lb up	 psf bottom other live loac e load of 20.0j a rectangle rectangle reen the botto DL = 10.0psf. 2. ers) of truss to 7 lb uplift at joint 8. 	ds. psf m o p					
FORCES (Ib) - Max	kimum Compr	ression/Maximum											
TOP CHORD 1-2=0/33 5-7=-106	, 2-3=-354/18 6/506. 7-8=-1	38, 3-5=-437/301, 1043/278, 8-9=0/33											
BOT CHORD 2-12=-28 WEBS 3-12=-54 5-10=-39	7/362, 10-12= 7/457, 5-12=- 3/931, 7-10=-	=-39/418, 8-10=-55/ -593/85, -539/454	736								and and	ORTH CA	ROLI
 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; B2DL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 13-11-8, Exterior (2) 13-11-8 to 16-11-8, Interior (1) 16-11-8 to 28-10-0 zone; cantilever left and right exposed; end vertical left and right exposed; end vertical left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) All plates are MT20 plates unless otherwise indicated. 									EP. 54.				

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com) WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Job	Truss	Truss Type	Qty	Ply	Bridgeport, Palmetto, 2 Cameron Hill	
4513022	A04	Common	2	1	Job Reference (optional)	172040083

Run: 8.83 S Mar 11 2025 Print: 8.830 S Mar 11 2025 MiTek Industries, Inc. Fri Mar 14 09:13:31 ID:IAzJYnXV4_ciJNEfVMKInxyvpgv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	11-2-4	19-8-0	
Scale = 1:89.4	11-2-4	8-5-12	
Plate Offsets (X, Y): [5:Edge,0-0-11], [7:0-5-0,0-4-8]			

							-						
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.61 0.64 0.53	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.23 -0.35 0.02 0.06	(loc) 7-8 7-8 5 7-11	l/defl >999 >665 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 138 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 *Excep Right: 2x4 SP No.3 Structural wood she 4-11-10 oc purlins, Rigid ceiling directly bracing. 1 Row at midpt (size) 5=0-3-8, 8 Max Horiz 8=-453 (L	ot* 8-1:2x4 SP No.2 eathing directly applie except end verticals. v applied or 10-0-0 oc 2-7, 2-8 8= Mechanical C 13)	4) 5) 6) d or 7)	* This truss h on the botton 3-06-00 tall b chord and an Bearings are Refer to girdd Provide mecl bearing plate 8 and 186 lb DAD CASE(S)	as been designed n chord in all areas y 2-00-00 wide wil y other members, assumed to be: , , er(s) for truss to tru nanical connection capable of withsta uplift at joint 5. Standard	for a liv s where II fit betv with BC Joint 5 S Joss conr (by oth anding 2	re load of 20.0 a rectangle veen the botto DL = 10.0psf SP No.2 . nections. ers) of truss to 268 lb uplift at	opsf om joint					
	Max Uplift 5=-186 (L Max Grav 5=908 (LG	LC 13), 8=-268 (LC 13 C 20), 8=937 (LC 20)	3)										
FORCES	(lb) - Maximum Com	npression/Maximum											
TOP CHORD	1-2=-154/162, 2-4=- 4-5=-1055/184, 5-6=	·1038/404, =0/33. 1-8=-231/192											
BOT CHORD	5-8=-45/779	540/457 2.0. 740/	070										
NOTES	2-7=-380/1009, 4-7=	=-040/407, 2-8=-748/	210									mun	um.
 Unbalance this design Wind: ASC 	ed roof live loads have n. CF 7-10: Vult=130mph	been considered for									and and	ORTH CA	ROU

- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 8-4-12 to 11-4-12, Interior (1) 11-4-12 to 13-11-8, Exterior (2) 13-11-8 to 16-11-8, Interior (1) 16-11-8 to 28-10-0 zone; cantilever left and right exposed ; end vertical right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.

SEAL

28677

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Bridgeport, Palmetto, 2 Cameron Hill	
4513022	A05	Roof Special	6	1	Job Reference (optional)	172040084

Run: 8.83 S Mar 11 2025 Print: 8.830 S Mar 11 2025 MiTek Industries, Inc. Fri Mar 14 09:13:32 ID:vB6mfoMHzu5VNK7dCVXdGHyvpdF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

	5-4-8	10-11-5	19-8-0	1
Scale = 1:89.4	5-4-8	5-6-13	8-8-11	1
Plate Offsets (X, Y): [2:0-9-4 0-3-0] [5:Edge 0-0-11]				

Flate Olisets (A, T). [2.0-9-4,0-5-0],	[5.Euge,0-0-11]										
Loading (psf) TCLL (roof) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MS	0.60 0.31 0.47	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.04 -0.09 0.02 0.06	(loc) 7-13 7-13 5 7-13	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 158 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 *Except WEBS 2x4 SP No.3 *Except WEDGE Right: 2x4 SP No.2 BRACING TOP CHORD Structural wood shea 5-1-2 oc purlins, exc BOT CHORD Rigid ceiling directly bracing. WEBS 1 Row at midpt 3 REACTIONS (size) 5=0-3-8, 1 Max Horiz 10=-450 (I Max Uplift 5=-212 (LL Max Grav 5=880 (LC	t* 2-8:2x4 SP No.2 t* 10-1:2x4 SP No.2 athing directly applied cept end verticals. applied or 6-0-0 oc 2-7, 2-10 0= Mechanical LC 13) C 13), 10=-246 (LC 1 2 20), 10=855 (LC 20	 4) * This truss on the botto 3-06-00 tall chord and a 5) Bearings arr 6) Refer to gird 7) Provide mere bearing plat 5 and 246 lt LOAD CASE(S) 	has been designed for m chord in all areas w by 2-00-00 wide will f ny other members, w e assumed to be: , Joo der(s) for truss to trus: chanical connection (I e capable of withstan o uplift at joint 10.) Standard	or a liv where it betw ith BC int 5 S s conr by oth ding 2	e load of 20.0 a rectangle veen the botto DL = 10.0psf SP No.2 . iections. ers) of truss t 12 lb uplift at	opsf om o joint					
FORCES (Ib) - Maximum Comp	pression/Maximum										
TOP CHORD 1-2=-149/162, 1-10=-	-224/188, 2-4=-969/4	440,									
BOT CHORD 9-10=-21/481, 8-9=0, 7.8-47/42, 5.7-42/	/75, 2-9=0/240,										
WEBS 4-7=-513/436, 2-7=-4 7-9=0/480	474/769, 2-10=-792/2	222,									in the
 NOTES 1) Unbalanced roof live loads have I this design. 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BC II; Exp C; Enclosed; MWFRS (en and C-C Exterior (2) 8-1-4 to 11-13-5-12, Exterior (2) 13-5-12 to 116-5-12 to 28-6-8 zone; cantileve exposed; end vertical right exposed and forces & MWFRS for reaction DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for 	been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zone 1-4, Interior (1) 11-1- 6-5-12, Interior (1) or left and right sed;C-C for member ns shown; Lumber a 10.0 psf bottom	Cat. e 4 to s							and summer	SEA 2867	E.P. Stan

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

March 14,2025

(IIIIIII)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Bridgeport, Palmetto, 2 Cameron Hill	
4513022	A06	Common Supported Gable	1	1	Job Reference (optional)	172040085

Run: 8.83 S Mar 11 2025 Print: 8.830 S Mar 11 2025 MiTek Industries, Inc. Fri Mar 14 09:13:32 ID:sBO5UMdWTrClsJ4clLO0TDyvpbd-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:87.2	F	19-8-0	1
Plate Offsets (X, Y): [12:Edge,0-0-11], [19:0-5-0,0-4-8]			

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.12	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.20	Horz(CT)	0.01	12	n/a	n/a		
BCDL	10.0	Code	IRC2015	5/TPI2014	Matrix-MS							Weight: 182 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP No.2		BC	DT CHORD	22-23=-280/452, 21 20-21=-280/452, 18	-22=-28	30/452, 30/453,		10) Pro bea	vide me	chanic e capa	al connection (by able of withstandi	others) of truss to ng 33 lb uplift at joint
WEBS OTHERS	2x6 SP No.2 2x4 SP No.2 2x4 SP No.3 Bight: 2x4 SP No.3		W	FBS	17-18=-280/453, 16 15-16=-280/453, 14 12-14=-280/453 4-20=-210/87_3-21:	-17=-28 -15=-28 =-166/1	30/453, 30/453, 33		23, upli join 85 I	ft at joint t 18, 112	t 22, 1 2 lb up	14 lb uplift at joint 14 lb uplift at joint 15 240 lb uplift a	111 at joint 21, 118 b 19, 119 lb uplift at 3 lb uplift at joint 16, at joint 14, 162 lb uplift
WEDGE	Right: 2x4 SP NO.2				2-22=-164/140 5-19	- 100/1 2=-164/	138		atio	b upint 2	nd 162	P lb uplift at joint 1	12
BRACING	o				6-18=-172/142, 8-17	7=-167/	138.				N Sta	ndard	
	Structural wood sh 6-0-0 oc purlins, e	eathing directly applie cept end verticals.	ed or		9-16=-168/140, 10- 11-14=-174/151	15=-16	7/136,		LOAD	5A3E(3)	, 3ia	nuaru	
BOT CHORD	Rigid ceiling direct	y applied or 6-0-0 oc	NC	TES									
WERS	1 Row at midat	1 20 2 21 5 10	1)	Unbalanced	roof live loads have	heen	considered fo	nr					
		4-20, 3-21, 5-19		this design		been		,,					
REACTIONS	(size) 12=19-5 16=19-8 19=19-8 22=19-8 Max Horiz 23=-453 Max Uplift 12=-162 15=-85 (17=-112 19=-114 21=-302 Max Grav 12=332 15=170 17=184 19=191 23=54 (l	<pre>b(14=13-60, 18=13 0, 17=19-8-0, 18=13 0, 20=19-8-0, 21=19 0, 23=19-8-0 (LC 13), 16=-123 (LC (LC 13), 16=-123 (LC (LC 13), 16=-123 (LC (LC 13), 20=-26 (LC (LC 12), 22=-118 (LC (LC 12), 14=242 (LC (LC 20), 16=188 (LC (LC 20), 18=181 (LC (LC 20), 20=238 (LC (LC 19)</pre>	-2-0, 2) -8-0, 2) -8-0, 13), 13), 13), 213), 20), 20), 20), 20), 20), 20), 21), 4) 19), 5) 19), 7)	Wind: ASCE Vasd=103m II; Exp C; Er and C-C Cor 11-4-12 to 1 Exterior (2) ^ right expose members an Lumber DOL Truss design only. For stt see Standar or consult qu All plates are Gable requir Gable studs	7-10; Vult=130mpf ph; TCDL=6.0psf; B lclosed; MWFRS (er ner (3) 8-4-12 to 11 3-11-8, Corner (3) 1 16-11-8 to 28-10-0 z d; end vertical right d forces & MWFRS =1.60 plate grip DC ned for wind loads in uds exposed to wind d Industry Gable En alified building desis e 2x4 () MT20 unle es continuous botto spaced at 2-0-0 oc.	(3-sec CDL=6 nvelope -4-12, 1 3-11-8 cone; ca expose for rea DL=1.60 the pla (norm d Deta gner as ess other m chor	ond gust) .0psf; h=25ft e) exterior zo Exterior (2) to 16-11-8, antilever left a ed;C-C for ctions showr ane of the tru al to the face ils as applica b per ANSI/Ti erwise indica d bearing.	; Cat. ne and n; ss), ble, PI 1. ted.			And	OR HESS	ROUNT
FORCES	(lb) - Maximum Con Tension 1-2=-30/43, 2-3=-1 4-5=-187/246, 5-6= 8-9=-220/211, 9-10 10-11=-389/280, 1 12-13=0/33, 1-23=	npression/Maximum 12/134, 3-4=-187/228 -152/197, 6-8=-178/1 =-293/246, I-12=-489/320, 52/41	8) 178, 9)	* This truss I on the bottor 3-06-00 tall I chord and an All bearings	ad nonconcurrent w nas been designed n chord in all areas by 2-00-00 wide will ny other members. are assumed to be	ith any for a liv where fit betw SP No.	other live loa e load of 20.1 a rectangle veen the both 2 .	ads. Opsf om		HINKS.	J. M. MARINE	2867	EER. St.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust structure Bucking Component Advancement and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

March 14,2025

Job	Truss	Truss Type	Qty	Ply	Bridgeport, Palmetto, 2 Cameron Hill	
4513022	B01	Common Supported Gable	1	1	Job Reference (optional)	172040086

Run: 8.83 S Mar 11 2025 Print: 8.830 S Mar 11 2025 MiTek Industries, Inc. Fri Mar 14 09:13:32 ID:JqzdeakLj6i8pzoCQX0WwdyvpXb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

16-3-8

Scale = 1:66.8 Plate Offsets (X, Y): [2:0-2-12,0-0-2], [7:0-3-0,Edge], [12:0-2-12,0-0-2]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20HS	187/143	
TCDL		10.0	Lumber DOL	1.15		BC	0.10	Vert(CT)	n/a	-	n/a	999	MT20	244/190	
BCLL		0.0*	Rep Stress Incr	YES		WB	0.16	Horz(CT)	0.01	12	n/a	n/a			
BCDL		10.0	Code	IRC20	15/TPI2014	Matrix-MS							Weight: 123 lb	FT = 20%	
				١	VEBS 6	6-19=-140/88. 8-17:	=-121/7	1. 5-20=-229	/207.						
	2x4 SP N	0.2				1-21=-206/185. 3-22	2=-306	349.	,						
	2x4 SP N	0.2			ç	9-16=-229/212, 10-	15=-20	6/184.							
OTHERS	2x4 SP N	0.3			1	1-14=-308/341		,							
SLIDER	Left 2x6 S	SP No 2 1	1-5-6 Right 2x6 SP N	lo 2 I											
02.02.1	1-5-6) Unhalanced	roof live loads have	heen	considered fo	r						
BRACING					this design		00000								
	Structura	l wood she	athing directly applied	dor 2	Wind: ASCF	7-10. Vult=130mph	n (3-sec	ond aust)							
	6-0-0 00	nurlins	at my ancetty applies	- 101	Vasd=103mr	h^{-} TCDI =6 0psf B	CDI = 6	0psf: h=25ft	Cat						
	Rigid ceil	ina directly	applied or 10-0-0 oc		II: Exp C: En	closed: MWFRS (e	nvelope	exterior zon	ne						
	bracing.	ing anoony			and C-C Cor	ner (3) -0-11-0 to 2-	-1-0, E	terior (2) 2-1	-0 to						
REACTIONS	(size)	2=16-3-8	12=16-3-8 14=16-3	-8	8-1-12, Corn	er (3) 8-1-12 to 11-	3-8, Ex	terior (2) 11-3	3-8 to						
	(0.20)	15=16-3-8	3 16=16-3-8 17=16-	3-8	17-2-8 zone;	cantilever left and	right ex	posed ; end							
		19=16-3-8	3. 20=16-3-8. 21=16-	3-8.	vertical left a	nd right exposed;C-	-C for n	nembers and							
		22=16-3-8	3	,	forces & MW	FRS for reactions s	shown;	Lumber							
	Max Horiz	2=-302 (L	C 10)		DOL=1.60 pl	ate grip DOL=1.60									
	Max Uplift	2=-199 (L	C 10), 12=-166 (LC 1	1), 3	 Truss design 	ed for wind loads ir	n the pla	ane of the tru	SS						
		14=-374 (LC 13), 15=-154 (LC	13),	only. For stu	ds exposed to wind	d (norm	al to the face),						
		16=-190 (LC 13), 17=-44 (LC 1	3),	see Standard	Industry Gable En	nd Deta	ils as applica	ble,						
		19=-61 (L	C 12), 20=-186 (LC 1	12),	or consult qu	alified building desi	igner a	s per ANSI/TI	기 1.						
		21=-155 (LC 12), 22=-383 (LC	12) 4	 All plates are 	MT20 plates unles	s other	wise indicate	d.						
	Max Grav	2=535 (LC	C 12), 12=512 (LC 13	5), 5	 All plates are 	2x4 () M120 unle	ess oth	erwise indicat	ted.					11.	
		14=217 (L	_C 11), 15=200 (LC 2	20), 🧯	Gable require	es continuous botto	om chor	d bearing.					1111 CA		
		16=203 (L	_C 20), 17=165 (LC 2	20),) Gable studs	spaced at 2-0-0 oc.							ITH UA	ROUL	
		19=184 (L	_C 19), 20=198 (LC 1	9), 8	 I his truss ha 	s been designed to	or a 10.0) pst bottom					A	1. HIN'L	
		21=200 (L	_C 19), 22=231 (LC 1	0)	chord live loa	a nonconcurrent w	ith any	other live loa	as.			52		With St.	
FORCES	(lb) - Max	timum Com	pression/Maximum	:) This truss in	as been designed	whore	e 10aŭ 01 20.0	Jpsi			2	SAN N	1	
	Tension				2 06 00 tall b	1 CHORU III all areas	fit boty	a reclarigie	~ m				:4	1 1 2	
TOP CHORD	1-2=0/39	, 2-3=-165/	142, 3-4=-349/238,		chord and an	y other members	III Delv	leen me bou	JIII		-		SEA	1 7	÷
	4-5=-201	/121, 5-6=-	113/72, 6-7=-86/78,		0) All bearings	are assumed to be		2			=				
	7-8=-86/7	78, 8-9=-89/	/43, 9-10=-183/121,		1) Provide med	hanical connection	(by oth	 Are) of trues t 	0				2867	7	
	10-11=-3	30/238, 11-	-12=-159/141, 12-13=	=0/39	hearing plate	canable of withsta	nding 1	99 lb unlift at	ioint					1 1 3	
BOT CHORD	2-22=-26	5/371, 21-2	2=-265/371,		2 166 lb upli	ft at joint 12 61 lb i	uplift at	ioint 19 44 lt	י ו פוויני ר			-	N	1. 1. 3	
	20-21=-2	65/371, 19-	-20=-265/371,		uplift at joint	17. 186 lb uplift at i	oint 20.	155 lb uplift	at			20	6 SNOW	FRULS	
	17-19=-2	05/371,10-	·1/=-200/3/1,		ioint 21, 383	lb uplift at joint 22.	190 lb	uplift at joint 1	16.			11	GIN	S. S.	
	12-14- 2	00/371,14- 65/371	10=-200/371,		154 lb uplift a	at joint 15, 374 lb ur	olift at id	oint 14, 199 lt	ָ כ			1	VI CI	1110,11	
	12-14=-2	00/07 1			uplift at joint	2 and 166 lb uplift a	at joint [*]	12.					11, L. GI		
				I	OAD CASE(S)	Standard	•								
					(-)										

March 14,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Bridgeport, Palmetto, 2 Cameron Hill	
4513022	B02	Common	1	1	Job Reference (optional)	172040087

Run: 8.83 S Mar 11 2025 Print: 8.830 S Mar 11 2025 MiTek Industries, Inc. Fri Mar 14 09:13:32 ID:94Mb5N6EpRMwHciVCSddesyvpb_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1	8-1-1Z	16-3-8
62 6	8-1-12	8-1-12
03.0		

Plate Offsets (X, Y): [1:0-3-8,Edge], [7:0-7-9,Edge], [8:0-4-0,0-3-0]

Scale = 1

													-	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.26	Vert(LL)	-0.06	8-11	>999	360	MT20HS	187/143	
TCDL	10.0	Lumber DOL	1.15		BC	0.51	Vert(CT)	-0.12	8-15	>999	240	MT20	244/190	
BCLL	0.0*	Rep Stress Incr	YES		WB	0.38	Horz(CT)	0.01	1	n/a	n/a			
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS		Wind(LL)	0.03	8-11	>999	240	Weight: 101 lb	FT = 20%	
-									-		-	- 5		
LUMBER			5)	* This truss h	has been designed	d for a liv	e load of 20.	0psf						
TOP CHORD	2x4 SP No.2			on the bottor	n chord in all area	is where	a rectangle							
BOT CHORD	2x4 SP No.2			3-06-00 tall b	y 2-00-00 wide w	ill fit betw	veen the bott	tom						
WEBS	2x4 SP No.3			chord and ar	ly other members		-							
SLIDER	Left 2x6 SP No.2 2	2-6-0, Right 2x6 SP N	No.2 6)	All bearings	are assumed to be	e SP No.	2.							
	2-6-0		7)	Provide mec	hanical connection	n (by oth	ers) of truss	to						
BRACING				bearing plate	capable of withs	tanding 1	45 ib uplift a	tjoint						
TOP CHORD	Structural wood shea	athing directly applie	dor	1 and 145 lb	uplift at joint 7.									
	6-0-0 oc purlins.		LC	DAD CASE(S)	Standard									
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	;											
	bracing.													
REACTIONS	(size) 1=0-3-8, 7	7=0-3-8												
	Max Horiz 1=-272 (L	C 8)												
	Max Uplift 1=-145 (L	C 13), 7=-145 (LC 12	2)											
	Max Grav 1=652 (LC	C 1), 7=652 (LC 1)												
FORCES	(lb) - Maximum Com	pression/Maximum												
TOP CHORD	1-3=-642/239 3-4=-	643/295 4-5=-643/2	95											
	5-7=-642/239	010/200, 10-010/2	00,											
BOT CHORD	1-7=-254/533													
WEBS	4-8=-259/644, 3-8=-3	306/292, 5-8=-306/2	93											
NOTES												, mmm	111.	
1) Unbalance	ed roof live loads have	been considered for										WHILL CA	Palle	
this design	n.											a11.	10/11	
2) Wind: AS	CE 7-10; Vult=130mph	(3-second gust)									5	O SS	1. 111	
Vasd=103	mph; TCDL=6.0psf; B0	CDL=6.0psf; h=25ft;	Cat.								3 2	10 M	PN/17'	-
II; Exp C;	Enclosed; MWFRS (en	velope) exterior zon	е									FM //	17K	-
and C-C E	Exterior (2) 0-0-0 to 3-0	-0, Interior (1) 3-0-0	to									212	VL.	-
8-1-12, Ex	cterior (2) 8-1-12 to 11-	1-12, Interior (1) 11-	1-12								:	SEA	L :	=
to 16-3-8	zone; cantilever left and	d right exposed ; end	b							=	:	2867	7 :	=
vertical lef	t and right exposed;C-	C for members and								-		2007	1	-
forces & N	IWFRS for reactions s	hown; Lumber								-		•	1.1	E
DOL=1.60) plate grip DOL=1.60										2 .	·	ain	-
 All plates : 	are IVI I 20 plates unless	s otherwise indicated	J.								1.	O, GINE	E. Ct.	
 I his truss 	nas been designed for	a 10.0 pst bottom	40								11	MAL	IN IN	
chora ilve	ioau nonconcurrent wi	un any other live load	15.									11. L. GI	AL	
												1111111	11111	

- vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 All plates are MT20 plates unless otherwise indicated.
- 3) 4)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

GA minin March 14,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Bridgeport, Palmetto, 2 Cameron Hill	
4513022	B03	Roof Special	3	1	Job Reference (optional)	172040088

Run: 8.83 S Mar 11 2025 Print: 8.830 S Mar 11 2025 MiTek Industries, Inc. Fri Mar 14 09:13:33 ID:inVCskYF1hEBRlkA6EIIQlyvpZ8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	2-3-8	8-1-12	14-0-0	16-3-8
	2-3-8	5-10-4	5-10-4	2-3-8
Scale = 1:63.6				

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.50	Vert(LL)	-0.05	10-11	>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.83	Vert(CT)	-0.11	10-11	>999	240			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.44	Horz(CT)	0.12	7	n/a	n/a			
BCDL	10.0	Code	IRC2015/	TPI2014	Matrix-MS		Wind(LL)	0.07	10-11	>999	240	Weight: 108 lb	FT = 20%	
			-							-				
LUMBER			3)	This truss ha	s been designed to	or a 10.0) pst bottom							
TOP CHORD	2x4 SP No.2			chord live loa	d nonconcurrent v	vith any	other live loa	Ids.						
BOT CHORD	2x4 SP No.2		4)	" I NIS TRUSS N	as been designed	tor a liv	e load of 20.0	Jpst						
WEBS	2x4 SP No.3			2 OF OO toll h	1 chord in all areas	s where	a rectangle	~ m						
SLIDER	Left 2x6 SP No.2 2	2-6-0, Right 2x6 SP I	No.2	3-06-00 tall b	y 2-00-00 wide wil		een the bollo	om						
	2-6-0		5)		y other members.		2							
BRACING	.		. 6)	Provide med	and assumed to be	(by oth	z . are) of truce t	'n						
TOP CHORD	Structural wood she	athing directly applie	ed or 0)	bearing plate	canable of withsta	anding 1	45 lh unlift at	tioint						
	6-0-0 oc purlins.			1 and 145 lb	uplift at joint 7	anding i	to ib upint ut	John						
BOT CHORD	Rigid celling directly	applied or 10-0-0 oc	; 104	AD CASE(S)	Standard									
	bracing, Except:	0.44	207		otandara									
	8-6-11 oc bracing: 1	0-11.												
REACTIONS	(SIZE) 1=0-3-8, /	(=0-3-8												
	Max Horiz 1=-2/2 (L		0)											
	Max Opliπ 1=-145 (L	C 13), 7=-145 (LC 1.	2)											
	Max Grav 1=652 (LC	- 1), 7=652 (LC 1)												
FORCES	(Ib) - Maximum Com	pression/Maximum												
			50											
TOP CHORD	1-3=-779/240, 3-4=-0	000/243, 4-0=-000/2	:59,											
	1-12-270/606 11-1	2-23/101 3-11-0/1	178											
	10-11-474/071 0-1	0223/769 8-9-0/8	170, R4											
	5-9=0/178 7-8=-120)/455	J-1,										1111	
WEBS	4-10=-120/505 5-10	=-590/420										N'TH UA	Roille	
	3-10=-590/482	000, 120,									N	A Line	1.416'	
NOTES											22	FFOS	Oliva	1
1) Unbalance	ed roof live loads have	been considered for	r								2		Mir.	1
this design	n									-		prove	UT.	-
 Wind: AS(CE 7-10: Vult=130mph	(3-second aust)								=		SEAL		1
Vasd=103	Smph: TCDL=6.0psf: B	CDL=6.0psf: h=25ft:	Cat.							=		0007	1. ÷	=
II; Exp C;	Enclosed; MWFRS (en	velope) exterior zon	e									2867	/ :	- E
and C-C E	Exterior (2) 0-0-0 to 3-0	-0, Interior (1) 3-0-0	to											5
8-1-12, E>	cterior (2) 8-1-12 to 11-	1-12, Interior (1) 11-	1-12								2	N	A 1.	2
to 16-3-8	zone; cantilever left and	d right exposed ; end	d								5.4	NOME	EN. F.	-
vertical lef	ft and right exposed;C-	C for members and									1	'A GING	SI	
forces & N	/WFRS for reactions sl	hown; Lumber									1	VI GI	The'n	
DOL=1.60) plate grip DOL=1.60											111.01	in the	
													11.	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

March 14,2025

Job	Truss	Truss Type	Qty	Ply	Bridgeport, Palmetto, 2 Cameron Hill	
4513022	B04	Roof Special Girder	1	2	Job Reference (optional)	172040089

Run: 8.83 S Mar 11 2025 Print: 8.830 S Mar 11 2025 MiTek Industries, Inc. Fri Mar 14 09:13:33 ID:Ye7kovgeamPCYoB?QCvaYsyvpWO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

|<mark>1-11-14</mark> |-11-14 8-1-12 14-3-10 16-3-8 1-11-14 6-1-14 6-1-14 16-3-8 4x6 II 3 12 12 9-2-4 MT20HS 7x1 MT20HS 7x14 💊 1 2 4 5 1-0-8 20 8 21 22 23 6 ₿ 7x10= ₿ 19 MT20HS 3x10 = 3x8 II 3x8 II 3x6 🛛 3x6 II MT20HS 3x10 = 16-3-8 14-0-0 2-3-8 2-3-8 8-1-12 \vdash 5-10-4 5-10-4 2-3-8

Scale = 1:63.6

Plate Offsets ((X, Y): [2:0-2-14,Edge]], [4:0-2-14,Edge],	[5:Edge,0-	5-12], [7:0-3-12	,0-1-8], [8:0-5-0,0)-4-8], [9:(0-3-12,0-1-8]							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.43 0.47 0.50	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.08 -0.15 0.09 0.10	(loc) 8-9 8-9 5 8-9	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 257 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD BOT CHORD	2x4 SP No.2 2x6 SP No.2 *Excep 2.0E or 2x8 SP DSS or 2x6 SP DSS	t* 10-2,4-6:2x8 SP , 9-7:2x6 SP 2400F	2 2400F - 2.0E	 All loads are except if not CASE(S) se provided to o unless other 	considered equa ed as front (F) or ction. Ply to ply c distribute only loa wise indicated.	ally applie back (B) onnectior ds noted	d to all plies, face in the LC is have been as (F) or (B),	DAD	Co	Vert: 1-3 oncentra Vert: 7= (B), 20=	3=-60, ted Loa -760 (E -760 (E	3-5=-60, 10-11= ads (lb) 3), 8=-760 (B), 1 B), 21=-760 (B),	-20, 7-9=-20, 6- 3=-765 (B), 19= 22=-760 (B), 23	15=-20 -760 =-760
WEBS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP No.2 Left 2x6 SP No.2 2 2-6-1 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly	2-6-1, Right 2x6 SP athing directly appli applied or 10-0-0 c	No.2 4 ied or bc	 3) Unbalanced roof live loads have been considered for (B) this design. 4) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 										
REACTIONS	(size) 1=0-3-8, 5 Max Horiz 1=-272 (Li Max Uplift 1=-1293 (I Max Grav 1=4339 (L	5=0-3-8 C 4) LC 9), 5=-1101 (LC .C 16), 5=3698 (LC	5 6 8) 7 15) 7	 All plates are This truss ha chord live los * This truss l on the bottor 	MT20 plates un as been designed ad nonconcurrent nas been designe m chord in all are	less othe I for a 10. t with any ed for a liv as where	rwise indicate 0 psf bottom other live loa /e load of 20.0 a rectangle	ed. Ids. Opsf						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	1	3-06-00 tall I	by 2-00-00 wide v	will fit bet	ween the botto	om						
TOP CHORD BOT CHORD	1-2=-2170/676, 2-3= 3-4=-3505/1141, 4-5 1-10=-972/2947, 9-1 2-9=-412/1479, 8-9= 7-8=-1461/4669, 6-7 5-6=-818/2781	3466/1106, ;=-2039/635 0=-64/184, :-1746/4989, '=-39/27, 4-7=-420/	8 9 1550, 1	 All bearings Provide mec bearing plate joint 1 and 1 Hanger(s) or 	are assumed to b hanical connection capable of withs 101 lb uplift at joi other connection	s. be SP No on (by oth standing 1 nt 5. n device(s	.2. lers) of truss t 1293 lb uplift a s) shall be	to at				TH CA	ROLI	
WEBS	3-8=-1369/4438, 4-8 2-8=-2616/1150	=-2525/1071,		lb down and up at 2-5-4.	277 lb up at 0-5 836 lb down and	concentra -4, 836 lb 258 lb ur	ated load(s) 9 down and 25 5 at 4-5-4, 83	123 58 lb 36 lb			i e		Phin	in in
NOTES 1) 2-ply truss (0.131"x3" Top chord oc. Bottom ch staggered oc	s to be connected toget ") nails as follows: Is connected as follows nords connected as follows I at 0-5-0 oc, 2x8 - 2 rou	9-0 9-0 L	down and 25 at 8-5-4, 83 lb down and 280 lb up at selection of responsibility OAD CASE(S)	58 lb up at 6-5-4, 6 lb down and 25 258 lb up at 12- 14-3-10 on botto such connection (of others. Standard f Live (balanced	836 lb do 8 lb up at 5-4, and 9 om chord. device(s)	own and 258 10-5-4, and 217 lb down a The design/ is the	lb up 836 and		CONTRACTOR OF		SEA 286	L 77 EER of	www.unun	

Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

Plate Increase=1.15 Uniform Loads (lb/ft) L. GALIN

Page: 1

March 14,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Bridgeport, Palmetto, 2 Cameron Hill	
4513022	C01	Common Supported Gable	1	1	Job Reference (optional)	172040090

Run: 8.83 S Mar 11 2025 Print: 8.830 S Mar 11 2025 MiTek Industries, Inc. Fri Mar 14 09:13:33 ID:nqcbUhvmQ01aLSVtTALDi6zWpc9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0 1 4 50 4					⊢			15-11	-0						
Scale = 1:56.4	V V). [2.0	200021	[10:0 2 0 0 2 11]												
	λ, τ). [2.0 ⁻	-3-0,0-0-3],	[10.0-3-0,0-2-11]											1	
Loading		(psf)	Spacing	2-0-	0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15			тс	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15			BC	0.05	Vert(CT)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES	;		WB	0.12	Horz(CT)	0.01	10	n/a	n/a		
BCDL		10.0	Code	IRC	2015	/TPI2014	Matrix-MS							Weight: 107 lb	FT = 20%
					WE	BS	6-15=-151/80	. 5-16=-170/1	42.						
TOP CHORD	2x4 SP N	0.2					4-17=-171/14	1, 3-18=-197	/181,						
BOT CHORD	2x4 SP N	0.2					7-14=-170/14	0, 8-13=-172	/142,						
OTHERS	2x4 SP N	0.3					9-12=-200/17	1							
SLIDER	Left 2x6 SP No.2 2-4-11, Right 2x6 SP NOTES														
	No.2 2-	4-11			1)	Unbalance	d roof live loads	s have been o	considered f	for					
BRACING						this design									
TOP CHORD	Structura	I wood she	athing directly appli	ied or	2)	Wind: ASC	E 7-10; Vult=1:	30mph (3-sec	cond gust)	<i></i>					
	6-0-0 oc	purlins.				Vasd=103r	nph; ICDL=6.0	pst; BCDL=6	0.0psf; n=25	ft; Cat.					
BOICHORD	Rigia cell	ing airectly	applied or 10-0-0 c	DC		and C-C C	orner (3) -0-11-	0 to 1-11-8	=) exterior (2) 1	1-11-8					
PEACTIONS	(cizo)	2-15 11 (10-15 11 0			to 7-11-8. (Corner (3) 7-11	-8 to 10-11-8	Exterior (2))					
REACTIONS	(5120)	12=15-11-0	-0 13=15-11-0,			10-11-8 to 16-10-0 zone; cantilever left and right									
		14=15-11	-0. 15=15-11-0.			exposed ; end vertical left and right exposed;C-C for									
		16=15-11	-0, 17=15-11-0,			members a	nd forces & M\	WFRS for rea	ctions show	vn;					
		18=15-11	-0			Lumber DC	DL=1.60 plate g	rip DOL=1.60)						
	Max Horiz	2=-222 (L	C 10)		3)	Truss desig	ned for wind lo	ads in the pl	ane of the tr	russ					
	Max Uplift	2=-75 (LC	8), 10=-19 (LC 9),			only. For s	tuds exposed t	o wind (norm	al to the fac	ce),					
		12=-162 (LC 13), 13=-114 (L	.C 13),		or consult	rualified buildin	a designer a	iis as applic 2 nor ANSI/	TDI 1					
		14=-117 (LC 13), 16=-119 (L	C 12),	4)	All plates a	re 2x4 (II) MT2	0 unless oth	erwise indic	ated					
	Max Gray	2-105 (1)	LC 12), 18=-174 (L 20) 10-154 (LC /	1) 1)	5)	Gable requ	ires continuous	bottom chor	d bearing.	atou					
	Wax Glav	2=195 (LC 12=197 (L	(10^{-10}) , 10^{-104} (10	1), 20)	6)	Gable stud	s spaced at 2-0)-0 oc.	5					minin	1111
		14=192 (L	C 20), 15=179 (LC	20),	7)	This truss I	nas been desig	ned for a 10.0	0 psf bottom	า			-	W'TH CA	Rollin
		16=195 (L	C 19), 17=181 (LC	; 19),		chord live I	oad nonconcur	rent with any	other live lo	oads.			S	R	i. Mille
		18=210 (L	-C 19)	,,	8)	* This truss	has been desi	gned for a liv	e load of 20).0psf			2.	0	dr. Vin
FORCES	(lb) - Max	imum Com	pression/Maximum	ı		on the bott	om chord in all	areas where	a rectangle				35	the M	7: 7 -
	Tension					3-06-00 tai	by 2-00-00 Wi	de Will fit Detv	veen the boi	ttom		-		ig of a	5 3 2
TOP CHORD	1-2=0/33	, 2-3=-64/3	6, 3-4=-135/119,		9)	All bearing	s are assumed	to be SP No.	2			E		SEA	1 E E
	4-5=-116	/137, 5-6=-	178/196, 6-7=-178/	196,	10)	Provide me	chanical conne	ection (by oth	ers) of truss	s to		- 8		00007	- E
	10 11-0/	/104, 8-9=-/ 22	81/48, 9-10=-60/24	,	,	bearing pla	te capable of w	ithstanding 7	'5 lb uplift at	t joint		1		. 2867	1 : :
BOT CHORD	2-18=-10	6/173 17-1	8=-106/173			2, 19 lb upl	ift at joint 10, 1	19 lb uplift at	joint 16, 112	2 lb				S	1 8
	16-17=-1	06/173. 15-	·16=-106/173.			uplift at joir	it 17, 174 lb up	lift at joint 18,	117 lb uplif	ft at			-	·	ains
	14-15=-1	06/173, 13-	14=-106/173,			joint 14, 11	4 lb uplift at joir	nt 13, 162 lb	uplift at joint	t 12,			1.0	O, NGINI	EFICE
	12-13=-1	06/173, 10-	12=-106/173			75 lb uplift	at joint 2 and 1	9 Ib uplift at jo	oint 10.				11	M	INS.I'
					LO	AD CASE(S	 Standard 							11. L. G.	AL
														in the second se	IIII

March 14,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Bridgeport, Palmetto, 2 Cameron Hill	
4513022	C02	Common	7	1	Job Reference (optional)	172040091

Run: 8.83 S Mar 11 2025 Print: 8.830 S Mar 11 2025 MiTek Industries, Inc. Fri Mar 14 09:13:33 ID:Yq1m1obSY1IGESWtxjt7edzWpcZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

15 11 0

Page: 1

				7-11-8			15-11-0)		-			
Scale = 1:57.9													
Plate Offsets (X, Y):	[2:0-2-12,0-1-1	1], [6:0-5-4,0-0-3]				-					-		
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.79	Vert(LL)	0.22	8-11	>881	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.74	Vert(CT)	-0.20	8-11	>946	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.17	Horz(CT)	-0.08	2	n/a	n/a			
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS							Weight: 78 lb	FT = 20%	

7 4 4 0

LUMBER	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3
SLIDER	Left 2x6 SP No.2 2-6-0, Right 2x6 SP No.2 2-6-0
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 3-10-11 oc purlins.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
REACTIONS	(size) 2=0-3-8, 6=0-3-8
	Max Horiz 2=-222 (LC 10)
	Max Uplift 2=-180 (LC 12), 6=-180 (LC 13)
	Max Grav 2=747 (LC 19), 6=747 (LC 20)
FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=0/33, 2-4=-767/245, 4-6=-767/245, 6-7=0/33
BOT CHORD WEBS	2-8=-453/607, 6-8=-322/598 4-8=0/422
-	

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 7-11-8, Exterior (2) 7-11-8 to 10-11-8, Interior (1) 10-11-8 to 16-10-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
5) All bearings are assumed to be SP No.2.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 180 lb uplift at joint 2 and 180 lb uplift at joint 6.

LOAD CASE(S) Standard

March 14,2025

ENGINEERING BY REENCO A MiTek Atfiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Bridgeport, Palmetto, 2 Cameron Hill	
4513022	D01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	172040092

Run: 8.83 S Mar 11 2025 Print: 8.830 S Mar 11 2025 MiTek Industries, Inc. Fri Mar 14 09:13:34 ID:Hp5AMwJINjVVPP3k15LPRoyvoxQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

					L		2	21-11-0							
Scale = 1:82.1															
Plate Offsets ((X, Y): [7:0-	3-12,0-2-8], [8:0-3-12,0-2-8]											-	
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2	015/TPI2014		CSI TC BC WB Matrix-MS	0.11 0.12 0.22	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 13	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 188 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD	2x4 SP N 2x6 SP N 2x4 SP N Left 2x6 S 2-6-0 Structural 6-0-0 oc p 2-0-0 oc p	0.2 *Excep 0.2 0.3 P No.2 2 wood shea purlins, exc purlins, (6-0	t* 7-8:2x6 SP No.2 2-6-0, Right 2x6 SP athing directly applie ept -0 max.): 7-8.	No.2 ed or	BOT CHORD	2 2 1 1 1 7 5 9 1	-23=-139/251, 22- 1-22=-139/251, 12 8-19=-140/253, 17 6-17=-140/251, 15 3-15=-140/251 -19=-192/90, 8-18 -22=-190/165, 4-2 -17=-214/196, 10- 1-15=-256/246	23=-13 -21=-1 -18=-1 -16=-1 =-170/8 3=-254 16=-19	9/251, 39/251, 40/251, 40/251, 9, 6-21=-213 /252, D/167,	/197,	11) Pro bea 2, 9 upli join 321 upli 12) Gra or the bott	vide mer ring plat 5 lb upli ft at joint t 23, 191 lb uplift ft at joint phical p ne orient com chor	chanic te capa ft at joi t 21, 99 1 Ib up 1 Ib up at join t 13. urlin re tation o rd.	al connection (by able of withstandii int 13, 22 lb uplift 9 lb uplift at joint 2 lift at joint 17, 104 it 15, 151 lb uplift epresentation doe of the purlin along	others) of truss to 1g 151 lb uplift at joint at joint 19, 193 lb 12, 334 lb uplift at 1b uplift at joint 16, at joint 2 and 95 lb s not depict the size the top and/or
BOT CHORD WEBS REACTIONS	Rigid ceili bracing. 1 Row at (size) Max Horiz Max Uplift Max Grav	ng directly midpt 2=21-11-(15=21-11) 17=21-11 2=329 (LC 2=-151 (L 15=-321 (17=-191 (23=-334 (23=-334 (2=303 (LC 15=298 (L 17=172 (L 19=354 (L 22=165 (L	applied or 10-0-0 o 7-19, 8-18), 13=21-11-0, -0, 16=21-11-0, -0, 18=21-11-0, -0, 21=21-11-0, -0, 23=21-11-0, -0, 23=21-11-0 C 13), 16=-104 (LC LC 13), 19=-22 (LC LC 12), 22=-99 (LC LC 12) C 20), 13=258 (LC 1 .C 20), 13=258 (LC 1 .C 20), 18=332 (LC C 22), 21=175 (LC C 19), 23=312 (LC	r, C 13), 9), 12), 20), 21), 19), 19), 19),	 this design. Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) -0-11-0 to 2-1-0, Exterior (2) 2-1-0 to 8-11-8, Corner (3) 8-11-8 to 11-11-8, Exterior (2) 11-11-8 to 12-11-8, Corner (3) 12-11-8 to 15-11-8, Exterior (2) 15-11-8 to 22-10-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Provide adequate drainage to prevent water ponding. All plates are 2x4 () MT20 unless otherwise indicated. Gable requires continuous bottom chord bearing. 							ROMAN			
FORCES TOP CHORD	19=354 (LC 22), 21=175 (LC 19), 22=165 (LC 19), 23=312 (LC 19) (lb) - Maximum Compression/Maximum Tension 1-2=0/39, 2-4=-248/241, 4-5=-200/184, 5-6=-213/241, 6-7=-335/363, 7-8=-269/302, 8-9=-335/363, 9-10=-213/220, 10-11=-152/125, 11-13=-213/171, 13-14=0/39				 Gable stud This truss chord live * This trus on the bot 3-06-00 ta chord and All bearing 	ds s has loa s h torr ill b gs a	spaced at 2-0-0 oc s been designed fo d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members, are assumed to be	or a 10.0 for a liv where fit betv with BC SP No.	0 psf bottom other live loa e load of 20.0 a rectangle veen the botto :DL = 10.0 psf 2.	ds. Opsf om		HILL NAME.	S THE STATE	SEA 2867	F.P. St.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road Edenton, NC 27932

March 14,2025

Job	Truss	Truss Type	Qty	Ply	Bridgeport, Palmetto, 2 Cameron Hill	
4513022	D02	Piggyback Base	4	1	Job Reference (optional)	172040093

Run: 8.83 S Mar 11 2025 Print: 8.830 S Mar 11 2025 MiTek Industries, Inc. Fri Mar 14 09:13:34 ID:6vGkHD1KWG0bY9aurTWdeMyvp0x-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

	5-7-3	16-3-13	21-11-0
Scale = 1:84.2	5-7-3	10-8-10	5-7-3

Plate Offsets (X, Y): [2:0-7-1,0-0-2], [5:0-3-9,0-2-8], [6:0-3-9,0-2-8], [9:0-7-1,0-0-2]

	-		-				-						
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.40	Vert(LL)	-0.18	10-12	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.55	Vert(CT)	-0.29	10-12	>920	240	MT20HS	187/143
BCLL	0.0*	Rep Stress Incr	YES		WB	0.80	Horz(CT)	0.04	9	n/a	n/a		
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS		Wind(LL)	0.15	12-19	>999	240	Weight: 160 lb	FT = 20%
			5)	This truss ha	s been designed f	or a 10.0) psf bottom	da				0	
TOP CHORD	2x4 SP No.2 *Excep	t* 5-6:2x6 SP No.2	6)	* This truce h	a nonconcurrent v	l for a liv	other live loa	us. Joct					
BOLCHORD	2x6 SP No.2		0)	on the botton	as been designed	s where	e ioau oi 20.0 a rectande	ры					
WEBS	2X4 SP NO.3	CO Diabt OVE CD N	10.2	3-06-00 tall h	v 2-00-00 wide will	ll fit hetw	a rectangle	m					
SLIDER	2 6 0	2-0-0, Right 2x0 3P N	NU.2	chord and an	v other members	with BC	DI = 10.00sf						
DDACING	2-0-0		7)	All bearings a	are assumed to be	SP No.	2.						
	Structural wood abo	othing directly opplied	dor 8)	Provide mec	nanical connection) (by oth	ers) of truss t	0					
TOP CHORD		atring directly applied	u 01 - 7	bearing plate	capable of withsta	anding 1	75 lb uplift at	joint					
	2-0-0 oc purlins (6-0	-0 max): 5-6		9 and 205 lb	uplift at joint 2.								
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	9)	Graphical pu	rlin representation	does no	ot depict the s	size					
	bracing.			or the orienta	tion of the purlin a	along the	top and/or						
REACTIONS	(size) 2=0-3-8, 9	9=0-3-8		bottom chord	•								
	Max Horiz 2=319 (LC	C 11)	LC	DAD CASE(S)	Standard								
	Max Uplift 2=-205 (L	C 12), 9=-175 (LC 13	3)										
	Max Grav 2=1000 (L	_C 2), 9=952 (LC 2)											
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=0/39, 2-4=-1099 5-6=-632/364, 6-7=-)/319, 4-5=-1160/577 1160/577, 7-9=-1101	, /326										
BOT CHORD	2-12=-284/835, 10-1 9-10=-136/734	2=-109/592,											10.
WEBS	5-12=-411/739, 6-10)=-412/746,										W'UL CA	Dalla
	4-12=-432/496, 7-10)=-432/497										athon	FOIL
NOTES											SI	0	MAN'S
 Unbalance this design 	ed roof live loads have	been considered for									14	4/Ju	VAL A
2) Wind: ASC	CE 7-10; Vult=130mph	(3-second gust)								5		· · ·	1 N N E -
Vasd=103	mph; TCDL=6.0psf; B0	CDL=6.0psf; h=25ft; (Cat.							=	- 1	SEA	
II; Exp C; I	Enclosed; MWFRS (en	velope) exterior zone	Э							=	:	2007	- : :
and C-C E	xterior (2) -0-11-0 to 2	-1-0, Interior (1) 2-1-0	0 to							1		2807	/ ; =
8-11-8, Ex	terior (2) 8-11-8 to 17-	2-7, Interior (1) 17-2-							-			1.1.3	
21-11-0 zc	one; cantilever left and	right exposed ; end								2	·	Ains	
forces & M	W/ERS for reactions of	bown: Lumber									1.	O, VGINE	Elict
DOI = 1.60	nlate arin DOI = 1.60	nown, Lumber									11	M	IN IN
3) Provide ac	lequate drainage to pr	event water ponding										11, L. GI	ALIN
 All plates a 	are MT20 plates unless	s otherwise indicated										in the second se	1111.
,												1125 C. 2010	

March 14,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Bridgeport, Palmetto, 2 Cameron Hill	
4513022	D03	Piggyback Base	1	1	Job Reference (optional)	172040094

-0-11-0

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Run: 8.83 S Mar 11 2025 Print: 8.830 S Mar 11 2025 MiTek Industries, Inc. Fri Mar 14 09:13:34 ID:Vwz0r7BQH8nik6Ss43BbAByvoyt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

21-11-0

Page: 1

5-7-3	16-3-13	21-11-0
5-7-3	10-8-10	5-2-11 0-4-8

Plate Offsets (X, Y): [2:0-7-1,0-0-2], [5:0-3-9,0-2-8], [6:0-3-9,0-2-8], [8:0-2-12,0-1-8], [9:0-4-0,0-4-0]

		-												
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.40	Vert(LL)	-0.17	10-12	>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.56	Vert(CT)	-0.26	10-12	>986	240	MT20HS	187/143	
BCLL	0.0*	Rep Stress Incr	YES		WB	0.81	Horz(CT)	-0.04	2	n/a	n/a			
BCDL	10.0	Code	IRC2015	5/TPI2014	Matrix-MS		Wind(LL)	0.15	12-15	>999	240	Weight: 163 lb	FT = 20%	
-									_		-	- 5		
BCDL LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	10.0 2x4 SP No.2 *Excep 2x6 SP No.2 2x4 SP No.3 *Excep 2x6 SP No.2 Left 2x6 SP No.2 2 Structural wood shea 5-1-11 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 2=0-3-8, 9 Max Horiz 2=352 (LC Max Uplift 2=-202 (LI Max Grav 2=970 (LC (Ib) - Maximum Com Tension 1-2=0/39, 2-4=-1047	Code t* 5-6:2x6 SP No.2 t* 9-8:2x4 SP No.2 2-6-0 athing directly applies xcept end verticals, a -0 max.): 5-6. applied or 6-0-0 oc 9=0-3-8 C 11) C 12), 9=-168 (LC 12 C 2), 9=885 (LC 2) pression/Maximum //315, 4-5=-1146/576	IRC2015 3) 4) 5) 6) and 7) and 8) 9) 3) LCC	5/TPI2014 Provide adec All plates are This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an All bearings a Provide mecl bearing plate 2 and 168 lb Graphical pu or the orienta bottom chord	Matrix-MS Juate drainage to p MT20 plates unle s been designed f d nonconcurrent v has been designed n chord in all area by 2-00-00 wide wi by other members, are assumed to be hanical connectior capable of withst uplift at joint 9. rlin representation ation of the purlin at Standard	prevent to ses other for a 10.0 with any I for a liv s where II fit betw with BC e SP No. a (by oth anding 2 does no along the	Wind(LL) water pondin wise indicate) psf bottom other live loa e load of 20. a rectangle veen the bott DL = 10.0ps 2. ers) of truss 02 lb uplift a ot depict the e top and/or	0.15 g. ed. ads. Opsf om f. to t joint size	12-15	>999	240	Weight: 163 lb	FT = 20%	
BOT CHORD	5-6=-615/356, 6-7=- 8-9=-913/275 2-12=-290/807, 10-1	1119/556, 7-8=-1015 2=-133/566.	/288,										11.	
WEBS	9-10=-142/147 7-10=-489/497, 5-12 4-12=-446/500, 6-10 8-10=-107/721	2=-416/732, ⊨-369/659,									and a	ORTH CA	ROUNT	5
NOTES												4AN	and it	-
 Unbalance this design Wind: ASC Vasd=103 II; Exp C; I and C-C E 8-11-8, Ex 21-6-8 zor vertical lef forces & M DOL=1.60 	ed roof live loads have CE 7-10; Vult=130mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (en Exterior (2) -0-11-0 to 2 tterior (2) -0-11-0 to 2 terior (2) -0-11-0 to 2	been considered for (3-second gust) CDL=6.0psf; h=25ft; welope) exterior zonu- 1-0, Interior (1) 2-1-1 2-7, Interior (1) 17-2- ight exposed ; end C for members and hown; Lumber	Cat. e 0 to -7 to							11111111111111111111111111111111111111	S INTERNA	SEA 2867	F.P. St.	www.unu

March 14,2025

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Bridgeport, Palmetto, 2 Cameron Hill	
4513022	E01	Common Supported Gable	1	1	Job Reference (optional)	172040095

Run: 8.83 S Mar 11 2025 Print: 8.830 S Mar 11 2025 MiTek Industries, Inc. Fri Mar 14 09:13:35 ID:RkwdSdaBFBzQFeYaCkBBFFyvorv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

				-
Plate Offsets (X, Y): [2:0-5-12,0-0-3]	, [10:0-1-8,0-0-3]			
Scale = 1:53.4	I		1	
	1	 13-11-0	4	

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MS	0.08 0.08 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 88 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x6 SP No.2 2-6-0 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=13-11- 11=13-11 15=13-11 15=13-11 Max Horiz 2=189 (LI Max Uplift 2=-61 (LC 11=-202 14=-89 (I Max Grav 2=227 (LI 13=181 (I 15=271 (I	2-6-0, Right 2x6 SP M eathing directly applie v applied or 10-0-0 oc 0, 10=13-11-0, -0, 12=13-11-0, -0, 12=13-11-0, -0, 14=13-11-0, -0 C 11), 10=-24 (LC 12) (LC 13), 10=-24 (LC 12) (LC 13), 10=-29 (LC 12) (LC 13), 10=-205 (LC 12) C 20), 10=160 (LC 15) LC 20), 12=161 (LC 2 LC 13), 14=163 (LC 15) LC 13), 14=163 (LC 15)	 Wind: ASCE Vasd=103m II; Exp C; Err and C-C Co 6-11-8, Corr 13-11-0 zon vertical left a forces & MV DOL=1.60 p Truss desig only. For st see Standar or consult q All plates ar 5) Gable requii Gable studs 7) This truss h chord live lo 3. * This truss on the botto 306-00 tall chord and a 9) All bearings 10) Provide med 	: 7-10; Vult=130mpl ph; TCDL=6.0psf; E hclosed; MWFRS (e rmer (3) -0-11-0 to 2 er (3) 6-11-8 to 9-1 e; cantilever left and and right exposed; C VFRS for reactions : late grip DOL=1.60 hed for wind loads ii uds exposed to wind d Industry Gable Er ualified building des e 2x4 () MT20 unl res continuous botto spaced at 2-0-0 oc as been designed m chord in all areas by 2-00-00 wide wil ny other members. are assumed to be chanical connection	h (3-sec 3CDL=6 anvelope -1-10, Ex 1-8, Ext d right e -C for m shown; I in the pla d (norma d (norma) d (norma d (norma) d	ond gust) .0psf; h=25ft;) exterior zor tterior (2) 9-11 xposed ; end terior (2) 9-11 x	Cat. 1e -0 to -8 to ss), ble, Pl 1. ed. ds.)psf om					
TOP CHORD	(ib) - Maximum Con Tension 1-2=0/33, 2-4=-163/ 5-6=-235/219, 6-7=- 8-10=-160/87	118, 4-5=-169/151, 235/219, 7-8=-169/1	bearing plat 10, 61 lb up uplift at joint 35, joint 11, 24 l	e capable of withsta lift at joint 2, 89 lb u 15, 89 lb uplift at jo b uplift at joint 10 a	Inding 2 plift at jo int 12, 2 nd 61 lb	4 lb uplift at j pint 14, 205 lb 202 lb uplift at uplift at joint	oint) t 2.			N.V.	OF 169	ANN THE
BOT CHORD	2-15=-44/100, 14-18 13-14=-44/100, 12-1 11-12=-44/100, 10-1	5=-44/100, 13=-44/100, 11=-44/100	LOAD CASE(S)	Standard							SEA	L
WEBS NOTES	6-13=-173/141, 5-14 4-15=-239/204, 7-12 8-11=-239/202	4=-152/123, 2=-150/123,							LI P		OL ENGINE	ER St.
 Unbalance this design 	ed roof live loads have n.	been considered for								1	L.G.	ALINIU

March 14,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component component to the prevent collapse with possible for the Studyer Building Component Advance and Adva and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Bridgeport, Palmetto, 2 Cameron Hill	
4513022	E02	Common	4	1	Job Reference (optional)	172040096

Run: 8.83 S Mar 11 2025 Print: 8.830 S Mar 11 2025 MiTek Industries, Inc. Fri Mar 14 09:13:35 ID:YQdGUe7LCVBphpeG_IVHiEyvosV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

	6-11-8	13-11-0	
Scale = 1:54.7	6-11-8	6-11-8	
Plate Offsets (X, Y): [2:0-6-0,Edge], [6:0-3-8,Edge]			

	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.57	Vert(LL)	0.13	7-10	>999	240	MT20HS	187/143
TCDI	10.0	Lumber DOI	1 15		BC	0.53	Vert(CT)	-0.12	7-10	>999	240	MT20	244/190
BCU	0.0*	Ren Stress Incr	YES		WB	0.14	Horz(CT)	-0.05	2	n/a			210.000
BCDI	10.0	Code	IRC2015/TE	DI2014	Matrix-MS	0.11	11012(01)	0.00	-	n/a	11/0	Weight: 69 lb	FT - 20%
BODE	10.0	oode	11(02010/11	12014	Matrix MO							Weight. 05 lb	11 = 2070
LUMBER			5) *	This truss h	as been designed	d for a liv	e load of 20.0	Opsf					
TOP CHORD	2x4 SP No.2		0	n the bottor	n chord in all area	s where	a rectangle						
BOT CHORD	2x4 SP No.2		3-	06-00 tall b	y 2-00-00 wide w	ill fit betw	veen the bott	om					
WEBS	2x4 SP No.3		ch	nord and ar	y other members	, with BC	DL = 10.0ps	f.					
SLIDER	Left 2x6 SP No.2 2-6-0, Right 2x6 SP No.2 6) All bearings are assumed to be SP No.2 . 2-6-0 7) Provide mechanical connection (by others) of truss to												
BRACING			be	earing plate	capable of withst	anding 1	30 lb uplift at	t joint					
TOP CHORD	Structural wood she	athing directly applie	dor 6	and 161 lb	uplift at joint 2. Standard								
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.												
REACTIONS	(size) 2=0-3-8, 6	6=0-3-8											
	Max Horiz 2=189 (LC 11)												
	Max Uplift 2=-161 (L	C 12), 6=-130 (LC 13	3)										
	Max Grav 2=644 (LC	C 19), 6=588 (LC 20)	,										
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=0/33, 2-4=-642/	213, 4-6=-601/216											
BOT CHORD	2-7=-368/492, 6-7=-	267/492											
WEBS	4-7=-7/337												
NOTES													
1) Unbalance	ed roof live loads have	been considered for										minin	1111
this desig	n.											I'L'H CA	Roll
2) Wind: AS	CE 7-10; Vult=130mph	(3-second gust)									~	Q	914
Vasd=103	Bmph; TCDL=6.0psf; B	CDL=6.0psf; h=25ft;	Cat.								5.	O' RESS	SIN'S
II; Exp C;	Enclosed; MWFRS (er	velope) exterior zon	е								55		16.7%
and C-C E	Exterior (2) -0-11-0 to 2	-1-0, Interior (1) 2-1-	0 to									1200	K:
6-11-8, E>	cterior (2) 6-11-8 to 9-1	1-8, Interior (1) 9-11-	-8 to							-		0.54	
13-11-0 z	one; cantilever left and	right exposed ; end										SEA	L ; I
vertical lef	ft and right exposed;C-	C for members and									- 1	2867	7 2 3
forces & N	/WFRS for reactions s	hown; Lumber								=		2007	1 E E
DOL=1.60	plate grip DOL=1.60										-	N	1 8
3) All plates	are MI20 plates unles	s otherwise indicated	1.								20	· · En	Ains
 I his truss 	nas been designed for	a 10.0 pst bottom									1.	O, GINF	E. at s
chora live	ioau nonconcurrent Wi	un any other live load	15.								11	MY	IN IN
												11, L. G.	AL
												in num	1111,

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affilia

March 14,2025

Job	Truss	Truss Type	Qty	Ply	Bridgeport, Palmetto, 2 Cameron Hill	
4513022	G01	Monopitch Supported Gable	1	1	Job Reference (optional)	172040097

2-6-6

Run: 8.83 S Mar 11 2025 Print: 8.830 S Mar 11 2025 MiTek Industries, Inc. Fri Mar 14 09:13:35 ID:WdFHXFE3FNCa8ESX2mET32yvowD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-10-8 0-1-8

Scale = 1:33.7

Loading TCLL (roof) TCDL BCLL BCDL	(psf)Spacing20.0Plate Grip I10.0Lumber DC0.0*Rep Stress10.0Code	2-0-0 DOL 1.15 L 1.15 Incr YES IRC20	015/TPI2014	CSI TC BC WB Matrix-MS	0.37 0.31 0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 30 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sheathing directly 6-0-0 oc purlins, except end verti Rigid ceiling directly applied or 6- bracing. (size) 2=8-0-0, 5=8-0-0, 6=8- Max Horiz 2=118 (LC 8) Max Uplift 2=-106 (LC 8), 5=-85 (I 6=-202 (LC 12) Max Grav 2=250 (LC 1), 5=32 (LC	/ applied or cals. 0-0 oc _C 1), C 12), 6=518	 6) This truss ha chord live loa 7) * This truss h on the bottor 3-06-00 tall b chord and ar 8) All bearings 9) Provide mec bearing plate 2, 85 lb uplift uplift at joint 	as been designed ad nonconcurrent has been designe m chord in all are- by 2-00-00 wide v y other members are assumed to b hanical connection e capable of withs t at joint 5, 202 lb 2. Standard	for a 10.0 with any d for a liv as where vill fit betv s. ee SP No. on (by oth standing 1 uplift at jo	 psf bottom other live load e load of 20.1 a rectangle veen the botte 2 . ers) of truss to 06 lb uplift at 06 nd 100 	nds. Opsf om to t joint 6 lb					
FORCES	(lb) - Maximum Compression/Max Tension 1-2=0/13, 2-3=-127/61, 3-4=-23/4	(imum , 4-5=-30/39										

WEBS NOTES

1) Unbalanced roof live loads have been considered for this design.

3-6=-341/412

- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) -0-11-0 to 2-1-0, Exterior (2) 2-1-0 to 7-10-4 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 2-0-0 oc.

"The second seco WWWWWWWWWWWW SEAL 28677 10H GA mmm

Page: 1

March 14,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Bridgeport, Palmetto, 2 Cameron Hill	
4513022	G02	Monopitch	8	1	Job Reference (optional)	172040098

Run: 8.83 S Mar 11 2025 Print: 8.830 S Mar 11 2025 MiTek Industries, Inc. Fri Mar 14 09:13:35

0-1-8

Page: 1

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Scale = 1:32.9

Plate Offsets (X, Y): [2:0-2-12,Edge], [3:0-0-11,0-1-8], [4:Edge,0-1-8]

oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.70	Vert(LL)	0.31	4-7	>296	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.62	Vert(CT)	-0.24	4-7	>382	240			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.00	Horz(CT)	-0.01	2	n/a	n/a			
BCDL	10.0	Code	IRC2015	/TPI2014	Matrix-MS							Weight: 30 lb	FT = 20%	
			0)	De enire en et i et										
			6)	Bearing at jo	Int(s) 4 considers p	formula	o grain value							
	J 2X4 SP N0.2			designer sho	uld verify capacity	of beari	na surface							
	J 2X4 SP N0.2		7)	Provide med	hanical connection	(hy oth	ers) of truss t	0						
NEBS	2x0 SP IN0.2		')	hearing plate	at ioint(s) 4	(by our		.0						
		othing discothy opplie	d a z 8)	Provide mec	hanical connection	(by oth	ers) of truss t	0						
I OP CHOR	Structural wood sne	atning directly applie	a or -/	bearing plate	capable of withsta	ndina 2	48 lb uplift at	ioint						
	D Digid coiling directly	cept end verticals.		2 and 216 lb	uplift at joint 4.	5								
	bracing	applied of 6-9-11 oc	LO	AD CASE(S)	Standard									
	\mathbf{S} (cizo) $2-0.2.0$	1_0 1 9		(-)										
LACTION	M_{OV} Horiz 2=0-3-0, 4	+=0-1-0 > 0)												
	Max Holift $2 = 249$ (L	(10)												
	Max Grav 2=369 (LC	C 1), 4=308 (LC 1)												
ORCES	(lb) - Maximum Com	pression/Maximum												
	Tension													
FOP CHOR	D 1-2=0/13, 2-3=-217/2	263, 3-4=-191/185												
BOT CHOR	D 2-4=-291/204													
NOTES														
I) Unbalar	ced roof live loads have	been considered for												
this des	gn.													
2) Wind: A	SCE 7-10; Vult=130mph	(3-second gust)												
Vasd=1)3mph; TCDL=6.0psf; B	CDL=6.0psf; h=25ft;	Cat.									, mining	1111	
II; Exp C	; Enclosed; MWFRS (er	nvelope) exterior zon	е									"TH CA	Roil	
and C-C	Exterior (2) -0-11-0 to 2	2-1-0, Interior (1) 2-1-	0 to								1	R	····	
7-9-4 zc	ne; cantilever left and rig	oht exposed ; end	-									FEDS	Dillo	1
vertical	eft exposed; porch left a	nd right exposed;C-0	ز.								5 2		11.	2
lor men	DOI -1 60 plate grip DO		wn;							2		AVA VI	Ma .	1
2) This true	bole 1.00 plate grip bo	r = 1.00								-	1	SEA	r 1	1
chord liv	e load nonconcurrent wi	th any other live load	le							=	:	JLA	- :	=
4) * This tr	uss has been designed f	or a live load of 20.0	psf							=		2867	/ :	E .
on the b	ottom chord in all areas	where a rectangle												Ξ
3-06-00	tall by 2-00-00 wide will	fit between the botto	m								1	N	~ · · ·	2
chord a	nd any other members.										24	6 SNGINI	EP. F	5
5) Bearing	s are assumed to be: Joi	int 2 SP No.2, Joint	4								1	'AN GIN	··· S'	
SP No.2											1	VIG	ALIM	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) 818 Soundside Road Edenton, NC 27932 and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

L. GA minin March 14,2025

Job	Truss	Truss Type	Qty	Ply	Bridgeport, Palmetto, 2 Cameron Hill	
4513022	G03	Monopitch Supported Gable	1	1	Job Reference (optional)	172040099

2-6-4

Run: 8.83 S Mar 11 2025 Print: 8.830 S Mar 11 2025 MiTek Industries, Inc. Fri Mar 14 09:13:35 ID:uDCk_rXA2FgOTg75plfZvcyvouY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-10-0 0-1-8

Scale = 1:33.7

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MS	0.36 0.31 0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 30 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav	0.2 0.2 0.2 0.3 wood she vurlins, exima g directly 2=7-11-8, 2=118 (LC 2=-106 (L 6=-200 (L 2=249 (LC (LC 1)	athing directly appli cept end verticals. applied or 6-0-0 oc 5=7-11-8, 6=7-11-{ C 8) C 8), 5=-83 (LC 1), C 12) C 1), 5=31 (LC 12),	6 ied or 5 8 1 6=514	 i) This truss ha chord live lo. i) * This truss I on the botto 3-06-00 tall I chord and ai i) All bearings ii) All bearings iii) Provide mec bearing plate 2, 83 lb uplif uplift at joint CAD CASE(S) 	as been designe ad nonconcurre has been design m chord in all al by 2-00-00 wide ny other membe are assumed to chanical connecc e capable of wit t at joint 5, 200 2. Standard	ed for a 10.0 ent with any ned for a liv reas where a will fit betw ers. b be SP No. etion (by oth instanding 1 lb uplift at jo	0 psf bottom other live loa e load of 20. a rectangle reen the bott 2. ers) of truss 06 lb uplift a sint 6 and 10	ads. .0psf tom to ti joint 16 lb					
FORCES	(lb) - Maxi Tension	mum Com	pression/Maximum											
TOP CHORD BOT CHORD WEBS	1-2=0/13, 2-3=-126/61, 3-4=-23/4, 4-5=-28/37 2-6=-81/115, 5-6=-14/9 3-6=-338/410													

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) -0-11-0 to 2-1-0, Exterior (2) 2-1-0 to 7-9-12 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 2-0-0 oc.

March 14,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Bridgeport, Palmetto, 2 Cameron Hill	
4513022	G04	Jack-Partial Supported Gable	8	1	Job Reference (optional)	172040100

Run: 8.83 S Mar 11 2025 Print: 8.830 S Mar 11 2025 MiTek Industries, Inc. Fri Mar 14 09:13:36 ID:3cvKsQtkSsCQq_GTSd971Wyvou6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:32.8

Plate Offsets (X, Y): [2:0-2-12,Edge], [3:0-0-11,0-1-8], [4:Edge,0-1-8]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.69	Vert(LL)	0.32	4-7	>289	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.62	Vert(CT)	-0.24	4-7	>388	240			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.00	Horz(CT)	-0.01	2	n/a	n/a			
BCDL	10.0	Code	IRC2015	/TPI2014	Matrix-MS							Weight: 29 lb	FT = 20%	
				Desting at is	nt/a) 4 aanaidana n	ا اماله								
			6)	Bearing at jo	PL1 angle to grain	formul	o grain value							
	2X4 SP N0.2			designer sho	uld verify canacity	of beari	na surface							
	2x4 SF N0.2 2x6 SP No 2		7)	Provide mec	nanical connection	(by oth	ers) of truss t	o						
	2X0 3F NU.2		• • • •	bearing plate	at joint(s) 4.	(2) 01.1								
	Structural wood abo	othing directly opplie	d or 8)	Provide mecl	nanical connection	(by oth	ers) of truss t	to						
		auting unecuy applie	u 01 '	bearing plate	capable of withsta	nding 2	47 Ib uplift at	t joint						
	Bigid ceiling directly	applied or 8-4-10 oc		2 and 215 lb	uplift at joint 4.	Ŭ	•							
BOTCHORD	bracing		LO	AD CASE(S)	Standard									
REACTIONS	(size) 2=0-3-0 4	4=0-1-8		.,										
	Max Horiz 2=117 (I (C 8)												
	Max Uplift 2=-247 (I	C(8) = 4 = -215 (IC(8))												
	Max Grav 2=367 (LC	C 1), 4=306 (LC 1)												
FORCES	(lb) - Maximum Com	pression/Maximum												
	Tension													
TOP CHORD	1-2=0/13, 2-3=-216/2	272, 3-4=-190/199												
BOT CHORD	2-4=-305/202													
NOTES														
1) Unbalance	ed roof live loads have	been considered for												
this desig	n.													
2) Wind: AS	CE 7-10; Vult=130mph	(3-second gust)	A .											
Vasd=103	Smph; TCDL=6.0psf; B	CDL=6.0pst; h=25ft;	Cat.										in the	
II; Exp C;	Enclosed; IVIVERS (er	ivelope) exterior zon	e									TH UA	ROUL	
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	ight expected : and	0 10									A de	in All's	
vertical let	t exposed: porch left a	nd right exposed; end	`								22	A POS	PM1. 5	1
for membr	ars and forces & MW/FI	RS for reactions show	vn.								2 7		Nº.	-
Lumber D	OL=1.60 plate grip DO	L=1.60	,									per se		-
 This truss 	has been designed for	a 10.0 psf bottom										SEA	f. 1	- 19
chord live	load nonconcurrent wi	th any other live load	ls.							=		00007		
4) * This trus	s has been designed f	or a live load of 20.0	psf							1	:	286/	/ :	-
on the bot	tom chord in all areas	where a rectangle								-				-
3-06-00 ta	all by 2-00-00 wide will	fit between the botto	m								2	·	air	-
chord and	any other members.										2,4	O. SNGINI	ELIT	5
5) Bearings	are assumed to be: Joi	nt 2 SP No.2, Joint	4								11	YA,	· NS	
SP No.2 .												INI G	ALILIN	

- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 4)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Bearings are assumed to be: Joint 2 SP No.2 , Joint 4 SP No.2.

GA (IIIIIII) March 14,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Bridgeport, Palmetto, 2 Cameron Hill	
4513022	PB01	Piggyback	6	1	Job Reference (optional)	172040101

Run: 8.83 S Mar 11 2025 Print: 8.830 S Mar 11 2025 MiTek Industries, Inc. Fri Mar 14 09:13:36 ID:6vGkHD1KWG0bY9aurTWdeMyvp0x-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale =	1:30.9	

Loading TCLL (roof) TCDL BCLL BCDL	(F 2 1 1	psf) 20.0 0.0 0.0* 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.09 0.06 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural woo 4-0-0 oc purlin Rigid ceiling di bracing. (size) 1=4 Max Horiz 1=- Max Uplift 1=- 5=-2 Max Grav 1=6	od shea ns. lirectly a 4-0-0, 2 60 (LC 115 (LC 26 (LC 57 (LC	applied or 10-0-0 oc =4-0-0, 4=4-0-0, 5=4- 8) C 19), 2=-102 (LC 12) 13) 12), 2=282 (LC 19),	7) or 8) 9) 	* This truss h on the bottom 3-06-00 tall b chord and an All bearings a Provide mect bearing plate 2, 115 lb uplif uplift at joint 2) See Standard Detail for Cor consult qualif	as been designed f a chord in all areas y 2-00-00 wide will y other members. Ire assumed to be a nanical connection i capable of withstar t at joint 1, 26 lb up 2. I Industry Piggybac unection to base tru ied building design Standard	for a liv where fit betw SP No. (by oth nding 1 olift at jo sk Truss iss as a er.	e load of 20.0 a rectangle veen the botto 2. ers) of truss to 02 lb uplift at j bint 5 and 102 s Connection upplicable, or	psf m joint Ib					
FORCES TOP CHORD BOT CHORD NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp C; I and C-C E exposed ; members a: Lumber D0 3) Truss desi only. For a see Stand or consult 4) Gable requ 5) Gable stuc 6) This truss chord live	(lb) - Maximum Tension 1-2=-75/134, 2 4-5=-87/40 2-4=-49/69 ed roof live loads n. CE 7-10; Vult=13 imph; TCDL=60 Enclosed; MWFF Exterior (2) zone; end vertical left ; and forces & MW OL=1.60 plate gr igned for wind lo studs exposed to ard Industry Gaå qualified building uires continuous ds spaced at 2-0 has been desigr load nonconcurr	s have I 2-3=-84 30mph psf; BC RS (enn); cantile and rig WFRS f rip DOI ads in co wind ble End g desig s bottom blo co. ned for rent wit	445, 3-4=-94/38, been considered for (3-second gust) DL=6.0ps; h=25f; C velope) exterior zone ver left and right ht exposed;C-C for or reactions shown; _=1.60 the plane of the truss (normal to the face), I Details as applicable iner as per ANSI/TPI n chord bearing. a 10.0 psf bottom h any other live loads	at. 9, 1.							"THURNESS	and a start of the	SEA 2867	ROULE T E.P. Stummer

March 14,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

