

RE: 4493331 WHITE OAK HOMES Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: WHITE OAK HOMESProject Name: 4493331Lot/Block: 5Model: CHARLESTON IIAddress:Subdivision: CAMERON HILL RDCity: CAMERONState: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.8 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 30 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	171949502	A01	3/12/2025	21	171949522	JB6	3/12/2025
2	171949503	A02	3/12/2025	22	171949523	JB7	3/12/2025
3	171949504	A03	3/12/2025	23	171949524	JB8	3/12/2025
4	171949505	A04	3/12/2025	24	171949525	PB01	3/12/2025
5	171949506	A05	3/12/2025	25	171949526	V01	3/12/2025
6	171949507	A06	3/12/2025	26	171949527	V02	3/12/2025
7	171949508	B01	3/12/2025	27	171949528	V03	3/12/2025
8	171949509	B02	3/12/2025	28	171949529	V04	3/12/2025
9	171949510	B03	3/12/2025	29	171949530	V05	3/12/2025
10	171949511	C01	3/12/2025	30	171949531	V06	3/12/2025
11	171949512	C02	3/12/2025				
12	171949513	CJ1	3/12/2025				
13	171949514	D01	3/12/2025				
14	171949515	D02	3/12/2025				
15	171949516	JA1	3/12/2025				
16	171949517	JB1	3/12/2025				
17	171949518	JB2	3/12/2025				
18	171949519	JB3	3/12/2025				
19	171949520	JB4	3/12/2025				
20	171949521	JB5	3/12/2025				

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Builders FirstSource-Sumter,SC.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2025

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493331	A01	Hip Girder	1	2	Job Reference (optional)	171949502

Loading

TCDL

BCLL

BCDL

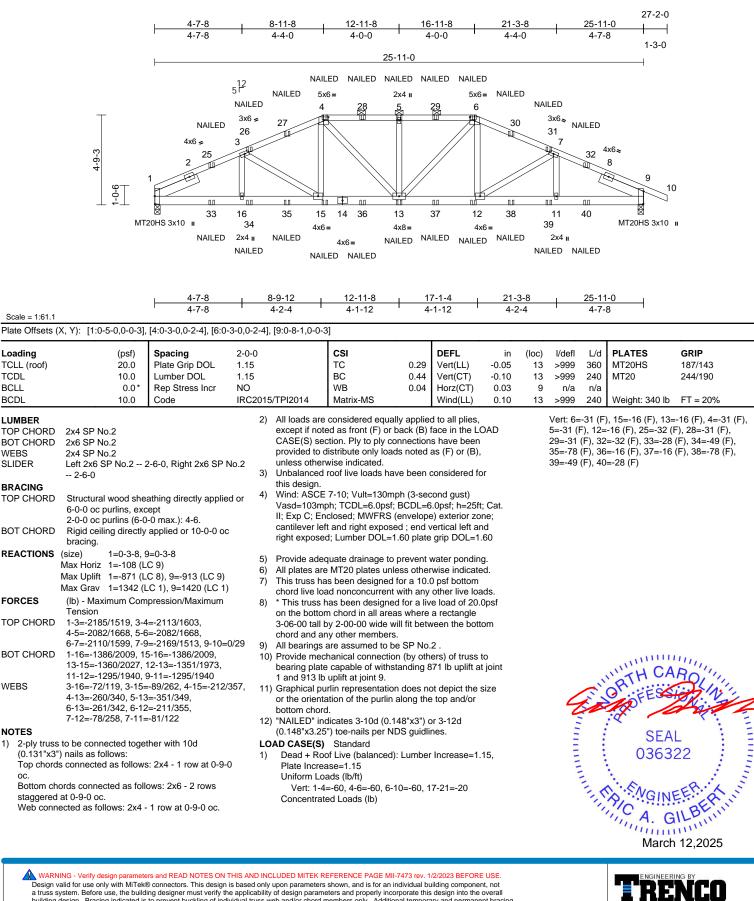
WEBS

SLIDER

FORCES

WEBS

NOTES

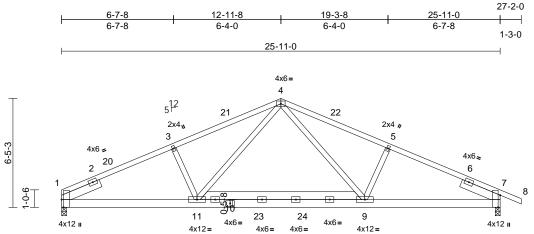

oc

1)

LUMBER

Run: 8.83 S. Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Mar 11 11:00:24 ID:HyBitCwAoZy1Jk_fjxjBjdzc4uA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1


bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493331	A02	Common	5	1	Job Reference (optional)	171949503

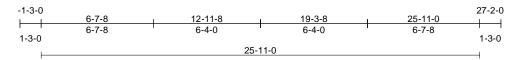
Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Mar 11 11:00:25 ID:s6_9gMhdVQRtvgSpYkMUvPzc4uU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

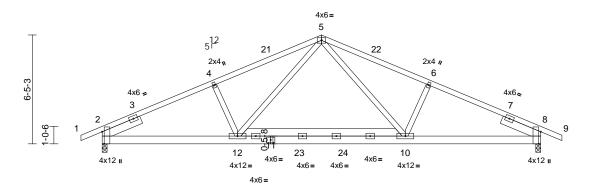
Page: 1

4x6	_	

L	8-0-0	_9-11-8	17-11-0	25-11-0
I Scale = 1:68.1	8-0-0	1-11-8	7-11-8	8-0-0

Plate Offsets (2	X, Y): [1:0-5-8,Edge],	[7:0-8-9,Edge]										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MS	0.68 0.60 0.24	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.10 -0.21 0.04 0.09	(loc) 9-11 9-11 7 9-11	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 171 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Left 2x6 SP No.2 2 2-6-0 Structural wood she 3-1-11 oc purlins. Rigid ceiling directly bracing.	athing directly applie	on the bott 3-06-00 ta chord and No.2 5) All bearing 6) Provide m bearing pla 1 and 317 LOAD CASE(5)	s has been designe om chord in all area I by 2-00-00 wide v any other members s are assumed to b echanical connection the capable of withs Ib uplift at joint 7. S) Standard	as where vill fit betw s, with BC be SP No. on (by oth	a rectangle veen the botto DL = 10.0psf 2. ers) of truss t	om					
	•	.C 17) .C 12), 7=-317 (LC 1:										
FORCES	(lb) - Maximum Com	,. , ,	,									
TOP CHORD BOT CHORD	Tension 1-3=-1708/486, 3-4= 4-5=-1588/492, 5-7= 1-11=-452/1527, 9-1	-1695/464, 7-8=0/29	9									
WEBS	7-9=-332/1514 4-9=-203/545, 5-9=-	320/292, 4-11=-208/	/562,								mun	1117 ·
this design 2) Wind: ASC Vasd=103) II; Exp C; E and C-C E 12-11-8, E 15-11-8 to exposed; members a Lumber DC 3) This truss	3-11=-322/292 ed roof live loads have n. CE 7-10; Vult=130mph imph; TCDL=6.0psf; Bi Enclosed; MWFRS (er ixterior (2) 0-0-0 to 3-0 vixterior (2) 12-11-8 to 27-2-0 zone; cantileve end vertical left and rig and forces & MWFRS OL=1.60 plate grip DC has been designed foi load nonconcurrent wi	(3-second gust) CDL=6.0psf; h=25ft; hvelope) exterior zon -0, Interior (1) 3-0-0 15-11-8, Interior (1) er left and right ght exposed;C-C for for reactions shown; Ju=1.60 r a 10.0 psf bottom	Cat. le to						Contraction of the second seco		SEA 0363	


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



G mmm March 12,2025

Job	Truss	Truss Type	Qty Ply		WHITE OAK HOMES		
4493331	A03	Common	9	1	Job Reference (optional)	171949504	

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Mar 11 11:00:26 ID:vwH6YE2O_8mO3Wudy6v3GEzc4vJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1	8-0-0	9-11-8	17-11-0	25-11-0
Scale = 1:68.1	8-0-0	1-11-8	7-11-8	8-0-0

Plate Offsets (X, Y): [2:0-8-9,Edge], [8:0-8-9,Edge]

	(,) [. 5.1												
Loadin	a ((psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (20.0	Plate Grip DOL	1.15		TC	0.68	Vert(LL)		10-12	>999	360	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.60	Vert(CT)	-0.21	10-12	>999	240	-	
BCLL		0.0*	Rep Stress Incr	YES		WB	0.24	Horz(CT)	0.04	8	n/a	n/a		
BCDL		10.0	Code	IRC2015	/TPI2014	Matrix-MS		Wind(LL)	0.09	10-12	>999	240	Weight: 173 lb	FT = 20%
LUMBE	R			4)	* This truss h	nas been designed	d for a liv	e load of 20.	0psf					
TOP CI				,	on the bottor	n chord in all area	s where	a rectangle	•					
BOT C	ORD 2x6 SP No.2					y 2-00-00 wide w								
WEBS	2x4 SP No.3					ny other members			f.					
SLIDEF		lo.2	2-6-0, Right 2x6 SP			are assumed to be								
	2-6-0			6)		hanical connection								
BRACI						e capable of withst uplift at joint 8.	landing a	s i / ib upilit a	t joint					
TOP CI			athing directly applie	ed or	AD CASE(S)									
BOT CI	3-1-11 oc pur		applied or 10-0-0 or			Stanuaru								
BUIC	bracing.	litectly	applied of 10-0-0 of	نا ا										
REACT	0	0-3-8	8=0-3-8											
	Max Horiz 2=													
			.C 12), 8=-317 (LC 1	3)										
			LC 1), 8=1112 (LC 1)											
FORCE			pression/Maximum	,										
	Tension													
TOP C	IORD 1-2=0/29, 2-4	=-1696	6/465, 4-5=-1589/493	3,										
			=-1691/464, 8-9=0/29	9										
BOT C			-12=-210/1078,											
	8-10=-326/15													
WEBS	5-10=-203/54 5-12=-204/55												MILLIN	UIII.
NOTE		1, 4-12	2=-319/291										WH CA	ROUL
NOTES	alanced roof live load	a hava	haan annaidarad fa									N	R	A line
/ -	design.	Snave	been considered for	ſ								5.	O EE89	C.V.
	d: ASCE 7-10; Vult=1	30mph	(3-second gust)								4	20	12/	Kill.
	d=103mph; TCDL=6.0			Cat.							4		Q.	
	xp C; Enclosed; MWF										-		SEA	1 1 1
and	C-C Exterior (2) -1-3-	0 to 1-	9-0, Interior (1) 1-9-0) to							=	:		• –
	11-8, Exterior (2) 12-1										=		0363	22 : =
	11-8 to 27-2-0 zone; c											6		1 E -
	osed ; end vertical left											1	·	A 1. 5
	mbers and forces & M hber DOL=1.60 plate o			;									NGINI	Ethick
	s truss has been desig											1	A GIN	ET IN
5, 11	s has has been desig	neu IU											1. CA O	11 BY IN

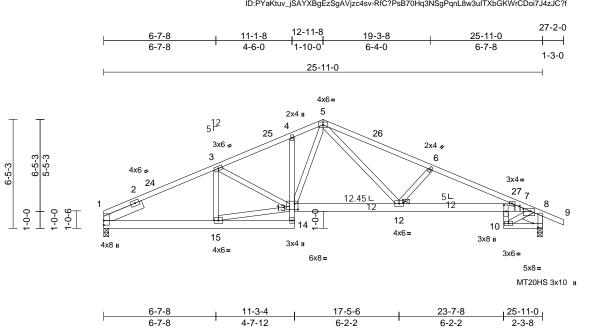
chord live load nonconcurrent with any other live loads.

Marc' March 12,2025

GILB

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493331	A04	Roof Special	2	1	Job Reference (optional)	171949505

Scale = 1:68.1

1)

this design.

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Mar 11 11:00:26 ID:PYaKtuv_jSAYXBgEzSgAVjzc4sv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y):	[7:0-5-4.0-1-14], [8:0-2-12.0-3-9], [11:0-4-8.0-1-8], [13:0-2-8.0-4-4]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.58	Vert(LL)	-0.13	11-12	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.59	Vert(CT)	-0.27	11-12	>999	240	MT20HS	187/143
BCLL	0.0*	Rep Stress Incr	YES	WB	0.56	Horz(CT)	0.08	8	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS		Wind(LL)	0.14	11-12	>999	240	Weight: 166 lb	FT = 20%
LUMBER 2) Wind: ASCE 7-10; Vult=130mph (3-second gust)												

TOP CHORD	2x4 SP No.2
BOT CHORD	
	13-7:2x6 SP 2400F 2.0E or 2x6 SP DSS
WEBS	2x4 SP No.3
SLIDER	Left 2x6 SP No.2 2-6-0, Right 2x8 SP
	2400F 2.0E or DSS 1-2-8
BRACING	.
TOP CHORD	
BOT CHORD	3-1-11 oc purlins. Rigid ceiling directly applied or 10-0-0 oc
BOT CHORD	bracing.
JOINTS	1 Brace at Jt(s): 12
REACTIONS	
	Max Horiz 1=-145 (LC 17)
	Max Uplift 1=-276 (LC 12), 8=-317 (LC 13)
	Max Grav 1=1035 (LC 1), 8=1113 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	
	4-5=-1662/527, 5-6=-2146/583,
	6-7=-2378/626, 7-8=-310/70, 8-9=0/29
BOT CHORD	
	13-14=0/111, 4-13=-193/136,
	12-13=-231/1331, 11-12=-491/2168,
	7 44 472/2400 40 44 202/004
	7-11=-473/2108, 10-11=-203/881,
WEBS	8-10=-203/828
WEBS	8-10=-203/828 3-15=-294/149, 13-15=-395/1341,
WEBS	8-10=-203/828
WEBS	8-10=-203/828 3-15=-294/149, 13-15=-395/1341, 3-13=-65/131, 5-13=-241/604,
WEBS NOTES	8-10=-203/828 3-15=-294/149, 13-15=-395/1341, 3-13=-65/131, 5-13=-241/604, 5-12=-260/863, 6-12=-412/319,

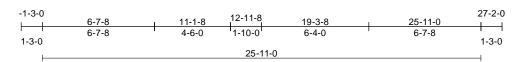
Unbalanced roof live loads have been considered for

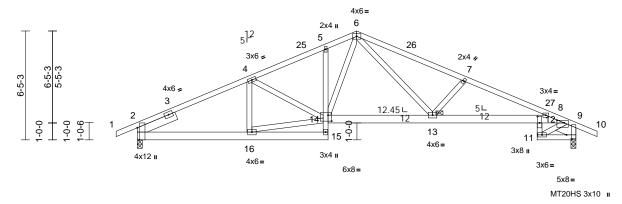
Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-0 to 3-0-0. Interior (1) 3-0-0 to 12-11-8, Exterior (2) 12-11-8 to 15-11-8, Interior (1) 15-11-8 to 27-2-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 psf bottom

- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 6) Bearings are assumed to be: Joint 1 SP No.2 , Joint 8 SP No.2 .
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 276 lb uplift at joint 1 and 317 lb uplift at joint 8.

LOAD CASE(S) Standard

SEAL 036322 March 12,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


A MiTek Aff 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493331	A05	Roof Special	2	1	Job Reference (optional)	171949506

Run: 8 83 S. Feb 18 2025 Print: 8 830 S Feb 18 2025 MiTek Industries. Inc. Tue Mar 11 11:00:26 ID:3tFPzLasdx8nk1MCBJnPvhzc4Pe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	6-7-8	11-3-4	17-5-6	23-7-8	125-11-0 ₁
Scale = 1:68.1	6-7-8	4-7-12	6-2-2	6-2-2	2-3-8
Scale = 1:08.1					

Plate Offsets (X, Y):	[2:0-8-9,Edge], [8:0-5-4,0-1-14],	, [9:0-2-12,0-3-9], [12:0-4-8,0-1-8], [14:0-2-8,0-4-4]
-----------------------	-----------------------------------	--

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.58	Vert(LL)	-0.13	12-13	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.61	Vert(CT)	-0.27	12-13	>999	240	MT20HS	187/143
BCLL	0.0*	Rep Stress Incr	YES	WB	0.55	Horz(CT)	0.08	9	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS		Wind(LL)	0.14	12-13	>999	240	Weight: 168 lb	FT = 20%

TOP CHORD BOT CHORD	
WEBS SLIDER	2x4 SP No.3 Left 2x6 SP No.2 2-6-0, Right 2x8 SP 2400F 2.0E or DSS 1-2-8
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 3-1-13 oc purlins.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
JOINTS	1 Brace at Jt(s): 13
REACTIONS	(size) 2=0-3-8, 9=0-3-8
	Max Horiz 2=133 (LC 12)
	Max Uplift 2=-317 (LC 12), 9=-317 (LC 13)
	Max Grav 2=1112 (LC 1), 9=1112 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=0/29, 2-4=-1657/448, 4-5=-1699/484,
	5-6=-1656/525, 6-7=-2141/572,
	7-8=-2373/615, 8-9=-309/69, 9-10=0/29
BOT CHORD	2-16=-426/1474, 15-16=-46/179,
	14-15=0/111, 5-14=-195/137,
	13-14=-229/1327, 12-13=-481/2163,
	8-12=-464/2104, 11-12=-203/879,
	9-11=-203/826
WEBS	4-14=-55/134, 6-14=-239/601,
	6-13=-260/863, 7-13=-412/319,
	4-16=-298/150, 14-16=-389/1327,
	8-11=-1075/263
NOTES	

1) Unbalanced roof live loads have been considered for

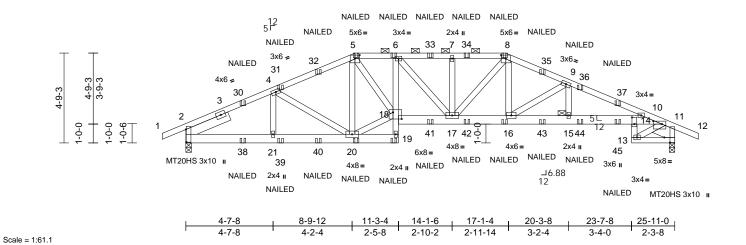
this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-3-0 to 1-9-0, Interior (1) 1-9-0 to 12-11-8, Exterior (2) 12-11-8 to 15-11-8, Interior (1) 15-11-8 to 27-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) All plates are MT20 plates unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom 4) chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: Joint 2 SP No.2, Joint 9 6) SP No.2
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 317 lb uplift at joint 2 and 317 lb uplift at joint 9.

LOAD CASE(S) Standard

WITTER COMPANYING VIIIIIIIIIII SEAL 036322 G mmm March 12,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone


and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493331	A06	Hip Girder	1	2	Job Reference (optional)	171949507

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Mar 11 11:00:27 ID:rr/UGmOWriOQxYmA87dA9xezc4N7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

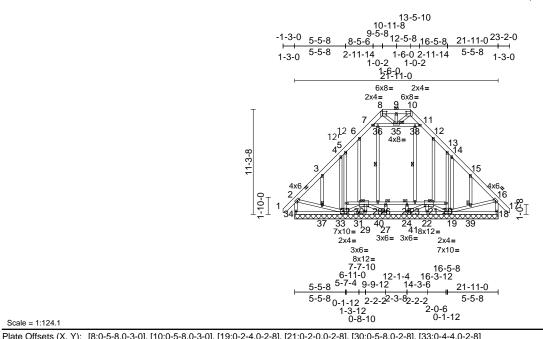
Plate Offsets (X, Y): [2:0-8-1,0-	-0-3], [5:0-3-0,0-2-4], [8:0-3-0,0-2-4]	[10:0-5-8,0-1-14], [11:0-3-4,0-3-9],	[14:0-4-4,0-1-8], [18:0-5-8,0-4-4]

Plate Olisets (A, f). [2.0-6-1,0-0-3],	[5.0-3-0,0-2-4], [6.0-3	-0,0-2-4], [10.0-5-6,0-1	-14], [11.0-3-4,0-3	5-9], [14.0	J-4-4,0-1-6], [10.0-5-0	s,0-4-4]				
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.32 0.77 0.26	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.08 -0.16 0.07 0.16	(loc) 17 17-18 11 17-18	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 359 lb	GRIP 244/190 187/143 FT = 20%
	6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Brace at Jt(s): 15 (size) 2=0-3-8, 1 Max Horiz 2=96 (LC Max Uplift 2=-908 (Li Max Grav 2=1437 (L	2-6-0, Right 2x8 SP 1-2-8 athing directly applied tept -0 max.): 5-8. applied or 10-0-0 oc 11=0-3-8 25) C 8), 11=-920 (LC 9) -C 1), 11=1459 (LC 1	2) or 3) 4)	(0.131"x3") r Top chords o oc. Bottom chord staggered at Web connect All loads are except if nott CASE(S) see provided to o unless other Unbalanced this design. Wind: ASCE Vasd=103mµ II; Exp C; En cantilever lef	b be connected to hails as follows: connected as follo ds connected as follo ds connected as follows: 20-9-0 oc, 2x4 - 1 ted as follows: 2x considered equal ed as front (F) or I ction. Ply to ply co distribute only load wise indicated. roof live loads hav 7-10; Vult=130m ph; TCDL=6.0psf; closed; MWFRS (t and right expose d; Lumber DOL=1	ws: 2x4 ollows: 2 row at 0 4 - 1 row lly applie back (B) onnectior ds noted ve been ph (3-see BCDL=6 (envelop ed ; end ;	th 10d 1 row at 0-9: x6 - 2 rows 9-0 oc. at 0-9-0 oc. at 0-9-0 oc. d to all plies, face in the LC s have been as (F) or (B), considered fo cond gust) 0.0psf; h=25ft; a) exterior zor	DAD r ; Cat. ne; d	PI Ur Co	ate Incre hiform Lo Vert: 1- 14-18=- oncentra Vert: 19 16=-59 40=-78	ease=1 oads (II 5=-60, -20, 13 ated Lo 9=-16 (I (B), 30 (B), 41	e (balanced): Lun .15 b/ft) 5-8=-60, 8-12=-6 -26=-20 ads (lb)	-16 (B), 5=-31 (B), (B), 39=-49 (B),
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=0/29, 2-4=-2198 5-6=-2901/2188, 6-7 7-8=-2717/2072, 8-9 9-10=-3596/2421, 10 11-12=0/29 2-21=-1371/2006, 20 19-20=-98/146, 18-1 17-18=-2074/3063, 21	%/1503, 4-5=-2128/159 (=-2717/2072, 9=-2730/1999, 0-11=-462/312, 0-21=-1371/2006, 9=-25/44, 6-18=-54/1	7) 8)	All plates are This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar	quate drainage to e MT20 plates unlass been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w hy other members assumed to be: .	for a 10. with any d for a liv as where vill fit betv	wise indicate 0 psf bottom other live loa re load of 20.0 a rectangle ween the botto	d. ds.)psf om		4		HTH CA	
WEBS NOTES	15-16=-2148/3294, 1 10-14=-2082/3185, 1 11-13=-714/1120	14-15=-2148/3294, 13-14=-730/1169, 76/248, 5-20=-807/5 5-18=-1170/1650, =-194/156, 5=-435/584,	10 65, 11 12	SP No.2.) Provide mec bearing plate 2 and 920 lb 1) Graphical pu or the orienta bottom chore 2) "NAILED" inc	hanical connectio e capable of withs uplift at joint 11. Irlin representation ation of the purlin d. dicates 3-10d (0.1 ") toe-nails per NI	n (by oth tanding § n does n along the 48"x3") o	ers) of truss t 008 lb uplift at ot depict the s e top and/or or 3-12d	o joint				SEA 0363	ER.K.

March 12,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


A MiTek A1 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493331	B01	Attic Supported Gable	1	1	I719 Job Reference (optional)	949508

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Mar 11 11:00:27 ID:EH0PW62Rwi720z_SMUoFT5zc4C7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:124.1

Plate Offsets (X, Y): [8:0-5-8,0-3-0]	, [10:0-5-8,0-3-0], [19:0	0-2-4,0-2-8], [21:0)-2-0,0-2-8], [30:0-5-8,0-2-8],	[33:0-4-4,0-2-8]				_	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI201	BC 0. WB 0.	DEFL15Vert(LL)12Vert(CT)24Horz(CT)	in n/a n/a -0.01	(loc) - - 18	l/defl L/ n/a 99 n/a 99 n/a n/	9 MT20 9	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.3 Structural wood she	19,7-11:2x4 SP No.2 athing directly applied		3-4=-226/190, 4-5=-200 6-7=-256/235, 7-8=-19: 9-10=-144/129, 10-11= 11-12=-256/235, 12-13 13-14=-190/146, 14-15 15-16=-317/154, 16-17	5/154, 5-6=-246/2 2/119, 8-9=-144/1 -192/119, =-238/214, =-217/162, =0/54, 16-18=-34 =-137/221,	12, 29, 4 5/111 6	only. see S or co Provi All pl Gabl Truss	For studs Standard In onsult qualif ide adequa lates are 2x e requires s to be fully	exposed to wind (r dustry Gable End ied building design te drainage to prev 4 () MT20 unless continuous bottom sheathed from on	
BOT CHORD	2-0-0 oc purlins (6-0	applied or 10-0-0 oc		22-24=-99/121, 19-22= 18-19=-32/99, 30-32=- 26-28=-78/129, 25-26= 23-25=-78/129, 21-23=	-72/184, 8/44, 28-30=-78/ -78/129,) Gabl) This chore	e studs spa truss has b d live load r	aced at 2-0-0 oc. een designed for a nonconcurrent with	o ,
WEBS JOINTS	6-0-0 oc bracing: 30 1 Row at midpt 1 Brace at Jt(s): 35, 26, 25, 30, 21, 37, 39		WEBS	2-37=-248/347, 33-37= 32-33=-108/97, 5-32=-9 13-20=-97/92, 19-39=-2 16-39=-242/341, 7-36= 35-36=-154/181, 35-38	00/91, 19 ⁻ 20=-110 258/357, -154/180, =-154/180,	1	3-06- choro 1) All be 2) Provi	-00 tall by 2 d and any c earings are ide mechar	ther members, wit assumed to be SF nical connection (by	between the bottom h BCDL = 10.0psf. P No.1 . y others) of truss to
	22=21-11 27-21-11 33=21-11 Max Horiz 34=430 (I Max Uplift 18=-85 (L 29=-63 (L 34=-111 (I Max Grav 18=390 (I 22=213 (I 27=263 (I	.C 9), 19=-492 (LC 13) .C 9), 33=-462 (LC 12) (LC 8)), , NOTES 3), 1) Unbala (), this de	11-38=-154/180, 8-35= 10-35=-65/48, 26-27=- 30-33=-108/99, 29-30= 27-30=-48/59, 19-21=- 21-22=-215/0, 21-24=- 6-30=-136/79, 4-33=-3- 23-38=-52/17, 12-21=- 14-19=-348/274, 15-39 anced roof live loads have be isign. ASCE 7-10; Vult=130mph (3	53/0, 24-25=-15 -266/99, 34/118, 18/59, 28-36=-54/ 12/279, 3-37=-52/ 25/65, =-53/54 en considered for	1/0, /27, /54,	34, 8	85 lb uplift a at joint 19	t joint 18, 462 lb up and 63 lb uplift at j	ROLIN
FORCES	(Ib) - Maximum Con Tension	· · · ·	Vasd= II; Exp and C- to 9-5- to 23-0 vertica forces	103mph; TCDL=6.0psf; BCD C; Enclosed; MWFRS (enve -C Corner (3) -1.1-10 to 1.10 8, Corner (3) 9-5-8 to 15-5-8.)-10 zone; cantilever left and left and right exposed;C-C f & MWFRS for reactions show 1.60 plate grip DOL=1.60	L=6.0psf; h=25ft; ope) exterior zon 6, Exterior (2) 1- ⁻ Exterior (2) 15-5 right exposed ; el or members and	ie 10-6 -8		1111 Martin		EER. H

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

March 12,2025

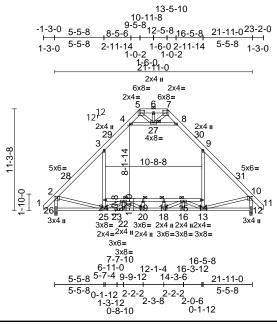
Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493331	B01	Attic Supported Gable	1	1	Job Reference (optional)	171949508
Builders FirstSource (Sumter, SC), Sumter, SC - 29153,	Run: 8.83 S Feb 18 2	Page: 2			

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Mar 11 11:00:27 ID:EH0PW62Rwi720z_SMUoFT5zc4C7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

14) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493331	B02	Attic	8	1	Job Reference (optional)	171949509

Run; 8.83 S Feb 18 2025 Print; 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Mar 11 11:00:28 ID:FyIGcYUbTAIPvAEBLW24Epzc4I?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

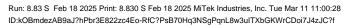
Page: 1

Scale = 1:127.8

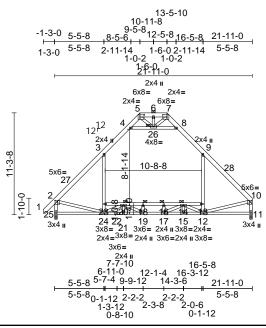
Plate Offsets (X, Y): [2:0-3-0,0-1-4], [5:0-5-8,0-3-0], [7:0-5-8,0-3-0], [10:0-3-0,0-1-4]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in		l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.43		0.22		>999	240	MT20	244/190
CDL	10.0	Lumber DOL	1.15		BC	0.51	Vert(CT)		17-19	>976	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.42	· · /	0.03	12	n/a	n/a		
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS		Attic	-0.09	14-24	>999	360	Weight: 197 lb	FT = 20%
OP CHORD	2x6 SP 2400F 2.0E 6 5-7:2x6 SP No.2 2x4 SP No.1				24-25=0/488, 3-24 9-14=0/653, 4-27= 8-27=-1535/378, 2 10-13=-63/864, 6- 7-27=-164/296, 5-	-1533/37 -25=-55/ 27=-205/	76, /858, /70,	,	or t bot 11) Atti	he orien tom cho c room c	tation (rd. checke	of the purlin along d for L/360 deflec	
VEBS	2x4 SP No.3 *Excep 3-25,9-13,4-8,26-2,1				19-20=-244/0, 17-				LOAD	CASE(S) Sta	ndard	
BRACING TOP CHORD	Structural wood shea 6-0-0 oc purlins, exe 2-0-0 oc purlins (10-	athing directly applie cept end verticals, a	nd		15-16=-131/150, 1 15-18=-106/791, 2 21-25=-1257/0, 20	1-22=-12	20/138,						
BOT CHORD	Rigid ceiling directly bracing.				roof live loads hav	ve been o	considered fo	r					
JOINTS	1 Brace at Jt(s): 27, 19, 17, 15, 21		2)	Wind: ASCE	7-10; Vult=130m ph; TCDL=6.0psf;			Cat					
	(size) 12=0-3-8, Max Horiz 26=430 (L Max Uplift 12=-18 (L Max Grav 12=1429 ((lb) - Maximum Com Tension 1-2=0/54, 2-3=-1393 4-5=-43/394, 5-6=-4 7-8=-44/395, 8-9=-8; 10-11=0/54, 2-26=-1 10-12=-1374/155 25-26=-427/559, 22- 20-22=0/2089, 18-20 (13-16=0/1859, 12-10 21-24=-191/179, 19- 17-19=-1763/0, 15-1 14-15=-198/185	LC 11) C 13), 26=-18 (LC 1 (LC 2), 26=1429 (LC pression/Maximum //66, 3-4=-828/240, 3/511, 6-7=-43/511, 29/240, 9-10=-1393/ 374/154, 25=0/2089, D=0/2480, 16-18=0/1 3=-99/210, 21=-1763/0,	2) 3) 66, ⁴⁾ 5) 859,	to 9-5-8, Exit to 23-0-10 z vertical left a forces & MW DOL=1.60 p Provide ade This truss h chord live lo * This truss on the botto 3-06-00 tall chord and a Ceiling dead 8-27; Wall o Bottom chor chord dead 19-21, 17-15 All bearings Provide mee bearing plate	erior (2) -1-1-10 to erior (2) 9-5-8 to 1 one; cantilever left and right exposed; VFRS for reactions late grip DOL=1.6 quate drainage to as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members I load (5.0 psf) on fead load (5.0 psf) d live load (40.0 p load (5.0 psf) appl 0, 15-17, 14-15 are assumed to b chanical connectio e capable of withsio uplifit at joint 12.	5-5-8, In and righ C-C for n shown; prevent v for a 10.0 with any t for a liv s where ill fit betw member(on memf sf) and a ed only t e SP No. n (by oth	terior (1) 15- ti exposed ; e nembers and Lumber water ponding 0 psf bottom other live load e load of 20.0 a rectangle veen the botti (s). 3-4, 8-9, , ber(s).3-24, 9 dditional botti o room. 21-2 1. ers) of truss f	5-8 end ds. Dpsf om 4-27, -14 om 4, 20			9 N	SEA 0363	• -

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



818 Soundside Road


Edenton, NC 27932

A. GI A. GILLIN March 12,2025

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493331	B03	Attic	3	1	Job Reference (optional)	171949510

Page: 1

Scale = 1:127.7

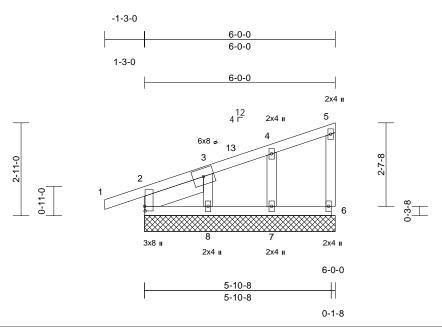
Plate Offsets (X, Y): [2:0-3-0,0-1-4], [5:0-5-8,0-3-0], [7:0-5-8,0-3-0], [10:0-3-0,0-1-4]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.45	Vert(LL)	0.22	11-12		240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.51	Vert(CT)		16-18	>971	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.42	Horz(CT)	0.03	11	n/a	n/a		
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS		Attic	-0.10	13-23	>999	360	Weight: 193 lb	FT = 20%
LUMBER				EBS	23-24=0/489, 3-23	,		,					s not depict the size
TOP CHORD		or 2x6 SP DSS *Exce	ept*		9-13=0/646, 4-26=							of the purlin along	the top and/or
	5-7:2x6 SP No.2				8-26=-1543/378, 2					tom cho		d for L/360 deflec	tion
BOT CHORD		.*			10-12=-61/861, 6- 5-26=-162/298, 7-				'				uon.
WEBS	2x4 SP No.3 *Excep 3-24,9-12,4-8,25-2,1				18-19=-245/0, 16-		,	57/0	LOAD	CASE(S) Sta	ndard	
BRACING	3-24,9-12,4-0,23-2,1	1-10.2X4 SP NO.2			20-21=-120/138, 1			5170,					
TOP CHORD	Structural wood she	athing directly applied	lor		12-14=-1258/0, 14		,						
I OI OI ORD		cept end verticals, and			14-17=-109/784								
	2-0-0 oc purlins, ex			DTES									
BOT CHORD			1)	Unbalance	d roof live loads hav	/e been	considered fo	r					
	bracing.			this design.									
JOINTS	1 Brace at Jt(s): 26,		2)		E 7-10; Vult=130m								
	18, 16, 20, 14				nph; TCDL=6.0psf;								
REACTIONS					nclosed; MWFRS (
	Max Horiz 25=416 (L				tterior (2) -1-1-10 to tterior (2) 9-5-8 to 1								
	Max Uplift 25=-18 (L	,			one; cantilever left a								
	Max Grav 11=1363		2)		and right exposed;								
FORCES	(lb) - Maximum Com	pression/Maximum			WFRS for reactions								
	Tension				plate grip DOL=1.6								
TOP CHORD			3)		equate drainage to			j .					
	4-5=-45/400, 5-6=-4	31/249, 9-10=-1395/6	4)		has been designed							mmm	1111
	2-25=-1377/160, 10-	,	ю,		oad nonconcurrent						0	WH CA	ROUL
BOT CHORD			5)		has been designed)psf			N	R	. Alle
		9=0/2481, 15-17=0/18	364,		om chord in all area						<u>.</u>	O'. FESS	ON Via
	12-15=0/1864, 11-12	2=-95/169,	,		by 2-00-00 wide w any other members		veen the bollo	חוכ		- 2	20		10 th
	20-23=-191/180, 18-	-20=-1764/0,	6)		d load (5.0 psf) on		(c) 3-1 8-0 /	1-26		2		:2	
	16-18=-1764/0, 14-1	6=-1764/0,	0)		dead load (5.0psf)					-		SEA	
	13-14=-201/185		7)		rd live load (40.0 p					=	:	SLA	
			,		load (5.0 psf) appl					=		0363	22 : :
				18-20, 16-1	8, 14-16, 13-14						- B		
			8)		s are assumed to be						-	·	- 1 E
			9)		chanical connectio						20	N. SNOW	ER. A S
					te capable of withs	anding 1	8 lb uplift at j	oint			1		1. 43°
				25.							1	ICA G	ILB
												11, A. G	in the

- All bearings are assumed to be SP No.1. 8)
- Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 18 lb uplift at joint 25

818 Soundside Road

Edenton, NC 27932


G١ A. GILIN March 12,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493331	C01	Monopitch Supported Gable	1	1	Job Reference (optional)	171949511

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Mar 11 11:00:29 ID:bt_sziLZjactLPg08SDLJgzc4AS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:36.2

Plate Offsets (X, Y): [2:0-1-12,0-0-4]

	· · · · · ·	-										-
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.18	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.07	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI201	4 Matrix-MP					-		Weight: 33 lb	FT = 20%
LUMBER TOP CHORD			5) Gable	requires continuous be studs spaced at 2-0-0	oc.	U						
BOT CHORD				uss has been designed			do					
WEBS	2x4 SP No.2			ive load nonconcurrer truss has been design								
OTHERS SLIDER	2x4 SP No.3 Left 2x6 SP No.2 :	2 0 11		bottom chord in all are			ры					
	Leit 2x0 SF IN0.2	2-0-11		0 tall by 2-00-00 wide			om					
BRACING	0 (a th in a siline ath a same lis	مامعما	and any other member			0111					
TOP CHORD				rings are assumed to		.2 .						
BOT CHORD	6-0-0 oc purlins, ex Rigid ceiling directly bracing.		c 9) Provid bearing	e mechanical connecti g plate capable of with	ion (by oth standing {	iers) of truss t 51 lb uplift at j	oint					
REACTIONS	(size) 2=6-0-0,	6=6-0-0, 7=6-0-0, 8=		o uplift at joint 6, 72 lb		int 7, 98 lb up	lift at					
	Max Horiz 2=131 (L	C 8)		and 51 lb uplift at joint	2.							
	Max Uplift 2=-51 (LC	C 8), 6=-25 (LC 12), 7	7=-72 LOAD CA	SE(S) Standard								
	(LC 8), 8=	=-98 (LC 12)										
	Max Grav 2=167 (L0 (LC 1), 8=	C 1), 6=58 (LC 1), 7= =144 (LC 1)	=174									
FORCES	(lb) - Maximum Com Tension	npression/Maximum										
TOP CHORD												
BOT CHORD												
WEBS	4-7=-131/243, 3-8=-											11111
NOTES											TH CA	Boilin
	ed roof live loads have	been considered for	r							1	A	in KIN'S
this desig										52	FESC	ANT SI-
0	CE 7-10; Vult=130mph	(3-second gust)							9	D	the p	Sin 1
Vasd=103	3mph; TCDL=6.0psf; B	CDL=6.0psf; h=25ft;	Cat.									
	Enclosed; MWFRS (er								-		SEA	1 3 3
	Corner (3) -1-3-0 to 2-0) to							- 8	000	• –
	ne; cantilever left and i								=		0363	22 : :
	ft exposed;C-C for mer		4-							- C		1 I I
grip DOL=	for reactions shown; Lu	imper DOL=1.60 pla	le							1	·	a !
	=1.60 signed for wind loads in	the plane of the true								20	SEA 0363	FERIAS
	studs exposed to wind									11	710	The Frank
	dard Industry Gable En										Marcel	ILDUN
	t qualified building desi										111111	in the second se
0. 00.10un	2 and	g									Morel	12 2025

March 12,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type Qty Ply WHITE OAK HOMES		WHITE OAK HOMES		
4493331	C02	Monopitch	10	1	Job Reference (optional)	171949512

Run; 8.83 S Feb 18 2025 Print; 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Mar 11 11:00:29 ID:3FzyUckBVDJzLjrPCyKcH7zc4BE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

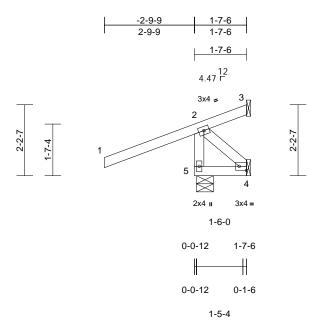
-1-3-0 6-0-0 6-0-0 1-3-0 6-0-0 2x4 🛛 12 4 Г 4 ø 4x6 = 11 10 ³ 2-7-8 2-11-0 2 0-11-0 5 Ø 3x8 II 2x4 II 6-0-0 5-10-8 ╣ 5-10-8 0-1-8

Scale = 1:35.3

Plate Offsets (X, Y): [2:0-6-5,0-0-4]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.56	Vert(LL)	0.16	5-8	>429	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.47	Vert(CT)	-0.11	5-8	>651	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.05	2	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MP							Weight: 30 lb	FT = 20%
LUMBER				at joint(s) 5 consider			e					
TOP CHORD	2x4 SP No.2			NSI/TPI 1 angle to gra r should verify capaci								
BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2			mechanical connecti			to					
SLIDER	Left 2x6 SP No.2 2	2-6-0		plate at joint(s) 5.		013) 01 11033	10					
BRACING		2-0-0		mechanical connecti	on (by oth	ers) of truss	to					
TOP CHORD	Structural wood she	athing directly appli	booring	plate capable of with								
TOP CHORD	6-0-0 oc purlins, ex		2 and 1	77 lb uplift at joint 5.			•					
BOT CHORD	Rigid ceiling directly		LOAD CAS	E(S) Standard								
	bracing.											
	· · · ·											
	Max Horiz 2=131 (LC Max Uplift 2=-205 (L	,										
	Max Opilit 2=-205 (L Max Grav 2=317 (L0											
FORCES	(lb) - Maximum Com											
	Tension											
TOP CHORD	1-2=0/24, 2-4=-306/	501, 4-5=-154/203										
BOT CHORD	2-5=-195/154											
NOTES												
 Unbalance this design 	ed roof live loads have	been considered fo	or									
	CE 7-10; Vult=130mph	(3-second quet)										11
	Smph; TCDL=6.0psf; B		· Cat								111110	5111
	Enclosed; MWFRS (er										THUT	De la
and C-C E	Exterior (2) -1-3-0 to 1-9	9-0, Interior (1) 1-9-0	0 to							A	ONJESK	in All
	ne; cantilever left and r								/	52	C C C C C C C C C C C C C C C C C C C	Vision
	it exposed; porch left a								2			
	ers and forces & MWF		own;							1		
	OL=1.60 plate grip DO									:	SEA	∖L : =
	has been designed for load nonconcurrent wi		de						Ξ		0363	22 E
	is has been designed f										. 0505	· · · · · · · · · · · · · · · · · · ·
	tom chord in all areas		op							-	1	1 2
	all by 2-00-00 wide will		om							2.1	N. En	- Rik S
	any other members.									31	A, GIN	EFR
5) All bearing	and accumed to be	SP No 2								1	10	OF

- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2 . 5)


G minin March 12,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type		Ply	WHITE OAK HOMES	
4493331	CJ1	Jack-Open Girder	4	1	Job Reference (optional)	171949513

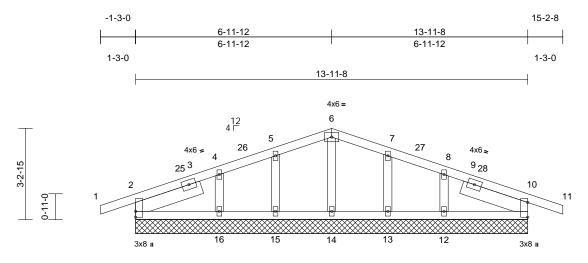
Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Mar 11 11:00:29 ID:g1xH29mvgAqFIWZrPY5pbIzc507-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:35.8

Plate Offsets (X, Y): [4:Edge,0-1-8]

Loading (psf) TCLL (roof) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.73 0.02 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2 *Excep BRACING TOP CHORD Structural wood she 1-7-6 oc purlins, ex BOT CHORD Structural wood she 1-7-6 oc purlins, ex BOT CHORD Structural wood she 5=0-6-5 Max Horiz 5=92 (LC Max Uplift 3=-164 (L 5=-291 (L Max Grav 3=159 (LC (LC 1)	athing directly applie cept end verticals. applied or 10-0-0 oc unical, 4= Mechanical 7) C 19), 4=-67 (LC 4), C 4)	bearing plat 4, 164 lb up LOAD CASE(S) d or	chanical connectior e capable of withst lift at joint 3 and 29) Standard	anding 6	57 lb uplift at j						
 FORCES (Ib) - Maximum Com Tension TOP CHORD 2-5=-398/300, 1-2=0 BOT CHORD 4-5=-82/0 WEBS 2-4=0/111 NOTES 1) Unbalanced roof live loads have this design. 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; Bf II; Exp C; Enclosed; MWFRS (er cantilever left and right exposed right exposed; Lumber DOL=1.6 3) This truss has been designed for chord live load nonconcurrent wi 4) * This truss has been designed for on the bottom chord in all areas: 3-06-00 tall by 2-00-00 wide will chord any other members. 5) Bearings are assumed to be:, Jd 6) Refer to girder(s) for truss to tru 	been considered for (3-second gust) CDL=6.0psf; h=25ft; twelope) exterior zono; end vertical left and 0 plate grip DOL=1.6 r a 10.0 psf bottom th any other live load or a live load of 20.0g where a rectangle fit between the botton pint 5 SP No.2.	e; i 0 s. psf						A. HILLING		SEA 0363	EER A LIVE


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

March 12,2025

Job	Truss	Truss Type		Ply	WHITE OAK HOMES	
4493331	D01	Common Supported Gable	1	1	Job Reference (optional)	171949514

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Mar 11 11:00:29 ID:0_jrkLnm?yGdH5?7ojN0JTzc49t-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [2:Edge,0-0-0] Loading TCLL (roof) (pst) 20.0 Spacing Plate Grip DOL 2-0-0 1.15 CSI TC 0.13 BC DEFL Vert(L) in (loc) I/deft L/d BCDL 0.0° Plate Grip DOL 1.1.5 TC 0.35 Vert(C) n/a - n/a 999 BCDL 0.0° Rep Stress Incr YES CSI TC 0.06 Vert(C) n/a - n/a 999 BCDL 0.0° Rep Stress Incr YES CSI TC 0.06 Vert(C) n/a - n/a 999 UMMER 0.0° Vert(C) n/a - n/a 999 Weight: 73 lb FT = 20% UMMER 2/4 SP No.2 2 Vind: ASCE 7-10; Vult=130mph (3-second gust) Vasci-122 to 52-32 zone; canliberei felt and right exposed; C-10r responsed; responsed; C-10r		13-11-8	8	
TCLL (for) 20.0 Plate Grip DOL 1.15 TC 0.13 Vert(CT) n/a 999 MT20 244/190 BCLL 0.00 Rep Stress Incr Code IRC2015/TPI2014 WB 0.06 Vert(CT) n/a 999 MT20 244/190 LUMBER 10.0 Code IRC2015/TPI2014 WB 0.06 Vert(CT) n/a 999 MT20 244/190 LUMBER 20.0 Z4 SP No.2 Wind: ASCE 7-10; Vull=130mph (3-second gust) Vasch Coper, 12, 25, 25, 1	Scale = 1:41 Plate Offsets (X, Y): [2:Edge,0-0-0], [10:Edge,0-0-0]			
BOT CHORD 2-16=-8/56, 15-16=-8/56, 14-15=-8/56, 13-14=-8/56, 12-13=-8/56, 10-12=-8/56 LOAD CASE(S) Standard WEBS 6-14=-84/23, 5-15=-121/186, 4-16=-145/145, 7-13=-121/185, 8-12=-145/144 SEAL NOTES 1) Unbalanced roof live loads have been considered for this design. WGINEE	Loading (psf) Spacing 2-0 TCLL (roof) 20.0 Plate Grip DOL 1.1 DCL 10.0 BCLL 0.0* Rep Stress Incr YE BCDL 10.0 Code IRC Important Stress Important Stress LUMBER TOP CHORD 2x4 SP No.2 Code IRC DOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3 SLIDER Left 2x6 SP No.2 - 2-6-0, Right 2x6 SP No.2 - 2-6-0 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Reaction Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 2=13-11-8, 10=13-11-8, 14=13-11-8, 14=13-11-8, 14=13-11-8, 14=13-11-8, 14=13-11-8, 14=13-11-8, 14=13-11-8, 14=13-11-8, 14=13-11-8, 14=13-11-8, 14=13-11-8, 14=13-11-8, 14=13-11-8, 14=13-11-8, 15=-102 (LC 2), 12=-95 (LC 13), 13=-67 (LC 9), 12=-95 (LC 13), 13=-67 (LC 9), 12=-95 (LC 13), 13=-67 (LC 9), 12=-92 (LC 24), 13=154 (LC 24), 14=127 (LC 1), 10=218 (LC 1), 12=202 (LC 24), 13=154 (LC 24), 14=127 (LC 1), 15=154 (LC 24), 14=127 (LC 1), 15=154 (LC 24), 14=127 (LC 1), 15=154 (LC 24), 14=202 (LC 23) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/24, 2-4=-90/80, 4-5=	 TC 0.13 Vet BC 0.05 BC 0.05 WB 0.06 HC 0.05 WB 0.06 HC 0.05 WB 0.06 HC 0.05 Vad=103mph; TCDL=6.0ps; BCDL=6.0p II; Exp C; Enclosed; MWFRS (envelope) et and C-C Corner (3) -1.3-0 to 1-9-0, Exteric 6-11-12, Corner (3) 6-11-12 to 9-11-12, Ex 9-11-12 to 15-2-8 zone; cantilever left and exposed ; end vertical left and right expose members and forces & MWFRS for reaction Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane only. For studs exposed to wind (normal to see Standard Industry Gable End Details at or consult qualified building designer as pe 4) All plates are 2x4 () MT20 unless otherw Gable requires continuous bottom chord building loads for a 10.0 ps chord live load nonconcurrent with any othe stude substance are at 3-06-00 tall by 2-00-00 wide will fit betweet chord and any other members. All bearings are assumed to be SP No.2. Provide mechanical connection (by others) bearing plate capable of withstanding 112 2, 124 Ib uplift at joint 10, 65 Ib uplift at joint 13, 95 II 	Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 10 n/a n/a Weight: 73 lt ond gust) Opsf; h=25ft; Cat.) exterior zone prior (2) 1-9-0 to Exterior (2) nd right osed; C-C for tions shown; une of the truss al to the face), per ANSI/TPI 1. rwise indicated. d bearing. Psf bottom other live loads. e load of 20.0psf a rectangle een the bottom 2. res) of truss to 12 lb uplift at joint oint 15, 102 lb 5 lb uplift at joint ift at joint 10. SE	244/190 5 FT = 20% AROUNT AL

March 12,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493331	D02	Common	4	1	Job Reference (optional)	171949515

Run; 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Mar 11 11:00:30

Page: 1

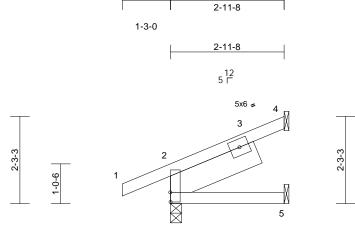
Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

	6-11-12	13-11-8	
	6-11-12	6-11-12	
Scale = 1:42.1			
Plate Offsets (X_Y): [2:0-2-4 0-0-4] [6:0-6-1 0-0-4]			

Plate Offsets ((X, Y): [2:0-2-4,0-0-4],	[6:0-6-1,0-0-4]										
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.48	Vert(LL)	-0.06	8-11	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.40	Vert(CT)	-0.09	8-11	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.10	Horz(CT)	0.03	2	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS		Wind(LL)	0.09	8-15	>999	240	Weight: 62 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER		2-6-0, Right 2x6 SP 1	on the botto 3-06-00 tall chord and a No.2 5) All bearings 6) Provide me	has been designed for or chord in all areas by 2-00-00 wide will ony other members. are assumed to be chanical connection	where fit betw SP No. (by oth	a rectangle veen the botto 2 . ers) of truss to	o o					
BRACING				e capable of withsta	nding 4	09 lb uplift at	joint					
TOP CHORD	Structural wood she 5-11-12 oc purlins.	athing directly applie	d or 2 and 409 lt LOAD CASE(S)	o uplift at joint 6. Standard								
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-3-8 oc										
REACTIONS	(size) 2=0-3-0, 6 Max Horiz 2=62 (LC Max Uplift 2=-409 (L Max Grav 2=633 (LC	12) C 8), 6=-409 (LC 9)										
FORCES	(lb) - Maximum Com Tension											
TOP CHORD		941, 4-6=-757/941,										
BOT CHORD		789/712										
WEBS	4-8=-383/267											
NOTES											TH CA	1111
1) Unbalance	ed roof live loads have	been considered for									WHY CA	Pall
this desig										1	All	01/12
	CE 7-10; Vult=130mph		Cat						/	S.	DESS	TON Vin
	Bmph; TCDL=6.0psf; B Enclosed; MWFRS (er								4			
· · · ·	Exterior (2) -1-3-0 to 1-	1 /							-		<u>.</u> ??`	
	Exterior (2) 6-11-12 to 9								Ξ		SEA	1 E E
	o 15-2-8 zone; cantileve								=		0363	• –
	end vertical left and rig exposed;C-C for memb		I						-		0303	44 <u>:</u> : :
	or reactions shown; Lu		e							-	N	1 E
grip DOL=										3.1	N.ENO	- cRick S
	has been designed for									2	S, GIN	EF R N
chord live	load nonconcurrent wi	th any other live load	s.							1	SEA 0363	ILBEIT

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. 818 Soundside Road Edenton, NC 27932 and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G minin March 12,2025


Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493331	JA1	Jack-Open	8	1	Job Reference (optional)	171949516

-1-3-0

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Run; 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Mar 11 11:00:30 ID:C6uLPdyxu5r_g_ovLvNaEgzc5?t-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

MT20HS 3x10 II

2-11-8

2-11-8

Scale = 1:29.9

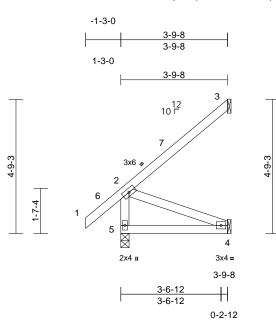
Plate Offsets (X, Y): [2:0-3-0,0-0-1]

	, , , , , , , , , , , , , , , , , , , ,											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	0.00	5-8	>999	240		187/143
TCDL	10.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	0.00	5-8	>999	240	MT20	244/190
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MP							Weight: 19 lb	FT = 20%
LUMBER			7) Provide me	chanical connecti	on (by oth	ers) of truss	to					
TOP CHORD	2x4 SP No.2			e capable of with								
BOT CHORD	2x4 SP No.2		4 and 59 lb	uplift at joint 2.	0							
SLIDER	Left 2x8 SP 2400F 2	2.0E or DSS 2-6-0	LOAD CASE(S) Standard								
BRACING			•									
TOP CHORD	Structural wood she	athing directly appli	ed or									
	2-11-8 oc purlins.											
BOT CHORD												
	bracing.											
REACTIONS		4= Mechanical, 5=										
	Mechanic											
	Max Horiz 2=86 (LC											
	Max Uplift 2=-59 (LC											
	Max Grav 2=207 (L0 (LC 3)	C 1), 4=71 (LC 1), 5	=44									
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension											
TOP CHORD	1-2=0/29, 2-4=-143/	105										
BOT CHORD	2-5=-71/29											
NOTES												
	CE 7-10; Vult=130mph											
	mph; TCDL=6.0psf; B										minin	1111
	Enclosed; MWFRS (er										IN'TH CA	ROUL
	xterior (2) -1-3-0 to 1-									1	NITH CA	
	one; cantilever left and		l							A	O'.EES	in Alin

forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 All plates are MT20 plates unless otherwise indicated. 2)

vertical left and right exposed;C-C for members and

- 3) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 5)
- Bearings are assumed to be: , Joint 2 SP No.2 .
- 6) Refer to girder(s) for truss to truss connections.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493331	JB1	Jack-Open	7	1	Job Reference (optional)	171949517

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Mar 11 11:00:30 ID:G?I?YI8LMikszHRojY85Lqzc5?e-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

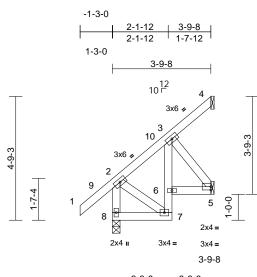
Page: 1

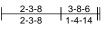
Scale = 1:40.9

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC 0.3 BC 0.1 WB 0.0 Matrix-MP	6 Vert(CT)	in -0.01 -0.02 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	3-9-8 oc purlins, ex	athing directly applie	bearing plat 3 and 53 lb LOAD CASE(S) d or	chanical connection (by d chanical connection (by d e capable of withstandin uplift at joint 4.) Standard							
	(size) 3= Mecha 5=0-3-8 Max Horiz 5=183 (L0 Max Uplift 3=-119 (L Max Grav 3=115 (L0 (LC 1) (lb) - Maximum Corr	.C 12), 4=-53 (LC 12) C 19), 4=73 (LC 3), 5									
TOP CHORD BOT CHORD WEBS NOTES	Tension 2-5=-208/60, 1-2=0/ 4-5=-262/212 2-4=-227/281	54, 2-3=-115/114									
 Unbalance this design Wind: ASC Vasd=103 II; Exp C; E and C-C E 3-8-12 zon vertical left forces & M DOL=1.60 This truss chord live * This truss on the bott 3-06-00 tal chord and Bearings a 	ed roof live loads have a. CE 7-10; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er ixterior (2) -1-3-0 to 1- te; cantilever left and r t and right exposed;C- IWFRS for reactions s plate grip DOL=1.60 has been designed fo load nonconcurrent wi s has been designed fo tom chord in all areas any other members. are assumed to be: , Ju rder(s) for truss to true	(3-second gust) CDL=6.0psf; h=25ft; hvelope) exterior zon 9-0, Interior (1) 1-9-0 ight exposed ; end C for members and hown; Lumber r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto bint 5 SP No.2.	Cat. e to ls. ssf					A CHINE	E. M.	SEA 0363	22 EER RUU

- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 5) Bearings are assumed to be: , Joint 5 SP No.2 .
- 6) Refer to girder(s) for truss to truss connections.

mmm March 12,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493331	JB2	Jack-Open	3	1	Job Reference (optional)	171949518

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Mar 11 11:00:30 $ID: 5QBiNdQmymebDphDat \\ 3Unhzc5? H-RfC? PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC? figure for the second statement of the secon$

Page: 1

0-1-2

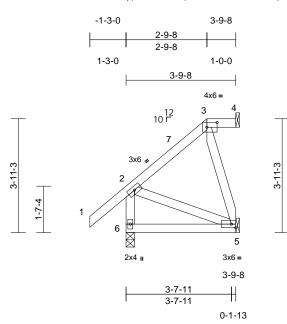
Scale = 1:44.4

		·										
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.20	Vert(LL)	0.01	7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.19	Vert(CT)	-0.01	7	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.06	Horz(CT)	-0.02	5	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	4 Matrix-MP							Weight: 28 lb	FT = 20%
LUMBER			5) Bearing	s are assumed to be:	, Joint 8 S	SP No.2 .						
TOP CHORD				girder(s) for truss to								
BOT CHORD				mechanical connecti								
WEBS	2x4 SP No.3 *Excep	ot* 8-2:2x4 SP No.2		plate capable of with	standing 6	61 lb uplift at	joint					
BRACING				10 lb uplift at joint 5.								
TOP CHORD	Structural wood she		ed or LOAD CAS	E(S) Standard								
	3-9-8 oc purlins, ex											
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	С									
REACTIONS		anical, 5= Mechanica	al,									
	8=0-3-8	(2, 4, 0)										
	Max Horiz 8=183 (LC	,	2)									
	Max Uplift 4=-61 (LC Max Grav 4=59 (LC											
	8=245 (LC		,									
FORCES	(lb) - Maximum Com	pression/Maximum										
TOP CHORD	Tension 2-8=-225/51, 1-2=0/	54 2-3101/44										
	3-4=-54/48	54, 2-5=-101/44,										
BOT CHORD		112/104, 3-6=-102/	120,									
	5-6=-124/137	,	- ,									
WEBS	2-7=-147/217, 3-5=-	219/199										
NOTES												
1) Unbalance	ed roof live loads have	been considered fo	r									11111
this desigr											IN THUR	ROUL
	CE 7-10; Vult=130mph		-							N	A	SIN INTE
	Bmph; TCDL=6.0psf; B								/	52	FESC	IN ST
	Enclosed; MWFRS (er Exterior (2) -1-3-0 to 1-								4			
	ne; cantilever left and i		010							()		- T 1 E
	ft and right exposed;C-								-		SEA	
	WFRS for reactions s								=	:	0363	• -
) plate grip DOL=1.60								=		0505	22 : :
	has been designed fo										1	1 E
	load nonconcurrent w									1	· · · ·	Airs
	s has been designed f		Opsf							1.5	GIN	EFICAN
	ttom chord in all areas									11	10	BEIN
3-06-00 ta	all by 2-00-00 wide will	nt between the botto	m								A C	ILBE

* This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

818 Soundside Road Edenton, NC 27932

GI


mmm March 12,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493331	JB3	Jack-Open	3	1	Job Reference (optional)	171949519

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries. Inc. Tue Mar 11 11:00:31 ID:H4Pjq?z?LbJC7kesiqN15Azc5_a-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:39.8

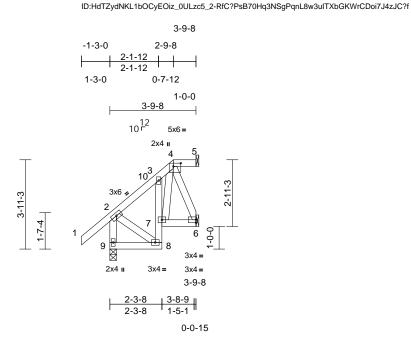
Plate Offsets (X, Y): [3:0-4-4,0-2-0]

												-
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.20	Vert(LL)	-0.01	5-6	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.16	Vert(CT)	-0.02	5-6	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.06	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI20	014 Matrix-MP							Weight: 28 lb	FT = 20%
LUMBER TOP CHORE BOT CHORE WEBS BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SP No.2 2x4 SP No.3 *Excep Structural wood she 3-9-8 oc purlins, ex 2-0-0 oc purlins: 3-4 Rigid ceiling directly bracing. 	eathing directly applie cept end verticals, a l. applied or 10-0-0 or anical, 5= Mechanica C 12) C 8), 5=-100 (LC 12)	on the 3-06- chord 6) Beari ed or 7) Refer nd 8) Provi beari c 6, 19 c 9) Grapi al, or the botton	s truss has been design e bottom chord in all are 00 tall by 2-00-00 wide I and any other member ngs are assumed to be to girder(s) for truss to de mechanical connecti ng plate capable of with Ib uplift at joint 4 and 1 hical purlin representati e orientation of the purlin m chord. ASE(S) Standard	eas where will fit betw rs. : , Joint 6 S o truss con ion (by oth istanding 1 00 lb uplift on does no	a rectangle veen the botto SP No.2 . nections. ers) of truss to 6 lb uplift at jo at joint 5. bt depict the si	om D D Dint					
	Max Grav 4=28 (LC (LC 1)	1), 5=121 (LC 19), 6	6=246									
FORCES	(lb) - Maximum Con Tension	npression/Maximum										
TOP CHORE BOT CHORE WEBS	,		4=0/0									
NOTES	0 0= 101/102, 2 0=	100/210									minin	11111
 Unbaland this desig Wind: AS Vasd=10 II; Exp C and C-C 2-9-8, Ex and right C for mer 	ced roof live loads have gn. SCE 7-10; Vult=130mph J3mph; TCDL=6.0psf; B ;; Enclosed; MWFRS (er Exterior (2) -1-3-0 to 1- kterior (2) 2-9-8 to 3-8-1 t exposed ; end vertical mbers and forces & MV _umber DOL=1.60 plate	n (3-second gust) CDL=6.0psf; h=25ft; nvelope) exterior zor 9-0, Interior (1) 1-9-0 2 zone; cantilever le left and right expose VFRS for reactions	; Cat. ne 0 to ft								OR DEESS SEA 0363	• –
4) This trus	adequate drainage to pr is has been designed fo	r a 10.0 psf bottom								1. Martin	A C A C	EEF

- 3) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom 4) chord live load nonconcurrent with any other live loads.

818 Soundside Road Edenton, NC 27932

G mmm March 12,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493331	JB4	Jack-Open	1	1	Job Reference (optional)	171949520

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Mar 11 11:00:31

Page: 1

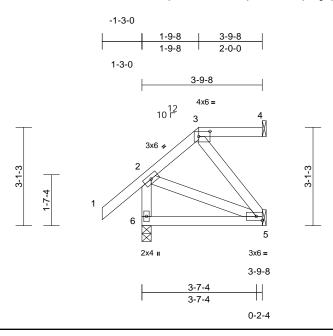
Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Scale = 1:50.7

Plate Offsets (X, Y): [4:0-4-0,0-1-12]

Loading	(psf)	Spacing	2-0-0	CSI TC	0.04	DEFL	in	(loc)	l/defl	L/d	PLATES MT20	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		0.21	Vert(LL)	0.01	8	>999	240	MIZO	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.15	Vert(CT)	0.00	8-9	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.06	Horz(CT)	-0.01	6	n/a	n/a		FT 00%
BCDL	10.0	Code	IRC2015/TPI20	14 Matrix-MP							Weight: 32 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS		nt* 9-2 [.] 2x4 SP No 2	chord 5) * This	uss has been designed live load nonconcurren truss has been designe bottom chord in all are	it with any ed for a liv	other live loa e load of 20.0						
BRACING		X 0 2.2X 1 01 110.2	3-06-0	0 tall by 2-00-00 wide	will fit betv	veen the botte	om					
TOP CHORD	 Structural wood she 3-9-8 oc purlins, ex 2-0-0 oc purlins: 4-5 	cept end verticals, a	and 6) Bearin 7) Refer	and any other member ngs are assumed to be: to girder(s) for truss to	t, Joint 9 S	nections.						
BOT CHORD	 Rigid ceiling directly bracing. 	applied or 10-0-0 o	bearir	le mechanical connecti g plate capable of with	standing 1	5 lb uplift at j						
REACTIONS	(size) 5= Mecha 9=0-3-8	anical, 6= Mechanica	ai, 9) Graph	b uplift at joint 5 and 10 ical purlin representation	on does no	ot depict the s	size					
	Max Horiz 9=144 (LO	,	bottor	orientation of the purlir n chord.	n along the	e top and/or						
	Max Uplift 5=-19 (LC			SE(S) Standard								
	9=-15 (LC Max Grav 5=28 (LC (LC 1)											
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	2-9=-225/96, 1-2=0/ 3-4=-141/90, 4-5=0/											
BOT CHORD	6-7=-61/66	, ,										111111
WEBS	2-8=-127/191, 4-6=-	185/173, 4-7=-159/2	214								TH UF	ROUN
NOTES										5	A SEGO	in Inter
 Unbalance this designed 	ced roof live loads have gn.	been considered fo	r						4	ès	A PEOC	VA: T
Vasd=10 II; Exp C; and C-C 2-9-8, Ex	CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; B ; Enclosed; MWFRS (er Exterior (2) -1-3-0 to 1- terior (2) 2-9-8 to 3-8-1	CDL=6.0psf; h=25ft; nvelope) exterior zor 9-0, Interior (1) 1-9-(2 zone; cantilever le	ne 0 to •ft						111111		SEA 0363	• –
C for mer shown; L	exposed ; end vertical mbers and forces & MW umber DOL=1.60 plate	VFRS for reactions grip DOL=1.60								in the second se		EERA
 Provide a 	adequate drainage to pr	event water ponding	g.								(IIIIIII)	12 2025

March 12,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493331	JB5	Jack-Open	3	1	Job Reference (optional)	171949521

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries. Inc. Tue Mar 11 11:00:31 ID:LWtE6mZkpeUFVGtH4dIXbVzc4zp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

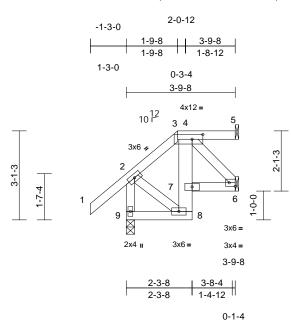
Scale = 1:36.3

Plate Offsets (X, Y): [3:0-4-4,0-2-0]

	5 (73, 1): [8:0 1 1,8 2 8]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI201	CSI TC BC WB 4 Matrix-MP	0.21 0.17 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 5-6 5-6 4	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORE BOT CHORE WEBS BRACING TOP CHORE BOT CHORE REACTIONS	 D 2x4 SP No.2 2x4 SP No.3 *Excep D Structural wood she 3-9-8 oc purlins, ex 2-0-0 oc purlins: 3-4 D Rigid ceiling directly bracing. 	athing directly applie cept end verticals, a applied or 10-0-0 or anical, 5= Mechanica C 9) C 8), 5=-39 (LC 12), (on the 3-06-00 chord a 6) Bearing ed or 7) Refer t bearing c 9) Graphi or the c bottom LOAD CAS 6=-45	russ has been design bottom chord in all are 0 tall by 2-00-00 wide and any other member is are assumed to be: 0 girder(s) for truss to a mechanical connecti 1 plate capable of with 0 uplift at joint 4 and 30 cal purlin representation orientation of the purlin chord. SE(S) Standard	eas where will fit betw rs. , Joint 6 \$ o truss con ion (by oth standing 4 9 lb uplift a on does no	a rectangle veen the bott SP No.2 . nections. ers) of truss IS lb uplift at j it joint 5. bt depict the s	om to joint					
FORCES	,,		4=0/0									
BOT CHORE WEBS	D 5-6=-177/142 3-5=-111/74, 2-5=-1	17/1 11										
NOTES	3-5=-111/74, 2-5=-1	17/141									, mining	11111
 Unbalant this designed Wind: AS Vasd=10 II; Exp C and C-C exposed members Lumber Provide a 4) This trus 	ced roof live loads have gn. SCE 7-10; Vult=130mph J3mph; TCDL=6.0psf; B c; Enclosed; MWFRS (er Exterior (2) zone; cantil 1; end vertical left and ri; s and forces & MWFRS DOL=1.60 plate grip DC adequate drainage to pr ss has been designed fo re load nonconcurrent with	(3-second gust) CDL=6.0psf; h=25ft; hvelope) exterior zor ever left and right ght exposed;C-C for for reactions shown DL=1.60 event water ponding r a 10.0 psf bottom	Cat. ne ; ;							E. M.	SEA 0363	EER ER III

- 3) Provide adequate drainage to prevent water ponding.
- 4)́ This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

March 12,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

A. GI minimum)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493331	JB6	Jack-Open	1	1	Job Reference (optional)	171949522

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Mar 11 11:00:31 ID:IR2rf3?JKi09qoeCBBOz25zc4zF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

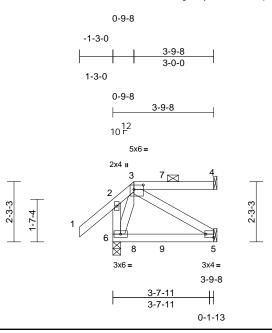
Scale = 1:40.1

Plate Offsets (X, Y): [3:0-4-8,0-2-0], [6:Edge,0-1-8]

	(X, 1): [5:0 + 6;6 2 6];	[0:=090;0 : 0]	-										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.20 0.05 0.05	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 0.00 0.00 0.00	(loc) 7 6-7 6 8	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 *Excep 2x4 SP No.3 *Excep Structural wood she 3-9-8 oc purlins; ex 2-0-0 oc purlins; 3-5 Rigid ceiling directly bracing. (size) 5= Mecha 9=0-3-8 Max Horiz 9=106 (LC Max Uplift 5=-29 (LC (LC 12) Max Grav 5=42 (LC (LC 1)	 t* 9-2:2x4 SP No.2 athing directly applie cept end verticals, a applied or 6-0-0 oc anical, 6= Mechanica C 9) C 8), 6=-48 (LC 9), 9= 24), 6=88 (LC 3), 9= 	nd 8) 9) I, =-44	on the bottor 3-06-00 tall b chord and ar Bearings are Refer to gird Provide mec bearing plate 9, 29 lb uplift Graphical pu		as where will fit betw s. , Joint 9 S truss con on (by oth standing 4 b b uplift a on does no	a rectangle veen the botto SP No.2 . nections. ers) of truss t 4 Ib uplift at j t joint 6. ot depict the s	om o oint					
FORCES	(lb) - Maximum Com Tension 2-9=-229/151, 1-2=0												
	3-4=-71/70, 4-5=0/0												
BOT CHORD	8-9=-156/123, 7-8=- 6-7=-108/107	60/66, 4-7=-43/80,										minin	un.
WEBS	2-8=-63/106, 4-6=-1	55/156										"TH CA	Roille
NOTES											- 5	CA PESS	an Inin
 Unbalance this design 	ed roof live loads have	been considered for	•								20	CO	Mind .
 Wind: AS Vasd=103 II; Exp C; and C-C E exposed ; members Lumber D Provide ar This truss 	CE 7-10; Vult=130mph Bmph; TCDL=6.0psf; Br Enclosed; MWFRS (er Exterior (2) zone; cantil end vertical left and riq and forces & MWFRS IOL=1.60 plate grip DC dequate drainage to pr has been designed foi load nonconcurrent wi	CDL=6.0psf; h=25ft; ivelope) exterior zor ever left and right ght exposed;C-C for for reactions shown vL=1.60 event water ponding r a 10.0 psf bottom	e									SEA 0363	EER A

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932


March 12,2025

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493331	JB7	Jack-Open Girder	3	1	Job Reference (optional)	171949523

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries. Inc. Tue Mar 11 11:00:31 ID:77Tz3ITPv?2TdxhuXa6LgXzc4yd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

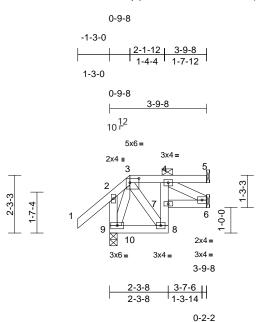
Scale = 1:43.3

Plate Offsets (X, Y): [3:0-4-4,0-2-0], [5:Edge,0-1-8]

	. [0:0 1 1,0 2 0],	[e:=age;e : e]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015/	/TPI2014	CSI TC BC WB Matrix-MP	0.19 0.19 0.07	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.02 0.00 0.01	(loc) 5-6 5-6 4 5-6	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x4 WEBS 2x4 BRACING TOP CHORD Str 3-9 2-0 BOT CHORD Rig bra REACTIONS (size Max Max FORCES (lb) Ter TOP CHORD 2-6 3-4 BOT CHORD 5-6 WEBS 3-5 NOTES 1) Unbalanced root this design. 2) Wind: ASCE 7- Vasd=103mph; II; Exp C; Encloc cantilever left a right exposed; I 3) Provide adequa 4) This truss has b	uctural wood she -8 oc purlins, exx -0 oc purlins: 3-4 id ceiling directly ucing. e) 4= Mecha 6=0-3-8 Horiz 6=81 (LC Uplift 4=-68 (LC (LC 8) Grav 4=92 (LC (LC 15) - Maximum Com- =-229/204, 1-2=(=0/0 =-54/55 =-66/64, 3-6=-35 of live loads have 10; Vult=130mph TCDL=6.0psf; B used; MWFRS (er nd right exposed Lumber DOL=1.6 ate drainage to pr peen designed fo	applied or 6-0-0 oc anical, 5= Mechanica 5) 2 4), 5=-22 (LC 9), 6= 1), 5=71 (LC 6), 6=2 apression/Maximum 0/54, 2-3=-120/140, 0/172 been considered for (3-second gust) CDL=6.0psf; h=25ft; nvelop) exterior zon ; end vertical left and 0 plate grip DOL=1.6	6) ed or 7) nd 8) 9) I, 10) =-135 279 11) LO/ 1) Cat. le; d 30	on the bottor 3-06-00 tall b chord and ar Bearings are Refer to gird Provide mec bearing plate 6, 68 lb uplift Graphical pu or the orienta bottom chord Hanger(s) or provided suff lb down and lb up at 1-10 up at 0-9-8, The design/s responsibility In the LOAD of the truss a AD CASE(S) Dead + Roo Plate Increa: Uniform Loa Vert: 1-2: Concentrate	other connection icicient to support c 222 lb up at 0-9-8 0-4 on top chord, a and 8 lb down at election of such co of others. CASE(S) section, re noted as front (Standard of Live (balanced): ase=1.15	s where II fit betw Joint 6 S russ con h (by oth anding 1 b uplift a does no along the device(s oncentra 8, and 38, and 14 lb 1-10-4 connectio loads aµ (F) or ba Lumber =-60, 5-1	a rectangle veen the both SP No.2 . nections. ers) of truss 1 35 lb uplift at t joint 5. bt depict the s e top and/or b) shall be ated load(s) 2 8 lb down and down and 74 n bottom cho n device(s) is pplied to the s ck (B). florease=1. 6=-20	to t joint size 238 4 49 4 1b ord. s the face				SEA 0363	• –

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



G mmm March 12,2025

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493331	JB8	Jack-Open Girder	1	1	Job Reference (optional)	171949524

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Mar 11 11:00:32 ID:48IHuJkeQy9j5wetdQzktTzc4x?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

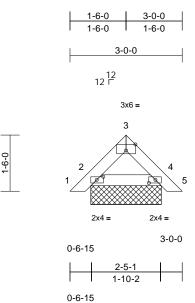
Scale = 1:45.1

Plate Offsets (X, Y): [3:0-4-4,0-2-0]

	(X, 1): [3:0 + 4;0 2 0]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC20 ⁷	15/TPI2014	CSI TC BC WB Matrix-MP	0.16 0.14 0.06	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 -0.01 -0.01 0.01	(loc) 7 7 6 8-9	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
	10.0	Code				-			0-3	2333	240	Weight. 27 lb	11 - 2076
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x4 SP No.3 *Except Structural wood she 3-9-8 oc purlins; ex 2-0-0 oc purlins; 3-5 Rigid ceiling directly bracing. (size) 5= Mecha 9=0-3-8 Max Horiz 9=81 (LC Max Uplift 5=-39 (LC (LC 8) 	athing directly applie cept end verticals, a applied or 6-0-0 oc anical, 6= Mechanica 5) 5), 6=-52 (LC 5), 9:	nd 8 9 11, =-131	 on the bottor 3-06-00 tall II chord and ai Bearings are Refer to gird Provide mec bearing platter g 39 Ib uplif Graphical pu or the orient: bottom chorr Hanger(s) on provided suf Ib down and 	has been designe in chord in all are by 2-00-00 wide w hy other members assumed to be: er(s) for truss to hanical connection capable of withst t at joint 5 and 522 cution of the purlin d. other connection ficient to support 222 lb up at 0-9 0-4 on top chord,	as where will fit betw s. , Joint 9 \$ truss con on (by oth standing 1 P buplift a on does no along the n device(s concentra -8, and 38	a rectangle veen the bott SP No.2 . nections. ers) of truss 1 31 lb uplift at t joint 6. ot depict the s e top and/or) shall be ated load(s) 2 8 lb down and	to t joint size 238 d 49					
FORCES	Max Grav 5=54 (LC (LC 15) (Ib) - Maximum Com	,	9=278	up at 0-9-8,	and 8 lb down at selection of such	2-1-12 c	n bottom cho	ord.					
TOP CHORD	Tension 2-9=-229/204, 1-2=0	VE4 2 2 420/140	1	1) In the LOAD	CASE(S) section			face					
	3-4=-59/52, 4-5=0/0				are noted as front	t (F) or ba	ck (B).						
BOT CHORD	8-9=-47/59, 7-8=-84 6-7=-105/120	/71, 4-7=-67/81,	L 1		of Live (balanced): Lumbei	Increase=1.	15,				mm	1111.
WEBS	3-8=-57/132, 4-6=-1	40/122, 3-9=-364/15	52	Plate Increa Uniform Lo								"'TH CA	RO
NOTES					=-60, 2-3=-60, 3-	5=-60 8-	9=-20 6-7=-2	20			N.	R	D. Inter
this desig 2) Wind: AS Vasd=10 II; Exp C; cantilever	ed roof live loads have in. ICE 7-10; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed; MWFRS (er r left and right exposed osed; Lumber DOL=1.6	(3-second gust) CDL=6.0psf; h=25ft; nvelope) exterior zor ; end vertical left an	Cat. ne; d	Concentrat	ed Loads (Ib) 56 (B), 4=-11 (B),	,	,	-0		Withit		SEA 0363	
4) This truss	dequate drainage to pr s has been designed for e load nonconcurrent wi	r a 10.0 psf bottom									in the second se		EER. KIN

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

G mmm March 12,2025

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493331	PB01	Piggyback	12	1	Job Reference (optional)	171949525

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Mar 11 11:00:32 ID:F6c0a3iiO8IIB?rwF3WB0kzc51V-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

0-6-15

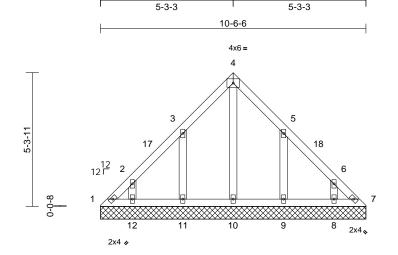
Scale = 1:30.8

Plate Offsets (X, Y): [2:0-2-2,0-1-0], [3:0-3-0,Edge], [4:0-2-2,0-1-0]

TCDL 10.0 Lumber DOL 1.15 BC 0.02 Vert(CT) n/a BCLL 0.0* Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 BCDL 10.0 Code IRC2015/TPI2014 Matrix-MP Horz(CT) 0.00	n/a 999 n/a n/a		244/190 FT = 20%
 All bearings are assumed to be SP No.2. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplif at joint 2. and 28 lb uplif at joint 2. and 28 lb uplif at joint 2. and 28 lb uplif at joint 4. 28 lb uplif at joint 2. and 28 lb uplif at joint 2. and 28 lb uplif at joint 2. and 28 lb uplif at joint 4. 28 lb uplif 4. 28 lb	and an	A. C	EER HUIL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493331	V01	Valley	1	1	Job Reference (optional)	171949526


5-3-3

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Mar 11 11:00:32 ID:MoJfb3EsLSy8d9xd14qGUjzc525-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-6-6

Page: 1

10-6-6

Scale = 1:45.7

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MS	0.06 0.04 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 54 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x OTHERS 2x BRACING TOP CHORD St BOT CHORD R BOT CHORD (siz REACTIONS (siz Max Max Max Max Max Max Max Max Max Max	$\begin{array}{llllllllllllllllllllllllllllllllllll$	C 8) C 10), 7=-19 (LC 11), (13), 9=-178 (LC 13), LC 12), 12=-107 (LC (12), 7=79 (LC 13), C 20), 9=213 (LC 20), C 22), 11=213 (LC 19), C 22), 11=213 (LC 19), C 19) 125/103, 3-4=-134/13 92/59, 6-7=-168/116 2=-94/146, 10-11=-94, 94/146, 7-8=-94/146	 Vasd=103m II; Exp C; Er and C-C Ex 5-3-11, Exte 10-6-14 zon vertical left a forces & MV DOL=1.60 p Truss desig only. For st see Standar or consult q All plates ar 5) Gable requi (a) This truss (a) All plates ra (b) Gable studs 7) This truss on the botto 3-06-00 tall chord and a 9) All bearings (a) Provide mee bearing plat 1, 19 lb uplin uplift at joint 	7-10; Vult=130m ph; TCDL=6.0psf hclosed; MWFRS erior (2) 0-0-8 to rior (2) 5-3-11 to e; cantilever left a and right exposed VFRS for reaction late grip DOL=1.0 hed for wind load: uds exposed to w d Industry Gable Jalified building d e 2x4 () MT20 to spaced at 2-0-0 as been designed an onconcurren has been designed m chord in all are by 2-00-00 wide v hy other member are assumed to b chanical connective e capable of with t at joint 7, 178 lb 12, 178 lb uplift a Standard	BCDL=6 (envelope 3-3-11, In 8-3-11, In 8-3-11, In and right e (;C-C for n s shown; 60 s in the plating ind (norm End Deta esigner as inless othin thom chor oc. I for a 10.4 t with any ed for a liv as where will fit betw s. De SP No. on (by oth standing 6	6.0psf; h=25ft; a) exterior zor terior (1) 3-3- terior (1) 8-3- terior (1) 8-3-terior (1) 8-3- terior (1) 8-3-terior (1	ne 11 to 11 to 11 to ss , ole, ole, ole, ole, ole, ole, ole, ol				SEA 0363	• –

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G 1000 minut March 12,2025

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493331	V02	Valley	1	1	Job Reference (optional)	171949527

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Mar 11 11:00:32 ID:roSJWrtU5RWlt8vc4?mTbhzc51H-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

8-10-6 4-5-3 4-5-3 4-5-3 8-10-6 4x6 = 2 10 11 4-5-11 12 12 ⊏ 12 3 1 8-0-0 4 3x4 💊 3x4 2x4 🛛

Scale = 1:35

		1			1							i	
Loading TCLL (roof) TCDL	(psf) 20.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.24 0.24	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES IRC20)15/TPI2014	WB Matrix-MS	0.18	Horiz(TL)	0.00	3	n/a	n/a	Weight: 36 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	Max Horiz 1=-142 (L Max Uplift 1=-8 (LC 2 (LC 12)	applied or 6-0-0 oc 3=8-10-6, 4=8-10-6 C 8)	ed or =-248	 chord live lo This truss on the botto 3-06-00 tall chord and a All bearings Provide med bearing plat 	as been designe ad nonconcurrer has been design m chord in all ar by 2-00-00 wide ny other membe are assumed to chanical connect e capable of with joint 3 and 248 I Standard	nt with any ned for a liv eas where will fit betv ers. be SP No. tion (by oth nstanding 8	other live loa e load of 20. a rectangle veen the bott 2. ers) of truss b lo uplift at jo	ads. .0psf tom to					
FORCES	(lb) - Maximum Com	pression/Maximum											

8-10-6

F

Tension TOP CHORD 1-2=-141/253, 2-3=-140/236 BOT CHORD 1-4=-247/201, 3-4=-247/201 2-4=-544/304

WEBS

NOTES

1) Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph (3-second gust)

2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 4-5-11, Exterior (2) 4-5-11 to 7-5-11, Interior (1) 7-5-11 to 8-10-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 4-0-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493331	V03	Valley	1	1	Job Reference (optional)	171949528

3-7-11

Run; 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Mar 11 11:00:33 ID:nBa3xXukd2mT6S3?BQoxg6zc51F-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

7-2-6 3-7-3 3-7-3 3-7-3 7-2-6 4x6 = 2 10 9 12 12 Г 3 0-<u>0</u>-8 1 4 2x4 🅢 2x4 💊 2x4 🛛

7-2-6

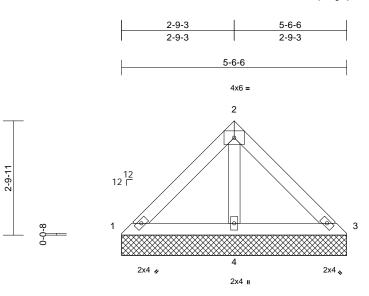
Scale = 1:31.7

Scale = 1.51.7												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.15	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.16	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.09	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI201	4 Matrix-MS							Weight: 29 lb	FT = 20%
LUMBER			7) * This t	uss has been designe	ed for a liv	e load of 20.0	0psf					
TOP CHORD	2x4 SP No.2			oottom chord in all are								
BOT CHORD				tall by 2-00-00 wide		veen the bott	om					
OTHERS	2x4 SP No.3			nd any other member		-						
BRACING				ings are assumed to I								
TOP CHORD		athing directly appli		mechanical connection								
	7-2-6 oc purlins.			plate capable of with	standing 2	ib upilit at jo	int 3					
BOT CHORD	0 0 7	applied or 6-0-0 oc	,	2 lb uplift at joint 4.								
	bracing.		LOAD CAS	E(S) Standard								
REACTIONS		3=7-2-6, 4=7-2-6										
	Max Horiz 1=115 (LC	,										
	Max Uplift 3=-2 (LC	,, ,										
	Max Grav 1=80 (LC	23), 3=80 (LC 24),	4=455									
	(LC 1)											
FORCES	(Ib) - Maximum Com	pression/Maximum	1									
TOP CHORD	Tension 1-2=-85/177, 2-3=-7	0/157										
BOT CHORD	,											
WEBS	2-4=-375/215	170/150										
NOTES	2 4= 010/210											
	ed roof live loads have	been considered fo	or									
this design												
	CE 7-10; Vult=130mph	(3-second gust)										11.
Vasd=103	Smph; TCDL=6.0psf; B	CDL=6.0psf; h=25ft	t; Cat.									1111
	Enclosed; MWFRS (er										IN THUS	ROUL
	Exterior (2) 0-0-8 to 3-0									N	ON STOC	in the
	cterior (2) 3-7-11 to 6-6		-15 to						/	5.5	FEE	Prinsin
	ne; cantilever left and r									V		1211
	ft and right exposed;C-		1							R 1	: 4	
	/WFRS for reactions s) plate grip DOL=1.60	nown; Lumber									SEA	
	igned for wind loads in	the plane of the tru	199						=		0202	• -
	studs exposed to wind								=		SEA 0363	22 ; =
	lard Industry Gable En										1.	2 - S
	qualified building desi									3	·	airs
	uires continuous botto									1.5	NGIN	EELAN
5) Gable stud	ds spaced at 4-0-0 oc.	· ·								11	710	COLUMN STREET
6) This truss	has been designed fo	r a 10.0 psf bottom									IL A C	ILBEIT

- DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,
- or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone

818 Soundside Road Edenton, NC 27932


GI 1000 minut

March 12,2025

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493331	V04	Valley	1	1	Job Reference (optional)	1949529

Run; 8.83 S Feb 18 2025 Print; 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Mar 11 11:00:33 ID:CmGCZZxdwz82zwoasYMelkzc51C-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-6-6

Scale		1.28.3
Scale	=	1.20.3

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.11	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.05	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2	015/TPI2014	Matrix-MP							Weight: 22 lb	FT = 20%
1	5-6-6 oc purlins. Rigid ceiling directly bracing.	13), 4=-124 (LC 12)	ed or	on the bottor 3-06-00 tall b chord and ar 8) All bearings 9) Provide mec bearing plate	has been design m chord in all arr by 2-00-00 wide by other membe are assumed to hanical connect e capable of with plift at joint 4. Standard	eas where will fit betv rs. be SP No. ion (by oth	a rectangle veen the bott 2. ers) of truss	om to					
FORCES	(lb) - Maximum Com Tension	npression/Maximum											
TOP CHORD	1-2=-58/117, 2-3=-5	54/100											
BOT CHORD	1-4=-132/124, 3-4=-	-132/124											
WEBS	2-4=-242/139												

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.
- 4)
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

CARO \cap VIIIIIIIIIIII and a state of the SEAL 036322 GI minin March 12,2025

MILLIN

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493331	V05	Valley	2	1	Job Reference (optional)	171949530

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Mar 11 11:00:33 ID:88Ny_FytRbOmCDxy_zO6N9zc51A-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

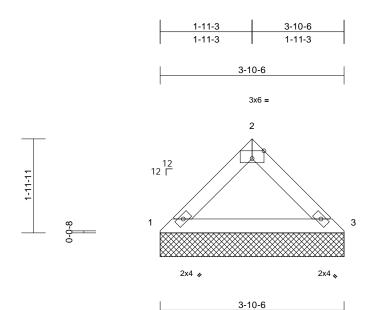
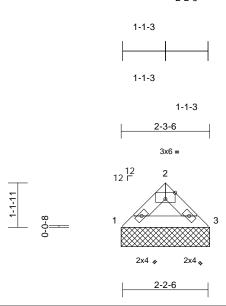


Plate Offsets (X, Y): [2:0-3-0,Edge]

	(X, T): [2:0 0 0,Euge]												
Loading TCLL (roof) TCDL BCLL	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.10 0.09 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	IRC2015/1	TPI2014	Matrix-MP							Weight: 13 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD	2x4 SP No.2	athing directly applic	9) F	Provide mec bearing plate	are assumed to be hanical connectio capable of withst uplift at joint 3. Standard	n (by oth	ers) of truss t						
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	0										
REACTIONS	Max Horiz 1=-59 (LC Max Uplift 1=-34 (LC	C 12), 3=-34 (LC 13)											
FORCES	Max Grav 1=155 (L0 (lb) - Maximum Corr												
FUNCES	Tension	ipression/maximum											
TOP CHORD	,	90/71											
BOT CHORD	1-3=-51/151												
NOTES													
 Unbalance this design 	ed roof live loads have	been considered fo	r										
	CE 7-10; Vult=130mph	(3-second aust)											
	3mph; TCDL=6.0psf; B		Cat.										
	Enclosed; MWFRS (er		ne									munn	Ultra .
	Exterior (2) zone; cantil ; end vertical left and rig										3	WAH CA	Rollin
	and forces & MWFRS										A.	R	in the
	OL=1.60 plate grip DC		,							/	55	FESS	Ni sin
3) Truss des	signed for wind loads in	the plane of the tru								2	D		Bill
	studs exposed to wind									2	1		
	dard Industry Gable En t qualified building desi									=	:	SEA	L : =
	uires continuous botto		11.							Ξ		0363	22 E
	ids spaced at 4-0-0 oc.									-			- ; :
6) This truss	has been designed fo	r a 10.0 psf bottom											1 3
	load nonconcurrent wi										20	N.S.Nom	EFR. X S
	ss has been designed f		psf								1	A CA C	F. 64 N
	ttom chord in all areas all by 2-00-00 wide will		m									11, A. G	ILBUT

- 6) signed for a 10.0
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 7)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


March 12,2025

Job	Truss	Truss Type	Qty Ply WHITE OAK HOMES			
4493331	V06	Valley	2	1	I71949531 Job Reference (optional)	1

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Mar 11 11:00:33 ID:zIIEEI1e1R8vw8P6KEVWcQzc514-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:29.7
---------	--------

Plate Offsets (X, Y): [2:0-3-0,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.04	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MP							Weight: 7 lb	FT = 20%
UMBER OP CHORD OT CHORD RACING OP CHORD OT CHORD EACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood she 2-2-6 oc purlins. Rigid ceiling directly bracing.	eathing directly applie applied or 10-0-0 o 3=2-3-6 C 10) C 12), 3=-21 (LC 13) 1), 3=91 (LC 1) apression/Maximum	8) All bear 9) Provide bearing 1 and 2 and 2 10) Bevelec surface pc LOAD CAS	ngs are assumed to mechanical connect plate capable of with I b uplift at joint 3. plate or shim requir with truss chord at jc E(S) Standard	tion (by oth Instanding 2 red to provi	ers) of truss t 1 lb uplift at j de full bearing	oint					
OT CHORD	1-3=-24/85											
OTES	ad as af live to a dail	have consider 14										
) Unbalance this design	ed roof live loads have	been considered fo	or									
Wind: ASC Vasd=103 II; Exp C; I and C-C E exposed; members Lumber D	CE 7-10; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er Exterior (2) zone; cantil end vertical left and ri and forces & MWFRS OL=1.60 plate grip DC	CDL=6.0psf; h=25ft nvelope) exterior zon lever left and right ght exposed;C-C for for reactions shown DL=1.60	ne r n;							THE REAL	ORTH CA	AROUNI SIGNA
only. For see Stand	igned for wind loads in studs exposed to wind lard Industry Gable En qualified building desi	l (normal to the face d Details as applica	e), ble,							U	SEA	• -
	uires continuous botto								=		0363	322 : =
	ds spaced at 4-0-0 oc.								-	6		i 3
	has been designed fo									1	· ~	A 1. 3
) * This trus on the bot 3-06-00 ta	load nonconcurrent w is has been designed f tom chord in all areas all by 2-00-00 wide will	for a live load of 20.0 where a rectangle	0psf								SEA 0363	EEF
chord and	any other members.										Moro	h 12 2025
											iviarc	h 12,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

