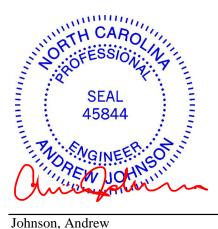


Trenco 818 Soundside Rd Edenton, NC 27932


Re: 25030183-01 891 Serentiy-Roof-B330 A CP TMB GRH

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I72212048 thru I72212075

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

March 25,2025

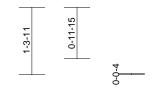
IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

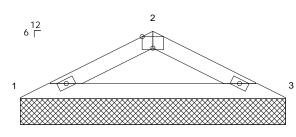
Job	Truss	Truss Type	Qty	Ply	891 Serentiy-Roof-B330 A CP TMB GRH	
25030183-01	V12	Valley	1	1	Job Reference (optional)	172212048

2-6-13

2-6-13

Carter Components (Sanford, NC), Sanford, NC - 27332,


Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Mar 21 12:21:05 ID:OFXJJBg5e0puLYiHs6bBoUzF_ZP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


4-6-12

1-11-14

3x5 =

5-1-11

2x4 🍃

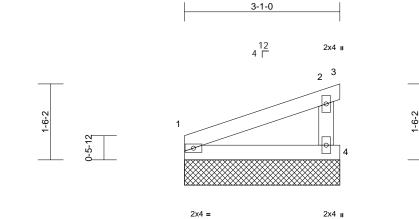
2x4 👟

5-1-11

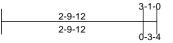
0-6-15

Scale = 1:22.3

Plate Offsets (X, Y): [2:0-2-8,Edge]


		1			-							
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.22	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.18	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.01	3	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 14 lb	FT = 20%
LUMBER			7) Gable st	uds spaced at 4-0-0	oc.	-						
TOP CHORD	2x4 SP No.2		This true	s has been designed	for a 10.	0 psf bottom						
BOT CHORD	2x4 SP No.2			e load nonconcurren								
BRACING				iss has been designe			Opsf					
	Structural wood she 5-1-11 oc purlins.	athing directly appli	3-06-00	ottom chord in all are tall by 2-00-00 wide	will fit betw		om					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o		d any other member mechanical connection		ers) of truss t	0					
	0	, 3=5-1-11	bearing	plate capable of with								
	1ax Horiz 1=18 (LC			lb uplift at joint 3.								
	1ax Uplift 1=-20 (LC	,	LOAD CAS	(S) Standard								
	lax Grav 1=237 (L0											
	(lb) - Maximum Corr		,									
	Tension											
TOP CHORD	1-2=-419/183, 2-3=-	419/183										
BOT CHORD	1-3=-150/364											
NOTES												
1) Unbalanced	roof live loads have	been considered for	or									
this design.												
	7-16; Vult=130mph		_									N. 1000. 777 F
	ph; TCDL=6.0psf; B										, mining	11111
	nclosed; MWFRS (er		ne							. (WAH CA	Rollin
	terior(2E) zone; cant nd vertical left and ri		r						\sim	1	R	the state
	nd forces & MWFRS									33	U. FEDS	Qu'a Vain
	L=1.60 plate grip DC		,						U	Ŵ	M	Sugor
	ned for wind loads in		ISS								<u>.</u>	
	uds exposed to wind									1	SEA	1 i E
see Standar	d Industry Gable En	d Details as applica	ble,						-			• •
	ualified building desi									6 - C	458	44 <u>:</u> E
	E 7-16; Pr=20.0 psf (-		•	1 5
	1.15); Pf=20.0 psf (L										i an	A123
	Is=1.0; Rough Cat E	3; Fully Exp.; Ce=0.9	9;							2.11	1. SNGIN	FERION
Cs=1.00; Ct		an annaiderad f 4	hia							11	Opin	S. S.N
	snow loads have be	een considered for t	nis								ITEW I	OHL
design. 6) Gable requir	res continuous botto	m chord bearing									INEW J	un million and a second
J Gable lequil		in chora bearing.									Maro	h 25 2025
											iviarc	h 25,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	891 Serentiy-Roof-B330 A CP TMB GRH	
25030183-01	F1GE	Monopitch Supported Gable	1	1	Job Reference (optional)	172212049

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Mar 21 12:21:04 ID:05Rb2nqdzWbg0FxJai2r9FzF_oh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:22.9

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC 0.1 BC 0.0 WB 0.0 Matrix-MP 0.0	8 Vert(TL)	in n/a n/a 0.00	(loc) - - 1	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 3-1-0 oc purlins, ex Rigid ceiling directly bracing.	y applied or 10-0-0 oc 3=3-1-0, 4=3-1-0 13) 10), 3=-183 (LC 20), 2 14) C 20), 3=49 (LC 14),	7) This truss ha chord live los 8) * This truss l on the botton d or 3-06-00 tall chord and ar 9) Provide mec bearing plate	spaced at 2-0-0 oc. as been designed for a 1 ad nonconcurrent with a has been designed for a m chord in all areas whe by 2-00-00 wide will fit b y other members. chanical connection (by e capable of withstandin at joint 3, 80 lb uplift at j Standard	ny other live loa live load of 20. re a rectangle etween the bott thers) of truss g 8 lb uplift at jo	0psf om to vint 1,					
FORCES	(lb) - Maximum Com Tension	npression/Maximum									
TOP CHORD BOT CHORD		/56, 2-4=-332/326									
Vasd=103 II; Exp B; and C-C exposed members Lumber D	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed; MWFRS (er Corner(3E) zone; cantil end vertical left and ri and forces & MWFRS 0L=1.60 plate grip DC signed for wind loads in	CDL=6.0psf; h=25ft; hvelope) exterior zon- lever left and right ght exposed;C-C for for reactions shown; DL=1.60	e					C		ORTH CA	ROLING

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	891 Serentiy-Roof-B330 A CP TMB GRH	
25030183-01	V11	Valley	1	1	Job Reference (optional)	172212050

Loading

TCDL

BCLL

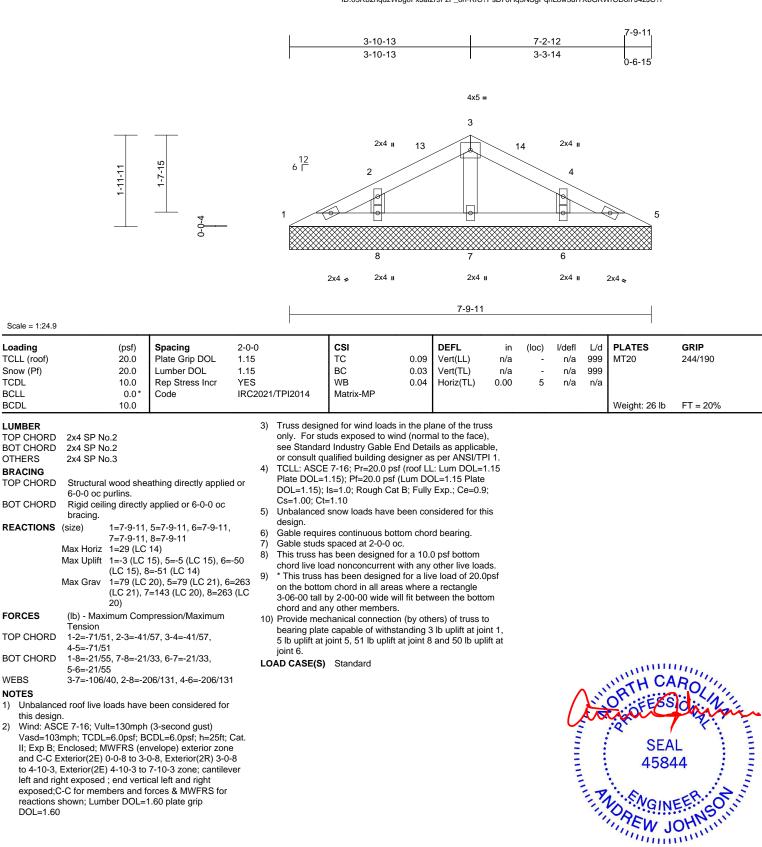
BCDL

OTHERS

FORCES

WEBS

NOTES


1)

2)

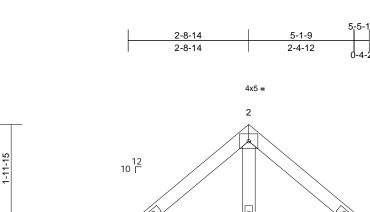
Run: 8 73 S Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Fri Mar 21 12:21:05 ID:05Rb2nqdzWbg0FxJai2r9FzF_oh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

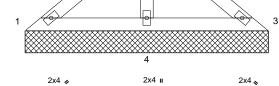
Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932


March 25,2025


Job	Truss	Truss Type	Qty	Ply	891 Serentiy-Roof-B330 A CP TMB GRH	
25030183-01	V4	Valley	1	1	Job Reference (optional)	172212051

2-3-10

-0-0

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Mar 21 12:21:05 ID:zaLvff4hxRRwGCgqil1TiLykybl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-5-11

Scale = 1:26.2

-		i										•	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.12	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.15	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.05	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021/	TPI2014	Matrix-MP								
BCDL	10.0											Weight: 20 lb	FT = 20%
	5-5-11 oc purlins. Rigid ceiling directly bracing.	3=5-6-5, 4=5-6-5 13) 15), 4=-43 (LC 14)	6) 7) 8) d or 9) 10) =358 11)	design. Gable require Gable studs of This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Provide mecl bearing plate and 43 lb upl Beveled plate	snow loads have t es continuous bott spaced at 4-0-0 oc s been designed f d nonconcurrent y as been designed n chord in all area: y 2-00-00 wide wi y other members. nanical connectior capable of withsta iff at joint 4. e or shim required russ chord at joint	om chor c. or a 10.0 with any l for a liv s where Il fit betw n (by oth anding 5 to provi	d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t i b uplift at jo de full bearing	ds. Opsf om o int 3					
FORCES	(lb) - Maximum Com	pression/Maximum		AD CASE(S)		u(s) 1, 3.							
TOP CHORD BOT CHORD WEBS	Tension 1-2=-85/137, 2-3=-8 1-4=-111/108, 3-4=- 2-4=-269/128			(.)									
NOTES	2 1- 200/120												
	ed roof live loads have	been considered for											
this design		been considered for											
2) Wind: ASC Vasd=103 II; Exp B; I and C-C E exposed ; members a	CE 7-16; Vult=130mph imph; TCDL=6.0psf; B Enclosed; MWFRS (er ixterior(2E) zone; cant end vertical left and ri, and forces & MWFRS OL=1.60 plate grip DC	CDL=6.0psf; h=25ft; nvelope) exterior zon ilever left and right ght exposed;C-C for for reactions shown;	e							(ti	OR TH CA	ROLIN
 Truss desi only. For see Stand or consult 	igned for wind loads in studs exposed to wind ard Industry Gable En qualified building desi CE 7-16; Pr=20.0 psf (the plane of the trus (normal to the face) d Details as applicab gner as per ANSI/TP	le, I 1.							11111	The second s	SEA 4584	• •
Plate DOL	=1.15); Pf=20.0 psf (L i); Is=1.0; Rough Cat E	um DOL=1.15 Plate										NOREW 1	OHNSUIT

- Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 3) only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Page: 1

Job	Truss	Truss Type	Qty	Ply	891 Serentiy-Roof-B330 A CP TMB GRH	
25030183-01	GSE	Monopitch Structural Gable	1	1	Job Reference (optional)	172212052

4-7-4

4-7-4

0-10-8

0-10-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

3-9-14

0-9-0

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Mar 21 12:21:05 ID:j7LOAWWFe1s7RV5MhJbHFGzF_qO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 **I** 5 6

1-0-0

9-8-0

5-0-12

2x4 **"** 4

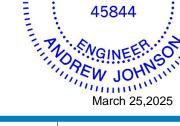
2-8-11 ₽ 3 ^{3x5} = 14 ٩Þ F ±₩ 8 10 k 2x4 u 7 9 4x5 = 5x6 = _]3 12 4x5 =

0-	5-8	4-5-8	5-5-8	9-4-12	9-8-0
0-!	5-8	4-0-0	1-0-0	3-11-4	0-3-4

12 4 Г

3x5 ≠

Plate Offsets (X, Y): [2:0-5-12,0-1-0]

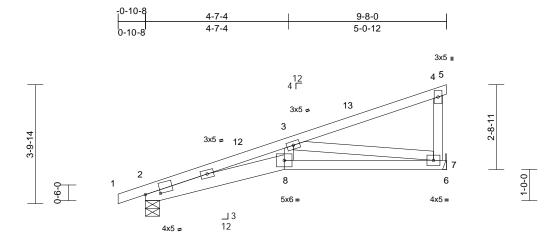

cantilever left and right exposed ; end vertical left and

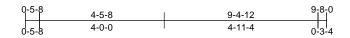
right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

DOL=1.60

	(, , , L = = ,= ;= ;= ;												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.31 0.18 0.35	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.03 0.00	(loc) 8-9 8-9 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 47 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	2x6 SP No.2 *Excep 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Brace at Jt(s): 10	eathing directly applie cept end verticals. r applied or 10-0-0 or 8= Mechanical, 9=0- C 11) C 10), 8=-39 (LC 14), C 14) C 21), 8=281 (LC 21)	c 4) 5) 11-8 , 7)	only. For stu see Standar or consult qu TCLL: ASCE Plate DOL=' DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n Gable studs This truss ha chord live lo * This truss la	ned for wind loads i uds exposed to wind d Industry Gable E Jalified building des 7-16; Pr=20.0 psf (1.15); Pf=20.0 psf (1.5); Pf=20.0 psf (1.15);	d (norm nd Deta signer a (roof Ll Lum DC B; Fully been col or great at roof I other li 5. or a 10. with any for a liv	al to the face ils as applica is per ANSI/T :: Lum DOL= :L=1.15 Plate Exp.; Ce=0.1 er of min rool bad of 20.0 p ve loads. D psf bottom other live loa e load of 20.1	e), able, PI 1. -1.15 e 9; his f live osf on ads.					
FORCES	(lb) - Maximum Com Tension	npression/Maximum		3-06-00 tall I	by 2-00-00 wide winny other members.			tom					
TOP CHORD	1-2=0/17, 2-3=-144/ 4-5=-65/30, 5-6=-8/0		9) 11	Refer to gird	ler(s) for truss to tru bint(s) 2 considers p			9				20111	ш.
BOT CHORD WEBS	2-9=-108/202, 8-9=- 3-9=-377/185, 3-10= 4-10=-71/47	,	1/112,	using ANSI/ designer sho	TPI 1 angle to grain ould verify capacity chanical connection	n formul of bear	a. Building ing surface.			~	- MAR	WITH CA	ROLIN
Vasd=103 II; Exp B; and C-C E					e capable of withsta uplift at joint 9. Simpson Strong-Tid ed to connect truss (s) 2. This connect insider lateral forces	anding 3 e conne to bear ion is fo	89 lb uplift at j ctors ing walls due	joint e to		0	LTA	SEA 4584	•

LOAD CASE(S) Standard




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	891 Serentiy-Roof-B330 A CP TMB GRH	
25030183-01	G	Monopitch	9	1	Job Reference (optional)	172212053

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Mar 21 12:21:05 ID:Dy_JjEEKvGAptckEgqDBdczF_tK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

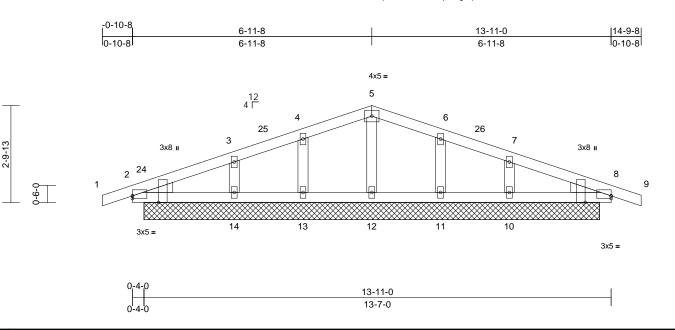
Scale = 1	:37
-----------	-----

Plate Offsets (X, Y): [2:0-5-12,0-1-0]

	(X, 1). [2.0-5-12,0-1-0]	1											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.60 0.52 0.69	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.13 0.05	(loc) 8 7-8 7	l/defl >999 >872 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS(Vasd=103 II; Exp B; and C-C B 1-11-13 to cantilever	2x4 SP No.2 2x6 SP No.2 *Excep 2x4 SP No.3 Structural wood shea 4-5-5 oc purlins, exi Rigid ceiling directly bracing. (size) 2=0-5-8, 7 Max Horiz 2=121 (LC Max Uplift 2=-81 (LC Max Grav 2=491 (LC (lb) - Maximum Com Tension 1-2=0/17, 2-3=-1714 4-5=-8/0, 4-7=-224/1	athing directly applie cept end verticals. applied or 7-11-15 c 7= Mechanical C 11) C 10), 7=-74 (LC 14) C 21), 7=524 (LC 21) upression/Maximum V/550, 3-4=-154/35, 19 -544/1531, 6-7=0/0 460/561 (3-second gust) CDL=6.0psf; h=25ft; velope) exterior zon 1-11-13, Interior (1) 8-0 to 9-8-0 zone; ; end vertical left and	ис 7) 8) 9) 1(Саt. е	load of 12.0 overhangs n This truss ha chord live loa * This truss f on the bottor 3-06-00 tall t chord and ar Refer to gird Bearing at jo using ANSI/ designer sho Provide mec bearing plate 7.)) One H2.5A S recommende UPLIFT at jtt	Is been designed for psf or 1.00 times fit on-concurrent with is been designed for ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide wil yo other members. er(s) for truss to tru- int(s) 2 considers p IPI 1 angle to grain build verify capacity hanical connection e capable of withsta- Simpson Strong-Tie ad to connect truss s) 2. This connects s) 2. This connects Standard	at roof le other lip or a 10. vith any for a liv s where I fit betw uss comp arallel s formul of bear (by oth anding 7 e conne to bear on is fol	bad of 20.0 p ve loads.) psf bottom other live load e load of 20.0 a rectangle veen the bott nections. o grain value a. Building ng surface. ers) of truss i 4 lb uplift at j ctors ing walls due	sf on ids. Opsf om to joint		Ĺ		WOUNT H CA	ROLIN
for reaction DOL=1.60 2) TCLL: AS Plate DOL DOL=1.15 Cs=1.00;	ns shown; Lumber DO) CE 7-16; Pr=20.0 psf (l _=1.15); Pf=20.0 psf (Li 5); Is=1.0; Rough Cat B	L=1.60 plate grip roof LL: Lum DOL=1 um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9;	.15							1111115	Print I	SEA 4584 NGIN	HA THE REP. O

- 2 DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 3) design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

.10 unun March 25,2025

Job	Truss	Truss Type	Qty	Ply	891 Serentiy-Roof-B330 A CP TMB GRH	
25030183-01	DGE	Common Supported Gable	1	1	Job Reference (optional)	172212054

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Mar 21 12:21:04 ID:UUQhZhEGk9Im0a6ieC968izF_pT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

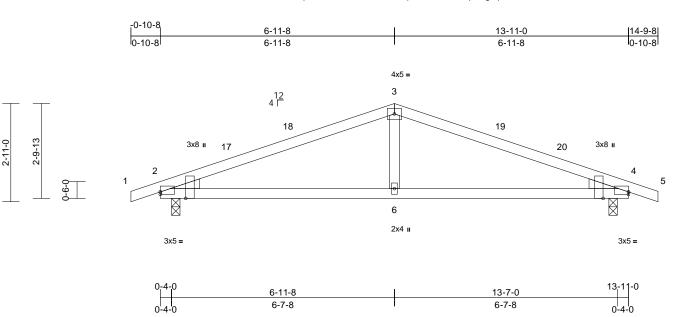
Scale = 1:33.5

2-11-0

Plate Offsets (X, Y); [2:Edge.0-0-14], [2:0-2-5.Edge], [8:Edge.0-0-14], [8:0-2-5.Edge]

Plate Offsets (2	X, Y): [2:Edge,0-0-14]], [2:0-2-5,Edge], [8:Ed	ge,0-0-1	4], [8:0-2-5,Ec	lge]								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-MSH	0.29 0.19 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.01	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 59 lb	GRIP 244/190 FT = 20%
	10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=13-3-0, 11=13-3-0 14=13-3-0 Max Horiz 2=41 (LC Max Uplift 2=-1 (LC 2 10=-44 (Li 12=-47 (Li 14=-75 (Li 14=-75 (Li 10=302 (LC 1	8=13-3-0, 10=13-3-0, , 12=13-3-0, 13=13-3-0) 14) 21), 8=-71 (LC 36), C 15), 11=-35 (LC 11), C 10), 13=-23 (LC 14), C 10), 8=128 (LC 22), C 22), 11=205 (LC 22), C 221), 13=123 (LC 21)	3) 0, 4) 5) , 6)	Vasd=103m; II; Exp B; En and C-C Cor to 3-11-8, Cc 9-11-8 to 11- cantilever lef right expose for reactions DOL=1.60 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n	7-16; Vult=130mp bh; TCDL=6.0psf; closed; MWFRS (in ner(3E) -0-10-8 to orner(3E) 3-11-8 to 9-8, Corner(3E) 1 t and right expose d;C-C for member: shown; Lumber D ed for wind loads uds exposed to wird d Industry Gable E ialified building dei 7-16; Pr=20.0 psf (s=1.0; Rough Cat =1.10 snow loads have I us been designed f psf or 1.00 times fi on-concurrent with 2 x4 MT20 unless	BCDL=6 envelope 2-1-8, E 9-11-8, E 9-9-14-8 1-9-8 to d; end v s and fo OL=1.60 in the pl d (norm ind Deta signer a f (roof LI (Lum DC B; Fully been con for great lat roof l i other li	i.Opsf; h=25ft a) exterior zor ixterior(2N) 2 Exterior(2N) 14-9-8 zone; vertical left an rcces & MWFF b) plate grip ane of the tru al to the face ils as applica s per ANSI/TI .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.5 insidered for th er of min roof pad of 20.0 p: ve loads.	ne -1-8 RS ss s), ble, PI 1. 1.15 e 9; his				·····	11111111111111111111111111111111111111
FORCES	(lb) - Maximum Com Tension		8) 9)	Gable studs	spaced at 2-0-0 or is been designed f	c.						OF	Da Ni
TOP CHORD	1-2=0/17, 2-3=-220/4 4-5=-123/411, 5-6=- ⁻ 7-8=-217/405, 8-9=0	122/395, 6-7=-170/392	, 10 <u>)</u>)* This truss h	ad nonconcurrent v nas been designed n chord in all area	l for a liv	e load of 20.0			U	\mathcal{N}	i george	V A V V V
BOT CHORD	2-14=-365/260, 13-1 12-13=-365/260, 11- 10-11=-365/260, 8-1	4=-365/260, 12=-365/260,		3-06-00 tall b	by 2-00-00 wide winy other members.	ll fit betv		om				SEA 4584	• • • • • • • • • • • • • • • • • • • •
WEBS NOTES 1) Unbalance	5-12=-360/181, 4-13 3-14=-275/153, 6-11 7-10=-212/127	=-146/110, =-183/128,	LO	AD CASE(S)	Standard						Number of Street	REIAL	EEP. ON INT
this design												Mara	25 2025

March 25,2025


818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	891 Serentiy-Roof-B330 A CP TMB GRH	
25030183-01	D	Common	4	1	Job Reference (optional)	172212055

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Mar 21 12:21:04 ID:nqLL14Jf5JAmMe82YAnlwAzF_pM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:34.2

Plate Offsets (X, Y); [2:Edge.0-0-14], [2:0-2-5.Edge], [4:Edge.0-0-14], [4:0-2-5.Edge]

	(X, T): [2:Eugo,0 0 T1];	[2:0-2-5,Edge], [4:E		4], [4.0-2-3,20	ige]								-
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MSH	0.72 0.56 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.13 0.02	(loc) 6-11 6-11 4	l/defl >999 >999 n/a	L/d 240 180 n/a		GRIP 244/190 FT = 20%
this desig 2) Wind: AS Vasd=100 II; Exp B; and C-C1 to 3-11-8 9-11-8 to cantilever right expo members	2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood sheat 4-1-1 oc purlins. Rigid ceiling directly a bracing. (size) 2=0-3-0, 4= Max Horiz 2=41 (LC 1 Max Uplift 2=-221 (LC Max Grav 2=708 (LC (lb) - Maximum Comp Tension 1-2=0/17, 2-3=-901/58 4-5=0/17 2-6=-458/775, 4-6=-49 3-6=-116/268	applied or 8-6-15 oc =0-3-0 4) 2 10), 4=-221 (LC 11 21), 4=708 (LC 22) pression/Maximum 94, 3-4=-901/594, 58/775 been considered for (3-second gust) DL=6.0psf; h=25f; (relope) exterior zone -1-8, Interior (1) 2-1 -1-8, Interior (1) 9-8 to 14-9-8 zone; end vertical left and exposed;C-C for or reactions shown;	4) 5) d or 6) 7) 1) 8) LO Cat. -8	Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall b chord and ar One H2.5A S recommende UPLIFT at jt(snow loads have b s been designed for performance of the second second second performance of the second second second performance of the second second second second second second second performance of the second	Lum DC B; Fully eeen cor or great at roof l other li or a 10. vith any for a liv s where l fit betw e conne to bear nnectio	DL=1.15 Plate Exp.; Ce=0.9 asidered for the er of min roof bad of 20.0 p ve loads. D psf bottom other live loa e load of 20.0 a rectangle veen the botth ctors ing walls due	e 9; his f live sf on ads. Opsf om			and the second sec	SEA 458 VORTH CA	44 EER. ON

104 mmm

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	891 Serentiy-Roof-B330 A CP TMB GRH	
25030183-01	V3	Valley	1	1	Job Reference (optional)	172212056

3-11-4

3-11-4

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8 73 S. Feb 19 2025 Print: 8 730 S. Feb 19 2025 MiTek Industries. Inc. Fri Mar 21 12:21:05 ID:_PCt1VqtCUIRorSEgzcdUCzF_Jj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4x5 =

7-6-6

3-7-2

7-10-8

Page: 1

2 9 10 3-3-10 2-11 12 10 Г 3 0-0-C Δ 2x4 II 3x5 🖌 3x5 💊 7-10-8 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) 20.0 Plate Grip DOL 1.15 TC 0.32 Vert(LL) n/a n/a 999 MT20 244/190 20.0 Lumber DOL 1 15 BC 0.32 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.11 Horiz(TL) 0.00 4 n/a n/a 0.0 Code IRC2021/TPI2014 Matrix-MP 10.0 Weight: 30 lb FT = 20%TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 5) desian. plied or Gable requires continuous bottom chord bearing. 6) Gable studs spaced at 4-0-0 oc. 7) ос 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 1-2 9) on the bottom chord in all areas where a rectangle 20), 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 21), 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint ım 1, 36 lb uplift at joint 3 and 89 lb uplift at joint 4. 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 3. LOAD CASE(S) Standard AMALINITIAN INTERNET SEAL 5844 mm March 25,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Loading TCLL (roof) Snow (Pf)

Scale = 1:30.2

TCDL

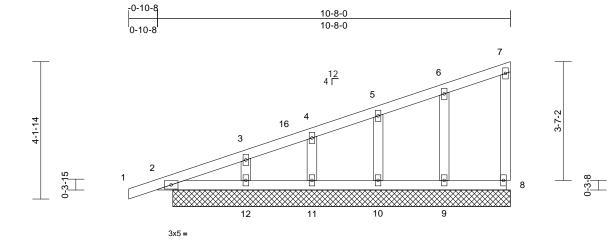
BCLL

BCDL

LUMBER	-			
TOP CHORD	2x4 SP N	o.2		
BOT CHORD	2x4 SP N	0.2		
OTHERS	2x4 SP N	0.3		
BRACING				
TOP CHORD	Structura	I wood shea	athing directly ap	p
	7-10-8 oc	purlins.		
BOT CHORD	Rigid ceili bracing.	ing directly	applied or 6-0-0	c
REACTIONS	(size)	1=7-11-2,	3=7-11-2, 4=7-1	1
	Max Horiz	1=-73 (LC	; 10)	
	Max Uplift	1=-36 (LC	21), 3=-36 (LC	2
		4=-89 (LC		
	Max Grav	(C 20), 3=101 (LC	; ;
		4=620 (LC	C 20)	
FORCES	(lb) - Max Tension	imum Com	pression/Maxim	u
TOP CHORD	1-2=-111/	/282, 2-3=-	111/282	
BOT CHORD	1-4=-219/	/173, 3-4=-2	219/173	
WEBS	2-4=-500/	/234		

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 4-11-2, Exterior(2E) 4-11-2 to 7-11-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.


818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	891 Serentiy-Roof-B330 A CP TMB GRH	
25030183-01	FGE	Monopitch Supported Gable	1	1	Job Reference (optional)	172212057

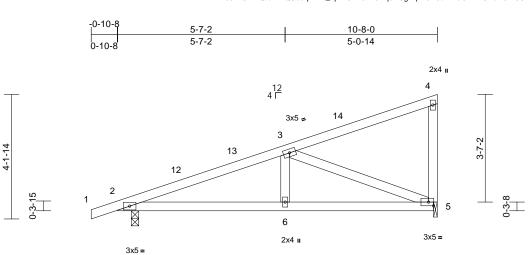
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Mar 21 12:21:04 ID:_?Pus1XWS1h0GXUA82Y8iGzF_IC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

10-6-8	10-8-0
10-6-8	0-1-8

Scale = 1:34.8

	·											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.17 0.10 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 49 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=10-2-8 10=10-2- Max Horiz 2=147 (LI Max Uplift 2=-40 (LC 9=-35 (LC 11=-37 (L Max Grav 2=238 (L) 9=230 (L)	x applied or 10-0-0 oc 8=10-2-8, 9=10-2-8, 8, 11=10-2-8, 12=10-2 C 13) C 10), 8=-13 (LC 11), C 10), 10=-34 (LC 14), C 10), 12=-37 (LC 14)	 only. For see Standa or consult (3) TCLL: ASC Plate DOL=1.15; Cs=1.00; C 4) Unbalance design. 5) This truss l load of 12. overhangs 6) All plates a 7) Gable stud 8) This truss l chord live l 9) * This truss 	gned for wind loads studs exposed to wi ard Industry Gable E qualified building de E 7-16; Pr=20.0 ps =1.15); Pf=20.0 psf ; Is=1.0; Rough Ca Ct=1.10 d snow loads have has been designed 0 psf or 1.00 times i non-concurrent with tre 2x4 MT20 unless; Is spaced at 2-0-0 of has been designed oad nonconcurrent s has been designed oad nonconcurrent s has been designed om chord in all area	nd (norm End Deta signer a if (roof LI (Lum DC t B; Fully been cool for great flat roof I h other li s other wi c. for a 10. with any d for a liv	al to the face iils as applica s per ANSI/TI : Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 nsidered for t er of min roof oad of 20.0 p ve loads. ise indicated. 0 psf bottom other live loa re load of 20.0	2), bble, PI 1. 1.15 29; his f live sf on				vveignt: 49 ib	FT = 20%
FORCES	(lb) - Maximum Con Tension 1-2=0/17, 2-3=-125/ 4-5=-79/104, 5-6=-6	133, 3-4=-91/117,	chord and 10) Provide me bearing pla	I by 2-00-00 wide w any other members echanical connectio ate capable of withs	n (by oth	ers) of truss	to					10.
BOT CHORD WEBS	7-8=-67/38 2-12=-75/115, 11-12 9-10=-45/81, 8-9=-4	2=-45/81, 10-11=-45/8	^{31,} LOAD CASE(S)	o uplift at joint 2.					0	<u>Lin</u>	ORTH CA	Provin
Vasd=100 II; Exp B; and C-C (to 7-6-4, (and right C for mer	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed; MWFRS (er Corner(3E) -0-10-8 to 2 Corner(3E) 7-6-4 to 10 exposed ; end vertical nbers and forces & MV umber DOL=1.60 plate	CDL=6.0psf; h=25ft; (nvelope) exterior zone 2-1-8, Exterior(2N) 2-1 -6-4 zone; cantilever I left and right exposed VFRS for reactions	e I-8 eft							N. N	SEA 458 MGIN March	44 EEP. O


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GINEERING

Job	Truss	Truss Type	Qty	Ply	891 Serentiy-Roof-B330 A CP TMB GRH	
25030183-01	F	Monopitch	2	1	Job Reference (optional)	172212058

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Mar 21 12:21:04 ID:9J?nSM2QtleiTNQUoeql4rzF_lq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

0-5-8	5-7-2	10-6-8	10-8-0
0-5-8	5-1-10	4-11-6	0-1-8

			0-5-8	-						0-1-8			
Scale = 1:38.4							·						
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.40 0.27 0.44	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.03 -0.04 0.01	(loc) 5-6 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 49 lb	GRIP 244/190 FT = 20%
LUMBER			5)		s been designed								
TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly	cept end verticals.	6) ed or 7) 8)	* This truss h on the bottor 3-06-00 tall b chord and ar Bearings are Bearing at jo	ad nonconcurrent has been designe in chord in all are by 2-00-00 wide w by other members assumed to be: int(s) 5 considers (PI 1 angle to gra	d for a liv as where vill fit betv s. , Joint 5 \$ s parallel	e load of 20. a rectangle veen the bott SP No.3 . to grain value	0psf om					
I	bracing. (size) 2=0-3-0, 5 Max Horiz 2=147 (LC Max Uplift 2=-190 (L Max Grav 2=559 (LC	C 13) C 10), 5=-159 (LC 1		designer sho Provide mec bearing plate) One H2.5A S	 auid verify capacit hanical connectic at joint(s) 2, 5. Simpson Strong-T ad to connect trus 	ty of bear on (by oth ⁻ie conne	ing surface. ers) of truss t ctors						
FORCES	(lb) - Maximum Com Tension	pression/Maximum		UPLIFT at jt(s) 2 and 5. This of the consider lateral	connectio							
TOP CHORD	1-2=0/17, 2-3=-858/- 4-5=-187/105	428, 3-4=-104/64,	LC	DAD CASE(S)		101063.							
BOT CHORD WEBS	2-6=-404/775, 5-6=- 3-6=-80/216, 3-5=-8												
 Vasd=103r II; Exp B; E and C-C E2; to 7-6-4, E2; and right export left a forces & M DOL=1.60 2) TCLL: ASC Plate DOL= DOL=1.15) Cs=1.00; C 3) Unbalancee design. 4) This truss b load of 12.0 	E 7-16; Vult=130mph mph; TCDL=6.0psf; Bi inclosed; MWFRS (er terior(2E) -0-10-8 to 10 kterior(2E) 7-6-4 to 10 kterior(2E) 7-6-	CDL=6.0psf, h=25ft; ivelope) exterior zon 2-1-8, Interior (1) 2-1 I-6-4 zone; cantileve left and right expose for members and hown; Lumber roof LL: Lum DOL=1 um DOL=1.15 Plate B; Fully Exp.; Ce=0.9 een considered for the r greater of min roof t roof load of 20.0 ps	e I-8 r left d; .15 ; is							Contraction		SEA 4584 SEA	EER. ON

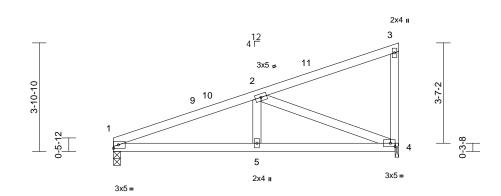
10 "minimi

March 25,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	891 Serentiy-Roof-B330 A CP TMB GRH	
25030183-01	F1	Monopitch	4	1	Job Reference (optional)	172212059

5-1-10 5-1-10


Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Mar 21 12:21:04 ID:GvbiD6mwqAlkl5J6aNwunUzF_nU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-2-8

5-0-14

Page: 1

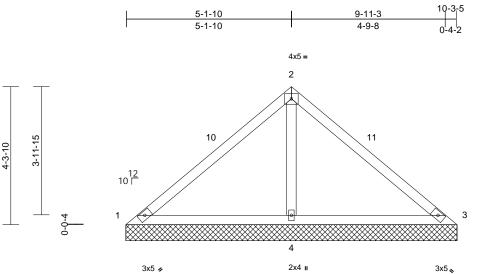
L	5-1-10	10-1-0	10-2-8
ſ	5-1-10	4-11-6	0-1-8

Scale = 1:41.2	2												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	21/TPI2014	CSI TC BC WB Matrix-MSH	0.40 0.28 0.45	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.03 -0.04 0.01	(loc) 5-8 5-8 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=0-3-0, - Max Horiz 1=139 (LI Max Uplift 1=-141 (L Max Grav 1=464 (LI (Ib) - Maximum Com Tension 1-2=-879/481, 2-3=- 	cept end verticals. • applied or 8-6-4 oc 4=0-1-8 C 13) C 10), 4=-162 (LC 1 C 21), 4=530 (LC 21 npression/Maximum 103/65, 3-4=-186/10 463/796	8 9 0)) L	 on the botto 3-06-00 tall chord and a Bearings are Bearing at jc using ANSI/ designer sho Provide mec bearing plat One H2.5A recommend UPLIFT at jt 	has been designe m chord in all area by 2-00-00 wide w ny other members a assumed to be: bint(s) 4 considers TPI 1 angle to gra buld verify capacit chanical connection chanical connection chanical connect trus (s) 1 and 4. This of t consider lateral Standard	as where vill fit betw s. , Joint 4 \$ parallel in formul ty of bear on (by oth connectio connectio	a rectangle veen the both SP No.3. to grain value a. Building ing surface. ers) of truss ctors ing walls due	tom e to e to					
Vasd=10 II; Exp B; and C-C 7-0-12, E left and ri exposed; and force DOL=1.6 2) TCLL: AS Plate DO	SCE 7-16; Vult=130mph i3mph; TCDL=6.0psf; B ; Enclosed; MWFRS (er Exterior(2E) 0-0-0 to 3- Exterior(2E) 7-0-12 to 1(0 ight exposed; end vertii ; porch left and right exp as & MWFRS for reaction i0 plate grip DOL=1.60 SCE 7-16; Pr=20.0 psf (L 50; Is=1.0; Rough Cat E ; Ct=1.10	CDL=6.0psf, h=25ft; velope) exterior zor 0-0, Interior (1) 3-0-()-0-12 zone; cantilev cal left and right posed;C-C for memb ons shown; Lumber roof LL: Lum DOL=1 um DOL=1.15 Plate	ne D to rer bers 1.15							0		SEA 4584	• •••

- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

PNOS 10 11111111 March 25,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	891 Serentiy-Roof-B330 A CP TMB GRH	
25030183-01	V2	Valley	1	1	Job Reference (optional)	172212060

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Mar 21 12:21:05 ID:jCQDRPFmxy5us2K9CGvbovzF_Un-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

GRIP 244/190

FT = 20%

10-3-5

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(ps 20. 20. 10. 0. 10.	0 Plate Grip DOL 0 Lumber DOL 0 Rep Stress Incr 0* Code	2-0-0 1.15 1.15 YES IRC202	21/TPI2014	CSI TC BC WB Matrix-MSH	0.54 0.52 0.30	- ()	in n/a n/a 0.01	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 39 lb
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	10-0-0 oc purlins Rigid ceiling dire bracing. (size) 1=10- Max Horiz 1=-97 Max Uplift 1=-16 4=-64 Max Grav 1=156	ectly applied or 6-0-0 oc 3-14, 3=10-3-14, 4=10-	6 7 8 3-14 9	Plate DOL= ² DOL=1.15); Cs=1.00; Ct Unbalanced design. Gable requir Gable studs This truss ha chord live lo:) * This truss I on the bottoo 3-06-00 tall I chord and ar 0) Provide mec	7-16; Pr=20.0 ps I.15); Pf=20.0 ps Is=1.0; Rough Cat =1.10; Rough Cat =1.10 snow loads have I es continuous bott spaced at 4-0-0 o as been designed ad nonconcurrent aas been designed n chord in all area by 2-00-00 wide w ny other members hanical connection e capable of withst	(Lum DC t B; Fully been cor tom chor c. for a 10.0 with any d for a liv s where ill fit betv n (by oth	DL=1.15 Plate Exp.; Ce=0.5 nsidered for th d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t	o; ds. opsf om o				
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum (Tension 1-2=-148/494, 2 1-4=-340/134, 3 2-4=-877/212			1, 2 lb uplift at joint 3. 1) Beveled plat	at joint 3, 64 lb upl e or shim required truss chord at join	lift at join I to provi	t 4 and 2 lb u de full bearing	plift				

NOTES

Scale = 1:35.9

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 7-3-14, Exterior(2É) 7-3-14 to 10-3-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	891 Serentiy-Roof-B330 A CP TMB GRH	
25030183-01	V1	Valley	1	1	Job Reference (optional)	172212061

Scale = 1:40.3 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

WEBS

NOTES

1)

2)

TOP CHORD

BOT CHORD

this design.

DOL=1.60

REACTIONS (size)

2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

bracing.

Max Horiz

Max Uplift

Max Grav

Tension

4-5=-102/66

5-6=-37/80

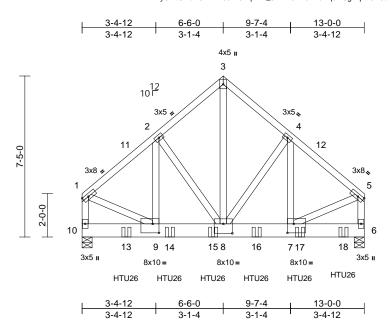
TCDL

BCLL

BCDL

Run: 8 73 S Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Fri Mar 21 12:21:05 ID:F?srD3E8Afz2EulzeZOMFizF_Uo-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1


6-4-1 12-4-0 6-4-1 5-11-15 4x5 = 3 2x4 II 2x4 II 4-11-15 5-3-10 13 14 2 4 12 10 Г 5 8 6 7 2x4 🛛 2x4 🛛 2x4 🛛 3x5 💊 3x5 🖌 12-8-2 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) Spacing in (loc) 20.0 Plate Grip DOL 1.15 TC 0.32 Vert(LL) n/a 999 MT20 244/190 n/a 20.0 BC Lumber DOL 1 15 0.12 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.09 Horiz(TL) 0.00 5 n/a n/a 0.0 Code IRC2021/TPI2014 Matrix-MSH 10.0 Weight: 53 lb FT = 20%3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate Structural wood sheathing directly applied or DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 6-0-0 oc purlins. Cs=1.00: Ct=1.10 Rigid ceiling directly applied or 10-0-0 oc Unbalanced snow loads have been considered for this 5) desian. 1=12-8-11, 5=12-8-11, 6=12-8-11, 6) Gable requires continuous bottom chord bearing. 7=12-8-11, 8=12-8-11 7) Gable studs spaced at 4-0-0 oc. 1=-120 (LC 10) This truss has been designed for a 10.0 psf bottom 8) 1=-29 (LC 10), 6=-139 (LC 15), chord live load nonconcurrent with any other live loads. 8=-142 (LC 14) * This truss has been designed for a live load of 20.0psf 9) 1=102 (LC 25), 5=81 (LC 24), on the bottom chord in all areas where a rectangle 6=435 (LC 21), 7=270 (LC 20), 3-06-00 tall by 2-00-00 wide will fit between the bottom 8=435 (LC 20) chord and any other members. (Ib) - Maximum Compression/Maximum 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 29 lb uplift at joint 1-2=-130/106, 2-3=-209/116, 3-4=-209/116, 1, 142 lb uplift at joint 8 and 139 lb uplift at joint 6. 11) Beveled plate or shim required to provide full bearing 1-8=-37/93, 7-8=-37/78, 6-7=-37/78, surface with truss chord at joint(s) 1, 5. LOAD CASE(S) Standard 3-7=-184/0. 2-8=-385/204. 4-6=-385/204 Unbalanced roof live loads have been considered for AMALINITIAN IN THE REAL OF THE Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. SEAL II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 3-4-6, Exterior(2R) 3-4-6 to 9-4-6, Interior (1) 9-4-6 to 9-8-11, Exterior(2E) 9-8-11 to 12-8-11 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip mm March 25,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	891 Serentiy-Roof-B330 A CP TMB GRH	
25030183-01	EGR	Common Girder	1	2	Job Reference (optional)	172212062

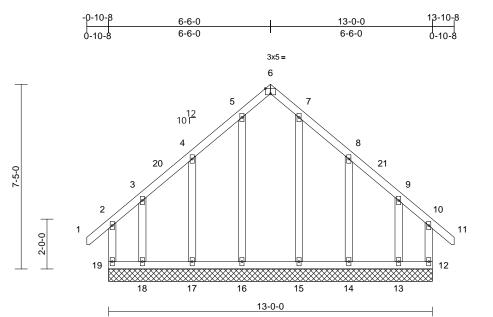
Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Mar 21 12:21:04 ID:ySTbSlhb7CBDnk89ITG2qHzF_92-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:53.1

Plate Offsets (X, Y): [7:0-3-8,0-5-0], [8:0-5-0,0-5-4], [9:0-3-8,0-5-0]

	r (x, 1): [1:0 0 0;0 0 0];	[0.0 0 0,0 0 +], [0.0 0	0,0 0 0]										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO IRC2027	I/TPI2014	CSI TC BC WB Matrix-MSH	0.49 0.17 0.84	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.06 0.01	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 230 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORI BOT CHORI WEBS BRACING TOP CHORI BOT CHORI REACTIONS	 2x8 SP 2400F 2.0E 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 	applied or 10-0-0 oc	,	this design. Wind: ASCE Vasd=103mp II; Exp B; En cantilever lef right expose TCLL: ASCE Plate DOL=1	roof live loads hav 7-16; Vult=130mp bh; TCDL=6.0psf; f closed; MWFRS (e t and right expose d; Lumber DOL=1. : 7-16; Pr=20.0 psf (.15); Pf=20.0 psf	h (3-sed BCDL=6 envelope d ; end v 60 plate (roof Ll Lum DC	cond gust) 6.0psf; h=25ft e) exterior zo /ertical left ar e grip DOL=1 .: Lum DOL= DL=1.15 Plate	t; Cat. ne; nd .60 :1.15 e					
FORCES	Max Horiz 10=-180 (Max Uplift 6=-486 (L	LC 8) C 13), 10=-416 (LC 12 _C 6), 10=4772 (LC 5)	, 0)	Cs=1.00; Ct= Unbalanced design.	Is=1.0; Rough Cat =1.10 snow loads have b as been designed fo	been coi	nsidered for t						
TOP CHORI	3-4=-3386/394, 4-5= 1-10=-4108/376, 5-6	-4077/398, 5=-4150/380	,	chord live loa * This truss h on the bottor 3-06-00 tall b	ad nonconcurrent v has been designed m chord in all areas by 2-00-00 wide wil	with any I for a liv s where Il fit betv	other live loa e load of 20. a rectangle	0psf					
WEBS	7-8=-253/3083, 6-7= 1-9=-265/3281, 5-7=			One H2.5A S recommende UPLIFT at jt(ny other members. Simpson Strong-Tie ed to connect truss (s) 10 and 6. This of t consider lateral fo	e conne to bear connecti	ing walls due					TH CA	Route
(0.131"x	ss to be connected toge 3") nails as follows: rds connected as follows			 and does not consider lateral forces. 10) Use Simpson Strong-Tie HTU26 (10-16d Girder, 14-10dx1 1/2 Truss) or equivalent spaced at 2-0-0 oc max. starting at 2-0-8 from the left end to 12-0-8 to connect truss(es) to back face of bottom chord. 11) Fill all nail holes where hanger is in contact with lumber. 								bigkin	
Bottom of staggere Web cor 2) All loads except if CASE(S provided	chords connected as foll d at 0-6-0 oc. nected as follows: 2x4 - are considered equally noted as front (F) or ba) section. Ply to ply conr to distribute only loads therwise indicated.	1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LOA nections have been	LC 1)	AD CASE(S) Dead + Sno Increase=1 Uniform Los Vert: 1-3 Concentrate Vert: 13=	Standard ow (balanced): Lun .15	nber Inc 0=-20 20 (B),	rease=1.15, 15=-1420 (B)	Plate		11112	N. N. N.	SEA 4584	ER OLIVIA

March 25,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	891 Serentiy-Roof-B330 A CP TMB GRH	
25030183-01	EGE	Common Supported Gable	1	1	Job Reference (optional)	212063

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Mar 21 12:21:04 ID:hs_OLPz9_OqUDEXuG81pmYzF_Z1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

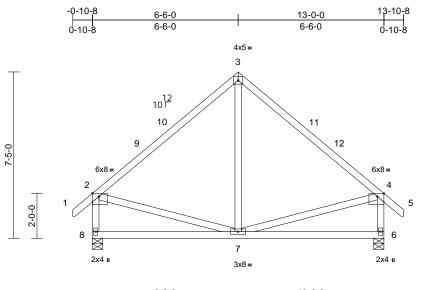
Page: 1

Scale = 1:46.3

Plate Offsets (X, Y): [6:0-2-8,Edge]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.25	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.14	Vert(CT)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES		WB	0.15	Horz(CT)	0.00	12	n/a	n/a		
BCLL		0.0*	Code	IRC202	1/TPI2014	Matrix-MR								
BCDL		10.0											Weight: 91 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc	o.2 o.3 o.3 I wood she purlins, exe	athing directly applie cept end verticals. applied or 6-0-0 oc	2) ed or	Vasd=103m II; Exp B; En and C-C Cor to 3-4-4, Cor to 10-9-14, C cantilever lef right exposed for reactions	7-16; Vult=130m sh; TCDL=6.0psf; closed; MWFRS (ner(3E) -0-9-14 to ner(3R) 3-4-4 to 5 corner(3E) 10-9-1 t and right expose d;C-C for member shown; Lumber [BCDL=6 envelope 2-2-2, E -7-12, E 4 to 13-9 ed ; end v rs and fo	.0psf; h=25ft e) exterior zon exterior(2N) 2 xterior(2N) 9- -14 zone; vertical left ar ces & MWFF	; Cat. ne -2-2 7-12 id	bea 19, upli	ring plat 160 lb u ft at join pint 13.	te capa plift at t 18, 10	able of withstand joint 12, 106 lb u 07 lb uplift at join	/ others) of truss to ing 168 lb uplift at joint uplift at joint 17, 188 lb t 14 and 182 lb uplift
	bracing.	ing anoonly		3)	DOL=1.60	ed for wind loads								
REACTIONS	Max Horiz Max Uplift Max Grav	15=13-0-(18=13-0-(19=205 (L 12=-160 (14=-107 (18=-188 (12=230 (L 14=249 (L 16=266 (L 18=283 (L	LC 11), 13=-182 (LC LC 15), 17=-106 (LC LC 15), 17=-168 (LC LC 25), 13=278 (LC 2 LC 22), 15=266 (LC 0 C 5), 17=249 (LC 2 LC 25), 19=236 (LC 2	-0-0, 2 10), 2 14), 2 10) 26), 5), 1), 6)	see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha	Ids exposed to wi d Industry Gable B lailified building de 7-16; Pr=20.0 ps 1.5); Pf=20.0 ps Is=1.0; Rough Ca =1.10 snow loads have is been designed psf or 1.00 times I	End Deta esigner as if (roof Ll (Lum DC t B; Fully been cor for great	ils as applica s per ANSI/TI .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 nsidered for the er of min roof	ble, PI 1. 1.15 9; his live					111.
FORCES	Tension 2-19=-16 3-4=-71/1 6-7=-92/2	4/127, 1-2= 45, 4-5=-9 214, 7-8=-9	pression/Maximum =0/37, 2-3=-136/130, 6/300, 5-6=-92/213, 7/299, 8-9=-67/148, 1=0/37, 10-12=-160	9)	All plates are Gable requir Truss to be f braced agair	on-concurrent with 2x4 MT20 unless es continuous bot ully sheathed from ist lateral movement spaced at 2-0-0 o	s otherwi tom choi n one fac ent (i.e. c	se indicated. d bearing. e or securely			(\sim	ORTH CA	ROUNT -
BOT CHORD	16-17=-1	09/131, 15- 09/131, 13-	-18=-109/131, -16=-109/131, -14=-109/131,	11) This truss ha chord live loa ?) * This truss h	is been designed ad nonconcurrent has been designer n chord in all area	for a 10. with any d for a liv	other live loa e load of 20.0					SEA 4584	L 44
WEBS		5/123, 8-14	212/0, 4-17=-208/21 l=-208/213,	9,	3-06-00 tall b	by 2-00-00 wide w by other members	ill fit betv	veen the bott				N.Y	V. SNGIN	EER ON
NOTES 1) Unbalanc this desig		oads have	been considered for									11	SEA 458 NGIN Marcl	EEP. ON 111

NOTES


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	891 Serentiy-Roof-B330 A CP TMB GRH	
25030183-01	E	Common	3	1	Job Reference (optional)	172212064

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Mar 21 12:21:04 $ID: wb1oEU3ot9zDodjcIXhweSzF_Yu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f$

Page: 1

Scale = 1:51.4	
Plate Offsets (X, Y):	[2:0-3-8,Edge], [4:0-3-8,Edge]

Plate Offsets ()	X, Y): [2:0-3-8,Edge],	[4:0-3-8,Edge]										-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	21/TPI2014	CSI TC BC WB Matrix-MSH	0.77 0.35 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.07 0.00	(loc) 6-7 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 82 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalancee this design 2) Wind: ASC Vasd=103r II; Exp B; E and C-C E; to 3-6-0, E; 10-9-14, E; 10-9-14, E; cantilever li right expos for reaction DOL=1.60 3) TCLL: ASC Plate DOL=	Max Horiz 8=205 (LC Max Uplift 6=-48 (LC Max Grav 6=648 (LC (Ib) - Maximum Com Tension 1-2=0/37, 2-3=-532/ 4-5=0/37, 2-8=-590/ 7-8=-207/272, 6-7=- 3-7=0/214, 2-7=-51/ d roof live loads have E 7-16; Vult=130mph mph; TCDL=6.0psf; Bt inclosed; MWFRS (en xterior(2E) -0-9-14 to xterior(2E) -0-9-14 to eft and right exposed ed; C-C for members a s shown; Lumber DO CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L =1.15); Pf=20.0 psf (L	athing directly applied xcept end verticals. applied or 10-0-0 oc 3=0-5-8 2 13) 15), 8=-48 (LC 14) 2 22), 8=648 (LC 21) pression/Maximum 142, 3-4=-532/142, 173, 4-6=-590/158 86/174 227, 4-7=-53/227 been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zone 2-2-2, Interior (1) 2-2 6-0, In	Cat. e -2 ito 15	 design. This truss hat load of 12.0 overhangs n This truss hat chord live loat chord live loat of the bottor 3-06-00 tall h chord and an at One H2.5A S recommended UPLIFT at jtt 	snow loads have b as been designed fi psf or 1.00 times fl on-concurrent with is been designed fi ad nonconcurrent v has been designed in chord in all areas by 2-00-00 wide will yo other members. Simpson Strong-Tie ed to connect truss (s) 8 and 6. This co t consider lateral fo Standard	or great at roof lo other lin or a 10.0 vith any for a liv s where Il fit betw e connec to bear onnectio	er of min roof cad of 20.0 p ve loads. 0 psf bottom other live loa re load of 20.1 a rectangle veen the botto ctors ing walls due	f live sf on ids. Opsf om to		C. THINK		SEA 4584	EER. OLIV

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

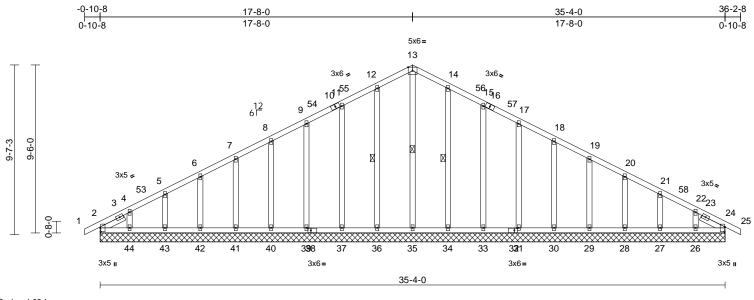
818 Soundside Road Edenton, NC 27932

JULIU

March 25,2025

Job	Truss	Truss Type	Qty	Ply	891 Serentiy-Roof-B330 A CP TMB GRH	
25030183-01	CGE	Common Supported Gable	1	1	Job Reference (optional)	172212065

17-8-0


Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Mar 21 12:21:03 ID:HSVLvMXIBUOh6UIn9Dc1gjzEzgn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

36-2-8 35-4-0

Plate Coffsets (X, Y): [2:0-2:8,0-5], [2:0-3:0-0-5], [3:0-2-0.0-1-8], [3:0-2-0.0-1-8] Status Plate Gift Section Plate Section Plate Section <t< th=""><th>Scale = 1:65.1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Scale = 1:65.1													
TCLL (root) 20.0 Snow (P1) Plate Grip DOL Lumber DOL 1.15 Lumber DOL TC 0.07 BC Vert(LL) n/a - n/a 999 Horz(CT MT20 244/190 SCDL 0.00 0.00 0.00 BC 0.03 Vert(CT) n/a - n/a 999 MT20 244/190 BCL 0.00 0.00 BC 0.03 Vert(CT) n/a - n/a 999 MT20 244/190 LUMBER 0.00 2x4 SP No.2 Structural wood sheathing directly applied or 6-00 co purlins. X4 SP No.3 - 10 Unbalanced roof live loads have been considered for this design. 10 Unbalanced roof live loads have been considered for this design. 10 Unbalanced roof live loads have been considered for this design. 10 Unbalanced roof live loads have been considered for this design. 10 Unbalanced roof live loads have been considered for this design. 10 Unbalanced roof live loads have been considered for this design. 10 Unbalanced roof live loads have been considered for this design. 10 10 11 11 11 11 11 11 11 11 11	Plate Offsets ((X, Y): [2:0-2-8,0-0	-5], [24:0-3-1,0-0-5], [32	2:0-2-0,0-1-8], [38:0-2-	0,0-1-8]									
LUMBER TOP CHORD 2x4 SP No.2 DOT CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 SLIDER Left 2x4 SP No.3 -1-6-0 Eft 2x4 SP No.3 TOP CHORD Structural wood sheathing directly applied or 6-0-0 c purlins. BOT CHORD Structural wood sheathing directly applied or 6-0-0 c purlins. BOT CHORD 2255-4-0, 28-35-4-0, 28-35-4-0, 37-35-4-0, 39+35-4-0, 42-35-4-0, 28-35-4-0, 34-35-4-0, 39+35-4-0, 42-35-4-0, 28-35-4-0, 34-35-4-0, 39+35-4-0, 42-35-4-0, 28-35-4-0, 34-35-4-0, 39+35-4-0, 42-35-4-0, 42-35-4-0, 34-35-4-0, 39+35-4-0, 42-35-4-0, 42-35-4-0, 28-35-4-0, 34-35-4-0, 39+35-4-0, 42-35-4-0, 42-35-4-0, 42-35-4-0, 33-35-4-0, 34-35-4-0, 39+35-4-0, 42-34-40/138, 42-40-40/138, 42-40-40/138, 42-40-40/138, 42-40-40/138, 42-	TCLL (roof) Snow (Pf) TCDL	20.0 20.0 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 YES	TC BC WB	0.03	Vert(LL) Vert(CT)	n/a n/a	-	n/a n/a	999 999)
TOP CHORD $2x4$ SP No.2 $26=141$ (LC 38), $27=164$ (LC 23), 2x4 SP No.3 this design. $2x4$ SP No.3 OT HERS $2x4$ SP No.3 $2x4$ SP No.3 $26=141$ (LC 38), $27=164$ (LC 23), 30=160 (LC 38), $31=75$ (LC 23), 30=160 (LC 38), $31=75$ (LC 23), 31=228 (LC 23), $34=244$ (LC 23), 31=228 (LC 23), $34=244$ (LC 22), 32=728 (LC 22), $33=175$ (LC 22), 42=159 (LC 37), $41=161$ (LC 22), 42=159 (LC	BCDL	10.0										Weight: 238	8 lb FT = 20)%
NOTES	TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1-6-0 Structural wood s 6-0-0 oc purlins. Rigid ceiling direct bracing. 1 Row at midpt (size) 2=35 27=35 30=35 34=35 34=35 41=35 Max Horiz 2=-147 Max Uplift 2=-21 27=-40 29=-44 31=-42 34=-33 37=-46 40=-44 42=-45	sheathing directly applie ctly applied or 10-0-0 oc 13-35, 12-36, 14-34 I-0, 24=35-4-0, 26=35-4 4-0, 28=35-4-0, 29=35- 4-0, 31=35-4-0, 33=35- 4-0, 39=35-4-0, 36=35- 4-0, 39=35-4-0, 40=35- 4-0, 42=35-4-0, 43=35- 4-0 7 (LC 15) (LC 15), 26=-74 (LC 15 3 (LC 15), 28=-45 (LC 1: 3 (LC 15), 30=-44 (LC 1: 3 (LC 15), 38=-47 (LC 1: 3 (LC 15), 38=-47 (LC 1: 5 (LC 14), 39=-413 (LC 1: 5 (LC 14), 41=-43 (LC 1: 5 (LC 14), 41=-43 (LC 1: 5 (LC 14), 43=-38 (LC	ed or FORCES TOP CHORD 4-0, 4-0, 4-0, 4-0, 4-0, 4-0, 5), 5), 5), 4), 4), 4), WEBS	26=14 28=15 30=16 33=22 35=18 37=22 40=16 42=15 44=14 (lb) - Maximum C Tension 1-2=0/23, 2-4=-1 5-6=-110/85, 6-7 8-9=-61/147, 9-1 12-13=-105/214, 14-15=-87/168, 1 17-18=-61/95, 18 20-21=-59/26, 21 24-25=0/23 2-44=-40/138, 43 42-43=-40/138, 3 35-36=-40/138, 3 30-31=-40/138, 2 30-31=-40/138, 2 30-31=-40/138, 2 28-29=-40/138, 2 28-29=-40/138, 2 26-27=-40/138, 2 30-31=-40/138, 2 30-31=-40/138, 2 26-27=-40/138, 2 26-27=-40/138, 2 30-31=-40/138, 2 30-31=-40/138, 2 26-27=-40/138, 2 26-27=-40/138, 2 30-31=-40/138, 2 30-31=-40/138, 2 26-27=-40/138, 2 30-31=-40/138, 2 30-31=-40/138, 2 30-31=-40/138, 2 26-27=-40/138, 2 26-27=-40/138, 2 26-27=-40/138, 2 30-31=-40/138, 2 30-32=-26(-6, 2)-40(1 (LC 38) 9 (LC 38) 9 (LC 38) 8 (LC 23) 8 (LC 23) 8 (LC 22) 9 (LC 37) 9 (LC 37) 9 (LC 37) 9 (LC 37) 1 (LC 37) 9 (LC 37) 9 (LC 37) 1 (LC 37) 9 (LC 37) 9 (LC 37) 9 (LC 37) 9 (LC 37) 9 (LC 37) 9 (LC 37) 1 (LC 37) 9 (LC 37) 9 (LC 37) 9 (LC 37) 9 (LC 37) 1 (LC 37) 9 (LC 37) 9 (LC 37) 1 (LC 37) 9 (LC 37) 9 (LC 37) 1 (LC 37) 1 (LC 37) 9 (LC 37) 1 (LC 37) 9 (LC 37) 1 (LC 37) 1 (LC 37) 9 (LC 37) 1 (LC 37) 1 (LC 37) 9 (LC 37) 1 (LC 37) 1 (LC 37) 1 (LC 37) 9 (LC 37) 1 (LC	, 27=164 (LC , 29=161 (LC , 31=175 (LC , 34=244 (LC , 39=175 (LC , 36=244 (LC , 39=175 (LC , 41=161 (LC , 43=164 (LC on/Maximum 5=-150/73, 7-8=-63/124, 0, 11-12=-87/, 126, 33, 19-20=-40 33, 22-24=-13 138, /140, /120,	23), 23), 23), 23), 22), 22), 22), 22),	this 2) Wir 2) Wir 30 2-7 Inte 36- ver forc DO 3) Tru only see or c 4) TC Pla DO Cs= 5) Unit des	a design. ad: ASC sd=103n Exp B; Ed C-C Ex- 14 to 14 erior (1) : 2-8 zone tical left bes & MN -1-160 ss desig y. For s - 5 standa consult c LL: ASC te DOL= -1.00; C balance sign.	E 7-16 nph; Ti nclose tterior(4-1-10 21-2-6 e; cant WFRS plate g nned fc tuds e; rd Indi qualifie E 7-16 E 7-16 E 7-15; ; s=1.15; ; s=1.15;	; Vult=130mpl CDL=6.0psf; E 4; MWFRS (e 2E) -0-10-8 to , Exterior(2R) to 32-8-2, Ex ilever left and pht exposed;C for reactions : rip DOL=1.60 or wind loads i xposed to win ustry Gable Er d building des 5; Pr=20.0 psf (I 0; Rough Cat	h (3-second g 3CDL=6.0psf invelope) extra 2-7-14, Inter 14-1-10 to 2 ⁻ terior(2E) 32- right expose -C for memb shown; Lumb n the plane o d (normal to 1 d (normal to 1) d (normal to 1	pust) th=25ft; Car erior zone ior (1) 1-2-6, 8-2 to d; end ers and he face), applicable, ANSI/TPI 1. 1 DOL=1.15 15 Plate ; Ce=0.9; ed for this

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeR% connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the Section of the prevent collapse and truss contervers and property damage. For general guidance regarded to the section of the section of the prevent of and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	891 Serentiy-Roof-B330 A CP TMB GRH	
25030183-01	CGE	Common Supported Gable	1	1	Job Reference (optional)	172212065
Carter Components (Sanford, NC), Sanford, NC - 27332 Run: 8.73, S. Feb 19 2025 Print: 8.730, S. Feb 19 2025 MiTek Industries, Inc. Fri Mar 21 12:21:03				Page: 2		

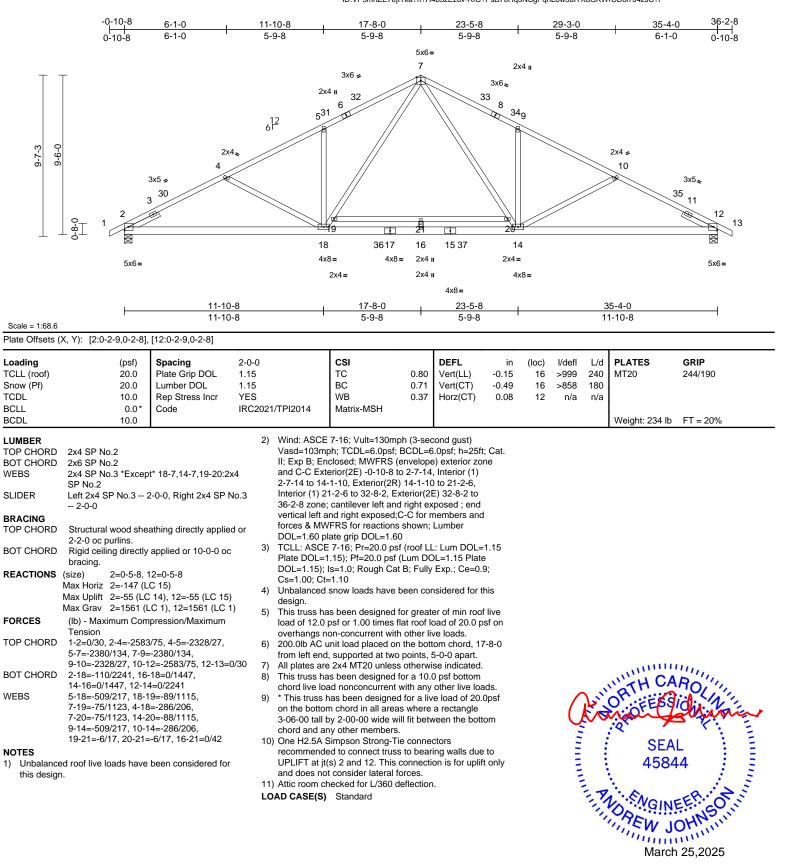
ID:HSVLvMXIBUOh6UIn9Dc1gjzEzgn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Carter Components (Sanford, NC), Sanford, NC - 27332,

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated. 7)
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint 2, 41 lb uplift at joint 36, 46 lb uplift at joint 37, 43 lb uplift at joint 39, 44 lb uplift at joint 40, 43 lb uplift at joint 41, 45 lb uplift at joint 42, 38 lb uplift at joint 43, 89 lb uplift at joint 44, 38 lb uplift at joint 34, 47 lb uplift at joint 33, 43 Ib uplift at joint 31, 44 lb uplift at joint 30, 43 lb uplift at joint 29, 45 lb uplift at joint 28, 40 lb uplift at joint 27, 74 Ib uplift at joint 26 and 21 lb uplift at joint 2.

13) Attic room checked for L/360 deflection. LOAD CASE(S) Standard

> WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Page: 2

Job	Truss	Truss Type	Qty	Ply	891 Serentiy-Roof-B330 A CP TMB GRH	
25030183-01	С	Common	5	1	Job Reference (optional)	172212066

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Mar 21 12:21:03 ID:VP5mnZE7ejtTka?ri?H4b3zEzov-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1:03 Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	891 Serentiy-Roof-B330 A CP TMB GRH	
25030183-01	C1	Common	4	1	Job Reference (optional)	172212067

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Mar 21 12:21:03 tTka2ri2H4b3zE -RfC2PeB70Ha3NSaPanL8 7 14- 102 JULITYNCKW/CD

Page: 1

		ID:VP5mnZE7e	ejtTka?ri?H4b3zEzov-	RfC?PsB70Hq3	3NSgPqnL8w3u	TXbGKW	/rCDoi7J4zJC?f	
-0-10-8 6-1-0	11-10-8	17-8-0	23-5-8		29-3-0	1	35-4-0	37-8-0
0-10-8 6-1-0	5-9-8	5-9-8	5-9-8 5x6=	I	5-9-8	I	6-1-0	2-4-0
50 50 50 50 50 50 50 50 50 50	6 ¹²	3x6 = 2x4 = 31 530 T	7	32 5x6z		2x4	9	x5 _≈ 10
			20 1	19	/		<u>t</u>	11
		17 34 16	15 14 35	13				
5x6=		4x8= 4x8=		2x4=				5x6 I
		2x4=	2x4 II 4x8=	4x8=				
	11-10-8	17-8-0	23-5-8			35-4		
le = 1:69.3	11-10-8	5-9-8	5-9-8			11-1	0-8	•
Offsets (X, Y): [2:0-2-9,0-2-8], [8:0-3-0,0-3-	4], [11:0-3-1,0-1-8]					-		
ting (psf) Spacing _ (roof) 20.0 Plate Grip I v (Pf) 20.0 Lumber DC L 10.0 Rep Stress L 0.0* Code L 10.0	DL 1.15	CSI TC BC WB 4 Matrix-MSH	0.80 Vert(LL 0.71 Vert(CT 0.38 Horz(C	Г) -0.49	(loc) l/def 15 >999 15 >857 11 n/a) 240 7 180	PLATES MT20 Weight: 237 lb	GRIP 244/190 FT = 20%
BER CHORD 2x4 SP No.2 *Except* 8-12:2x4 S CHORD 2x4 SP No.2 IS 2x4 SP No.3 *Except* 17-7,13-7; SP No.2 IER Left 2x4 SP No.3 2-0-0, Right 2 2-0-0 CING Structural wood sheathing directly 2-2-0 oc purlins. CHORD Structural wood sheathing directly 2-2-0 oc purlins. CHORD Rigid ceiling directly applied or 10 bracing. CTIONS (size) 2=0-5-8, 11=0-5-8 Max Horiz Max Grav 2=1556 (LC 14), 11=-86 Max Grav 2=1556 (LC 1), 11=165 CES (lb) - Maximum Compression/Max Tension Tension CHORD 1-2=0/30, 2-4=-2576/65, 4-5=-233 5-7=-2374/124, 7-9=-2364/109, 9-11=-2554/38, 11-12=0/71 CHORD CHORD 2-17=-97/2241, 15-17=0/1437, 13 11-13=0/2214 15 S 5-17=-509/217, 17-18=-89/1117, 7-18=-75/1125, 4-17=-287/206, 7-19=-66/102, 13-19=-78/1094, 8-13=-515/218, 9-13=-265/196, 1 19-20=-6/17, 15-20=0/42	SP No.1 Vasd= II: Exp 18-19:2x4 Vasd= II: Exp 2-7-14 2x4 SP No.3 Interior 37-8-1 y applied or DOL=' 0-0-0 oc 3) TCLL: Plate IDOL=' 0-0-0 oc 3) TCLL: Plate IDOL=' 0.0-0 oc 4) Unbala design 3-15=0/1437, 21/18, 6) 200.0ll from le 3-15=0/1437, 7) This trn chord I 8) * This on the 3-06-0 0 8-20=-6/17, 9) One H	ASCE 7-16; Vult=130m 103mph; TCDL=6.0psf B; Enclosed; MWFRS C Exterior(2E) -0-10-8 to 14-1-10, Exterior(2F -(1) 21-2-6 to 34-2-6, E 3 zone; cantilever left a left and right exposed & MWFRS for reaction .60 plate grip DOL=1.6 ASCE 7-16; Pr=20.0 ps .15); Is=1.0; Rough Ca 00; Ct=1.10 mced snow loads have uss has been designed 12.0 psf or 1.00 times mgs non-concurrent wi o AC unit load placed o ft end, supported at tw uss has been designed ive load nonconcurrent with as been designed bottom chord in all are 0 tall by 2-00-00 wide v and any other members 2.5A Simpson Strong-1	FBCDL=6.0psf; h= (envelope) exterio to 2-7-14, Interior R) 14-1-10 to 21-2- Exterior(2E) 34-2-6 and right exposed ; I;C-C for members is shown; Lumber 60 sf (roof LL: Lum Duf f (Lum DOL=1.15 f at B; Fully Exp.; Ce been considered f for greater of min flat roof load of 20 th other live loads on the bottom chord to points, 5-0-0 apa f for a 10.0 psf bott t with any other live d for a live load of as where a rectany will fit between the s. Tie connectors	25ft; Cat. r zone (1) 6, to end and OL=1.15 Plate B=0.9; for this roof live 0.0 psf on d, 17-8-0 art. 00m b loads. 20.0psf gle bottom	(SEA 458 WGIN Marc	ROLIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	891 Serentiy-Roof-B330 A CP TMB GRH	
25030183-01	B1T	Roof Special	5	1	Job Reference (optional)	172212068

Run: 8 73 S. Feb 19 2025 Print: 8 730 S. Feb 19 2025 MiTek Industries. Inc. Fri Mar 21 12:21:02

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	891 Serentiy-Roof-B330 A CP TMB GRH	
25030183-01	B2T	Roof Special	1	1	Job Reference (optional)	172212069

10-3-0 10-2-13

Scale = 1:77

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

2.0E

bracing.

Tension

9-11=-283/147

Max Horiz 1=148 (LC 18)

1-2=-726/126, 2-4=-3566/300,

4-5=-2518/381, 5-7=-1942/306

2-17=-319/3294, 16-17=-316/3309,

12-14=-44/1991, 11-12=-129/1980

3-16=-1255/233, 14-16=0/1577,

5-16=-252/1489, 5-14=-103/332

8-11=-2266/145, 3-17=0/367

Unbalanced roof live loads have been considered for

Max Uplift 1=-129 (LC 14), 11=-148 (LC 15)

Max Grav 1=1537 (LC 3), 11=1616 (LC 3)

(lb) - Maximum Compression/Maximum

7-8=-2397/269, 8-9=-244/119, 9-10=0/27,

15-16=0/26, 4-16=-430/185, 14-15=-38/112,

7-14=-554/200, 7-12=0/287, 8-12=0/219,

(size)

TCDL

BCLL

BCDL

WFBS

WEBS

BRACING

TOP CHORD

BOT CHORD

REACTIONS

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

this design.

1)

Run: 8 73 S. Feb 19 2025 Print: 8 730 S. Feb 19 2025 MiTek Industries. Inc. Fri Mar 21 12:21:02 Page: 1 ID:BHHEAVzmyWkYpZSLPgaLA_ykx5u-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 1-6-13 18-9-5 -0-4-11 36-9-13 8-2-9 15-3-9 18-8-15 24-9-14 30-8-15 35-11-5 7-1-0 3-5-6 0-0-6 6-7-12 6-0-9 5-11-1 5-2-6 0-10-8 4-11 1-6-13 12 124 5x10= 5 m 2x4 II 3x6👟 4 3x5 6 ²⁶ 7 6¹² 25 8x10 🚽 4x5 👟 3 8 3x6 II 27 3x6 II 3x5 II 24 9 10 1-8-0 0-10-5 16 7 坮 17 15 11 X 2x4 I 5x10= 14 13 28 29 12 4x6= 4x5= 2x4 5x8= 2x4 u 4x8= 2-0^{6x13}3= -6-13 20-0-5 8-4-5 18-9-5 15-1-13 27-4-1 35-11-5 7-3-12 6-3-8 6-9-8 8-7-4 3 - 7 - 81-3-0 . 1-6 13 0-6-0Plate Offsets (X, Y): [2:0-7-12,Edge], [16:0-4-0,0-2-12], [19:0-2-10,0-1-8] 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) Spacing (loc) 20.0 Plate Grip DOL 1.15 тс 0.70 Vert(LL) -0.18 16-17 >999 240 MT20 244/190 20.0 Lumber DOL 1.15 BC 0.87 Vert(CT) -0.33 16-17 >999 180 10.0 Rep Stress Incr WB Horz(CT) YES 0.59 0.18 11 n/a n/a 0.0 Code IRC2021/TPI2014 Matrix-MSH Weight: 271 lb 10.0 FT = 20% Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. 2x4 SP No.2 *Except* 1-3:2x10 SP 2400F II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-2-12 to 3-10-6, Interior (1) 3-10-6 2x6 SP No.2 *Except* 18-20:2x4 SP No.2, to 15-6-6, Exterior(2R) 15-6-6 to 22-9-10, Interior (1) 4-15:2x4 SP No.3 22-9-10 to 33-6-14. Exterior(2E) 33-6-14 to 37-2-8 zone: 2x4 SP No.3 cantilever left and right exposed ; end vertical left and right exposed C-C for members and forces & MWERS Structural wood sheathing directly applied or for reactions shown; Lumber DOL=1.60 plate grip 3-2-13 oc purlins, except end verticals. DOL=1.60 Rigid ceiling directly applied or 10-0-0 oc 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 1 Row at midpt 3-16, 5-14, 7-14, 8-11 DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 1=0-5-8, 11=0-5-8

> 4) Unbalanced snow loads have been considered for this desian. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom 6)

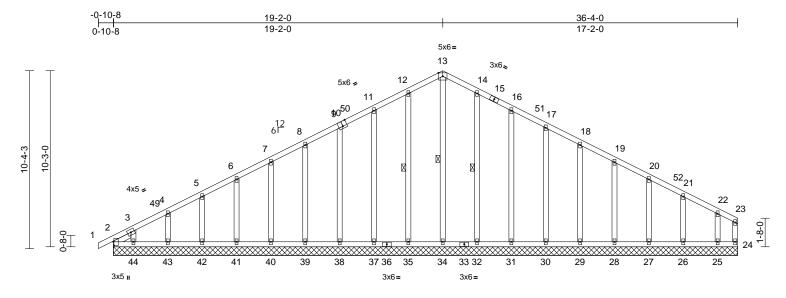
chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

chord and any other members, with BCDL = 10.0psf. 8) Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1 and 11. This connection is for uplift only and does not consider lateral forces.

LOAD CASE(S) Standard

Cs=1.00; Ct=1.10


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	891 Serentiy-Roof-B330 A CP TMB GRH	
25030183-01	B1GE	Common Supported Gable	1	1	Job Reference (optional)	172212070

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Mar 21 12:21:02 ID:va6oJ_bKLZdwDLTYr9P9wpzF_UL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

36-4	

Scale = 1:67.1		,		
Plate Offecte (X	V١٠	[2.0.2.8 0.0.5]	[10.0-3-0 Edge]	

Plate Offsets (X, Y): [2:0-2-8,0-0-5], [[10:0-3-0,Edge]									-		
Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing2-0-Plate Grip DOL1.11Lumber DOL1.12Rep Stress IncrYESCodeIRC	5 5	CSI TC BC WB Matrix-MSH	0.10 0.07 0.23	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loo 2	c) l/defl - n/a - n/a 24 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 259 lb	GRIP 244/190 FT = 20%	
6-0-0 oc purlins, exc Rigid ceiling directly a bracing. WEBS 1 Row at midpt REACTIONS (size) 2=36-4-0, 29=36-4-0, 32=36-4-0, 40=36-4-0, 43=36-4-0, 43=36-4-0, Max Horiz 2=166 (LC Max Uplift 2=-36 (LC 26=-38 (LC 30=-43 (LC 30=-43 (LC 39=-44 (LC 41=-44 (LC	athing directly applied or sept end verticals. applied or 10-0-0 oc 13-34, 12-35, 14-32 24-36-4-0, 25=36-4-0, , 27=36-4-0, 28=36-4-0, , 30=36-4-0, 31=36-4-0, , 38=36-4-0, 35=36-4-0, , 41=36-4-0, 42=36-4-0, , 44=36-4-0 218)	FORCES TOP CHORD BOT CHORD WEBS	27=159 (29=160 (31=228 (37=228 (39=160 (41=160 ((LC 37), (LC 37), (LC 37), (LC 27), (LC 22), (LC 21), (LC 21), (LC 36), (LC 36	26=166 (LC 28=161 (LC 30=176 (LC 32=244 (LC 35=244 (LC 38=175 (LC 40=160 (LC 42=159 (LC 42=159 (LC 42=159 (LC 42=159 (LC 42=159 (LC 42=159 (LC 42=159 (LC 40=160 (LC 42=159 (LC 40=160 (LC 42=159 (LC 40=160 (LC 40) (LC 40=160 (LC 40=	22), 22), 22), 22), 22), 22), 21), 21),	<pre>t t t t t t t t t t t t t t t t t t t</pre>	his design. Wind: ASCI Vasd=103m I; Exp B; E and C-C Cc o 15-6-6, C 22-9-10 to 3 cantilever le right exposed for reaction DOL=1.60 Fruss design DOL=1.15): Cs=1.00; C Jnbalanced Jobalanced	E 7-16, pph; TC nclosee mrer(3 2corner(32-6-1(df and ed;C-C s show ned fo tuds ev rd Indu uualifiet E 7-16 (-1.15); s=-1.(10) t=-1.10) d snow	Vult=130mph (3 CDL=6.0psf; BCD d; MWFRS (enve E) -0-10-8 to 2-9 3R) 15-6-6 to 22- 0; Corner(3E) 32- right exposed ; e c for members and m; Lumber DOL= r wind loads in th qosed to wind (n istry Gable End D d building designd; Pf=20.0 psf (for Pf=20.0	second gust) L=6.0psf; h=25f lope) exterior zc 2, Exterior(2N) : 9-10, Exterior(2 6-10 to 36-2-4 z nd vertical left a d forces & MWF 1.60 plate grip e plane of the tri ormal to the fac: per as per ANSI/T of LL: Lum DOL= DOL=1.15 Plat ully Exp.; Ce=0	ft; Cat. one 2-9-2 N) cone; and iRS uss e), able, FPI 1. =1.15 te .9; this

March 25,2025

Page: 1

Continued on page 2 WARNING - Verify

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	891 Serentiy-Roof-B330 A CP TMB GRH	
25030183-01	B1GE	Common Supported Gable	1	1	Job Reference (optional)	172212070

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated. 7)
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 67 lb uplift at joint 2, 39 lb uplift at joint 35, 47 lb uplift at joint 37, 43 lb uplift at joint 38, 44 lb uplift at joint 39, 44 lb uplift at joint 40, 44 lb uplift at joint 41, 44 lb uplift at joint 42, 44 lb uplift at joint 43, 88 lb uplift at joint 44, 34 lb uplift at joint 32, 49 Ib uplift at joint 31, 43 Ib uplift at joint 30, 44 Ib uplift at joint 29, 43 Ib uplift at joint 28, 45 Ib uplift at joint 27, 38 Ib uplift at joint 26, 111 Ib uplift at joint 25 and 67 Ib uplift at joint 2.

LOAD CASE(S) Standard

Run: 8 73 S. Feb 19 2025 Print: 8 730 S. Feb 19 2025 MiTek Industries. Inc. Fri Mar 21 12:21:02 ID:va6oJ_bKLZdwDLTYr9P9wpzF_UL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	891 Serentiy-Roof-B330 A CP TMB GRH	
25030183-01	B1	Common	1	1	Job Reference (optional)	172212071

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Mar 21 12:21:02 Carter Components (Sanford, NC), Sanford, NC - 27332, Page: 1 ID:jCQDRPFmxy5us2K9CGvbovzF_Un-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 6-7-0 13-3-11 19-2-0 25-2-9 31-1-10 36-4-0 0-10-8 6-7-0 6-8-11 5-10-5 6-0-9 5-11-1 5-2-6 5x6= 5 3x6 👟 f‡ ⁶ 22 3x5 👟 5x6 ≠ 21 4²⁰ ²³ 7 12 61 10-3-0 4x5 👟 10-4-3 2x4 💊 8 3 24 2x4 II 19 9 0-8-0 T T T 10 15 25 14 13 12 26 27 11 4x6= 4x5= 4x8= 4x8= 4x5= 4x8= 4x8= 8-10-2 19-2-0 27-8-12 36-4-0 8-10-2 10-3-14 8-6-12 8-7-4 Scale = 1:68.7 Plate Offsets (X, Y): [2:Edge,0-0-13], [4:0-3-0, 0-3-4]

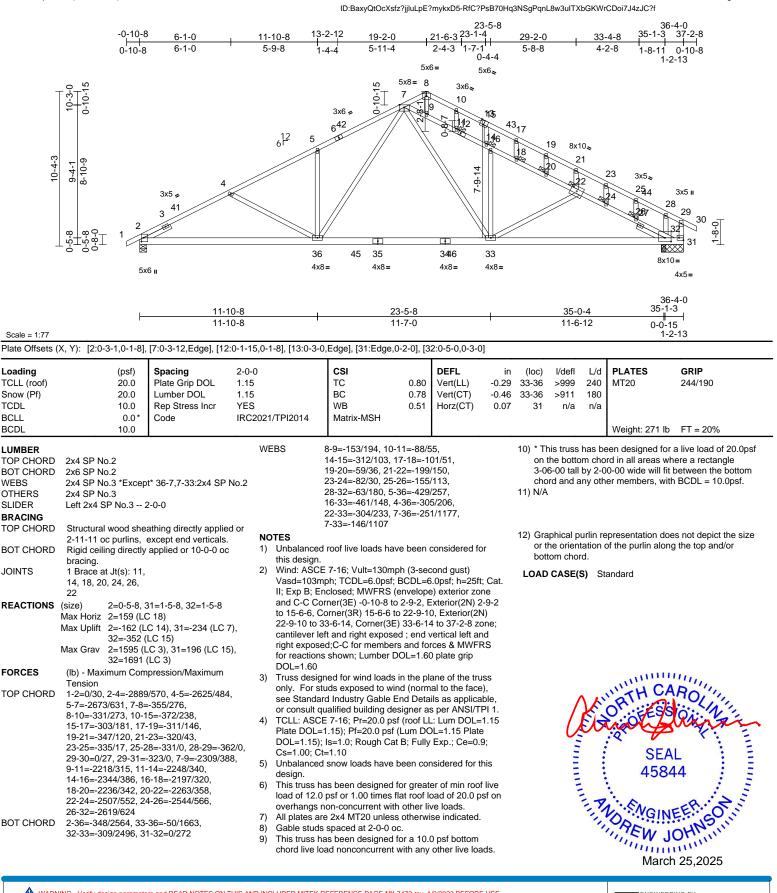
Loading	(psf)	Spacing	2-0-0	CSI	-	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	(psi) 20.0	Plate Grip DOL	1.15	TC	0.76	1		13-15	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.76	Vert(CT)	-0.22		>999	180	WIT20	244/190	
TCDL	10.0	Rep Stress Incr	YES	WB	0.76	Horz(CT)	0.08	10-15	>999 n/a	n/a			
BCLL	0.0*	Code	IRC2021/TPI201		0.50	11012(01)	0.00	10	n/a	n/a			
BCDL	10.0	Code	IRC2021/1P1201	4 Matrix-MSH							Weight: 234 lb	ET - 200/	
BCDL	10.0				-						weight: 234 lb	F1 = 20%	
LUMBER				ASCE 7-16; Vult=130m									
TOP CHORD				103mph; TCDL=6.0psf									
BOT CHORD	2x6 SP No.2			B; Enclosed; MWFRS									
WEBS	2x4 SP No.3			C Exterior(2E) -0-10-8									
WEDGE	Left: 2x4 SP No.3			-6, Exterior(2R) 15-6-6									
BRACING				0 to 32-6-10, Exterior(2									
TOP CHORD	Structural wood she	athing directly applied		ver left and right expos									
		except end verticals.	for roo	<pre>cposed;C-C for membe ctions shown; Lumber</pre>			10						
BOT CHORD		applied or 10-0-0 oc	DOL=		DOL=1.0	o plate grip							
	bracing.			.00 ASCE 7-16; Pr=20.0 p	sf (roof L		1 15						
WEBS		4-13, 7-13, 8-10		OL=1.15); Pf=20.0 ps									
		10= Mechanical		.15); Is=1.0; Rough Ca									
	Max Horiz 2=167 (LC	,	Cs=1.0	0; Ct=1.10	,		-,						
	Max Uplift 2=-162 (L			nced snow loads have	been co	nsidered for t	his						
	Max Grav 2=1641 (I	LC 3), 10=1598 (LC 3) Ódesign										
FORCES	(lb) - Maximum Corr	npression/Maximum	5) This tr	uss has been designed	for great	er of min root	f live						
	Tension			12.0 psf or 1.00 times	flat roof I	oad of 20.0 p	sf on						
TOP CHORD	,	4/283, 3-5=-2991/304		ngs non-concurrent wi									
		=-2455/274, 8-9=-221		uss has been designed									
	9-10=-214/84			ive load nonconcurrent									
BOT CHORD				russ has been designe			Opst					1111.	
	11-13=-71/2050, 10			bottom chord in all are						κ.	I''LH CA	Rall	
WEBS	3-15=-349/201, 4-15 4-13=-783/243, 5-13	,		0 tall by 2-00-00 wide v					~	-	a		
		1=0/249, 8-11=0/222,		and any other members o girder(s) for truss to f			1.			VS.	O' EESS	15: V	11
	8-10=-2348/180	1-0/243, 0-11-0/222,		e mechanical connection			to			111	mato	ANN Y	1 m
NOTES	0 10= 2040/100			plate capable of with							:2	K .	-
	ed roof live loads have	been considered for	10.	plate capable of main	lanang	20 10 apint a	, joint		-		CEA	n (* *	
this design			10) One H recom UPLIF	2.5A Simpson Strong- nended to connect trus Γ at jt(s) 2. This connec ot consider lateral force	ss to bear	ing walls due			111111		SEA 4584	14	annunnun annun a
			LOAD CA	SE(S) Standard						in the	NOREW J	EEP. OT	A.C.

- this design.
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

101 munn March 25,2025 1-8-0

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	891 Serentiy-Roof-B330 A CP TMB GRH	
25030183-01	B3GE	Common Structural Gable	1	1	Job Reference (optional)	172212072


TCDL

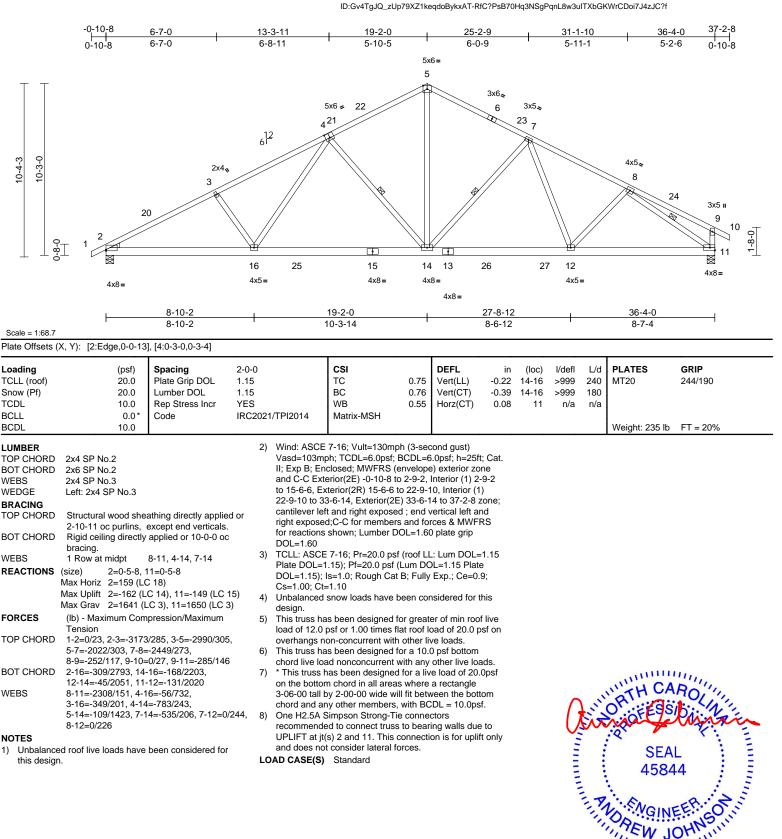
BCLL

BCDL

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Fri Mar 21 12:21:03

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

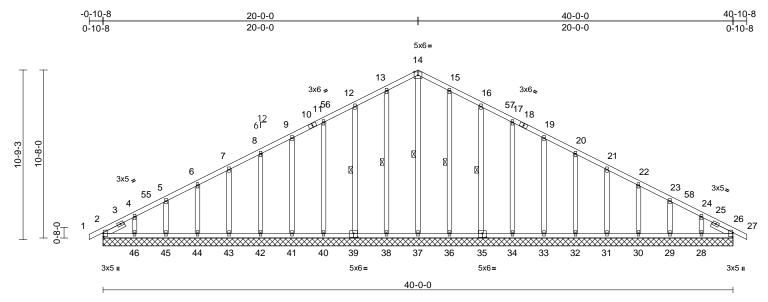

818 Soundside Road

Edenton, NC 27932

Job)	Truss	Truss Type	Qty	Ply	891 Serentiy-Roof-B330 A CP TMB GRH	
25	030183-01	B3	Common	5	1	Job Reference (optional)	172212073

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Mar 21 12:21:03

3 Page: 1


March 25,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	891 Serentiy-Roof-B330 A CP TMB GRH	
25030183-01	AGE	Common Supported Gable	1	1	Job Reference (optional)	172212074

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Fri Mar 21 12:21:02 ID:94aeZ53wRfHxaJ4LIBSgWSzF_tZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:73.1
---------	--------

Plate Offsets (X, Y)	[2.0-2-8 0-0-5]	[26.0-3-1 0-0-5]	[35.0-3-0 0-3-0]	[39.0-3-0 0-3-0]

Loading		(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)		20.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES	WB	0.15	Horz(CT)	0.01	26	n/a	n/a		
BCLL		0.0*	Code	IRC2021/TPI2014	Matrix-MS	SH							
BCDL		10.0		;								Weight: 286 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS		o.2 o.3 *Excep	ot* 37-14:2x4 SP No	.2	2 3 3	=162 (LC 27), 2 8=161 (LC 37), 0=160 (LC 37), 2=161 (LC 22), 4=179 (LC 22),	29=160 (LC 31=160 (LC 33=160 (LC	1), 1), 37),	WEBS		12-39 9-41= 6-44=		140/76, 26/77, 7-43=-126/77, 26/80, 4-46=-131/135,
SLIDER	Left 2x4 \$	SP No.3	1-6-0, Right 2x4 SP	No.3		4=179 (LC 22), 6=247 (LC 22),						=-205/66, 16-35= =-140/76, 19-33=	'
BRACING	100				3	8=247 (LC 21),	39=233 (LC	21),				=-126/77, 21-31=	
TOP CHORD	Structura 6-0-0 oc		athing directly applie	ed or	4	0=179 (LC 21), 2=161 (LC 21),	43=160 (LC	1),				=-127/77, 23-29= =-131/135	-126/80,
BOT CHORD			applied or 10-0-0 o		4	4=160 (LC 36), 6=161 (LC 36)	,	,,	NOTES		d roof li	ive loads have be	een considered for
WEBS	1 Row at	midpt	14-37, 13-38, 12-39 15-36, 16-35	, FORCES	(lb) - Maxim Tension	um Compressio	on/Maximum			design. nd: ASCI		; Vult=130mph (3	-second gust)
REACTIONS		29=40-0-0 32=40-0-0 35=40-0-0 38=40-0-0 41=40-0-0 44=40-0-0	, 26=40-0-0, 28=40-0 0, 30=40-0-0, 31=40 0, 33=40-0-0, 34=40 0, 36=40-0-0, 37=40 0, 39=40-0-0, 40=40 0, 42=40-0-0, 43=40 0, 45=40-0-0, 46=40	0-0, 0-0, 0-0, 0-0, 0-0,	5-6=-129/94 8-9=-62/154 12-13=-104/ 14-15=-121/ 16-17=-85/2 19-20=-60/1	-4=-216/79, 4-5 -4=-216/79, 4-5 -4, 6-7=-96/108, -4, 9-11=-72/178 -7271, 13-14=-12 -7311, 15-16=-10 -72, 20-21=-48/ -72, 20-21=-72, 20-72, 20-21=-72, 20-72, 2	7-8=-74/131, , 11-12=-85/2 21/311,)4/271, 177, 86, 21-22=-4	222, 4/41,	II; E and to 1 24- car righ	Exp B; E d C-C Co 16-0-0, C 0-0 to 36 ntilever le nt expose	nclose orner(3 Corner(S-10-8, off and ed;C-C	d; MWFRS (enve E) -0-10-8 to 3-1 3R) 16-0-0 to 24- Corner(3E) 36-1 right exposed ; e for members an	DL=6.0psf; h=25ft; Cat. lope) exterior zone -8, Exterior(2N) 3-1-8 -0-0, Exterior(2N) 0-8 to 40-10-8 zone; and vertical left and d forces & MWFRS
	Max Horiz				22-23=-66/2 26-27=0/23	27, 23-24=-99/3	5, 24-26=-14	4/59,			s show	n; Lumber DOL=	1.60 plate grip
	Max Uplift	29=-36 (L 31=-43 (L 33=-44 (L 35=-48 (L 38=-39 (L 40=-44 (L 42=-44 (L	C 10), 28=-80 (LC 15 C 15), 30=-46 (LC 1 C 15), 32=-44 (LC 1 C 15), 34=-44 (LC 1 C 15), 36=-35 (LC 1 C 14), 39=-47 (LC 1 C 14), 43=-43 (LC 1 C 14), 43=-43 (LC 1 C 14), 45=-33 (LC 1 C 14)	5), BOT CHORD 5), 5), 5), 4), 4), 4),	2-46=-44/16 44-45=-44/1 42-43=-44/1 40-41=-44/1 37-38=-44/1 34-36=-44/1 32-33=-44/1 30-31=-44/1	7, 45-46=-44/1 67, 43-44=-44/ 67, 41-42=-44/ 67, 38-40=-44/ 67, 33-37=-44/ 67, 33-34=-44/ 67, 31-32=-44/ 67, 26-28=-44/	167, 167, 167, 166, 167, 167, 167,		DO	L=1.60	to mining	SEA 4584 VOREW J	L EEFR. OUTUNE OHNSULU

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

W JON March 25,2025

Job	Truss	Truss Type	Qty	Ply	891 Serentiy-Roof-B330 A CP TMB GRH	172212074
25030183-01	AGE	Common Supported Gable	1	1	Job Reference (optional)	

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 8)
- Gable studs spaced at 2-0-0 oc. 9)
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 11) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint 2, 39 lb uplift at joint 38, 47 lb uplift at joint 39, 44 lb uplift at joint 40, 43 lb uplift at joint 41, 44 lb uplift at joint 42, 43 lb uplift at joint 43, 46 lb uplift at joint 44, 33 lb uplift at joint 45, 96 lb uplift at joint 46, 35 lb uplift at joint 36, 48 Ib uplift at joint 35, 44 lb uplift at joint 34, 44 lb uplift at joint 33, 44 lb uplift at joint 32, 43 lb uplift at joint 31, 46 Ib uplift at joint 30, 36 lb uplift at joint 29, 80 lb uplift at joint 28 and 21 lb uplift at joint 2.

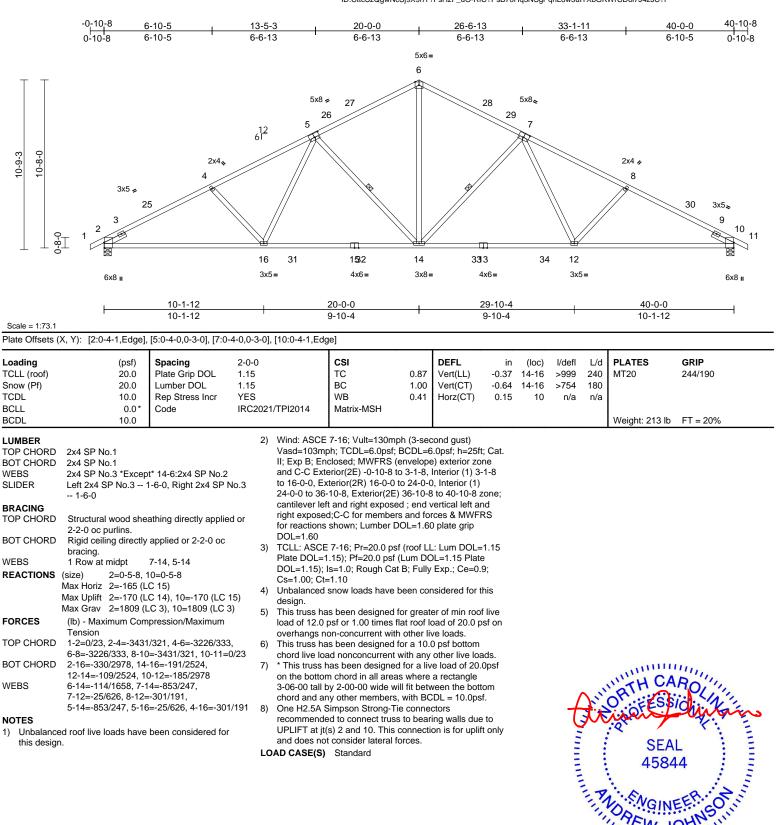
LOAD CASE(S) Standard

Run: 8 73 S. Feb 19 2025 Print: 8 730 S. Feb 19 2025 MiTek Industries. Inc. Fri Mar 21 12:21:02 ID:94aeZ53wRfHxaJ4LIBSgWSzF_tZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	891 Serentiy-Roof-B330 A CP TMB GRH	172212075
25030183-01	A	Common	4	1	Job Reference (optional)	


Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Mar 21 12:21:01 ID:CttcS2QgwNcSj9X9hY?FsHzF_uO-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f

21:01 Page: 1

March 25,2025

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

