

RE:	Drayton I	Rev 2-Ele	ev 1-R	oof			Trenco 818 Soundside Rd	
Site Information	1: 					- .	Edenton, NC 27932	
Project Custome	er: DRB Ralei	gn Proje	ect Nar S	ne: DRB R ubdivision:	kaleign iviodel	Гаск		
Model:			Ŭ					
Address:								
City:			S	tate: NC		_ .		
General Truss E Drawings Show	ngineering C. Special Loac	friteria &	Desig	n Loads (l	ndividual Iru	iss Design		
Desian Code: IF	RC2021/TPI20)14		5). De	esign Program:	MiTek 20/2	20.8.8	
Wind Code: ASC	E 7-16			D	esign Method:	MWFRS (E	nvelope)/C-C hybrid	Wind ASCE 7-16
Wind Speed: 120	mph			Fl	oor Load: N/A	A psf		
Roof Load: 40.0 p Mean Roof Heigh	pst t (feet): 25			E	xposure Catego	ory: B		
No Seal#	Truss Name	Date	No	Spal#	Truss Nama	Date		
1 I71703465	5 M5	3/3/25	35	171703499	H1	3/3/25		
2 171703466 3 171703467	6 M6 7 P2G	3/3/25	36 37	I71703500 I71703501	A1B H2	3/3/25		
4 171703468	8 M4 9 M1	3/3/25	38	171703502	H4 H3	3/3/25		
6 7 171703471	M2	3/3/25	40	171703504	HIGR	3/3/25		
8 171703472	2 J2	3/3/25	42	171703503	H5 H2CP	3/3/25		
10 171703473	M2T	3/3/25	43	171703508	H6_	3/3/25		
11 171703475 12 171703476	5 V1	3/3/25 3/3/25	45 46	171703509	H41 H5T_	3/3/25 3/3/25		
13 I71703477 14 I71703478	7 P1G 8 P1	3/3/25 3/3/25	47 48	I71703511 I71703512	H2GT H6T	3/3/25 3/3/25		
171703479 16 171703480) P2) V2	3/3/25 3/3/25	49	171703513	A1T	3/3/25		
17 171703481 18 171703482	V3 C1G	3/3/25						
19 171703483	C1	3/3/25						
21 171703485	G1	3/3/25						
22 171703486 23 171703487	G1A G1G	3/3/25 3/3/25						
171703488 25 171703489	3 B3G 9 B3	3/3/25 3/3/25						
26 171703490 27 171703491) B2 B1	3/3/25						
28 171703492	B1GR	3/3/25						
30 171703493	BIGT	3/3/25						
31 171703495	KIGE	3/3/25 3/3/25						
34 I71703497 34 I71703498	6 K2 8 A1	3/3/25 3/3/25						
The truss drawing	(s) referenced a	above have	been p	prepared by			1111111	
Truss Engineering	g Co. under my	direct sup	ervisio	n based on th	he parameters	""ATH	CARO	
provided by Struc	tural, LLC.	o. Cilhor	+ Eria			N'20 OFF	SSION	
My license renew	al date for the s	tate of No	t, ⊑nc rth Car	olina is Dec	ember 31, 2025		A.	
IMPORTANT NO	OTE: The seal on	these truss	compone	ent designs is a	certification		SEAL OF -	
that the engineer nan	ned is licensed in the ANSI/TPL1 These	ne jurisdiction	n(s) iden based u	tified and that th	he 's	las	32322	2
shown (e.g., loads, su	upports, dimension	s, shapes an	d design	codes), which	were MiTok's cr			
TRENCO's customer	s file reference pur	pose only, ar	nd was n	ot taken into ac	count in the	TO SNO	GINEEL	
preparation of these of applicability of the de	designs. MiTek or sign parameters or	TRENCO ha the designs	s not ind for any p	ependently ver particular buildi	itied the ng. Before use,	CALC A	GILBE	
the building designer	should verify applic	cability of deal	sign para	ameters and pro	operly hapter 2	1111	IIIIIIIII.	
			J. 601	- · · · · , O	· · · · · ·			March 2 2025

March 3,2025

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 1-Roof	
	M5	Jack-Closed	8	1	Job Reference (optional)	171703465

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Thu Feb 27 13:30:10 ID:I4uhqqeTnDQr_wv735MUXWzunOH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:28.2

Plate Offsets (X, Y): [2:0-2-1,0-0-1]

		1												
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.18	Vert(LL)	0.00	5-8	>999	360	MT20	244/190	
Snow (Pt/Pg)	15.4/20.0	Lumber DOL	1.15 VEC		BC	0.17	Vert(CT)	0.00	5-8	>999	240			
	10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	2	n/a	n/a			
	0.0 ^	Code	IRC2021/	TPI2014	Matrix-MP		Wind(LL)	0.00	5-8	>999	240	Woight: 12 lb	ET - 20%	
BCDL	10.0											weight: 12 lb	FI = 20%	
LUMBER			6)	This truss ha	s been designed f	or a 10.0) psf bottom							
TOP CHORD	2x4 SP No.2			chord live loa	id nonconcurrent v	with any	other live loa	ds.						
BOT CHORD	2x4 SP No.2		7)	* This truss h	as been designed	for a live	e load of 20.0)pst						
WEBS	2x4 SP No.3	1.0.0		3-06-00 tall b	1 chord in all areas	s where Il fit betw	a reclangle	m						
SLIDER	Leit 2x4 SP N0.3 1	1-0-0		chord and an	v other members.	ii iit botw								
	Structural wood abo	othing directly opplie	d or 8)	Bearings are	assumed to be: Jo	oint 2 SF	P No.2 .							
IOP CHORD		cent end verticals	9)	Refer to girde	er(s) for truss to tr	uss coni	nections.							
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	10)	One H2.5A S	impson Strong-Tie	e connec	ctors							
	bracing.			recommende	d to connect truss	to beari	ng walls due	to						
REACTIONS	(size) 2=0-3-8, 5	5= Mechanical		UPLIF I at jt(s) 5 and 2. This co	onnection	n is for uplift o	only						
	Max Horiz 2=36 (LC	15)	11)	This truss ha	s been designed for	or a mov	ing concentr	ated						
	Max Uplift 5=-4 (LC 2	13)	,	load of 250.0	Ib live and 3.0lb de	ead loca	ted at all mid	aicu						
	Max Grav 2=315 (LC	C 40), 5=285 (LC 42)		panels and a	t all panel points a	long the	Top Chord a	ind						
FORCES	(lb) - Maximum Com	pression/Maximum		Bottom Chore	d, nonconcurrent v	with any	other live loa	ds.						
	Tension		LOA	AD CASE(S)	Standard									
	1-2=0/36, 2-4=-170/3	57, 4-5=-268/48												
	2-5=-45/70													
NUTES	F 7-16: \/ult=120mph	(3-second quet)												
Vasd=95m	ph: TCDL=6.0psf: BC	DL=6.0psf: h=25ft: C	at.										111.	
II; Exp B; E	Enclosed; MWFRS (en	velope) and C-C										N'LL CA	Dalle	
Exterior(2E	E) zone; cantilever left	and right exposed ;	end								1	alri	Con l'	
vertical left	and right exposed;C-	C for members and									50	O'EE89	GAN'	_
forces & M	WFRS for reactions sl	hown; Lumber									27	121	Nol)	
DOL=1.60	plate grip DOL=1.60		45							Z		21 -	14.01	-
2) TOLL: ASC Plate DOL	-1.15; Pr=20.0 pst (I -1.15); Pa=20.0 pst; E	roof LL: LUM DOL=1	.15									CEA		E
1 15 Plate	DOI = 1.15, $Pg=20.0 psi, P$	Rough Cat B: Partial								=	:	SEA	L :	-
Exp.; Ce=	1.0; Cs=1.00; Ct=1.10	tough out b, r artial	,							1	:	0363	22 :	-
3) Unbalance	d snow loads have be	en considered for thi	is							-	i d			5
design.										-	1	·	a .!.	-
4) This truss	has been designed for	greater of min roof I	ive								3.5	NGINI	Eticks	
load of 12.	Upst or 2.00 times flat	t root load of 15.4 ps	ron								1	20	THE AN	
overnangs	non-concurrent with o	uner live loads.									1	A G	ILBUIN	
about its o	enter	us 5 degree rotation										1111111	IIIII	
00001130													C 24	

March 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 1-Roof	
	M6	Jack-Open Structural Gable	8	1	Job Reference (optional)	171703466

Run: 8.83 E Feb 18 2025 Print: 8.830 E Feb 18 2025 MiTek Industries, Inc. Fri Feb 28 14:57:11 ID:iHbjyyHjIV5Kr3TJgjpvBhzunNS-ZI4FG7NJG1vEdH8izxDi84MSRBmbFqQe3o1dhhzgIYc

10

÷

Page: 1

0-8-	14
------	----

Scale = 1:32.3

Plate Offsets (X, Y): [2:0-1-12,0-3-0]

														_
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-MP	0.39 0.37 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 0.00 0.00 0.00	(loc) 5-6 5-6 5 5-6	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 30T CHORD WEBS SLIDER 3RACING TOP CHORD 30T CHORD 30T CHORD 3OT CHORD REACTIONS FORCES NOTES 1) Unbalance this design 2) Wind: ASC Vasd=95n II; Exp B; I	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1 Structural wood shea 2-3-1 oc purlins, exc Rigid ceiling directly bracing. (size) 5= Mecha Max Horiz 6=36 (LC Max Uplift 5=-270 (LC (Max Grav 5=221 (LC (Ib) - Max. Comp./Ma (Ib) or less except wh cl roof live loads have 1. CE 7-16; Vult=120mph nph; TCDL=6.0psf; BCI Enclosed; MWFRS (en	I-5-5 athing directly applie cept end verticals. applied or 10-0-0 or nical, 6=0-6-13 15) C 43), 6=-39 (LC 12 C 42), 6=631 (LC 43) ax. Ten All forces i hen shown. been considered for (3-second gust) DL=6.0psf; h=25ft; C velope) and C-C Co	6) 7) 8) 9) 5 10) 11) 12) 250 13) 250 13) Cat. rner	This truss ha load of 12.0 overhangs m Plates check about its cen Gable studs This truss ha chord live loa) * This truss h on the bottor 3-06-00 tall b chord and ar) Refer to girdd) Provide mec bearing plate 5 and 39 lb u) This truss ha load of 250.0 panels and a Bottom Chor	is been designed for psf or 2.00 times fit con-concurrent with ed for a plus or min- ter. spaced at 2-0-0 oc is been designed for ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide wil by other members. er(s) for truss to tru- hanical connection is been designed for the plift at joint 6. is been designed for blive and 3.0lb do it all panel points a d, nonconcurrent w Standard	or greate at roof k other lin nus 5 de or a 10.0 vith any for a liv s where I fit betw uss conr (by oth anding 2 or a move ad loca long the vith any	er of min roof pad of 15.4 p: ve loads. agree rotation 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto nections. ers) of truss t 70 lb uplift at ving concentr ted at all mid Top Chord a other live loa	live sf on ds. Dpsf com i joint ated and ds.					Ro	
(3) zone; (cantilever left and right	exposed ; end vertic	ai								1	A	North .	

left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face),

- only. For study exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15)
- Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.

A. GIL

SEAL

036322

VIIIIIIIIIIIIII

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 1-Roof
	P2G	Monopitch Structural Gable	4	1	Job Reference (optional)

Run: 8.83 S. Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Thu Feb 27 13:30:11 ID:sBXrqA9DbudpDQcRBizuFFzuovk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

0-3-8

Scale = 1:28.6

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.29	Vert(LL)	-0.01	4-7	>999	360	MT20	244/190	
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.30	Vert(CT)	-0.02	4-7	>999	240			
TCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	2	n/a	n/a			
BCLL	0.0*	Code	IRC2021/TPI2	2014	Matrix-MP		Wind(LL)	0.00	4-7	>999	240			
BCDL	10.0											Weight: 12 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 2-11-8 oc purlins, e Rigid ceiling directly bracing. (size) 2=0-3-0, 4 Max Horiz 2=29 (LC Max Uplift 2=-41 (LC Max Grav 2=333 (LC	athing directly applie xcept end verticals. applied or 10-0-0 oc 4=0-3-8 15) 2 12), 4=-15 (LC 12) 2 43), 4=306 (LC 42)	5) This load over 6) Plate abou 7) Gab 8) This chor 9) * Th 9) * Th 3-06 chor 10) All b 11) One	truss has d of 12.0 per thangs noi es checke ut its cente ble studs s truss has a truss has the bottom 5-00 tall by rd and any bearings al	s been designed for sf or 2.00 times fla in-concurrent with ed for a plus or mir er. spaced at 2-0-0 oc s been designed for d nonconcurrent w as been designed o chord in all areas y 2-00-00 wide will y other members. re assumed to be impson Strong-Tie	or greate at roof lo other liv nus 5 de or a 10.0 /ith any for a liv s where I fit betw SP No.	er of min roof bad of 15.4 p: re loads. egree rotation 0 psf bottom other live loa e load of 20.0 a rectangle reen the botto 2. ctors	f live sf on n uds. Opsf om						
FORCES	(lb) - Maximum Com	pression/Maximum	reco	ommended	d to connect truss	to beari	ng walls due	to						
	1-2-0/26 2-3159/	46 3-4279/56	UPL	.I⊢ I at jt(s	s) 4 and 2. This co	nnectio	n is for uplift (only						
BOT CHORD	2-430/128	-0, 0 219/00	anu 12) Thic	truce boo	consider lateral lo	ices.	ing concentr	otod						
NOTES	2 30,120		load	of 250 0	b live and 3 0lb de	ad loca	ted at all mid	aleu						
	CE 7 16: \/ult_120mph	(2 second quist)	pane	els and at	all panel points a	long the	Top Chord a	and						

- 1) Wind: ASCE 7 16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 2-9-12 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.: Ce=1.0: Cs=1.00: Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

Bottom Chord, nonconcurrent with any other live loads.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 1-Roof	
	M4	Half Hip Girder	8	1	Job Reference (optional)	171703468

Run; 8.83 S Feb 18 2025 Print; 8.830 S Feb 18 2025 MiTek Industries, Inc. Thu Feb 27 13:30:09 ID:In1IbA3U_TH682xpztU9JOzunMR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:46

Plate Offsets (X, Y): [3:0-6-4,0-2-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2021	/TPI2014	CSI TC BC WB Matrix-MS	0.42 0.67 0.10	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.02 -0.02 0.00 0.00	(loc) 5-6 5-6 5 5-6	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea 4-0-0 oc purlins, exo 2-0-0 oc purlins: 3-4.	athing directly applied sept end verticals, and	6) 7) 8) I or d	Plates check about its cent This truss has chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Bacaina are	ed for a plus or mir er. s been designed fo d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members.	or a 10.0 rith any for a liv where fit betv	egree rotation) psf bottom other live loa e load of 20.0 a rectangle veen the botto	ds. Opsf om					
BOT CHORD	Rigid ceiling directly bracing. (size) 5= Mecha Max Horiz 7=43 (LC Max Uplift 5=-15 (LC Max Grav 5=326 (LC	applied or 6-0-0 oc nical, 7=0-3-8 9) 9), 7=-36 (LC 12) 50), 7=-319 (I C 47)	9) 10) 11) 12)	Refer to girde Provide mech bearing plate 5. One H2.5A S	assumed to be: Jo er(s) for truss to tru nanical connection capable of withsta	(by oth nding 1	No.3 . nections. ers) of truss t 5 lb uplift at j	o oint					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=0/72, 2-3=-249/2 4-5=-285/15, 2-7=-33 6-7=-34/121, 5-6=-34	21, 3-4=-54/11, 34/21 4/147	13)	recommende UPLIFT at jt(s does not cons This truss has load of 250.0 panels and at	d to connect truss s) 7. This connections sider lateral forces s been designed for b live and 3.0lb de all panel points all	to bear on is for or a mov ad loca ong the	ng walls due uplift only ar ving concentr ted at all mid Top Chord a	to nd ated					
 NOTES 1) Wind: ASC Vasd=95m II; Exp B; E and right e Lumber DC 2) TCLL: ASC Plate DOL: 1.15 Plate 2) TCLL: ASC Plate DOL: 1.15 Plate 3) Unbalance design. 4) This truss load of 12. overhangs 5) Provide ad 	E 7-16; Vult=120mph ph; TCDL=6.0psf; BCI Enclosed; MWFRS (en xposed; end vertical li DL=1.60 plate grip DO Er 7-16; Pr=20.0 psf (r =1.15); Pg=20.0 psf; P DOL = 1.15); Is=1.0; F 1.0; Cs=1.00; Ct=1.10, id snow loads have be has been designed for 0 psf or 2.00 times flat non-concurrent with o lequate drainage to pre	14) ft 15) ; 16) 15 , = LO , 1) s ve on	Graphical pui or the orienta bottom chord "NAILED" ind (0.148"x3.25" In the LOAD of the truss a AD CASE(S) Dead + Sno Increase=1. Uniform Loa Vert: 1-2= Concentrate Vert: 10=	, nonconconcentent w lin representation icon of the purlin al	does no ong the 8"x3") o S guidli oads a -) or ba ber Inc	or re-invertida of depict the s top and/or or 2-12d nes. oplied to the f ck (B). rease=1.15, f	iace Plate		Manutan		SEA O3633		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org)

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

March 3,2025

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 1-Roof	
	M1	Jack-Closed	82	1	Job Reference (optional)	171703469

Structural, LLC, Thurmont, MD - 21788

Run: 8.83 S. Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Thu Feb 27 13:30:08 ID:uJpdGvCBLNEmdrOmYKwaePzuf_R-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

GRIP

244/190

FT = 20%

-1-0-0 4-0-0 4-0-0 1-0-0 4-0-0 2x4 II 3 12 10 Г 7 -4-0 4-6-9 3x6 🏑 2 1-0-0 6 8 2x4 ı 4x4 = 4-0-0 Scale = 1:36.4 Loading Spacing 2-0-0 CSI DEFL l/defl L/d PLATES (psf) in (loc) Plate Grip DOL TCLL (roof) 20.0 1.15 TC 0.57 Vert(LL) -0.06 4-5 >727 360 MT20 BC Snow (Pf/Pg) Lumber DOL 1 15 0.64 Vert(CT) 15 4/20 0 -0.07 4-5 >608 240 TCDL 10.0 Rep Stress Incr YES WB 0.08 Horz(CT) 0.00 4 n/a n/a BCLL 0.0 Code IRC2021/TPI2014 Matrix-AS BCDL 10.0 Weight: 27 lb LUMBER 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 7) * This truss has been designed for a live load of 20.0psf 2x4 SP No.3 on the bottom chord in all areas where a rectangle WFBS 3-06-00 tall by 2-00-00 wide will fit between the bottom BRACING chord and any other members. TOP CHORD Structural wood sheathing directly applied, Bearings are assumed to be: Joint 5 SP No.2 . 8) except end verticals. Refer to girder(s) for truss to truss connections. 9) BOT CHORD Rigid ceiling directly applied. 10) One H2.5A Simpson Strong-Tie connectors **REACTIONS** (size) 4= Mechanical, 5=0-3-8 recommended to connect truss to bearing walls due to Max Horiz 5=105 (LC 13) UPLIFT at jt(s) 4. This connection is for uplift only and Max Uplift 4=-35 (LC 13) does not consider lateral forces. Max Grav 4=324 (LC 42), 5=354 (LC 40) 11) This truss has been designed for a moving concentrated FORCES (Ib) - Maximum Compression/Maximum load of 250.0lb live and 3.0lb dead located at all mid Tension panels and at all panel points along the Top Chord and TOP CHORD 2-5=-317/115, 1-2=0/60, 2-3=-173/122, Bottom Chord, nonconcurrent with any other live loads. 3-4=-287/178 12) This truss design requires that a minimum of 7/16" BOT CHORD 4-5=-307/151structural wood sheathing be applied directly to the top WFBS 2-4=-109/273 chord and 1/2" gypsum sheetrock be applied directly to NOTES the bottom chord. LOAD CASE(S) Standard Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 3-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Contraction TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = SEAL 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially 036322 Exp.: Ce=1.0: Cs=1.00: Ct=1.10 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. Plates checked for a plus or minus 5 degree rotation G

5) about its center.

1)

2)

3)

4)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

mm March 3,2025 VIIIIIIIIIIIII

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 1-Roof	
	M2	Half Hip	6	1	Job Reference (optional)	171703470

-1-0-0

Structural, LLC, Thurmont, MD - 21788.

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Thu Feb 27 13:30:08 ID:KUS0YIILa50Kfjjuff92T_zuevt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-0-0

Page: 1

Scale = 1:43.1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-AS	0.34 0.36 0.05	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.02 -0.03 0.00 0.01	(loc) 6-7 6-7 5 6-7	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she except end verticals 3-4. Rigid ceiling directly	athing directly applie , and 2-0-0 oc purlins applied.	 5) This truss ha load of 12.0 overhangs n 6) Provide aded 7) Plates check about its cen about its cens chord live loa 9) * This truss ha 	is been designed f psf or 2.00 times fl on-concurrent with quate drainage to p ed for a plus or mi ter. Is been designed f ad nonconcurrent v nas been designed	or greate at roof lo other liv prevent v nus 5 de or a 10.0 with any l for a liv	er of min roof bad of 15.4 ps ve loads. water ponding egree rotation 0 psf bottom other live load e load of 20.0	live sf on j. ds.)psf					
REACTIONS	(size) 5= Mecha Max Horiz 7=87 (LC Max Uplift 5=-22 (LC Max Grav 5=324 (LC	anical, 7=0-3-8 13) C 13) C 66), 7=354 (LC 63)	on the bottor 3-06-00 tall b chord and ar 10) Bearings are 11) Refer to gird	n chord in all areas by 2-00-00 wide wi by other members. assumed to be: J er(s) for truss to trust	s where Il fit betw oint 7 SF	a rectangle veen the botto P No.2 .	om					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	12) Provide mec bearing plate	hanical connection capable of withst) (by oth anding 2	ers) of truss to 2 lb uplift at jo	o pint					
TOP CHORD BOT CHORD WEBS NOTES	1-2=0/72, 2-3=-154/ 4-5=-285/56, 2-7=-3 6-7=-68/70, 5-6=-73 3-6=-104/143	63, 3-4=-67/67, 21/128 /73	5. 13) This truss ha load of 250.0 panels and a Bottom Chor	ts been designed f Ib live and 3.0lb d It all panel points a d, nonconcurrent v	or a move ead locationg the with any	ving concentra ted at all mid Top Chord a other live loa	ated Ind ds.					
1) Unbalance this design	ed roof live loads have n.	been considered for	14) This truss de structural wo	esign requires that od sheathing be a	a minim pplied di	um of 7/16" rectly to the t	ор					Line

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 3-1-8, Exterior(2E) 3-1-8 to 3-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- 4) Unbalanced snow loads have been considered for this design.

- structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 1-Roof	
	М3	Half Hip	10	1	Job Reference (optional)	171703471

2-7-4

2-9-13

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Thu Feb 27 13:30:09

Page: 1

Scale = 1:30.8

Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 20.0 20.4/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.31 0.24 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 6 6 5	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC2021	/TPI2014	Matrix-AS		Wind(LL)	0.01	6-7	>999	240	Weight: 22 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea except end verticals, 3-4. Rigid ceiling directly (size) 5= Mecha Max Horiz 7=63 (LC Max Uplift 5=-10 (LC Max Grav 5=324 (LC	athing directly applied , and 2-0-0 oc purlins: applied. nical, 7=0-3-8 13) : 13) : 72), 7=354 (LC 63)	6) 7) 8) 9) 10) 11) 12)	Provide adec Plates check about its cen This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Bearings are Refer to girde Provide meck bearing plate 5.	uate drainage to p ed for a plus or mir ter. s been designed for d nonconcurrent w has been designed n chord in all areas by 2-00-00 wide will by other members. assumed to be: Jo er(s) for truss to tru- hanical connection o capable of withsta	revent of nus 5 de or a 10.0 <i>v</i> ith any for a liv s where I fit betw bint 7 SI ss conr (by oth unding 1	vater pondin agree rotation opsf bottom other live loa e load of 20. a rectangle veen the bott > No.2. hections. ers) of truss 0 lb uplift at	g. n ads. 0psf com to joint					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	13)) This truss ha load of 250.0	s been designed fo lb live and 3.0lb de	or a moved	ving concentration to the second s	rated d					
BOT CHORD WEBS	4-5=-287/67, 2-7=-32 6-7=-60/74, 5-6=-64/ 3-6=-112/143	22/121 /74	14)	panels and a Bottom Chor This truss de structural wo chord and 1/2	t all panel points all d, nonconcurrent w sign requires that a od sheathing be ap 2" gypsum sheetro	iong the vith any a minim oplied d ck be a	other live loa other live loa um of 7/16" irectly to the oplied directl	and ads. top y to					

15) Graphical purlin representation does not depict the size

or the orientation of the purlin along the top and/or

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

the bottom chord.

LOAD CASE(S) Standard

bottom chord.

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 1-Roof	
	J2	Half Hip	4	1	Job Reference (optional)	171703472

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries. Inc. Thu Feb 27 13:30:07 ID:6rWJwwSLhDSzEnkDcYjtMRzueuy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:35.9

_

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.64	DEFL Vert(LL)	in -0.06	(loc) 4-5	l/defl >727	L/d 360	PLATES MT20	GRIP 244/190	
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.64	Vert(CT)	-0.07	4-5	>608	240			
TCDL	10.0	Rep Stress Incr	YES		WB	0.07	Horz(CT)	0.00	4	n/a	n/a			
BCLL	0.0*	Code	IRC2021	/TPI2014	Matrix-MP									
BCDL	10.0											Weight: 27 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea	athing directly applied	6) 7) 8) d or	Plates check about its cen This truss ha chord live loa * This truss h on the bottor	ted for a plus or tter. Is been designe ad nonconcurre has been desigr n chord in all ar	minus 5 de ed for a 10.0 nt with any ned for a liv reas where	gree rotation) psf bottom other live loa e load of 20.0 a rectangle	n ads. Opsf						

TOF CHORD	Siluciulai	wood sheathing dhectly applied of
	4-0-0 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceili	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	4= Mechanical, 5=0-3-8
	Max Horiz	5=105 (LC 13)
	Max Uplift	4=-35 (LC 13)
	Max Grav	4=324 (LC 42), 5=354 (LC 40)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
	1 2-0/60	2 2- 161/122 2 4- 297/160

NOTES	
WEBS	2-4=-109/241
BOT CHORD	4-5=-276/151
	2-5=-317/115
TOP CHORD	1-2=0/60, 2-3=-161/122, 3-4=-287/160,

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 3-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this desian.
- This truss has been designed for greater of min roof live 4) load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.

- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: Joint 5 SP No.2 . 9)
- 10) Refer to girder(s) for truss to truss connections.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 35 lb uplift at joint 4
- 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 1-Roof	
	V1	Valley	4	1	Job Reference (optional)	171703476

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Thu Feb 27 13:30:11 ID:TTJkjmkkHTPyybMKe6J_3Ozun8f-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:24.2

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-AS	0.16 0.24 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shee Rigid ceiling directly (size) 1=4-3-7, 3 Max Horiz 1=23 (LC Max Grav 1=288 (LC 4=320 (LC (lb) - Maximum Com Tension 1-2=-139/38, 2-3=-1: 1-4==9/56, 3-4=-6/56 2-4=-190/11	athing directly applied applied. 3=4-3-7, 4=4-3-7 13) 2 53), 3=288 (LC 61), 2 59) pression/Maximum 39/38	 7) Gable requir 8) Gable studs 9) This truss ha chord live loa 10) * This truss h 10) * This truss h 10) * This truss h 10) * Chord and ar 11) All bearings 12) This truss ha load of 250.0 panels and a Bottom Chor 13) This truss de structural wo chord and 11/1 the bottom chor 	es continuous bot spaced at 4-0-0 o is been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w y other members are assumed to bus been designed bib live and 3.0lb o ti all panel points a id, nonconcurrent using requires that bod sheathing be a 2" gypsum sheetn hord.	tom chor ic. for a 10.0 with any d for a liv as where iil fit betw e SP No. for a mo dead loca along the with any applied d ock be applied d	d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botti 3. ving concentri ted at all mid Top Chord a other live loa um of 7/16" irrectly to the opplied directly	ads. Opsf om rated a and ads. top y to					

4-3-7

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- Plates checked for a plus or minus 5 degree rotation about its center.

14) Gap between inside of top chord bearing and first

diagonal or vertical web shall not exceed 0.500in.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek A 818 Soundside Road Edenton, NC 27932

Job	Truss Truss Type		Qty	Ply	Drayton Rev 2-Elev 1-Roof		
	P1G	Monopitch Supported Gable	4	1	Job Reference (optional)	171703477	

-1-0-0

Structural, LLC, Thurmont, MD - 21788.

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Thu Feb 27 13:30:10 ID:dNNkgrDwkEwkUbDdB15qd0zuowx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:26.8

Plate Offsets (X, Y): [2:0-1-10,Edge]

		-												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/T	PI2014	CSI TC BC WB Matrix-AS	0.56 0.61 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASI Vasd=95r II; Exp B; (3E) -1-0- cantilever right expo for reactic DOL=1.6(2) Truss des only. For see Stanc or consult 3) TCLL: AS Plate DOI 1.15 Plate Exp.; Ce= 4) Unbalanc design.	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she: except end verticals. Rigid ceiling directly (size) 2=4-7-8, 4 Max Horiz 2=43 (LC Max Grav 2=365 (LC (lb) - Maximum Com Tension 1-2=0/26, 2-3=-191/2 2-4=-61/164 CE 7-16; Vult=120mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (en 0 to 2-0-0, Exterior(2N) left and right exposed to schown; Lumber DO o igned for wind loads in studs exposed to wind lard Industry Gable End cualified building desig CE 7-16; Pr=20.0 psf (=1.15); Pg=20.0 psf; (=1.15); Pg=20.0 psf (=1.15); Ct=1.10; ed snow loads have be	athing directly applied. applied. 4=4-7-8 15) (2) 2 43), 4=352 (LC 47) pression/Maximum 54, 3-4=-297/136 (3-second gust) DL=6.0psf; h=25ft; C ivelope) and C-C Cor 2-0-0 to 4-5-12 zone ; end vertical left and and forces & MWFRS L=1.60 plate grip the plane of the trus; (normal to the face), d Details as applicabl gner as per ANSI/TPI roof LL: Lum DOL=1. 2f=15.4 psf (Lum DOI Rough Cat B; Partially en considered for thi	5) T (0 6) P (1) 7) G (10) * (10) * (11) * (10) * (11) * (10) * (11)	his truss ha bad of 12.0 p verhangs m Plates check bout its cen Sable require Sable studs : his truss ha hord live loa This truss ha hord live loa This truss ha hord and an Provide mecl earing plate and 16 lb u his truss ha bad of 250.0 anels and a bottor Chorr his truss da bottor Chorr his truss da bottor chor hord and 1// he bottom cl	s been designed osf or 2.00 times on-concurrent with ed for a plus or n ter. as continuous bo spaced at 2-0-0 s been designed di nonconcurrent ias been designed n chord in all area y 2-00-00 wide v yo other members are assumed to b hanical connection capable of withs plift at joint 2. s been designed lb live and 3.0lb t all panel points d, nonconcurrent sign requires that od sheathing be 2" gypsum sheet hord. Standard	I for greate flat roof le that other lis ninus 5 de totom chor oc. I for a 10.0 for a 10.0 for a 10.0 as where vill fit betv s. es SP No. on (by oth standing 1 I for a mov dead loca along the t with any t a minim applied d rock be a	er of min roof pad of 15.4 per re loads. agree rotation d bearing.) psf bottom other live loa e load of 20.0 a rectangle reen the botto 2. ers) of truss t 6 lb uplift at j ving concentri ted at all mid Top Chord a other live loa um of 7/16" rectly to the loa pplied directly	live sf on ds. Dpsf om oint ated ds. to y to				SEA 0363	L L L L BER	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GI ununun . March 3,2025

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 1-Roof	
	P1	Monopitch	24	1	Job Reference (optional)	171703478

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Thu Feb 27 13:30:10

Page: 1

Structural, LLC, Thurmont, MD - 21788,

ID:R_h9oHtMKeOi7H4FY9bGV6zuoxN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -1-0-0 4-7-8 4-7-8 1-0-0 4-7-8 2x4 🛛 12 4 Г 3 0 9 1-10-7 8 2-2-3 10 2 0-3-15 볫 4 11 3x4 = 2x4 II

4-7-8

Scale = 1:26.8

Plate Offsets (X, Y): [2:0-1-10,Edge]

										-			-
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.56	Vert(LL)	-0.06	4-7	>852	360	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.61	Vert(CT)	-0.09	4-7	>630	240		
TCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2021	/TPI2014	Matrix-AS		Wind(LL)	0.02	4-7	>999	240		
BCDL	10.0											Weight: 18 lb	FT = 20%
LUMBER			6)	This truss ha	s been designed fo	or a 10.0) psf bottom						
TOP CHORD	2x4 SP No.2			chord live loa	d nonconcurrent w	vith any	other live loa	ids.					
BOT CHORD	2x4 SP No.2		7)	* This truss h	as been designed	for a liv	e load of 20.	0psf					
WEBS	2x4 SP No.3			on the bottom chord in all areas where a rectangle									
BRACING				3-06-00 tall b	y 2-00-00 wide wil	ll fit betw	een the bott	om					
TOP CHORD	Structural wood shea	athing directly applied	d, 8)	chord and an Bearings are	y other members. assumed to be: Jo	oint 2 SF	P No.2 .						
BOT CHORD	Rigid ceiling directly	applied.	9)	Refer to girde	er(s) for truss to tru	uss conr	ections.						
REACTIONS	(size) 2=0-3-8, 4	= Mechanical	10)	One H2.5A S	Impson Strong-Tie	e connec	ctors	4.0					
	Max Horiz 2=43 (LC	15)		LIPLIET of it/	a to connect truss	to bean	ng walls due	ad a					
	Max Uplift 2=-16 (LC	12)		does not con	sider lateral forces		upint only a	lu					
	Max Grav 2=365 (LC	2 43), 4=340 (LC 42)	11)	1) This trues has been designed for a moving concentrated									
FORCES	(lb) - Maximum Com	load of 250.0	lb live and 3.0lb de	ead loca	ted at all mic	1							
	Tension	panels and a	t all panel points a	long the	Top Chord a	and							
TOP CHORD	1-2=0/26, 2-3=-191/5	50, 3-4=-297/87		Bottom Chord, nonconcurrent with any other live loads.									
BOT CHORD	2-4=-39/164		12)	12) This truss design requires that a minimum of 7/16"									
NOTES				structural wood sheathing be applied directly to the top									
1) Wind: ASC	E 7-16; Vult=120mph	(3-second gust)		chord and 1/2" gypsum sheetrock be applied directly to									
Vasd=95m	ph; TCDL=6.0psf; BCI	DL=6.0pst; h=25tt; C	at.		Standard								
II; EXP B; E	Ciclosed; IVIVERS (en	velope) and C-C	2	AD CASE(3)	Stanuaru								116
zone: canti	lever left and right exp	losed · end vertical le	∠ ∿ft									N'''L CA	Dilli
and right e	xposed C-C for memb	ers and forces &									~	TH UA	ROM
MWFRS fo	r reactions shown: Lu	mber DOL=1.60 plate	Э								1.	n'i iiii	A AND
grip DOL=	1.60									4	22	1 V	Nini
2) TCLL: ASC	CE 7-16; Pr=20.0 psf (r	oof LL: Lum DOL=1.	15							-	-	in a	2 de la companya de l
Plate DOL	=1.15); Pg=20.0 psf; P	f=15.4 psf (Lum DOL	. =							-	6 9		
1.15 Plate	DOL = 1.15); Is=1.0; F	Rough Cat B; Partially	/							=		SEA	L : :
Exp.; Ce=1	.0; Cs=1.00; Ct=1.10									=	:	0262	22 : =
3) Unbalance	d snow loads have be	en considered for this	S							1		0303	ZZ : :
design.	han hann daaigned for	greater of min reaf							-			1 3	
4) This truss r	has been designed for	greater of min roof in							5	-	·	airs	
overhance	non-concurrent with o	ther live loads	UI								25	S GIN	EFICAN
5) Plates cher	cked for a plus or minu	is 5 degree rotation									11	10	BEN
about its ce	enter.											11, A. G	ILLIN
												(IIIIIII)	11111

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

March 3,2025

Job	Truss	Truss Type		Ply	Drayton Rev 2-Elev 1-Roof		
	P2	Monopitch	12	1	Job Reference (optional)	171703479	

Run; 8.83 S Feb 18 2025 Print; 8.830 S Feb 18 2025 MiTek Industries, Inc. Thu Feb 27 13:30:10

Page: 1

Structural, LLC, Thurmont, MD - 21788.

0-3-8

Scale = 1:30.8

Plate Offsets (X, Y): [2:0-1-10,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.56 0.61 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.06 -0.09 0.00 0.03	(loc) 4-7 4-7 2 4-7	l/defl >852 >630 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sheat except end verticals. Rigid ceiling directly (size) 2=0-3-0, 4 Max Horiz 2=43 (LC Max Uplift 2=-49 (LC Max Grav 2=365 (LC (lb) - Maximum Com Tension	athing directly applied applied. = Mechanical 15) 12), 4=-28 (LC 12) 2 43), 4=340 (LC 42) pression/Maximum	6) 7) 1, 8) 9) 10) 11)	This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Bearings are Refer to girda Provide mecl bearing plate 4. One H2.5A S recommende UPLIFT at j((s been designed for d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members. assumed to be: Jo er(s) for truss to tru nanical connection capable of withsta impson Strong-Tie d to connect truss s) 2. This connectin sider lateral forces	or a 10. ith any for a liv where fit betw int 2 SI ss conr (by oth nding 2 conne to bear on is for	 psf bottom other live loa e load of 20.0 a rectangle veen the botto No.2. rections. ers) of truss t 8 lb uplift at junctions ctors ng walls due uplift only ar 	ds. Dpsf om oint to					
Tension TOP CHORD 1-2=0/26, 2-3=-191/48, 3-4=-297/98 BOT CHORD 2-4=-68/164 NOTES 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 4-5-12 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate qrip DOL=1.60				 does not consider lateral forces. 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. 13) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. LOAD CASE(S) Standard 							ROUT		

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on
- overhangs non-concurrent with other live loads. 5) Plates checked for a plus or minus 5 degree rotation about its center.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G

minim March 3,2025

SEAL 036322

anninna an

CHARLEN CONTRACT

Job	Truss	Truss Type		Ply	Drayton Rev 2-Elev 1-Roof			
	V2	Valley	4	1	Job Reference (optional)	171703480		

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Thu Feb 27 13:30:11 ID:tEQaeL9dajMmCDh5q1Sk7Gzun9P-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5:30:11 F

7-10-10

Scale = 1:30.3

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-AS	0.48 0.66 0.18	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a -0.01	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 30 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she: Rigid ceiling directly (size) 1=7-10-10 Max Horiz 1=50 (LC Max Uplift 1=-251 (L Max Grav 1=252 (LC (LC 51) (lb) - Maximum Com Tension 1-2=-262/566, 2-3=-	athing directly applied applied.), 3=7-10-10, 4=7-10 13) C 51), 3=-2 (LC 51) C 47), 3=5 (LC 54), 4 pression/Maximum 157/568	5) 6) 7) 4. 9) -10 10 =821 11 12	Unbalanced design. Plates check about its cen Gable requirn Gable studs This truss ha chord live loa) * This truss h on the bottor 3-06-00 tall b chord and ar) All bearings a bearing plate 1, 2 lb uplift a	snow loads have ed for a plus or m ter. es continuous bot spaced at 4-0-0 o is been designed ad nonconcurrent tas been designed n chord in all area by 2-00-00 wide w yo ther members are assumed to be hanical connectio to capable of withst at joint 3 and 2 lb	been cor inus 5 de tom chor c. for a 10.0 with any d for a liv is where ill fit betv e SP No. n (by oth tanding 2 uplift at ib	nsidered for the egree rotation d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto 3. ers) of truss t 251 lb uplift at oint 3.	nis ds. Dpsf om ∵joint					

BOT CHORD1-4=-429/198, 3-4=-431/141WEBS2-4=-754/143

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: AŠCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 3-11-10, Exterior(2R) 3-11-10 to 7-1-9, Interior (1) 7-1-9 to 7-10-15 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 1-Roof			
	V3	Valley	4	1	Job Reference (optional)	171703481		

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Thu Feb 27 13:30:11 ID:tEQaeL9dajMmCDh5q1Sk7Gzun9P-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:48.6

Plate Offsets (X, Y): [1:0-1-13,Edge]

(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	21/TPI2014	CSI TC BC WB Matrix-AS	0.64 0.65 0.23	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 45 lb	GRIP 244/190 FT = 20%
2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she Rigid ceiling directly (size) 1=11-5-13 6=11-5-13 Max Horiz 1=74 (LC Max Uplift 1=-2 (LC 17), 6 Max Grav 1=301 (LC 5=347 (LC	athing directly applie applied. 3, 4=11-5-13, 5=11-5 3 13) 12), 4=-73 (LC 44), 5 5=-2 (LC 16) 2 48), 4=159 (LC 53 2 61), 6=759 (LC 55	4 5 	 TCLL: ASCE Plate DOL=1 1.15 Plate Di Exp.; Ce=1.C Unbalanced design. Plates check about its cen Gable requiri Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b 	7-16; $Pr=20.0 ps$.15); $Pg=20.0 ps$.DL = 1.15); $Pg=20.0 ps$.DL = 1.15); $Pg=20.0 ps$.CL = 1.15); $Pg=20.0 ps$.es now loads have ed for a plus or m ter. es continuous bot spaced at 4-0-0 c s been designed at onoconcurrent tas been designe n chord in all area y 2-00-00 wide w y other members	sf (roof LL f; Pf=15.4 0; Rough 10 been con ninus 5 de ttom chor oc. for a 10.0 with any d for a liv as where vill fit betw	: Lum DOL= psf (Lum DC Cat B; Partia sidered for th gree rotation d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle reen the bott	1.15 DL = ally his n ads. 0psf om					
(lb) - Maximum Com Tension	pression/Maximum	1	1) All bearings 2) Provide med	are assumed to b hanical connectio	e SP No.: on (by othe	2 . ers) of truss t	to					
2-3=-91/280, 3-4=-1 1-6=-188/174, 5-6=- 3-5=-342/173, 2-6=-	50/266, 1-2=-260/35 188/105, 4-5=-188/1 567/159	52 105 1	bearing plate 4 and 2 lb up 3) N/A	capable of withs lift at joint 1.	tanding 7	3 lb uplift at j	joint					
ed roof live loads have n. CE 7-16; Vult=120mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (en E) -0-4-10 to 2-7-6, Inte R) 5-4-4 to 8-4-4, Inter	been considered fo (3-second gust) DL=6.0psf; h=25ft; (ivelope) and C-C erior (1) 2-7-6 to 5-4 ior (1) 8-4-4 to 10-8-	r 1 Cat. 1 I-4, -10	 Beveled plate surface with This truss hat load of 250.0 panels and at 	e or shim required truss chord at joir s been designed lb live and 3.0lb o t all panel points	d to provid ht(s) 1. for a mov dead loca along the	de full bearin ring concentr ted at all mid Top Chord a	g rated 1 and		Chan the second s		OR FESS	ROUNT
	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she Rigid ceiling directly (size) 1=11-5-13 6=11-5-13 6=11-5-13 (LC 17), 6 Max Grav 1=301 (LC 5=347 (LC Max Uplift 1=-2 (LC (LC 17), 6 Max Grav 1=301 (LC 5=347 (LC 5=347 (LC (1b) - Maximum Com Tension 2-3=-91/280, 3-4=-1 1-6=-188/174, 5-6=- 3-5=-342/173, 2-6=- ed roof live loads have n. CE 7-16; Vult=120mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (cr Enclosed; MWFRS (cr	(psf) 20.0 15.4/20.0 15.4/20.0 15.4/20.0 10.0 0.0* 10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.2 2x4 SP	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(psf) 20.0 15.4/20.0 10.0 0.0^* Spacing Plate Grip DOL 1.152-0-0 TC Intermed Grip DOL 1.15CSI TC TC BC WB Matrix-AS10.010.0 Rep Stress Incr CodeIRC2021/TPI2014WB Matrix-AS2x4 SP No.2 2x4 SP No.2 2x4 SP No.34)TCLL: ASCE 7-16; Pr=20.0 ps Plate DOL=1.15); Pg=20.0 ps 1.15 Plate DOL=1.15); Pg=20.0 ps 1.15 Plate DOL=1.15); Pg=20.0 ps 1.15 Plate DOL=1.15); Se1.1 Exp.; Ce=1.0; Cs=1.00; Ct=1.2x4 SP No.2 2x4 SP No.34)TCLL: ASCE 7-16; Pr=20.0 ps Plate DOL=1.15); Se1.1 Exp.; Ce=1.0; Cs=1.00; Ct=1.Structural wood sheathing directly applied. (size) 1=11-5-13 G=11-5-13 6=11-5-135)Hats checked for a plus or n about its center.(size) 1=11-5-13, 4=11-5-13, 6=11-5-13, 6=11-5-13 6=2 (LC 12), 4=-73 (LC 44), 5=-44 (LC 17), 6=-2 (LC 16) Max Grav 2-3=-91/280, 3-4=-150/266, 1-2=-260/352 1-6=-188/174, 5-6=-188/105, 4-5=-188/105 3-5=-342/173, 2-6=-567/1597)(b) - Maximum Compression/Maximum Tension 2-3=-91/280, 3-4=-150/266, 1-2=-260/352 1-6=-188/174, 5-6=-188/105, 4-5=-188/105 3-5=-342/173, 2-6=-567/1591)(b) - Maximum Compression/Maximum Tension 2-3=-91/280, 3-4=-150/266, 1-2=-260/352 1-6=-188/174, 5-6=-188/105, 4-5=-188/105 3-5=-342/173, 2-6=-567/15914)ed roof live loads have been considered for n. CE 7-16; Wult=120mph (3-second gust) mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. Enclosed; MWFRS (envelope) and C-C E) -0-4-10 to 2-7-6, Interior (1) 2-7-6 to 5-4-4, R) 5-4-4 to 8-4-4,	(psf) 20.0Spacing Plate Grip DOL 1.15CSI TC15.4/20.0 10.0Plate Grip DOL Lumber DOL1.15TC0.6410.0Rep Stress Incr VESWB0.230.0* 10.0CodeIRC2021/TPI2014Matrix-AS2x4 SP No.2 2x4 SP No.34)TCLL: ASCE 7-16; Pr=20.0 psf (roof LL Plate DOL=1.15); Pg=20.0 psf; Pr=15.42x4 SP No.351.15 Plate DOL=1.15); Pg=20.0 psf; Pr=15.42x4 SP No.351.15 Plate DOL=1.15); Is=-1.0; Rough Exp.; Ce=1.0; Cs=1.00; Ct=1.102x4 SP No.3Exp.; Ce=1.0; Cs=1.00; Ct=1.102x4 SP No.31.15 Plate DOL=1.15); Is=-1.0; Rough Exp.; Ce=1.0; Cs=1.00; Ct=1.103tructural wood sheathing directly applied. (size) $=11-5-13$ $=6-115-13$ 6Max Horiz 1=74 (LC 13)6Max Grav 1=301 (LC 48), 4=159 (LC 53), $=347$ (LC 61), 6=-759 (LC 55)9(lb) - Maximum Compression/Maximum Tension $2-3=-91/280, 3-4=-150/266, 1-2=-260/3521-6=-188/105, 4-5=-188/105, 3-5=-342/173, 2-6=-567/1591116Will bearings are assumed to be SP No.312) Provide mechanical connection (by othebearing plate capable of withstanding 74 and 2 lb uplift at joint 1.13) N/Aed roof live loads have been considered forn.CC 2F -16; Vult=120mph (3-second gust)mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.Enclosed; MWFRS (envelope) and C-CE) -0-4-10 to 2-7-6, Interior (1) 2-7-6 to 5-4.4,R) 5-4-4 to 8-4-4, Interior (1) 8-4-4 to 10-8-10$	(psf) 20.0 15.4/20.0 10.0Spacing Plate Grip DOL 1.152-0-0 1.15CSI TCDEFL Vert(LL) Vert(LL) Vert(LL) Horiz(TL) Horiz(TL) 0.0^* 10.0Rep Stress Incr Rep Stress Incr 10.0YES CodeWB0.23Vert(LL) Vert(LL) Horiz(TL) $2x4$ SP No.2 2x4 SP No.3 $2x4$ SP No.2 2x4 SP No.3 $2x4$ SP No.3	(psf) 20.0 15.4/20.0 15.4/20.0 10.0Spacing Plate Grip DOL 1.152-0-0 1.15CSI TCDEFLin Vert(LL) n/a10.0 0.0* 10.0Rep Stress Incr CodeYESWB0.23Vert(TL) Vert(TL)N/a2x4 SP No.2 2x4 SP No.32x4 SP No.2 2x4 SP No.33ct Ctrue (size) 1 = 11-5-13, 6 = 11-5-13 6 = 11-5-13	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0Spacing Plate Grip DOL 1.15 Rep Stress Incr VES CodeCSI TCDEFLin(loc) Vert(LL) n/a $-$ WB0.23 Vert(TL) n/a $-$ Horiz(TL) n/a $-$ Horiz(TL) n/a $-$ WB $-$ Vert(TL) n/a $-$ Horiz(TL) n/a $-$ WB $-$ Vert(TL) n/a $-$ $-$ Horiz(TL) $-$ No S $-$ WB $-$ Vert(TL) n/a $-$ $-$ Horiz(TL) $-$ No S $-$ No S $-$ No S $-$ No S $-$ No S $-$ Vert(TL) $-$ No S $-$ No <td>(psf) 20.0 15.4/20.0 15.4/20.0 0.0^{*}Spacing Plate Grip DOL 1.152-0-0 1.15CSI TC 0.64 BC 0.64 WB WB 0.23DEFL Vert(LL) n/ain(loc) <math>l/deflVert(TL)2.4SP No.22.4<t< math=""></t<></math></br></td> <td>(psf) 20.0 15.4/20.0 10.0 $15.4/20.0$ $15.4/20.0$ 10.0 0.0^*Spacing Plate Grip DOL 1.15 Lumber DOL 1.15CSI TC TC 0.64 BC WB 0.65DEFL vert(L) n/ain (loc) <math>l/deflL/dVert(L)n/a<math>l/defln/a10.0 0.0^* 10.0Rep Stress Incr CodeYES IRC2021/TPI2014TCL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (roof LL: Lum DOL=1</math></math></td> <td></td>	(psf) 20.0 	(psf) 20.0 15.4/20.0 10.0 $15.4/20.0$ $15.4/20.0$ 10.0 0.0^* Spacing Plate Grip DOL 1.15 Lumber DOL 1.15CSI TC TC 0.64 BC WB 0.65DEFL vert(L) n/a in (loc) $l/deflL/dVert(L)n/al/defln/a10.00.0^*10.0Rep Stress IncrCodeYESIRC2021/TPI2014TCL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15Plate DOL=1.15); Pg=20.0 psf (roof LL: Lum DOL=1$	

- Exterior(2R) 5-4-4 to 8-4-4, Interior (1) 8-4-4 to 10-8-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & 1 MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Bottom Chord, nonconcurrent with any other live loads. 16) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to

the bottom chord. LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss Truss Type		Qty	Ply	Drayton Rev 2-Elev 1-Roof			
	V4	Valley	4	1	Job Reference (optional)	171703484		

Structural LLC Thurmont MD - 21788

Run: 8.83 S. Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Thu Feb 27 13:30:12 ID:P2sCR?8?pPEva36vGJwVa3zun9Q-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2x4 II

12-10-12

Scale = 1:53.6 Loading Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.50 Vert(LL) n/a 999 MT20 244/190 n/a BC Snow (Pf/Pg) Lumber DOL 1 15 999 15 4/20 0 0.44 Vert(TL) n/a n/a TCDL 10.0 Rep Stress Incr YES WB 0.21 Horiz(TL) 0.00 5 n/a n/a BCLL 0.0 Code IRC2021/TPI2014 Matrix-S BCDL 10.0 Weight: 62 lb FT = 20%3) Truss designed for wind loads in the plane of the truss LUMBER only. For studs exposed to wind (normal to the face), TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 see Standard Industry Gable End Details as applicable, 2x4 SP No.3 or consult qualified building designer as per ANSI/TPI 1. WFBS 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 OTHERS 2x4 SP No.3 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = BRACING 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially TOP CHORD Structural wood sheathing directly applied or Exp.: Ce=1.0: Cs=1.00: Ct=1.10 6-0-0 oc purlins, except end verticals. Unbalanced snow loads have been considered for this 5) BOT CHORD Rigid ceiling directly applied or 6-0-0 oc desian. bracing. Plates checked for a plus or minus 5 degree rotation 6) **REACTIONS** (size) 5=12-10-12, 6=12-10-12, about its center. 7=12-10-12, 8=12-10-12, Gable requires continuous bottom chord bearing. 7) 9=12-10-12 Gable studs spaced at 4-0-0 oc. 8) Max Horiz 9=-110 (LC 12) This truss has been designed for a 10.0 psf bottom 9) Max Uplift 5=-30 (LC 13), 6=-59 (LC 17), chord live load nonconcurrent with any other live loads. 8=-66 (LC 16), 9=-131 (LC 53) 10) * This truss has been designed for a live load of 20.0psf Max Grav 5=299 (LC 51), 6=416 (LC 59) on the bottom chord in all areas where a rectangle 7=421 (LC 34), 8=405 (LC 45), 3-06-00 tall by 2-00-00 wide will fit between the bottom 9=240 (LC 56) chord and any other members, with BCDL = 10.0psf. (lb) - Maximum Compression/Maximum FORCES 11) All bearings are assumed to be SP No.2. Tension 12) Provide mechanical connection (by others) of truss to TOP CHORD 1-9=-240/128, 1-2=-87/101, 2-3=-138/151, bearing plate capable of withstanding 131 lb uplift at joint 3-4=-140/160, 4-5=-111/132 9, 30 lb uplift at joint 5, 66 lb uplift at joint 8 and 59 lb ORTH BOT CHORD 8-9=-80/93, 7-8=-80/93, 6-7=-80/93, uplift at joint 6. 5-6=-80/93 13) This truss has been designed for a moving concentrated WEBS 3-7=-312/5, 2-8=-341/177, 4-6=-336/178 load of 250.0lb live and 3.0lb dead located at all mid NOTES panels and at all panel points along the Top Chord and Unbalanced roof live loads have been considered for Bottom Chord, nonconcurrent with any other live loads. 1) CHILLING STREET VIIIIIIIIIIII this design. LOAD CASE(S) Standard SEAL 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) 036322

Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 5-4-4, Exterior(2R) 5-4-4 to 8-4-4, Interior (1) 8-4-4 to 12-6-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org)

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G

mm March 3,2025

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 1-Roof	
	G1	Monopitch	36	1	Job Reference (optional)	1/1/03485

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Thu Feb 27 13:29:59 ID:sVHuU9?jz?EalqneG3uXRMyFJ8q-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

-1-0-0 7-5-8 13-5-8 H 7-5-8 6-0-0 1-0-0 13-5-8 2x4 **I** 6 9¹² 3x6 🍫 15 3x6 / 14 5 10-7-6 11-2-8 13 3x4 3 0-6-4 16 17 8 18 7 4×4= 2x4 II 3x4=

Scale = 1:75.4

Plate Offsets (X,	Y):	[2:0-1-7,0-2-0]
-------------------	-----	-----------------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.78 0.98 0.26	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.21 -0.28 0.03 0.05	(loc) 8-11 8-11 2 8-11	l/defl >756 >568 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 84 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 30T CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	10.0 RD 2x4 SP No.2 RD 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1-6-0 RD Structural wood sheathing directly applied. 1 Row at midpt 6-7, 4-7 NS (size) 2=0-3-8, 7= Mechanical Max Horiz 2=230 (LC 16) Max Uplif 7=-70 (LC 16) Max Grav 2=665 (I C.34) 7=652 (I C.34)		5) 6) 7) d. 8) 9) 10)	 5) Plates checked for a plus or minus 5 degree rotation about its center. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 8) Bearings are assumed to be: Joint 2 SP No.2. 9) Refer to girder(s) for truss to truss connections. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 70 lb uplift at joint 7. 										
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=0/56, 2-4=-734/0 2-8=-115/517, 7-8=- 4-8=0/406, 6-7=-294	pression/Maximum 0, 4-6=-145/83 115/517 /73, 4-7=-728/162	12)	load of 250.0 panels and a Bottom Chor This truss de structural wo	Ib live and 3.0lb do t all panel points a d, nonconcurrent v sign requires that od sheathing be a	ead loca long the vith any a minim pplied di	ted at all mid Top Chord a other live loa um of 7/16" irectly to the	and ads. top						

NOTES

 Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 13-3-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

 \vdash

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 1-Roof	
	G1A	Monopitch	4	1	Job Reference (optional)	1/1/03486

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Thu Feb 27 13:29:59 ID:sVHuU9?jz?EalqneG3uXRMyFJ8q-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

7-5-8 13-5-8 7-5-8 6-0-0 13-5-8 2x4 II 5 912 91 3x6 🍫 14 3x6 🖌 13 3 10-7-6 10-7-6 12 3x4 2 0-6-4 15 16 17 6 7 4x4= 2x4 II 3x4=

7-5-8 13-5-8 7-5-8 6-0-0

Scale = 1:69.3

Plate Offsets (X, Y): [1:0-1-7,0-2-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-AS	0.78 0.99 0.26	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.21 -0.28 0.03 0.05	(loc) 7-10 7-10 1 7-10	l/defl >756 >562 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 82 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1 Structural wood sheat Rigid ceiling directly 1 Row at midpt (size) 1=0-3-8, 6 Max Horiz 1=215 (LC Max Uplift 6=-71 (LC Max Grav 1=600 (LC (lb) - Maximum Com	-6-0 athing directly applied applied. 5-6, 3-6 = Mechanical : 16) : 33), 6=654 (LC 33) pression/Maximum	 6) * This truss h on the botton 3-06-00 tall b chord and an 7) Bearings are 8) Refer to girdé 9) Provide mecl bearing plate 6. 10) This truss ha load of 250.0 panels and a Bottom Chorn 11) This truss de structural wo 	as been designed in chord in all areas y 2-00-00 wide will y other members, in assumed to be: Jo er(s) for truss to true nanical connection capable of withsta s been designed for b live and 3.0lb det t all panel points all d, nonconcurrent w sign requires that a od sheatthing be ap	for a liv where fit betw with BC int 1 SF ss conr (by oth nding 7 or a mov ad loca ong the rith any a minim oplied di	e load of 20.0 a rectangle veen the bottc DL = 10.0psf. > No.2 . lections. ers) of truss to 1 lb uplift at jo ving concentrr ted at all mid Top Chord a other live loar um of 7/16" rectly to the tr	psf om oint ated nd ds. op					
TOP CHORD BOT CHORD WEBS	Tension 1-3=-736/0, 3-5=-146 1-7=-117/521, 6-7=- ⁻ 3-7=0/407, 5-6=-293	6/83 117/521 /73, 3-6=-732/164	chord and 1/2 the bottom ch LOAD CASE(S)	" gypsum sheetroo oord. Standard	ck be a	oplied directly	to					
NOTES 1) Wind: ASC Vasd=95m II; Exp B; E Exterior(2E 13-3-12 zo vertical left forces & M DOL=1.60 2) TCLL: ASC Plate DOL: 1.15 Plate Exp.; Ce=1 3) Unbalance design. 4) Plates cheir	E 7-16; Vult=120mph ph; TCDL=6.0psf; BCI Enclosed; MWFRS (en E) 0-1-12 to 3-1-12, Int ne; cantilever left and and right exposed;C-1 WFRS for reactions st plate grip DOL=1.60 DE 7-16; Pr=20.0 psf (r =1.15); Pg=20.0 psf (r =1.15); Pg=20.0 psf I.0; Cs=1.00; Ct=1.10 d snow loads have be cked for a plus or minu-	(3-second gust) DL=6.0psf; h=25ft; Ca velope) and C-C erior (1) 3-1-12 to right exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1. ⁻ f=15.4 psf (Lum DOL Rough Cat B; Partially en considered for this us 5 degree rotation	at. 15 =						Commune.		SEAL O3632	ROLLAND MULTIN

- DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 3) design.
- 4) Plates checked for a plus or minus 5 degree rotation about its center.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

G١

munn

March 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 1-Roof	
	G1G	Half Hip Supported Gable	4	1	Job Reference (optional)	171703487

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Thu Feb 27 13:30:00 ID:8WXVN4m8QSAWzDOieIJmK5zuor4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:73

Plate Offsets (X, Y): [11:Edge,0-2-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-AS	0.95 0.37 0.28	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 105 lb	GRIP 244/190 • FT = 20	%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shee except end verticals. Rigid ceiling directly 1 Row at midpt (size) 2=13-5-8, 13=13-5-8 16=13-5-8 Max Horiz 2=259 (LC Max Uplift 2=-55 (LC 12=-27 (L) 14=-22 (L) 16=-16 (L) Max Grav 2=302 (LC 12=337 (L) 16=336 (L)	athing directly applied. applied. 10-11, 9-12 11=13-5-8, 12=13-5- 3, 14=13-5-8, 15=13-4 3, 17=13-5-8 C 15) 12), 11=-55 (LC 15). C 16), 15=-20 (LC 16 C 16), 15=-20 (LC 16 C 16), 15=-20 (LC 16 C 16), 15=-20 (LC 16 C 16), 15=-32 (LC 7 C 70), 15=332 (LC 7 C 70), 15=332 (LC 6 C 68), 17=320 (LC 6	1) 1, 2) 8, 5-8, 3) 5, 4) 5) 5) 1), 9), 6)	Wind: ASCE Vasd=95mph II; Exp B; Enc (3E) -1-0-0 tc cantilever left right exposed for reactions DOL=1.60 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced s design. This truss has load of 12.0 p overhangs nd Plates checkk	7-16; Vult=120mph ; TCDL=6.0psf; BC closed; MWFRS (er 2-0-0, Exterior(2N and right exposed ;C-C for members shown; Lumber DC ed for wind loads in ds exposed to wind I Industry Gable En alified building desi 7-16; Pr=20.0 psf (15); Pg=20.0 psf; F DL = 1.15); Is=1.0; ; Cs=1.00; Ct=1.10 snow loads have be s been designed for osf or 2.00 times fla on-concurrent with or ed for a plus or min tar	(3-sec DL=6.0 Nvelope) 2-0-0 ; end v ; end v ; end v c and for DL=1.60 n the plat (norm d Detai gner as roof LL Pf=15.4 Rough een cor r greate t roof k other liv us 5 de	ond gust) opsf; h=25ft; C opsf; h=25ft; C to 13-3-12 zo ertical left and ces & MWFR oplate grip ane of the trus ane of the trus and of 15.4 ps are loads. agree rotation	Cat. orner one; d S S S S S S S S S S S S S S S S S S	13) This load pan Bott 14) This stru- chor the I LOAD C	truss hi of 250. els and i om Cho i truss di ctural wi rd and 1 bottom c cASE(S)	as bee Olb livv at all p rd, nor esign n ood sh /2" gyr /2" gy	en designed for . e and 3.0lb dead anel points alor nconcurrent with requires that a r leathing be app osum sheetrock indard	a moving cc d located at ng the Top (n any other ninimum of ied directly be applied	oncentrated all mid Chord and live loads. 7/16" to the top directly to
FORCES	(lb) - Maximum Com Tension	pression/Maximum	7) 8)	Gable require	ter. es continuous botto spaced at 2-0-0 oc.	m chor	d bearing.				J.	WHTH CA	ARO	
TOP CHORD	1-2=0/49, 2-3=-625/4 5-6=-471/333, 6-7=- 8-9=-254/236, 9-10= 2-17=-331/271, 16-1 15-16=-138/177, 14- 13-14=-138/177, 12-	414, 3-5=-543/368, 396/297, 7-8=-321/25 -113/124, 10-11=-26 7=-138/177, -15=-138/177, -13=-138/177,	9) 59, 4/46 10)	This truss has chord live loa * This truss h on the bottom 3-06-00 tall b chord and an	s been designed fo d nonconcurrent wi as been designed f n chord in all areas y 2-00-00 wide will y other members.	r a 10.0 ith any for a liv where fit betw) psf bottom other live load e load of 20.0 a rectangle veen the botto	ds.)psf om		Manna Manna	i s	SE/ 0363	AL 322	
WEBS NOTES	11-12=-138/1/7 9-12=-276/212, 8-13 7-14=-278/101, 6-15 5-16=-286/102, 3-17	8=-275/129, 5=-281/100, ′=-279/121	11) 12)	 All bearings a Provide mech bearing plate 55 lb uplift at joint 13, 22 16 lb uplift at uplift at joint 2 	are assumed to be s nanical connection capable of withstar at joint 11, 27 lb up 2 lb uplift at joint 14, joint 16, 44 lb uplift 2.	SP No. (by othending 5 blift at jo , 20 lb u t at join	2 . ers) of truss to 5 lb uplift at jo pint 12, 15 lb u uplift at joint 1 t 17 and 55 lb	o pint uplift 5,		111.0		NGIN NC A. (IEER.	

March 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 1-Roof	
	B3G	Hip Supported Gable	4	1	Job Reference (optional)	171703488

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Thu Feb 27 13:29:58 ID:TtrFFh6jJ8qPXlxyw?ibIK8zuofW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

			L			19-	2-8					1	
Scale = 1:63.9			I									I	
Plate Offsets (X, Y): [5:0-2-0,Edge]	, [11:0-2-0,Edge]											
L oading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 20.4/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202 ²	1/TPI2014	CSI TC BC WB Matrix-AS	0.20 0.19 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	-										Weight: 117 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she except end verticals (6-0-0 max.): 5-11. Rigid ceiling directly	athing directly applie , and 2-0-0 oc purlins [,] applied.	WI NC 1) d, 2)	EBS Unbalanced this design. Wind: ASCI Vasd=95mp II; Exp B; E Exterior(2E	8-22=-279/22, 7 4-25=-285/51, 3 10-19=-276/0, 1 d roof live loads h E 7-16; Vult=120 bh; TCDL=6.0psf nclosed; MWFRS) -1-0-0 to 2-0-0,	-23=-279/4 -26=-275/7 2-18=-285/ have been (mph (3-sec ; BCDL=6.1 & (envelope Interior (1)	1, 6-24=-276 6, 9-21=-279 50, 13-17=-2 considered for ond gust) 0psf; h=25ft; and C-C 2-0-0 to 5-1	6/7, 9/40, 275/74 or Cat. -3,	 13) * Th on t 3-00 cho 14) All b 15) Probea 27, at jo and 16) Thir 	his truss he botto 6-00 tall rd and a bearings vide me ring plat 18 lb up bint 25, 5 48 lb up	has be om cho by 2-0 any oth s are as chanic te capa olift at ju 50 lb u plift at	een designed for a rrd in all areas wh 0-00 wide will fit it er members. ssumed to be SP al connection (by able of withstandii oint 16, 1 lb uplift plift at joint 26, 5 l joint 17.	a live load of 20.0psf ere a rectangle between the bottom No.2. others) of truss to ng 35 lb uplift at joint at joint 23, 5 lb uplift lb uplift at joint 18
REACTIONS	(size) 16=19-2- 19=19-2- 23=19-2- 26=19-2- Max Horiz 27=98 (L0	8, 17=19-2-8, 18=19- 8, 21=19-2-8, 22=19- 8, 24=19-2-8, 25=19- 8, 27=19-2-8 C 15)	2-8, 2-8, 2-8,	Exterior(2R Exterior(2R 20-2-8 zone vertical left forces & MV) 5-1-3 to 8-1-3, I) 14-1-5 to 17-1-5 c; cantilever left a and right expose WFRS for reactio	Interior (1) 5, Interior (and right ex d;C-C for n ns shown;	8-1-3 to 14-1 1) 17-1-5 to posed ; end nembers and Lumber	-5, I	load pan Bott 17) This	of 250. els and com Cho s truss d	olb live at all p ord, not lesign	e and 3.0lb dead banel points along nconcurrent with requires that a mi	located at all mid the Top Chord and any other live loads. nimum of 7/16"

Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face),

see Standard Industry Gable End Details as applicable,

or consult qualified building designer as per ANSI/TPI 1.

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL =

1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially

Unbalanced snow loads have been considered for this

This truss has been designed for greater of min roof live

Provide adequate drainage to prevent water ponding.

Plates checked for a plus or minus 5 degree rotation

braced against lateral movement (i.e. diagonal web).

chord live load nonconcurrent with any other live loads.

Gable requires continuous bottom chord bearing.

10) Truss to be fully sheathed from one face or securely

12) This truss has been designed for a 10.0 psf bottom

load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on

Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0

overhangs non-concurrent with other live loads.

DOL=1.60 plate grip DOL=1.60

3)

4)

5)

6)

7)

8)

9)

design.

about its center.

11) Gable studs spaced at 2-0-0 oc.

Max Uplift 16=-18 (LC 13), 17=-48 (LC 17),

Max Grav 16=306 (LC 113), 17=318 (LC 112),

27=-35 (LC 12)

(Ib) - Maximum Compression/Maximum

2-27=-291/53, 1-2=0/72, 2-3=-107/77,

6-7=-57/92, 7-8=-57/92, 8-9=-57/92,

3-4=-84/104, 4-5=-129/100, 5-6=-57/90,

9-10=-57/92, 10-11=-57/90, 11-12=-129/97,

12-13=-84/104, 13-14=-107/73, 14-15=0/72,

26-27=-46/63, 25-26=-46/63, 24-25=-46/63,

23-24=-46/63, 22-23=-46/63, 21-22=-46/63,

19-21=-46/63, 18-19=-46/63, 17-18=-46/63,

Tension

14-16=-291/47

16-17=-46/63

FORCES

TOP CHORD

BOT CHORD

18=-5 (LC 17), 23=-1 (LC 12),

25=-5 (LC 16), 26=-50 (LC 16),

21=333 (LC 109), 22=333 (LC

(LC 106), 25=336 (LC 105),

108), 23=333 (LC 107), 24=333

18=336 (LC 111), 19=333 (LC 110),

26=318 (LC 104), 27=306 (LC 103)

17) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Page: 1

 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

March 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 1-Roof	
	B3	Нір	4	1	Job Reference (optional)	171703489

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Thu Feb 27 13:29:58 ID:sDcGVNHEU342825Ij?UAgmzuoif-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

		6-9-1	12-5-7	19-2-8
Scale = 1:70.2		6-9-1	5-8-6	6-9-1
Diata Officiata (V. V).	[0:0 0 0 Edge] [0:0 4 0 0 4 4] [4:0 4 0 0 4 4]	[Evo 2 0 Edge] [ZvEdge 0.4	01	

Plate Olisets (A, T). [2.0-3-6,Euge],	[3.0-4-0,0-1-4], [4.0-	4-0,0-1-4]	, [5.0-3-6,Euge	ej, [7.Euge,0-1-o]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2027	I/TPI2014	CSI TC BC WB Matrix-AS	0.77 0.92 0.16	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.17 -0.22 0.02 0.01	(loc) 7-8 7-8 7 8-10	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 119 lb	GRIP 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep	t* 11-2,7-5:2x4 SP N	3) lo.2 4)	TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design.	E 7-16; Pr=20.0 ps I.15); Pg=20.0 ps OL = 1.15); Is=1.0); Cs=1.00; Ct=1. snow loads have	f (roof Ll ; Pf=20.4); Rough I0, Lu=5 been coi	L: Lum DOL= 4 psf (Lum D0 Cat B; Partia 0-0-0 nsidered for t	=1.15 OL = ally his					
BOT CHORD WEBS REACTIONS	except end verticals (5-7-1 max.): 3-4. Rigid ceiling directly 1 Row at midpt (size) 7=0-3-8, 1 Max Horiz 11=122 (L Max Grav 7=1043 (L	anning directly applied, applied. 3-8 11=0-3-8 _C 15) _C 45), 11=1047 (LC	a, 5) 6) 7) 8) 57) 9)	This truss ha load of 12.0 overhangs n Provide ader All plates are Plates check about its cer This truss ha	as been designed psf or 2.00 times i on-concurrent witi quate drainage to a MT20 plates unli- ted for a plus or m tter.	for great flat roof I n other li prevent ess othe inus 5 d	er of min roo bad of 15.4 p ve loads. water pondin rwise indicate egree rotation	f live osf on g. ed. n					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	3) 10	chord live load	ad nonconcurrent	with any	other live load	ads. Opsf					
TOP CHORD	1-2=0/72, 2-3=-1146 4-5=-1135/70, 5-6=0 5-7=-1058/93	6/70, 3-4=-762/105, 0/72, 2-11=-1067/93,	10	on the bottor 3-06-00 tall I chord and a	m chord in all area by 2-00-00 wide w by other members	is where ill fit betv , with BC	a rectangle veen the bott CDL = 10.0ps	tom					
BOT CHORD WEBS	10-11=-119/620, 8-1 3-10=0/340, 3-8=-11 2-10=-71/457, 5-8=-	0=0/700, 7-8=-86/59 6/120, 4-8=0/257, 72/447	12 11 12) All bearings) This truss ha load of 250.0	are assumed to b as been designed Olb live and 3.0lb o	e SP No for a mo lead loca	2. ving concenti ated at all mic	rated				mun	900.
NOTES 1) Unbalance this design 2) Wind: ASC	ed roof live loads have n. CE 7-16: Vult=120mph	been considered for (3-second gust)	13	panels and a Bottom Chor) This truss de structural wo	at all panel points rd, nonconcurrent esign requires that bod sheathing be a	along the with any a minim applied d	e Top Chord a other live loa um of 7/16" irectly to the	and ads. top			ALL S	ORTH CA	ROLLIN

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 6-10-13, Exterior(2R) 6-10-13 to 9-10-13, Interior (1) 9-10-13 to 12-3-11, Exterior(2R) 12-3-11 to 15-3-11, Interior (1) 15-3-11 to 20-2-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

the bottom chord.14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

chord and 1/2" gypsum sheetrock be applied directly to

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building **Component Association** (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 1-Roof	
	B2	Нір	4	1	Job Reference (optional)	171703490

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Thu Feb 27 13:29:57 ID:sDcGVNHEU342825Ij?UAgmzuoif-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	8-6-10	10-7-14	19-2-8	
Scale = 1:76.5	8-6-10	2-1-3	8-6-10	

Plate Offsets (X, Y):	[2:0-2-0,0-1-12],	[4:0-4-0,0-1-4],	[5:0-4-0,0-1-4],	[7:0-2-0,0-1-12]
-----------------------	-------------------	------------------	------------------	------------------

shown; Lumber DOL=1.60 plate grip DOL=1.60

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 20.4/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.89 0.55 0.54	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.23 -0.33 0.02 0.01	(loc) 9-11 9-11 9 11	l/defl >992 >695 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS	GRIP 244/190 187/143
BCDL	10.0		_									Weight: 139 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP SS 2x4 SP No.3 Structural wood shea except end verticals, (6-0-0 max.): 4-5. Rigid ceiling directly a	thing directly applied, and 2-0-0 oc purlins applied.	3) 4) 5)	TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 overhangs n	7-16; Pr=20.0 ps .15); Pg=20.0 ps DL = 1.15); Is=1.0 ; Cs=1.00; Ct=1.1 snow loads have s been designed osf or 2.00 times to pon-concurrent witt	if (roof LL f; Pf=20.4); Rough 10, Lu=50 been cor for greate flat roof lo h other liv	: Lum DOL= l psf (Lum DO Cat B; Partia D-0-0 hsidered for t er of min rood bad of 15.4 p ve loads.	1.15 OL = ally his f live osf on					
REACTIONS (size) 9=0-3-8, 13=0-3-8 6) PI Max Horiz 13=146 (LC 15) 7) Al Max Grav 9=1140 (LC 45), 13=1140 (LC 45) 8) PI Charles 0 140 (LC 45), 13=1140 (LC 45) 8)					uate drainage to MT20 plates unle ed for a plus or m	prevent v ess other hinus 5 de	water pondin wise indicate egree rotation	g. ed. n					
FORCES	(lb) - Maximum Comp Tension	pression/Maximum	9)	This truss ha	s been designed	for a 10.0) psf bottom	do					
TOP CHORD	1-2=0/60, 2-3=-488/4 4-5=-646/113, 5-6=-9 7-8=0/60, 2-13=-506/	10)	 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom 										
BOT CHORD WEBS	12-13=0/799, 11-12= 3-12=-272/112, 4-12= 5-12=-183/194, 5-11= 3-13=-769/50, 6-9=-7	0/614, 9-11=0/799 =-22/293, =-16/410, 6-11=-274/´ 66/55	11) 113, 12)	chord and an All bearings a This truss ha load of 250.0	y other members are assumed to be s been designed lb live and 3.0lb c	e SP SS for a mov	/ing concenti	rated					11.
NOTES				panels and a	t all panel points	along the	Top Chord	and				N''LL CA	DILL
1) Unbalance this design	ed roof live loads have b n.	been considered for	13)	Bottom Chor This truss de	d, nonconcurrent sign requires that	with any t a minim	other live loa um of 7/16"	ads.			AN'	ORTHOA	TIN'
 Wind: AS(Vasd=95r II; Exp B; Exterior(2 Exterior(2 13-6-2, In and right o C for men 	CE 7-16; Vult=120mph (mph; TCDL=6.0psf; BCD Enclosed; MWFRS (env E) -1-0-0 to 2-0-0, Interi E) 8-8-6 to 10-6-2, Exte terior (1) 13-6-2 to 20-2- exposed; end vertical le betrs and forces & MWF	3-second gust) bL=6.0psf; h=25ft; Ca relope) and C-C or (1) 2-0-0 to 8-8-6, rior(2R) 10-6-2 to 8 zone; cantilever lef fit and right exposed; FRS for reactions	t. 14) t C- LO	structural wo chord and 1/2 the bottom cl Graphical pu or the orienta bottom chorc AD CASE(S)	od sheathing be a 2" gypsum sheetr hord. rlin representation tion of the purlin I. Standard	applied di rock be a n does no along the	rrectly to the oplied directl ot depict the s top and/or	top y to size		Number of the second se		SEA 0363	22

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A. GILP

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 1-Roof	
	B1	Common	8	1	Job Reference (optional)	171703491

Structural LLC Thurmont MD - 21788

Scale = 1:79.7

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

this design.

grip DOL=1.60

design.

Exp.; Ce=1.0; Cs=1.00; Ct=1.10

WEBS

NOTES

1)

2)

3)

4)

REACTIONS (size)

Rigid ceiling directly applied.

Max Horiz 11=-161 (LC 14)

2-11=-480/76, 6-8=-480/76

5-10=-222/120, 3-10=-222/120

Unbalanced roof live loads have been considered for

Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 9-7-4, Exterior(2R) 9-7-4 to 12-7-4, Interior (1) 12-7-4 to 20-2-8 zone; cantilever left and right exposed ; end vertical left

and right exposed;C-C for members and forces &

MWFRS for reactions shown; Lumber DOL=1.60 plate

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially

Unbalanced snow loads have been considered for this

10-11=0/579.8-10=0/560

Tension

8=0-3-8, 11=0-3-8

Max Grav 8=824 (LC 2), 11=824 (LC 2)

1-2=0/64, 2-3=-556/64, 3-4=-699/104,

4-5=-699/104, 5-6=-556/64, 6-7=0/64,

3-11=-495/50, 5-8=-495/50, 4-10=-37/504,

(lb) - Maximum Compression/Maximum

Run: 8 83 S. Feb 18 2025 Print: 8 830 S Feb 18 2025 MiTek Industries. Inc. Thu Feb 27 13:29:56 ID:sDcGVNHEU342825Ij?UAgmzuoif-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-7-4	19-2-8
9-7-4	9-7-4

L oading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 15.4/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/	TPI2014	CSI TC BC WB Matrix-AS	0.54 0.63 0.41	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.36 -0.47 0.01 0.01	(loc) 8-10 8-10 8 10	l/defl >627 >481 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS	GRIP 244/190 187/143	
BCDL	10.0				indian inter		(11)	0.01		- 000	2.0	Weight: 123 lb	FT = 20%	
LUMBER FOP CHORD 3OT CHORD WEBS BRACING FOP CHORD	2x4 SP No.2 2x4 SP SS 2x4 SP No.3 *Excep Structural wood she	t* 11-2,8-6:2x6 SP No athing directly applied	5) 0.2 6) 7) , 8)	This truss ha load of 12.0 p overhangs no All plates are Plates check about its cen This truss ha	s been designe osf or 2.00 time on-concurrent v MT20 plates u ed for a plus of ter. s been designe	ed for greate es flat roof lo with other liv unless other r minus 5 de ed for a 10.0	er of min roo bad of 15.4 p ve loads. wise indicate gree rotation) psf bottom	of live osf on ed. n						

- signed for a 10.0 p chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be SP SS
- 11) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 1-Roof	
	B1GR	Common Girder	2	2	Job Reference (optional)	171703492

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Thu Feb 27 13:29:56 ID:GnZP7BVI4_ZLiUtokm?n4JzufiX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-5-8

Scale = 1:82.4

Plate Offsets (X, Y): [2:Edge,0-2-14], [7:0-3-4,0-2-12], [9:0-3-8,0-5-12], [10:0-5-0,0-6-4]

-																	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP				
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.43	Vert(LL)	-0.08	10-12	>999	360	MT20	244/190				
Snow (Pf/P	g) 15.4/20.0	Lumber DOL	1.15		BC	0.40	Vert(CT)	-0.15	10-12	>999	240	M18AHS	186/179				
TCDL	10.0	Rep Stress Incr	NO		WB	0.84	Horz(CT)	0.02	8	n/a	n/a	MT20HS	187/143				
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MS		Wind(LL)	0.02	12-15	>999	240						
BCDL	10.0						. ,					Weight: 350 lb	FT = 20%				
			3)	Unbalanced	roof live loads h	ave been	considered fo	r	16) Use Simpson Strong-Tie LUS28 (6-10d Girder 4-10d								
TOP CHOR	2v6 SP No 2		0)	this design					Tru	ss) or ea	nuivale	nt at 14-0-12 from	n the left end to				
BOT CHOR	D 2x8 SP DSS		4)	Wind: ASCE	7-16; Vult=120n	nph (3-seo	cond qust)		con	nect trus	ss(es)	to back face of bo	ottom chord.				
WEBS	2x4 SP No 3 *Excep	t* 10-5 9-7·2x4 SP N	ر ار 2	Vasd=95mph	; TCDL=6.0psf;	BCDL=6.	0psf; h=25ft; (Cat.	17) Fill all nail holes where hanger is in contact with lumber.								
	8-7:2x6 SP No.2		,	II; Exp B; En	e); cantilever l	18) Hanger(s) or other connection device(s) shall be											
SLIDER	Left 2x4 SP No.3 2	2-6-0		and right exposed ; end vertical left and right exposed;							provided sufficient to support concentrated load(s) 2890						
BRACING				Lumber DOL=1.60 plate grip DOL=1.60 Ib down and 325 lb up at 4-1-8 on bottom									bottom chord. The				
TOP CHOR	D Structural wood she	dor 5)	TCLL: ASCE	7-16; Pr=20.0 p	osf (roof Ll	.: Lum DOL=1	1.15	des	ign/sele	ction o	f such connectior	 device(s) is the 					
	5-0-9 oc purlins.	5 ,		Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = responsibility of others.													
BOT CHOR	D Rigid ceiling directly	applied or 10-0-0 oc		1.15 Plate D	Cat B; Partia	LOAD CASE(S) Standard											
	bracing.	0	Exp.; Ce=1.0); CS=1.00; Ct=1	.10			1) De	ead + Sr	now (ba	alanced): Lumber	Increase=1.15, Plate					
REACTION	S (size) 2=0-3-8, 8	3=0-3-8	6)	dooign	snow loads have	e been cor	isidered for tr	lis	In	crease=	1.15						
	Max Horiz 2=136 (LC	C 9)	7)	This trues ha	s been designed	t for areat	er of min roof	livo	Ur	hiform Lo	bads (I	o/ft)					
	Max Grav 2=6493 (L	.C 19), 8=7782 (LC 2	27) ''	load of 12 0 r	s been designed	flat roof l	ad of 15.4 ns	af on		Vert: 1-	5=-51,	5-7=-51, 8-13=-2	0				
FORCES (Ib) - Maximum Compression/Maximum				overhands no	on-concurrent wi	ith other li	ve loads		Co	oncentra	ted Lo	ads (Ib)) of 1000 (D)				
	Tension		8)	All plates are	MT20 plates un	less other	wise indicate	d.		Vert: 9=	-1098	(B), 24=-2890 (B), 25=-1302 (B),				
TOP CHOR	D 1-2=0/60, 2-4=-8105	j/0, 4-5=-5752/0,	9)	9) Plates checked for a plus or minus 5 degree rotation							(B) 31=-1561 (B)						
	5-6=-5788/0, 6-7=-78	853/0	- /	about its center.						(B), 31=-1561 (B)							
BOT CHOR	2-12=0/6129, 10-12=	=0/6129, 9-10=0/598	3, 10	10) This truss has been designed for a 10.0 psf bottom													
	8-9=0/0			chord live loa	ad nonconcurren	t with any	other live loa	ds.									
WEBS	5-10=0/6961, 4-12=0	0/3376, 6-9=0/3074,	11) * This truss h	e load of 20.0)psf											
	4-10=-2488/148, 6-1	0=-2514/0, 7-8=-584	4/0,	on the botton	n chord in all are	eas where	a rectangle					WHILL CA	Dall				
	7-9=0/6026			3-06-00 tall b	y 2-00-00 wide	will fit betw	veen the botto	om				altion	10/11/				
NOTES				chord and an	ly other member	'S.		~		/	S	O CEESS	B: All				
1) 2-ply tru	uss to be connected toget	ther with 10d	12	2) Bearings are	assumed to be:	Joint 2 Si	DSS, Joint	8		4	22	201	alita				
(0.131"	x3") nails as follows:	0.0	10	SP NO.2.	int(a) 9 consider	o porollol i				-		:0 - 0					
Top cho	ords connected as follows	5: 2x6 - 2 rows	10	bearing at ju	PI 1 angle to gr	s parallel				-	5 8						
Bottom	chards connected as folly	0.WC: 2x9 2 rowc		designer sho	uld verify capaci	ity of bear	ing surface				:	SEA	L : =				
stander	ed at 0-5-0 oc	JW3. 2X0 - J 10W3	14	 This truss ha 	s been designed	d for a mo	ving concentra	ated		Ξ.		0363	22 E				
Web co	nnected as follows: 2x4 -	1 row at 0-9-0 oc 2	x6 -	load of 250.0lb live and 3.0lb dead located at all mid									: E				
2 rows	staggered at 0-9-0 oc.			panels and at all panel points along the Top Chord and									1 3				
2) All load	s are considered equally	applied to all plies.		Bottom Chord, nonconcurrent with any other live loads.								Rick					
except	if noted as front (F) or bac	ck (B) face in the LO	AD 15	i) Use Simpsor	Strong-Tie HU	S28 (22-1	0d Girder, 4-1	0d			25	GIN	EF. AN				
CASE(S) section. Ply to ply conn	ections have been		Truss, Single	Ply Girder) or e	quivalent	spaced at 4-0	-0			11	10	BEN				
provide	d to distribute only loads	noted as (F) or (B),		oc max. start	ing at 6-0-12 fro	m the left	end to 18-0-1	2 to				11, A. G	ILLIN				
unless	otherwise indicated.			connect truss	s(es) to back fac	e of botto	m chord.					(IIIIIII)	UIII.				

March 3,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 1-Roof	
	B1A	Common	4	1	Job Reference (optional)	171703493

Structural LLC Thurmont MD - 21788

Run: 8 83 S. Feb 18 2025 Print: 8 830 S Feb 18 2025 MiTek Industries. Inc. Thu Feb 27 13:29:56 ID:xjAV2Oidx0pRg1Xn434bwRzuogq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

= 1:79.7				<u>9-7-4</u> 9-7-4			<u>19-2-8</u> 9-7-4						
ng (roof) (Pf/Pg)	(psf) 20.0 15.4/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.54 0.95 0.42	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.38 -0.50 0.01	(loc) 8-10 8-10 7	I/defl >594 >454 n/a	L/d 360 240 n/a 240	PLATES MT20 MT20HS	GRIP 244/190 187/143	
	10.0	Code	11(02021/1112014	Wathz-AS		WIND(LL)	0.01	0-10	>999	240	Weight: 121 lb	FT = 20%	

	INKER	

Scale Loadi TCLL Snow TCDL BCLL BCDL

TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	o.2 *Except* 9-7:2x4 SP SS
WEBS	2x4 SP N	o.3 *Except* 10-2,7-6:2x6 SP No
BRACING		
TOP CHORD	Structural	l wood sheathing directly applied,
	except en	nd verticals.
BOT CHORD	Rigid ceili	ing directly applied.
REACTIONS	(size)	7=0-3-8, 10=0-3-8
	Max Horiz	10=156 (LC 13)
	Max Grav	7=748 (LC 2), 10=826 (LC 2)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/64,	2-3=-527/69, 3-4=-702/103,
	4-5=-704/	104, 5-6=-569/46, 2-10=-475/79,
	67 416	40

/79, BOT CHORD 8-10=-26/574.7-8=-17/579 4-8=-38/511, 3-8=-221/121, 5-8=-227/121, WEBS

3-10=-508/33, 5-7=-489/62

- NOTES
- 1) Unbalanced roof live loads have been considered for
- this design 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 9-7-4, Exterior(2R) 9-7-4 to 12-7-4, Interior (1) 12-7-4 to 18-11-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

- This truss has been designed for greater of min roof live 5) load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- All plates are MT20 plates unless otherwise indicated. 6) Plates checked for a plus or minus 5 degree rotation 7) about its center.
- This truss has been designed for a 10.0 psf bottom 8) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Bearings are assumed to be: Joint 10 SP No.2 , Joint 7 SP SS
- 11) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard

No.2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 1-Roof	
	A1	Attic	20	1	Job Reference (optional)	71703498

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Thu Feb 27 13:29:53 ID:JoBqOecayyV_mQHZQEOWtHyFIf2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:100.2

Plate Offsets (X, Y): [18:0-1-12,0-3-0]

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.80	DEFL Vert(LL)	in -0.29	(loc) 20-21	l/defl >999	L/d 360	PLATES MT20	GRIP 244/190	
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.98	Vert(CT)	-0.58	20	>660	240	M18AHS	186/179	
TCDL	10.0	Rep Stress Incr	YES		WB	0.96	Horz(CT)	0.09	13	n/a	n/a			
BCLL	0.0*	Code	IRC2021	/TPI2014	Matrix-AS		Wind(LL)	0.15	20-21	>999	240			
BCDL	10.0											Weight: 223 lb	FT = 20%	
LUMBER			2)	Wind: ASCE	7-16; Vult=120mph	n (3-sec	ond gust)		14) This	s truss d	esign	requires that a m	inimum of 7/1	6"
TOP CHORD	2x4 SP No.2			Vasd=95mph	; TCDL=6.0psf; BC	DL=6.0)psf; h=25ft; (Cat.	stru	ctural w	ood sh	eathing be applie	ed directly to t	he top
BOT CHORD	2x4 SP SS *Except*	19-16:2x4 SP No.3		II; Exp B; End	closed; MWFRS (el	nvelope	e) and C-C	10	cho	rd and 1	/2" gy	psum sneetrock t	e applied dire	ectly to
WEBS	2x4 SP No.3 *Except	t* 7-20:2x4 SP SS,		Exterior(2P)	-1-0-0 10 2-2-2, Inte	Intorio	2-2-2 10 19-0	-10, to	15) Atti		chora.	d for 1 /260 dofla	ation	
	10-14,23-9:2x4 SP N	NO.2		21-7-1 zone:	cantilever left and	right ov	nosed : end	10			necke		Juon.	
SLIDER	Leit 2x4 SP N0.3 1	1-0-0		vertical left a	nd right exposed C	-C for n	posed, end		LUAD	ASE(S)	Sla	ndard		
BRACING	o , , , , , , ,			forces & MW	FRS for reactions s	shown.	l umber							
TOP CHORD	Structural wood snea	atning directly applied	d ,	DOL=1.60 pl	ate grip DOL=1.60	,								
	Rigid ceiling directly	annlied	3)	TCLL: ASCE	7-16; Pr=20.0 psf	(roof LL	.: Lum DOL=1	1.15						
WEBS	1 Row at midpt	11-13		Plate DOL=1	.15); Pg=20.0 psf;	Pf=15.4	psf (Lum DC)L =						
JOINTS	1 Brace at Jt(s): 24			1.15 Plate DO	OL = 1.15); ls=1.0;	Rough	Cat B; Partial	lly						
REACTIONS	(size) 2=0-3-8, 1	3=0-3-8		Exp.; Ce=1.0	; Cs=1.00; Ct=1.10									
	Max Horiz 2=179 (LC	C 15)	4)	Unbalanced	snow loads have be	een cor	isidered for th	IIS						
	Max Grav 2=1610 (L	.C 2), 13=1743 (LC 3	(6) 5)	This trues ha	s been designed fo	r areat	ar of min roof	livo						
FORCES	(lb) - Maximum Com	pression/Maximum	-/ 5)	load of 12 0 r	s been designed to	t roof lo	ad of 15.4 ps	sfon						
	Tension			overhands no	on-concurrent with	other liv	/e loads.							
TOP CHORD	1-2=0/36, 2-4=-2856	6/0, 4-6=-2583/0,	6)	250.0lb AC u	nit load placed on t	he bott	om chord,							
	6-7=-2277/0, 7-8=-4	14/62, 8-9=-494/54,		19-6-10 from	left end, supported	l at two	points, 5-0-0							
	9-10=-1826/0, 10-11	=-2344/0, 11-12=-34	8/37,	apart.										
	12-13=-353/28		7)	All plates are	MT20 plates unles	s other	wise indicate	d.				minin	1111	
BOT CHORD	2-22=0/2498, 21-22=	=0/2498, 20-21=0/22	59, 8)	Plates check	ed for a plus or mir	us 5 de	egree rotation					IN'LY CA	Palle	
	15-20=0/3113, 14-15	0=0/3113, 13-14=0/10	650,	about its cen	ter.						1	all	10/11	6
WERS	10 20-0/204 10 22-	-0/006 7 22-0/057	9)	I his truss ha	s been designed to	ra 10.0) pst bottom	da		/	S.	Quit 8	12 1	in
WEB3	19-20=0/804, 19-23=	=0/990,7-23=0/937, -0/697 11-14-0/276	10	Chord live loa		ith any	other live load	us. Inof			t a			
	23-24=-69/736 9-24	=-1582/0	, 10	on the botton	as been designed	where	e ioau oi 20.0	psi		-		:0	K .	-
	11-13=-2237/0. 8-24	=0/227.15-17=0/340).	3-06-00 tall h	v 2-00-00 wide will	fit hetu	a reclarigie	m		-		054	e 1	-
	17-20=-1286/0, 14-1	7=-1766/0, 6-21=0/4	25,	chord and an	v other members.	in betv	Cen the bolic	////				SEA	L :	=
	6-20=-636/66, 4-22=	0/286, 4-21=-340/90	, 11	Bottom chord	live load (20.0 psf) and a	dditional botto	om				0363	22 :	
	7-24=-2077/0			chord dead lo	oad (20.0 psf) appli	ed only	to room. 17-	19,		1		. 0000	:	-
NOTES				16-17						-	-			-
1) Unbalance	ed roof live loads have	been considered for	12) All bearings a	are assumed to be	SP SS	•				21	N. ENG	-ER. X	3
this design).		13) This truss ha	s been designed fo	r a mov	ing concentra	ated			1	A GIN	Er. A	N
				load of 250.0	ID live and 3.0lb de	ad loca	ted at all mid	ام م			1	CA C	II BEIN	
				panels and a	t all panel points al	ong the	other live less	na				11, A. G	IL IIII	
					u, nonconcurrent w	iui any	other live load	u5.				201111	CD12	

March 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Structural, LLC, Thurmont, MD - 21788

Scale = 1:80.2

Loading

TCDL

BCLL

BCDL

WEBS

WEBS

FORCES

SLIDER

BRACING

TOP CHORD

BOT CHORD

REACTIONS

TOP CHORD

BOT CHORD

WEBS

NOTES

this design.

1)

(size)

LUMBER

TOP CHORD

BOT CHORD

TCLL (roof)

Snow (Pf/Pg)

Run: 8 83 S. Feb 18 2025 Print: 8 830 S Feb 18 2025 MiTek Industries. Inc. Thu Feb 27 13:30:00 ID:Q3nBMVdTL?aC9LM_jiCFHhzunDz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -1-0-0 5-4-14 11-4-14 16-11-13 21-3-2 26-11-2 31-9-0 5-4-14 5-6-15 4-9-14 6-0-0 4-3-4 5-8-0 1-0-0

Page: 1

31-9-0 6x6 = $4 \times 4 =$ 9-1-15 S 0-1-15 7 29 8 6¹² 28 12 27 3x4 🚽 30 26 ^{3x4} ≠ 6 31 3x6, 25 32 5 24 9 S S 9-3-13 3x4. 33 <u>~</u>~ л 34 4x4、 22²³ 3x4 💋 35 10 3 α-ε ε 11œ ĕ́∏ ĕ 36 37 38 15 14 40 17 16 39 13 12 41 6x6 I 3x4= 2x4 I 3x4= 3x4= 3x4= 4x4 =MT20HS 3x8 = 5-4-14 11-4-14 16-10-1 21-4-14 26-11-2 31-9-0 5-4-14 6-0-0 5-5-3 4-6-12 5-6-4 4-9-14 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) Spacing (loc) 20.0 Plate Grip DOL 1.15 тс 0.74 Vert(LL) -0.15 16-17 >999 360 MT20 244/190 20.4/20.0 Lumber DOL 1.15 BC 0.82 Vert(CT) -0.25 16-17 >999 240 MT20HS 187/143 Rep Stress Incr WB Horz(CT) 0.07 10.0 YES 0.56 11 n/a n/a 0.0 IRC2021/TPI2014 Matrix-AS Wind(LL) 0.04 >999 240 Code 16-17 Weight: 203 lb 10.0 FT = 20% 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) 13) This truss design requires that a minimum of 7/16" Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. 2x4 SP No.2 structural wood sheathing be applied directly to the top 2x4 SP SS *Except* 15-11:2x4 SP No.2 II; Exp B; Enclosed; MWFRS (envelope) and C-C chord and 1/2" gypsum sheetrock be applied directly to Exterior(2E) -1-0-0 to 2-2-2, Interior (1) 2-2-2 to the bottom chord. 2x4 SP No.3 16-11-13, Exterior(2E) 16-11-13 to 21-3-2, Exterior(2R) Left 2x4 SP No.3 -- 1-6-0 14) Graphical purlin representation does not depict the size 21-3-2 to 25-9-0, Interior (1) 25-9-0 to 31-7-4 zone; or the orientation of the purlin along the top and/or cantilever left and right exposed ; end vertical left and bottom chord. Structural wood sheathing directly applied, right exposed C-C for members and forces & MWERS LOAD CASE(S) Standard except end verticals, and 2-0-0 oc purlins for reactions shown; Lumber DOL=1.60 plate grip (4-7-2 max.): 7-8 DOL=1.60 Rigid ceiling directly applied. 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 1 Row at midpt 6-14 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 2=0-3-8, 11=0-3-8 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Max Horiz 2=156 (LC 15) Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0 Max Grav 2=1526 (LC 51), 11=1596 (LC 59) 4) Unbalanced snow loads have been considered for this (Ib) - Maximum Compression/Maximum desian. Tension 5) This truss has been designed for greater of min roof live 1-2=0/36, 2-4=-2818/75, 4-6=-2449/112, load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on 6-7=-1836/147, 7-8=-1563/156, overhangs non-concurrent with other live loads. 8-9=-1871/145, 9-10=-2050/82, Provide adequate drainage to prevent water ponding. 6) 10-11=-1655/72 All plates are MT20 plates unless otherwise indicated. 7) 2-17=-72/2474, 16-17=-58/2474, Plates checked for a plus or minus 5 degree rotation 8) 14-16=-22/2108, 13-14=0/1352, about its center. ORTH 12-13=-29/1579, 11-12=-29/159 9) This truss has been designed for a 10.0 psf bottom 6-14=-882/68, 7-14=0/513, 8-14=-34/372, chord live load nonconcurrent with any other live loads. 8-13=0/409, 9-13=-307/86, 9-12=-202/187, 10) * This truss has been designed for a live load of 20.0psf 10-12=0/1464, 4-17=0/310, 6-16=0/445, on the bottom chord in all areas where a rectangle Contraction of the 4-16=-411/44 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. SEAL 11) Bearings are assumed to be: Joint 2 SP SS , Joint 11 SP Unbalanced roof live loads have been considered for 036322 No.2 . 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. G mm March 3,2025

Plate Offsets (X, Y): [8:0-3-6,Edge], [10:0-1-0,0-1-12], [11:Edge,0-1-8]

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 1-Roof	
	A1B	Roof Special	4	1	Job Reference (optional)	171703500

Scale = 1:85.5

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Thu Feb 27 13:29:55 ID:lkNDmt454ccCAJHHZnKHxnyFINg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [2:0-3-9,0-0-5], [7:0-4-0,0-3-0], [9:0-1-0,0-1-12], [10:Edge,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.94 0.58 0.49	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.26 -0.38 0.06 0.04	(loc) 12-14 12-14 10 14-15	l/defl >999 >996 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT18HS MT20HS Weight: 185 lb	GRIP 244/190 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP No.2 *Excep 2x4 SP SS 2x4 SP No.3 Left 2x4 SP No.3 1 Structural wood shea except end verticals. Rigid ceiling directly 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=179 (LC Max Grav 2=1420 (L (lb) - Maximum Com Tension 1-2=0/36, 2-4=-2553 6-7=-1432/152, 7-8= 8-9=-1783/78, 9-10= 2-15=-76/2232, 14-1	t* 5-7:2x4 SP SS 1-6-0 athing directly applied 6-12, 8-12 (0= Mechanical C 15) C 3), 10=1382 (LC 38 pression/Maximum /74, 4-6=-2191/108, -1580/144, -1432/65 5=-47/2232,	3) 4) 5) 5) 8) 9) 10) 11)	TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 p overhangs no All plates are Plates check about its cen This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and ar Bearings are	7-16; Pr=20.0 psf 15); Pg=20.0 psf; DL = 1.15); Is=1.0; ; Cs=1.00; Ct=1.1 snow loads have t s been designed f pon-concurrent with MT20 plates unle ed for a plus or mi ter. s been designed f d nonconcurrent v as been designed f d nonconcurrent v as been designed n chord in all areas y 2-00-00 wide wi y other members, assumed to be: J er(s) for truss to true	(roof LL Pf=15.4 ; Rough 0 opeen cor or greate at roof le other lin so of a 10.0 or a 10.0 or a 10.0 yith any for a lin s where Il fit betw with BC oint 2 Si Juss cont	: Lum DOL= psf (Lum DC Cat B; Partia isidered for the er of min roof pad of 15.4 pro- ve loads. wise indicate agree rotation D psf bottom other live load e load of 20.0 a rectangle ven the botts DL = 10.0psf > SS. ections.	1.15 DL = Ily his live sf on d. b b ds. Dpsf					
WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=95m II; Exp B; E Exterior(2E Sterior(2E 31-7-4 zor vertical lef forces & M	12-14=-14/1918, 11- 10-11=-26/149 6-12=-964/81, 7-12= 8-11=-130/202, 9-11 6-14=0/473, 4-14=-3 ed roof live loads have b. CE 7-16; Vult=120mph rph; TCDL=6.0psf; BCI Enclosed; MWFRS (en E) -1-0-0 to 2-2-2, Inter R) 19-6-10 to 22-8-11, he; cantilever left and ri t and right exposed;C-1 WFRS for reactions sl	12=-29/1387, 0/1034, 8-12=-312/10 =-3/1314, 4-15=0/304 84/42 been considered for (3-second gust) DL=6.0psf; h=25ft; Ca velope) and C-C rior (1) 2-2-2 to 19-6-1 Interior (1) 22-8-11 to ight exposed ; end C for members and hown; Lumber	12) 55, 1, 13) at. 0,	 This truss ha load of 250.0 panels and a Bottom Chor This truss de structural wo chord and 1/2 the bottom cl AD CASE(S) 	s been designed f lb live and 3.0lb di t all panel points a d, nonconcurrent v sign requires that od sheathing be a 2" gypsum sheetro hord. Standard	or a move ead loca- long the vith any a minim pplied d pck be a	ving concentr ted at all mid Top Chord a other live loa um of 7/16" irectly to the t oplied directly	ated and ds. to / to		M. CHILLINN		SEA 0363	ROLING INTERNET

Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-2-2, Interior (1) 2-2-2 to 19-6-10, Exterior(2R) 19-6-10 to 22-8-11, Interior (1) 22-8-11 to 31-7-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G mmm March 3,2025

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Thu Feb 27 13:30:01 ID:ghWaDGAICKi2W09aDaVGThzunBz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	5-4-14	13-6-1	23-7-8	31-9-0
Scale = 1:73.2	5-4-14	8-1-3	10-1-7	8-1-8

Plate Offsets	(X, Y):	[8:0-4-0,0-1-6]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-AS	0.87 0.75 0.82	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.48 -0.68 0.07 0.05	(loc) 12-14 12-14 11 14-15	l/defl >783 >557 n/a >999	L/d 360 240 n/a 240	PLATES MT20HS MT20 Weight: 183 lb	GRIP 187/143 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance	2x4 SP SS *Except* 2x4 SP SS 2x4 SP No.3 Left 2x4 SP No.3 1 Structural wood shea except end verticals, (3-11-15 max.): 6-8. Rigid ceiling directly 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=129 (LC Max Grav 2=129 (LC (lb) - Maximum Com Tension 1-2=0/36, 2-4=-2816 6-7=-1808/151, 7-8= 8-9=-1840/129, 9-10 2-15=-92/2479, 14-1 12-14=-27/1718, 11- 4-15=0/331, 4-14=-7 7-14=-91/298, 7-12= 9-12=-92/242, 9-11= d roof live loads have	6-8,8-10:2x4 SP No. I-6-0 athing directly applied, and 2-0-0 oc purlins applied. 4-14, 7-14, 7-12 1=0-3-8 C 51), 11=1496 (LC pression/Maximum /101, 4-6=-2137/129 -1407/140, =-369/32, 10-11=-35 5=-92/2479, 12=-64/1366 46/85, 6-14=0/517, -601/57, 8-12=0/748 -1733/98 been considered for	3) 2 4) 5) 5(51) 5(1/30 11 12 , 13	TCLL: ASCE Plate DOL=1 1.15 Plate DOL Exp.; Ce=1.0 Unbalanced 3 design. This truss hai load of 12.0 p overhangs nd Provide adeq All plates are Plates check about its cent This truss hai chord live loa) * This truss hai chord live loa chord and an All bearings a) This truss hai load of 250.0 panels and a Bottom Chord This truss de structural woo chord and 1/2	7-16; Pr=20.0 psf 15); Pg=20.0 psf; DL = 1.15); Is=1.0; ; Cs=1.00; Ct=1.10 snow loads have b s been designed for portion on the second second second portion on the second second second portion of the second second second maximum second second second second portion of the second second second portion of the second second second second portion of the second sec	(roof LL Pf=20.4 Rough D, Lu=50 een cor or greatu at roof ld other liv revent v ss other hus 5 de or a 10.0 vith any for a liv swhere I fit betw with BC SP SS or a mou and loca long the vith any a minim opplied di ck be a	: Lum DOL=1 psf (Lum DC Cat B; Partial)-0-0 sidered for the er of min roof pad of 15.4 ps re loads. vater ponding wise indicated gree rotation 0 psf bottom other live load e load of 20.0 a rectangle reen the botto DL = 10.0psf. ting concentra ted at all mid Top Chord a other live load um of 7/16" rectly to the tr oplied directly	I.15 JL = Ily live sf on J. d. ds. opsf om ated ds. op to				TH CA	ROLINS	1
this design Wind: ASC Vasd=95m II; Exp B; E Exterior(2E 23-5-12, E 26-7-14 to exposed; c members a Lumber DO	E 7-16; Vult=120mph ph; TCDL=6.0psf; BCI inclosed; MWFRS (en c) -1-0-0 to 2-2-2, Inter 3 13-7-13 to 16-9-15, xterior(2R) 23-5-12 to 31-7-4 zone; cantileve end vertical left and rig and forces & MWFRS DL=1.60 plate grip DO	(3-second gust) DL=6.0psf; h=25ft; C velope) and C-C ior (1) 2-2-2 to 13-7- Interior (1) 16-9-15 to 26-7-14, Interior (1) er left and right ht exposed;C-C for for reactions shown; L=1.60	the bottom ch) Graphical puu or the orienta bottom chord AD CASE(S)	nord. rlin representation tion of the purlin al Standard	does no	ot depict the s top and/or	ize		00000000		SEAI 03632	ER. K	WWWWWWWWW	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

March 3,2025

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 1-Roof	
	H4	Нір	2	1	Job Reference (optional)	171703502

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Thu Feb 27 13:30:04 ID:0uwvvly5UV8da7ak3pdgfhzun74-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	5-4-14	11-4-14	17-2-4	21-2-1	26-11-2	31-9-0
Scale = 1:80.9	5-4-14	6-0-0	5-9-6	3-11-13	5-9-1	4-9-14

Plate Offsets (X, Y): [8:0-3-6,Edge], [10:0-1-0,0-1-12], [11:Edge,0-1-8]

														_
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.74 0.85 0.57	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.15 -0.25 0.07 0.04	(loc) 16-17 16-17 11 16-17	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20HS MT20 Weight: 205 It	GRIP 187/143 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD	2x4 SP No.2 2x4 SP SS *Except* 2x4 SP No.3 Left 2x4 SP No.3 1 Structural wood she: except end verticals; (4-6-15 max.): 7-8.	15-11:2x4 SP No.2 I-6-0 athing directly applied and 2-0-0 oc purlins	2) d,	Wind: ASCE Vasd=95mph II; Exp B; End Exterior(2E) Exterior(2E) 25-6-3, Interi and right exp C for membe shown; Lumb	7-16; Vult=120m ; TCDL=6.0psf; I closed; MWFRS -1-0-0 to 2-2-2, Ir 17-4-0 to 21-0-5, or (1) 25-6-3 to 3 osed; end vertic rs and forces & M ber DOL=1.60 pla	ph (3-sec BCDL=6.0 (envelope nterior (1) Exterior(2 1-7-4 zor al left and AWFRS fut te grip D	cond gust) Opsf; h=25ft; (e) and C-C 2-2-2 to 17-4 2R) 21-0-5 to he; cantilever d right expose or reactions OL=1.60	Cat. I-0, left ed;C-	14) This stru cho the 15) Gra or th bott LOAD (s truss d ictural w rd and 1 bottom phical p he orien com choi CASE(S	esign r pod sh /2" gyp chord. urlin re cation c d.) Star	equires that a r eathing be app posum sheetrock presentation do of the purlin alou ndard	ninimum of 7/16" lied directly to the top be applied directly to pes not depict the size ng the top and/or	è
BOT CHORD WEBS REACTIONS	Rigid ceiling directly 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=159 (LC Max Gray 2=1535 (L	applied. 6-14 1= Mechanical C 15) .C 51), 11=1604 (LC	3) 59) 4)	 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0.0 Understand the set of the										
FORCES	(lb) - Maximum Com	pression/Maximum		design.	snow loads have	been cor	isidered for tr	115						
TOP CHORD	Tension 1-2=0/36, 2-4=-2833 6-7=-1821/146, 7-8= 8-9=-1879/144, 9-10 10-11=-1663/70	/73, 4-6=-2471/108, 1545/155, =-2065/81,	5) 6) 7)	 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 6) Provide adequate drainage to prevent water ponding. 										
BOT CHORD	2-17=-72/2487, 16-1 14-16=-20/2129, 13-	7=-56/2487, 14=0/1353,	8)	Plates check about its cen	ed for a plus or n ter.	ninus 5 de	egree rotation	1				and a community of the second		
WEBS	12-13=-28/1596, 11- 6-14=-912/69, 7-14= 8-13=0/402, 9-13=-3 10-12=0/1490, 4-17= 4-16=-402/44	12=-28/157 -1/502, 8-14=-37/374 22/88, 9-12=-205/19 =0/309, 6-16=0/449,	9) 4, 0, 10)	This truss ha chord live loa * This truss h on the botton 3-06-00 tall b	s been designed ad nonconcurrent las been designe n chord in all area by 2-00-00 wide w	for a 10.0 with any d for a liv as where vill fit betw	D psf bottom other live loa re load of 20.0 a rectangle veen the botto	ds. Opsf om		4	A.L.	ORTHO	Mart	7
NOTES		44	chord and an	y other members	s, with BC	DL = 10.0psf			E	:	SE	AL : E		
1) Unbalanced roof live loads have been considered for				11) Bearings are assumed to be: Joint 2 SP SS.										

this design.

¹²⁾ Refer to girder(s) for truss to truss connections.
13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

18-0-2

7-8-5

10-3-13

4-10-15

Structural, LLC, Thurmont, MD - 21788

5-11-13

Loading

TCDL

BCLL

BCDL

WEBS

WEBS

FORCES

WEBS

NOTES

1)

SLIDER

BRACING

LUMBER

TCLL (roof)

-1-0-0

1-0-0

5-4-14 5-4-14

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Thu Feb 27 13:30:03 ID:6tMHFARcTbw8c9gmt8uuEqzunAK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

25-8-7

7-8-5

31-9-0

6-0-9

Page: 1

bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

VIIIIIIIIIII

Page: 1

	L 7-5-12	14-2-0	20-10-5	27-6-9	31-9-0	
Scale = 1:59.9	7-5-12	6-8-4	6-8-4	6-8-4	4-2-7	

Plate Offsets (X, Y): [2:0-4-13,0-0-8], [8:0-1-11,0-1-8]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP		
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.77	Vert(LL)	-0.19	13-15	>999	360	MT20	244/190		
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15		BC	0.71	Vert(CT)	-0.30	13-15	>999	240	MT20HS	187/143		
TCDL	10.0	Rep Stress Incr	NO		WB	0.80	Horz(CT)	0.07	11	n/a	n/a				
BCLL	0.0*	Code	IRC2021	/TPI2014	Matrix-MS		Wind(LL)	0.10	13-15	>999	240				
BCDL	10.0		-									Weight: 390 lb	FT = 20%		
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1 Structural wood shea	2) 3) d or d 4)	All loads are except if note CASE(S) sec provided to d unless otherv Unbalanced this design. Wind: ASCE	considered equal ed as front (F) or h tion. Ply to ply co istribute only load vise indicated. roof live loads hav 7-16; Vult=120m	ly applied back (B) f innection is noted a ve been o ph (3-sec	d to all plies, face in the LC s have been as (F) or (B), considered for cond gust))AD r	 15) This load pan Bott 16) Gra or th bott 17) Use 	s truss h d of 250. els and com Cho phical p ne orient om chor s Simpso	as bee Olb live at all p ord, nor urlin re tation o d. on Stro	en designed for a e and 3.0lb deac anel points alor nconcurrent with presentation do of the purlin alor ng-Tie LUS24 (-	a moving concentrated d located at all mid ng the Top Chord and n any other live loads. bes not depict the size ng the top and/or 4-10d Girder, 2-10d			
BOT CHORD	2-0-0 oc purlins (4-7- Rigid ceiling directly bracing.	-0 max.): 5-9. applied or 10-0-0 oc	u	Vasd=95mph II; Exp B; End and right exp	i; TCDL=6.0psf; E closed; MWFRS (osed ; end vertica	BCDL=6.0 envelope al left and	Dpsf; h=25ft; (e); cantilever l I right expose	Truss) or equivalent at 27-11-4 from the left end to connect truss(es) to back face of bottom chord.18) Fill all nail holes where hanger is in contact with lumber							
REACTIONS	(size) 2=0-3-8, 1 Max Horiz 2=78 (LC Max Uplift 2=-213 (LC Max Grav 2=2635 (L	1=0-3-8 11) C 9), 11=-249 (LC 8) C 36), 11=2758 (LC 5	5) 36)	Lumber DOL=1.60 plate grip DOL=1.60 19) "NAILED" indicates 3-10d (0.1 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15) 19) "NAILED" indicates 3-10d (0.1 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 100 CASE(S) 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially 10 Dead + Snow (balanced): Lu								s 3-10d (0.148" -nails per NDS (ndard alanced): Lumbe	x3") or 3-12d guidlines. er Increase=1.15, Plate		
FORCES	(lb) - Maximum Com Tension	pression/Maximum	6)	Unbalanced s	isidered for th	nis	inc Ur	iform Lo	1.15 bads (l	b/ft)	54 44 47 00				
TOP CHORD	1-2=0/45, 2-4=-4432 5-6=-4086/419, 6-7= 7-9=-2772/303, 9-10 10-11=-2636/260	/429, 4-5=-4492/453, -5907/616, =-3344/349,	, 7)	 7) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 2) Desired extents designed to respect water and line 						Concentrated Loads (lb)					
BOT CHORD	2-16=-418/3878, 15- 13-15=-569/5478, 12 11-12=-25/179	16=-628/5907, 2-13=-569/5478,	9) 10)	All plates are Plates check	MT20 plates unle ed for a plus or m	ess other inus 5 de	wise indicated	d.	TH CARO						
WEBS	4-16=-215/198, 5-16 9-12=-177/1641, 10- 7-13=-77/731, 6-15= 7-12=-3164/352, 6-1 7-15=-69/576	=-155/1620, 12=-265/2599, -68/526, 6=-2116/264,	11) 12)	 about its center. 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 2 06 00 to the bu-2 0.0 0 wide will for hortwore the bottom 							AL T				
NOTES			chord and any other members.						1		0363	322 : =			
1) 2-ply truss (0.131"x3" Top chord oc. Bottom chu staggered Web connu	to be connected toget) nails as follows: s connected as follows ords connected as follo at 0-9-0 oc. ected as follows: 2x4 -	13) 14)	All bearings a One H2.5A S recommende UPLIFT at jt(s and does not	are assumed to b impson Strong-T d to connect truss s) 2 and 11. This consider lateral f	e SP No. ie conne s to bear connectio orces.	2 . ctors ng walls due on is for uplift	to only		114.		A. C	IEER KING			

March 3,2025

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeR% connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the Section of the prevent collapse contervent for the Section of the prevent of the prevent of the prevent of the prevent for the term between the prevent of the prevent and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type		Qty	Ply	Drayton Rev 2-Elev 1-Roof	
	H1GR	Roof Special Girder		4	2	Job Reference (optional)	171703504
Structural, LLC, Thurmont, MD -	21788,		Run: 8.83 S Feb 18 2	2025 Print: 8.	830 S Feb 1	8 2025 MiTek Industries, Inc. Thu Feb 27 13:30:01	Page: 2

Vert: 14=-170 (B), 15=-170 (B), 33=-208 (B), 34=-164 (B), 35=-136 (B), 36=-170 (B), 37=-170 (B), 39=-170 (B), 41=-170 (B), 42=-170 (B), 43=-170 (B), 44=-170 (B), 45=-170 (B), 46=-170 (B), 48=-164 (B)

ID:ukeooEdyGZMhSGomyxBgcwzufjg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Thu Feb 27 13:29:54 ID:Orpw4HRIOLXYOdJamSbwV7yFIch-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:100.2

Plate Offsets (X, Y): [18:0-1-12,0-3-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.80 0.98 0.96	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.29 -0.58 0.09 0.15	(loc) 20-21 20 13 20-21	l/defl >999 >660 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18AHS Weight: 223 lb	GRIP 244/190 186/179 FT = 20) })%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS JOINTS REACTIONS	2x4 SP No.2 2x4 SP SS *Except* 2x4 SP No.3 *Except 10-14,23-9:2x4 SP N Left 2x4 SP No.3 - 1 Structural wood sheat except end verticals. Rigid ceiling directly 1 Row at midpt 1 Brace at Jt(S): 24 (size) 2=0-3-8, 1 Max Horiz 2=179 (LC Max Grav 2=1610 (L	19-16:2x4 SP No.3 t* 7-20:2x4 SP SS, lo.2 l-6-0 athing directly applied applied. 11-13 l3= Mechanical C 15) C 2, 13=1743 (LC 3	2) i, 3) 4) 6) 5)	Wind: ASCE Vasd=95mph II; Exp B; Enc Exterior(2E) - Exterior(2E) 31-7-4 zone; vertical left ar forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1 1.15 Plate DOL Exp.; Ce=1.0 Unbalanced s design.	7-16; Vult=120mph ; TCDL=6.0psf; BC closed; MWFRS (e 1-0-0 to 2-2-2, Inte 19-6-10 to 22-8.11 cantilever left and nd right exposed; C FRS for reactions s the grip DOL=1.60 7-16; Pr=20.0 psf; DL = 1.15); Is=1.0; ; Cs=1.00; Ct=1.10 convertight of the second second second second second second second second second second second second secon	a (3-sec CDL=6.0 Avelope prior (1) Interio right ex- C for n shown; (roof LL Pf=15.4 Rough een cor	ond gust) pps; h=25ft; () and C-C 2-2-2 to 19-6 r (1) 22-8-11 posed ; end hembers and Lumber : Lum DOL=1 psf (Lum DC Cat B; Partial isidered for th	Cat. -10, to I.15 JL = Ily nis	 14) This load pan Bott 15) This strucho the 16) Attic LOAD (s truss ha d of 250. els and a com Cho s truss du ctural wo rd and 1 bottom c c room c CASE(S)	as bee Olb live at all p rd, noi esign i bod sh /2" gyp chord. hecke Sta	en designed for a e and 3.0lb deac vanel points alor nconcurrent with requires that a n leathing be appl osum sheetrock d for L/360 defle ndard	a moving c I located at g the Top - i any other ninimum of ied directly be applied action.	oncentrated t all mid Chord and live loads. 7/16" t to the top I directly to
FORCES	(lb) - Maximum Com Tension	pression/Maximum	-, 5)	load of 12.0 p	osf or 2.00 times fla	t roof lo	ad of 15.4 ps	sf on						
TOP CHORD	1-2=0/36, 2-4=-2856 6-7=-2277/0, 7-8=-4 9-10=-1826/0, 10-11 12-13=-353/28	5/0, 4-6=-2583/0, 14/62, 8-9=-494/54, =-2344/0, 11-12=-34	6) 8/37, 7)	250.0lb AC u 19-6-10 from apart.	nit load placed on t left end, supported	he bott I at two	om chord, points, 5-0-0	Ч						
BOT CHORD	2-22=0/2498, 21-22= 15-20=0/3113, 14-15 17-19=-615/104, 16-	=0/2498, 20-21=0/225 5=0/3113, 13-14=0/16 17=0/409	59, 8) 550, 9)	Plates check about its cent	ed for a plus or mir ter.	us 5 de	egree rotation	u.			1	TH CA	AROL	
WEBS	19-20=0/804, 19-23= 14-16=0/600, 10-16= 23-24=-69/736, 9-24 11-13=-2237/0, 15-1 14-17=-1766/0, 8-24 6-21=0/425, 4-22=0/ 6-20=-636/66	=0/996, 7-23=0/957, =0/697, 11-14=0/276, :=-1582/0, 7=0/340, 17-20=-128 :=0/227, 7-24=-2077// 286, 4-21=-340/90,	3) 10) 66/0, 0, 11)	chord live loa) * This truss h on the bottom 3-06-00 tall b chord and an) Bottom chord chord dead lo	d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members. I live load (20.0 psf) applia	ith any for a liv where fit betw) and a ed only	other live load e load of 20.0 a rectangle veen the botto dditional botto to room. 17- ²	ds. Opsf om Om 19,		William	ii)	SEA 0363	AL 322	The second second
NOTES 1) Unbalance this desigr	ed roof live loads have I.	been considered for	12) 13)	16-17) Bearings are) Refer to girde	assumed to be: Jo er(s) for truss to tru	int 2 SF ss conr	P SS . lections.					NGIN	EER.	A martine

GILDIN March 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 1-Roof	
	H5	Нір	2	1	Job Reference (optional)	171703506

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Thu Feb 27 13:30:05 ID:mpENB9p7ddlzIgOgY4xdrszun8Y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1.72 0 6-4-14 7-5-6 9-6-8 8-4-4		6-4-14	13-10-4	23-4-12	31-9-0
	Scale - 1:73 9	6-4-14	7-5-6	9-6-8	8-4-4

Plate Offsets (X,	Y):	[8:0-4-0,0-1-6]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202 ⁻	I/TPI2014	CSI TC BC WB Matrix-AS	0.91 0.70 0.88	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.41 -0.58 0.07 0.04	(loc) 12-14 12-14 11 14-15	l/defl >915 >652 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 184 lb	GRIP 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 *Except 2x4 SP SS 2x4 SP No.3 Left 2x4 SP No.3 1 Structural wood shea except end verticals, (4-1-6 max.): 6-8. Rigid ceiling directly 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=132 (LC Max Grav 2=1521 (L	* 5-6:2x4 SP SS -6-0 athing directly applie and 2-0-0 oc purlins applied. 4-14, 7-14, 7-12 1= Mechanical 15) C 51), 11=1510 (LC	3) 4) 5 5) 5 7) 8) 51) 9)	TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 p overhangs no Provide adeo All plates are Plates check about its cem This truss ha chord live loa	7-16; Pr=20.0 psf .15); Pg=20.0 psf; DL = 1.15); Is=1.0; ; Cs=1.00; Ct=1.1 snow loads have b s been designed fo psf or 2.00 times fl on-concurrent with juate drainage to p MT20 plates unle ed for a plus or mi ter. s been designed fi d nonconcurrent	(roof LL Pf=20.4 Rough 0, Lu=50 been cor or great at roof la other liv prevent v ss other nus 5 de or a 10.0 with any	: Lum DOL= : psf (Lum DC Cat B; Partia)-0-0 isidered for the er of min roof pad of 15.4 ps re loads. vater ponding wise indicate egree rotation) psf bottom other live loa	1.15 DL = Ily his live sf on g. d. ds.					
FORCES	(lb) - Maximum Com Tension 1-2=0/36, 2-4=-2776 6-7=-1780/136, 7-8=	pression/Maximum /89, 4-6=-2097/115, -1398/125,	10) * This truss h on the botton 3-06-00 tall b chord and an	as been designed n chord in all areas y 2-00-00 wide wil y other members,	for a liv s where Il fit betv with BC	e load of 20.0 a rectangle veen the botto DL = 10.0psf)psf om					
BOT CHORD WEBS	8-9=-1845/114, 9-10 2-15=-80/2426, 14-1 12-14=-7/1651, 11-1 4-15=0/341, 4-14=-7 7-14=-73/295, 7-12=	=-385/31, 10-11=-35 5=-66/2426, 2=-53/1385 48/80, 6-14=0/514, -567/52, 8-12=0/740	58/28 11 12 13),) Bearings are) Refer to girde) This truss ha load of 250.0 panels and a	assumed to be: Jo er(s) for truss to tru s been designed fo lb live and 3.0lb do t all panel points a	oint 2 SI uss conr or a move ad locationg the	P SS . lections. ving concentrated at all mid Top Chord a	ated				TH CA	ROUT
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=95m II; Exp B; E Exterior(2E Exterior(2E 23-3-0, Ext 27-8-14 to exposed; c members a Lumber DC	d roof live loads have E 7-16; Vult=120mph ph; TCDL=6.0psf; BCI Enclosed; MWFRS (en E) -1-0-0 to 2-2-2, Inter 2) 14-0-0 to 18-7-8, Int terior(2R) 23-3-0 to 27 31-7-4 zone; cantileve end vertical left and rig and forces & MWFRS i DL=1.60 plate grip DO	= 1721/07 been considered for (3-second gust) DL=6.0psf; h=25ft; C velope) and C-C ior (1) 2-2-2 to 14-0- erior (1) 18-7-8 to -8-14, Interior (1) or left and right ht exposed; C-C for for reactions shown; L=1.60	14 Gat. 15 -0, LC	Bottom Chorn) This truss de structural wo chord and 1/2 the bottom ch) Graphical pu or the orienta bottom chord DAD CASE(S)	d, nonconcurrent v sign requires that od sheathing be ap 2" gypsum sheetro hord. flin representation tion of the purlin a Standard	with any a minim pplied d ock be a does no long the	other live loa um of 7/16" rectly to the t oplied directly of depict the s top and/or	ds. op / to size		Contraction of the second seco		SEAI 03632	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road Edenton, NC 27932

March 3,2025

	7-5-12	13-6-3	19-6-10	25-7-1	31-9-0	
Scale = 1:59.9	7-5-12	6-0-7	6-0-7	6-0-7	6-1-15	

Plate Offsets (X, Y): [2:0-4-13,0-0-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2021	/TPI2014	CSI TC BC WB Matrix-MS	0.57 0.67 0.99	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.20 -0.31 0.07 0.10	(loc) 13-15 13-15 11 13-15	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 399 II	GRIP 244/190 187/143 b FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1 Structural wood shea 5-4-3 oc purlins, exo 2-0-0 oc purlins (4-1 Rigid ceiling directly	I-6-0 athing directly appliec cept end verticals, an 1-11 max.): 5-10. applied or 10-0-0 oc	2) 3) d d	All loads are except if note CASE(S) sec provided to d unless othern Wind: ASCE Vasd=95mph II; Exp B; End and right exp Lumber DOLL	considered equall ed as front (F) or b tion. Ply to ply co istribute only load vise indicated. 7-16; Vult=120mp ; TCDL=6.0psf; B closed; MWFRS (osed ; end vertica =1.60 plate grip D	y applie ack (B) nnection s noted bh (3-sec CDL=6.0 envelope il left and OL=1.60	d to all plies, face in the LC s have been as (F) or (B), cond gust) Dpsf; h=25ft; (a); cantilever I d right expose	DAD Cat. eft d;	 16) This load pan Bott 17) Gra or th bott 18) Use Trus 2-0- 	truss h of 250. els and om Cho phical p ne orient om chor Simpso ss) or ec 12 from	as bee Olb live at all p rd, nor urlin re ation o d. on Stro juivale the le	en designed for e and 3.0lb dea nanel points alo noconcurrent wit presentation d of the purlin alo ng-Tie LUS24 nt spaced at 2- ft end to 5-11-4	a moving concentrated d located at all mid ng the Top Chord and h any other live loads. ses not depict the size ng the top and/or (4-10d Girder, 2-10d 0-0 oc max. starting at to connect truss(es) to	
REACTIONS	bracing. (size) 2=0-3-8, 1 Max Horiz 2=104 (LC Max Uplift 2=-218 (L Max Grav 2=2621 (L	1= Mechanical C 11) C 9), 11=-313 (LC 9) .C 33), 11=-2910 (LC 5)	4) 33) ⁵⁾	Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced	7-16; Pr=20.0 psf .15); Pg=20.0 psf DL = 1.15); Is=1.0 ; Cs=1.00; Ct=1.1 snow loads have b	; Pf=20.4 ; Rough ; Lu=50 ; Deen cor	.: Lum DOL=1 I psf (Lum DC Cat B; Partial)-0-0 nsidered for th	I.15)L = Ily nis	fron 19) Fill : 20) "NA (0.1 LOAD (t face of all nail h ILED" in 48"x3.2 ASE(S)	bottor oles w idicate 5") toe Sta	m chord. here hanger is s 3-10d (0.148' -nails per NDS ndard	in contact with lumber. 'x3") or 3-12d guidlines.	
FORCES	(lb) - Maximum Com	pression/Maximum	6)	This truss ha	s been designed f	or great	er of min roof	live	1) De Inc	ad + Sn rease='	low (ba 1.15	alanced): Lumb	er Increase=1.15, Plate	
TOP CHORD	Tension IORD 1-2=0/45, 2-4=-4400/438, 4-5=-4448/460, 5-6=-4043/426, 6-7=-5600/603, 7-9=-5600/603, 9-10=-68/31, 10-11=-307/27			 load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 7) Provide adequate drainage to prevent water ponding. 8) All plates are MT20 plates unless otherwise indicated. 						Uniform Loads (lb/ft) Vert: 1-5=-51, 5-10=-61, 11-17=-20 Concentrated Loads (lb)				
BOT CHOILD	13-15=-659/5758, 12	2-13=-437/3780,	9)	about its cen	ter.				LINCH CARO					
WEBS	4-16=-220/180, 5-16 7-13=-483/56, 9-12= 6-16=-2051/263, 9-1 9-13=-243/2176, 6-1	=-162/1639, :-78/721, 6-15=-77/67 1=-4465/493, 3=-304/93	70) 78, 11)	chord live loa * This truss h on the botton 3-06-00 tall b	as been designed in as been designed in chord in all area y 2-00-00 wide wi	with any I for a liv s where Il fit betv	other live load e load of 20.0 a rectangle veen the botto	ds.)psf om		4	and a start	ORIEES	SIGN	-
NOTES				chord and an	y other members.					-	:	SE	ΔΙ : Ξ	
 2-ply truss (0.131"x3" Top chord oc. Bottom ch staggered Web conn 	to be connected toget) nails as follows: s connected as follows ords connected as follow at 0-9-0 oc. ected as follows: 2x4 -	her with 10d :: 2x4 - 1 row at 0-9-0 ows: 2x6 - 2 rows 1 row at 0-9-0 oc.	12) 13) 14) 15)	 Bearings are Refer to girde Provide mect bearing plate 11. One H2.5A S recommende UPLIFT at jt(does not con 	assumed to be: J er(s) for truss to tru- nanical connectior capable of withst impson Strong-Ti d to connect truss s) 2. This connect sider lateral forces	oint 2 SI uss conr n (by oth anding 3 e conne s to bear ion is for s.	P No.2 . nections. ers) of truss to 13 lb uplift at ctors ing walls due uplift only an	o joint to id		THURS			VEER. HALIN	

March 3,2025

Page: 1

Continued on page 2 WARNING

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

l	Job	Truss	Truss Type	Qty	Ply	Drayton Rev 2-Elev 1-Roof	171700507
l		H2GR	Half Hip Girder	2	2	Job Reference (optional)	1/1/03507

Vert: 14=-170 (F), 32=-208 (F), 33=-164 (F), 34=-136 (F), 35=-170 (F), 36=-170 (F), 38=-170 (F), 39=-170 (F), 41=-170 (F), 42=-170 (F), 43=-170 (F), 45=-170 (F), 46=-170 (F), 47=-170 (F), 49=-170 (F)

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Thu Feb 27 13:30:02 ID:MaZ2AWcG2IncNMNd1IgzCCzufI_-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Thu Feb 27 13:30:06 ID:EBDTh3DmPF?3I_a3da1vqKzun9K-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	5-4-14	10-6-4	18-0-13	25-7-7	31-9-0
Scale - 1:66 9	5-4-14	5-1-6	7-6-9	7-6-9	6-1-9

Plate Offsets (X, Y): [2:0-3-9,0-0-5], [7:0-3-6,Edge], [8:Edge,0-1-8], [9:Edge,0-3-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-AS	0.85 0.55 0.55	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.22 -0.35 0.06 0.04	(loc) 10-11 11-13 9 11-13	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 176 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 *Excep 2x4 SP SS 2x4 SP No.3 Left 2x4 SP No.3 1 Structural wood shea except end verticals, (3-8-15 max.): 5-7. Rigid ceiling directly 1 Row at midpt (size) 2=0-3-8, 9 Max Horiz 2=104 (LC Max Grav 2=1489 (L	t* 5-7:2x4 SP SS -6-0 athing directly applied, and 2-0-0 oc purlins applied. 6-13 = Mechanical C 51), 9=1430 (LC 50	2) 3)	Wind: ASCE Vasd=95mph II; Exp B; End Exterior(2E) - Exterior(2E) 25-5-11, Exte 29-11-9 to 31 exposed ; en members and Lumber DOL TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0	7-16; Vult=120m ; TCDL=6.0psf; E closed; MWFRS (1-0-0 to 2-2-2, If 10-8-0 to 15-1-14 rior(2R) 25-5-11 -7-4 zone; cantild d vertical left and f forces & MWFR =1.60 plate grip I 7-16; PT=20.0 ps 0L = 1.15); Is=1.0; ; Cs=1.00; Ct=1.1	ph (3-sec 3CDL=6.4 (envelope tterior (1)), Interior to 29-11. ever left a right exp S for reas DOL=1.6 (f (roof LI f; Pf=20.4); Rough 10, Lu=50 been cos	ond gust) Dpsf; h=25ft; () and C-C 2-2-2 to 10-8 (1) 15-1-14 tc 9, Interior (1) and right losed;C-C for ctions shown; : : Lum DOL=1 psf (Lum DC Cat B; Partial)-0-0 siderad for th	Cat. -0, -15 -L = Iy	 14) This structure 14) the structure 15) Graphic structure 16) Struct	s truss d ctural w rd and 1 bottom d phical p ne orien om choi CASE(S)	esign r ood sh /2" gyr chord. urlin re tation c d.) Star	equires that a m eathing be appli sum sheetrock presentation do of the purlin alon ndard	inimum of 7/16" ad directly to the be applied direct as not depict the g the top and/or	e top xtly to ∋ size
FORCES	(lb) - Maximum Com Tension 1-2=0/39, 2-4=-2568	pression/Maximum /85, 4-5=-2335/104,	5)	design. This truss ha load of 12.0 p	s been designed osf or 2.00 times	for great	er of min roof bad of 15.4 ps	live f on						
BOT CHORD	7-8=-1962/82, 8-9=- 2-14=-76/2235, 13-1 11-13=-21/2498, 10- 9-10=-56/284	1480/77 4=-69/2235, 11=-9/1542,	6) 7) 8)	Provide adec All plates are Plates check	uate drainage to MT20 plates unl ed for a plus or m	prevent ess other ninus 5 de	vater ponding water ponding wise indicated egree rotation	1.				mmm	90m	
WEBS	4-14=-11/288, 4-13= 6-13=-536/43, 6-11= 7-10=-84/262, 8-10=	-436/60, 5-13=0/639, -502/103, 7-11=-15/11 0/1409	9) 97, 10	This truss ha chord live loa) * This truss h	s been designed d nonconcurrent as been designe	for a 10.0 with any d for a liv) psf bottom other live load e load of 20 0	ds. psf			111	ORTH CA	ROLIN	1
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for	11 12 13	on the botton 3-06-00 tall b chord and an) Bearings are) Refer to girde) This truss ha load of 250.0 panels and a Bottom Chore	n chord in all area y 2-00-00 wide w y other members assumed to be: , er(s) for truss to t s been designed lb live and 3.0lb d t all panel points d, nonconcurrent	as where vill fit betw , with BC Joint 2 SI russ conr for a mov dead loca along the with any	a rectangle veen the botto DL = 10.0psf. 2 SS . lections. ving concentra ted at all mid Top Chord a other live load	m ated nd ds.		N. CONTRACTOR		SEA 0363	L 22 EERER	hour non

- 11) Bearings are assumed to be: Joint 2 SP SS . 12) Refer to girder(s) for truss to truss connections.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

818 Soundside Road Edenton, NC 27932

G 1111111 March 3,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

