

Trenco 818 Soundside Rd Edenton, NC 27932

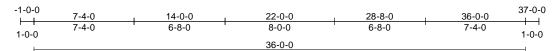
Re: CL 3034 Base CL 3034 Base

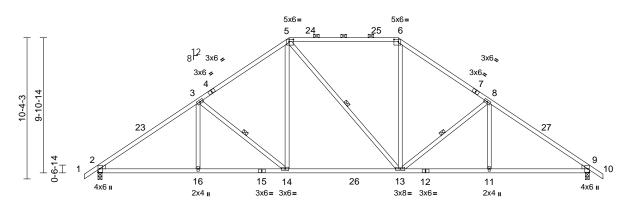
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Lumber 2383 (Dunn, NC).

Pages or sheets covered by this seal: I72489009 thru I72489041

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844


April 3,2025


Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	A	Piggyback Base	1	1	Job Reference (optional)	172489009

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Thu Apr 03 07:05:07 ID:yg89FTFE1ZuRSI1qJVVa_PzUVrF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

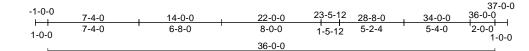
	7-4-0	13-10-4	22-1-12	28-8-0	36-0-0
Scale = 1:84.4	7-4-0	6-6-4	8-3-8	6-6-4	7-4-0

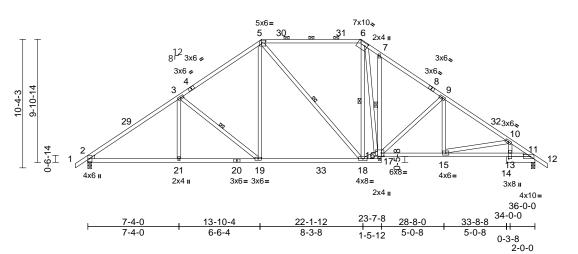
Plate Offsets (X, Y): [5:0-3-12,0-2-0], [6:0-3-12,0-2-0]

oading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.58	Vert(LL)	-0.23	13-14	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.88	Vert(CT)	-0.39	13-14	>999	180		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.20	Horz(CT)	0.09	9	n/a	n/a		
BCDL	10.0	Code	IRC202	1/TPI2014	Matrix-MS							Weight: 205 lb	FT = 20%
OT CHORD /EBS	2x4 SP No.2 *Excep 2x4 SP No.2 2x4 SP No.2 *Excep Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shea	t* 16-3,11-8:2x4 SP	No.3	Vasd=103m II; Exp B; En and C-C Ext 14-0-0, Exte 20-4-15 to 2 (1) 28-8-0 to	7-16; Vult=130m bh; TCDL=6.0psf; closed; MWFRS (erior(2E) -1-0-0 to rior(2R) 14-0-0 to 2-0-0, Exterior(2R 37-0-0 zone;C-C reactions shown;	BCDL=6 (envelope 3-6-6, Ir 20-4-15,) 22-0-0 for mem	.0psf; h=40ft; e) exterior zor terior (1) 3-6 Interior (1) to 28-8-0, Inte pers and forc	ne -6 to erior es &					
OF CHORD	3-5-3 oc purlins, exc 2-0-0 oc purlins (4-9 Rigid ceiling directly bracing.	ept -13 max.): 5-6.	3)	As requested	60 quate drainage to d, plates have not nt tolerances or ro	been de	signed to pro	vide					
VEBS		3-14, 5-13, 8-13			t is the responsib								
	(size) 2=0-3-8, 9				te sizes to accour								
(Max Horiz 2=-269 (L		5)		is been designed								
N	Max Uplift 2=-202 (L Max Grav 2=1621 (L	C 12), 9=-202 (LC 1		* This truss I	ad nonconcurrent has been designe m chord in all area	d for a liv	e load of 20.0						
ORCES	(lb) - Maximum Com Tension	pression/Maximum		3-06-00 tall I	by 2-00-00 wide w	vill fit betv	veen the botto						
OP CHORD	1-2=0/33, 2-3=-2312 5-6=-1442/301, 6-8= 8-9=-2300/268, 9-10	-1844/281,	1, 7) 8)	All bearings Provide med	are assumed to b hanical connectio capable of withs	e SP No. n (by oth	2 . ers) of truss t	0					
	2-16=-260/1963, 14- 13-14=-84/1463, 11- 9-11=-111/1837	16=-260/1963, 13=-111/1837,	9)	2 and 202 lb Graphical pu or the orienta	uplift at joint 9. Irlin representation ation of the purlin	n does no	ot depict the s				All	WITH CA	ROLIN
VEBS	3-16=0/252, 3-14=-6 5-13=-148/149, 6-13 8-13=-625/275, 8-11	=-35/651,	,	bottom chore						4	U	201200	
NOTES										-		SEA	1 :

1)

Unbalanced roof live loads have been considered for this design.




Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	A1	Piggyback Base	1	1	Job Reference (optional)	172489010

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Thu Apr 03 07:05:09 ID:GBHDGMzxMUv95jTJB1Z6HZzUVp0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:92.8

							-	-				
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.97	Vert(LL)	-0.22	18-19	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.89	Vert(CT)	-0.38	18-19	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.59	Horz(CT)	0.11	11	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-MS							Weight: 242 lb	FT = 20%

LUMBER	
TOP CHORD	2x4 SP No.2 *Except* 5-6:2x4 SP No.1
BOT CHORD	
	No.2, 14-11:2x6 SP No.2
WEBS	2x4 SP No.2 *Except*
	21-3,18-16,9-15,15-10,10-13:2x4 SP No.3
WEDGE	Left: 2x4 SP No.3
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	3-5-4 oc purlins, except
	2-0-0 oc purlins (2-2-0 max.): 5-6.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing, Except:
	6-0-0 oc bracing: 17-18.
1 Row at midp	t 7-16
WEBS	1 Row at midpt 3-19, 5-18, 6-18
REACTIONS	(size) 2=0-3-8, 11=0-3-8
	Max Horiz 2=-270 (LC 10)
	Max Uplift 2=-202 (LC 12), 11=-204 (LC 13)
	Max Grav 2=1614 (LC 2), 11=1615 (LC 2)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/33, 2-3=-2301/267, 3-5=-1845/280,
	5-6=-1432/297, 6-7=-1857/367,
	7-9=-1970/285, 9-10=-2435/267,
	10-11=-2846/325, 11-12=0/38
BOT CHORD	2-21=-260/1955, 19-21=-260/1955,
	18-19=-84/1454, 17-18=-87/152,
	16-17=-209/0, 7-16=-190/165,
	15-16=-109/1973, 13-15=-215/2356,
	11-13=-220/2334
WEBS	3-21=0/253, 3-19=-625/275, 5-19=-73/708,
	5-18=-150/149, 6-18=-271/150,
	16-18=0/1436, 6-16=-245/916,
	9-16=-633/211, 9-15=0/348, 10-15=-469/161,
	10-13=0/181
NOTES	

Plate Offsets (X, Y): [5:0-3-12,0-2-0], [6:0-2-8,0-2-12], [11:0-6-12,0-2-0], [13:0-5-8,0-1-8], [16:0-2-8,0-3-0]

1) Unbalanced roof live loads have been considered for this design 2)

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=40ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-0-0 to 3-6-6, Interior (1) 3-6-6 to 14-0-0, Exterior(2R) 14-0-0 to 20-4-15, Interior (1) 20-4-15 to 22-0-0, Exterior(2R) 22-0-0 to 28-8-0, Interior (1) 28-8-0 to 37-0-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Provide adequate drainage to prevent water ponding. 3) 4) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors. This truss has been designed for a 10.0 psf bottom 5)
- chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf

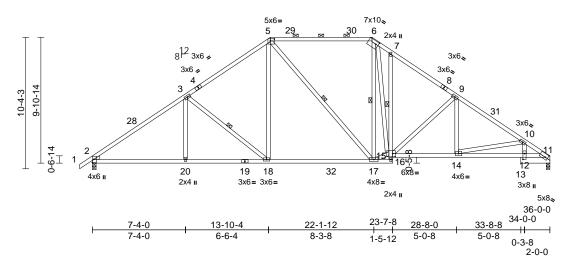
on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 7) Bearings are assumed to be: Joint 2 SP No.1, Joint 11

- SP No.2
- Provide mechanical connection (by others) of truss to 8) bearing plate capable of withstanding 202 lb uplift at joint 2 and 204 lb uplift at joint 11.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	A1A	Piggyback Base	4	1	Job Reference (optional)	172489011

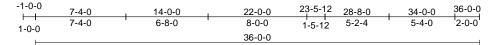
Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Thu Apr 03 07:05:09 ID:SkBCgRyoktatnw?qoTVZw9zUVmS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

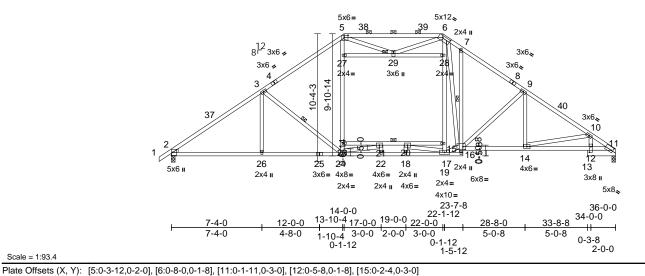
Scale = 1:90.6

Plate Offsets (X, Y): [5:0-3-12,0-2-0], [6:0-2-8,0-2-12], [11:0-2-3,0-3-0], [12:0-5-8,0-1-8], [15:0-2-8,0-3-0]

					-							
Loading (psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 20.0	Plate Grip DOL	1.15		TC	0.97	Vert(LL)	-0.22	17-18	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.15		BC	0.89	Vert(CT)	-0.38	17-18	>999	180		
BCLL 0.0*	Rep Stress Incr	YES		WB	0.60	Horz(CT)	0.11	11	n/a	n/a		
BCDL 10.0	Code	IRC202	1/TPI2014	Matrix-MS							Weight: 241 lb	FT = 20%
BCDL 10.0 LUMBER TOP CHORD 2x4 SP No.2 *Except No.2, 13-11:2x6 SP I No.2, 13-11:2x6 SP I VEBS 2x4 SP No.1 *Except No.2, 13-11:2x6 SP I VEDS WEBS 2x4 SP No.2 *Except Loc3,17-15,9-14,10-1 WEDGE Left: 2x4 SP No.3 BRACING TOP CHORD TOP CHORD Structural wood sheat 3-4-12 oc purlins, ex 2-0-0 oc purlins (2-2 BOT CHORD Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 16- 1 Row at midpt 1 Row at midpt 7-15 WEBS 1 Row at midpt REACTIONS (size) 2=0-3-8, 1 Max Horiz 2=263 (LC Max Uplift 2=-202 (LC Max Grav 2=1615 (L Max Grav 2=1615 (L FORCES FOP CHORD 1-2e0/33, 2-3=-2302 5-6=-1435/297, 6-7= 7-9=-1973/287, 9-10 10-11=-2881/355 BOT CHORD 2-20=-274/1946, 18- 17-18=-92/1444, 16- 15-16=-209/0, 7-15= 14-15=-125/1979, 12 11-12=-270/2361 WEBS 3-20=0/253, 3-18=-6 5-17=-150/150, 6-17 15-17=0/1438, 6-15=	Code t* 5-6:2x4 SP No.1 t* 16-7,19-16:2x4 SP No.2 t* 12,14-10:2x4 SP No.3 athing directly applied of coept -0 max.): 5-6. applied or 10-0-0 oc -17. 3-18, 5-17, 6-17 11=0-3-8 2.9) C 12), 11=-176 (LC 13) .C 2), 12=-176 (LC 13) (LC 14) (LC 14) (LC 14) (LC 14) (LC 14) (LC 14) (LC 14	IRC202- 1) 2) or 3) 4) 5)) 6) 7) 8) 9) LC	Unbalanced this design. Wind: ASCE Vasd=103mj II; Exp B; En and C-C Ext 14-0-0, Exte 20-4-15 to 2: (1) 28-8-0 to & MWFRS ff grip DOL=1. Provide aded As requester for placemer conditions. I increase plat this truss ha chord live loa * This truss h chord and ar Bearings are SP No.2. Provide mec bearing plate 2 and 176 lb Graphical pu	Matrix-MS roof live loads hav 7-16; Vult=130mp ph; TCDL=6.0psf; closed; MWFRS (e erior(2E) -1-0-0 to rior(2R) 14-0-0 to 2 2-0-0, Exterior(2R) 35-10-4 zone;C-C pr reactions shown 60 quate drainage to p d, plates have not lit to lerances or root to tolerances or root to show the responsibil te sizes to account is been designed f ad nonconcurrent in has been designed in chord in all areas by 2-00-00 wide win y other members, assumed to be: J hanical connection a capable of withsta uplift at joint 11. Irlin representation ation of the purlin a d.	re been of bh (3-sec BCDL=6 envelope 3-6-6, Ir 22-0-0 c for mer ; Lumbe prevent v been de ugh hand ity of the for a 10.0 with any I for a liv s where II fit betw with any coint 2 SI h (by oth anding 2 d does no	considered for cond gust) .0psf; h=40ft a) exterior zoo tterior (1) 3-6 Interior (1) to 28-8-0, Int nbers and for r DOL=1.60 water pondin- signed to pro- diling and erec- fabricator to e factors. D psf bottom other live load e load of 20.1 a rectangle veen the bott DL = 10.0ps P No.1, Joint ers) of truss i 202 lb uplift al	r; Cat. ne i-6 to erior rces plate g. vvide ction o g. vvide ction f. t 11 to t joint				SEA 03633	ROL 11

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)




April 3,2025

Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	A1AM	Piggyback Base	2	1	Job Reference (optional)	172489012

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Thu Apr 03 07:05:10 ID:fq93E8M?6jWnXM8tO33?yvzUVjM-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:93.4

	X, T). [5.0-5-12,0-2-0	j, [0.0-0-0,0-1-0], [11.	0-1-11,0-	5-0], [12.0-5-6	,0-1-0], [13.0-2-4,0	-3-0]							
Loading TCLL (roof) TCDL BCLL	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.80 0.90 0.76	DEFL Vert(LL) Vert(CT) Horz(CT)	-0.38 0.14	21-23 21-23 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	IRC202	1/TPI2014	Matrix-MS		Attic	-0.12	19-23	>830	360	Weight: 269 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD	2x4 SP No.2 *Excep 2x4 SP No.1 *Excep No.2, 13-11:2x6 SP 2x4 SP No.3 *Excep 3-24,24-5,17-6,15-6, Left: 2x4 SP No.3 Structural wood shee	t* 16-7,23-19:2x4 SP No.2 t*	lo.2		3-26=0/250, 3-24= 23-27=0/942, 5-27 19-28=-358/304, 6 15-17=0/1837, 6-1 9-15=-559/204, 9-' 10-12=0/188, 21-2 18-20=-57/35, 17-2 27-29=-163/81, 28 5-29=-87/195, 6-29	=0/960, -28=-20 5=-205/ 14=0/33 2=-2/56 20=-106 -29=-16	17-19=-443/1 1/323, 1151, 5, 10-14=-42 , 21-24=-107 2/0, 9/87,	184, 1/183,	or t bot 11) AT UN	he orien tom choi	tation o rd. CE S⊢ ſABLE	of the purlin along IOWN IS DESIGN	
	except	atting areaty applied		OTES									
	1 Row at midpt 1 Brace at Jt(s): 29) 3) 4) (683, 5) (239, 5) 755, 6)	this design. Wind: ASCE Vasd=103m II; Exp B; Er and C-C Ext 14-0-0, Exte 20-4-15 to 2 (1) 28-8-0 to & MWFRS f grip DOL=1. Provide ade As requeste for placemen conditions. increase pla This truss h chord live lo * This truss h chord live lo 3-06-00 tall chord and a Ceiling dead Wall dead lo Bottom chor	quate drainage to p d, plates have not in tolerances or rou It is the responsibil te sizes to account as been designed fad nonconcurrent has been designed m chord in all areas by 2-00-00 wide wi ny other members. I load (5.0 psf) on r ad (10.0psf) on psd d live load (40.0 ps	oh (3-see BCDL=6 envelopp 3-6-6, lr 20-4-15, 22-0-0 c for mer ; Lumbe prevent been de ugh hand ity of the for thes or a 10. with any I for a lix s where II fit betw member sember(s sf) and a	cond gust) 6.0psf; h=40ft 9) exterior zon tterior (1) 3-6 Interior (1) to 28-8-0, Intr mbers and for r DOL=1.60 µ water ponding signed to pro- dling and erec fabricator to the fabricator to the factors. D psf bottom other live load of 20.0 a rectangle ween the bottof (s). 27-29, 28 (.23-27, 19-21 dditional bottof dditional bottof (s). 27-29, 28 (.23-27, 19-22) dditional bottof (s). 27-29, 28 (.23-27, 19-21) (.23-27, 19-22) (.23-27,	; Cat. ne -6 to erior cces plate g. vide ction ds. Opsf om -29; 3 om		6	25	SEA 0363	L	
			,	Ceiling dead Wall dead lo Bottom chor chord dead 20-21, 19-20	l Íoad (5.0 psf) on r bad (10.0psf) on me d live load (40.0 ps load (5.0 psf) appli	member ember(s sf) and a ed only	.23-27, 19-28 dditional botto to room. 21-2	3 om 3,		1111		A. G	EEREAL

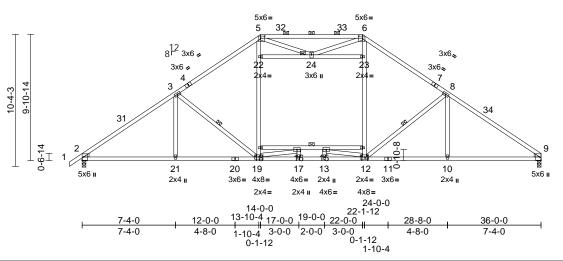
9) Bearings are assumed to be: Joint 2 SP No.1 , Joint 11 SP No.2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietur Information**. Building from the Structure Building Component Advance interpretented and the properties of th and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

GILB

Unuminity (


April 3,2025

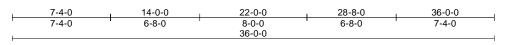
Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	A2M	Piggyback Base	2	1	Job Reference (optional)	172489013

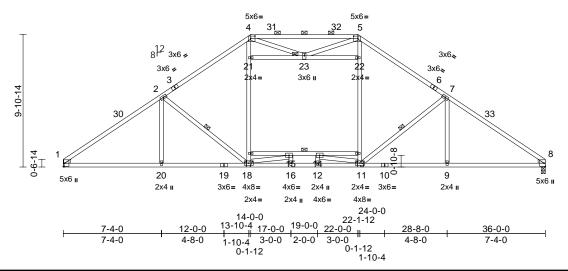
Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Thu Apr 03 07:05:10 ID:9Bws_0xrpnLTP6DwK07?ozUVhD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:90.4

Plate Offsets (X, Y): [5:0-3-12,0-2-0], [6:0-3-12,0-2-0]

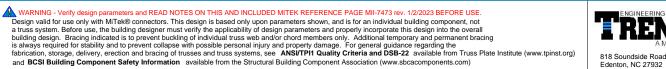

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.80	Vert(LL)	-0.21	19-21	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.99	Vert(CT)	-0.38	14-15	>999	180		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.68	Horz(CT)	0.14	9	n/a	n/a		
BCDL	10.0	Code	IRC202	1/TPI2014	Matrix-MS		Attic	-0.14	14-18	>698	360	Weight: 232 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEDGE BRACING TOP CHORD BOT CHORD WEBS JOINTS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD	2x4 SP No.2 *Excep 2x4 SP No.2 2x4 SP No.3 *Excep 3-19,19-5,12-6,8-12, Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood sheat except 2-0-0 oc purlins (3-1 Rigid ceiling directly bracing, 1 Row at midpt 1 Brace at Jt(s): 24 (size) 2=0-3-8, 9 Max Horiz 2=263 (LC Max Grav 2=1868 (L (lb) - Maximum Com Tension 1-2=0/33, 2-3=-2815 5-6=1920/0, 6-8=-2 2-21=-90/2368, 19-2 2-21=-90/2368, 12-13 9-10=0/2262, 16-18= 14-15=-170/308 3-21=0/248, 3-19=-5 18-22=0/953, 5-22=(14-23=0/954, 6-23=(8-10=0/249, 16-17=- 13-15=-6/50, 12-15= 23-24=-208/90, 5-24	 * 5-6:2x4 SP DSS * 5-6:2x4 SP DSS * 22-23:2x4 SP No.2 athing directly applied 1-13 max.): 5-6. applied or 2-2-0 oc 3-19, 8-12 >=0-3-8 >9) C 2), 9=1817 (LC 2) pression/Maximum /0, 3-5=-2464/0, 464/0, 8-9=-2819/0 1=0/2368, 17-19=0/2 s=0/2685, 10-12=0/22 s=-166/310, 15-16=-92 18/299, 18-19=0/667 //972, 12-14=0/667, /972, 12-14=0/667 /972, 12-14=0/667, /972, 12-14=0/667, /972, 12-14=0/667, /972, 12-14=0/667, /972, 12-14=0/22=-224,203 6/50, 16-19=-1099/0, -1098/0, 22-24=-208, =-97/201, 6-24=-97/2 	2) i, 3) 4) 5) 6) 7) 685, 8) 262, 3/0, 9) 10 , 11 /89, LC	Wind: ASCE Vasd=103mµ II; Exp B; En and C-C Ext 14-0-0, Exte 20-4-15 to 22: (1) 28-8-0 to MWFRS for grip DOL=1.1 Provide aded As requested for placemer conditions. I increase plat This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar Ceiling dead Wall dead lo Bottom chord chord dead l 15-16, 14-15 All bearings :) Graphical pu or the orient bottom chord	7-16; Vult=130mp bh; TCDL=6.0psf; closed; MWFRS (erior(2E) -1-0-0 to ior(2R) 14-0-0 to 2 2-0-0, Exterior(2R) 36-0-0 zone;C-C reactions shown; I 30 uate drainage to 1, plates have not it tolerances or rou t tolerances or rou t is the responsibil e sizes to account is been designed in ad nonconcurrent i tad nonconcurrent i ad nonconcurrent i ad conconcurrent i tad seen designed in chord in all area by 2-00-00 wide winy other members. Ioad (5.0 psf) on me d live load (40.0 ps ioad (5.0 psf) appli are assumed to be rlin representation it representation of the purlin a c E SHOWN IS DE ABLE.	BCDL=6 envelope 3-6-6, Ir 20-4-15, - 22-0-0 for mem -umber I -umber I -umber I -umber de ugh hand ity of the for these or a 10.0 with any I for a liv s where II fit betw nember(s sf) and a ed only ed only a does no along the	cond gust) .0psf; h=40ft .0psf; h=40ft .0psf; h=40ft .0psf; h=40ft .0psf; h=40ft .0psf; h=40ft .0poL=1.60 pla water pondin signed to pro- dling and ere e fabricator to e factors. .0 psf bottom other live loa e load of 20. .18-22, 14-2 dditional bott to room. 16-1 2. bt depict the si	; Cat. ne i-6 to erior ces & ate g. vvide ction om g. com g. om g. com g. com g. com g. com g. com g. com g. com com com com com com com com com com				SEA 0363	L EER-ALIN



Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	A3M	Piggyback Base	3	1	Job Reference (optional)	172489014

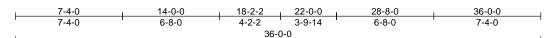
Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Thu Apr 03 07:05:11 ID:HJNK7JP4m8G1m4PJ9_a592zUVfQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

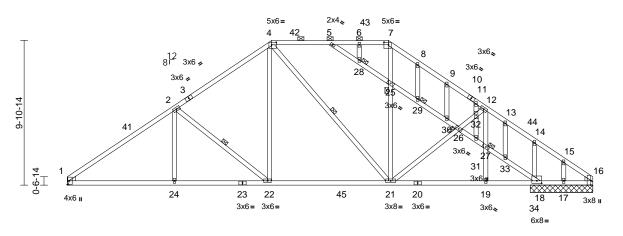
Page: 1



Scale = 1:86

Plate Offsets (X, Y): [4:0-3-12,0-2-0], [5:0-3-12,0-2-0]


Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MS	0.79 0.99 0.68	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in -0.20 -0.38 0.14 -0.14	(loc) 13-14 13-14 8 13-17	l/defl >999 >999 n/a >698	L/d 240 180 n/a 360	PLATES MT20 Weight: 230 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x4 SP WEBS 2x4 SP 2-18,16 2x4 SP WEDGE Left: 2x BRACING TOP CHORD TOP CHORD Structure BOT CHORD Rigid c bracing BOT CHORD WEBS 1 Row JOINTS 1 Bracc REACTIONS (size) Max Hor Tensio TOP CHORD 1-20= FORCES (b) - M Tensio 5-7=-2 BOT CHORD 1-20= 16-18= 9-11=0 14-15= WEBS WEBS 2-20=0 17-21= 13-22= 7-9=0/2 4-23=-4	No.2 No.3 *Excep -4,11-5,7-11 4 SP No.3 xx4 SP No.3 ral wood she c purlins (3-1 eiling directly t at midpt at Jt(s): 23 1 = Mecha iz 1=251 (Li v 1=1818 (i aximum Con b 220/0, 2-4=-2 120/2374, 18 0/2687, 12-1 /2249, 2-18=-5 0/955, 5-22= 249, 21-23=-2 -1099/0, 12-1	21-22:2x4 SP No.2 athing directly applied 1-11 max.): 4-5. applied or 2-2-0 oc 2-18, 7-11 anical, 8=0-3-8 C 9) _C 2), 8=1817 (LC 2) pression/Maximum 466/0, 4-5=-1921/0, 820/0 -20=0/2374, 6=0/2687, 11-12=0/2(/2263, 15-17=-166/30 /974, 11-13=0/668, 0/974, 7-11=-524/302 208/89, 22-23=-209/9 -97/201, 15-16=-6/5(14=-6/50, 11-14=-109	3) 4) 5) 6) 7) 8) 687, 9, 9) 10 3, 11 3, 0, 12 0, 12	Vasd=103mp II; Exp B; En and C-C Extt 14-0-0, Exter 20-4-15 to 22 (1) 28-8-0 to MWFRS for grip DOL=1.1 Provide aded As requester for placemer conditions. I increase plat This truss ha chord live loa * This truss ha chord and ar Ceiling dead Wall dead lo Bottom chord chord dead l 14-15, 13-14 Bearings are) Refer to gird) Graphical pu or the orienta bottom chord	quate drainage to p d, plates have not b t tolerances or rou t is the responsibili e sizes to account s been designed for ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide will y other members. load (5.0 psf) on n ad (10.0psf) on m d (10.0psf) on spl add (10.0psf) on p d (10.0psf) on p	CDL=6 nvelope -6-6, In: 0-4-15, 22-0-0 or mem umber I vevent v been de gh hand ty of the for thes or a 10.0 vith any for a liv s where I fit betw member(s) f) and a ad only the Joint 8 S iss conr does no long the	6.0psf; h=40ft a) exterior zor terior (1) 4-6- Interior (1) to 28-8-0, Inti- bers and forc DOL=1.60 pla water ponding signed to pro- dling and erec fabricator to the factors. D psf bottom other live loa e load of 20.0 a rectangle veen the bottom (s). 21-23, 22 .17-21, 13-22 dditional botto to room. 15-1 SP No.2. het cons. b depict the size to p and/or	ne 6 to erior ess & ate g. vide ction ds. Opsf om -23; 2 om 7,		A strategy of the strategy of		SEA 0363	22 EER HR III



Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	A3SE	Piggyback Base	1	1	Job Reference (optional)	172489015

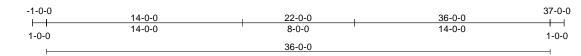
Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Thu Apr 03 07:05:11 ID:y2rllkPavr3d3RW1K72nLrzUVcr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

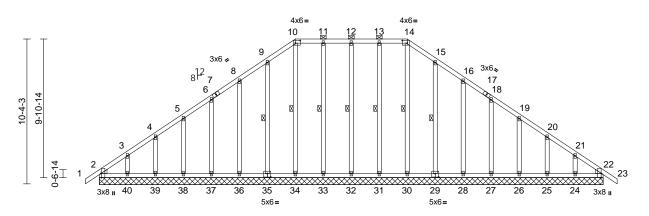
Page: 1

	7-4-0	13-10-4	22-1-12	28-8-0	32-1-14	36-0-0
	7-4-0	6-6-4	8-3-8	6-6-4	3-5-14	3-10-2
Scale = 1:78.9						

Plate Offsets (X, Y): [4:0-3-12,0-2-0], [7:0-3-12,0-2-0], [16:0-3-8,Edge], [18:0-4-0,0-2-0]

					-								
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.60	Vert(LL)	-0.21	21-22	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.86	Vert(CT)	-0.36	21-22	>999	180		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.53	Horz(CT)	0.09	16	n/a	n/a		
BCDL	10.0	Code	IRC2021	/TPI2014	Matrix-MS							Weight: 248 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD		12-21:2x4 SP No.2 athing directly applied	WE	BS	2-24=0/255, 2-22 4-21=-205/233, 2 7-25=-35/582, 21 26-32=-214/112, 12-27=0/184, 5-2 25-28=-495/221, 29-30=-476/219, 26-31=-662/256, 27-33=-729/260, 18-34=-869/290, 20 20 214 (2020)	1-25=-20. -26=-406. 12-32=-9 8=-490/2 25-29=-4 26-30=-5 27-31=-7 33-34=-7 6-28=-20.	, 2553, 208, 3/85, 19-27= 13, 70/224, 58/243, 58/243, 15/282, 31/257, 23, 8-29=-16	0/162,	on 3-0 chc 10) Bea 11) Ref 12) Pro bea 1, 1	the botto 6-00 tall ord and a arings ar fer to gir ovide me aring pla 158 lb up	om cho by 2-0 any oth ce assu der(s) f chanic te capa olift at j	rd in all areas wh 10-00 wide will fit er members, witt med to be: , Join for truss to truss al connection (by able of withstandi oint 18 and 200 ll	between the bottom h BCDL = 10.0psf. t 16 SP No.2 . connections. r others) of truss to ng 168 lb uplift at joint b uplift at joint 17.
	3-6-8 oc purlins, exc 2-0-0 oc purlins (4-9	ept -9 max.): 4-7.			9-30=-171/106, 1 31-32=-112/45, 1 15-17=-52/106			3/121,	or t		tation of	epresentation doe of the purlin along	es not depict the size g the top and/or
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	NO	TES	10 11 - 02/100					CASE(S		ndard	
WEBS JOINTS	1 Row at midpt 1 Brace at Jt(s): 25, 26, 27, 28, 29	2-22, 4-21	,	this design Wind: ASC	E 7-16; Vult=130m	iph (3-sea	cond gust)						
	17=4-3-8, Max Horiz 1=251 (LC Max Uplift 1=-168 (L 18=-158 (Max Grav 1=1499 (I	C 9) C 12), 17=-200 (LC 2 LC 13)		II; Exp B; E and C-C E: 14-0-0, Ext 20-4-15 to (1) 28-8-0 t MWFRS for	nph; TCDL=6.0psf inclosed; MWFRS kterior(2E) 0-0-0 to erior(2R) 14-0-0 to 22-0-0, Exterior(2F to 36-0-0 zone;C-C r reactions shown;	(envelope 4-6-6, In 20-4-15, 2) 22-0-0 for mem	e) exterior zo terior (1) 4-6 Interior (1) to 28-8-0, Int bers and force	ne ·6 to erior ces &			2	NITH CA	NRO W
FORCES	(lb) - Maximum Com Tension	pression/Maximum	3)	grip DOL= Truss desig	1.60 gned for wind loads	s in the pl	ane of the tru	ISS			11h	OR FESS	D. Inter
TOP CHORD	1-2=-2190/254, 2-4= 4-5=-1361/293, 5-6= 6-7=-1041/199, 7-8= 8-9=-1307/159, 9-11 11-12=-1155/77, 12: 13-14=-1375/51, 14: 15-16=-1368/0 1-24=-261/1878, 22: 21-22=-90/1363, 19: 18-19=-111/1647, 11 16-17=0/1111	1041/199, 1261/182, =-1295/113, -13=-1319/59, -15=-1309/4, -24=-261/1878, -21=-112/1613,	6)	see Standa or consult of Provide ad As request for placeme conditions. increase pl All plates a Gable stud	tuds exposed to w and Industry Gable qualified building d equate drainage to ed, plates have no ent tolerances or no It is the responsite ate sizes to accour re 2x4 () MT20 u s spaced at 2-0-0 as been designed	End Deta esigner as prevent t been de bugh hand ility of the nt for thes nless oth pc.	ils as applica s per ANSI/T water pondin signed to pro dling and ere e fabricator to e factors. erwise indica	ible, PI 1. g. ovide ction		4	25		


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



April 3,2025

Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	AE	Piggyback Base Supported Gable	1	1	Job Reference (optional)	172489016

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Thu Apr 03 07:05:12 ID:UOLBh0oG7_DxWWXMIZ8WBozUVcK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:82.3

36-0-0

Scale = 1:82.3 Plate Offsets (2	X, Y): [2:0-3-8,Edge	9], [10:0-4-4,0-2-4], [14:	0-4-4,0-2-4], [22:0-3-6	3,Edge], [29:0-3-0,0-3-0], [35:0-3-0	,0-3-0]				
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI DEF TC 0.07 Verti BC 0.06 Verti WB 0.11 Horz Matrix-MS Matrix-MS Matrix-MS	(LL) n/a	-	/defl L/d n/a 999 n/a 999 n/a n/a	PLATES MT20 Weight: 274 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS WEDGE BRACING TOP CHORD BOT CHORD	:2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood sh 6-0-0 oc purlins, e 2-0-0 oc purlins, (6	3,27-18,26-19,25-20,24 s eathing directly applied xcept		Max Grav 2=203 (LC 20), 22=15 24=183 (LC 20), 25=1 26=174 (LC 20), 25=1 30=160 (LC 22), 31=1 32=158 (LC 25), 33=1 34=178 (LC 22), 35=1 36=171 (LC 19), 37=1 38=174 (LC 19), 39=1 40=197 (LC 19) (lb) - Maximum Compression/Ma Tension 1-2=0/33, 2-3=-245/217, 3-4=-19	70 (LC 20), 72 (LC 20), 80 (LC 20), 68 (LC 25), 68 (LC 26), 82 (LC 19), 72 (LC 19), 67 (LC 19), 67 (LC 19), 83 (LC 19), 67 (LC 19), 84 (LC 19), 85 (LC 19), 85 (LC 19), 86 (LC 19), 87 (LC 20), 88 (LC 25), 88 (LC 25), 88 (LC 26), 88 (LC 26), 88 (LC 26), 89 (LC 26), 80 (LC 19), 80 (LC	Vasd= II; Exp and C- to 14-0 18-6-6 (2N) 26 & MWF grip D0 Truss of only. F see Sta or cons	103mph; TC B; Enclose -C Corner(3) -0, Corner(to 22-0-0, (6-6-6 to 37- FRS for rea OL=1.60 designed fo For studs ep andard Indu sult qualified	d; MWFRS (enve E) -1-0-0 to 3-6-6 3R) 14-0-0 to 18 Corner(3R) 22-0- 0-0 zone;C-C for ctions shown; Lu r wind loads in th cposed to wind (r ustry Gable End I d building design	DL=6.0psf; h=40ft; Cal lope) exterior zone 5, Exterior(2N) 3-6-6 -6-6, Exterior(2N) 0 to 26-6-6, Exterior members and forces mber DOL=1.60 plate e plane of the truss iormal to the face), Details as applicable, er as per ANSI/TPI 1.
WEBS	bracing. 1 Row at midpt	14-30, 13-31, 12-32,		4-5=-166/163, 5-6=-147/155, 6-8 8-9=-132/225, 9-10=-170/270,	3=-128/186, ⁴	5) As req	uested, plat	tes have not bee	ent water ponding. n designed to provide handling and erection
	25=36-(28=36-(31=36-(37=36-(40=36-(40=36-(Max Horiz 2=-269) Max Uplift 2=-90 (I 26=-75 28=-76 31=-40 33=-38 35=-76 37=-72		0, -0, -0, -0, BOT CHORD -0, 3), , , , , , , , , , , , , ,	$\begin{array}{l} 10\mbox{-}11\mbox{-}147/246, 11\mbox{-}12\mbox{-}147/246, 13\mbox{-}147/246, 13\mbox{-}1430\mbox{-}1430\mbox{-}187/45, 13\mbox{-}38/187, 33\mbox{-}38/187, 22\mbox{-}288/187, 22\mbox{-}288/187$	6, 7, 9-20=-70/54, 6 , 22-23=0/33 7 8	conditii increas 6) All plat 7) Gable 3) Gable 9) This tru chord I	ions. It is the se plate size tes are 2x4 requires co studs space uss has bee live load not	e responsibility c es to account for () MT20 unless ntinuous bottom ed at 2-0-0 oc.	f the fabricator to these factors. otherwise indicated. chord bearing. 10.0 psf bottom any other live loads.
			NOTES 1) Unbalance this design	ed roof live loads have been consid h.	dered for			CA.C	ILBET III

April 3,2025

Page: 1

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeR% connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the Section of the prevent collapse and truss contervers building Company the prevent on the prevent of the prevent for the Section of the prevent of the p and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	AE	Piggyback Base Supported Gable	1	1	Job Reference (optional)	172489016

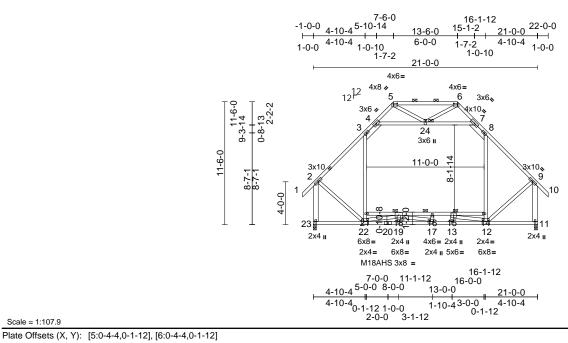
10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

11) All bearings are assumed to be SP No.2 .

- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 90 lb uplift at joint 2, 17 lb uplift at joint 22, 40 lb uplift at joint 31, 38 lb uplift at joint 32, 38 lb uplift at joint 33, 11 lb uplift at joint 34, 76 lb uplift at joint 35, 75 lb uplift at joint 36, 72 lb uplift at joint 37, 76 lb uplift at joint 38, 63 lb uplift at joint 39, 115 Ib uplift at joint 40, 74 lb uplift at joint 29, 76 lb uplift at joint 28, 72 lb uplift at joint 27, 75 lb uplift at joint 26, 66 Ib uplift at joint 25, 103 lb uplift at joint 24, 90 lb uplift at joint 2 and 17 lb uplift at joint 22.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Thu Apr 03 07:05:12 ID:UOLBh0oG7_DxWWXMIZ8WBozUVcK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	AT1	Attic	3	1	Job Reference (optional)	172489017

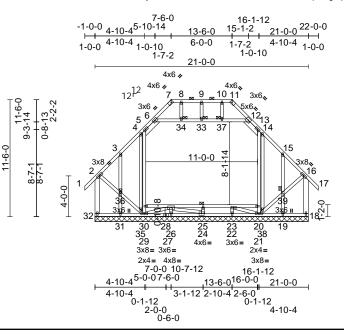
Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Thu Apr 03 07:05:12 ID:dXqXqhHYkH1CY5okSYc7YIzUVv4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:107.9

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.66	Vert(LL)	-0.31	22		240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	1.00	Vert(CT)		19-22	>713	180	M18AHS	186/179
BCLL	0.0*	Rep Stress Incr	YES		WB	0.60	Horz(CT)	0.05	11	n/a	n/a		
BCDL	10.0	Code	IRC2021	/TPI2014	Matrix-MS		Attic	-0.15	14-21	>923	360	Weight: 201 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING	 2x4 SP No.2 2x4 SP No.3 *Exception No.1, 23-2,11-9:2x6 	ot* 3-22,8-12,4-7:2x4 SP No.2	SP	Vasd=103m II; Exp B; En and C-C Ext 7-6-0, Exteri to 19-10-15,	7-16; Vult=130m, ph; TCDL=6.0psf; closed; MWFRS (erior(2E) -1-0-0 to or(2E) 7-6-0 to 13 Interior (1) 19-10- ind right exposed;	BCDL=6 (envelope) 3-6-6, Ir -6-0, Ext -15 to 22	.0psf; h=40ft e) exterior zo terior (1) 3-6 erior(2R) 13- 0-0 zone; er	one 6-6 to -6-0 nd					
TOP CHORD	4-11-14 oc purlins, 2-0-0 oc purlins (6-0	except end verticals 0-0 max.): 5-6.		forces & MW DOL=1.60 p	/FRS for reactions late grip DOL=1.6 quate drainage to	s shown; 0	Lumber						
BOT CHORD	 Rigid ceiling directly bracing. 	applied or 2-2-0 oc	4)	As requested	d, plates have not	been de	signed to pro	ovide					
JOINTS	1 Brace at Jt(s): 24				nt tolerances or ro It is the responsibi								
REACTIONS FORCES	 (size) 11=0-3-8, Max Horiz 23=-382 (Max Grav 11=1421 (lb) - Maximum Corr 	(LC 2), 23=1421 (LC	5) 5) 6)	increase pla All plates are This truss ha	te sizes to accoun MT20 plates unle s been designed ad nonconcurrent	it for thes ess other for a 10.0	e factors. wise indicate) psf bottom	ed.					
TOP CHORD	Tension	6/44, 3-4=-699/146,	7)	* This truss I on the bottor	nas been designed m chord in all area by 2-00-00 wide w	d for a liv as where	e load of 20. a rectangle	.0psf					
BOT CHORD	7-8=-702/146, 8-9=- 2-23=-1396/0, 9-11=	1023/45, 9-10=0/52 1392/0 -22=0/2461, 7=0/2525, 12-13=0/2 I=-247/310,	8) 2525, 9)	chord and an Ceiling dead 7-24; Wall o Bottom chor chord dead I 16-18, 15-16	ny other members l load (5.0 psf) on lead load (5.0psf) d live load (40.0 p oad (5.0 psf) appl	member on meml sf) and a ied only t	s). 3-4, 7-8, ber(s).3-21, 8 dditional bott o room. 18-2	4-24, 8-14 tom			- All	OP CEESS	ROUT
WEBS	21-22=-132/193, 3-2 12-14=-134/199, 8- 4-24=-655/130, 7-24 2-22=-16/918, 9-12= 18-22=-1945/0, 16- 17-18=-420/536, 13 12-15=-2103/0, 5-24	14=-83/391, 4=-662/128, =-16/920, 18-19=-82 17=-125/64, -15=-4/131,	11 (166, 12 LC) Graphical pu or the orienta bottom chore	Irlin representation ation of the purlin d. necked for L/360 c	n does no along the	ot depict the top and/or	size				SEA 0363	
NOTES 1) Unbalanc this desig	ced roof live loads have gn.	been considered fo	r								and the second s	O363	EE.P

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

April 3,2025

Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	AT1E	Attic Supported Gable	1	1	Job Reference (optional)	172489018

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Thu Apr 03 07:05:13 ID:QFSyzQVLM6W3QV3ULATe5izUVxN-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:113.4

00010 = 1.110.															
Plate Offsets	(X, Y): [7:0	-2-8,Edge]	, [11:0-2-8,Edge]			_							-		
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MS	0.29 0.09 0.16	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.01	(loc) - - 18	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 237 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD JOINTS	2x4 SP N 2x4 SP N No.2, 5-3 2x4 SP N No.2 Structura 6-0-0 oc 2-0-0 oc Rigid ceil bracing, 1 Brace a	lo.2 lo.3 *Excep 0,13-20,6- lo.3 *Excep al wood she purlins, ex purlins (6-0 ling directly at Jt(s): 33,	ot* 5-6,12-13:2x6 SP No ot* 32-2,16-18:2x6 SP 12:2x4 SP No.1 ot* 35-4,38-14:2x4 SP eathing directly applied (coept end verticals, and 0-0 max.): 7-11. () applied or 6-0-0 oc	o.2 W or	EBS	31-32=-359/327, 3 26-30=-67/137, 25 23-25=-103/157, 2 19-20=-63/85, 18- 24-27=-71/114, 22 2-36=-163/314, 35 30-35=-179/315, 2 5-29=-373/141, 20 13-21=-373/127, 2 38-39=-156/326, 1 6-34=-40/175, 12 9-33=-163/71, 8-3 3-36=-183/153, 31 10-37=-34/141, 14	5-26=-73 20-23=-1 19=-63/8 2-24=-71, 5-36=-17 29-30=-3 0-21=-39 20-38=-1 16-39=-1 34=-40/1 2-37=-40, 4=-34/14 1-36=-20	/102, 03/157, 15, 27-29=0/4, /114, 21-22=- 0/337, 88/63, 88/63, 66/315, 50/304, 175, 175, 175, 11, 4-35=-54/3 5/142,	3/5	for cor inc 6) All 7) Ga 8) Tru bra 9) Ga 10) Thi cho 11) * T on 3-0	placemenditions. rease plates and plates and ble requises to be acced aga ble stude s truss h ord live lo his truss the botto 6-00 tall	ent tole It is th ate size re 2x4 ires con fully sl inst late s space bad not has be bod not has be bod not by 2-0	rances or rough e responsibility of es to account for () MT20 unless thinuous bottom heathed from on eral movement (ad at 2-0-0 oc. an designed for a heconcurrent with heen designed for rd in all areas w	s otherwise indica	ection to ated. b). h bads. 0.0psf
REACTIONS	Max Horiz Max Uplift	18=21-0- 23=21-0- 30=21-0- 32=-382 18=-131 20=-189 31=-109 18=539 (I 20=441 (I 25=244 (I	(LC 9), 19=-109 (LC 13 (LC 8), 30=-176 (LC 12 (LC 12), 32=-150 (LC 8 LC 1), 19=184 (LC 21), LC 11), 23=241 (LC 3), LC 3), 26=264 (LC 3), LC 10), 31=184 (LC 20	.0, .0), N (), 1))) 2)	OTES Unbalanced this design. Wind: ASCE Vasd=103m II; Exp B; Er and C-C Ext 7-6-0, Exteri	15-39=-184/154, 1 26-27=-153/0, 27- 22-23=-132/0, 20- 25-27=-30/57 roof live loads hav 5 7-16; Vult=130mp ph; TCDL=6.0psf; iclosed; MWFRS (erior(2E) -1-0-0 to for(2E) 7-6-0 to 13	19-39=-2 30=-115 22=-72/1 ve been ph (3-sec BCDL=6 envelope 3-6-6, Ir -6-0, Ext	03/141, (140, 117, 24-25=-12 considered for cond gust) 6.0psf; h=40ft; e) exterior 20n tterior (1) 3-6- erior(2R) 13-6	Cat. e 6 to -0	12) Ce 6-3 me	iling dea 4, 33-34 mber(s). bearings	d Íoad , 33-37 5-29, 1 s are as	(5.0 psf) on mer 7, 12-37; Wall do 3-21 ssumed to be SF	ROLIN) on
FORCES TOP CHORD	Tension 2-32=-51 3-4=-324 6-7=-499 9-10=-37 11-12=-4 13-14=-2	kimum Con 8/158, 1-2= /136, 4-5=- /131, 7-8=- 0/109, 10- ⁻ 99/133, 12 86/132, 14	npression/Maximum =0/52, 2-3=-358/132, -285/145, 5-6=-425/153 -370/109, 8-9=-370/109 11=-370/109, I-13=-425/153, I-15=-324/120, I-17=0/52, 16-18=-518/), 3)	vertical left a forces & MW DOL=1.60 p Truss desigr only. For stu see Standar or consult qu	Interior (1) 19-10- and right exposed; VFRS for reactions late grip DOL=1.6 hed for wind loads uds exposed to wind d Industry Gable E ualified building de quate drainage to	C-C for r s shown; 0 in the pl nd (norm End Deta ssigner as	nembers and Lumber ane of the trus al to the face) ils as applicat s per ANSI/TF	ss , ple, rl 1.		9		SEA 0363	EERRATION IN 12 2025	Manuna and Andrew

Continued on page 2 WARNING - Verif

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)

April 3,2025

Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	AT1E	Attic Supported Gable	1	1	Job Reference (optional)	172489018

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Thu Apr 03 07:05:13 ID:QFSyzQVLM6W3QV3ULATe5IzUVxN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

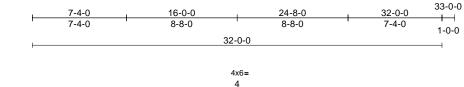
14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 150 lb uplift at joint 32, 131 lb uplift at joint 18, 176 lb uplift at joint 30, 189 lb

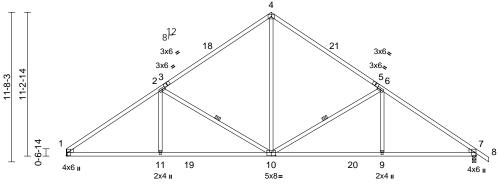
32, 131 Ib uplift at joint 18, 176 Ib uplift at joint 30, 189 Ib uplift at joint 20, 109 Ib uplift at joint 31 and 109 Ib uplift at joint 19. Craphical pudie representation does not depict the size.

15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

16) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	B1	Common	5	1	Job Reference (optional)	172489019

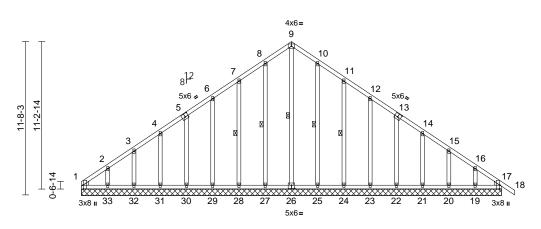
Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Thu Apr 03 07:05:13 ID:1u6XZSKxb620XUBAeDnlc_zUW0m-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

	7-4-0	16-0-0	24-8-0	32-0-0	
Scale = 1:90	7-4-0	8-8-0	8-8-0	7-4-0	

Plate Offsets (X, Y): [10:0-4-0,0-3-0]

			-		-							-
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.94	Vert(LL)	-0.16	9-10	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.93	Vert(CT)	-0.32	9-10	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.37	Horz(CT)	0.08	7	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-MS		l ` ´					Weight: 168 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.1 *Excep 2x4 SP No.2 2x4 SP No.2 *Excep Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she Rigid ceiling directly bracing. 1 Row at midpt	t* 3-1,5-8:2x4 SP No t* 6-9,11-2:2x4 SP No athing directly applie	4) This truss chord live 5) * This trus on the bo 3-06-00 ta chord and 6) Bearings ed. 7) Refer to g 8) Provide m bearing p	has been designed load nonconcurrent is has been designe tom chord in all are- all by 2-00-00 wide v any other members are assumed to be: irder(s) for truss to t echanical connection ate capable of withs lb uplift at joint 1.	with any d for a liv as where vill fit betw s, with BC , Joint 7 russ con on (by oth	other live load re load of 20.0 a rectangle ween the both CDL = 10.0psi SP No.2 mections. wers) of truss t	Opsf om f.				vveigni: Too ib	FT = 20%
REACTIONS	Max Horiz 1=-298 (L Max Uplift 1=-181 (L Max Grav 1=1457 (L	.C 8) .C 12), 7=-205 (LC 13	/									
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	4-6=-1454/299, 6-7=	-2103/276, 7-8=0/33	3									
BOT CHORD	7-9=-112/1653	,										
WEBS	4-10=-102/1021, 6-1 2-10=-811/325, 2-11		351,								MUL CA	Dilli
NOTES	a dia a filipia da a da 1	have see the set								N	ATHUA	TOLIN
,	ed roof live loads have	been considered for								1.	O' FESS	toiz Vill
Vasd=103 II; Exp B; and C-C E 16-0-0, Ex to 33-0-0 for reaction DOL=1.60	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Br Enclosed; MWFRS (er Exterior(2E) 0-0-0 to 4- xterior(2R) 16-0-0 to 2C zone;C-C for members ons shown; Lumber DO 0	CDL=6.0psf; h=40ft; ivelope) exterior zon 6-6, Interior (1) 4-6-6 0-6-6, Interior (1) 20-6 and forces & MWFF iL=1.60 plate grip	e 3 to 6-6 RS						W. CHILLEY		SEA 0363	• –
for placen conditions	sted, plates have not be nent tolerances or roug s. It is the responsibility plate sizes to account f	h handling and erect of the fabricator to									COLUMN 1	ril 3 2025

818 Soundside Road Edenton, NC 27932


April 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	B1E	Common Supported Gable	1	1	Job Reference (optional)	172489020

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Thu Apr 03 07:05:13 ID:bhGrXZ24KrpvRLf?_f07srzUW2P-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:87.8

32-0-0

Plate Offsets (X, Y): [1:0-3-8,Edge], [5:0-3-0,0-3-0], [13:0-3-0,0-3-0], [17:0-3-8,Edge],	[26:0-3-0,0-3-0]
---	------------------

Loading		(psf)	Spacing	2-0-0	1	CSI		DEFL	in	(loc)		L/d	PLATES	GRIP		
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190		
TCDL		10.0	Lumber DOL	1.15		BC	0.07	Vert(CT)	n/a	-	n/a	999				
BCLL		0.0*	Rep Stress Incr	YES		WB	0.13	Horz(CT)	0.01	17	n/a	n/a				
BCDL		10.0	Code	IRC2	021/TPI2014	Matrix-MS							Weight: 236 lb	FT = 20%		
LUMBER TOP CHORD	2x4 SP N	lo 2			FORCES	(lb) - Maximum (Tension	Compressi	on/Maximum						n designed to provi handling and erecti		
BOT CHORD					TOP CHORD	1-2=-290/232, 2	-3=-223/19	98. 3-4=-188/1	75.					f the fabricator to		
OTHERS		lo.3 *Exce	nt*			4-6=-169/165, 6							es to account for			
OTTERO			5,25-10,24-11,23-12:2	2x4		8-9=-180/287, 9	-10=-180/2	287,	,	5) All	plates a	re 2x4	() MT20 unless	otherwise indicate		
	SP No.2	,20 ,20 0	,20 .0,2,20 .2.			10-11=-146/231							ntinuous bottom			
WEDGE	Left: 2x4	SP No.3				12-14=-77/98, 1	4-15=-94/6	8, 15-16=-146					ed at 2-0-0 oc.	0		
		4 SP No.3				16-17=-214/120, 17-18=0/33 8) This truss has been designed for a 10							10.0 psf bottom			
BRACING	5				BOT CHORD	1-33=-147/226,		,						any other live load		
TOP CHORD	Structura	I wood she	eathing directly applie	ed or		31-32=-106/226								a live load of 20.0p		
	6-0-0 oc		5 · · · · · · · · · · · · · · · · ·	-		29-30=-107/228							ord in all areas wh			
BOT CHORD			y applied or 10-0-0 or	0		27-28=-107/228								between the bottor		
	bracing.					24-25=-107/228							er members.			
WEBS	1 Row at	midpt	9-26, 8-27, 7-28, 10	-25,		22-23=-107/228							ssumed to be SP			
			11-24			20-21=-104/225 17-19=-104/225	,	04/225,						others) of truss to		
REACTIONS (s	(size)	1=32-0-0	, 17=32-0-0, 19=32-0	D-0,	WEBS			1 7 20 120/	100					ng 21 lb uplift at jo ft at joint 27, 76 lb		
		20=32-0-	0, 21=32-0-0, 22=32	-0-0,	WEBS	9-26=-245/98, 8-27=-142/91, 7-28=-129/100, 6-29=-141/102, 5-30=-131/97, 4-31=-124/91,								29, 72 lb uplift at jo		
			0, 24=32-0-0, 25=32	,		3-32=-132/95, 2			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					ft at joint 32, 131 lb		
			0, 27=32-0-0, 28=32	,	10-25=-138/87, 11-24=-131/102,									25, 78 lb uplift at jo		
			0, 30=32-0-0, 31=32	-0-0,		12-23=-141/102, 13-22=-131/97, 14-21=-123/90, 15-20=-135/97,				24, 78 lb uplift at joint 23, 72 lb uplift at joint 2						
			0, 33=32-0-0											20, 109 lb uplift at		
	Max Horiz						16-19=-131/105					Ih unli	lift at joint 17 and 104 lb unlift at join			
	Max Uplift		LC 10), 17=-21 (LC 9		NOTES					, .	,		1111 CA	D''''		
			(LC 13), 20=-66 (LC			d roof live loads h	ave been	considered for					OF ESS	ROUL		
			LC 13), 22=-72 (LC 1 LC 13), 24=-78 (LC 1		this design								A STOO	as In !!		
			LC 13), 24=-78 (LC 1 LC 13), 27=-67 (LC 1			E 7-16; Vult=130	mph (3-seo	cond gust)			/	52	C. FESS	Min an		
			LC 12), 29=-78 (LC 1		Vasd=103	mph; TCDL=6.0ps	f; BCDL=6	6.0psf; h=40ft;	Cat.		4			24.10		
			LC 12), 31=-69 (LC 1		II; Exp B; E	Inclosed; MWFRS	6 (envelope	e) exterior zone	е			- E	<u>.</u> ?`	N 12 1		
			LC 12), 33=-131 (LC			orner(3E) 0-0-0 to					-		SEA	1. 1.		
	Max Grav		C 12), 17=163 (LC 2		16-0-0, Co	rner(3R) 16-0-0 to	20-6-6, E	xterior(2N) 20-	-6-6		-		0000			
			LC 20), 20=172 (LC			one;C-C for mem			RS				0363	22 :		
			LC 20), 22=171 (LC			ns shown; Lumber	DOL=1.60) plate grip				2 0	1	1		
		23=181 (LC 20), 24=171 (LC	20),	DOL=1.60							1	·	- A		
			LC 20), 26=263 (LC			gned for wind load						2.0	S. SNOW	EEN: X S		
			LC 19), 28=169 (LC			studs exposed to v				A A SINE OR						
			LC 19), 30=170 (LC								SEAL 036322					
			LC 19), 32=164 (LC	19), or consult qualified building designer as per ANSI/TPI 1.						in in its						
		33=219 (LC 19)													
													Δn	ril 3 2025		

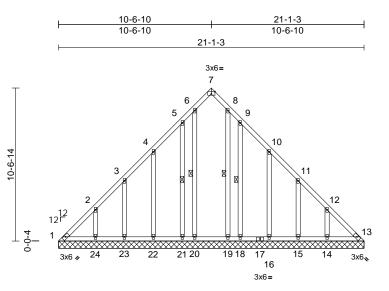
April 3,2025

Page: 1

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Dracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	B1E	Common Supported Gable	1	1	Job Reference (optional)	172489020
84 Lumber-2383 (Dunn, NC), Du	nn, NC - 28334,	Run: 8.83 S Mar 20 2	2025 Print: 8.	830 S Mar 2	0 2025 MiTek Industries, Inc. Thu Apr 03 07:05:13	Page: 2

ID:bhGrXZ24KrpvRLf?_fO7srzUW2P-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	CV1	Valley	1	1	Job Reference (optional)	172489021

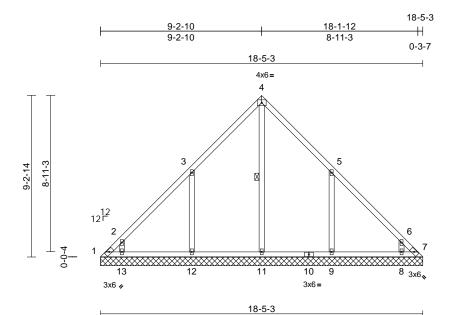
Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Thu Apr 03 07:05:14 ID:Q12q4AWrw18IXRjLri5ZXMzUW36-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

21-1-3

Scale = 1:79.6	
Dista Officiata (V. V).	

Plate Offsets ((X, Y): [7:0-3-0,Edge]												
			-		1	-						1	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.28	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.22	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	TDIAGAA	WB	0.13	Horiz(TL)	0.01	13	n/a	n/a		
BCDL	10.0	Code	IRC2021	/TPI2014	Matrix-MS							Weight: 161 lb	FI = 20%
LUMBER			BO	T CHORD	1-24=-144/152, 2	23-24=-14	4/152,		10) All I	bearings	are as	ssumed to be SP	No.2 .
TOP CHORD	2x4 SP No.2				22-23=-144/152,	21-22=-1	44/152,						others) of truss to
BOT CHORD	2x4 SP No.2				20-21=-144/152, 19-20=-144/152, bearing plate capable of withsta								
OTHERS	2x4 SP No.2 *Excep	ot*			18-19=-144/152,								at joint 20, 4 lb uplift
	23-3,24-2,15-11,14-	12:2x4 SP No.3			15-16=-144/152,	14-15=-1	44/152,						2 lb uplift at joint 22,
BRACING					13-14=-144/152								at joint 24, 227 lb
TOP CHORD	Structural wood she	athing directly applie	dor ^{WE}	BS	6-20=-346/143, 8								16, 262 lb uplift at
	6-0-0 oc purlins.				5-21=-197/210, 4 3-23=-163/141, 2							plift at joint 13.	
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc			9-18=-198/232, 1				LOAD	CASE(S) Sta	ndard	
WED0	bracing.		~		11-15=-193/197,								
NEBS	1 Row at midpt	6-20, 8-19, 5-21, 9-1	NO	TES									
REACTIONS	. ,	, 13=21-1-3, 14=21-1	-3,		d roof live loads ha	ave heen	considered fo	r					
		3, 16=21-1-3, 18=21-	10, /	this design		ave been		"					
		3, 20=21-1-3, 21=21-			E 7-16; Vult=130m	nnh (3-sei	cond aust)						
	Max Horiz 1=278 (L0	3, 23=21-1-3, 24=21-	1-3 -/		nph; TCDL=6.0psf			: Cat.					
	Max Uplift 1=-153 (L				nclosed; MWFRS								
		(LC 13), 16=-99 (LC 1	,	and C-C C	orner(3E) 0-0-4 to	4-6-14, E	xterior(2N) 4-	6-14					
		(LC 13), 19=-4 (LC 11		to 10-6-14,	Corner(3R) 10-6-	14 to 15-1	-4, Exterior(2	2N)					
		_C 11), 21=-164 (LC 1		15-1-4 to 20-9-7 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate									
		(LC 12), 23=-117 (LC											
	24=-121 ((LC 12)		grip DOL=1									
	Max Grav 1=204 (L0	C 9), 13=0 (LC 11),	3)		ned for wind load							minin	unin.
		LC 19), 15=196 (LC 2			tuds exposed to w						-	WAH CA	Rolly
		LC 20), 18=139 (LC 2			rd Industry Gable						1	R	A LINI
		LC 22), 20=404 (LC 2			qualified building d ed, plates have no						1.	NH CA	Diz Vin
		C 25), 22=224 (LC 19	'), ·		ent tolerances or re								City
	,	LC 19), 24=261 (LC 1	9)		It is the responsib							.0	
FORCES	(lb) - Maximum Com	npression/Maximum			ate sizes to accou					-		CEA	1 1 1
	Tension	040/000 0 4 404/0	5)		re 2x4 () MT20 u			ted.		=	:	SLA	- : :
OP CHORD		·242/286, 3-4=-191/2 ·264/437, 6-7=-151/2	^{50,} 6		ires continuous bo					=		0363	22 ; =
	,	264/401, 9-10=-152/2	· 7\	Gable stud	s spaced at 2-0-0	oc.					3		1 3
	10-11=-54/136, 11-1	,	^{229,} 8)		nas been designed						-	N	- 1 E
	12-13=-203/189				bad nonconcurren						11	N.S.Nom	FR. X S
	.2.10 200/100		9)		has been designe			Opsf			1	P. GIN	F
					om chord in all are						1	ICA C	II BEIN
					by 2-00-00 wide \							1111.0	
				chord and	any other member	s, with BC	JUL = 10.0 ps	ſ.					
				chord and	any other member	s, with BC	DL = 10.0ps	f.				SEA 0363	ril 2 2025

April 3,2025


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	CV2	Valley	1	1	Job Reference (optional)	172489022

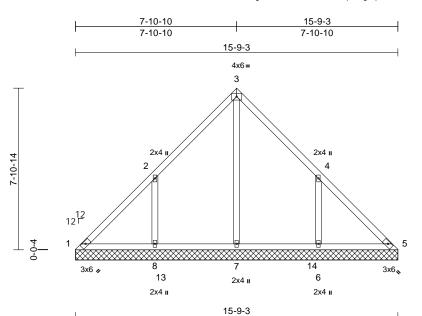
Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Thu Apr 03 07:05:14 ID:xIQbkC4uAGkGq3YdIsyMc_zUW3f-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:65.9

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	21/TPI2014	CSI TC BC WB Matrix-MS	0.23 0.17 0.17	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 94 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	Structural 6-0-0 oc p Rigid ceili bracing. 1 Row at (size) Max Horiz Max Uplift	0.2 0.3 *Except l wood sheat purlins. ing directly midpt 1=18-5-3, 9=18-5-3, 13=18-5-3, 13=242 (LC 1=-170 (LI 8=-35 (LC 11=-51 (LI 13=-155 (LC 1=194 (LC (LC 20), 9	C 9) C 10), 7=-1 (LC 13), 13), 9=-308 (LC 13 C 11), 12=-270 (LC	ed or , , , , , , , , , , , , ,	 Vasd=103mp II; Exp B; En and C-C Cor to 9-2-14, Cc 13-9-4 to 18. MWFRS for grip DOL=1.1 Truss design only. For stu see Standard or consult qu As requested for placemer conditions. I increase plat All plates are Gable requiri Gable studs This truss ha chord live loa * This truss f 	7-16; Vult=130r ob; TCDL=6.0ps closed; MWFRS ner(3E) 0-0-4 to orner(3R) 9-2-14 5-7 zone;C-C fo reactions shown 60 ned for wind load dis exposed to w d Industry Gable alified building c d, plates have no d Industry Gable alified building c d, plates have no d lndustry Gable alified building c d, plates have no e scontinuous for spaced at 4-0-0 as been designer an oncord in all are	f; BCDL=6 (envelope 4-6-10, E: to 13-9-4, r members; kumber I is in the pla- vind (norm End Deta lesigner as to been dea ough hance bility of the inf for thes unless otho totom chor oc. d for a 10.0 t with any ed for a liv	.0psf; h=40ft; exterior zor xterior(2N) 4- Exterior(2N) s and forces 8 DOL=1.60 pla ane of the tru al to the face ils as applical s per ANSI/TF signed to pro- fabricator to e fabricator to the facers. erwise indicat d bearing. D psf bottom other live loa e load of 20.0	ne 6-10 & tte ss ble, PI 1. vide vide ed. ds.					
TOP CHORD	Tension 1-2=-326/	/279, 2-3=-2	pression/Maximum 298/237, 3-4=-323/3		chord and ar	by 2-00-00 wide by other member are assumed to	s, with BC	DL = 10.0psf					OR FESS	ROUL
BOT CHORD WEBS	1-13=-71/ 9-11=-30/ 4-11=-363	(112, 12-13 (95, 8-9=-30 3/223, 3-12	149/67, 6-7=-166/99 =-30/95, 11-12=-30/ 0/95, 7-8=-30/95 =-375/316, 387/330, 6-8=-292/	¹ 95, 1	 Provide mec bearing plate 1, 1 lb uplift a at joint 12, 15 	hanical connecti e capable of with at joint 7, 51 lb u 55 lb uplift at joir t joint 8 and 1 lb	on (by oth standing 1 plift at join nt 13, 308	ers) of truss t 70 lb uplift at t 11, 270 lb u lb uplift at joir	joint plift		4	in	ORTH CA	Da

NOTES

 Unbalanced roof live loads have been considered for this design. LOAD CASE(S) Standard



Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	CV3	Valley	1	1	Job Reference (optional)	172489023

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Thu Apr 03 07:05:14 ID:XSD1YMrLt7D5R_0n7fbgomzUW3z-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:56.3

Loading TCLL (roof) TCDL BCLL BCDL	(psf 20.0 10.0 0.0 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2021/T	PI2014	CSI TC BC WB Matrix-MS	0.23 0.17 0.25	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 76 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	Structural wood 10-0-0 oc purlins Rigid ceiling dire bracing. (size) 1=15- Max Horiz 1=207 Max Uplift 1=-49 8=-26 Max Grav 1=157 6=512	ctly applied or 6-0-0 oc ∂-3, 5=15-9-3, 6=15-9-3 ∂-3, 8=15-9-3	fic c in for for for for for for for for for for	or placemen conditions. I horcrease plat Sable requiri Sable studs This truss ha thord live loa This truss h on the botton 8-06-00 tall b thord and an All bearings a Provide mech rearing plate	I, plates have not t tolerances or root t is the responsibile e sizes to accoun es continuous bot spaced at 4-0-0 o s been designed i d nonconcurrent ias been designed n chord in all area by 2-00-00 wide w by other members are assumed to branical connection capable of withst ft at joint 8 and 26 Standard	ugh hanc lity of the t for thes tom chor c. for a 10.0 with any d for a liv s where d for a liv s where till fit betw , with BC e SP No. n (by oth anding 4	Iling and erect fabricator to e factors. d bearing.) psf bottom other live load e load of 20.0 a rectangle veen the botto DL = 10.0psf 2. ers) of truss t 9 lb uplift at j	ds. Dpsf om					
FORCES	Tension	ompression/Maximum 3=-95/167, 3-4=-95/137											
BOT CHORD	4-5=-160/179	8=-156/180, 6-7=-156/1	,										
WEBS	5-6=-156/180	-373/299, 4-6=-373/297	,									mmm	000

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=40ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-4 to 4-6-10, Exterior(2N) 4-6-10 to 7-10-14, Corner(3R) 7-10-14 to 12-5-4, Exterior(2N) 12-5-4 to 15-9-7 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

SEAL 036322 April 3,2025


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	CV4	Valley	1	1	Job Reference (optional)	72489024

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Thu Apr 03 07:05:15 ID:IjAefHki?M4Nsbq25GxZxszUW46-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

13-1-3

0.18

0.17

0.12

DEFL

Vert(LL)

Vert(TL)

Horiz(TL)

in

n/a

n/a

0.00

(loc)

5

l/defl

n/a 999

n/a

n/a n/a

L/d

999

PLATES

Weight: 61 lb

MT20

GRIP

244/190

FT = 20%

Scale = 1:50.9

Loading

TCLL (roof)

TCDL BCLL BCDL		10.0 0.0* 10.0	Lumber DOL Rep Stress Incr Code	1.15 YES IRC2	;	/TPI2014
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N Structural 6-0-0 oc p Rigid ceili	o.2 o.3 I wood shea ourlins.	athing directly applie applied or 10-0-0 oc		4) 5) 6) 7) 8)	As reque for placer condition increase Gable red Gable stu This truss chord live * This trus
REACTIONS	Max Horiz	7=13-1-3, 1=171 (LC 1=-52 (LC (LC 13), 8 1=141 (LC	C 9) 8), 5=-12 (LC 9), 6= =-225 (LC 12) C 20), 5=110 (LC 19) C 20), 7=360 (LC 19)	=-220 ,	9) 10)	on the bo 3-06-00 ta chord and All bearin Provide n bearing p 1, 12 lb u uplift at jo
FORCES	(lb) - Max Tension	•	pression/Maximum		LO	AD CASE
TOP CHORD		,	157/145, 3-4=-149/1	41,		
BOT CHORD		28, 7-8=-73	3/128, 6-7=-73/128,			
WEBS	3-7=-162/	0, 2-8=-34	1/281, 4-6=-341/281			
NOTES						
 Unbalance this design 		oads have	been considered for			

(psf)

20.0

Spacing

Plate Grip DOL

2-0-0

1.15

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=40ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-4 to 4-6-10, Exterior(2N) 4-6-10 to 6-6-14, Corner(3R) 6-6-14 to 11-1-4, Exterior(2N) 11-1-4 to 13-1-7 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
 Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.

CSI

тс

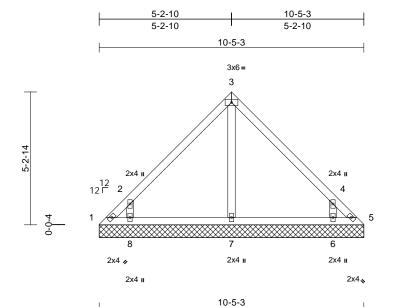
BC

WB

Matrix-MS

- 7) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and ony other members, with BCDL = 10.0psf.
 All bearings are assumed to be SP No.2.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 52 lb uplift at joint 1, 12 lb uplift at joint 5, 225 lb uplift at joint 8 and 220 lb uplift at joint 6.

OAD CASE(S) Standard


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	CV5	Valley	1	1	Job Reference (optional)	172489025

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Thu Apr 03 07:05:15 ID:3_7EmCd36byfGDeJ4tHS4zzUW4F-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

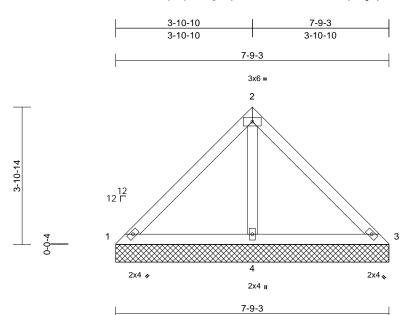
Page: 1

Scale = 1:45.4

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.21	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		0.12	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.11	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-MS							Weight: 45 lb	FT = 20%
	6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=10-5-3 7=10-5-3 Max Horiz 1=-135 (U Max Uplift 1=-99 (LI 6=-210 (I Max Grav 1=128 (L	C 10), 5=-64 (LC 11), LC 13), 8=-218 (LC 12 .C 12), 5=104 (LC 13)	d or b d or c d or	d, plates have not be nt tolerances or rougi It is the responsibility te sizes to account for res continuous bottor spaced at 4-0-0 oc. as been designed for ad nonconcurrent with has been designed for m chord in all areas to by 2-00-00 wide will ny other members. are assumed to be S chanical connection (1 e capable of withstant t at joint 5, 218 lb ug)	h hance of the or thes or thes or a 10.0 th any or a liv where fit betw SP No. by othe oding 9	Illing and erec fabricator to e factors. d bearing.) psf bottom other live loac e load of 20.0 e load of 20.0 een the botto 2. ers) of truss to 9 lb uplift at jo	tion ds. ppsf om oint					
	8=360 (L	.C 20), 7=208 (LC 1), .C 19)	uplift at join LOAD CASE(S									
FORCES		npression/Maximum	LOAD CASE(S	Stanuaru								
TOP CHORD	Tension 1-2=-235/162, 2-3= 4-5=-210/152	-174/122, 3-4=-162/1	22,									
BOT CHORD	1-8=-92/104, 7-8=-4 5-6=-92/117	40/92, 6-7=-40/92,										
WEBS	3-7=-121/1, 2-8=-42	28/385, 4-6=-428/385									minin	11111
NOTES											WAH CA	Rollin
1) Unbalance this design		e been considered for								AN.	OREESS	AN'S
Vasd=103 II; Exp B; E and C-C C to 5-2-14, to 10-5-7 z	Enclosed; MWFRS (e corner(3E) 0-0-4 to 4- Corner(3R) 5-2-14 to cone;C-C for member ns shown; Lumber D0	CDL=6.0psf; h=40ft; nvelope) exterior zon 6-10, Exterior(2N) 4-6 9-9-4, Exterior(2N) 9- s and forces & MWFF	e 5-10 -9-4						A THURSDAY		SEA 0363	• -
only. For	studs exposed to wine	n the plane of the trus d (normal to the face) nd Details as applicab	,								S MGIN	EER

- II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-4 to 4-6-10, Exterior(2N) 4-6-10 to 5-2-14, Corner(3R) 5-2-14 to 9-9-4, Exterior(2N) 9-9-4 to 10-5-7 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



GI 111111111

April 3,2025

Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	CV6	Valley	1	1	Job Reference (optional)	172489026

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Thu Apr 03 07:05:15 ID:pF5qt7WPEqpwhqSb2UcLC3zUW4O-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:32.7

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.21	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.19	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.11	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC202	1/TPI2014	Matrix-MP							Weight: 31 lb	FT = 20%
TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 7-9-3 oc purlins. Rigid ceiling directly bracing. (size) 1=7-9-3, 3 Max Horiz 1=-99 (LC Max Uplift 1=-11 (LC 4=-154 (L)	applied or 6-0-0 oc 3=7-9-3, 4=7-9-3 : 10) : 26), 3=-11 (LC 25),	9) 10 LC	 * This truss h on the bottor 3-06-00 tall h chord and ar All bearings Provide mec bearing plate 	ad nonconcurrer has been design n chord in all an yy 2-00-00 wide yy other membe are assumed to hanical connect e capable of with : at joint 3 and 1 Standard	ed for a live eas where will fit betw rs. be SP No. ion (by oth standing f	e load of 20.0 a rectangle veen the both 2. ers) of truss t 1 lb uplift at j	Opsf tom to					

4=-154 (LC 12) 1=67 (LC 25), 3=67 (LC 26), 4=546 Max Grav (LC 1) FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD 1-2=-118/211, 2-3=-118/205

BOT CHORD 1-4=-220/188, 3-4=-220/188 2-4=-433/247 WEBS

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=40ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- As requested, plates have not been designed to provide 4) for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- Gable requires continuous bottom chord bearing. 5)
- 6) Gable studs spaced at 4-0-0 oc.

minin April 3,2025

GI

1111111

SEAL

036322

11111111111

C

Station of the state

Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	CV7	Valley	1	1	Job Reference (optional)	172489027

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Thu Apr 03 07:05:15 ID:2jcpCOQO7Np3kcr2apTTtNzUW4W-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff Page: 1

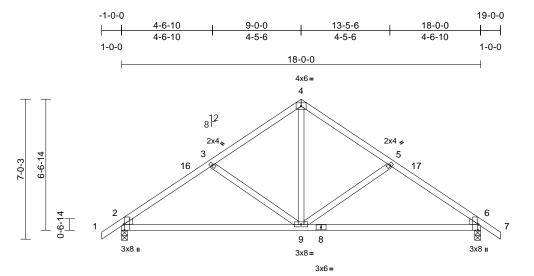
2-6-10 5-1-3 2-6-10 2-6-10 5-1-3 3x6 = 2 2-6-14 12 12 ┌ 3 1 2-0-C 4 2x4 💊 2x4 / 2x4 🛛

5-1-3

Scale	= 1:27.3	

00010 - 112110														
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/T	FPI2014	CSI TC BC WB Matrix-MP	0.07 0.09 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%	
	5-1-3 oc purlins. Rigid ceiling directly bracing.	3=5-1-3, 4=5-1-3 C 8) 13), 4=-69 (LC 12)	d or 9) / 10) F LOA	chord live loa * This truss h on the botton 3-06-00 tall b chord and an All bearings a Provide mech		with any I for a liv s where II fit betw e SP No. n (by oth	other live load e load of 20.0 a rectangle veen the botto 2. ers) of truss to	ipsf om o						
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Con Tension 1-2=-53/98, 2-3=-53 1-4=-105/79, 3-4=-1 2-4=-195/76	/88												
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=1030 II; Exp B; E and C-C E & MWFRS grip DOL= 3) Truss desi only. For s see Standa or consult 4) As request for placem conditions. increase pi 5) Gable requ	ed roof live loads have ZE 7-16; Vult=130mph mph; TCDL=6.0ps; B Enclosed; MWFRS (er xterior(2E) zone;C-C 6 for reactions shown;	(3-second gust) CDL=6.0psf; h=40ft; ivelope) exterior zon for members and forr Lumber DOL=1.60 p i the plane of the trus (normal to the face) d Details as applicab gner as per ANSI/TP een designed to prov h handling and erect y of the fabricator to or these factors.	Cat. e xes late s , le, l 1. ide							Manifi Maria	9 T	SEA 0363	•	Manunna

- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) As requested, plates have not been designed to provide
- for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors. Gable requires continuous bottom chord bearing. 5)
- 6) Gable studs spaced at 2-0-0 oc.
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



GI 11111111 April 3,2025

Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	D1	Common	6	1	Job Reference (optional)	172489028

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Thu Apr 03 07:05:16 ID:2R4NdaDk78fTB?2n4kgThozUW4n-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	9-0-0	18-0-0 9-0-0	
Scale = 1:57.8		000	
Plate Offsets (X, Y): [2:0-3-8,Edge], [6:0-3-8,Edge]			

	(;;; ;): [2:0 0 0;20g0];				_							
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.26	Vert(LL)	-0.09	9-15	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.68	Vert(CT)	-0.19	9-15	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.20	Horz(CT)	0.02	6	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-MS	-						Weight: 89 lb	FT = 20%
LUMBER			5) * This tru	ss has been designe	ed for a liv	e load of 20.0	Opsf					
TOP CHORD	2x4 SP No.2			ttom chord in all are								
BOT CHORD				all by 2-00-00 wide v		veen the botto	om					
WEBS	2x4 SP No.3			d any other members								
WEDGE	Left: 2x4 SP No.3			gs are assumed to b								
	Right: 2x4 SP No.3			nechanical connection								
BRACING			0 and 10	late capable of withs	standing 1	26 Ib uplift at	joint					
TOP CHORD		athing directly applie		6 lb uplift at joint 6.								
	5-10-8 oc purlins.			(S) Standard								
BOT CHORD	0 0 ,	applied or 10-0-0 o	C									
	bracing.											
REACTIONS												
	Max Horiz 2=179 (LC	,										
	Max Uplift 2=-126 (L		13)									
	Max Grav 2=780 (LC	C 1), 6=780 (LC 1)										
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension											
TOP CHORD												
	4-5=-736/166, 5-6=-											
BOT CHORD												
WEBS	4-9=-54/512, 5-9=-2	95/198, 3-9=-295/19	97									
NOTES											minin	1111.
	ed roof live loads have	been considered fo	or								IN TH CA	ROUL
this desig										1	a	- Alle
	CE 7-16; Vult=130mph		a .							~	O'.EESS	6:14.
	3mph; TCDL=6.0psf; B									3		NAMA
	Enclosed; MWFRS (en								<u> </u>	U		
	Exterior(2E) -1-0-0 to 3- terior(2R) 9-0-0 to 13-6								-		054	1 1 3
	zone;C-C for members										SEA	L : E
	ons shown; Lumber DO								=		0363	22 E
DOL=1.60											. 0000	: 5
	sted, plates have not be	een designed to pro	vide							-	N.	1 3
, ,	ment tolerances or roug	0 1								2.	N.ENO.	Rik S

nt tolerances or rough conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

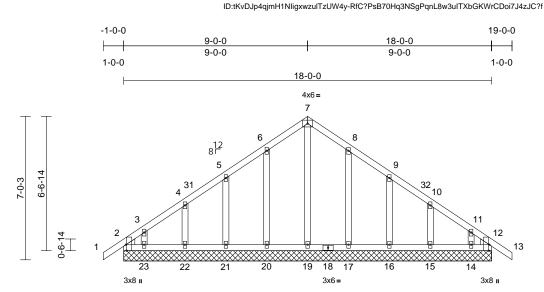
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

A. GILBER

.. GILD

April 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

C

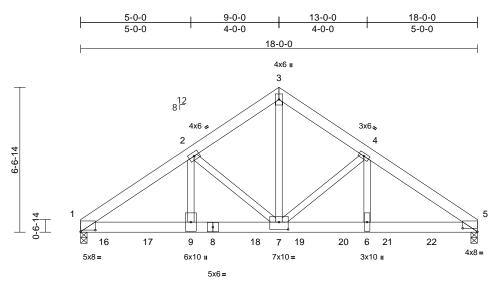
Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	D1E	Common Supported Gable	1	1	Job Reference (optional)	172489029

Page: 1

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

Scale = 1:56.4						18-0	-0					4	
Plate Offsets	(X, Y): [2:0-3-8,Edg	e], [12:0-3-8,Edge]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MS	0.07 0.03 0.10	Vert(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 105 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins. Rigid ceiling direct bracing. (size) 2=18-0 15=18-0 19=18-0 22=18-0	neathing directly appli tly applied or 10-0-0 c 0, 12=18-0-0, 14=18- 0-0, 16=18-0-0, 17=18 0-0, 20=18-0-0, 21=18 0-0, 23=18-0-0	N(1) ied or 2) oc -0-0, 8-0-0,	this design Wind: ASC Vasd=103 II; Exp B; E and C-C C to 9-0-0, C to 19-0-0 z	7-19=-140/22, 6- 5-21=-130/112, 4 3-23=-104/110, 8 9-16=-130/112, 1 11-14=-99/109 d roof live loads ha E 7-16; Vult=130m mph; TCDL=6.0psf Enclosed; MWFRS orner(3E) -1-0-0 to orner(3R) 9-0-0 to onne;C-C for memb is shown; Lumber	-22=-138 -17=-140 0-15=-13 ave been pph (3-sec ; BCDL=6 (envelope 3-6-6, E) 13-6-6, E ers and fo	/132, /109, 8/132, considered fc cond gust) 6.0psf; h=40ft e) exterior 200 cterior(2N) 3-1 xterior(2N) 11 borces & MWF	; Cat. ne 6-6 3-6-6	bea 2, 2 at jo 74 l join	uring pla 2 lb upli pint 21, 1b uplift a t 15, 78 lb uplift a	te capa ft at joi 74 lb uj at joint lb uplif at joint	able of withstandir int 12, 75 lb uplift plift at joint 22, 88 17, 74 lb uplift at ft at joint 14, 67 lb 12.	others) of truss to ng 67 lb uplift at joint at joint 20, 74 lb upli 3 lb uplift at joint 23, joint 16, 74 lb uplift o uplift at joint 2 and
	14=-78 16=-74 20=-75 22=-74 Max Grav 2=153 (LC 11) _C 8), 12=-22 (LC 9), (LC 13), 15=-74 (LC (LC 13), 17=-74 (LC (LC 12), 21=-74 (LC (LC 12), 23=-88 (LC LC 20), 12=127 (LC (LC 20), 15=180 (LC	13), 13), 12), 12) 4) 1),	Truss desi only. For s see Standa or consult As request for placem	gned for wind loads studs exposed to w ard Industry Gable qualified building d ed, plates have no ent tolerances or ro It is the responsit	ind (norm End Deta esigner a t been de ough hand	al to the face ils as applica s per ANSI/TI signed to pro dling and ered	e), Ible, PI 1. ovide ction					11177

		22=-74 (LC 12), 23=-88 (LC 12)
	Max Grav	2=153 (LC 20), 12=127 (LC 1),
		14=123 (LC 20), 15=180 (LC 20),
		16=170 (LC 20), 17=181 (LC 20),
		19=168 (LC 22), 20=182 (LC 19),
		21=169 (LC 19), 22=179 (LC 19),
		23=135 (LC 19)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/33,	2-3=-170/134, 3-4=-124/116,
	4-5=-107/	/93, 5-6=-92/122, 6-7=-105/196,
	7-8=-105/	(196, 8-9=-67/122, 9-10=-60/47,
	10-11=-79	9/53, 11-12=-125/68, 12-13=0/33
BOT CHORD	2-23=-81/	(160, 22-23=-60/160,
	21-22=-60	0/160, 20-21=-60/160,
	19-20=-60	0/160, 17-19=-60/160,
	16-17=-60	0/160, 15-16=-60/160,
	14-15=-60	0/160, 12-14=-60/160


- increase plate sizes to account for these factors.
- 5) All plates are 2x4 (||) MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 6)
- Gable studs spaced at 2-0-0 oc. 7)
- This truss has been designed for a 10.0 psf bottom 8) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be SP No.2 .

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	D1G	Common Girder	1	3	Job Reference (optional)	172489030

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Thu Apr 03 07:05:16 ID:0TJE1U?JMuEgRzmRhwQHqAzUVc4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

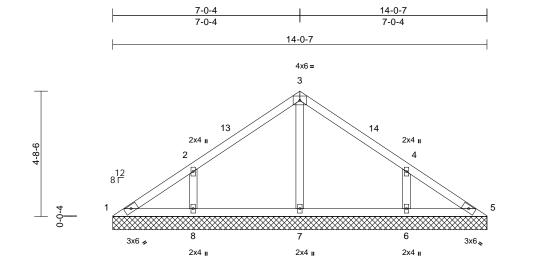
	5-0-0	9-0-0	13-0-0	18-0-0	
	5-0-0	4-0-0	4-0-0	5-0-0	
Scale = 1:52.3					

Plate Offsets (X, Y): [1:0-8-0,0-0-14], [5:0-8-0,0-1-14], [7:0-5-0,0-4-0]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.40	Vert(LL)	-0.07	(100)	>999	240	MT20	244/190
TCDL	20.0 10.0	Lumber DOL	1.15		BC	0.40	Vert(LL)	-0.07	7-9	>999	180	101120	244/190
BCLL	0.0*	Rep Stress Incr	NO		WB	0.90	Horz(CT)	0.05	5	>999 n/a	n/a		
						0.00	11012(01)	0.05	5	n/a	n/a	Woight: 276 lb	ET - 200/
BCDL	10.0	Code	IRC20	21/1912014	Matrix-INS				-			weight: 376 lb	F1 = 20%
WEBS 2x4 SP No.3 BRACING	*Exce od shư ns. 0-3-8, -161 ((4-66 ((8523 () 8523 () 9 9 () 9 9 () 9 9 () 9 () 9 () 9 ()	LC 9) LC 15), 5=6828 (LC 1 npression/Maximum -7359/246, =-10105/574 9575, 6-7=-417/8409, =-376/3262, 2-9=0/48 8102/551 ether with 10d s: 2x6 - 2 rows lows: 2x6 - 3 rows - 1 row at 0-9-0 oc, s staggered at 0-4-0 oc, s s staggered at 0-4-0 o	4 d or 6 6) 8 9 .15, 1 15, 1 .15, 1 .15, 1 .15, 1 .15, 1 .15, 1 .15, 1 .15, 1 .15, 1 .15, 1	 Vasd=103m/ II; Exp B; En Lumber DOL As requester for placemer conditions. I increase pla This truss ha chord live loo; * This truss ha on the bottor 3-06-00 tall II chord and ar Bearings are SP No.2. Provide mer bearing plate 5. Hanger(s) or provided suf Ib down at 1 down at 5-0 1437 Ib dow and 193 Ib u 11-11-4, and and 1437 Ib chord. The o (s) is the res OAD CASE(S) Dead + Ron Plate Increa: Uniform Lo Vert: 1-3. Concentrat Vert: 8=- 17=-172 	of Live (balanced) ase=1.15	BCDL=6 (envelope) DOL=1.6(been de uigh hand ility of the t for these for a 10.1 with any d for a liv with any d for a liv as where ill fit betv s. Joint 1 SI on (by oth tanding 4 d device(s concentra wn at 3-1 h and 180 t 7-11-4, 7 lb down d 193 lb up at 15- of such cc rs. : Lumber -13=-20 9 (F), 16= F), 19=-12	:.0psf; h=40fi e) exterior zo) signed to pro ling and ere e fabricator to e factors.) psf bottom other live loz e load of 20. a rectangle veen the bott P DSS , Join' ers) of truss (66 lb uplift a) shall be ated load(s) ' -12, 1798 lb Ub up at 5-1 1437 lb dow and 193 lb u up at 13-11- 11-4 on bott innection dev	ne; vvide ction opsf om t 5 to t joint 1798 1-4, n p at 4, om vice 15,				100000	ROLL 22

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	DV1	Valley	1	1	Job Reference (optional)	172489031


Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Thu Apr 03 07:05:17 ID:SCAEYAedQPcHRcNZGfpDlgzUW5X-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

GRIP

244/190

FT = 20%

14-0-7

Scale	- 1	.43	2

FORCES

TOP CHORD

BOT CHORD

this design.

grip DOL=1.60

WEBS

NOTES

2)

3)

(lb) - Maximum Compression/Maximum

1-2=-136/118, 2-3=-93/134, 3-4=-74/133,

3-7=-220/31, 2-8=-270/281, 4-6=-269/280

1-8=-48/117, 7-8=-48/97, 6-7=-48/97,

Tension

4-5=-103/82

5-6=-48/97

1) Unbalanced roof live loads have been considered for

Wind: ASCE 7-16; Vult=130mph (3-second gust)

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=40ft; Cat.

and C-C Corner(3E) 0-0-6 to 4-6-12, Exterior(2N) 4-6-12 to 7-0-10, Corner(3R) 7-0-10 to 11-7-0, Exterior(2N)

II; Exp B; Enclosed; MWFRS (envelope) exterior zone

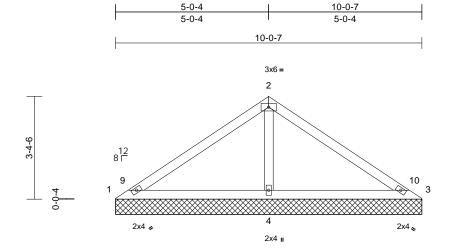
11-7-0 to 14-0-13 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate

Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable

or consult qualified building designer as per ANSI/TPI 1.

Loading 2-0-0 CSI DEFL l/defl L/d PLATES (psf) Spacing in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.19 Vert(LL) n/a 999 MT20 n/a BC TCDI 10.0 1 15 Lumber DOL 0.11 Vert(TL) n/a n/a 999 BCLL 0.0* Rep Stress Incr YES WB 0.09 Horiz(TL) 0.00 5 n/a n/a BCDL 10.0 Code IRC2021/TPI2014 Matrix-MS Weight: 55 lb LUMBER As requested, plates have not been designed to provide 4) 2x4 SP No.2 for placement tolerances or rough handling and erection TOP CHORD 2x4 SP No.2 conditions. It is the responsibility of the fabricator to BOT CHORD increase plate sizes to account for these factors. 2x4 SP No.3 OTHERS Gable requires continuous bottom chord bearing. 5) BRACING Gable studs spaced at 4-0-0 oc. 6) TOP CHORD Structural wood sheathing directly applied or 7) This truss has been designed for a 10.0 psf bottom 6-0-0 oc purlins. chord live load nonconcurrent with any other live loads. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc 8) * This truss has been designed for a live load of 20.0psf bracing. on the bottom chord in all areas where a rectangle **REACTIONS** (size) 1=14-0-7, 5=14-0-7, 6=14-0-7, 3-06-00 tall by 2-00-00 wide will fit between the bottom 7=14-0-7, 8=14-0-7 chord and any other members. Max Horiz 1=-121 (LC 8) All bearings are assumed to be SP No.2 . 9) Max Uplift 1=-17 (LC 13), 6=-148 (LC 13), 10) Provide mechanical connection (by others) of truss to 8=-150 (LC 12) bearing plate capable of withstanding 17 lb uplift at joint Max Grav 1=100 (LC 20), 5=86 (LC 1), 6=352 1, 150 lb uplift at joint 8 and 148 lb uplift at joint 6. (LC 20), 7=299 (LC 1), 8=355 (LC LOAD CASE(S) Standard 19)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	DV2	Valley	1	1	Job Reference (optional)	172489032

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Thu Apr 03 07:05:17 ID:_TZ?CCCggeCFkECqjpg0qlzUW64-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

10-0-7

Scale = 1:37.7	Sca	le =	1:37.7
----------------	-----	------	--------

Loading TCLL (roof) TCDL BCLL		(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.29 0.26 0.14	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL		10.0	Code	IRC2021/	TPI2014	Matrix-MS							Weight: 35 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	10-0-0 oc pu Rigid ceiling bracing. (size) 1: Max Horiz 1: Max Uplift 1: 4: Max Grav 1:	2 3 urlins. g directly =10-0-7, =-86 (LC =-28 (LC =-130 (L)	26), 3=-28 (LC 25),	6) 7) 8) or 9) 10) LOA	Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings Provide mec bearing plate	es continuous b spaced at 4-0-0 is been designe ad nonconcurren has been designe ad been designe has been designe by 2-00-00 wide by other membe are assumed to hanical connect e capable of with at joint 3 and 1 Standard	oc. d for a 10.0 ht with any hed for a liv eas where will fit betw rs. be SP No. ion (by oth histanding 2	0 psf bottom other live loa e load of 20.0 a rectangle veen the botto 2. ers) of truss to 8 lb uplift at jo	0psf om to					
FORCES	(lb) - Maxim Tension	um Com	pression/Maximum											
TOP CHORD BOT CHORD	1-2=-127/34 1-4=-262/18	,												
WEBS	2-4=-571/28	30												
1) Unbalance	ed roof live loa	ide have	been considered for											

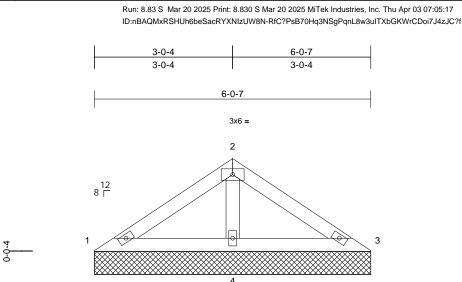
1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=40ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 4-6-12, Interior (1) 4-6-12 to 5-0-10, Exterior(2R) 5-0-10 to 9-7-0, Interior (1) 9-7-0 to 10-0-13 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- As requested, plates have not been designed to provide 4) for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

ORT COLUMN AND AND WILLING THE SEAL 036322 GI minin April 3,2025

MITTI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	DV3	Valley	1	1	Job Reference (optional)	172489033

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Thu Apr 03 07:05:17

2x4 。

Page: 1

2x4 🛛

6-0-7

2x4 🦽

Scale = 1:25.2				I										
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.11	Vert(TL)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.05	Horiz(TL)	0.00	3	n/a	n/a			
BCDL	10.0	Code	IRC202	1/TPI2014	Matrix-MP							Weight: 20 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she	athing directly applie	7) 8) ed or	chord live lo * This truss on the botto 3-06-00 tall chord and a	as been designed oad nonconcurrer has been design om chord in all are by 2-00-00 wide any other member	nt with any ed for a liv eas where will fit betw rs.	other live loa e load of 20. a rectangle veen the bott	0psf						

TOP CHORD	Structural 6-0-7 oc p	l wood sheathing directly applied or ourlins.	9)
BOT CHORD	Rigid ceili bracing.	ing directly applied or 6-0-0 oc	10) F
REACTIONS	· · ·	1=6-0-7, 3=6-0-7, 4=6-0-7 1=50 (LC 9)	LOA
		1=50 (LC 9) 1=-6 (LC 12), 3=-14 (LC 13), 4=-59	
		(1 C 10)	

2-0-6

(LC 12) Max Grav 1=68 (LC 25), 3=68 (LC 26), 4=381 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-65/143, 2-3=-65/143

BOT CHORD 1-4=-131/124, 3-4=-131/124 2-4=-252/159

WEBS

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=40ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- As requested, plates have not been designed to provide 4) for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- Gable requires continuous bottom chord bearing. 5)
- 6) Gable studs spaced at 2-0-0 oc.

- hord and any other members
- All bearings are assumed to be SP No.2 .
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 6 lb uplift at joint 1, 14 lb uplift at joint 3 and 59 lb uplift at joint 4.

AD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	E1	Common	2	1	Job Reference (optional)	172489034

ID:8uSurqHx6oAp9oYHvvKjumzUW8Z-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x6 =

Page: 1

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

-1-0-0 6-0-0 11-7-12 6-0-0 5-7-12 1-0-0 11-7-12 4x6 = 12 4 Г 3 14 1 13 2-4-14 2-7-11 12 15 4 0-6-4 0 \mathbb{R} Ø 5

2x4 II

3x6 =

			1		6-0-0		1	11-	7-12				
Scale = 1:39.4					6-0-0		1		'-12		1		
Scale = 1.39.4							· · · ·						
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) TCDL	20.0	Plate Grip DOL	1.15		TC BC	0.44 0.41	Vert(LL) Vert(CT)	0.05	5-11 5-11	>999	240 180	MT20	244/190
BCLL	10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 YES		WB	0.41	Horz(CT)	-0.09 0.01	5-11 4	>999 n/a	n/a		
BCDL	10.0	Code		/TPI2014	Matrix-MS	0.10	11012(01)	0.01	7	n/a	n/a	Weight: 41 lb	FT = 20%
I	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shea 5-9-9 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 4 Max Horiz 2=51 (LC Max Uplift 2=-130 (LI Max Grav 2=528 (LC	applied or 9-3-6 oc =0-3-8 12) C 8), 4=-81 (LC 9)	6) 7) d or	on the botton 3-06-00 tall I chord and an All bearings Provide med bearing plate	has been designed n chord in all areas y 2-00-00 wide wi y other members. are assumed to be hanical connectior e capable of withsta uplift at joint 2. Standard	s where Il fit betw SP No. a (by oth	a rectangle veen the botto 2. ers) of truss t	om					
FORCES	(lb) - Maximum Com												
TOP CHORD BOT CHORD WEBS NOTES	Tension 1-2=0/19, 2-3=-814/4 2-5=-366/725, 4-5=-3 3-5=0/251												
	d roof live loads have	been considered for											
Vasd=103r II; Exp B; E and C-C E2 6-0-0, Exte 11-7-12 zoi for reaction DOL=1.60 3) As request for placeme conditions. increase pl 4) This truss f	E 7-16; Vult=130mph mph; TCDL=6.0psf; B(inclosed; MWFRS (en xterior(2E) -1-0-0 to 3- rior(2R) 6-0-0 to 10-6- ne;C-C for members a is shown; Lumber DO ed, plates have not be ent tolerances or roug It is the responsibility ate sizes to account for has been designed for oad nonconcurrent with	CDL=6.0psf; h=40ft; velope) exterior zon 6-6, Interior (1) 3-6-6 6, Interior (1) 10-6-6 Ind forces & MWFRS L=1.60 plate grip een designed to prov h handling and erect of the fabricator to or these factors. a 10.0 psf bottom	e 5 to 5 S ide ion								No. Contraction of the second	SEA 0363	

- 3) As requested, plates have not been designed to provide As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors. This truss has been designed for a 10.0 psf bottom bend live load encouncement with encounters live load
- 4) chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G un un un April 3,2025

Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	E1E	Common Supported Gable	1	1	Job Reference (optional)	172489035

ID:0fhPgCKRA0gFeQr28lOf2czUW8V-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

-1-0-0 13-0-0 6-0-0 12-0-0 6-0-0 6-0-0 1-0-0 1-0-0 12-0-0 4x6 = 12 4 Г 4 2x4 II 2x4 II 4 3 5 2-4-14 2-7-11 Þ 18 19 6 2 -4-14 10 9 8 3x6 = 3x6 = 2x4 🛛 2x4 🛛 2x4 🛛

Scale =	1:38.5
---------	--------

12-0-0

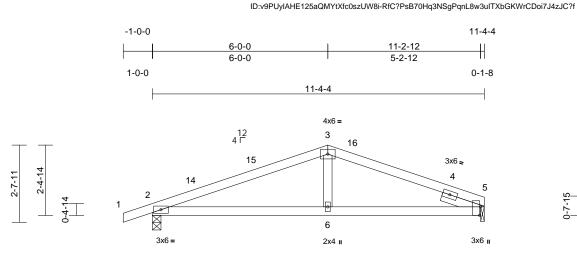
Scale = 1:38.5													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.36	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.23	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.09	Horz(CT)	-0.01	17	n/a	n/a		
BCDL	10.0	Code	IRC2021/	FPI2014	Matrix-MS							Weight: 46 lb	FT = 20%
LUMBER			4)	As requested	l, plates have not	been de	signed to pro	vide					
TOP CHORD	2x4 SP No.2				t tolerances or ro								
BOT CHORD	2x4 SP No.2				t is the responsibi)					
OTHERS	2x4 SP No.3				e sizes to accoun								
BRACING					es continuous bot		d bearing.						
TOP CHORD		eathing directly appli			spaced at 2-0-0 o s been designed) psf bottom						
	8-5-5 oc purlins.		,		ad nonconcurrent			ads.					
BOT CHORD	bracing.	y applied or 6-0-0 oc	8)	* This truss h	as been designed	d for a liv	e load of 20.						
REACTIONS), 6=12-0-0, 8=12-0-0			n chord in all area y 2-00-00 wide w			om					
), 10=12-0-0			y other members			om					
	Max Horiz 2=-42 (L	,	9)		are assumed to be		2.						
	Max Uplift 2=-95 (L		¹ , 10)		hanical connection			to					
	9=-70 (L Max Grav 2=120 (L	C 9), 10=-92 (LC 12)		bearing plate	capable of withst	tanding §	5 lb uplift at j	joint					
		=285 (LC 1), 10=364	1/10		at joint 9, 92 lb u		nt 10, 120 lb	uplift					
	1)	-200 (20 1), 10-00-	`		95 lb uplift at join	it 2.							
FORCES	(lb) - Maximum Cor Tension	mpression/Maximum	LUA	D CASE(S)	Standard								
TOP CHORD		/561, 3-4=-363/520,											
	,	-456/565, 6-7=0/19											
BOT CHORD	2-10=-495/507, 9-1	0=-495/507,											
	8-9=-495/507, 6-8=												
WEBS	4-9=-340/266, 3-10	=-237/295, 5-8=-261	/310									, mining	11111
NOTES												WAH CA	ROUL
,	ed roof live loads have	e been considered fo	or								N	NITH CA	311/2
this design		h (0								/	52	THE POS	M. and
	CE 7-16; Vult=130mp mph; TCDL=6.0psf; E		· Cat							2		<u> </u>	RAN
	Enclosed; MWFRS (e												1 N N E -
	Corner(3E) -1-0-0 to 3									-		SEA	
	Corner(3R) 6-0-0 to 10									=			• –
	zone;C-C for member											0363	22 : 2
for reaction	ns shown; Lumber Do	OL=1.60 plate grip									2 0	1	1
DOL=1.60)										5	A. A.	all S
	igned for wind loads i											SA SAGIN	FERMAN
	studs exposed to win										11	710	THE AND
see Stand	ard Industry Gable E	nd Details as applica	ble,								1	IL A C	BEIN

DOL=1.60 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G minin

April 3,2025



Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	E2	Common	2	1	Job Reference (optional)	172489036

Page: 1

0-7-15

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

	6-0-0	11-2-12
	6-0-0	5-2-12
Scale = 1:39.4		
Plate Offsets (X, Y): [5:0-3-8,Edge]		

Plate Offsets ()	X, Y): [5:0-3-8,Edge]												
Loading TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORD	(psf) 20.0 10.0 0.0* 10.0 2x4 SP No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code			CSI TC BC WB Matrix-MS mas been designed n chord in all area		Vert(CT) Horz(CT) e load of 20.	in 0.05 -0.09 0.01 0psf	(loc) 6-13 6-13 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 41 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Right 2x4 SP No.3 Structural wood she 5-11-9 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 5 Max Horiz 2=54 (LC Max Uplift 2=-128 (L	athing directly applie applied or 9-3-8 oc 5=0-1-8 12) C 8), 5=-77 (LC 9)	8)	3-06-00 tall to chord and an Bearings are SP No.3. Bearing at jo using ANSI/T designer sho Provide mect bearing plate Provide mect bearing plate	y 2-00-00 wide w by other members. assumed to be: J int(s) 5 considers IPI 1 angle to grai build verify capacity hanical connection at joint(s) 5. hanical connection e capable of withst uplift at joint 2.	ill fit betv loint 2 SI parallel t n formula y of beari n (by oth n (by oth	veen the bott P No.2 , Joint to grain value a. Building ing surface. ers) of truss to ers) of tr	t 5 e to to					
FORCES TOP CHORD BOT CHORD WEBS	Max Grav 2=512 (LC (lb) - Maximum Com Tension 1-2=0/19, 2-3=-755/- 2-6=-362/668, 5-6=- 3-6=0/233	apression/Maximum 452, 3-5=-742/468	LO	AD CASE(S)	Standard								
 this design Wind: ASC Vasd=1037 II; Exp B; E and C-C E: 6-0-0, Exte to 11-2-12 for reaction DOL=1.60 As request for placement 	d roof live loads have E 7-16; Vult=130mph mph; TCDL=6.0psf; Bd inclosed; MWFRS (er xterior(2E) -1-0-0 to 3- zone;C-C for member hs shown; Lumber DO red, plates have not be ent tolerances or roug It is the responsibility	(3-second gust) CDL=6.0psf; h=40ft; ivelope) exterior zone 6-6, Interior (1) 3-6- -15, Interior (1) 10-5- rs and forces & MWF IL=1.60 plate grip seen designed to prov h handling and erect	e 5 to 15 RS ide							M. HILLING	i	SEA 0363	

increase plate sizes to account for these factors. 4) This truss has been designed for a 10.0 psf bottom

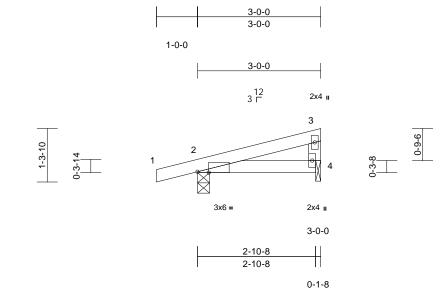
chord live load nonconcurrent with any other live loads.

818 Soundside Road Edenton, NC 27932

G 1111111 April 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	M1	Monopitch	3	1	Job Reference (optional)	172489037


-1-0-0

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

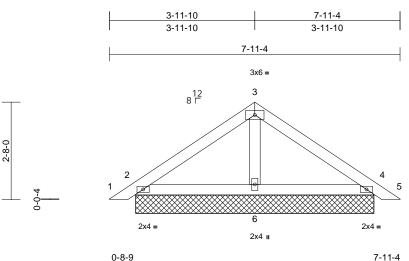
Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Thu Apr 03 07:05:18 ID:74tc8Ogx77l2Yz8TQivmJ?zUW9M-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

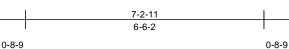
Page: 1

Scale = 1:28.1

Plate Offsets (X, Y): [2:0-3-4,Edge]

	, , [, -3-]											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	0.00	4-7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	-0.01	4-7	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-MP	-						Weight: 11 lb	FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 3-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-3-8, Max Horiz 2=44 (LC Max Uplift 2=-74 (LC	cept end verticals. y applied or 10-0-0 o 4=0-1-8 8)	ed or c t t t t t t t t t t t t t t t t t t	at joint(s) 4 considers ISI/TPI 1 angle to gra should verify capaci mechanical connectio plate at joint(s) 4. mechanical connectio plate capable of withs blo uplift at joint 2. (S) Standard	ain formul ty of bear on (by oth on (by oth	a. Building ing surface. ers) of truss t ers) of truss t	to					
	Max Grav 2=185 (Lt (lb) - Maximum Con	C 1), 4=104 (LC 1)										
FURGES	Tension	ipression/iviaximum										
TOP CHORD	1-2=0/15, 2-3=-65/1	4, 3-4=-65/81										
BOT CHORD	2-4=-33/68											
NOTES												
1) Unbalance this design	d roof live loads have	been considered fo	r									
 Wind: ASC Vasd=103r II; Exp B; E and C-C E: & MWFRS grip DOL=' 	E 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er xterior(2E) zone;C-C for reactions shown; 1.60	CDL=6.0psf; h=40ft; nvelope) exterior zor for members and for Lumber DOL=1.60 p	ne rces blate							A.L.	ORTH CA	ROLING
for placeme conditions.	ed, plates have not b ent tolerances or roug It is the responsibilit ate sizes to account f	h handling and erec y of the fabricator to	ction							V	SEA	
	has been designed fo								=	:	0363	22 ; =
chord live l	oad nonconcurrent w	ith any other live loa							-	6		1 E
on the bott 3-06-00 tal	s has been designed f om chord in all areas I by 2-00-00 wide will any other members.	where a rectangle								111111	A KNGIN	EER
	re assumed to be: Jo	int 2 SP No.2 , Joint	4								10000	ril 3 2025


April 3,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	PB1	Piggyback	13	1	Job Reference (optional)	172489038

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Thu Apr 03 07:05:18 ID:qSQY5BNunljSfHJs0fU8LyzUW9k-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

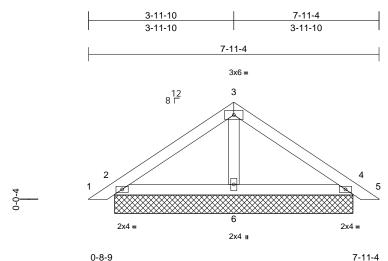
Scale = 1:31.5

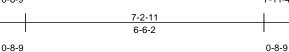
-		· · · · · · · · · · · · · · · · · · ·				i					i	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.14	Vert(CT)	n/a		n/a	999	-	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2021/TPI2014	Matrix-MP	0.02		0.00				Weight: 27 lb	FT = 20%
		0000		induity in							troigini 21 io	
LUMBER TOP CHORD BOT CHORD	2x4 SP No.2		 This truss chord live 	ds spaced at 2-0-0 o has been designed load nonconcurrent	for a 10. with any	other live loa						
OTHERS	2x4 SP No.3			s has been designed			0psf					
BRACING				ttom chord in all area								
TOP CHORD	Structural wood she 6-0-0 oc purlins.	• • • •	chord and	all by 2-00-00 wide w I any other members	-		om					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	10) Provide n	gs are assumed to be nechanical connection	n (by oth	ers) of truss t						
	(size) 2=6-6-2, 4 Max Horiz 2=-67 (LC Max Uplift 2=-45 (LC (LC 12) Max Grav 2=177 (LC (LC 1)	(LC 13), 4=-54 (LC 13),	2, 54 lb u joint 2 an 6=-6 11) See Stan Detail for	ate capable of withst blift at joint 4, 6 lb up d 54 lb uplift at joint 4 dard Industry Piggyba Connection to base t ualified building desig	lift at joir I. ack Trus truss as a	t 6, 45 lb upli s Connection	ft at					
FORCES	(Ib) - Maximum Corr	pression/Maximum	LOAD CASE	S) Standard								
FORCES	Tension	pression/maximum										
TOP CHORD	1-2=0/16, 2-3=-113/	88 3-4=-109/88										
	4-5=0/16											
BOT CHORD	2-6=-22/60, 4-6=-15	/60										
WEBS	3-6=-93/21											
NOTES												
	ed roof live loads have	been considered for										
this design											minin	11111
	CE 7-16; Vult=130mph	(3-second gust)									WAH CA	Bally
Vasd=103	mph; TCDL=6.0psf; B	CDL=6.0psf; h=40ft;	Cat.							N.	R	C. Kill
	Enclosed; MWFRS (er										UFESO	10 ····
	xterior(2E) zone;C-C								4	15	it e	
	for reactions shown;	Lumber DOL=1.60 p	late							-		
grip DOL=									-		SEA	1 1 2
	igned for wind loads in									:	SLA	· · ·
	studs exposed to wind								=	:	0363	22 : =
	ard Industry Gable En								-			1 2
	qualified building desi ted, plates have not be									-	S	- 1 - E -
	ient tolerances or roug									11	N. SNOW	-ERIAS
	. It is the responsibility									1	S, GIN	Et AN
	late sizes to account f									1	SEA 0363	BEIN

- grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- As requested, plates have not been designed to provide 4) for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 5) Gable requires continuous bottom chord bearing.

GI minin

April 3,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	PB1E	Piggyback	2	1	Job Reference (optional)	172489039

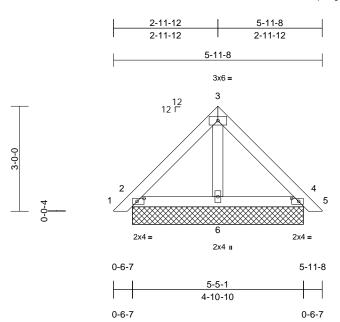
2-8-0

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries. Inc. Thu Apr 03 07:05:18 ID:X6VudoIVQbrSKCGW5hsVZTzUW9r-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.5

						_							
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.14	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.02	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC20	21/TPI2014	Matrix-MP							Weight: 27 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=6-6-2, Max Horiz 2=-67 (LC Max Uplift 2=-45 (LC (LC 12)	applied or 10-0-0 o 4=6-6-2, 6=6-6-2 C 10)	ed or c S	 This truss ha chord live loa This truss h on the bottor 3-06-00 tall l chord and ar All bearings Provide mec bearing plate 2, 54 lb upliff joint 2 and 5 See Standar 	spaced at 2-0-0 is been designed ad nonconcurren has been designed n chord in all are by 2-00-00 wide how other member are assumed to 1 hanical connecti e capable of with t at joint 4, 6 lb u 4 lb uplift at joint d Industry Piggy nnection to base	d for a 10.0 tt with any ed for a liv eas where will fit betw rs. be SP No. on (by oth standing 4 plift at join 4. back Trus	other live loa e load of 20.1 a rectangle veen the botti 2. ers) of truss t 5 lb uplift at j t 6, 45 lb upli s Connection	Opsf om oo oint ft at					
	Max Grav 2=177 (L0 (LC 1)	5 1), 4=177 (LC 1), 1			fied building des	igner.							
FORCES	(lb) - Maximum Com Tension	pression/Maximum	1	-OAD CASE(S)	Sianuaru								
TOP CHORD	1-2=0/16, 2-3=-113/ 4-5=0/16	88, 3-4=-109/88,											
BOT CHORD WEBS	2-6=-22/60, 4-6=-15 3-6=-93/21	/60											
NOTES													
 Unbalance this design Wind: ASC Vasd=103 	ed roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed; MWFRS (er	i (3-second gust) CDL=6.0psf; h=40ft;	; Cat.								A	NITH CA	NRO NIL


- II, EXP B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face),
- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. As requested, plates have not been designed to provide 4)
- for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 5) Gable requires continuous bottom chord bearing.

VIIIIIII SEAL 036322 ALTER DE LE GI minin April 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	PB2	Piggyback	3	1	Job Reference (optional)	172489040

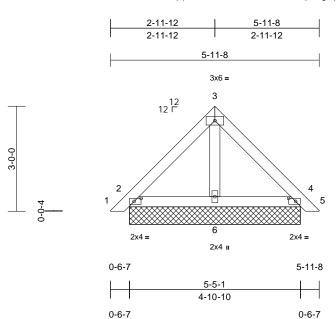
Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Thu Apr 03 07:05:18 ID:Cu4ZxmV98RPsG5rMGSk5NTzUWEk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:32.9

Plate Offsets (X, Y): [2:0-2-6,0-1-0], [4:0-2-6,0-1-0]

	λ, τ). [2.0-2-0,0-1-0],	[4.0 2 0,0 1 0]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	21/TPI2014	CSI TC BC WB Matrix-MP	0.13 0.14 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
	Max Horiz 2=-75 (LC Max Uplift 2=-32 (LC (LC 12) Max Grav 2=143 (LC	applied or 10-0-0 or 0, 4=4-10-10, 6=4-1(0, 10) 0, 13), 4=-37 (LC 13),	c 9 0-10 1 , 6=-1	 Gable studs This truss ha chord live loa * This truss f on the bottor 3-06-00 tall b chord and ar All bearings a Provide mec bearing plate 2, 37 lb uplift joint 2 and 3 See Standard 	es continuous bott spaced at 2-0-0 or s been designed f ad nonconcurrent has been designed n chord in all area by 2-00-00 wide wi yo other members. are assumed to be hanical connection capable of withst at joint 4, 1 lb upl 7 lb uplift at joint 4 d Industry Piggyba nnection to base t	c. for a 10. with any f for a liv s where ill fit betw SP No. SP No. SP No. SP No. (by oth anding 3 ift at join ack Trus	D psf bottom other live loa e load of 20.0 a rectangle veen the botto 2. ers) of truss t b2 lb uplift at j t 6, 32 lb uplif s Connection	Opsf om o oint ft at					
FORCES	(LC 1) (Ib) - Maximum Com Tension	pression/Maximum	L	consult quali OAD CASE(S)	fied building desig Standard	ner.							
TOP CHORD	1-2=0/14, 2-3=-106/9 4-5=0/14	93, 3-4=-100/113,											
BOT CHORD WEBS	2-6=-42/59, 4-6=-22, 3-6=-49/0	/59											
 this design Wind: ASC Vasd=103i II; Exp B; E and C-C E MWFRS grip DOL= Truss desi only. For s see Standa or consult As request for placem conditions. 	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B(Enclosed; MWFRS (en xterior(2E) zone;C-C f f for reactions shown; I	(3-second gust) CDL=6.0psf; h=40ft; welope) exterior zom for members and for Lumber DOL=1.60 p the plane of the trus (normal to the face) d Details as applicat gner as per ANSI/TF een designed to prov h handling and erec y of the fabricator to	Cat. ne ces blate ss ble, ple, ple, r/ide							Contraction of the second seco		SEA 0363	22 EERER IIII

April 3,2025


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CL 3034 Base	
CL 3034 Base	PB2E	Piggyback	1	1	Job Reference (optional)	172489041

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Thu Apr 03 07:05:19 ID:0VO_3BAbkqtqvoi_daEXEZzUWFA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:32.9

Plate Offsets (X, Y): [2:0-2-6,0-1-0], [4:0-2-6,0-1-0]

	(7, 1): [2:0 2 0,0 1 0],												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MP	0.13 0.14 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=4-10-10 Max Horiz 2=-75 (LC Max Uplift 2=-32 (LC (LC 12) Max Grav 2=143 (LC (LC 1) (lb) - Maximum Com Tension 1-2=0/14, 2-3=-106/ 4-5=0/14 2-6=-42/59, 4-6=-22 3-6=-49/0 ced roof live loads have 	athing directly applie applied or 10-0-0 oc 0, 4=4-10-10, 6=4-10 2 13), 4=-37 (LC 13), C 1), 4=143 (LC 1), 6 apression/Maximum 93, 3-4=-100/113, /59	5) 6) 7) 8) ed or 5)-10 6=-1 5)=145 11) LO	Gable requirr Gable studs This truss ha chord live loa * This truss f on the bottor 3-06-00 tall b chord and ar All bearings i Provide mec bearing plate 2, 37 lb uplift joint 2 and 33 See Standar Detail for Co	es continuous bott spaced at 2-0-0 oc s been designed f ad nonconcurrent v has been designed n chord in all area: y 2-00-00 wide wi yo other members. are assumed to be hanical connection capable of withst at joint 4, 1 lb uplif 7 lb uplift at joint 4. d Industry Piggyba nnection to base tt fied building desig	c. for a 10. with any for a liv s where ill fit betw SP No. SP NO	0 psf bottom other live loa e load of 20.0 a rectangle veen the botto 2. ers) of truss t i2 lb uplift at ji t 6, 32 lb uplift s Connection	Opsf om o oint ft at					
 this desig Wind: AS Vasd=100 II; Exp B; and C-C I & MWFR grip DOL Truss designed Truss designed Truss designed As request for placer conditions 	gn. SCE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Bi Enclosed; MWFRS (er Exterior(2E) zone;C-C f S for reactions shown;	(3-second gust) CDL=6.0psf; h=40ft; velope) exterior zon for members and for Lumber DOL=1.60 p the plane of the trus (normal to the face) d Details as applicat gner as per ANSI/TF een designed to prov h handling and erec y of the fabricator to	Cat. le ces olate ss), ole, PI 1. <i>v</i> ide							C. minutes	The second secon	SEA 0363	EER A

April 3,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

