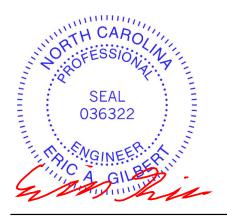


Trenco 818 Soundside Rd Edenton, NC 27932


Re: J0325-1347 Lot 1 Mabry Ridge

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: I71948618 thru I71948642

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

March 12,2025

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Lot 1 Mabry Ridge	
J0325-1347	A1-GE	GABLE	1	1	Job Reference (optional)	171948618

Run: 8.96 S 8.63 Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Mar 11 10:33:18 ID:2GNsYO62BI49KgBFP3SImayOXVO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

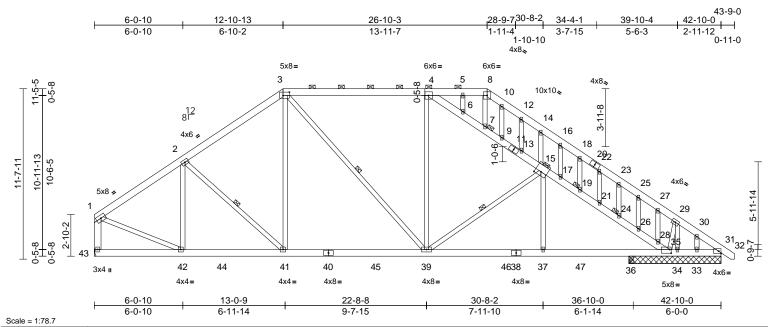
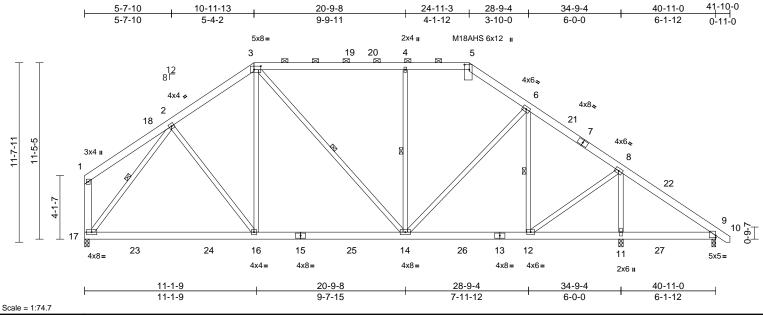


Plate Offsets (X, Y): [3:0-5-4,0-2-12], [15:0-5-0,0-3-0], [35:0-1-4,0-3-0]

		1	-		r		-					1	
Loading	(psf)		2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	1 1	1.15		TC	0.49	Vert(LL)		39-41	>999	360	MT20	244/190
TCDL	10.0		1.15		BC	0.54	Vert(CT)	-0.22		>999	240		
BCLL	0.0*		NO		WB	0.38	Horz(CT)	0.05	31	n/a	n/a		
BCDL	10.0	Code	IRC2021	/TPI2014	Matrix-S		Wind(LL)	0.04	37-39	>999	240	Weight: 416 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS	5-6-11 oc purlins, e 2-0-0 oc purlins (5-3 Rigid ceiling directly bracing.	athing directly applied xcept end verticals, ar	WE	EBS	42-43=-280/333, 4 39-41=-263/1570, 36-37=-91/2029, 3 34-35=-29/452, 33 31-33=-29/452 2-42=-394/137, 2 3-39=-209/364, 3 15-37=0/379, 15-3 1-42=-148/1564, 7 9-10=-16/34, 12-13 16-17=-140/117, 1 21-22=-48/39, 23-2	37-39=- 5-36=-9 -34=-29/ 41=-229/ 41=-61/5 9=-545/2 -8=-12/6 3=-139/1 8-19=-1 24=-45/3	91/2029, 1/2029, 452, 244, 66, 4-39=-3/5 241, 8, 5-6=-14/18 06, 9/15, 7, 25-26=-9/ ²	3, 17,	bea joir and 10) Gra or t bot	aring pla nt 43, 46 d 1035 lb aphical p	te capa 7 lb upl o uplift a ourlin re tation o rd.	able of withstandi lift at joint 34, 66 at joint 35. epresentation doe of the purlin along	others) of truss to ng 224 lb uplift at lb uplift at joint 33 es not depict the size g the top and/or
JOINTS	1 Brace at Jt(s): 15, 7, 19, 24	2-41, 5-55, 15-55			27-28=-344/204, 2 14-15=-91/120, 29			5/75,					
r, 19, 24 REACTIONS (size) 31=6-3-8, 33=6-3-8, 34=6-3-8, 35=6-3-8, 35=6-3-8, 36=0-3-8, 43= Mechanical Max Horiz 43=-325 (LC 8) Max Uplift 33=-66 (LC 13), 34=-467 (LC 20), 35=-1035 (LC 13), 43=-224 (LC 12) Max Grav 31=418 (LC 22), 33=66 (LC 11), 34=408 (LC 20), 36=-372 (LC 2), 33=64 (LC 20), 36=-372 (LC 2), 43=1855 (LC 2)			1) 2) (12) (20),	 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; Gable Roof; Hip Truss; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-2-12 to 4-7-9, Interior (1) 47-9 to 12-10-13, Exterior (2R) 12-10-13 to 17-3-9, Interior (1) 17-3-9 to 26-10-3, Exterior(2R) 26-10-3 to 31-3-0, Interior (1) 31-3-0 to 43-7-7 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 							11111.		
FORCES	(lb) - Maximum Corr	pression/Maximum			26-10-3 to 31-3-0, C-C for members			for				"TH CA	Rollin
TOP CHORD	8-10=-359/119, 10-1 12-14=-365/46, 14-1 18-22=-408/0, 22-23 25-27=-517/0, 27-29	348/129, 5-8=-338/12 12=-408/112, 16=-381/0, 16-18=-380 3=-439/0, 23-25=-474/0 3-47907, 29-30=-480/0 32=0/14, 1-43=-1752/2 1667/329, 3=-1631/325, 5-17=-2015/418, 9-21=-2081/473, 4-26=-2119/504,	3) (0, 4) (0, 5) 32, 57, 6) 7)	reactions sh DOL=1.60 Provide adeu All plates ard chord live loc * This truss ha chord live loc * This truss lo on the botton 3-06-00 tall I chord and an Bearings are crushing cap capacity of 5	punt: Lumber DOL: quate drainage to p e 2x4 MT20 unless is been designed f ad nonconcurrent v has been designed in chord in all area: by 2-00-00 wide wi by other members, assumed to be: , bacity of 565 psi, Jo	=1.60 pla prevent v cotherwi for a 10.0 with any l for a liv s where ll fit betw with BC Joint 35 point 36 S	ate grip water ponding se indicated.) psf bottom other live loa e load of 30.0 a rectangle veen the bottt DL = 10.0psf SP No.1 P No.1 crush	g. ds.)psf om		4		SEA 0363	22 EFR 6

March 12,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



Job	Truss	Truss Type	Qty	Ply	Lot 1 Mabry Ridge	
J0325-1347	A2	Piggyback Base	6	1	Job Reference (optional)	171948619

1)

this design.

Run: 8.96 S 8.63 Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Mar 11 10:33:19 Page: 1 ID:2GNsYO62BI49KgBFP3SImayOXVO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [3:0-5-4,0-2-12], [5:0-4-0,0-3-12], [9:Edge,0-1-11]

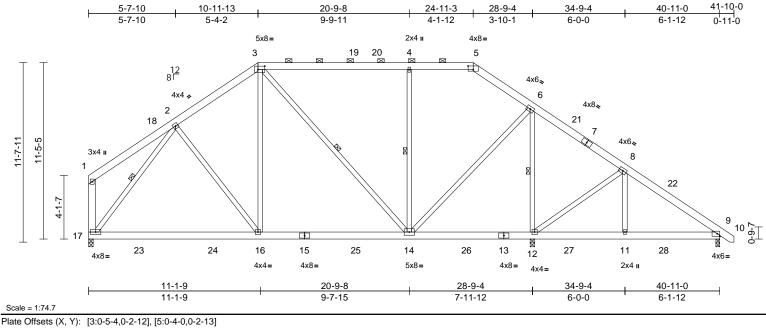
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.64	Vert(LL)	-0.20	16-17	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.63	Vert(CT)	-0.30	16-17	>999	240	M18AHS	186/179
BCLL	0.0*	Rep Stress Incr	NO	WB	0.82	Horz(CT)	0.02	11	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S		Wind(LL)	0.07	14-16	>999	240	Weight: 338 lb	FT = 20%

LUMBER	
TOP CHORD	2x6 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x4 SP No.2 *Except* 17-1:2x6 SP No.1
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (5-11-5 max.): 3-5.
BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing.
WEBS	1 Row at midpt 3-14, 4-14, 2-17, 6-12
REACTIONS	(size) 9=0-3-0, 11=0-3-8, 17=0-3-8 Max Horiz 17=-262 (LC 8) Max Uplift 9=-633 (LC 27), 11=-97 (LC 13), 17=-28 (LC 12)
	Max Grav 9=56 (LC 12), 11=2875 (LC 2), 17=1588 (LC 2)
FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=-210/89, 2-3=-1399/266, 3-4=-1039/263, 4-5=-1038/263, 5-6=-1137/264, 6-8=-773/119, 8-9=-276/1348, 9-10=0/14, 1-17=-239/100
BOT CHORD	16-17=-151/1055, 14-16=-88/1178, 12-14=0/524, 11-12=-1021/260, 9-11=-1021/260
WEBS	2-16=-68/378, 3-16=-4/509, 3-14=-223/85, 4-14=-306/182, 6-14=-162/860, 8-12=-157/1833, 8-11=-2630/426, 2-17=-1430/184, 6-12=-752/202
NOTES	

Unbalanced roof live loads have been considered for

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-2-12 to 4-7-9, Interior (1) 4-7-9 to 10-11-13, Exterior(2R) 10-11-13 to 17-2-7, Interior (1) 17-2-7 to 24-11-3, Exterior(2R) 24-11-3 to 31-1-14, Interior (1) 31-1-14 to 41-8-7 zone; porch right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding.

- All plates are MT20 plates unless otherwise indicated. 4)
- 5) The Fabrication Tolerance at joint 5 = 0%
- 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 30.0psf 7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. All bearings are assumed to be SP No.1 crushing 8)
- capacity of 565 psi.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 97 lb uplift at joint 11, 28 lb uplift at joint 17 and 633 lb uplift at joint 9.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 1 Mabry Ridge	
J0325-1347	A3	Piggyback Base	3	1	Job Reference (optional)	171948620

Run: 8.96 S 8.63 Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Mar 11 10:33:19 Page: 1 ID:2GNsYO62BI49KgBFP3SImayOXVO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.49	Vert(LL)	-0.19	16-17	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.61	Vert(CT)	-0.28	16-17	>999	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.59	Horz(CT)	0.01	12	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S		Wind(LL)	0.04	14-16	>999	240	Weight: 338 lb	FT = 20%

LUMBER TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 *Except* 17-1:2x6 SP No.1 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-5. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. WEBS 3-14, 4-14, 6-12, 2-17 1 Row at midpt REACTIONS (size) 9=0-3-0, 12=0-3-8, 17=0-3-8 Max Horiz 17=-262 (LC 8) Max Uplift 9=-74 (LC 8), 12=-178 (LC 8), 17=-21 (LC 12) Max Grav 9=274 (LC 26), 12=2520 (LC 2), 17=1273 (LC 19) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-202/87, 2-3=-1020/199, 3-4=-468/168, 4-5=-468/168. 5-6=-565/170. 6-8=-171/710. 8-9=-132/420, 9-10=0/14, 1-17=-231/98 16-17=-148/843, 14-16=-84/888, BOT CHORD 12-14=-591/315, 11-12=-296/113, 9-11=-296/113 WEBS 2-16=-85/236, 3-16=-8/604, 3-14=-565/88, 4-14=-464/188, 6-14=-187/1484, 6-12=-1838/384, 2-17=-1045/122, 8-11=-292/238, 8-12=-529/445 NOTES

Unbalanced roof live loads have been considered for

1)

this design.

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-2-12 to 4-7-9, Interior (1) 4-7-9 to 10-11-13, Exterior(2R) 10-11-13 to 17-2-7, Interior (1) 17-2-7 to 24-11-3, Exterior(2R) 24-11-3 to 31-114, Interior (1) 31-1-14 to 41-8-7 zone; porch right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
Provide adequate drainage to prevent water ponding.

Wind: ASCE 7-16; Vult=130mph (3-second gust)

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
5) * This truss has been designed for a live load of 30.0psf

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
6) All bearings are assumed to be SP No.1 crushing

capacity of 565 psi.

2)

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 178 lb uplift at joint 12, 21 lb uplift at joint 17 and 74 lb uplift at joint 9.

 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 1 Mabry Ridge	
J0325-1347	B1-GE	Piggyback Base Supported Gable	1	1	Job Reference (optional)	171948621

Run: 8.63 E Aug 30 2023 Print: 8.630 E Aug 30 2023 MiTek Industries, Inc. Wed Mar 12 09:50:26 ID:2GNsYO62BI49KgBFP3SImayOXVO-aCj61VpYKX9gExpsQoa?ecu4NhVDy7W87Z4inzzbteD Page: 1

-0-11-0 <u>4-3-8</u> 0-11-0 4-3-8 44-10-0 0-11-0 17-11-13 27-11-4 43-11-0 13-8-4 9-11-7 15-11-12 5x8= 5x8= 12 8 19 20 21 22 23 24 1718 2526 16 27 4x8 🍬 15 28 4x8👟 29 14 ³⁰31₃₂ 11^{12¹³} 11-5-5 9-1-8 10 33 11-9-13 9 34 4x8 🚅 8 35 ³⁶74 37 7 ₅12 5⁶ 4 38 2-3-13 2-3-13 ³⁹406-∏ 0-6-5 ∏ _____ 73 72 70 69 68 67 65 64 6**8**2 61 60 59 58 57 56 55 54 53 52 550 48 46 43 71 66 49 47 45 44 42 41 4x6= 4x6= 4x8= 4x8=

43-11-0

Scale = 1:81.6

	(X, Y): [17:0-4-0,0-2-1	1	-	-							1			
Loading TCLL (roof)	(psf)	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.07	DEFL	in	(loc)	l/defl	L/d 999	PLATES MT20	GRIP 244/190		
TCLL (1001)	20.0 10.0	Lumber DOL	1.15	BC	0.07	Vert(LL) Vert(CT)	n/a n/a	-	n/a n/a	999 999	MI 20	244/190		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.01	39	n/a	999 n/a				
BCDL	10.0	Code	IRC2021/TPI20		0.09	11012(C1)	0.01	39	n/a	n/a	Weight: 530 lb	FT = 20%		
LUMBER			TOP CHC	RD 2-3=-311/201	3-4=-265/21	1.		2) Wir	nd: ASC	E 7-16	; Vult=130mph (3-second gust)		
TOP CHORD	2x6 SP No.1			13-14=-140/2								DL=6.0psf; h=15ft;		
BOT CHORD				15-16=-140/3	96, 16-17=-1	43/401,		Cat	. II; Exp	Ċ; En	closed; Gable Ro	oof; Common Truss;		
OTHERS	2x4 SP No.2 *Excep		17-18=-130/3								and C-C Corner(3E)			
		0-0,0-0,0-0,0-0,0-0,0	-0,0-	19-20=-130/3								8 to 17-11-13, Corn		
	0,0-0,0-0:2x4 SPF N	lo.2(flat)		21-22=-130/3 23-24=-130/3								2N) 22-3-8 to 27-11-		
BRACING				25-26=-130/3	,	,						erior(2N) 32-4-0 to nd forces & MWFRS		
TOP CHORD		eathing directly applie	ed or	27-28=-140/3							vn; Lumber DOL			
	6-0-0 oc purlins, ex			29-30=-100/2	,	,			L=1.60	0.000		piaco grip		
BOT CHORD	2-0-0 oc purlins (6-0	/ applied or 10-0-0 or	. BOT CHC		,		3			ned fo	r wind loads in th	he plane of the truss		
BOT CHORD	bracing.		,	71-72=-117/2	72, 70-71=-1	17/272,		only	y. For s	, tuds ex	xposed to wind (normal to the face),		
WEBS	T-Brace:	2x4 SPF No.2 - 25-	53.		69-70=-117/272, 68-69=-117/272,				see Standard Industry Gable End Details as applicable					
		24-54, 23-55, 22-56		67-68=-117/2								ner as per ANSI/TPI		
		21-57, 20-58, 19-59	,	65-66=-117/2								vent water ponding.		
		18-60, 16-61, 15-63	,	63-64=-117/2 61-62=-117/2								nerwise indicated.		
		14-64, 27-52, 28-50	,	59-60=-117/2	,	,					ntinuous bottom ed at 2-0-0 oc.	chord bearing.		
		29-49	I	57-58=-117/2								a 10.0 nsf hottom		
	of web with 10d (0.1	I braces to narrow ed	ige	55-56=-117/2			,	 This truss has been designed for a 10.0 psf botto chord live load nonconcurrent with any other live 						
	o.c., with 3in minimu			53-54=-117/2				0.10		baa no				
		90% of web length.		51-52=-117/2										
REACTIONS	All bearings 43-11-0.			49-50=-117/2								1111		
	Max Horiz 2=349 (L	C 11)		47-48=-117/2							WHY CA	ADOUL		
()	Max Uplift All uplift		it(s)	45-46=-117/2 43-44=-117/2						1	all	190Y1		
		2, 43, 44, 45, 46, 47,		43-44=-117/2						×.	O EESS	6:10%		
		4, 55, 56, 57, 58, 59,		41 42= 111/2	72, 00 41 - 1	17/212			/	55	i	1 Sig		
		4, 65, 66, 67, 68, 69,		anced roof live loads	s have been	oncidorod fo	r		2		127 – J			
		3 except 2=-109 (LC	O) ' this di		s have been		1				00	6 I I I		
	Max Grav All reaction	· · /	t joint	olgn.						:	SEF	AL :		
		41, 42, 43, 44, 45, 4 0, 52, 53, 54, 55, 56,									0363	322 : :		
		0, 61, 63, 64, 65, 66,												
		0, 71, 72, 73	,							-	1. A.			
FORCES		lax. Ten All forces	250							2.0	S. SNOW	EER. KIN		
	(lb) or less except w									1	P/	F. CAN		
											IL A C	ALB IN		
											Think C			
												h 12 2025		

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)

A MiTek 818 Soundside Road Edenton, NC 27932

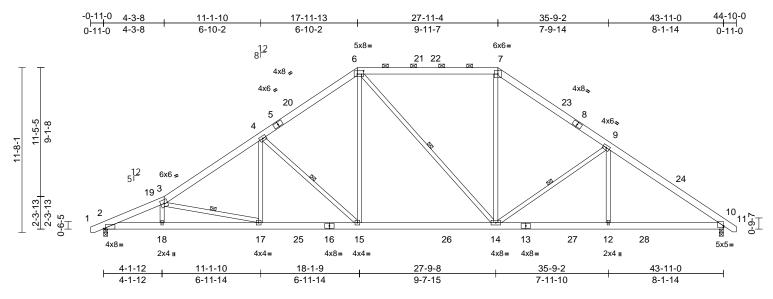
March 12,2025

Job	Truss	Truss Type	Qty	Ply	Lot 1 Mabry Ridge	
J0325-1347	B1-GE	Piggyback Base Supported Gable	1	1	Job Reference (optional)	171948621

- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 39, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41 except (jt=lb) 2=109.
- Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

LOAD CASE(S) Standard

Run: 8.63 E Aug 30 2023 Print: 8.630 E Aug 30 2023 MiTek Industries, Inc. Wed Mar 12 09:50:26 ID:2GNsYO62BI49KgBFP3SImayOXVO-aCj61VpYKX9gExpsQoa?ecu4NhVDy7W87Z4inzzbteD


Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 1 Mabry Ridge	
J0325-1347	B2	Piggyback Base	6	1	Job Reference (optional)	171948622

Run: 8.96 S 8.63 Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Mar 11 10:33:20 Page: 1 ID:2GNsYO62BI49KgBFP3SImayOXVO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:81.6

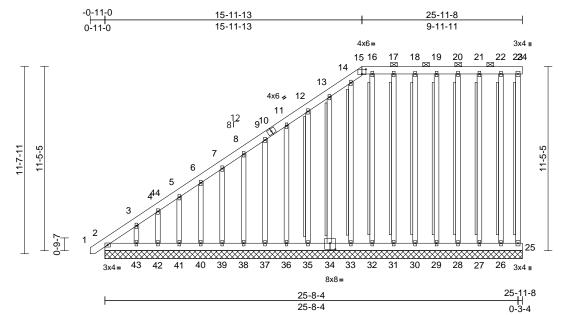
Plate Offsets (X, Y): [2:0-1-10,Edge], [6:0-5-4,0-2-12], [10:Edge,0-1-7]

													-
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.56	Vert(LL)	-0.19	14-15	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.62	Vert(CT)	-0.33	14-15	>999	180		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.41	Horz(CT)	0.11	10	n/a	n/a		
BCDL	10.0	Code	IRC202	1/TPI2014	Matrix-S							Weight: 335 lb	FT = 20%
LUMBER TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2 BRACING TOP CHORD Structural wood sheathing directly applied or 3-8-0 oc purlins, except 2-0-0 oc purlins (4-9-10 max.): 6-7. BOT CHORD Rigid ceiling directly applied or 7-3-12 oc bracing. WEBS 1 Row at midpt 6-14, 3-17, 9-14, 4-15 REACTIONS (size) 2=0-3-8, 10=0-3-8 Max Horiz 2=315 (LC 9) Max Uplift 2=-234 (LC 10), 10=-218 (LC 11) Max Grav 2=1991 (LC 2), 10=2045 (LC 18)				Vasd=103mj Cat. II; Exp C Exterior(2E) 23-6-8, Exte 32-3-15 to 44 zone;C-C for reactions sho DOL=1.60 Provide adee This truss ha chord live loa * This truss h	7-16; Vult=130r bh; TCDL=6.0ps C; Enclosed; MW -0-9-4 to 3-7-7, 13-7-1 to 22-4-2 fior(2R) 23-6-8 t D-3-11, Exterior(members and f own; Lumber DC quate drainage t is been designed ad nonconcurren has been designed nas been designed an chord in all are	sf; BCDL=5 VFRS (env Interior (1) 3, Interior (1) 3, Interior (1) 3, Interior (1) 5, Interior	.0psf; h=30ft elope) and C 3-7-7 to 13-7 1) 22-4-8 to Interior (1) 1 to 44-8-7 WFRS for ate grip water ponding 0 psf bottom other live loa e load of 20.0	-C 7-1, g. ds.					
FORCES	Max Grav 2=1991 (L (lb) - Maximum Com Tension			chord and ar	by 2-00-00 wide by other member	rs, with BC	DL = 10.0pst						
TOP CHORD	1-2=0/16, 2-3=-4341 4-6=-2436/1001, 6-7 7-9=-2354/963, 9-10	/=-1873/920,	7)	capacity of 5 Provide med	are assumed to 65 psi. hanical connecti capable of with	ion (by oth	ers) of truss t						
BOT CHORD	2-18=-1146/4109, 1 15-17=-691/2751, 1 12-14=-632/2357, 1	4-15=-384/2000, 0-12=-632/2357	8)	Graphical pu or the orienta	234 lb uplift at jo rlin representati ation of the purli	ion does no		size					Della
WEBS NOTES	3-18=0/185, 4-17=-6 7-14=-130/852, 6-14 3-17=-1396/479, 9-1 4-15=-1036/418	=-262/175, 9-12=0/4	440	bottom chord DAD CASE(S)						4	11 miles	ORTH CA	

1) Unbalanced roof live loads have been considered for this design.

818 Soundside Road Edenton, NC 27932

SEAL


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 1 Mabry Ridge	
J0325-1347	C1-GE	GABLE	1	1	Job Reference (optional)	171948623

 Run:
 8.96 S
 8.63 Sep
 26 2024 Print:
 8.630 S
 Sep
 26 2024 MiTek Industries, Inc. Tue Mar
 Tu1
 10:33:20
 Page:
 1

 ID:2GNsYO62BI49KgBFP3SImayOXVO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

 Page:
 1

Scale = 1:71.6 Plate Offsets (X, Y): [15:0-3-0.0-3-8]. [34:0-4-0.0-4-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO	CSI TC BC WB		DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.01	(loc) - - 24	n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-	5	-	-				Weight: 349 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS	2x6 SP No.1 2x6 SP No.1 2x4 SP No.2 2x4 SP No.2 *Excep 0-0,0-0,0-0,0-0,0-0, 4 SPF No.2(flat)	5t* 0-0,0-0,0-0,0-0,0-0,0-0		Max Uplift	2=-64 (LC 10), 2 25=-6 (LC 9), 26 27=-33 (LC 9), 2 29=-31 (LC 8), 3 31=-31 (LC 8), 3 33=-46 (LC 12), 35=-59 (LC 12),	=-22 (LC 8), 8=-32 (LC 9) 0=-32 (LC 9) 2=-28 (LC 9) 34=-60 (LC 1 36=-58 (LC 1	, , 2), 2),	WEBS		19-29 16-32 12-35 8-38=	=-81/47, 18-30=- =-80/50, 14-33=- =-92/75, 11-36=- -91/74, 7-39=-91	84/49, 20-28=-83/48 81/48, 17-31=-81/47 80/63, 13-34=-92/76 91/74, 9-37=-91/74, /74, 6-40=-91/74, /79, 3-43=-137/155
BRACING					37=-58 (LC 12),	38=-58 (LC 1	2),	1) Ur	balance	d roof li	ve loads have be	een considered for
TOP CHORD		eathing directly applied acept end verticals, an 0-0 max.): 15-24.	d		39=-58 (LC 12), 41=-57 (LC 12), 43=-146 (LC 12)	42=-58 (LC 1	2),	2) Wi		E 7-16;	; Vult=130mph (3 CDL=6.0psf; BCI	3-second gust) DL=6.0psf; h=15ft;
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc		Max Grav	2=342 (LC 12), 2 25=25 (LC 1), 26	6=92 (LC 26),						of; Common Truss; and C-C Corner(3E)
WEBS	of web with 10d (0.1 o.c.,with 3in minimu		ge		27=111 (LC 1), 2 29=107 (LC 26), 31=107 (LC 26), 33=106 (LC 1), 35=120 (LC 19), 37=118 (LC 19), 39=118 (LC 19), 41=119 (LC 19), 43=177 (LC 19)	30=108 (LC 32=107 (LC 34=119 (LC 1 36=118 (LC 38=118 (LC 40=117 (LC 42=108 (LC	26), 1), 9), 19), 19), 19), 19),	(31 zo rea DC 3) Tri on se or	R) 15-11- ne;C-C fo actions sl DL=1.60 uss desig ly. For s e Standa consult o	13 to 2 or mem hown; I gned fo tuds ex ird Indu gualified	20-7-8, Exterior(2 libers and forces Lumber DOL=1.6 r wind loads in th sposed to wind (r istry Gable End I d building design	50 plate grip ne plane of the truss normal to the face), Details as applicable er as per ANSI/TPI 1
REACTIONS	25=25-11 27=25-11 29=25-11 31=25-11 33=25-11 35=25-11 37=25-11 39=25-11	8, 24=25-11-8, - $8, 26=25-11-8,$ - $8, 28=25-11-8,$ - $8, 30=25-11-8,$ - $8, 32=25-11-8,$ - $8, 34=25-11-8,$ - $6, 36=25-11-8,$ - $8, 38=25-11-8,$ - $8, 38=25-11-8,$ - $8, 40=25-11-8,$	FORCES	Tension 1-2=0/14, 4-5=-457/ 7-8=-307/ 11-12=-15 13-14=-56 16-17=0/0	imum Compressii 2-3=-616/346, 3- 253, 5-6=-408/22 172, 8-9=-257/14 57/90, 12-13=-10 5/36, 14-15=-24/8 0, 17-18=0/0, 18- 0, 21-22=0/0, 22-2 7/10	4=-508/280, 6, 6-7=-358/1 5, 9-11=-207 7/63, 5, 15-16=0/0, 19=0/0, 19-20	199, /118,)=0/0,	4) Pr	2		ORTH CA	ent water ponding.
	41=25-11 43=25-11 Max Horiz 2=524 (L		BOT CHORD	2-43=0/0, 39-40=0/0 35-36=0/0 30-31=0/0	42-43=0/0, 41-42 0, 38-39=0/0, 37-5 0, 33-35=0/0, 32-5 0, 29-30=0/0, 28-2 0, 25-26=0/0	38=0/0, 36-37 33=0/0, 31-32	7=0/0, 2=0/0,			A MARINE AND A MAR	A. C	EER. KIN

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org)

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

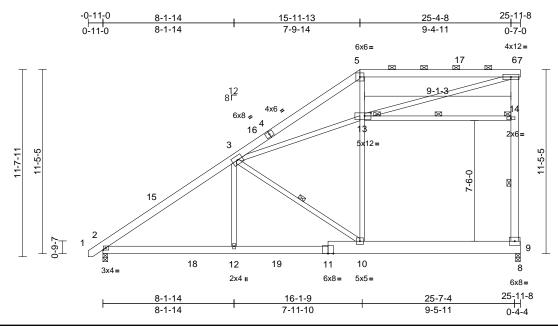
March 12,2025

Job	Truss	Truss Type	Qty	Ply	Lot 1 Mabry Ridge	
J0325-1347	C1-GE	GABLE	1	1	Job Reference (optional)	171948623

- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 1-4-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members.10) All bearings are assumed to be SP No.1 crushing capacity of 565 psi.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 17 lb uplift at joint 24, 6 lb uplift at joint 25, 64 lb uplift at joint 2, 22 lb uplift at joint 26, 33 lb uplift at joint 27, 32 lb uplift at joint 28, 31 lb uplift at joint 29, 32 lb uplift at joint 30, 31 lb uplift at joint 31, 28 lb uplift at joint 32, 46 lb uplift at joint 33, 60 lb uplift at joint 34, 59 lb uplift at joint 35, 58 lb uplift at joint 38, 58 lb uplift at joint 39, 58 lb uplift at joint 40, 57 lb uplift at joint 41, 58 lb uplift at joint 42 and 146 lb uplift at joint 43.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 13) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

LOAD CASE(S) Standard

 Run: 8.96 S 8.63 Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Mar 11 10:33:20
 Page: 2


 ID:2GNsYO62BI49KgBFP3SImayOXVO-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f
 Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

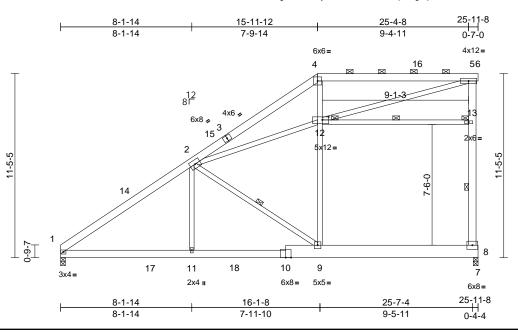
Job	Truss	Truss Type	Qty	Ply	Lot 1 Mabry Ridge	
J0325-1347	C2	Piggyback Base	10	1	Job Reference (optional)	171948624

Run: 8.96 S 8.63 Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Mar 11 10:33:20 Page: 1 ID:2GNsYO62BI49KgBFP3SImayOXVO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [2:0-1-12,0-1-8], [13:0-4-12,0-2-4]

Scale = 1:71.6

			-										
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.51	Vert(LL)	-0.21	10-12	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.44	Vert(CT)	-0.35	10-12	>879	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.81	Horz(CT)	0.02	9	n/a	n/a		
BCDL	10.0	Code	IRC2021/	TPI2014	Matrix-S		Wind(LL)	0.12	10-12	>999	240	Weight: 251 lb	FT = 20%
BOT CHORD 2x6 WEBS 2x4 BRACING X44 TOP CHORD Str. BOT CHORD Rig bra 44 BOT CHORD Rig JOINTS 1 B JOINTS 1 H REACTIONS (size Max Max FORCES (lb) TOP CHORD 1-2: 5-6 6-1 BOT CHORD 2-1: 9-1 WEBS WEBS 3-1: MOTES 10- 10- 13- NOTES 10 10- 3-1: NOTES 10- 10- 3-1: NOTES 10- 10- 3-1: NOTES 10- 10- 3-1: NOTES 10- 10- 13- 2-2-27: to 25-11 14 MWFRS for rea 25-11 MWFRS for rea <	SP No.2 *Except uctural wood she -2 oc purlins, ex- did ceiling directly cing. tow at midpt trace at Jt(s): 13,) 2=0-3-8, 9 Horiz 2=364 (L0 Uplift 2=-24 (L0 Grav 2=1363 (I - Maximum Com sion =0/14, 2=-24 (L0 Grav 2=1363 (I - Maximum Com sion =0/14, 2=-1818 =-2551/484, 6-7= 4=-1002/225 2=-314/1492, 10 0=-12/93, 8-9=0/ 2=0/562, 3-10=-1 13=-68/1336, 5-1 14=-118/20, 6-13 3=-486/2475 16; Vult=130mph TCDL=6.0psf; B Enclosed; MWFR 9-7 to 3-7-6, Inte ior(2R) 15-11-13 -8 zone; C- C for r tcions shown; Lu	applied or 10-0-0 oc 9-14, 3-10, 13-14 9=0-3-8 C 12) (2 12), 9=-124 (LC 9) (C 19), 9=1393 (LC 2 pression/Maximum 0/44, 3-5=-3069/477, -0/0, 9-14=-1002/225 -12=-316/1480, 0 1706/375, 13=-70/1294, 3=-487/2681, (3-second gust) CDL=6.0psf, h=15ft; S (envelope) and C-1	1 4) d or 5) 6) 7) LOA 2) 5, 6 8 6 1 1 1 1 1 1 1 1 1 1 1 1 1	chord live loa * This truss h on the botton 3-06-00 tall b chord and an Bearings are capacity of 50 565 psi. Provide mecl bearing plate joint 9 and 24 Graphical pu		with any I for a liv s where II fit betw with BC oint 2 SF No.1 cru n (by oth anding 1	other live loa e load of 30.0 a rectangle veen the botto DL = 10.0psf P No.1 crushi ushing capaci ers) of truss t 24 lb uplift at ot depict the s	Dpsf om ig ity of				SEA 0363	L 22 EREALIT


- 22-2-7 to 25-11-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.602) Provide adequate drainage to prevent water ponding.

March 12,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 1 Mabry Ridge	
J0325-1347	C5	Piggyback Base	1	1	Job Reference (optional)	171948625

Run: 8.96 S 8.63 Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Mar 11 10:33:20 Page: 1 ID:2GNsYO62BI49KgBFP3SImayOXVO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:71.6

Plate Offsets (X, Y):	Plate Offsets (X, Y): [12:0-4-12,0-2-4]													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP		
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.51	Vert(LL)	-0.21	9-11	>999	360	MT20	244/190		
TCDL	10.0	Lumber DOL	1.15	BC	0.44	Vert(CT)	-0.35	9-11	>878	240				
BCLL	0.0*	Rep Stress Incr	NO	WB	0.81	Horz(CT)	0.02	8	n/a	n/a				
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S		Wind(LL)	0.12	9-11	>999	240	Weight: 249 lb	FT = 20%		

LUMBER

2x6 SP No.1
2x6 SP No.1 *Except* 10-7:2x10 SP No.1
2x4 SP No.2 *Except* 5-8:2x6 SP No.1
Structural wood sheathing directly applied or 4-3-15 oc purlins, except end verticals, and 2-0-0 oc purlins (4-4-14 max.): 4-6.
1 Row at midpt 8-13, 2-9, 12-13
1 Brace at Jt(s): 12, 13
(size) 1=0-3-8, 8=0-3-8
Max Horiz 1=358 (LC 12)
Max Uplift 1=-10 (LC 12), 8=-124 (LC 9)
Max Grav 1=1310 (LC 19), 8=1393 (LC 2)
(lb) - Maximum Compression/Maximum Tension
1-2=-1797/48, 2-4=-3072/479,
4-5=-2554/485, 5-6=0/0, 8-13=-1002/225,
5-13=-1002/225
1-11=-314/1496, 9-11=-317/1484,
8-9=-12/93, 7-8=0/0
2-11=0/565, 2-9=-1710/376, 9-12=-70/1339,
4-12=-72/1297, 12-13=-118/20,
5-12=-489/2684, 2-12=-487/2477

NOTES

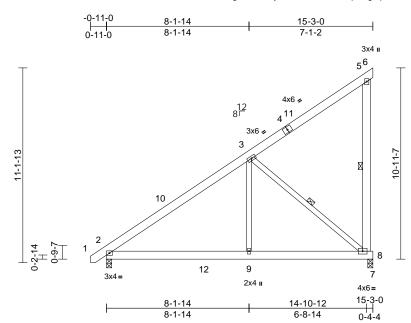
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 1) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 4-6-9, Interior (1) 4-6-9 to 15-11-12, Exterior(2R) 15-11-12 to 22-2-7, Interior (1) 22-2-7 to 25-11-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 30.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- 5) Bearings are assumed to be: Joint 1 SP No.1 crushing capacity of 565 psi, Joint 8 SP No.1 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 124 lb uplift at joint 8 and 10 lb uplift at joint 1.
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

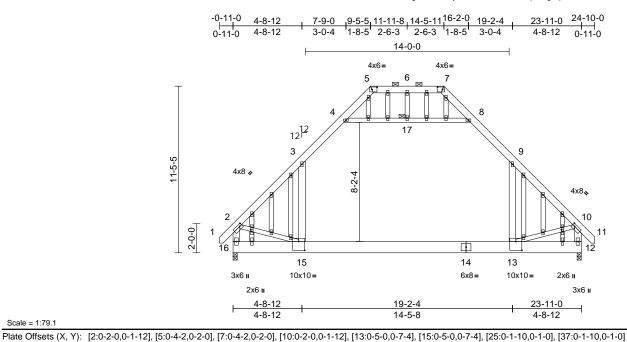

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 1 Mabry Ridge	
J0325-1347	C6	Monopitch	1	1	Job Reference (optional)	171948626

 Run:
 8.96 S
 8.63 Sep 26 2024 Print:
 8.630 S
 Sep 26 2024 MiTek Industries, Inc. Tue Mar 11 10:33:20
 Page:
 1

 ID:2GNsYO62Bl49KgBFP3SImayOXVO-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f
 Page:
 1

818 Soundside Road Edenton, NC 27932


Scale = 1:66

Loading (psf) TCLL (roof) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	BC	0.26 0.26 0.28	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.04 -0.08 0.01 0.02	(loc) 2-9 2-9 8 2-9	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 125 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x6 SP No.1		LOAD CASE(S)	Standard								
BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2 *Except	ot* 5-8:2x6 SP No.1										
BRACING											
TOP CHORD Structural wood she 6-0-0 oc purlins, ex	eathing directly applie cept end verticals.	ed or									
BOT CHORD Rigid ceiling directly bracing.	/ applied or 10-0-0 o	c									
WEBS 1 Row at midpt	5-8, 3-8										
REACTIONS (size) 2=0-3-8, Max Horiz 2=345 (L											
Max Uplift 8=-183 (L	,	л.									
Max Grav 2=763 (L FORCES (Ib) - Maximum Con	<i>.</i>)									
Tension											
TOP CHORD 1-2=0/14, 2-3=-773/ 5-6=-12/0, 5-8=-185											
BOT CHORD 2-9=-218/635, 8-9=											
WEBS 3-9=0/450, 3-8=-82 NOTES	1/282										
1) Wind: ASCE 7-16; Vult=130mph											
Vasd=103mph; TCDL=6.0psf; B Cat. II; Exp C; Enclosed; MWFR										H CA	1111
Exterior(2E) -0-9-7 to 3-7-6, Inte	erior (1) 3-7-6 to 15-3									"TH CA	Roith
zone;C-C for members and force reactions shown; Lumber DOL=									~~ ·	ONEESS	DAN'S
DOL=1.60	1.00 plate grip							6			his?
2) This truss has been designed for											
 chord live load nonconcurrent w 3) * This truss has been designed f 								CONTRACT.	- 1	SEA	L : E
on the bottom chord in all areas	where a rectangle							Ξ		0363	22 : E
3-06-00 tall by 2-00-00 wide will								=			- i i
chord and any other members, v4) All bearings are assumed to be										1. A	al. 3
capacity of 565 psi.	er norr ordoning								2.5	NGINI	EFRICA
5) Provide mechanical connection	· · ·								11	10	BEIN
bearing plate capable of withsta joint 8.	nding 183 lb uplift at									11, A. G	ILLUNI
<u>,</u>										A. G. March	12,2025
										warch	12,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

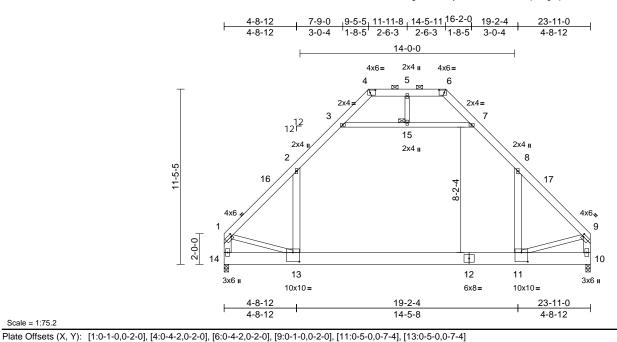
Job	Truss	Truss Type	Qty	Ply	Lot 1 Mabry Ridge	
J0325-1347	D1-GE	GABLE	1	1	Job Reference (optional)	171948627

Run: 8.96 S 8.63 Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Mar 11 10:33:20 Page: 1 ID:2GNsYO62BI49KgBFP3SImayOXVO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

			-										
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.65	Vert(LL)	-0.31	13-15	>918	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.47	Vert(CT)	-0.49	13-15	>570	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.22	Horz(CT)	0.01	12	n/a	n/a		
BCDL	10.0	Code	IRC202	1/TPI2014	Matrix-S		Wind(LL)	0.10	13-15	>999	240	Weight: 271 lb	FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES	6-0-0 oc purlins, exi 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Brace at Jt(s): 17 (size) 12=0-3-8, Max Horiz 16=376 (L Max Grav 12=1656 (L (lb) - Maximum Com Tension 1-2=0/44, 2-3=-1884 4-5=-275/190, 7-8=- 9-10=-1883/0, 10-11 6-7=-66/375, 2-16=- 15-16=-329/590, 13- 12-13=-82/313 3-15=0/930, 9-13=0/ 8-17=-1379/78, 6-17 10-13=-31/961 d roof live loads have	t* 4-8:2x4 SP No.1, SP No.2 athing directly applied cept end verticals, an -0 max.): 5-7. applied or 10-0-0 oc 16=0-3-8 .C 11) [LC 2), 16=1656 (LC pression/Maximum /0, 3-4=-1128/97, 275/190, 8-9=-1128/9 e)/44, 5-6=-66/375, 1856/0, 10-12=-1857, 15=0/1178, 930, 4-17=-1379/78, =0/118, 2-15=-24/950	d 3) 4) 5) 2) 6) 7) 8) 97, 9) /0 10 6, 11 12 13 14	Vasd=103mp Cat. II; Exp C MWFRS (em -0-9-10 to 3- 9-6-7 to 13-1 (2R) 14-4-9 t zone; end ve members am Lumber DOL Truss design only. For stu see Standarr or consult qu Provide adec All plates are Truss to be f braced again Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar 0) Ceiling dead 4-17, 8-17; \ 9-13 0) Bottom choro chord dead li 2) All bearings a capacity of 8 3) Graphical pu or the orient bottom choro	rlin representation ation of the purlin a I. necked for L/360 de	SCDL=6 Roof; F ne and - -3 to 9-6 -11-4 to 1) 18-9- expose 5 for rea OL=1.60 ot L=1.60 ot L=1.60	.0psf; h=15ft; lip Truss; C-C Exterior(: 5-7, Exterior(2 14-4-9, Exter	2E) 2R) rior ss), ble, Pl 1. J. ds. opsf om -15, om 15 hing			Ŵ	SEA O363	ER ALI

- 14) Attic room checked for L/360 deflection.
- LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932


G mmm March 12,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

or the orientation of the purlin along the top and/or bottom chord.

Job	Truss	Truss Type	Qty	Ply	Lot 1 Mabry Ridge	
J0325-1347	D2	Piggyback Base	10	1	Job Reference (optional)	171948628

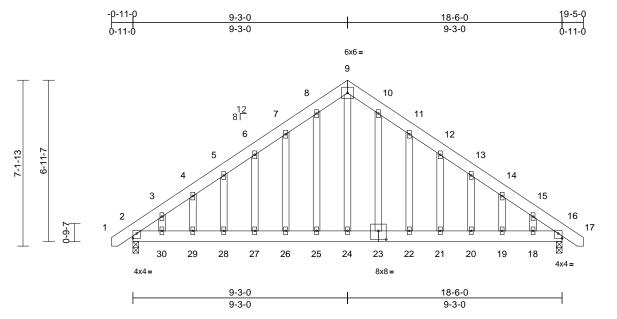
Run: 8.96 S 8.63 Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Mar 11 10:33:20 Page: 1 ID:2GNsYO62BI49KgBFP3SImayOXVO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:75.2

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC202	1/TPI2014	CSI TC BC WB Matrix-S	0.64 0.48 0.25	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.31 -0.50 0.01 0.07	(loc) 11-13 11-13 10 11-13	l/defl >906 >561 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 229 lb	GRIP 244/190 FT = 20%
	6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0	t* 3-7:2x4 SP No.1, SP No.2 athing directly applied cept end verticals, an -0 max.): 4-6. applied or 10-0-0 oc 14=0-3-8 _C 9)	d 7) 8) 9)	This truss ha chord live lo * This truss l on the botto 3-06-00 tall l chord and at Ceiling deac 3-15, 7-15; 8-11 Bottom chor chord dead l All bearings capacity of 8 Graphical pu	urlin representation ation of the purlin	I for a 10.0 t with any ed for a liv as where will fit betw s. on membe 5.0psf) on opfied only on SP 240 on does no) psf bottom other live loa e load of 30.1 a rectangle veen the bott r(s). 2-3, 7-8, member(s).2 dditional bott to room. 11- 0F 2.0E crus ot depict the s	ds. Opsf om 2-13, om 13 shing					
FORCES	(lb) - Maximum Com Tension		L		hecked for L/360	deflection							
TOP CHORD	6-7=-268/193, 7-8=-	131/123, 3-4=-268/19 1131/146, 8-9=-1875 9/385, 1-14=-1825/0,	93, /0,	(-)									
BOT CHORD	13-14=-223/404, 11- 10-11=-41/239	13=0/1154,										"TH CA	RO
WEBS	,	/899, 3-15=-1391/82, 5=0/118, 1-13=0/1022	,							4	il.	ORFESE	N.
NOTES	d roof live loads have	haan appaidared for								-			

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-2-12 to 4-8-12, Interior (1) 4-8-12 to 9-6-7, Exterior(2E) 9-6-7 to 14-4-9, Exterior(2R) 14-4-9 to 20-7-4, Interior (1) 20-7-4 to 23-8-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


anna ann E annun SEAL 036322 G١ minin March 12,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 1 Mabry Ridge	
J0325-1347	E1-GE	GABLE	1	1	Job Reference (optional)	171948629

Run: 8.96 S 8.63 Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Mar 11 10:33:20 ID:2GNsYO62BI49KgBFP3SImayOXVO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:49.7

Plate Offsets (X, Y): [2:Edge,0-2-8], [16:Edge,0-2-8], [23:0-4-0,0-4-8]

			, .									
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.22	Vert(LL)	-0.07	27-28	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.35	Vert(CT)	-0.11	27-28	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.35	Horz(CT)	0.01	16	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S		Wind(LL)	0.10	27-28	>999	240	Weight: 162 lb	FT = 20%

LUMBER	
TOP CHORD	2x6 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x4 SP No.2
OTHERS	2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	6-0-0 oc purlins.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(size) 2=0-3-0, 16=0-3-0
	Max Horiz 2=200 (LC 11)
	Max Uplift 2=-165 (LC 12), 16=-165 (LC 13)
	Max Grav 2=785 (LC 1), 16=785 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/14, 2-3=-894/728, 3-4=-808/691,
	4-5=-774/693, 5-6=-749/703, 6-7=-726/712,
	7-8=-711/736, 8-9=-669/733, 9-10=-669/734, 10-11=-711/736, 11-12=-726/712,
	12-13=-749/703, 13-14=-774/693,
	12-13=-749/703, 13-14=-774/693, 14-15=-808/691, 15-16=-894/728,
	16-17=0/14
BOT CHORD	2-30=-464/616, 29-30=-464/616,
	28-29=-464/616, 27-28=-464/616,
	26-27=-464/616, 25-26=-464/616,
	24-25=-464/616, 22-24=-464/616,
	21-22=-464/616, 20-21=-464/616,
	19-20=-464/616, 18-19=-464/616,
	16-18=-464/616
WEBS	9-24=-520/420, 8-25=-35/43, 7-26=-63/57,
	6-27=-47/47, 5-28=-49/48, 4-29=-40/46,
	3-30=-56/65, 10-23=-35/43, 11-22=-63/57,
	12-21=-47/47, 13-20=-49/48, 14-19=-40/46,
	15-18=-56/65

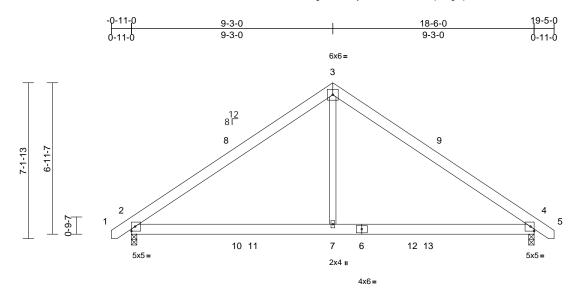
NOTES

 Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-9-7 to 3-7-6, Interior (1) 3-7-6 to 9-3-0, Exterior(2R) 9-3-0 to 13-7-13, Interior (1) 13-7-13 to 19-3-7 zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable studs spaced at 1-4-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

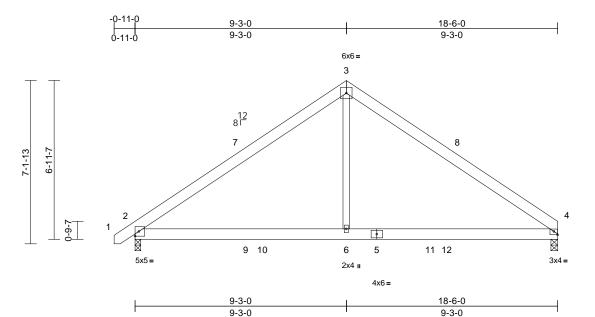
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members.8) All bearings are assumed to be SP No.1 crushing
- capacity of 565 psi.9) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 165 lb uplift at joint 16 and 165 lb uplift at joint 2.


LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 1 Mabry Ridge	
J0325-1347	E2	COMMON	2	1	Job Reference (optional)	171948630

Run: 8.96 S 8.63 Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Mar 11 10:33:21 Page: 1 ID:2GNsYO62BI49KgBFP3SImayOXVO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


			L	9-3-0	1	18-6-0		1	
				9-3-0		9-3-0	1	I	
Scale = 1:52.9									
Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in (loc) l/def	I L/d PLA	TES GRIP	

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.41	Vert(LL)	-0.07	2-7	>999	360	MT20	244/190	
TCDL BCLL	10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 YES	BC WB	0.45 0.40	Vert(CT) Horz(CT)	-0.12 0.01	2-7 4	>999 n/a	240 n/a			
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S	0.40	Wind(LL)	0.01	4 2-7	>999	1/a 240	Weight: 110 lb	FT = 20%	
BOBL	10.0	0000	÷						2000	210	Wolght. The lo	11-2070	
LUMBER				chanical connection									
TOP CHORD	2x6 SP No.1			e capable of withs o uplift at joint 2.	tanding 1	15 Ib uplift a	t joint						
BOT CHORD WEBS	2x6 SP No.1 2x4 SP No.2		LOAD CASE(S										
BRACING	274 01 100.2		LOAD OAOL(U	Otandara									
TOP CHORD	Structural wood she	athing directly applie	ed or										
	6-0-0 oc purlins.	3 ,											
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or											
DELOTIONO	bracing.												
REACTIONS	(size) 2=0-3-0, 4 Max Horiz 2=160 (L0												
	Max Uplift 2=-115 (L												
	Max Grav 2=931 (L0												
FORCES	(lb) - Maximum Com Tension												
TOP CHORD	1-2=0/14, 2-3=-1089	9/793, 3-4=-1089/793	3,										
	4-5=0/14	400/700											
BOT CHORD WEBS	2-7=-499/790, 4-7=- 3-7=-589/713	499/790											
NOTES													
	ed roof live loads have	been considered for	r										
this design													
,	CE 7-16; Vult=130mph										MILLIN	1111	
	mph; TCDL=6.0psf; B o C; Enclosed; MWFR										I'' H CA	ROUL	
	E) -0-9-7 to 3-7-6, Inte									AN'	R		
	R) 9-3-0 to 13-7-13, In		- /						/	SS	ESS	QN.V.	20
	ne; porch left and right								9		ich -	Child	/
	and forces & MWFRS									<u>е</u> в	· 4		-
	OL=1.60 plate grip DC has been designed fo								=		SEA	L i	Ξ
	load nonconcurrent wi		ds.						=	:	0363		Ξ.
4) * This trus	s has been designed f	or a live load of 30.0	psf								0303	:	5
	tom chord in all areas	0								2	N		2
	II by 2-00-00 wide will any other members, v									20	N. ENO	ER. A.	-
	is are assumed to be									1	SEA 0363	T. B.	
capacity of		c								1	AG	ILBEIN	
. ,	·										A. G	innin	
											March	12,2025	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 1 Mabry Ridge	
J0325-1347	E3	COMMON	1	1	Job Reference (optional)	171948631

Run: 8.96 S 8.63 Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Mar 11 10:33:21 Page: 1 ID:2GNsYO62BI49KgBFP3SImayOXVO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:50.4	
----------------	--

Plate Offsets (X, Y): [4:Edge,0-1-12]

	1 . 3											
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.43	Vert(LL)	-0.07	2-6	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.45	Vert(CT)	-0.12	2-6	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.40	Horz(CT)	0.01	4	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S		Wind(LL)	0.11	2-6	>999	240	Weight: 108 lb	FT = 20%

L	υ	М	в	E	ŀ	ĸ	
			-				

LUMBER		
TOP CHORD	2x6 SP No	o.1
BOT CHORD	2x6 SP No	o.1
WEBS	2x4 SP No	0.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	6-0-0 oc p	ourlins.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	2=0-3-0, 4=0-3-8
	Max Horiz	2=158 (LC 11)
	Max Uplift	2=-115 (LC 9), 4=-110 (LC 8)
	Max Grav	2=931 (LC 2), 4=884 (LC 2)
FORCES	(lb) - Maxi	imum Compression/Maximum
	Tension	·
TOP CHORD	1-2=0/14,	2-3=-1088/792, 3-4=-1060/793
BOT CHORD	2-6=-514/	790. 4-6=-514/790

R

WEBS

NOTES

Unbalanced roof live loads have been considered for 1) this design.

3-6=-587/714

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-9-7 to 3-7-6, Interior (1) 3-7-6 to 9-3-0, Exterior(2R) 9-3-0 to 13-7-13, Interior (1) 13-7-13 to 18-4-4 zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) All bearings are assumed to be SP No.1 crushing capacity of 565 psi.

- 6) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 110 lb uplift at joint
- 4 and 115 lb uplift at joint 2.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

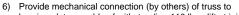
Job	Truss	Truss Type	Qty	Ply	Lot 1 Mabry Ridge	
J0325-1347	E4	COMMON	1	1	Job Reference (optional)	171948632

Run: 8.96 S 8.63 Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Mar 11 10:33:21 Page: 1 ID:2GNsYO62BI49KgBFP3SImayOXVO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [1:Edge,0-2-8], [3:Edge,0-2-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.43	Vert(LL)	-0.07	1-5	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.44	Vert(CT)	-0.12	1-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.40	Horz(CT)	0.01	3	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S		Wind(LL)	0.11	1-5	>999	240	Weight: 105 lb	FT = 20%

LUMBER		
TOP CHORD	2x6 SP No	o.1
BOT CHORD	2x6 SP No	p.1
WEBS	2x4 SP No	o.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	6-0-0 oc p	ourlins.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	1=0-3-8, 3=0-3-8
	Max Horiz	1=155 (LC 11)
	Max Uplift	1=-110 (LC 9), 3=-110 (LC 8)
	Max Grav	1=884 (LC 2), 3=884 (LC 2)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-1060	0/791, 2-3=-1060/791
BOT CHORD	1-5=-513/	790, 3-5=-513/790


WEBS

NOTES

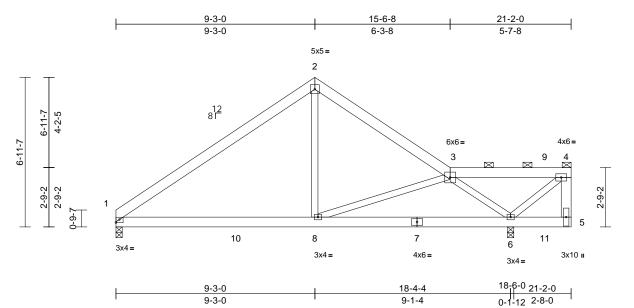
Unbalanced roof live loads have been considered for 1) this design.

2-5=-585/715

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 4-6-9, Interior (1) 4-6-9 to 9-3-0, Exterior(2R) 9-3-0 to 13-7-13, Interior (1) 13-7-13 to 18-4-4 zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) All bearings are assumed to be SP No.1 crushing capacity of 565 psi.

bearing plate capable of withstanding 110 lb uplift at joint

1 and 110 lb uplift at joint 3. LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 1 Mabry Ridge	
J0325-1347	E5	ROOF SPECIAL GIRDER	1	1	Job Reference (optional)	171948633

Run: 8.96 S 8.63 Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Mar 11 10:33:21 Page: 1 ID:2GNsYO62BI49KgBFP3SImayOXVO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

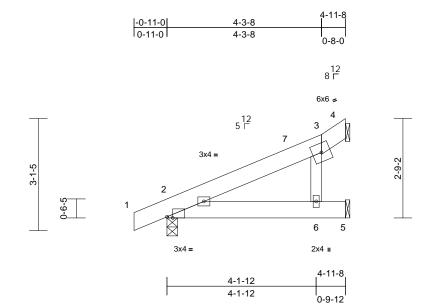
Scale = 1:53.6

Plate Offsets (X, Y): [1:Edge,0-1-12]

		1				-							
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.49	Vert(LL)	-0.09	1-8	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.45	Vert(CT)	-0.15	1-8	>999	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.40	Horz(CT)	0.00	6	n/a	n/a		
BCDL	10.0	Code	IRC202	21/TPI2014	Matrix-S		Wind(LL)	0.04	1-8	>999	240	Weight: 140 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP No.1 2x6 SP No.1 *Excep 2.0E 2x4 SP No.2 *Excep Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (10- Rigid ceiling directly bracing. (size) 1=0-3-8, 1 Max Horiz 1=152 (LI Max Uplift 1=-99 (LC Max Grav 1=703 (LC	t* 7-5:2x6 SP 2400F t* 4-5:2x6 SP No.1 athing directly applie cept end verticals, at 0-0 max.): 3-4. applied or 6-0-0 oc 6=0-3-8 C 5) C 15), 6=-362 (LC 9) C 15), 6=3167 (LC 2)	6 7 Ind or 8 Ind 9	 Bearings are capacity of 5 capacity of 8 Provide mec bearing plate 1 and 362 lb Graphical pu or the orienta bottom chord Hanger(s) or provided suf down and 11 down and 23 lb up at 19- of such conr others. 	assumed to be: 65 psi, Joint 6 Sf 05 psi. hanical connection capable of withs uplift at joint 6. rlin representation ation of the purlin d. other connection ficient to support lb up at 19-11-2 16 lb up at 19-11-2 11-4 on bottom ch ection device(s)	2400F 2 on (by oth standing S on does no along the n device(s concentra 4 on top c -4, and 14 nord. The is the resp	 No.1 crush 2.0E crushing ers) of truss 19 lb uplift at 10 depict the a top and/or a) shall be ated load(s) 3 ahord, and 18 45 lb down at a design/sele ponsibility of 	ing to joint size 39 lb i20 lb nd 37 ction					
FORCES	(lb) - Maximum Com Tension 1-2=-672/181, 2-3=-		~~ (of the truss a	CASE(S) section are noted as front			face					
	4-5=-177/1142	,	1	OAD CASE(S) Dead + Roo	Standard of Live (balanced): Lumbei	Increase=1.	.15,					
BOT CHORD WEBS	1-8=-116/501, 6-8=- 2-8=-65/299, 3-8=-1 4-6=-1912/358		3	Plate Increa Uniform Lo	ase=1.15	,		,					
NOTES					ed Loads (lb)	, .						MUL CA	D'''
	ed roof live loads have	been considered for			-1674 (F=-145, E	3=-1529)						"ATH UA	NO III
Vasd=103 Cat. II; Ex DOL=1.60 3) Provide as 4) This truss chord live 5) * This truss on the bot 3-06-00 ta	n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B qp C; Enclosed; MWFR 0 plate grip DOL=1.60 dequate drainage to pr has been designed fo load nonconcurrent w ss has been designed f ttom chord in all areas all by 2-00-00 wide will d any other members, v	CDL=6.0psf; h=15ft; S (envelope); Lumbe event water ponding r a 10.0 psf bottom th any other live load or a live load of 30.0 where a rectangle fit between the botto	ds. psf m							M		SEA 0363	• -

- Provide adequate drainage to prevent water ponding. 3)
- 4) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 30.0psf 5) on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

G mmm March 12,2025

Job	Truss	Truss Type	Qty	Ply	Lot 1 Mabry Ridge	
J0325-1347	J1	JACK-OPEN	1	1	Job Reference (optional)	171948634

 Run:
 8.96 S
 8.63 Sep 26 2024 Print:
 8.630 S
 Sep 26 2024 MiTek Industries, Inc. Tue Mar 11 10:33:21
 Page:
 1

 ID:2GNsYO62BI49KgBFP3SImayOXVO-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f
 Page:
 1

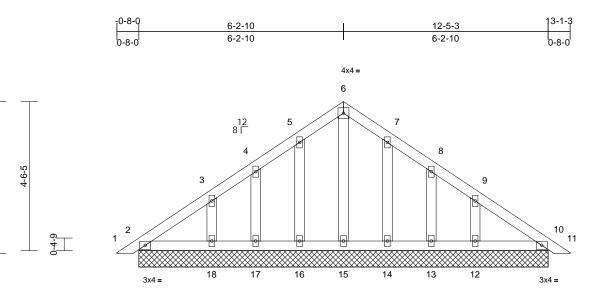
Scale = 1:32

Plate Offsets (X, Y): [2:0-1-14,Edge]

										-	
Loading (psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 20.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	-0.01	2-6	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.10	Vert(CT)	-0.02	2-6	>999	240		
BCLL 0.0*	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	4	n/a	n/a		
BCDL 10.0	Code	IRC2021/TPI2014	Matrix-P		Wind(LL)	0.01	2-6	>999	240	Weight: 30 lb	FT = 20%
Mechanica Max Horiz 2=81 (LC Max Uplift 2=-23 (LC (LC 12) Max Grav 2=261 (LC	applied or 6-0-0 oc = Mechanical, 5= al 12) .8), 4=-10 (LC 12), 5	6) Refer to (7) Provide n bearing p d or 4, 23 lb u LOAD CASE	are assumed to be: of 565 psi. girder(s) for truss to nechanical connection late capable of withs plift at joint 2 and 25 (S) Standard	truss con on (by oth standing 1	nections. ers) of truss 0 lb uplift at	to					
(LC 1) FORCES (lb) - Maximum Com Tension TOP CHORD 1-2=0/19, 2-3=-118/7 BOT CHORD 2-6=-12/13, 5-6=0/0 WEBS 3-6=-147/169											
 NOTES 1) Unbalanced roof live loads have this design. 2) Wind: ASCE 7-16; Vult=130mph Vasd=103mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclosed; MWFRS Exterior(2E) -0-11-0 to 3-5-13, In 4-10-12 zone;C-C for members a for reactions shown; Lumber DOD DOL=1.60 3) This truss has been designed for chord live load nonconcurrent wit 4) * This truss has been designed for on the bottom chord in all areas v 3-06-00 tall by 2-00-00 wide will f chord and any other members. 	(3-second gust) CDL=6.0psf; h=15ft; S (envelope) and C- terior (1) 3-5-13 to and forces & MWFR L=1.60 plate grip a 10.0 psf bottom th any other live load or a live load of 30.0 where a rectangle	C S ds. psf						M	the second second	SEA 0363	EFR C

March 12,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	Lot 1 Mabry Ridge	
J0325-1347	PB1	Piggyback	1	1	Job Reference (optional)	171948635

4-7-7

NOTES

this design.

Run: 8.96 S 8.63 Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Mar 11 10:33:21 Page: 1 ID:2GNsYO62BI49KgBFP3SImayOXVO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

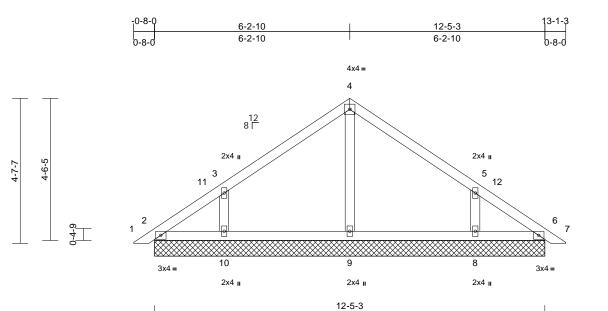
Scale = 1:35												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.04	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	10	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S							Weight: 69 lb	FT = 20%
LUMBER		•	2) Wind: ASC	E 7-16; Vult=130	Omph (3-sec	cond gust)						

12-5-3

BCDL		10.0	Code	IR
LUMBER			-	
TOP CHORD	2x4 SP N	o.1		
BOT CHORD	2x4 SP N	o.1		
OTHERS	2x4 SP N	0.2		
BRACING				
TOP CHORD	Structural 6-0-0 oc p		athing directly applie	d or
BOT CHORD			applied or 10-0-0 oc	;
REACTIONS	(size)	13=12-5-3	10=12-5-3, 12=12-5 3, 14=12-5-3, 15=12- 3, 17=12-5-3, 18=12-	-5-3,
	Max Horiz	2=-133 (L	Ć 10)	
	Max Uplift	2=-17 (LC	8), 12=-97 (LC 13),	
			C 13), 14=-54 (LC 1	
			C 12), 17=-48 (LC 1	2),
	Max Grav	18=-98 (L		
	Max Grav		20), 10=109 (LC 1) .C 20), 13=91 (LC 20	
			.C 20), 15=113 (LC 2	
			.C 19), 17=90 (LC 19	
		18=195 (L		,,
FORCES	(lb) - Max Tension	imum Com	pression/Maximum	
TOP CHORD	1-2=0/12,	2-3=-107/9	99, 3-4=-82/69,	
	4-5=-67/9	3, 5-6=-91/	128, 6-7=-91/128,	
	7-8=-59/8	1, 8-9=-47/	35, 9-10=-72/54,	
	10-11=0/1			
BOT CHORD			-47/97, 16-17=-47/9	
			=-47/97, 13-14=-47/	97,
WEDO		7/97, 10-12		
WEBS			100/73, 4-17=-74/67 =-97/70, 8-13=-75/6	
	3-18=-14 9-12=-14	,	=-91/10, ö-13=-15/6	о,
	5-1214	1/110		

1) Unbalanced roof live loads have been considered for

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-0 to 4-8-13, Interior (1) 4-8-13 to 6-11-11, Exterior (2R) 6-11-11 to 11-4-8, Interior (1) 11-4-8 to 13-7-7 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated. 4)
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 1-4-0 oc.


- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. All bearings are assumed to be SP No.1 crushing 9)
- capacity of 565 psi. 10) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 17 lb uplift at joint 2, 57 lb uplift at joint 16, 48 lb uplift at joint 17, 98 lb uplift at joint 18, 54 lb uplift at joint 14, 49 lb uplift at joint 13 and 97 lb uplift at joint 12.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 1 Mabry Ridge	
J0325-1347	PB2	Piggyback	9	1	Job Reference (optional)	171948636

Run: 8.96 S 8.63 Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Mar 11 10:33:21 Page: 1 ID:2GNsYO62BI49KgBFP3SImayOXVO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:36.7	1:36.7
----------------	--------

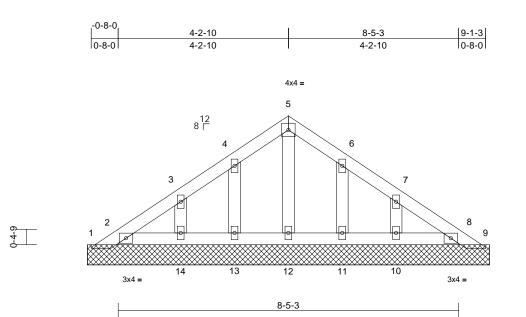
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.06	Horz(CT)	0.00	6	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S							Weight: 53 lb	FT = 20%
LUMBER			5) Gable stu	ds spaced at 4-0-0	oc.							
TOP CHORD	2x4 SP No.1		6) This truss	has been designed	for a 10.	0 psf bottom						
BOT CHORD	2x4 SP No.1		chord live	load nonconcurrent	t with any	other live loa	ids.					
OTHERS	2x4 SP No.2			s has been designe			Opsf					
BRACING				tom chord in all are								
TOP CHORD	Structural wood she 6-0-0 oc purlins.	athing directly applie	chord and	all by 2-00-00 wide water any other members	s.		om					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	capacity (
REACTIONS	(size) 2=12-5-3,	, 6=12-5-3, 8=12-5-3,		echanical connection								
	9=12-5-3,	, 10=12-5-3	bearing p	ate capable of withs ift at joint 6, 95 lb up								
	Max Horiz 2=-106 (L		unlift at ic		Jint at join	it 10 and 94 it	5					
	Max Uplift 2=-21 (LC			dard Industry Piggyt	oack Trus	s Connection						
		10=-95 (LC 12)	, Detail for	Connection to base								
	Max Grav 2=107 (LC	9=263 (LC 1), 8		alified building desi	gner.							
	(LC 20), 8	=203 (LC 1), 10=32	LOAD CASE	S) Standard								
FORCES	(lb) - Maximum Com	npression/Maximum										
	Tension											
TOP CHORD	1-2=0/12, 2-3=-101/											
BOT CHORD	4-5=-114/121, 5-6=- 2-10=-28/67, 9-10=-											
BOT CHOILD	6-8=-28/67	20/07, 0-320/07,										
WEBS		253/228, 5-8=-252/2	28								mm	UIL.
NOTES	, -	,									OR SESS	ROUL
	ed roof live loads have	been considered for								1	R	. Alile
this design										×.	O' FESS	and the
	CE 7-16; Vult=130mph									15	12/	
	mph; TCDL=6.0psf; B										2	- K : 1 =
	p C; Enclosed; MWFR		С						-		CEA	n <u>1</u> ∃
	E) 0-4-0 to 4-8-13, Inte								=		SEA	• •
	Exterior(2R) 6-11-11 to 13-7-7 zone;C-C for m								1		0363	22 : =
	or reactions shown; Lu								-			1 5
grip DOL=										-	·	1 1 E
	igned for wind loads in	the plane of the trus	S							2.0	S. SNOW	EEH. X N
	studs exposed to wind									1	A	F. ER N
see Stand	ard Industry Gable En	d Details as applicab	ole,							1	A G	BEIN

- Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-4-0 to 4-8-13, Interior (1) 4-8-13 to 6-11-11, Exterior(2R) 6-11-11 to 11-4-8, Interior (1) 11-4-8 to 13-7-7 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.

G

minin

March 12,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 1 Mabry Ridge	
J0325-1347	PB3	Piggyback	1	1	Job Reference (optional)	171948637

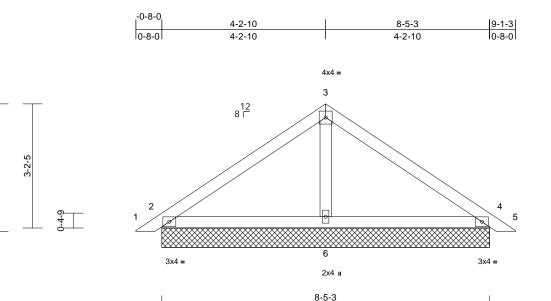
3-2-5

3-3-7

Run: 8.96 S 8.63 Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Mar 11 10:33:21 Page: 1 ID:2GNsYO62BI49KgBFP3SImayOXVO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	1 1	1.15		TC	0.04	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL		10.0		1.15		BC	0.02	Vert(TL)	n/a	-	n/a	999			
BCLL		0.0*		YES		WB	0.03	Horiz(TL)	0.00	8	n/a	n/a			
BCDL		10.0	Code	IRC2021/TPI20)14	Matrix-P							Weight: 42 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No Structural 6-0-0 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Max Tension	0.1 0.2 wood she purlins. Ing directly 1=9-11-7 9=9-11-7 1=93 (LC 1=-54 (LC 8=-24 (LC 13=-64 (L 13=-64 (L))))))))))))))))))))))))))))))))))))	C 10), 2=-43 (LC 12), C 13), 9=-11 (LC 20), C 13), 11=-63 (LC 13), C 12), 14=-64 (LC 12), 9 9), 2=124 (LC 19), 8=' =18 (LC 13), 10=133 (L I23 (LC 20), 12=95 (LC I23 (LC 19), 14=133 (LI npression/Maximum	vasc Cat. MWF zone react DOL 3) Truss on to 3) Truss on co or co o o or co o o o o o o o o o o o o o o o o o o	=103m; II; Exp C RS (en; C-C for ions she =1.60 s design For stu Standarr nsult qu ates are e require e studs truss ha d live loa s truss ha d live loa s trus ha d live loa s trus ha d land ar s arings -	7-16; Vult=130m b; TCDL=6.0psf; C; Enclosed; Gabl velope) exterior z members and fo own; Lumber DOL ed for wind loads dds exposed to wi alified building de 2x4 MT20 unles es continuous bot spaced at 1-4-0 c is been designed dd nonconcurrent has been designed dd nonconcurrent is been designed to b65 psi. hanical connectio o capable of withs at joint 9, 43 lb u	BCDL=6 e Roof; C one and t rces & M fc=1.60 pl. in the pl. nd (norm and contrained asigner as s otherwittom chor oc. for a 10.0 with any d for a liv as where ill fit betw as e SP No. n (by oth tanding 5	i.Opsf; h=15ft; Common Trus C-C Corner(3) WFRS for ate grip ane of the tru: al to the face; ils as applicat s per ANSI/TF se indicated. d bearing. D psf bottom other live load e load of 20.0 a rectangle veen the bottot 1 crushing ers) of truss t i4 lb uplift at ji	s; E) ss), ole, Pl 1. ds. opsf om o					1111).	
TOP CHORD	1-2=-109/ 4-5=-75/1 7-8=-65/3	54, 5-6=-7 3, 8-9=-15	-76/65, 3-4=-59/74, 75/154, 6-7=-35/59, 5/20 4=-40/115, 12-13=-40/1	joint uplift 11) See	8, 64 lb at joint Standar	uplift at joint 9, 43 ib u uplift at joint 13, 6 11 and 64 lb uplif d Industry Piggyb nnection to base	64 lb uplif t at joint ack Trus	t at joint 14, 6 10. s Connection				A.	ORTH CA	ROJA	
WEBS	5-12=-87/	13, 4-13=	11=-40/115, 8-10=-40/1 -100/157, 3-14=-104/16 0=-104/168	115 cons	ult quali	fied building desig Standard						U	SEA		Lin
NOTES 1) Unbalance this design		oads have	been considered for								1111A	A MARINE AND A	0363	BEN	Manun man

818 Soundside Road Edenton, NC 27932


A. GIL GI

March 12,2025

Job	Truss	Truss Type	Qty	Ply	Lot 1 Mabry Ridge	
J0325-1347	PB4	Piggyback	6	1	Job Reference (optional)	171948638

3-3-7

Run: 8.96 S 8.63 Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Mar 11 10:33:21 Page: 1 ID:2GNsYO62BI49KgBFP3SImayOXVO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Ceele		1:29.6	
Scale	=	1:29.0	

00010 - 112010													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	21/TPI2014	CSI TC BC WB Matrix-P	0.25 0.13 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	C 12), 4=-43 (LC 13) C 1), 4=211 (LC 1), 6	d or s	 on the bottor 3-06-00 tall bit chord and ar All bearings capacity of 5 Provide mechanism 2 and 43 bit See Standar Detail for Co 	chanical connecti e capable of with uplift at joint 4. d Industry Piggy innection to base ified building des	eas where will fit betw rs. be SP No. on (by oth standing 3 back Trus e truss as a	a rectangle veen the bott 1 crushing ers) of truss 6 lb uplift at s Connectior	to joint					

	Tension
TOP CHORD	1-2=0/12, 2-3=-113/85, 3-4=-103/85
	4-5=0/12
BOT CHORD	2-6=-14/51, 4-6=-14/51
WEBS	3-6=-199/121

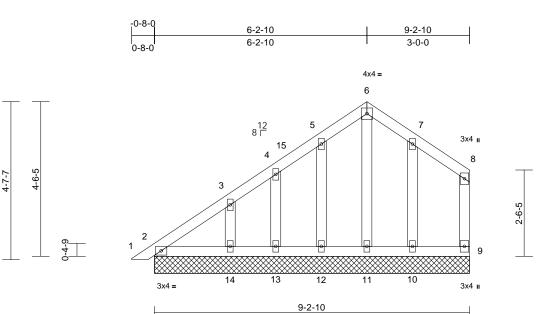
NOTES

 Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-16; Vult=130mph (3-second gust)

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

SEAL 036322

MITTI



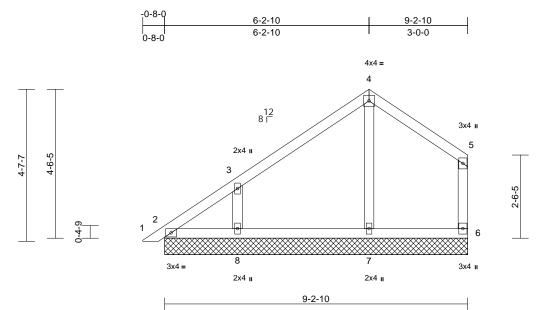
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss Truss Type		Qty	Ply	Lot 1 Mabry Ridge	
J0325-1347	PB5	Piggyback	1	1	Job Reference (optional)	171948639

Run: 8.96 S 8.63 Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Mar 11 10:33:21 Page: 1 ID:2GNsYO62BI49KgBFP3SImayOXVO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:33.7

						-							-		
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.04	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL		10.0	Lumber DOL	1.15		BC	0.03	Vert(CT)	n/a	-	n/a	999	-		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.04	Horz(CT)	0.00	9	n/a	n/a			
BCDL		10.0	Code	IRC202	1/TPI2014	Matrix-S							Weight: 55 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p Rigid ceilin bracing. (size) Max Horiz Max Uplift Max Grav	0.1 0.2 0.2 wood she wurlins, e yurlins, e yurli	eathing directly applied (cept end verticals. / applied or 10-0-0 oc , 9=9-2-10, 10=9-2-10 0, 12=9-2-10, 13=9-2 0 C 12) C 12), 12=-60 (LC 12 LC 12), 14=-99 (LC 12 C 20), 9=59 (LC 20), LC 20), 11=110 (LC 2 LC 20), 13=89 (LC 19	2) d or 3) (10, 4) 5) 6) (2), 7) (2), 8) 2),	Wind: ASCE Vasd=103mp Cat. II; Exp C MWFRS (em 0-4-0 to 4-8 (3E) 6-11-11 forces & MW DOL=1.60 pl Truss design only. For stu see Standard or consult qu All plates are Gable requirr Gable studs: This truss ha chord live loa * This truss ha on the bottom 3-06-00 tall b chord and an	7-16; Vult=130m oh; TCDL=6.0psf; ; Enclosed; Gabl velope) exterior z 13, Exterior(2N) 4 to 9-9-15 zone;C FRS for reactions ate grip DOL=1.6 ed for wind loads ds exposed to wi d Industry Gable I alified building de 2x4 MT20 unles as continuous boi spaced at 1-4-0 c s been designed d nonconcurrent has been designed n chord in all area y 2-00-00 wide w y other members are assumed to b	BCDL=6 le Roof; C one and 0 l-8-13 to 1 l-8-13 to 1 l-	.0psf; h=15ft; common Trus C-C Corner(3) 6-11-11, Corr mbers and Lumber ane of the tru: al to the face; ils as applical s per ANSI/TF se indicated. d bearing. D psf bottom other live loa e load of 20.0 a rectangle ween the bottom	ss; E) her ss), ble, PI 1. ds. Dpsf						
TOP CHORD	Tension		npression/Maximum /114, 3-4=-82/75,	,	capacity of 5 Provide mecl	65 psi. hanical connectio	n (by oth	ers) of truss t							
TOP CHORD		7, 5-6=-69	9/157, 6-7=-70/153,		9, 18 lb uplift	capable of withs at joint 2, 60 lb u b uplift at joint	plift at joi	nt 12, 47 lb u	plift				"TH CA	ARO	
BOT CHORD	2-14=-2/3,	, 13-14=-2	2/3, 12-13=-2/3, -2/3, 9-10=-2/3	11	10.	d Industry Piggyb					4	in	ONESS	Sign sign	7
WEBS			-101/111, 4-13=-76/1 <i>°</i> 0=-110/163	18,	Detail for Co	nnection to base fied building desig	truss as a						10		
NOTES 1) Unbalance this design		oads have	been considered for	LC	DAD CASE(S)	Standard						A A A A A A A A A A A A A A A A A A A	SEA 0363	• -	


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GI 9000 mining March 12,2025

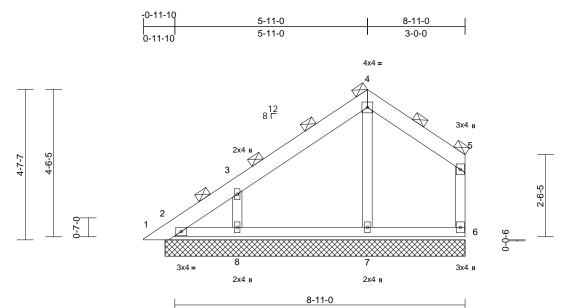
Job	Truss	Truss Type	Qty	Ply	Lot 1 Mabry Ridge	
J0325-1347	PB6	Piggyback	9	1	Job Reference (optional)	171948640

Run: 8.96 S 8.63 Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Mar 11 10:33:21 Page: 1 ID:2GNsYO62BI49KgBFP3SImayOXVO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale =	1:35
---------	------

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.06	Horz(CT)	0.00	6	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-S							Weight: 42 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 6-0-0 cc purlins, ex Rigid ceiling directly bracing. (size) 2=9-2-10, 8=9-2-10 Max Horiz 2=104 (LC Max Uplift 2=-23 (LC (LC 12) Max Grav 2=93 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc 6=9-2-10, 7=9-2-10 C 12) C 12) C 8), 6=-37 (LC 13), 8	 6) This truss has chord live lo 7) * This truss long the botton 3-06-00 tall lochord and an 3) All bearings capacity of 5 9) Provide mechanism (a consult qual bearing plate 6, 23 lb uplif 10) See Standar Detail for Coconsult qual LOAD CASE(S) 	as been designed fo ad nonconcurrent w nas been designed 1 m chord in all areas by 2-00-00 wide will ny other members. are assumed to be 165 psi. thanical connection a capable of withsta t at joint 2 and 95 lb d Industry Piggybac nnection to base trr. fied building design	vith any for a liv where fit betw SP No. (by oth nding 3 ouplift a ck Trust uss as a	other live loa e load of 20.0 a rectangle veen the botto 1 crushing ers) of truss t 17 lb uplift at j t joint 8. s Connection	Opsf om o oint					
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD												
BOT CHORD WEBS	2-8=-7/10, 7-8=-7/10 4-7=-195/88, 3-8=-2	,										
NOTES											munn	unn.
	ed roof live loads have	been considered for								-	W'TH CA	Rolly
this design										N	2	
2) Wind: ASC Vasd=103 Cat. II; Ex Exterior(2 6-11-11, E members Lumber D	CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; B p; C; Enclosed; MWFR E) 0-4-0 to 4-8-13, Inte Exterior(2E) 6-11-11 to and forces & MWFRS IOL=1.60 plate grip DC	CDL=6.0psf; h=15ft; S (envelope) and C- erior (1) 4-8-13 to 9-9-15 zone;C-C for for reactions shown; DL=1.60								in	SEA 0363	• –
only. For see Stand or consult	igned for wind loads in studs exposed to wind lard Industry Gable En qualified building desi- uures continuous botto	l (normal to the face) d Details as applicab gner as per ANSI/TP	le,							and the second s	S.C. A.C.	EER

- Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-4-0 to 4-8-13, Interior (1) 4-8-13 to 6-11-11, Exterior(2E) 6-11-11 to 9-9-15 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.


GI

minin March 12,2025

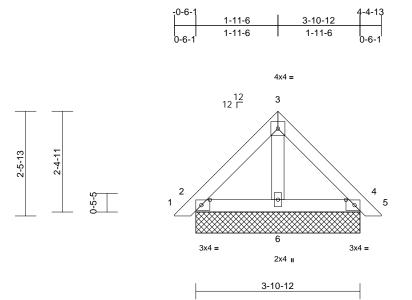
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 1 Mabry Ridge	
J0325-1347	PB7	Piggyback	2	1	Job Reference (optional)	171948641

Run: 8.96 S 8.63 Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Mar 11 10:33:22 Page: 1 ID:2GNsYO62BI49KgBFP3SImayOXVO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:35.4

Scale = 1:35.4													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	3-0-0 1.15 1.15 NO IRC2021/TPI2014	CSI TC BC WB Matrix-P	0.12 0.12 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 52 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2verticals (Switched from shee Rigid ceiling directly bracing. (size) 1=9-2-10, 7=9-2-10, Max Horiz 1=153 (LC Max Uplift 1=-15 (LC (LC 13), § Max Grav 1=70 (LC	2 8), 2=-6 (LC 8), 6=-5 3=-165 (LC 12)	5) Gable s 6) This tru chord lin 7) * This tru on the b 3-06-00 chord an 3). All bear capacity 9) Provide bearing 1, 57 lb uplift at 57 10) See Sta Detail for consult 11) Graphic	ndard Industry Piggy or Connection to base qualified building des al purlin representati rientation of the purli	oc. d for a 10. tt with any ed for a live eas where seas where will fit bett rs. be SP No ion (by oth standing ' uplift at joir vback Trus a truss as signer.	0 psf bottom other live loa ve load of 20.1 a rectangle ween the botto .1 crushing ners) of truss t 15 lb uplift at j ht 2 and 165 lk ss Connection applicable, or ot depict the s	Dpsf om o oint o						
FORCES	(lb) - Maximum Corr Tension	pression/Maximum		E(S) Standard									
TOP CHORD	1-2=-216/130, 2-3=- 4-5=-77/111, 5-6=-1	221/186, 3-4=-150/97 48/154	7,										
BOT CHORD WEBS	2-8=0/0, 7-8=0/0, 6- 4-7=-275/110, 3-8=-										WILL CA	Polit	
NOTES										1	alli		
	ed roof live loads have	been considered for								A	OVEES	Jos Alle	
this design 2) Wind: ASC Vasd=103 Cat. II; Ex Exterior(2) 6-11-11, E members Lumber D 3) Truss desi only. For see Stand		(3-second gust) CDL=6.0psf; h=15ft; S (envelope) and C-C nterior (1) 4-10-10 to 9-9-15 zone;C-C for for reactions shown; $DL=1.60the plane of the truss(normal to the face),d Details as applicabl$	s Ie,								SEA 0363	atin	A MILLING STATES


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

mmm March 12,2025

Job	Truss	Truss Type	Qty	Ply	Lot 1 Mabry Ridge		
J0325-1347	PB8	Piggyback	11	1	Job Reference (optional)	171948642	

Run: 8.96 S 8.63 Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Tue Mar 11 10:33:22 Page: 1 ID:2GNsYO62BI49KgBFP3SImayOXVO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:27.3

Plate Offsets (X, Y): [2:0-2-7,0-1-8], [4:0-2-7,0-1-8]

	[4.0-2-7,0-1-0]										
Loading (psf) TCLL (roof) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-P	0.07 0.03 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%
Max Horiz 2=68 (LC 1 Max Uplift 2=-39 (LC Max Grav 2=116 (LC	applied or 10-0-0 oc 2, 4=3-10-12, 6=3-10- 11) 13), 4=-44 (LC 13)	on the botto 3-06-00 tall chord and a 8) All bearings 1 or 9) Provide me bearing pla 2 and 44 lb 10) See Standa Detail for C consult qua	chanical connection e capable of withst uplift at joint 4. Ind Industry Piggyba connection to base to lified building desig	s where II fit betv SP No. (by oth anding 3 ack Trus russ as a	a rectangle veen the botto 1 crushing ers) of truss to 9 lb uplift at jo s Connection	om D					
FORCES (Ib) - Maximum Comp Tension TOP CHORD 1-2=0/11, 2-3=-77/49 BOT CHORD 2-6=-22/48, 4-6=-22/4	Tension TOP CHORD 1-2=0/11, 2-3=-77/49, 3-4=-66/39, 4-5=0/11										
WEBS 3-6=-70/23											
 NOTES Unbalanced roof live loads have b this design. Wind: ASCE 7-16; Vult=130mph i Vasd=103mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclosed; Gable R MWFRS (envelope) exterior zone zone;C-C for members and forces reactions shown; Lumber DOL=1 DOL=1.60 Truss designed for wind loads in t only. For studs exposed to wind see Standard Industry Gable End or consult qualified building desig Gable requires continuous bottom Gable studs spaced at 2-0-0 oc. This truss has been designed for chord live load nonconcurrent with 	(3-second gust) CDL=6.0psf; h=15ft; Roof; Common Truss; e and C-C Exterior(2E s & MWFRS for 1.60 plate grip the plane of the truss (normal to the face), d Details as applicable gner as per ANSI/TPI n chord bearing.	E) 6 8, 1.						Contraction of the second seco	i i	SEA 0363	

March 12,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

