Mark Morris, P.E. #126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.

AST #: 57985 JOB: 25-2569-R01 JOB NAME: LOT 0.0040 HONEYCUTT HILLS Wind Code: ASCE7-16 Wind Speed: Vult= 120mph Exposure Category: B Mean Roof Height (feet): 23 These truss designs comply with IRC 2015 as well as IRC 2018. *33 Truss Design(s)*

Trusses:

BR01, BR02, J01, R01, R02, R03, R04, R05, R06, R07, R08, R09, R10, R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, SP01, SP02, SP03, SV01, SV02, VT01, VT02, VT03, VT04

My license renewal date for the state of North Carolina is 12/31/2025

Warning !--- Verify design parameters and read notes before use.

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Max Grav 3=63(LC 21), 4=41(LC 7), 2=209(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (9)

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0040 HONEYCUTT HILLS 208 SHELBY	MEADOW LANE ANGIER, NC
25-2569-R01	R07	Common Girder	1	2	Job Reference (optional)	# 57985

8.630 s Jul 12 2024 MiTek Industries, Inc. Fri Mar 28 16:14:51 2025 Page 2 ID:Wl8rkg6BK5SaRYCYGf9_0xywFJ5-hsLvqupq1zdCkxBoZfJuyXhap_eb5X1MmzhoeBzWMr2

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 1-5=-20 Concentrated Loads (lb)

Vert: 6=-1242(B) 9=-1247(B) 10=-1242(B) 11=-1242(B) 12=-1242(B) 13=-1242(B) 14=-1242(B) 15=-1348(B) 16=-1348(B)

vertically. Applicability of design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be instanted and loaded vertically. Applicability of design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be instanted and loaded of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Trusse S from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

3/27/2025

REACTIONS. (ID/SIZE) 6=82/4-8-12 (min. 0-1-8), 2=147/4-8-12 (min. 0-1-8), 7=208/4-8-12Max Horz 2=61(LC 10) Max Uplift6=-20(LC 10), 2=-32(LC 10), 7=-32(LC 14)

Max Grav 6=112(LC 21), 2=206(LC 21), 7=276(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (11)

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 6) Gable studs spaced at 2-0-0 oc.
 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- b) This russ has been designed for a live load of 50.0ps) on the bottom chord in all areas where a rectangle 3-6-0 tail by 1-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2, 7.
 Non Standard bearing condition. Review required.

LOAD CASE(S) Standard

REACTIONS. (lb/size) 4=182/0-1-8 (min. 0-1-8), 2=256/0-3-8 (min. 0-1-8) Max Horz 2=61(LC 10) Max Uplift4=-32(LC 14), 2=-51(LC 10) Max Grav 4=243(LC 21), 2=351(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (10)

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs

non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.

LOAD CASE(S) Standard

25-2569-R01 R12 GABLE 1 1 Job Reference (optional) # 57985 8.630 s Jul 12 2024 MiTek Industries, Inc. Fri Mar 28 16:14:53 202 ID:WI8rkg6BK5SaRYCYGf9_0xywFJ5-dFTfFaq4ZatwzFLBg3LM1ynzJnKIZaMfDHAw -0-10-8 6-8-5 13-6-0 0-10-8 6-8-5 6-9-11 3x4 Scale Scale 9.00 12 8	85
-0-10-8 6-8-5 13-6-0 0-10-8 6-8-5 6-9-11 3x4 Scale 9.00 12 9.00 12	ງປ
-0-10-8 6-8-5 13-6-0 0-10-8 6-8-5 6-9-11 3x4 Scale 9.00 12	2025 Page IAvi4zWIV
3x4 Scale 5 9.00 12 8	
9.00 12 5	ale = 1:57:
T2 Z	
5x6 🚧 🙀	
22 8 23 7 6 224 $-$	
334 —	
$\frac{2-0-0}{2-0-0} + \frac{12-7-5}{4-8-5} + \frac{13-6-1}{2-10-8}$ Plate Offsets (X Y) ₂₇ [2:0-2-8 0.1-12] [4:0-3-0 0-3-0]	
LOADING (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) //defl L/d PLATES GRIP	
TCLL (roof) 20.0 Plate Grip DOL 1.25 TC 0.58 Vert(LL) -0.02 7.8 >999 240 MT20 244/190 Snow (Pf) 20.0 Lumber DOL 1.25 BC 0.58 Vert(CT) -0.05 7.8 >999 180	90
ICDL 10.0 Rep Stress Incr YES WB 0.21 Horz(CT) 0.01 6 n/a Meight: 130 lb FT = 2 BCLL 0.0 * Code IRC2021/TPI2014 Matrix-SH Horz(CT) 0.01 6 n/a Meight: 130 lb FT = 2	= 20%
LUMBER- BRACING-	
TOP CHORD 2x4 SP No.2TOP CHORDStructural wood sheathing directly applied or 6-0-0 oc purlins, eBOT CHORD 2x4 SP No.3end verticals.	except
WEBS2x4 SP No.3BOT CHORDRigid ceiling directly applied or 10-0-0 oc bracing.OTHERS2x4 SP No.3WEBS1 Row at midpt5-6, 4-6	
SLIDER Left 2x4 SP No.3 3-11-12 MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer	ing zer
REACTIONS. All bearings 0-3-8 except (jt=length) 6=1-2-0, 2=2-3-8.	
(lb) - Max Horz 2=324(LC 12) Max Uplift All uplift 100 lb or less at joint(s) 9 except 6=-250(LC 12)	
Max Grav All reactions 250 lb or less at joint(s) 9 except 6=467(LC 20), 2=471(LC 20), 7=260(LC 5)	
FORCES. (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown. TOP CHORD 2-3=-605/0, 3-4=-419/0	
BOT CHORD 2-9=-151/462, 9-22=-151/462, 8-22=-151/462, 8-23=-152/459, 7-23=-152/459, 6-7=-152/459	
WEBS 4-8=0/299, 4-6=-579/189	
NOTES- (10-13) 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (any content of the and range and C.C.Exterior(2E), 0.10.8 to 3.11.2, Interior(1), 2.11.2 to 8.6.10, Exterior(2E), 8.6.10 to 13.4.4 range(C.C.	
for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60	
Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCI L: ASCE 7.16: Pr=20.0 nsf (roof L): Lum DCI =1.25 Plate DCI =1.25): Pf=20.0 nsf (Lum DCI =1.15): Plate DCI =1.15): Is=1.0: Rough	
Cat B; Partially Exp.; Ce=1.0; Ct=1.10; Ct=1.10; 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs	
non-concurrent with other live loads. 5) All plates are 2x4 MT20 unless otherwise indicated.	
6) Gable studs spaced at 2-0-0 oc. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.	
8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide with SEAL between the bottom chord and any other members, with BCDL = 10.0psf.	
9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9 except (jt=lb) 6=250.	ł.,
NONEE OF UN	
With K. MORININ	
3/27/2025	

Job	Truss	Truss Type	Qty	Ply	LOT 0.0040 HONEYCUTT HILLS 208 SHE	LBY MEADOW LANE ANGIER, NO
25-2569-R01	R12	GABLE	1	1	Job Reference (optional)	# 57985
					8 630 c Jul 12 2024 MiTok Industrios Inc.	Eri Mar 28 16:14:53 2025 Page 2

ID:WI8rkg6BK5SaRYCYGf9_0xywFJ5-dFTfFaq4ZatwzFLBg3LM1ynzJnKIZaMfDHAvi4zWMr0

Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
 Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

13) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type		Qtv	Plv		
25-2569-R01	R13	Monopitch		10	1		# 57085
20 2000 110 1						Job Reference (optional 8.630 s Jul 12 2024 MiTe	n) # 37703 k Industries, Inc. Fri Mar 28 16:14:53 2025 Page 1
		-0-10-8	6-8-5	ID:WI8rkg6Bl	K5SaRYC ∙6-0	CYGf9_0xywFJ5-dFTfFaq4	łZatwzFLBg3LM1ynzjnMEZavfDHAvi4zWMr0
		0-10-8	6-8-5	6-9	-11		
					:	3x4	Scale = 1:58.1
				0.00 40		4	
				9.00 12	/		
				Ţ	2/		
			5x6 🖉	. //			
	6		3				
	10-7-					⊠ ^{W3}	
					′2 ♦		
				w	$\langle \rangle$		
						\sim	
		t 2 HW1		B1			
		3x8	7	6 8		5	
				2x4		3x4 =	
		L	6-8-5	13-	6-0		
Plate Offsets (X,Y) [2:0	-3-8,Edge], [3:0-3-0,0-3-4]	I	6-8-5	6-9	-11	I	
LOADING (psf)	SPACING-	2-0-0 C	si	DEEL	in (loc) l/defl l/d	PLATES GRIP
TCLL (roof) 20.0 Snow (Pf) 20.0	Plate Grip DOL	1.25 T	C 0.61	Vert(LL)	-0.05	5-6 >999 240	MT20 244/190
TCDL 10.0	Rep Stress Incr	1.25 B YES V	VB 0.24	Vert(CT) Horz(CT)	-0.10 0.01	5-6 >999 180 5 n/a n/a	
BCDL 0.0 BCDL 10.0	Code IRC2021/TF	N2014	latrix-SH	. ,			Weight: 82 lb FT = 20%
				BRACING-	Ctructu	ral wood abaathing dira	athy applied or 6.0.0 as purling expent
BOT CHORD 2x4 SP No	5.2 5.2				end ver	ticals.	cuy applied of 0-0-0 oc putilits, except
WEBS 2x4 SP No WEDGE	0.3			BOT CHORD WEBS	Rigid co 1 Row a	eiling directly applied or at midpt 4-5, 3	[.] 10-0-0 oc bracing. 3-5
Left: 2x4 SP No.3					MiTek	recommends that Stat	bilizers and required cross bracing
					Install	ation guide.	tion, in accordance with Stabilizer
REACTIONS. (lb/size) Max Horz	5=526/Mechanical, 2=592/ 2=324(LC 12)	0-3-8 (min. 0-1-8)					
Max Uplift	5=-189(LC 12)	20)					
	5-029(LC 20), 2-020(LC 2						
TOP CHORD 2-3=-673	mp./Max. Ten All forces 2 //0	250 (lb) or less excep	ot when shown.				
BOT CHORD 2-7=-150 WEBS 3-6=0/37	/524, 6-7=-150/524, 6-8=-1	51/521, 5-8=-151/52	21				
	0,00 000,100						
1) Wind: ASCE 7-16; Vul	t=120mph (3-second gust)	Vasd=95mph; TCDL	=5.0psf; BCDL=	5.0psf; h=23ft; C	at. II; Exp	B; Enclosed; MWFRS	
(envelope) gable end z for members and force	cone and C-C Exterior(2E) s & MWFRS for reactions	-0-10-8 to 3-11-2, Int shown; Lumber DOL	erior(1) 3-11-2 to =1.60 plate grip	o 8-6-10, Exterior DOL=1.60	(2E) 8-6-	10 to 13-4-4 zone;C-C	
2) TCLL: ASCE 7-16; Pr=	20.0 psf (roof LL: Lum DO	L=1.25 Plate DOL=1	.25); Pf=20.0 ps	f (Lum DOL=1.15	Plate D0	OL=1.15); Is=1.0; Roug	h
3) This truss has been de	signed for greater of min re	oof live load of 12.0 p	osf or 2.00 times	flat roof load of 2	20.0 psf c	on overhangs	
4) This truss has been de	ner live loads. signed for a 10.0 psf botto	m chord live load nor	nconcurrent with	any other live loa	ads.		
5) * This truss has been of between the bottom ch	designed for a live load of 3 ord and any other member	0.0psf on the bottom	n chord in all are	as where a rectar	ngle 3-6-0	0 tall by 1-0-0 wide will 1	fit with CARO
6) Refer to girder(s) for tr	uss to truss connections.		unahla af with sta	ndina 400 lb unlif			OFESSIBA Noting
7) Provide mechanical co	innection (by others) of trus	is to bearing plate ca	ipable of withsta	naing 100 is upili	t at joint(s) except (jt=ib) 5=189	Port Age
LOAD CASE(S) Standard	1					that is a second s	SEAL E
						UHW DIAW	2014/
						The second s	A ANOINEER C
							MARK K MORRIGHT
							Aller Brought
							3/27/2025

- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 7) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 10) Use Simpson Strong-Tie LUS24 (4-10dx1 1/2 Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at
- 2-4-0 from the left end to 4-4-0 to connect truss(es) R15 (1 ply 2x4 SP), R16 (1 ply 2x4 SP) to front face of bottom chord.
- 11) Fill all nail holes where hanger is in contact with lumber.
- 12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 2-4=-20 Concentrated Loads (lb) Vert: 5=-366(F) 6=-315(F)

vertically. Applicability of design parameters and read notes before use. This begot high parameters shown, and is for an individual voluting component to be instance and loaded of individual web members only. Additional permanent series of an individual web members only. Additional permanent bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Trusse Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 3.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/1PI 1 National Design Standard for Me Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0040 HONEYCUTT HILLS 208 SHE	LBY MEADOW LANE ANGIER, NO
25-2569-R01	R19	GABLE	1	1	Job Reference (optional)	# 57985
					8 630 c Jul 12 2024 MiTok Industrios Inc.	Eri Mar 28 16:14:57 2025 Dago 2

ID:WI8rkg6BK5SaRYCYGf9_0xywFJ5-W0jA5xtbcpNMSseyvvPICoxnxOpwVP7F8v87qrzWMqy

12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate

Connected Wood Trustees for additional bracing guidelines, including diagonal bracing. 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

vertically. Applicability of design parameters and rever have been used on a gradient of a standard on the standard on the standard of the sta

vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.99 BC 0.77 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl L/d n/a - n/a 999 n/a - n/a 999 0.00 n/a n/a	PLATES GRIP MT20 244/190 Weight: 22 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 WEBS 2x4 SP No.3	2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing direct Rigid ceiling directly applied or 1 MiTek recommends that Stabili be installed during truss erection Installation quide.	ly applied, except end verticals. 0-0-0 oc bracing. izers and required cross bracing on, in accordance with Stabilizer

REACTIONS. (lb/size) 1=238/7-3-5 (min. 0-1-8), 3=238/7-3-5 (min. 0-1-8) Max Horz 1=45(LC 10) Max Uplift1=-26(LC 10), 3=-37(LC 10) Max Grav 1=308(LC 20), 3=308(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (8)

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

```
LOAD CASE(S) Standard
```


2x4 ||

LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.26 BC 0.21 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl n/a - n/a n/a - n/a 0.00 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 ET = 20%
BCDL 10.0	0000						
LUMBER-			BRACING-				
TOP CHORD 2x4 SP No.2			TOP CHORD	Structural wood she	athing direct	tly applied or 4-7-5 o	c purlins, except
BOT CHORD 2x4 SP No.3				end verticals.	0		
WEBS 2x4 SP No.3			BOT CHORD	Rigid ceiling directly	applied or 1	0-0-0 oc bracing.	
				MiTek recommend	s that Stabil	izers and required c	ross bracing
				be installed during	truss erection	on, in accordance wi	th Stabilizer
				Installation guide.		•	

REACTIONS. (lb/size) 1=131/4-7-5 (min. 0-1-8), 3=131/4-7-5 (min. 0-1-8) Max Horz 1=25(LC 10) Max Uplift1=-14(LC 10), 3=-20(LC 10) Max Grav 1=163(LC 20), 3=163(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit 6)
- between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

- Unbalanced roof live loads have been considered for this design.
 Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-4-13 to 5-2-7, Exterior(2R) 5-2-7 to 9-1-13, Exterior(2E) 9-1-13 to 13-11-7 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough
- Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=134, 6=133.

```
LOAD CASE(S) Standard
```


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=137, 6=136.

```
LOAD CASE(S) Standard
```


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(8)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed: MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit 6) between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

Max Uplift1=-10(LC 13), 3=-13(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(8)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed: MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit 6) between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

