

RE: 4493324 WHITE OAK HOMES Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: WHITE OAK HOMES Project Name: 4493324 Lot/Block: 4 Model: THE MARIE Address: Subdivision: CAMERON HILL RD City: CAMERON State: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.8 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 33 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	171630625	A01	2/26/2025	21	171630645	PB02	2/26/2025
2	171630626	A02	2/26/2025	22	171630646	PB03	2/26/2025
3	171630627	A03	2/26/2025	23	171630647	V01	2/26/2025
4	171630628	A04	2/26/2025	24	171630648	V02	2/26/2025
5	171630629	A05	2/26/2025	25	171630649	V03	2/26/2025
6	171630630	A06	2/26/2025	26	171630650	V04	2/26/2025
7	171630631	A07	2/26/2025	27	171630651	V05	2/26/2025
8	171630632	B01	2/26/2025	28	171630652	V06	2/26/2025
9	171630633	B02	2/26/2025	29	171630653	V07	2/26/2025
10	171630634	B03	2/26/2025	30	171630654	V08	2/26/2025
11	171630635	B04	2/26/2025	31	171630655	V09	2/26/2025
12	171630636	C01	2/26/2025	32	171630656	V10	2/26/2025
13	171630637	C02	2/26/2025	33	171630657	V11	2/26/2025
14	171630638	C03	2/26/2025				
15	171630639	D01	2/26/2025				
16	171630640	E01	2/26/2025				
17	171630641	E02	2/26/2025				
18	171630642	G01	2/26/2025				

2/26/2025

2/26/2025

2/26/2025

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Builders FirstSource-Sumter,SC.

G02

PB01

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2025

North Carolina COA: C-0844

171630642

171630643

171630644

19

20

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	A01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	171630625

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 10:08:47 ID:G1oPNq7JCQy8CBCh26t2YyzIWth-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:86.6

31-7-0

Plate Offsets (X, Y): [1:0-3-8,0-0-1], [9:0-3-0,0-0-4], [13:0-3-0,0-0-4], [21:0-3-8,0-3-7	1], [30:0-5-0,0-4-8]
---	----------------------

	(,, , ,). [1.0	0 0,0 0 1],	[0:0 0 0,0 0 1], [10:0	0 0,0	0 1], [21:0000,	0 0 1], [00.0 0 0,0	10]								
Loading		(psf)	Spacing	2-0-0)	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.12	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL		10.0	Lumber DOL	1.15		BC	0.07	Vert(CT)	n/a	-	n/a	999			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.16	Horz(CT)	0.01	21	n/a	n/a			
BCDL		10.0	Code	IRC2	015/TPI2014	Matrix-MS							Weight: 298 lb	FT = 20%	D
LUMBER TOP CHORD	2x4 SP N	0.2	•		FORCES	(lb) - Maximum (Tension	Compressio	on/Maximum		3) Tru onl	ss desig y. For st	ned fo uds ex	r wind loads in th posed to wind (r	e plane of t	he truss e face),
BOT CHORD	2x6 SP N	o.2			TOP CHORD	1-2=-143/80, 2-3	3=-327/242	, 3-4=-213/20	01,	see	e Standai	rd Indu	stry Gable End I	Details as a	pplicable,
OTHERS SLIDER	2x4 SP N Left 2x6 S 2-3-1	o.3 SP No.2 2	2-3-1, Right 2x6 SP N	No.2		4-6=-155/163, 6- 8-9=-196/227, 9- 10-11=-202/243,	-7=-131/17 -10=-202/2 , 11-12=-20	1, 7-8=-220/2 43,)2/243,	253,	or o 4) Pro 5) All	consult q vide ade plates ar	ualified equate e 2x4	d building design drainage to prev () MT20 unless	er as per Al ent water p otherwise	VSI/TPI 1. onding. indicated.
BRACING						12-13=-202/243	, 13-14=-19	96/227,		6) Ga	ble requi	res coi	ntinuous bottom	chord bearing	ng.
TOP CHORD	Structura 6-0-0 oc 2-0-0 oc	l wood she purlins, exc purlins (6-0	athing directly applie cept I-0 max.): 9-13.	d or		14-15=-220/253 16-18=-91/82, 14 19-20=-270/187	, 15-16=-1 8-19=-155/ , 20-21=-12	116, 28/84, 21-22=	0/35	7) Gai 8) Thi cho	s truss h ord live lo	s space as bee ad nor	ed at 2-0-0 oc. en designed for a nconcurrent with	10.0 psf bo any other li	ottom ve loads.
BOT CHORD	Rigid ceil bracing.	ing directly	applied or 10-0-0 oc		BOTCHORD	35-36=-244/356	, 34-35=-24 , 34-35=-24	4/356, 14/356,		9) ^ 11 on '	his truss	nas be m cho	rd in all areas wh	a live load o	ngle
WEBS	1 Row at	midpt	11-30, 10-31, 8-32, ¹ 12-29, 14-28, 15-27	7-33,		33-34=-244/356	, 32-33=-24 , 29-31=-24	14/356, 14/356, 14/256		3-0 chc	6-00 tall ord and a	by 2-0 iny oth	er members.	between the	e bottom
REACTIONS	Max Horiz Max Uplift	24=31-7-0, 24=31-7-0 30=31-7-0 33=31-7-0 36=31-7-0 1=-360 (L 1=-209 (L 23=-251 (25=-132)	21=917-0, 25=31-7 0, 25=31-7-0, 26=31- 0, 28=31-7-0, 29=31- 0, 31=31-7-0, 32=31- 0, 34=31-7-0, 35=31- 0, 37=31-7-0 C 8) C 10), 21=-96 (LC 11 LC 13), 24=-119 (LC LC 13), 26=-125 (LC	-0, 7-0, 7-0, 7-0, 7-0, 1), 13),	WEBS	26-27=-244/356, 24-25=-244/356, 21-23=-244/356, 11-30=-123/112, 8-32=-129/50, 7- 6-34=-176/150, 3-36=-182/155, 12-29=-114/69, 15-27=-202/177,	, 25-26=-24 , 23-24=-24 , 10-31=-11 -33=-202/1 4-35=-178/ 2-37=-226/ 14-28=-106 , 16-26=-17	14/356, 14/356, 73, 152, 237, 5/7, 76/150,							
	Max Grav	27=-153 (30=-70 (L 32=-26 (L 34=-125 (36=-118 (1=388 (L 23=218 (l 25=188 (l 25=188 (l 29=154 (l 31=154 (l 33=193 (l 35=189 (l 37=252 (l	LC 13), 29=-45 (LC 6 C 8), 31=-46 (LC 9), C 9), 33=-150 (LC 12 LC 12), 35=-132 (LC LC 12), 37=-271 (LC C 12), 21=302 (LC 12 LC 20), 24=186 (LC 2 LC 20), 28=146 (LC 2 LC 20), 28=146 (LC 2 LC 24), 30=163 (LC 2 LC 24), 30=163 (LC 2 LC 19), 34=187 (LC 1 LC 19), 36=183 (LC 1 LC 19)	2), 2), 12), 12), 20), 20), 20), 20), 21), 23), 22), 19), 19),	NOTES 1) Unbalance this design 2) Wind: ASC Vasd=1037 II; Exp C; E and C-C C to 12-3-8, (15-5-6 to 1 (2) 22-5-6 to exposed; a members a Lumber DC	18-25=-178/152 20-23=-226/222 d roof live loads h E 7-10; Vult=130r mph; TCDL=6.0ps Enclosed; MWFRS orner (3) 0-0-0 to Corner (3) 12-3-8 9-3-8, Corner (3) to 32-6-0 zone; ca end vertical left an and forces & MWF DL=1.60 plate grip	, 19-24=-18 ave been c mph (3-sec f; BCDL=6 S (envelope 3-1-14, Exi to 15-5-6, I 19-3-8 to 2 antilever lef ad right exp rRS for rea DOL=1.60	32/155, considered for .0psf; h=25ft; .) exterior zor erior (2) 3-1- Exterior (2) 2-5-6, Exterior t and right osed;C-C for ctions shown	Cat. ne 14 or		Withhan		SEA 0363	L 22 EEF ILBER y 26,202	

Continued on page 2 WARNING - Verify

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing building design. Storage, delivery, erection and bracing of trusses saft truss systems, see **ANSI/TPI Quality Criteria and DSE-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	A01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	171630625

- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 209 lb uplift at joint 1, 96 lb uplift at joint 21, 70 lb uplift at joint 30, 46 lb uplift at joint 31, 26 lb uplift at joint 32, 150 lb uplift at joint 33, 125 lb uplift at joint 34, 132 lb uplift at joint 35, 118 lb uplift at joint 36, 271 lb uplift at joint 37, 45 lb uplift at joint 29, 153 lb uplift at joint 27, 125 lb uplift at joint 26, 132 lb uplift at joint 25, 119 lb uplift at joint 24, 251 lb uplift at joint 23, 209 lb uplift at joint 1 and 96 lb uplift at joint 21.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 10:08:47 ID:G1oPNq7JCQy8CBCh26t2YyzlWth-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	A02	Piggyback Base	5	1	Job Reference (optional)	171630626

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 10:08:48 ID:Z03iiqAns0BUDhBmp8948azIYGi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4x12 II

4x6=

4x6=

	10-5-8	21-1-8	31-7-0	
Scale = 1:88.9	10-5-8	10-8-0	10-5-8	

4x6=

Plate Offsets (X, Y): [1:0-7-9,Edge], [5:0-3-0,0-2-1], [6:0-3-0,0-2-1], [10:0-7-9,Edge]

4x12 u

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.35 0.32 0.40	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.45 -0.47 -0.05	(loc) 14-17 14-17 10	l/defl >834 >806 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 204 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 2 SBOT CHORD 2 SLIDER L BRACING TOP CHORD 5 BOT CHORD 6 REACTIONS (si MA FORCES (TOP CHORD 1 TOP CHORD 1 WEBS 5 NOTES 1 Unbalanced this design.	2x4 SP 2400F 2.0E of SS *Except* 5-6:2x6 2x6 SP 2400F 2.0E of 2x4 SP No.3 .eft 2x6 SP No.2 2 - 2-6-0 Structural wood sheat 2-0-0 oc purlins, (6-0- Rigid ceiling directly oracing. ize) 1= Mecha ax Horiz 1=-359 (Ld ax Uplift 1=-270 (Ld ax Grav 1=1349 (L 1b) - Maximum Com Fension 1-3=-1644/490, 3-5= 5-6=-1021/486, 6-8= 3-10=-1643/485, 10- 1-14=-318/1355, 12- 10-12=-204/1207 5-14=-119/626, 3-14 5-12=-118/624, 8-12 roof live loads have	br 2x4 SP DSS or 2x4 SP No.2 br 2x6 SP DSS 2-6-0, Right 2x6 SP N athing directly applied cept -0 max.): 5-6. applied or 10-0-0 oc nical, 10=0-3-8 C 8) C 12), 10=-300 (LC 1 C 2), 10=-300 (LC 1 C 2), 10=-307 (LC 2 pression/Maximum -1510/554, -1509/548, 11=0/35 14=-135/1018, =-422/420, =-422/420 been considered for	2) 4 SP lo.2 d or 3) () 5) 3) () 6) 7) 8) 9) LO	Wind: ASCE Vasd=103mp II; Exp C; En- and C-C Exte to 12-3-8, Ex 16-9-2 to 19- (1) 23-9-2 to exposed ; en members and Lumber DOL Provide adec This truss ha on the botton 3-06-00 tall b chord and an Bearings are or DSS . Refer to girdd Provide mecl bearing plate 1 and 300 lb Graphical pu or the orienta bottom chord DAD CASE(S)	7-10; Vult=130mph h; TCDL=6.0psf; B closed; MWFRS (er irior (2) 0-0-0 to 3-1 terior (2) 12-3-8 to 3-8, Exterior (2) 19 32-6-0 zone; cantild d vertical left and ri f forces & MWFRS =1.60 plate grip DC uate drainage to pr s been designed fo d nonconcurrent w as been designed fo d nonconcurrent w as been designed fo d nonconcurrent w as been designed fo a chord in all areas y 2-00-00 wide will y other members, v assumed to be: , J er(s) for truss to trus nanical connection capable of withstai uplift at joint 10. Tin representation of tion of the purlin all. Standard	a (3-sec CDL=6 nvelope I-14, In 16-9-2, -3-8 to ever lef ght exp for rea DL=1.60 revent v r a 10.0 ith any for a liv where fit betw with BC ooint 10 ss conr (by oth nding 2 does no ong the	and gust) .0psf; h=25ft .0psf; h=25ft .0psf; h=25ft .0psf; h=25ft .0psf; h=25ft .0psf; h=25ft .0psf .0psf.	t; Cat. ine -14 ior r n; g. ads. 0psf dom if. .0E to t joint size				SEAI 03632	ROLLING 22 EPRENIUM	A mounter.

GI February 26,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	A03	Piggyback Base	5	1	Job Reference (optional)	171630627

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 10:08:48 ID:eG6Wh0OVJkoID3q_g8yXCfzIYF8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	10-5-8	14-3-0	22-9-4	31-3-8	7-0
Г	10-5-8	3-9-8	8-6-4	8-6-4 0-3	1 3-8

Scale = 1:86.5

Plate Offsets ((X, Y): [1:0-5-13,0-0-1], [5:0-3-8,0-2-4], [6:0	-6-4,0-2-	0], [11:0-2-7,0-	0-4], [12:0-4-0,0-3-	12], [13	:0-6-0,0-3-8]						
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.83 0.42 0.60	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.09 -0.19 0.06 0.08	(loc) 14-17 14-17 11 14-17	l/defl >999 >917 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 232 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Left 2x6 SP No.2 2 2-6-0 Structural wood she 6-0-0 oc purlins, exc 2-0-0 oc purlins (10-	2-6-0, Right 2x6 SP N athing directly applied ept -0-0 max.): 5-6.	2) 10.2 1 or	Wind: ASCE Vasd=103mp II; Exp C; En and C-C Ext to 12-3-8, Ex 16-9-2 to 19- (1) 23-9-2 to exposed ; en members an Lumber DOL	7-10; Vult=130mpl bh; TCDL=6.0psf; E closed; MWFRS (e erior (2) 0-0-0 to 3- tterior (2) 12-3-8 to 3-8, Exterior (2) 19 31-7-0 zone; canti Id vertical left and r d forces & MWFRS =1.60 plate grip D0	h (3-sec 3CDL=6 envelope 1-14, In 16-9-2, 3-3-8 to lever lef right exp 5 for rea OL=1.60	cond gust) 0.0psf; h=25ft; e) exterior zon terior (1) 3-1- Interior (1) 23-9-2, Interior t and right bosed;C-C for ctions shown;)	Cat. le 14 or					
BOT CHORD WEBS REACTIONS	Rigid ceiling directly bracing, Except: 10-0-0 oc bracing: 1 1 Row at midpt (size) 1=0-3-8, 7 Max Horiz 1=-343 (L Max Uplift 1=-116 (L 13=-306 (Max Grav 1=459 (LC 13=1786	applied or 6-0-0 oc 1-12. 5-13, 6-13 11=0-3-8, 13=0-3-8 C 8) C 12), 11=-132 (LC 1 LC 13) C 25), 11=457 (LC 1), (LC 1)	3) 4) 5) 3), 6) 7)	Provide adee This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings Bearing at jo using ANSI/7 designer sho	quate drainage to p us been designed fo ad nonconcurrent w nas been designed n chord in all areas by 2-00-00 wide will by other members, are assumed to be int(s) 11 considers IPI 1 angle to grain juid verify capacity	or event or a 10.0 vith any for a liv s where Il fit betw with BC SP No. paralle formula of bear	water ponding D psf bottom other live load e load of 20.0 a rectangle veen the botto DL = 10.0psf. 2. to grain value a. Building ng surface.	ds. Ipsf Ips					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-3=-423/244, 3-5=- 6-7=-592/257, 7-9=- 1-14=-362/386, 13-1 12-13=-360/449, 11: 5-13=-964/317, 7-12	pression/Maximum 209/315, 5-6=0/391, 502/51, 9-11=-834/27 14=-366/393, -12=-152/716 =-424/371.	8) '9 9)	Provide mec bearing plate 1, 306 lb upli Graphical pu or the orienta	hanical connection e capable of withsta fft at joint 13 and 13 rlin representation ation of the purlin a d.	i (by oth anding 1 32 lb up does no long the	ers) of truss to 16 lb uplift at lift at joint 11. of depict the s top and/or	o joint ize			ALL A	ORTH CA	ROLIN
	9-12=-525/450, 6-13 6-12=-108/745, 3-14 5-14=-256/679	3=-801/132, I=-473/388,	L	UAD CASE(S)	Standard						I	SEA	L

NOTES

1) Unbalanced roof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	A04	Piggyback Base	2	1	Job Reference (optional)	171630628

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 10:08:49 ID:yVj876vYeSfQLQTC3bD4IEzIYDA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	2-1-12	10-5-8	14-3-0	22-9-4	31-3-8	31-7-0
Scale = 1:88.8	2-1-12	8-3-12	3-9-8	8-6-4	8-6-4	0-3-8

Plate Offsets (X, Y): [5:0	:0-4-0,0-1-4], [6:0-5-4,0-2-0],	[11:Edge,0-0-0], [12:0-4-0,0-3-12]	, [13:0-6-0,0-3-8], [15:0-3-8,0-4-0]
----------------------------	---------------------------------	------------------------------------	--------------------------------------

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.83	Vert(LL)	-0.15	12-13	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.64	Vert(CT)	-0.32	12-13	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.85	Horz(CT)	0.24	11	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS		Wind(LL)	0.13	12-13	>999	240	Weight: 245 lb	FT = 20%

					-
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP No.2 *Except* 1-4,8-11:2x4 SP No.1 2x6 SP No.2 2x4 SP No.3 Left 2x6 SP No.2 2-8-9, Right 2x6 SP No.2 2-6-0 Structural wood sheathing directly applied or 2-4-4 oc purlins, except 2-0-0 oc purlins (4-1-9 max.): 5-6. Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 1-15. 1 Row at midpt 6-13, 3-15, 5-14 (size) 1= Mechanical, 11=0-3-8, 15=0-3-8 Max Horiz 1=-343 (LC 8) Max Uplift 1=-572 (LC 19), 11=-250 (LC 13), 15=-514 (LC 12) Max Grav 1=209 (LC 12), 11=1132 (LC 1), 15=1927 (LC 1) (lb) - Maximum Compression/Maximum Tension 1-2=-71/376, 2-3=-126/654, 3-5=-968/436, 5-6=-826/422, 6-7=-2554/779, 7-9=-2534/559, 9-11=-2612/738 1-15=-549/340, 14-15=-268/673, 13-14=-179/690, 12-13=-167/1074, 11-12=-507/2104 7 42=-66/278, 0, 42=-229/200	2) 3) 4) 5) 6) 7) 8) 9) 10)	Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-0 to 3-1-14, Interior (1) 3-1-14 to 12-3-8, Exterior (2) 12-3-8 to 16-9-2, Interior (1) 16-9-2 to 19-3-8, Exterior (2) 19-3-8 to 23-9-2, Interior (1) 23-9-2 to 31-7-0 zone; cantilever left and right exposed; end vertical left and right exposed; porch left exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Bearings are assumed to be: , Joint 15 SP No.2 , Joint 11 SP No.2 . Refer to girder(s) for truss to truss connections. Bearing at joint(s) 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 572 lb uplift at joint 1, 250 lb uplift at joint 11 and 514 lb uplift at joint 15. Graphical purlin representation does not depict the size		H CAROLINA
WEBS	7-12=-465/378, 9-12=-228/390, 5-13=-95/288, 6-13=-612/92, 2-15=-343/259, 6-12=-436/2061, 3-15=-1681/485, 3-14=-89/307. 5-14=-143/162	LO	or the orientation of the purlin along the top and/or bottom chord. AD CASE(S) Standard		SEAL 036322
NOTES	,				N 2 3
1) Unbalance	ed roof live loads have been considered for			1	N. EN - CR. A S
this desigr	n.				AUGINEE
				1	A GILBEN

A. GI A. GIL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	A05	Piggyback Base	1	1	Job Reference (optional)	171630629

Run: 8.83 E Feb 18 2025 Print: 8.830 E Feb 18 2025 MiTek Industries, Inc. Wed Feb 26 11:22:53 ID:90WrtdhFRiYKM4YbgRkdKczIY38-HgR_ukSOEMS0KNs5B5SGWLQfpwcIY_FFrQusuGzhStX

Page: 1

	2-1-12	10-5-8	21-1-8	31-7-0
= 1:85.5	2-1-12	8-3-12	10-8-0	10-5-8

Plate Offsets (X, Y): [1:0-6-15,0-0-4], [5:0-3-0,0-2-1], [6:0-3-0,0-2-1]

Scale =

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.34	Vert(LL)	0.31	11-13	>999	240	MT20	244/190
TCDI	10.0	Lumber DOI	1 15		BC	0.32	Vert(CT)	-0.35	11-21	>999	180	MT20HS	187/143
BCLI	0.0*	Rep Stress Incr	YES		WB	0.41	Horz(CT)	-0.04	10	n/a	n/a		
BCDI	10.0	Code	IRC20	5/TPI2014	Matrix-MS	0	1.0.2(01)	0.0.				Weight: 202 lb	FT = 20%
	10.0	0000	11(020	0/11/12/011	manx mo		L					110igitt. 202 ib	
LUMBER			N	OTES									
TOP CHORD	2x4 SP 2400F 2.0E	or 2x4 SP DSS or 2x	4 SP 1) Unbalanced	roof live loads hav	/e been	considered fo	or					
	SS *Except* 5-6:2x6	SP No.2		this design.									
BOT CHORD	2x6 SP 2400F 2.0E	or 2x6 SP DSS	2) Wind: ASCE	7-10; Vult=130mp	oh (3-se	cond gust)						
WEBS	2x4 SP No.3			Vasd=103m	oh; TCDL=6.0psf;	BCDL=6	i.0psf; h=25ft	t; Cat.					
SLIDER	Left 2x6 SP No.2 2	2-6-0, Right 2x6 SP	No.2	II; Exp C; En	closed; MWFRS (envelop	 exterior zo 	ne					
	2-6-0			and C-C Ext	erior (2) 0-0-0 to 3	-1-14, Ir	terior (1) 3-1	-14					
BRACING				to 12-3-8, Ex	terior (2) 12-3-8 to	0 16-9-2	Interior (1)						
TOP CHORD	Structural wood she	athing directly applie	ed or	10-9-2 to 19-	3-8, EXTERIOR (2) 1	9-3-8 to	23-9-2, Interi ft and right	IOF					
	4-11-10 oc purlins, e	except		(1) 23-9-2 l0	d vortical loft and	right ov							
	2-0-0 oc purlins (6-0)-0 max.): 5-6.		members an	d forces & MWFR	S for rea	ctions showr	י רי					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc		Lumber DOI	=1 60 plate grip D	O = 16		ι,					
	bracing.		3	Provide adeo	puate drainage to	prevent	water pondin	a					
REACTIONS	(lb/size) 1=1233/2	-3-8, 10=1261/0-3-8	' 4	All plates are	MT20 plates unle	ess othe	wise indicate	əd.					
	14=33/0-3	3-8	5	This truss ha	is been designed f	for a 10.	0 psf bottom						
	Max Horiz 1=-342 (L		10)	chord live loa	ad nonconcurrent	with any	other live loa	ads.					
	14-446 (L	UC 0), 10=-291 (LC	^{13),} 6) * This truss h	nas been designed	d for a liv	e load of 20.	0psf					
	Max Gray 1-1503 (I	(LC 9) (C 20) 10-1347 (LC	· 2)	on the bottor	n chord in all area	s where	a rectangle						
	14-552 (L	C 10)	, z),	3-06-00 tall b	by 2-00-00 wide wi	ill fit betv	veen the bott	om					
FORCES	(lb) - Max Comp /M	av Ten - All forces '	250	chord and ar	ny other members,	, with BC	DL = 10.0ps	f.					
TOROLO	(lb) or less excent w	hen shown	230 7) Provide mec	hanical connectior	n (by oth	ers) of truss	to					
TOP CHORD	1-2=-1126/509 2-23	3=-1635/469		bearing plate	capable of withst	anding 4	66 lb uplift at	t joint				minin	1111
	3-23=-1542/492. 3-4	4=-1501/514.		1, 291 lb upli	ft at joint 10 and 4	45 lb up	lift at joint 14	•				IN TH CA	Rollin
	4-24=-1449/516, 5-2	24=-1405/556,	0		decigned in eccor	donao u	ith the 2015				1	R	ALL'S
	5-25=-1009/487, 25	-26=-1009/487,	0	International	Residential Code	section	2015 2 R502 11 1 4	and			1	O'.FESO	die 4 .
	6-26=-1009/487, 6-2	27=-1407/549,		R802 10 2 a	nd referenced star	ndard Al	JSI/TPI 1	anu		6	25	in 1	- Sin
	7-27=-1454/508, 7-8	3=-1506/507,	q	Graphical pu	rlin representation	i does n	ot denict the '	size					
	8-28=-1511/485, 9-2	28=-1639/461,	0	or the orient	ation of the purlin a	alona the	top and/or	0120		-		CEA.	r 1 E -
	9-10=-654/50			bottom chore	l.	along in	riop ana/or					SEA	4 <u>1</u> E
BOT CHORD	1-14=-252/1243, 14	-29=-252/1243,	L	OAD CASE(S)	Standard					1		0363	22 : =
	29-30=-252/1243, 13	3-30=-252/1243,	_	•••••••••••••••••••••••••••••••••••••••	etandara					-			- : :
	13-31=-96/981, 12-3	31=-96/981,											1. 2.
	12-32=-96/981, 11-3	32=-96/987, 2 24- 222/1205									2. 1	N. EN	CRIL S
	10-34-232/1205	5-54=-232/1205,									20	GIN	AN
WEBS	5-13-160/66/ 2 12	8405/371									1	(C	BEIN
WED0	6-11=-125/632 8-11	l=-429/410										11, A. G	1L LIN
	5 . I = 120/002, 0 II	0/110										<u> </u>	TID.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

February 26,2025

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	A06	Piggyback Base	5	1	Job Reference (optional)	171630630

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 10:08:49 ID:_ixzGIAL0?be9EbH0qS?x2zIY2W-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	10-5-8	21-1-8	31-7-0
Scale = 1:88.9	10-5-8	10-8-0	10-5-8

Plate Offsets (X, Y): [2:0-7-9,Edge], [6:0-3-0,0-2-1], [7:0-3-0,0-2-1], [11:0-7-9,Edge]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.34 0.32 0.40	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.45 -0.47 -0.05	(loc) 15-18 15-18 11	l/defl >835 >809 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 205 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD	2x4 SP 2400F 2.0E SS *Except* 6-7:2x6 2x6 SP 2400F 2.0E	or 2x4 SP DSS or 2x SP No.2 or 2x6 SP DSS	2) 4 SP	Wind: ASCE Vasd=103mp II; Exp C; En and C-C Ext	7-10; Vult=130mp bh; TCDL=6.0psf; closed; MWFRS (erior (2) -0-11-0 to	h (3-seo BCDL=6 envelope 2-2-14.	cond gust) .0psf; h=25ft e) exterior zo Interior (1) 2	t; Cat. ne -2-14					
WEBS SLIDER	2x4 SP No.3 Left 2x6 SP No.2 2 2-6-0	2-6-0, Right 2x6 SP N	No.2	to 12-3-8, Ex 16-9-2 to 19- (1) 23-9-2 to	terior (2) 12-3-8 to 3-8, Exterior (2) 1 32-6-0 zone; cant	9-3-8 to	Interior (1) 2 23-9-2, Interi t and right	ior					
BRACING TOP CHORD	Structural wood she 5-1-0 oc purlins, exc 2-0-0 oc purlins (6-0 Bigid ceiling directly	athing directly applied cept I-0 max.): 6-7.	d or 3) 4)	exposed ; en members an Lumber DOL Provide adeo This truss ha	Id vertical left and d forces & MWFR =1.60 plate grip D quate drainage to p is been designed f	right exp S for rea OL=1.60 prevent or a 10.0	osed;C-C to ctions showr) vater pondin) psf bottom	n; ng.					
REACTIONS	kigla comig anothy bracing. (size) 2=0-3-8, ² Max Horiz 2=-367 (L Max Uplift 2=-300 (L Max Grav 2=1396 (L	11=0-3-8 C 10) C 12), 11=-300 (LC 1 _C 2), 11=1396 (LC 2	5) 13) ²⁾ 6)	chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar All bearings	ad nonconcurrent v nas been designed n chord in all areas by 2-00-00 wide wi ny other members, are assumed to be	with any I for a liv s where Il fit betv with BC s SP 240	other live loa e load of 20. a rectangle veen the bott DL = 10.0ps 0F 2.0E or D	ads. Opsf tom if. DSS .					
FORCES	(lb) - Maximum Com	pression/Maximum	ZÝ	Provide mec	hanical connection	hv oth	ers) of truss	to					

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 300 lb uplift at joint 2 and 300 lb uplift at joint 11.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Page: 1

1) Unbalanced roof live loads have been considered for this design.

Tension

TOP CHORD

BOT CHORD

WEBS

NOTES

(lb) - Maximum Compression/Maximum

1-2=0/35, 2-4=-1641/484, 4-6=-1508/548,

6-7=-1020/484, 7-9=-1508/548,

6-15=-118/624, 4-15=-422/420, 7-13=-118/624, 9-13=-422/420

2-15=-320/1352. 13-15=-135/1016.

9-11=-1641/485, 11-12=0/35

11-13=-202/1206

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	A07	Piggyback Base Structural Gable	1	1	Job Reference (optional)	171630631

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 10:08:50 ID:NaCdnqVdjYM7vk9JJy1?BuzIX_y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

			22-3-4		
	10-5-8	21-1-8	22 0 1	31-7-0	
	10-5-8	10-8-0	1 1 1 2	9-3-12	
Scale - 1:01 2			1-1-12		

Plate Offsets (X, Y): [2:0-5-9,0-0-1], [6:0-3-0,0-2-1], [7:0-3-0,0-2-1], [11:0-5-9,0-0-1]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.57 0.56 0.43	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.11 -0.16 0.02 0.07	(loc) 13-15 13-15 2 15-18	l/defl >999 >807 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 204 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 *Excep 2x6 SP No.2 2x4 SP No.3 Left 2x6 SP No.2 2 2-6-0 Structural wood she 6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt (size) 2=22-5-0 13=22-5-1 Max Uplift 2=-176 (L 12=-77 (L 15=-266 (L) Max Grav 2=635 (L0 12=219 (L) 15=893 (L)	ot* 6-7:2x6 SP No.2 2-6-0, Right 2x6 SP No.2 2-6-0, Right 2x6 SP No.2 2-ept 0-0 max.): 6-7. 4 applied or 10-0-0 oc 6-15, 7-13 , 11=0-3-8, 12=0-3-8, 0, 15=22-5-0 C 11) .C 13), 11=-145 (LC 1 .C 13), 13=-227 (LC 8 (LC 9) C 1), 11=571 (LC 2), LC 3), 13=735 (LC 20 LC 19)	2) lo.2 d or 3) 4) 5) 2), 6) 7)), 7)	Wind: ASCE Vasd=103mp II; Exp C; En and C-C Exte to 12-3-8, Ex 16-9-2 to 19- (1) 23-9-2 to exposed ; en members and Lumber DOL Provide aded This truss ha chord live loa * This truss ha on the bottom 3-06-00 tall b chord and ar All bearings a Provide med bearing plate 2, 145 lb upli uplift at joint joint 2.	7-10; Vult=130mp bh; TCDL=6.0psf; E closed; MWFRS (e erior (2) -0-11-0 to terior (2) 12-3-8 to 3-8, Exterior (2) 15 31-7-0 zone; canti d vertical left and rd d forces & MWFRS =1.60 plate grip D guate drainage to p s been designed fu d nonconcurrent v ias been designed n chord in all areas by 2-00-00 wide will y other members, are assumed to be hanical connection to capable of withsta ft at joint 11, 266 II 13, 77 lb uplift at joint	h (3-sec BCDL=6 envelope 2-2-14, 0 16-9-2, 3-3-8 to lever lef right exp S for rea OL=1.66 orevent v or a 10.0 with any for a liv s where Il fit betw with BC c SP No. 0 (by oth- anding 1 b oulf 12 a	and gust) .0psf; h=25ft; a) exterior zon Interior (1) 2-2; Interior (1) 23-9-2, Interior t and right osed;C-C for ctions shown; b) water ponding b) psf bottom other live load e load of 20.0 a rectangle veen the botto DL = 10.0psf. 2. ers) of truss to 76 lb uplift at t joint 15, 227 nd 176 lb upli	Cat. ne 2-14 or , ds. posf om , joint / lb ft at					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	(lb) - Maximum Com Tension 1-2=0/35, 2-4=-580/ 6-7=-480/336, 7-9=- 2-15=-193/532, 13-1 12-13=-96/424, 11-1 6-15=-255/229, 4-15 7-13=-256/200, 9-13 ed roof live loads have n.	npression/Maximum (287, 4-6=-557/345, -556/333, 9-11=-568/2 15=-114/355, 12=-128/424 5=-452/384, 3=-447/381 • been considered for	8) 268 LC	Graphical pu or the orienta bottom chorc DAD CASE(S)	rlin representation tion of the purlin a l. Standard	does no	ot depict the si	ize		Within		SEA OGENINGINI	ROLL 22 EER. Kunning

GI minimum) February 26,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	B01	Attic	1	1	Job Reference (optional)	171630632

Run; 8.83 S Feb 18 2025 Print; 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 10:08:50 ID:q6dML6i3ZW2sLVfeJxDFSLzIY?E-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [6:0-5-0,0-4-8], [10:0-7-12,0-3-8], [14:0-7-12,0-3-8], [18:0-5-0,0-4-8]

Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(lc	oc) I/	defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.04	Vert(LL)	n/a		-	n/a	999	MT20	244/19	0
TCDL		10.0	Lumber DOL	1.15		BC	0.03	Vert(CT)	n/a		-	n/a	999			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.14	Horz(CT)	0.00	:	22	n/a	n/a			
BCDL		10.0	Code	IRC2015/TP	2014	Matrix-MS								Weight: 393 lb	FT = 20)%
JUBBER TOP CHORD SOT CHORD WEBS DTHERS BRACING TOP CHORD SOT CHORD WEBS JOINTS REACTIONS	2x6 SP N 2x10 SP : 2x4 SP N SP No.2 2x4 SP N Structura 6-0-0 oc [2-0-0 oc] Rigid ceil bracing. 1 Row at 1 Brace a 40, 43 (size) Max Horiz Max Uplift Max Grav	0.0 10.0 0.2 2400F 2.0E 0.3 *Excep 0.3 I wood sheat burlins, exc burlins, exc	Code Code	IRC2015/TP TOP C 44 d or 15-28 -0, 7-0, 7-0, 7-0, 7-0, 7-0, 7-0, 7-0,	HORD	Matrix-MS Matrix-MS 1-2=0/31, 2-3=-251, 4-5=-179/147, 5-7= 8-9=-235/216, 9-100 10-11=-273/191, 11 12-13=-273/191, 13 14-15=-206/128, 15 16-17=-164/148, 17 19-20=-119/68, 20- 21-22=-205/98 2-38=-266/280, 37- 36-37=-171/256, 32 33-35=-171/256, 32 33-35=-171/256, 32 33-35=-171/256, 32 33-35=-171/256, 32 33-35=-171/256, 32 33-35=-171/256, 32 33-35=-171/256, 32 32-23=-84/195, 25- 24-25=-84/195, 25- 24-25=-84/195, 25- 24-25=-84/195, 25- 24-25=-84/195, 25- 24-25=-84/195, 25- 24-25=-84/195, 25- 24-25=-84/195, 25- 24-25=-84/195, 34- 15-40=-93/139, 5-4 44-45=-84/121, 33- 27-46=-114/163, 46 19-47=-95/140, 10- 39-41=-98/183, 14- 19-25=-56/18, 14-4 13-41=-21/13, 11-4 10-43=-162/107, 31 9-32=-143/53, 7-44 35-45=-173/137, 4- 33=-194/170, 15- 17-46=-41/43, 18-4 26-47=-185/145, 20 21-23=-193/171	(183, 3- -193/16 =-205/1/ -12=-25 -14=-22 -14=-22 -14=-22 -14=-22 -14=-22 -15 -38=-17 -38=-17 -38=-17 -38=-17 -38=-17 -38=-17 -38=-12 -38=-12 -38=-12 -38=-12 -38=-12 -43-21 -43=-22 -43/45 37=-75 28=-12 7=-169 -24=-72 -24=-72 -24=-72 -24=-72 -24=-72 -193 -192 -	4=-211/146, 8, 7-8=-162/1 28, 73/191, 73/191, 73/196, 54/122, 1/256, 71/256, 71/256, 71/256, 71/292, 195, 195, 195, 93, 9-43=-93 139, 29, 7/156, 4/131, 5/195, 5/195, 5-36=- 86, 30-40=-2 3, 33/6, , 6-45=-160/1 43, 3/33, 132, 2/38,	51/8, 80/0, 126,	2) 3) 4) 5) 6) 7) 8)	Wind: / Vasd= li Exp and C- 12-3-8 to 18-3 21-3-1: expose membe Lumbe Truss of or cons Provid All plat Gable This fri chord I	ASCEE 103m CC Ext 103m CC Ext Externa Sarris CC Ext 2 to 3 ed ears arr DOI design for strandar sult que e as are equilistuds iss has vive lo	27-10; ph; TC cclose terior (2 txterior 0-0-7-0 nd ver ad forcc_=1.66 med fo oc-7-0 nd ver ad forcc_=1.66 med fo oc-7-0 uds es d Indu ualified quate es 2x4 es coo space as bee ad non	Weight: 393 lb Vult=130mph (i) CDL=6.0psf; BCI (2) DL=6.0psf; BCI (2) 12-3-8 to 15-3- (2) 18-3-8 to 21- zone; cantilever tical left and righ es & MWFRS fo plate grip DOL- r wind loads in th posed to wind (i stry Gable End d building design drainage to prevent d building design drainage to prevent tinuous bottom and at 2-0-0 oc. In designed for a booncurrent with CALCAN SEA	FT = 20 3-second of DL=6.0psf elope) ext 8, Interior -3-12, Interior -3-12, Interior -3-12, Interior -1.60 ne plane of onormal to Details as per as per vent waters is otherwise chord bear -1.00 psf any other -1.00 -1.00 psf -1.00 psf	9% gust) ; h=25ft; Cat. erior zone (1) 2-3-8 to (1) 15-3-8 arior (1) ght ;C-C for s shown; f the truss the face), applicable, ANSI/TPI 1. ponding. e indicated. aring. bottom r live loads.
		32=115 (L 35=189 (L 37=102 (L	.C 24), 33=285 (LC 2 .C 20), 36=54 (LC 1), .C 1), 38=246 (LC 20	0), NOTES	s balanced	roof live loads have	been o	considered fo	r					S.ENGIN	EER	A line
FORCES	(lb) - Max Tension	imum Com	pression/Maximum	thi	s design.									A. C	ALBE	111

Scale = 1:99.4

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

February 26,2025

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	B01	Attic	1	1	Job Reference (optional)	1630632

- * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Ceiling dead load (5.0 psf) on member(s). 9-43, 39-43, 39-40, 15-40; Wall dead load (5.0psf) on member (s).30-40, 31-43
- 11) All bearings are assumed to be SP DSS or 2400F 2.0E .
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 95 lb uplift at joint 2, 29 lb uplift at joint 22, 190 lb uplift at joint 33, 185 lb uplift at joint 27, 12 lb uplift at joint 25, 65 lb uplift at joint 32, 105 lb uplift at joint 35, 219 lb uplift at joint 38, 81 lb uplift at joint 28, 112 lb uplift at joint 26 and 216 lb uplift at joint 23.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Run: 8 83 S. Feb 18 2025 Print: 8 830 S Feb 18 2025 MiTek Industries. Inc. Tue Feb 25 10:08:50 ID:q6dML6i3ZW2sLVfeJxDFSLzIY?E-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	B02	Attic	4	1	Job Reference (optional)	171630633

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries. Inc. Tue Feb 25 10:08:51 ID:q6dML6i3ZW2sLVfeJxDFSLzIY?E-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:98.4

Plate Offsets (X, Y): [2:0-8-0,0-0-14], [7:0-3-0,0-2-12], [9:0-3-0,0-2-12], [14:0-8-0,0-0-2], [16:0-3-8,0-7-0]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.55 0.41 0.31	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.13 -0.22 0.02 0.09	(loc) 16-18 16-18 14 16-18	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 291 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	2x6 SP No.2 2x10 SP 2400F 2.01 2x4 SP No.3 *Excep SP No.2 Structural wood she 4-8-7 oc purlins, ex 2-0-0 oc purlins (6-C Rigid ceiling directly bracing. 1 Brace at Jt(s): 21 (size) 2=0-5-4, Max Horiz 2=359 (L Max Uplift 2=-203 (I 16=-260) Max Grav 2=1602 (16=-28)	E or 2x10 SP DSS ot* 5-18,11-16,6-10:22 eathing directly applied cept 0-0 max.): 7-9. 7 applied or 10-0-0 oc 14=0-3-8, 16=0-3-8 C 11) LC 12), 14=-179 (LC 1 (LC 8) LC 20), 14=1370 (LC LC 21)	2) 4 d or 3) 4) 5) 2), 20), 6)	Wind: ASCE Vasd=103mp II; Exp C; En and C-C Extt 12-3-8, Exter to 18-3-8, Ex 21-3-12 to 30 exposed ; en members an- Lumber DOL Provide adec This truss ha chord live loa * This truss ha chord live loa * This truss the on the bottor 3-06-00 tall b chord and an Ceiling dead	7-10; Vult=130mp bh; TCDL=6.0psf; closed; MWFRS (erior (2) -0-9-9 to 2 rior (2) 12-3-8 to 1 terior (2) 18-3-8 to 2-7-0 zone; cantile d vertical left and d forces & MWFR =1.60 plate grip D quate drainage to s been designed ad nonconcurrent tas been designed ad nonconcurrent as been designed an chord in all area by 2-00-00 wide w by other members load (5.0 psf) on 1	ch (3-sec BCDL=6 envelope 2-3-2, Int 5-3-8, In 5-3-8, In	cond gust) .0psf; h=25ft; a) exterior zor erior (1) 2-3-: terior (1) 15-3-: terior (1) 15-3-: terior (1) 15-3-: y Interior (1) nd right vosed;C-C for ctions shown b) water ponding b) water ponding b) water ponding b) water ponding b) water ponding b) water ponding b) water ponding b) water ponding b) water bottom other live loa a rectangle (s), 5-6, 10-11	Cat. ne 2 to 3-8 ; g. ds. opsf om					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Con Tension 1-2=0/31, 2-3=-199 5-6=-1233/285, 6-7 8-9=-420/267, 9-10 10-11=-1254/298, 1 13-14=-1719/278 2-20=-324/1715, 18	npression/Maximum 5/230, 3-5=-1881/206 =-386/209, 7-8=-420/2 =-395/237, 1-13=-1962/327, i-20=-284/1715,	7) 267, 8) 9)	(s).5-18, 11- Bottom chord chord dead le All bearings a Provide mec bearing plate 2, 260 lb upli	16 d live load (40.0 ps bad (5.0 psf) appli are assumed to be hanical connection e capable of withst ft at joint 16 and 1	sf) and a ed only t SP DS: a (by oth anding 2 79 lb up	dditional botte o room. 16-1 S or 2400F 2. ers) of truss t 03 lb uplift at lift at joint 14.	om 8 0E . o joint			The second se	ORTH CA	ROLL
WEBS NOTES 1) Unbalance	16-18=-165/1490, 1 14-15=-136/1292 5-18=-6/846, 11-16 6-21=-1381/267, 10 3-18=-485/339, 13- 7-21=-110/246, 8-2 9-21=-118/299, 3-2 13-15=-579/43	5-16=-136/1292, =-167/884, I-21=-1482/317, 16=-168/368, 1=-199/129, 0=-168/135, e been considered for	10 11 LC	 i) Graphical pu or the orienta bottom chorc i) Attic room ch DAD CASE(S) 	rlin representatior ation of the purlin a l. necked for L/360 d Standard	does no	ot depict the s top and/or	ize				SEA 0363	ER. A
this design).											February	26,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org)

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

February 26,2025

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	B03	Attic	2	3	Job Reference (optional)	171630634

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries. Inc. Tue Feb 25 10:08:51 ID:q6dML6i3ZW2sLVfeJxDFSLzIY?E-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:98.4

Plate Offsets (X, Y): [7:0-3-0,0-2-12], [9:0-3-0,0-2-12], [14:0-8-0,0-0-2], [16:0-3-8,0-7-0]

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	4-6-0 1.15 1.15 NO IRC20 ⁴	5/TPI2014	CSI TC BC WB Matrix-MS	0.71 0.43 0.26	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.12 -0.22 0.02 0.07	(loc) 16-18 16-18 14 16-18	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 872 lt	GRIP 244/190 • FT = 20%	, 0
LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD JOINTS REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x6 SP No 2x10 SP 24 2x4 SP No SP No.2 2-0-0 oc pt (Switched Rigid ceilin bracing. 1 Brace at 9, 21 (size) 1 Brace at 9, 25 (size) 1 Brace at 9, 25 (size) 1 Brace at 9, 25 (size) 1 Brace at 9, 20 (size) 1 Brace at 9, 20 (size) 1 Brace at 9, 20 (size) 1 Brace at 9, 20 (size) 1 Brace at 9, 21 (size) 1 Brace at 9, 21 (size) 1 Brace at 9, 21 (size) 1 Brace at 9, 21 (size) 1 Brace at 9, 31 (size) 1 Brace at 1 Brac	.2 400F 2.0E .3 *Excepi from shee g directly Jt(s): 7, 2=0-5-4, 1 2=807 (LC 16=-660 (I 2=5529 (L 16=-766 (16=-766 (16=-766 (228, 4, 11 96/0 /5568, 18- 298, 15-11 23/88, 3-1 8/681, 7-2 /274, 9-21 1/188	or 2x10 SP DSS * 5-18,11-16,6-10:2; -0 max.) ted: Spacing > 2-8-0 applied or 10-0-0 oc 4=0-3-8, 16=0-3-8 > 11) LC 8) C 20), 14=4561 (LC LC 21) pression/Maximum /0, 3-5=-5678/0, -775/548, 7-8=-834/i -783/620, I-13=-5665/80, 20=0/5568, >=0/4072, 14-15=0/4 -0/2794, 6-21=-4242 8=-1883/131, 1=-239/564, =-229/719, 3-20=0/6	1 (4)). 2 (1). 2 (1). 3 (4 (20), 3 (692, 5 (692, 7) (60, 8 (9) (1). 1 (1). 1 (3-ply truss to (0.131"x3") n Top chords c staggered at Bottom chore staggered at Web connect All loads are except if note CASE(S) see provided to d unless othern Unbalanced this design. Wind: ASCE Vasd=103mp II; Exp C; En and C-C Exte 12-3-8, Exter to 18-3-8, Ext 21-3-12 to 33 exposed; en members an Lumber DOL Provide adec This truss ha chord live loa * This truss ha on the bottom 3-06-00 tall b chord and ar Ceiling dead 6-21, 10-21; (s).5-18, 11-7 Bottom chore chord dead lo All bearings a 	be connected tog ails as follows: connected as follow 0-9-0 oc. Is connected as follow 0-9-0 oc. ted as follows: 2x4 considered equall ad as front (F) or b tion. Ply to ply cor istribute only loads wise indicated. roof live loads hav 7-10; Vult=130mp bh; TCDL=6.0psf; E closed; MWFRS (e errior (2) -0-9-9 to 2 ior (2) 12-3-8 to 14 terrior (2) 18-3-8 to 1-0-02 cone; cantile d vertical left and id d forces & MWFRS =1.60 plate grip D juate drainage to p s been designed find nonconcurrent v ias been designed in chord in all areas by 2-00-00 wide will y other members. load (5.0 psf) an plic are assumed to be	ether wi vs: 2x6 - llows: 2 - 1 row y applie ack (B) inection s noted e been of h (3-sec 3CDL=6 envelope -3-2, Int -3-2, Int -	th 10d 2 rows at 0-9-0 oc. d to all plies, face in the LC shave been as (F) or (B), considered fo cond gust) .0psf; h=25ft; e) exterior zor terior (1) 2-3-2 considered fo cond gust) .0psf; h=25ft; e) exterior zor terior (1) 2-3-2 considered fo cond gust) .0psf; h=26ft; b) exterior zor terior (1) 2-3-2 considered fo cons shown over ponding to shown other live load to zor (s) .5-6, 10-11 n member dditional bottto co room. 16-1: S or 2400F 2.	DAD r ; Cat. he 2 to 3-8 ; g. ds. Dpsf om 1, 0E.	 11) Probe 16. 12) Loa dess fort 13) Graot bott 14) Attic LOAD (1) De Pla Ur Cco Training 	vide me ring plat d case(signer mu he inter phical p ne orien om choic c room C CASE(S ead + Ro ate Incre- iiform Lo Vort: 1-1 9-10=-1 18-31=- Drag: 5- oncentra Vert: 28 apezoid	chanicic e capa s) 1, 2 sist reve ded us urlin re- d. hecke) Sta oof Live aase=10 98 (F= 2, 10-2; 18=-2 18=-2 335, 10 98 (F= 335, 10 98 (F= 335, 10 98 (F= 338, 10 2, 1	al connection (t able of withstand has/have been iew loads to ver se of this truss. apresentation do of the purlin alor d for L/360 deflend ndard e (balanced): Lu .15 b/ft) 55, 6-29=-158, 6 -11=-158, 11-14 -53), 16-18=-68 21=-22 2, 11-16=-22 ads (lb) ds (lb/ft) CHCC SE/ 0363	y others) of i sing 660 lb u modified. Bu ify that they is ses not depic ig the top an action. Imber Increas -7=-135, 7-9 I=-135, 22-3 i, 16-25=-98 AC AL 322 IEEERER	russ to plift at joint ilding are correct t the size d/or se=1.15, =-135, 1=-45, (F=-53),
													Februa	y 26,202	5

February 26,2025

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeR% connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the Section of the prevent collapse contervent for the Section of the prevent of the prevent of the prevent of the prevent for the term between the prevent of the prevent and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	B03	Attic	2	3	Job Reference (optional)	171630634

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 10:08:51

ID:q6dML6i3ZW2sLVfeJxDFSLzIY?E-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Vert: 28=-265-to-3=-233, 3=-233-to-4=-219, 4=-219to-5=-189, 5=-212-to-29=-207

- 2) Dead + 0.75 Roof Live (balanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (lb/ft)
 - Vert: 1-28=-113, 6-29=-135, 6-7=-113, 7-9=-113, 9-10=-113, 10-11=-135, 11-14=-113, 22-31=-45, 18-31=-203 (F=-158), 16-18=-203, 16-25=-203 (F=-158), 16-18=-203, 16-25=-203
 - (F=-158), 6-21=-22, 10-21=-22 Drag: 5-18=-22, 11-16=-22
 - Concentrated Loads (lb)
 - Vert: 28=-316
 - Trapezoidal Loads (lb/ft)
 - Vert: 28=-238-to-3=-206, 3=-206-to-4=-192, 4=-192to-5=-162, 5=-184-to-29=-180

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	B04	Attic	1	2	Job Reference (optional)	171630635

-0-11-0

 \vdash

5-0-0

5-0-0

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries. Inc. Tue Feb 25 10:08:51 ID:q6dML6i3ZW2sLVfeJxDFSLzIY?E-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:98.4

Plate Offsets (X, Y): [2:0-8-0,0-0-6], [7:0-3-0,0-2-12], [9:0-3-0,0-2-12]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	3-0-0 1.15 1.15 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.47 0.34 0.18	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.10 -0.17 0.01 0.06	(loc) 16-18 16-18 14 16-18	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 581 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES	2x6 SP No.2 2x10 SP 2400F 2.0 2x4 SP No.3 *Exce SP No.2 2-0-0 oc purlins (6- (Switched from she Rigid ceiling direct bracing. 1 Brace at Jt(s): 7, 9, 21 (size) 2=0-5-4, Max Horiz 2=538 (1 Max Uplift 2=-304 (16=-386 Max Grav 2=2400 16=1100 (lb) - Maximum Co Tension 1-2=0/46, 2-3=-298 5-6=-1844/428, 6- 8-9=-631/400, 9-10 10-11=-1877/448, 13-14=-2563,11 6-21=-2063/400, 1 3-18=-725/509, 13 7-21=-165/368, 8-2 9-21=-177/449, 3-2 13-15=-874/67	DE or 2x10 SP DSS pt* 5-18,11-16,6-10:2 0-0 max.) seted: Spacing > 2-8-(y applied or 10-0-0 oc 14=0-3-8, 16=0-3-8 .C 11) LC 12), 14=-268 (LC (LC 20), 14=2046 (LC 0 (LC 21) mpression/Maximum 36/344, 3-5=-2813/310 =-579/314, 7-8=-631/)=-592/355, 11-13=-2932/491, 8-20=-426/2565, 15-16=-203/1923, -16=-249/1317, 0-21=-2217/474, -16=-246/562, 21=-299/194, 00=-246/206,	1) (x4 (0). 2) (2) (3) (4) (2) (4) (4) (5) (6) (7) (6) (7) (8) (9) (10)	2-ply truss to (0.131"x3") n Top chords c staggered at Bottom chorco staggered at Web connect All loads are except if note CASE(S) sec provided to d unless otherw Unbalanced 1 this design. Wind: ASCE Vasd=103mp II; Exp C; Enc and C-C Exte 12-3-8, Exter to 18-3-8, Ex 21-3-12 to 30 exposed ; en members and Lumber DOL: Provide adeq This truss ha on the bottom 3-06-00 tall b chord and an Ceiling dead 6-21, 10-21; (s).5-18, 11-1 Bottom chorc chord dead ld	be connected tog ails as follows: onnected as follow 0-9-0 oc. Is connected as follow 0-9-0 oc. ed as follows: 2x4 considered equall d as front (F) or b tion. Ply to ply cor istribute only load vise indicated. roof live loads hav 7-10; Vult=130mp th; TCDL=6.0psf; I closed; MWFRS (c erior (2) -0-9-9 to 2 ior (2) 12-3-8 to 11 terior (2) 18-3-8 to 12 terior (2) 12-3-8 to 11 terior (2) 18-3-8 to 12 terior (2) 18-3-	ether wi vs: 2x6 - ollows: 2 l - 1 row y applie ack (B) - nnection s noted e been (oh (3-sec BCDL=6 envelopp 2-3-2, Int 5-3-8, Int	th 10d 2 rows x10 - 2 rows at 0-9-0 oc. d to all plies, face in the LC s have been as (F) or (B), considered fo cond gust) 3.0psf; h=25ft; a) exterior zor terior (1) 2-3-2 parterior (1) 2-3-2 parterior zor terior (1) 2-3-2 parterior	DAD r c Cat. he 2 to 3-8 ; g. ds. opsf om 1, om 8 0E.	11) Probea 2, 3 12) Gra ort ti bott 13) Attio LOAD (vide mea ring plat 86 lb up phical p he orient croom c croom c croom c croom c	chanic e capp lift at ji urlin re d. hecke) Sta	al connection (by able of withstandi bint 16 and 268 ll ppresentation doe of the purlin along d for L/360 deflec indard	ROUTER ROUTER L	t
												February	/ 26,2025	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	C01	Piggyback Base Structural Gable	1	1	Job Reference (optional)	171630636

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 10:08:52 ID:GYnrrFPcJin4MoKMWzzkVdzIX4E-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:94.3

Plate Offsets (X, Y): [2:0-7-3,0-0-3], [8:0-4-4,0-1-12], [9:0-4-4,0-1-12], [16:0-7-3,0-0-3]

-0-11-0

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.50 0.31 0.36	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.05 -0.04 -0.03	(loc) 25-32 24-25 2	l/defl >999 >999 n/a	L/d 240 240 n/a	PLATES MT20 MT20HS Weight: 231 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Left 2x8 S Right 2x8 Structural 6-0-0 oc p 2-0-0 oc p	0.2 0.2 0.3 0.3 SP 2400F 2 SP 2400F I wood shea purlins, exc purlins, (6-0	.0E or DSS 2-6-0, 2.0E or DSS 2-6-0 athing directly applie ept -0 max.): 8-9.	B V 0 ed or	OT CHORD	2-25=-366/532, 24-2 22-24=-211/259, 21 20-21=-59/135, 19-2 18-19=-59/135, 16- 1-25=0/246, 4-27=-5 24-26=-585/376, 8-2 9-22=-255/178, 22-2 28-29=-234/265, 13 13-19=-185/200, 7-2 10-28=-187/169, 21 11-29=-174/148, 20	25=-27 -22=-59 20=-59 18=-59 522/33 24=-25 28=-23 -29=-2 26=-78 -29=-11	5/532, 3/135, 135, 135 2, 26-27=-528 7/37, 1/261, 24/253, 65, 6-27=-14 30/173, 33/133,	3/328, /7,	 Probaga Probaga	vide meo ring plat 5 lb uplit t at joint t at joint t at joint t at joint t at joint t at joint d case(s igner mu he inten phical po he orient	chanic e capa ft at joi t 19, 1 3 lb up uplift a uplift a s) 1 ha ust rev ded us urlin re tation of	al connection (b able of withstanc int 24, 166 lb up 07 lb uplift at join 16, 16, 10, 16, 18, 16, 16, 18, 19, 10, 16, 19, 10, 10, 10, 19, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	y others) of tr ing 237 lb up ift at joint 22, nt 16, 147 lb u '1 lb uplift at ju dified. Buildir fy that they a es not depict ig the top anc	uss to lift at joint 181 lb uplift at oint 18 re correct the size J/or
BOT CHORD WEBS JOINTS	Rigid ceili bracing. 1 Row at 1 Brace a	ing directly midpt at Jt(s): 26,	applied or 10-0-0 oc 8-24, 9-22	• N 1	OTES Unbalanced this design.	14-18=-293/262 roof live loads have	been o	considered fo	r	bott 14) In th of th LOAD (om chor ne LOAE ne truss CASE(S)	d. CAS are no Sta	E(S) section, loa oted as front (F) ndard	ds applied to or back (B).	the face
REACTIONS	27, 28, 28 (size) Max Horiz Max Uplift Max Grav	2=0-3-8, 1 19=15-8-C 22=15-8-C 2=-375 (L 2=-237 (L 18=-271 (20=-118 (22=-166 (2=570 (LC 18=359 (L 20=162 (L 22=413 (L	6=15-8-0, 18=15-8- 0, 20=15-8-0, 21=15- 0, 24=15-8-0 C 10) C 12), 16=-107 (LC LC 13), 19=-181 (LC LC 13), 24=-147 (LC LC 8), 24=-65 (LC 1), C 20), 19=252 (LC 2), C 20), 21=166 (LC C 21), 24=736 (LC	2 0, -8-0, 12), 2 11), 2 13), 2) 3 22), 11), 19) 4	 Wind: ASCE Vasd=103mp Lysp C; En- and C-C Externand C-C Externand C-C Externand C-C Externand C-C Externation (1): 19-10-15 to 2 exposed ; en- members and Lumber DOL Truss design only. For stu- see Standarc or consult qu Provide adec 	http://www.action.prime bit TCDL=6.0psf; B closed; MWFRS (en- erior (2) -0-11-0 to 2 ior (2) 11-3-8 to 19- 27-10-8 zone; cantil d vertical left and rid d forces & MWFRS =1.60 plate grip DC ed for wind loads in ids exposed to wind 1 Industry Gable En- alified building desi wate drainage to p	CDL=6 nvelope 2-1-0, lr -10-15, ever le ght exp for rea DL=1.6(n the pla l (norm d Deta gner as revent	ond gust) .0psf; h=25ft;) exterior zor hterior (1) 2-1 Interior (1) ft and right lossed;C-C for ctions shown) ane of the true al to the face is per ANSI/TE sper ANSI/TE	; Cat. ne -0 to ; ; ss), ble, PI 1.	Pla Pla Tra	ate Incre iform Lo Vert: 1-4 24-34=-: apezoida	ase=1 bads (I 4=-60, 20 al Load	07 07 07 07 07 07 07 07 07 07 07 07 07 0	60, 25-30=-24	
FORCES TOP CHORD	(lb) - Max Tension 1-2=0/37, 6-7=-359/ 9-10=-44/ 11-13=-2/ 14-16=-10	imum Com 2-4=-566/3 (373, 7-8=-3 5/449, 10-1 50/300, 13- 65/150, 16-	pression/Maximum 313, 4-6=-381/352, 381/428, 8-9=-353/3 1=-345/373, 14=-332/294, 17=0/37	4 5 6 71, 7 9 9	 All plates are All plates are All plates are Gable studs : This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and ar All bearings a 	AT20 plates unless MT20 plates unless 2x4 () MT20 unless spaced at 2-0-0 oc. s been designed for ad nonconcurrent w has been designed for n chord in all areas by 2-00-00 wide will by other members, v are assumed to be	r a 10.0 ith any for a liv where fit betw with BC SP No.	wise indicate erwise indicate o psf bottom other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf 2.	d. ted. ds. Dpsf om		THE ANY ST		SEA 0363	IL B22	and

February 26,2025

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	C01	Piggyback Base Structural Gable	1	1	Job Reference (optional)	171630636

Vert: 4=-61 (F=-1)-to-5=-62 (F=-2), 5=-62 (F=-2)to-39=-63 (F=-3), 39=-63 (F=-3)-to-6=-63 (F=-3), 6=-63 (F=-3)-to-7=-66 (F=-6), 7=-66 (F=-6)-to-8=-69 (F=-9), 25=-21 (F=-1)-to-24=-29 (F=-9) Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 10:08:52 ID:GYnrrFPcJin4MoKMWzzkVdzIX4E-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUPTI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	C02	Piggyback Base	2	1	Job Reference (optional)	

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 10:08:52 ID:LeXDDRSVKDaUdXqWsnb2kfzIX9L-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

L Contraction of the second	5-9-8	11-5-4	15-6-4	21-2-0	26-11-8	1
Scale = 1:90.1	5-9-8	5-7-12	4-1-0	5-7-12	5-9-8	1

Plate Offsets (X, Y): [2:0-7-3,0-0-3], [6:0-6-4,0-1-12], [7:0-4-4,0-1-12], [11:0-8-7,Edge]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.46 0.28 0.38	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.05 -0.06 -0.03	(loc) 13-14 13-14 2	l/defl >999 >999 n/a	L/d 240 240 n/a	PLATES MT20 MT20HS Weight: 202 lb	GRIP 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x8 SP 2400F Right 2x8 SP 2400F Structural wood sh 6-0-0 oc purlins, ex 2-0-0 oc purlins, ex 2-0-0 oc purlins (6- Rigid ceiling direct bracing, 1 Row at midpt (size) 2=0-3-8, Max Horiz 2=-375 (2.0E or DSS 2-6-0, = 2.0E or DSS 2-6-0 eathing directly applie cept 0-0 max.): 6-7. y applied or 9-3-2 oc 4-16, 6-16, 6-14, 7-1 9-14 11=0-3-0, 16=0-3-8 LC 10)	2) d or (4, 4) 5) 6)	Wind: ASCE Vasd=103mp II; Exp C; End and C-C Exte 11-3-8, Exter to 27-10-8 zc vertical left al for members Lumber DOL Provide adec All plates are This truss ha chord live loa * This truss h	7-10; Vult=130mpf h; TCDL=6.0psf; E closed; MWFRS (e rior (2) -0-11-0 to 2 ior (2) 11-3-8 to 14 ior (2) 15-8-0 to 18 one; cantilever left a and right exposed; p and forces & MWF =1.60 plate grip DC uate drainage to p MT20 plates unless s been designed for d nonconcurrent w as been designed n chord in all areas	an (3-sec GCDL=6 CCDL=6 Nelope 2-1-0, Ir -3-8, In -8-0, In and righ porch rig RS for DL=1.60 revent v ss other or a 10.0 rith any for a liv where	vater ponding wise indicate water of the low of a construction water of the low of a construction water ponding wise indicate of the low of a construction of the low of a construction of a rectangle	Cat. ne -0 to 3-8 to 3-0 nd C-C Dwn; g. d. ds. Dpsf					
FORCES	Max Uplift 2=-246 (16=-156 Max Grav 2=590 (L 16=944 ((lb) - Maximum Con Tension	LC 12), 11=-286 (LC (LC 9) .C 1), 11=733 (LC 1), (LC 2) npression/Maximum	13), 7) 8)	3-06-00 tall b chord and an All bearings a Provide mech bearing plate 2, 156 lb upli	y 2-00-00 wide will y other members, y are assumed to be nanical connection capable of withsta ft at joint 16 and 28	fit betw with BC SP No. (by oth nding 2 66 lb up	veen the botto DL = 10.0psf 2 . ers) of truss t 46 lb uplift at ift at joint 11.	o joint					
TOP CHORD	1-2=0/37, 2-4=-612 6-7=-492/536, 7-9= 11-12=0/37 2-17=-363/527, 16 14-16=-176/220, 1	/363, 4-6=-463/445, -585/609, 9-11=-697/ 17=-268/527, 3-14=-383/455,	745, 9) LC	Graphical pu or the orienta bottom chord OAD CASE(S)	rlin representation tion of the purlin al Standard	does no ong the	ot depict the s top and/or	size		4	ALLI	ORTH CA	ROLINI
WEBS	11-13=-383/455 4-17=0/234, 4-16=- 6-14=-385/444, 7-1 9-14=-484/479, 9-1	531/363, 6-16=-593/2 4=-245/145, 3=-262/227	225,							011110		SEAI 03632	22
 Unbalance this design 	ed roof live loads have n.	e been considered for										ALC AGINE	ERIK

G February 26,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	C03	Piggyback Base Girder	1	2	Job Reference (optional)	171630638

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 10:08:53 ID:M4G3KmITIEsmU20wJQrxRwzIX6y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:92

Plate Offsets	(X, Y): [2:0-8-7,Edge],	[4:0-1-4,0-1-8], [6:0-	-6-4,0-1-1	2], [7:0-4-4,0-1	-12], [17:0-4-12,0)-1-8]								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC207	15/TPI2014	CSI TC BC WB Matrix-MS	0.28 0.45 0.83	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.05 -0.09 0.02 0.05	(loc) 17-20 17-20 2 17-20	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 440 lt	GRIP 244/190 • FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER	2x4 SP No.2 2x6 SP 2400F 2.0E d 2x4 SP No.2 Left 2x6 SP No.2 2 2-6-0	or 2x6 SP DSS 2-6-0, Right 2x6 SP I	2 No.2 3	 All loads are except if note CASE(S) see provided to c unless othen Unbalanced 	considered equa ed as front (F) or ction. Ply to ply c distribute only loa wise indicated. roof live loads ha	ally applied back (B) onnection ids noted ave been o	d to all plies, face in the LC s have been as (F) or (B), considered fo	DAD ır	Cc	Vert: 6-7 oncentra Vert: 17 29=-124	7=-60, ted Loa =-1243 13 (B),	18-22=-20, 1-6 ads (lb) 3 (B), 26=-1243 30=-1243 (B), 3	=-60, 7-12=-60 (B), 28=-1243 32=307 (B), 34=	(B), =307 (B)
BRACING TOP CHORD BOT CHORD	Structural wood shea 6-0-0 oc purlins, exc 2-0-0 oc purlins (10- Rigid ceiling directly	athing directly applie ept 0-0 max.): 6-7. applied or 6-0-0 oc	ed or 4) Wind: ASCE Vasd=103m II; Exp C; En cantilever lef	7-10; Vult=130m bh; TCDL=6.0psf closed; MWFRS t and right expos	nph (3-sec ; BCDL=6 (envelope ed ; end v	cond gust) 0.0psf; h=25ft e) exterior zon vertical left an	; Cat. ne; id						
REACTIONS	bracing. (size) 2=0-3-8, 1 Max Horiz 2=-375 (L Max Uplift 2=-772 (L 16=-1221 Max Grav 2=3287 (L 16=4959 (1=0-2-8, 16=0-3-8 C 6) (LC 5) (LC 5) (LC 2), 11=300 (LC 16 (LC 2)	5 6), 7 6), 7	 right exposed plate grip DC Provide aded This truss ha chord live loa * This truss f on the bottor 2.06.00 toll k 	a; porch right exp DL=1.60 quate drainage to is been designed ad nonconcurren has been designed n chord in all are n chord in all are	o prevent for a 10.0 t with any ed for a liv as where	water ponding) psf bottom other live loa e load of 20.0 a rectangle	g. ds. Opsf						
FORCES	(lb) - Maximum Com Tension 6-7=0/428, 1-2=0/37 4-6=-30/526, 7-9=-8: 11-12=0/37	pression/Maximum , 2-4=-2681/759, 3/443, 9-11=-505/80	8 9 10,	 chord and ar All bearings Provide mec bearing plate 	are assumed to the hanical connection at joint(s) 11.	s, with BC be SP 240 bn (by oth	DL = 10.0psi DL = 10.0psi OF 2.0E or D ers) of truss t	SS .				mm		
BOT CHORD	2-17=-634/2207, 16- 14-16=-376/341, 13- 11-13=-423/125	17=-634/2207, 14=-423/125,	1	 bearing plate 2, 1221 lb up 	e capable of withs a lift at joint 16 and	standing 7 d 729 lb u	72 lb uplift at plift at joint 1	o i joint 1.			ALL.	ORTH C	AROLIN	11
WEBS	6-16=-691/329, 6-14 4-16=-3369/997, 4-1 9-14=-472/793, 9-13	=-402/320, 7-14=-40 7=-842/4181, =-727/393	02/0, 1	 Graphical pu or the orienta bottom chore 	rlin representation ation of the purlin	on does no along the	ot depict the s top and/or	size			V			4
NOTES 1) 2-ply truss (0.131"x3 Top chord oc. Bottom ch staggered Web conr	s to be connected toget ") nails as follows: Is connected as follows nords connected as follows at 0-7-0 oc. nected as follows: 2x4 -	ther with 10d 5: 2x4 - 1 row at 0-9- ows: 2x6 - 2 rows 1 row at 0-9-0 oc.	1 0 1 L 1	 Use Simpsoi 14-10dx1 1/2 max. starting connect trus; Fill all nail ho: OAD CASE(S) Dead + Roor Plate Increa Uniform Lo. 	n Strong-Tie HTU 2 Truss) or equiv: 3 at 2-0-12 from t (s(es) to back fac- oles where hange Standard of Live (balanced ase=1.15 ads (lb/ft)	J26 (10-16 alent spac he left end e of bottor er is in cor	6d Girder, bed at 12-0-0 d to 24-0-12 t n chord. htact with lum	oc o ber. 15,		THURS.	A MANAGER		AL 322	Thursday.

February 26,2025

Page: 1

TRENCIO A MITEK Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

te (www.tpinst.org) 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	D01	Common Supported Gable	1	1	Job Reference (optional)	171630639

Scale = 1:54.5

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 10:08:53 ID:5ECzExuiu_qP9xN2sMg662zIX3c-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-

Page: 1

Plate Offsets (X, Y): [2:0-2-0,0-0-3], [3:0-4-0,0-2-4], [7:0-4-0,0-2-4], [8:0-2-0,0-2-3]

L oading TCLL (roof) TCDL 3CLL 3CDL	(psf 20.0 10.0 0.0 10.0	 Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code 	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.08 0.05 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20HS MT20 Weight: 87 lb	GRIP 187/143 244/190 FT = 20%	%
LUMBER TOP CHORD BOT CHORD DTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x1 2x1 2x1 2x1 3x1 3x1 Max Horiz 2x1 3x1 3x1 Max Grav 2x1 3x1 3x1 3x1 3x1 3x1 3x1 3x1 3x1 3x1 3	IF 2.0E or DSS 2-6 OF 2.0E or DSS 2- sheathing directly app ctly applied or 10-0-0 7-0, 8=11-7-0, 10=11- -7-0, 12=11-7-0, 13= -7-0 (LC 11) (LC 8), 8=-32 (LC 9), 10 (LC 13), 11=-146 (47 (LC 12), 14=-221 ((LC 20), 8=169 (LC 9 (LC 20), 11=203 (L 1 (LC 22), 13=204 (L 1 (LC 19)	2) -2, -6-2 -0ied or -7-0, 11-7-0, 4) 5) 6) 7, LC 13), 7) (LC 13), 7) (LC 12) 8) (2 20), C 19), 9)	Wind: ASCE Vasd=103mp II; Exp C; En and C-C Cor 5-9-8, Corne 12-6-0 zone; vertical left a forces & MW DOL=1.60 pl Truss design only. For stu see Standard or consult qu All plates are Gable requiri Gable studs This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall b chord and ar	7-10; Vult=130mp bh; TCDL=6.0psf; closed; MWFRS (ner (3) -0-11-0 to r (3) 5-9-8 to 8-9-6 cantilever left and nd right exposed; FRS for reactions ate grip DOL=1.60 ed for wind loads ds exposed to wird lindustry Gable E alified building de MT20 plates unle es continuous bott spaced at 2-0-0 of s been designed an onconcurrent as been designed n chord in all area by 2-00-00 wide will be considered to a consolition of the second the members.	bh (3-sec BCDL=6 envelope 1-9-8, E: 3, Exteric 1 right ex C-C for n shown; 0 in the pl nd (norm nd Deta signer a sess other com chor c. for a 10.0 with any 1 for a liv s where all fit betw	ond gust) .0psf; h=25ft .0psf; h=25ft .0posed; end nembers and Lumber ane of the tru al to the face Is as applica is per ANSI/TI wise indicate d bearing. .0 psf bottom other live load a rectangle yeen the bottom	; Cat. ne I-8 to Ss), ble, PI 1. d. Dpsf om						
F ORCES TOP CHORD	(lb) - Maximum C Tension 1-2=0/37, 2-3=-6 4-5=-161/176, 5- 7-8=-65/50, 8-9=	compression/Maximu 7/51, 3-4=-127/100, 6=-161/176, 6-7=-86/ 0/37	m 10 /53,	 Provide mec bearing plate 32 lb uplift uplift at joint 	hanical connection capable of withst at joint 8, 147 lb u 14, 146 lb uplift at	n (by oth anding 7 uplift at jo joint 11,	ers) of truss f 9 lb uplift at j bint 13, 221 ll 210 lb uplift	to oint o at			A LIN	OR FESS	RO	
BOT CHORD	2-14=-109/173, 1 12-13=-109/173, 10-11=-109/173,	3-14=-109/173, 11-12=-109/173, 8-10=-109/173	LC	DAD CASE(S)	Standard	10 32 10	ipiin at joint a	5.			U	SEA	L	
WEBS	5-12=-149/80, 4- 3-14=-225/224, 6 7-10=-229/215	13=-203/176, 5-11=-203/174,								LI IV		0363	22	
NOTES 1) Unbalance this design	ed roof live loads ha	ave been considered	for								in the	A. G February	26,202	5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	E01	Common Supported Gable	1	1	Job Reference (optional)	171630640

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 10:08:53 ID:B3H1yS7FlwVwkRMkhAtagSzIWv_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

February 26,2025

818 Soundside Road Edenton, NC 27932

				⊢				21-11-0)						
Scale = 1:69.8															
Plate Offsets ((X, Y): [2:E	dge,0-0-0],	[14:Edge,0-0-0]												
Loading TCLL (roof) TCDL BCLL BCDI		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES	015/TPI2014	-	CSI TC BC WB Matrix-MS	0.09 0.07 0.15	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Left 2x4 S 2-6-0 Structura 6-0-0 oc Rigid ceil bracing. (size) Max Horiz Max Uplift Max Uplift Max Grav (lb) - Max Tension 1-2=0/28, 5-6=-138, 8-9=-238, 10-11=-11 12-14=-13	0.2 0.2 0.3 SP No.2 2 l wood shee burlins. ing directly 2=21-11-(16=21-11 23=21-11	2-6-0, Right 2x4 SP athing directly applie applied or 10-0-0 or 0, 14=21-11-0, -0, 17=21-11-0, -0, 29=21-11-0, -0, 22=21-11-0, -0, 22=21-11-0,	No.2 ed or c ,13), 13), 12), 12), 12), 20), 20), 19), 19), 247,	WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp C; I and C-C C 10-11-8, C 13-11-8 to exposed; members: Lumber Div 3) Truss desi only. For: see Stand. or consult 4) All plates a 5) Gable requ 6) Gable stuc 7) This truss chord live 8) * This truss on the bott 3-06-00 ta chord and 9) All bearing	222 21 11 8 6 4 10 12 20 11 8 6 4 10 12 20 11 8 6 4 10 12 20 11 8 6 4 10 12 20 11 8 6 4 10 12 20 11 8 6 4 10 12 20 11 11 8 6 6 4 10 12 20 10 11 8 7 6 10 12 20 10 11 8 7 6 10 12 20 10 10 8 7 10 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10	$\begin{array}{c} -25=-64/140, \\ 2-25=-64/140, \\ 3-24=-64/140, \\ 0-22=-64/140, \\ 8-19=-64/140, \\ 6-17=-64/140, \\ -20=-166/109, \\ -23=-157/122, \\ -25=-218/177, \\ 0-18=-157/122 \\ 2-16=-220/169 \\ 0 of live loads h \\ 7-10; Vult=130, \\ h; TCDL=6.0ps, \\ losed; MWFRS, \\ l$	4-25=-64/1 22-23=-64/1 12-20=-64/1 17-18=-64/ 14-16=-64/ 7-22=-148/ 5-24=-130/ 9-19=-147/ 9-10=-147	40, 1	or t; Cat. ine 1-0 to r n; uss able, PI 1. ads. Opsf tom	10) Prov bea 2, 1 uplii lb u join 11) Bev suff LOAD (vide me ring plat 3 lb uplit t at join 25, 89 plift at jc eled plat acce with CASE(S	chanici e capa ft at joi Ib uplif int 17, 13 lb up te or s truss) Star	al connection (by able of withstandii nt 14, 91 lb uplift is lb uplift at joint 2 t at joint 19, 100 l 160 lb uplift at joint him required to pic chord at joint(s) 2 ndard	others) of truss to g 52 lb uplift at joint at joint 22, 100 lb 44, 172 lb uplift at b uplift at joint 18, 69 int 16, 52 lb uplift at rovide full bearing , 26.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	E02	Common	6	1	Job Reference (optional)	171630641

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 10:08:54 ID:0y7teh_LLX6Uwl0dYMB?k7zIWv9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

			L	7-4-13		14-6-3	3		21-11-(0				
Scale - 1.71 /	5		I	7-4-13		7-1-5	1		7-4-13	5	1			
Plate Offsets	(X, Y): [2:Edge,0-0-0],	[8:Edge,0-0-0]												
Loading TCLL (roof) TCDL BCLL	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.38 0.53 0.23	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.19 0.03	(loc) 10-12 10-12 8	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0	Code	IRC2015/T	PI2014	Matrix-MS		Wind(LL)	0.04	10-12	>999	240	Weight: 115 lb	FT = 20%	
LUMBER TOP CHORE BOT CHORE WEBS SLIDER BRACING TOP CHORE	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.2 2 2-6-0 Structural wood she 4-10-14 oc purlins. 	2-6-0, Right 2x4 SP athing directly applie	4) * 0 3 cl No.2 5) A 6) P b b ed or 2 LOAI	This truss has n the bottom -06-00 tall by hord and an Il bearings a Provide mech earing plate and 253 lb to D CASE(S)	as been designe o chord in all are y 2-00-00 wide v y other member tre assumed to t nanical connectic capable of with uplift at joint 8. Standard	ed for a liv as where will fit betw s, with BC be SP No. bn (by oth standing 2	e load of 20.0 a rectangle veen the bott DL = 10.0psi 2 . ers) of truss t 53 lb uplift at	0psf om f. to t joint						
BOT CHORE	 Rigid ceiling directly bracing. 	applied or 10-0-0 o	с											
REACTIONS	 (size) 2=0-3-8, 8 Max Horiz 2=231 (LC Max Uplift 2=-253 (L Max Gray 2=932 (LC 	8=0-3-8 C 11) C 12), 8=-253 (LC 1 C 1), 8=932 (LC 1)	3)											
FORCES	(lb) - Maximum Com	pression/Maximum												
TOP CHORE	5-6=-1220/383, 6-8=	/334, 4-5=-1221/38 -1204/334, 8-9=0/2	3, 8											
BOT CHORE	2-12=-319/1149, 10- 8-10=-180/1009	12=-98/770,												
WEBS	5-10=-199/526, 6-10 5-12=-199/526, 4-12	=-340/288, =-340/288											11111	
NOTES 1) Unbaland this desig 2) Wind: AS Vasd=10 II; Exp C and C-C 10-11-8, 13-11-8 t exposed members Lumber I 3) This trus: chord live	ced roof live loads have gn. SCE 7-10; Vult=130mph J3mph; TCDL=6.0psf; Bf ; Enclosed; MWFRS (er Exterior (2) -0-11-0 to 2 Exterior (2) 10-11-8 to 1 to 22-10-0 zone; cantile to 22-10-0 zone; cantile ; end vertical left and rig s and forces & MWFRS DOL=1.60 plate grip DO s has been designed for e load nonconcurrent wi	been considered fo (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zor -1-0, Interior (1) 2-1 I3-11-8, Interior (1) yer left and right ght exposed;C-C for for reactions shown L=1.60 $^{\circ}$ a 10.0 psf bottom th any other live loa	r Cat. ne -0 to ; ds.							Contraction of the second seco	A A A A A A A A A A A A A A A A A A A	SEA 0363	L 22 ILBER I	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	G01	Common Supported Gable	1	1	Job Reference (optional)	171630642

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 10:08:54

Page: 1

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

ID:UsEeKLSDTGaysrFheTAZI8zSSFU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-11-0 15-11-0 15-0-0 7-6-0 \vdash +7-6-0 7-6-0 0-11-0 0-11-0 15-0-0 4x6 = 6 宄 712 5 4 8 5-2-15 5-1-8 4x6 👟 4x6 🖌 3 9 2 10 0-6-0

Scale = 1:49.2					15-0	0-0						
Plate Offsets (X, Y): [2	2:Edge,0-0-0],	[10:Edge,0-4-8]										
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.06	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190

17

18

3x6 II

TCDL		10.0	Lumber DOL	1.15		BC	0.03	Vert(CT)	n/a	-	n/a	999			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.05	Horz(CT)	0.00	10	n/a	n/a			
BCDL		10.0	Code	IRC201	5/TPI2014	Matrix-MS	-						Weight: 83 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Left 2x4 S 1-7-9 Structural 6-0-0 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav	0.2 0.2 0.3 SP No.2 1 I wood shead purlins. ing directly 2=15-0-0, 13=15-0-0 16=15-0-0 2=-56 (LC 2=-56 (LC 12=-108 (12=-108 (12=-91 (L 2=148 (LC 12=148 (LC 12=160 (L 12=160 (L) (L 12=160 (L) (L 12=160 (L) (L 12=160 (L)	1-7-9, Right 2x4 SP N athing directly applied applied or 10-0-0 oc 10=15-0-0, 12=15-0 0, 14=15-0-0, 15=15- 0, 17=15-0-0, 18=15- C 11) 8, 10=-12 (LC 9), LC 13), 13=-92 (LC 12 C 12), 18=-120 (LC 12 C 20), 10=130 (LC 1) C 20), 10=130 (LC 2) C 20), 15=156 (LC 2 C 20), 15=156 (LC 2) C 20), 15=156 (LC 2)	N 1 2 No.2 d or -0, 3 0-0, 3 (0-0, 3 (0-0, 3 (0-0) 13), 4 2), 6 (12), 7 (20), 8 (22), 8 (9), 8	OTES) Unbalanced this design.) Wind: ASCE Vasd=103mg II; Exp C; En and C-C Cor 7-6-0, Corne 15-11-0 zone vertical left a forces & MW DOL=1.60 pl) Truss design only. For stu see Standard or consult qu) All plates are) Gable requir) Gable studs) This truss ha chord live loa * This truss ha chord live loa * On the bottor 3-06-00 tall b	roof live loads ha 7-10; Vult=130n bh; TCDL=6.0psi closed; MWFRS ner (3) -0-11-0 tr r (3) -6-0 to 10- e; cantilever left a; nd right exposed fRS for reaction ate grip DOL=1. led for wind load vids exposed to w d Industry Gable tailfied building d a 2x4 () MT20 tr es continuous bo spaced at 2-0-0 is been designer ad nonconcurren nas been designer n chord in all are by 2-00-00 wide	ave been of http://www.ave.org/ave.or	considered fo cond gust) .0psf; h=25ft; .0psf; h=25ft; .0psf; h=25ft; .0psf; h=25ft; .0psf; l=25ft; .0psf; l=25	r Cat. ne -0 to to ss), ble, PI 1. ted. ds. opsf						
FORCES	(lb) - Max Tension	imum Com	pression/Maximum	9	All bearings	are assumed to	s. be SP No.	2.				N	ORIEESE	a. In	11
TOP CHORD	1-2=0/28, 4-5=-89/1 7-8=-84/9 10-11=0/2	2-3=-40/5 13, 5-6=-1 0, 8-9=-56	2, 3-4=-103/93, 42/158, 6-7=-142/158 /35, 9-10=-28/36,	1 8,	bearing plate 2, 12 lb uplift at joint 17, 12	nanical connecti capable of with at joint 10, 97 lb 20 lb uplift at joint	on (by oth standing 5 o uplift at jo it 18, 95 lb	ers) of truss t 6 lb uplift at j pint 16, 91 lb uplift at joint	o oint uplift 14,			U	SFA		Ann
BOT CHORD	2-18=-63/ 16-17=-63 14-15=-63 12-13=-63	/109, 17-18 3/109, 15-1 3/109, 13-1 3/109, 10-1	8=-63/109, 6=-63/109, 4=-63/109, 2=-63/109	1	92 lb uplift at at joint 2 and 1) Beveled plat surface with	i joint 13, 108 lb I 12 lb uplift at jo e or shim require truss chord at jo	uplift at joi int 10. ed to provi int(s) 10, 2	nt 12, 56 lb u de full bearing 23.	plift g		IIII.		0363	22	unu,
WEBS	6-15=-116 3-18=-153 8-13=-155	6/16, 5-16= 3/130, 7-14 5/119, 9-12	155/120, 4-17=-154 =-155/119, 2=-156/120	√118, ^L	OAD CASE(S)	Standard							AC A. C	EER. K	L.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

16

15

14

13

12

3x6 II

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	G02	Common	5	1	Job Reference (optional)	71630643

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 10:08:54

Page: 1

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Scale = 1:50.4		7-6-0 7-6-0	 15-0-0 7-6-0	
Plate Offsets (X, Y): [2:0-3-8,Edge], [6:0-4-15,Edge]		-		

Loading TCLL (roof)		(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.69	DEFL Vert(LL)	in 0.16	(loc) 8-11	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.56	Vert(CT)	-0.15	8-11	>999	240		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.22	Horz(CT)	-0.04	2	n/a	n/a		
BCDL		10.0	Code	IRC2015	5/TPI2014	Matrix-MS	-	- (-)					Weight: 66 lb	FT = 20%
				4)	* This truce h	as been designed	for a liv	a load of 20 (Opef					
				4)	on the botton	as been designed	where	e ioau oi 20.0 a rectande	Jhai					
	2x4 SP N0.2				3-06-00 tall b	v 2-00-00 wide will	l fit hotu	a rectangle	om					
	2x4 SP N0.2				chord and an	y other members		veen the bott	UIII					
WEBS	2X4 SP IN0.3		CO Diabt 21/4 CD N	lo 2 5)		are assumed to be	SP No	2						
SLIDER	2-6-0	NO.2 2	2-6-0, Right 2x4 SP h	10.2 5) 6)	Provide mech	nanical connection	(by oth	ers) of truss t	to					
BRACING					bearing plate	capable of withsta	inding 1	82 lb uplift at	t joint					
TOP CHORD	Structural wo	od shea	athing directly applied	d or LC	2 and 182 lb	uplift at joint 6. Standard								
BOT CHORD	Rigid ceiling	directly:	applied or 7-4-12 oc		. ,									
	bracing.	anoony	appiloa ol 1 1 12 00											
REACTIONS	(size) 2=	0-3-0.6	i=0-3-0											
	Max Horiz 2=	164 (LC	2 11)											
	Max Uplift 2=	-182 (LC	C 12), 6=-182 (LC 13	3)										
	Max Grav 2=	655 (LC	C 1), 6=655 (LC 1)	,										
FORCES	(lb) - Maximu Tension	ım Com	pression/Maximum											
TOP CHORD	1-2=0/28, 2-4 6-7=0/28	1=-617/7	756, 4-6=-617/756,											
BOT CHORD	2-8=-508/533	8, 6-8=-5	508/533											
WEBS	4-8=-490/329	9												
NOTES													minin	1111.
 Unbalance this design 	ed roof live load	ls have l	been considered for										"TH CA	Roilin
2) Wind: ASC	CE 7-10; Vult=1	30mph	(3-second gust)									1	ON JESS	i Ani
Vasd=103	mph; TCDL=6.	0psf; BC	CDL=6.0psf; h=25ft;	Cat.								in	i	Nisin
II; Exp C; I	Enclosed; MWF	-RS (en	velope) exterior zone	е									:07	1.1
and C-C E	xterior (2) -0-1	1-0 to 2-	-1-0, Interior (1) 2-1-	0 to							-	19	. 4	
7-6-0, Exte	erior (2) 7-6-0 to	o 10-6-0), Interior (1) 10-6-0 t	0									SFA	
15-11-0 zo	one; cantilever l	left and	right exposed ; end								=		0000	
vertical lef	t and right expo	osed; po	orch left and right								1	:	0363.	22 : :
exposed;C	C for member	rs and fo	prces & MWFRS for								-	8		1 2
reactions s	snown; Lumber	DOL=1	.60 plate grip									1	·	A 1. 3
DUL=1.60	haa haan daala		a 10.0 mat hattam									20	NGINE	ENAS
operative	load popoon	rront wit	a 10.0 psi bollom	c								14	210	The start of the s
chord live	ioau nonconcu	inent wit	in any other live load	э.									A G	ILD

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

GI "Inninnin February 26,2025

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	PB01	Piggyback	20	1	Job Reference (optional)	171630644

2-11-0

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 10:08:54 ID:QpWXIFz_yn8SmZhbbCN9E_zIYJZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:32.5

-

						1								
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.13 0.06 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc Rigid ceil bracing. (size) Max Horiz Max Uplift Max Grav	o.2 o.2 o.3 I wood she purlins. ing directly 1=7-0-0, 2 6=7-0-0 1=-91 (LC 1=-171 (L 4=-170 (L 6=-8 (LC 1=138 (LC 4=303 (LC	athing directly applie applied or 10-0-0 o 2=7-0-0, 4=7-0-0, 5= 2 8) C 19), 2=-198 (LC 1 C 13), 5=-118 (LC 2 12) C 12), 2=351 (LC 19) C 20), 5=94 (LC 13),	5; 6, 7, c 8; -7-0-0, -7-0-0, (2), 1(0), 1(Gable studs This truss ha chord live loa * This truss l on the bottor 3-06-00 tall h chord and ar All bearings Provide mec bearing plate 2, 170 lb upl uplift at joint and 170 lb u) See Standar Detail for Co consult quali	spaced at 2-0-0 as been designed an conconcurren as been designe n chord in all are by 2-00-00 wide to y other member are assumed to It hanical connection e capable of withs iff at joint 4, 171 5, 8 lb uplift at joint plift at joint 4, d Industry Piggyl nnection to base fied building desi Standard	oc. d for a 10.0 t with any ead for a live as where will fit betw s. be SP No. on (by oth standing 1 lb uplift at int 6, 198 back Truss truss as a igner.	0 psf bottom other live loa e load of 20. a rectangle veen the bot 2 . ers) of truss 98 lb uplift a joint 1, 118 lb uplift at jo s Connection applicable, o	ads. .0psf tom to at joint lb int 2 n r					
FORCES	(lb) - Max	timum Cor	pression/Maximum											
TOP CHORD	Tension 1-2=-144 4-5=-60/9	/188, 2-3=- 99	105/76, 3-4=-95/75,											
BOT CHORD WEBS	2-6=-51/6	61, 4-6=-51 23	/61										min	

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	PB02	Piggyback	8	1	Job Reference (optional)	171630645

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 10:08:55 ID:nnJQLz17nKmktKaZOIzKx1zIYJU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:30.7

Loading TCLL (roof)		(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.09	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
TCDL BCLL BCDL		10.0 0.0* 10.0	Lumber DOL Rep Stress Incr Code	1.15 YES IRC2(15/TPI2014	BC WB Matrix-MP	0.05 0.01	Vert(TL) Horiz(TL)	n/a 0.00	4	n/a n/a	999 n/a	Weight: 21 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc Rigid ceil bracing. (size) Max Horiz Max Uplift Max Grav	0.2 0.3 I wood she purlins. ing directly 1=6-0-0, 2 6=6-0-0 1=-77 (LC 1=-122 (L 4=-132 (L 6=-2 (LC 1=103 (LC 4=238 (LC 6=133 (LC	athing directly applie applied or 10-0-0 or 2=6-0-0, 4=6-0-0, 5= 5 8) C 19), 2=-155 (LC 1 C 13), 5=-78 (LC 20 12) C 12), 2=281 (LC 19) C 20), 5=66 (LC 13), C 1)	ed or c =6-0-0, 12),)),	 5) Gable studs 5) This truss ha chord live lo 7) * This truss I on the botton 3-06-00 tall 1 7) All bearings 9) Provide mec bearing plate 2, 132 lb upl at joint 5, 2 1 132 lb uplift 10) See Standar Detail for Cc consult qual COAD CASE(S) 	spaced at 2-0-0 o as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members are assumed to be thanical connectio e capable of withsi ift at joint 4, 122 lb b uplift at joint 6, 1 at joint 4. d Industry Piggyb nonection to base to fied building design Standard	rc. for a 10.0 with any d for a liv as where ill fit betw e SP No. n (by oth tanding 1 o uplift at 155 lb upl ack Truss truss as a gner.	D psf bottom other live loa e load of 20.1 a rectangle veen the bott 2. ers) of truss t 55 lb uplift at joint 1, 78 lb ift at joint 2 a s Connection applicable, or	ads. Opsf om t joint uplift ind					
FORCES	(lb) - Max Tension	imum Com	pression/Maximum											
TOP CHORD	1-2=-116 4-5=-44/7	/148, 2-3=-/ ′3	85/62, 3-4=-77/62,											
BOT CHORD WEBS NOTES	2-6=-37/5 3-6=-63/8	6, 4-6=-37,	/56										THCA	ROUT
1) Unbalance	ed roof live	oads have	been considered fo	r								N	A	A ANIA

- this design.
- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.

TRENCO A MiTek Affiliate

GI

February 26,2025

SEAL

036322

CHILDRAN WAR

WWWWWWWWW

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	PB03	Piggyback	4	1	Job Reference (optional)	171630646

Run: 8 83 S. Feb 18 2025 Print: 8 830 S Feb 18 2025 MiTek Industries. Inc. Tue Feb 25 10:08:55 ID:7k6JOg4GbsO1z5SWBIZVd5zIYJP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

S

Scale = 1:28.6													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.03	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.01	Horz(CT)	0.00	4	n/a	n/a			
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MP							Weight: 15 lb	FT = 20%	
LUMBER			7) * This truss	has been design	ed for a liv	e load of 20.	.0psf						
TOP CHORD	RD 2x4 SP No.2 on the botto				eas where	a rectangle							
DOT OUODD	0.4 0D N- 0		2 06 00 toll	by 2 00 00 wide	will fit boty	yoon the bott	tom						

BOT CHORD OTHERS	2x4 SP No.2 2x4 SP No.3	
BRACING		1
TOP CHORD	Structural wood sheathing directly applied or 4-4-8 oc purlins.	1
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.	
DEACTIONS		

REACTIONS (size) -5, 6 Max Horiz 2=60 (LC 11) Max Uplift 2=-33 (LC 12), 4=-40 (LC 13), 6=-16 (LC 12) 2=99 (LC 1), 4=99 (LC 1), 6=102 Max Grav

(LC 1) FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/16, 2-3=-59/47, 3-4=-56/47, 4-5=0/16 BOT CHORD 2-6=-20/51, 4-6=-20/51 3-6=-40/3 WEBS

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. 5)
- 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2 . 8)
- Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 33 lb uplift at joint 2, 40 lb uplift at joint 4, 16 lb uplift at joint 6, 33 lb uplift at joint 2 and 40 lb uplift at joint 4.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

2-0-1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second way the approximation of design and the property incorporate this design into the overall building design. Bracing indicated is to prevent building of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	V01	Valley	1	1	Job Reference (optional)	171630647

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 10:08:55 ID:YbKtbWKpu?vBNA_MMVwBRJzIYJ5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

25-1-1

Scale = 1	1:87.3
-----------	--------

Loading TCLL (roof) TCDL BCLL	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.26 0.20 0.42	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS							Weight: 135 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shi 6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 1=25-1-1 15=25-1: Max Horiz 1=378 (L Max Uplift 1=-101 (10=-313 14=-300 Max Grav 1=221 (L 10=509 (12=515 (15=517 (eathing directly applie y applied or 6-0-0 oc 5-12 , 9=25-1-1, 10=25-1- 1, 12=25-1-1, 14=25 .1 C 11) LC 10), 9=-15 (LC 11 (LC 13), 11=-302 (LC (LC 12), 15=-302 (LC C 21), 9=177 (LC 22) LC 20), 11=515 (LC LC 22), 14=514 (LC LC 29)	2 ed or -1-1, 5 C 13), C 12) 20), 19),	 Wind: ASCE Vasd=103m II; Exp C; Er and C-C Ext 12-7-1, Exte to 25-1-9 zo vertical left a forces & MW DOL=1.60 p Truss desigg only. For st see Standar or consult qu All plates arr Gable requir Gable studs This truss ha chord live lo * This truss I on the bottoo 3-06-00 tall 1 chord and ar 	7-10; Vult=130r ph; TCDL=6.0ps nclosed; MWFRS terior (2) 0-0-9 to rrior (2) 12-7-1 to ne; cantilever lef and right exposed VFRS for reaction late grip DOL=1. ned for wind load uds exposed to v rd Industry Gable ualified building of e 2x4 () MT20 to spaced at 4-0-0 as been designer ad nonconcurrer has been design m chord in all are by 2-00-00 wide ny other member	nph (3-sec f; BCDL=6 (envelope 3-0-9, Inte 15-7-1, Int and right d;C-C for m s shown; 60 s in the pl: ind (normm End Deta lesigner as unless oth ottom chor oc. d for a 10.1 t with any ed for a live as where will fit betv s, with BQ	cond gust) 6.0psf; h=25ft a) exterior zo erior (1) 3-0-5 tterior (1) 15-0-5 tterior (1) 15- exposed; er nembers and Lumber ane of the tru ils as applica s per ANSI/T erwise indica rd bearing. 0 psf bottom other live loa te load of 20. a rectangle ween the bott DL = 10.0ps	;; Cat. ne 9 to 7-1 nd I sss e), bble, PI 1. ted. opsf om f.					
FORCES	(lb) - Maximum Cor Tension	npression/Maximum	9 1) All bearings) Provide med	are assumed to chanical connecti	be SP No. on (by oth	2 . ers) of truss	to					
TOP CHORD	1-2=-405/342, 2-4= 5-6=-196/241, 6-8=	-189/236, 4-5=-196/2 -90/147, 8-9=-326/29	286, . 90	bearing plate	e capable of with	standing 1	01 lb uplift a	t joint				WHILL CA	Palle
BOT CHORD	1-15=-272/339, 14- 12-14=-272/339, 11 10-11=-272/339, 9- 5-12=-315/1, 4-14=	15=-272/339, -12=-272/339, 10=-272/339 -393/356, 2-15=-406/	_{/343,} L	uplift at joint joint 9. OAD CASE(S)	Standard	at joint 10	and 15 lb up	∠ ID lift at		4	i	ORTHOR	TO IN
NOTES	6-11=-393/356, 8-1	0=-406/340								11		SFA	

NOTES

1) Unbalanced roof live loads have been considered for this design.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	V02	Valley	1	1	Job Reference (optional)	171630648

10-8-11

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Run: 8.83 S. Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 10:08:55 ID:FWwfhwS4X4AmZjlHxc5YrQzIYIx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

21-5-7

Page: 1

21-5-7

0.23

0.16

0.27

DEFL

Vert(LL)

Vert(TL)

Horiz(TL)

in

n/a

n/a

0.01

(loc)

7

l/defl

n/a 999

n/a

n/a n/a

L/d

999

PLATES

Weight: 110 lb

MT20

GRIP

244/190

FT = 20%

Scale = 1:76.7

Loading

TCDI

NOTES

this design.

TCLL (roof)

BCLL BCDL		0.0* 10.0	Rep Stress Incr Code	YES IRC2015	5/TPI2014
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD	2x4 SP N 2x4 SP N 2x4 SP N Structural 6-0-0 oc P	o.2 o.2 o.3 wood shea ourlins.	athing directly applied	2) d or	Wind: A Vasd=10 II; Exp C and C-C 10-9-4, I to 21-5- vertical I forces &
BUICHURD	bracing.	ng airecuy	applied of 10-0-0 oc		DOL=1.
WEBS	1 Row at	midpt	4-10	3)	Truss de
REACTIONS	(size) Max Horiz Max Uplift Max Grav	1=21-5-7, 9=21-5-7, 13=21-5-7 1=-323 (LI 1=-106 (LI 8=-221 (LI 12=-322 (LI 1=195 (LC 8=352 (LC 10=435 (LI 13=362 (LI	7=21-5-7, 8=21-5-7, 10=21-5-7, 12=21-5-7, C 8) C 10), 7=-32 (LC 11), C 13), 9=-323 (LC 13), LC 12), 13=-230 (LC 22), C 12), 7=151 (LC 22), C 20), 9=531 (LC 20), C 22), 12=530 (LC 1 C 19)	.7, 4) 5) 6), 12) 8) 9),	only. Fo see Star or consu All plate: Gable re Gable st This trus chord liv * This tru on the b 3-06-00 chord ar
FORCES	(lb) - Max Tension	imum Com	pression/Maximum	9) 10)	All beari
TOP CHORD	1-2=-353/ 4-5=-248/	266, 2-3=-2 233, 5-6=-	'1, ¹⁰⁾ 94	bearing	
BOT CHORD	1-13=-167 10-12=-16 8-9=-167/	7/264, 12-1 67/264, 9-1 264, 7-8=-	10	i, 32 lb uplift at j joint 8.	
WEBS	4-10=-233	20	LOAD CASE		

2-13=-322/274. 5-9=-413/371. 6-8=-322/271

1) Unbalanced roof live loads have been considered for

(psf)

20.0

10.0

Spacing

Plate Grip DOL

Lumber DOL

2-0-0

1.15

1.15

	Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat
	II; Exp C; Enclosed; MWFRS (envelope) exterior zone
	and C-C Exterior (2) 0-0-9 to 2-9-4, Interior (1) 2-9-4 to
	10-9-4, Exterior (2) 10-9-4 to 13-9-4, Interior (1) 13-9-4
	to 21-5-15 zone; cantilever left and right exposed ; end
	vertical left and right exposed;C-C for members and
	forces & MWFRS for reactions shown; Lumber
	DOL=1.60 plate grip DOL=1.60
3)	Truss designed for wind loads in the plane of the truss
	only. For studs exposed to wind (normal to the face),
	see Standard Industry Gable End Details as applicable,
	or consult qualified building designer as per ANSI/TPI 1.
4)	All plates are 2x4 () MT20 unless otherwise indicated.
5)	Gable requires continuous bottom chord bearing.
6)	Gable studs spaced at 4-0-0 oc.
7)	This truss has been designed for a 10.0 psf bottom
	chord live load nonconcurrent with any other live loads.
	3) 4) 5) 6) 7)

CSI

тс

BC

WB

Matrix-MS

Wind: ASCE 7-10; Vult=130mph (3-second gust)

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 9) All bearings are assumed to be SP No.2.

10) Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 106 lb uplift at joint 1, 32 lb uplift at joint 7, 322 lb uplift at joint 12, 230 lb uplift at joint 13, 323 lb uplift at joint 9 and 221 lb uplift at ioint 8

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	V03	Valley	1	1	Job Reference (optional)	171630649

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 10:08:56 ID:yRXQnLZMA9RMmFWCXiGuFXzIYIn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:61.9

			-											
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.31	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.21	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.40	Horiz(TL)	0.01	5	n/a	n/a		
BCDL		10.0	Code	IRC201	5/TPI2014	Matrix-MS							Weight: 84 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD	2x4 SP N 2x4 SP N 2x4 SP N Structura 10-0-0 oc	o.2 o.2 o.3 I wood she purlins.	athing directly appli	4 5 6 7 ed or	Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar	es continuous boi spaced at 4-0-0 d as been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w by other members	ttom chor bc. for a 10.0 with any d for a liv as where vill fit betv with BC	d bearing.) psf bottom other live loa e load of 20.0 a rectangle veen the botto DL = 10 0psf	ds. Dpsf om					
BOT CHORD	Bracing.	ing directly	applied or 6-0-0 oc	8	All bearings	are assumed to b	e SP No.	2.	•					
REACTIONS	(size) Max Horiz Max Uplift Max Grav	1=17-9-12 7=17-9-12 1=-267 (L 1=-53 (LC 9=-375 (L 1=149 (LC 6=564 (LC 9=570 (LC	2, 5=17-9-12, 6=17- 2, 9=17-9-12 C 8) 6 8) 6=-370 (LC 13) C 12) 2 20), 5=116 (LC 22 C 20), 7=511 (LC 19 C 19)	9-12, ⁹), L 2), 9),	 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 53 lb uplift at joint 1, 375 lb uplift at joint 9 and 370 lb uplift at joint 6. LOAD CASE(S) Standard 									
FORCES	(lb) - Maximum Compression/Maximum													
TOP CHORD	1-2=-274, 4-5=-214,	′311, 2-3=- ′274	53/193, 3-4=-34/16	193, 3-4=-34/169,										
BOT CHORD	D 1-9=-263/262, 7-9=-263/262, 6-7=-263/262, 5-6=-263/262													

WEBS 3-7=-335/11, 2-9=-457/394, 4-6=-457/391

NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-9 to 3-0-9. Interior (1) 3-0-9 to 8-11-7, Exterior (2) 8-11-7 to 11-11-7, Interior (1) 11-11-7 to 17-10-5 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

SEAL 036322 February 26,2025

Page: 1

g) B18 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	V04	Valley	1	1	Job Reference (optional)	171630650

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 10:08:56 ID:JOKJq3dU?h3et0PAJFs3yazIYIi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

14-2-2

DEFL

in (loc)

Scale =	1:54.5
---------	--------

Loading

TCLL (roof)		20.0	Plate Grip DOL	1.15			TC	0.20	Vert(LL)	n/a	-	n/a	999	MT20
TCDL		10.0	Lumber DOL	1.15			BC	0.16	Vert(TL)	n/a	-	n/a	999	
BCLL		0.0*	Rep Stress Incr	YES			WB	0.15	Horiz(TL)	0.00	5	n/a	n/a	
BCDL		10.0	Code	IRC2	2015	/TPI2014	Matrix-MS							Weight:
LUMBER TOP CHORD	2x4 SP N	0.2			4) 5)	Gable require	es continuous b spaced at 4-0-0	ottom chor) oc.	d bearing.					
BOT CHORD	2x4 SP N	0.2			6)	This truss ha	s been designe	d for a 10.	0 psf bottom					
OTHERS	2x4 SP N	0.3				chord live loa	ad nonconcurre	nt with any	other live loa	ds.				
BRACING					7)	* This truss h	nas been desigr	ned for a liv	e load of 20.	Opsf				
TOP CHORD	Structura 6-0-0 oc	l wood shea purlins.	athing directly applie	ed or		on the bottor 3-06-00 tall b	n chord in all ar by 2-00-00 wide	will fit betv	a rectangle veen the bott	om				
BOT CHORD	Rigid ceil bracing.	ing directly	applied or 6-0-0 oc		8)	All bearings	are assumed to	be SP No.	DL = 10.0ps 2.					
REACTIONS	(size)	1=14-2-2, 7=14-2-2,	5=14-2-2, 6=14-2-2 8=14-2-2	<u>,</u>	9)	bearing plate	capable of with	nstanding 5	ers) of truss	oint				
	Max Horiz	1=-212 (L	C 8)			uplift at joint	ai juini 5, 292 id 6	upilit at jui	ni o anu 200	a				
	Max Uplift	1=-58 (LC (LC 13), 8	8), 5=-7 (LC 9), 6= =-292 (LC 12)	-286	LO	AD CASE(S)	Standard							
	Max Grav	1=149 (LC 6=417 (LC 8=423 (LC	C 20), 5=111 (LC 19 C 20), 7=389 (LC 19 C 19)),),										
FORCES	(lb) - Max	timum Com	pression/Maximum											
TODOUGES	Tension	400.00												
TOP CHORD	1-2=-189	/186, 2-3=-'	144/171, 3-4=-143/1	148,										
	4-0=-144		100/400 07 100/4	100										

CSI

(psf)

Spacing

2-0-0

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-9 to 3-1-10, Interior (1) 3-1-10 to 7-1-10, Exterior (2) 7-1-10 to 10-1-10, Interior (1) 10-1-10 to 14-2-11 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

SEAL 036322 February 26,2025

L/d PLATES

GRIP 244/190

FT = 20%

64 lb

l/defl

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	V05	Valley	1	1	Job Reference (optional)	171630651

5-3-4

Builders FirstSource (Sumter, SC), Sumter, SC - 29153,

Run; 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 10:08:56 ID:CAaqgQg?3wZ4LdixY5x?7QzIYIe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-6-8

Page: 1

Scale = 1:43.9

10-6-8

oading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
FCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.12	Vert(LL)	n/a	-	n/a	999	MT20	244/190
FCDL		10.0	Lumber DOL	1.15		BC	0.06	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.07	Horiz(TL)	0.00	5	n/a	n/a		
BCDL		10.0	Code	IRC2015	5/TPI2014	Matrix-MS							Weight: 47 lb	FT = 20%
UMBER OP CHORD OT CHORD THERS BRACING OP CHORD	2x4 SP N 2x4 SP N 2x4 SP N Structural 6-0-0 oc p Rigid ceili	o.2 o.2 o.3 wood she ourlins. ng directly	athing directly applie	4) 5) 6) 7) ed or	Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar	es continuous bo spaced at 3-0-0 o is been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w hy other members	ttom chor oc. for a 10.0 with any d for a live as where vill fit betw s.	d bearing.) psf bottom other live loa e load of 20.0 a rectangle reen the bott	ads. Opsf om					
REACTIONS	bracing. (size) Max Horiz Max Uplift Max Grav	1=10-6-8, 7=10-6-8, 1=-156 (L 1=-43 (LC (LC 13), 8 1=114 (LC 6=293 (LC 8=299 (LC	5=10-6-8, 6=10-6-8 8=10-6-8 C 8) =-212 (LC 12) 2 (LC 12) 2 (20), 5=85 (LC 19), 2 20), 7=196 (LC 19) C 19)	8) 9) 207 LC	All bearings Provide mec bearing plate 1, 4 lb uplift a uplift at joint DAD CASE(S)	are assumed to b hanical connectic e capable of withs at joint 5, 212 lb u 6. Standard	e SP No.: on (by othe standing 4 uplift at join	2 . ers) of truss : 3 lb uplift at j nt 8 and 207	to joint Ib					
ORCES	(lb) - Max Tension	imum Com	pression/Maximum											
TOP CHORD	1-2=-136/ 4-5=-103/	'133, 2-3=- '84	117/128, 3-4=-117/1	20,										
BOT CHORD	1-8=-74/1 5-6=-74/1	17, 7-8=-7- 17	4/117, 6-7=-74/117,											
VEBS	3-7=-138/	2, 2-8=-28	4/241, 4-6=-284/238										minin	1111.

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-9 to 3-0-9, Interior (1) 3-0-9 to 5-3-13, Exterior (2) 5-3-13 to 8-3-13, Interior (1) 8-3-13 to 10-7-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

With the the state of the VIIIIIIIIIII SEAL 036322 GI 40000 February 26,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	V06	Valley	1	1	Job Reference (optional)	71630652

Run: 8 83 S. Feb 18 2025 Print: 8 830 S Feb 18 2025 MiTek Industries. Inc. Tue Feb 25 10:08:56 ID:NHk_BpvTlyWAK22ivda3lzlYIT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Spacing 1 001 DEEL (nof) 2-0-0 All bearings are assumed to be SP No.2 . 8) Provide mechanical connection (by others) of truss to 9) Structural wood sheathing directly applied or bearing plate capable of withstanding 6 lb uplift at joint 3 6-10-14 oc purlins. and 168 lb uplift at joint 4. Rigid ceiling directly applied or 6-0-0 oc LOAD CASE(S) Standard bracing. REACTIONS (size) 1=6-10-14, 3=6-10-14, 4=6-10-14 Max Horiz 1=-100 (LC 8) Max Uplift 3=-6 (LC 8), 4=-168 (LC 12)

3-2-8

1=69 (LC 23), 3=69 (LC 24), 4=458 Max Grav (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension

1-2=-91/176, 2-3=-91/164

TOP CHORD

Scale = 1:29.9

BRACING

TOP CHORD

BOT CHORD

BOT CHORD 1-4=-194/161, 3-4=-194/161 WEBS 2-4=-363/205

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-9 to 3-0-9, Interior (1) 3-0-9 to 3-6-0, Exterior (2) 3-6-0 to 6-2-15, Interior (1) 6-2-15 to 6-11-7 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 4-0-0 oc. 5)
- 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

1111111111 CHILDRAN IN SEAL 036322 G mmm

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second way the approximation of design and the property incorporate this design into the overall building design. Bracing indicated is to prevent building of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.16	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.16	Vert(TL)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.08	Horiz(TL)	0.00	3	n/a	n/a			
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MP							Weight: 27 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3		7) * This truss on the botto 3-06-00 tall chord and a	has been design m chord in all are by 2-00-00 wide ny other membe	ed for a liv eas where will fit betw rs.	e load of 20.0 a rectangle veen the botto)psf om						

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	V07	Valley	1	1	Job Reference (optional)	171630653

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 10:08:57 ID:F2_VqZsPXXSyexMpxliWEbzIYIP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3-3-4

Scal	e = 1:22	.5			

Plate Offsets	(X,	Y):	[2:0-3-0,E	dge]
---------------	-----	-----	------------	------

Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.07	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL		10.0	Code	IRC201	5/TPI2014	Matrix-MP							Weight: 10 lb	FT = 20%
LUMBER				8	All bearings	are assumed to be	SP No.	2.						
TOP CHORD	2x4 SP No.	2		9	Provide mec	hanical connection	n (by oth	ers) of truss to	0					
BOT CHORD	2x4 SP No.	2			bearing plate	e capable of withsta	anding 3	1 lb uplift at j	oint					
BRACING		-			1 and 31 lb u	iplift at joint 3.		. ,						
TOP CHORD	Structural w	wood she	athing directly applie	dor L	OAD CASE(S)	Standard								
	3-3-4 00 00	rline	atiling anceay applie	u 01 –										
BOT CHORD	Rigid ceiling	g directly	applied or 10-0-0 or	:										
	bracing.													
REACTIONS	(size) 1	=3-3-4, 3	3=3-3-4											
	Max Horiz 1	=-45 (LC	; 8)											
	Max Uplift 1	=-31 (LC	12), 3=-31 (LC 13)											
	Max Grav 1	=131 (LC	C 1), 3=131 (LC 1)											
FORCES	(lb) - Maxim	num Com	pression/Maximum											
	Tension													
TOP CHORD	1-2=-163/63	3, 2-3=-1	63/63											
BOT CHORD	1-3=-41/13	0												
NOTES														
1) Unbalanc	ed roof live loa	ads have	been considered for											
, this desig	n.													
2) Wind: AS	CE 7-10; Vult=	=130mph	(3-second gust)											
Vasd=10	3mph; TCDL=6	6.0psf; B	CDL=6.0psf; h=25ft;	Cat.										
II; Exp C;	Enclosed; MV	VFRS (er	velope) exterior zon	е									mm	1111
and C-C	Exterior (2) zoi	ne; cantil	ever left and right										WHILL CA	Pall
exposed	; end vertical le	eft and rig	ght exposed;C-C for										altion	no l'in
members	and forces &	MWFRS	for reactions shown;									ا جمير	OTESS	All's
Lumber D	OL=1.60 plate	e grip DO	L=1.60									Se		N. Salt
Truss des	signed for wind	l loads in	the plane of the trus	S							<u> </u>		.05	The second
only. For	studs expose	d to wind	(normal to the face)	,							-	() I		
see Stan	dard Industry C	able En	d Details as applicat	le,							=		SEA	L : =
or consul	t qualified build	aing desig	gner as per ANSI/TF	11.							=	:	0262	22 : =
4) Gable red	uires continuo	ous bottor	m chord bearing.								1	•	0363	22 ; :
5) Gable stu	los spaced at 4	4-0-0 oc.	10.0 (1 //											1
6) This truss	s has been des	signed for	r a 10.0 pst bottom	1-								2	·	all S
chord live	load nonconc	urrent wi	th any other live load	1S.								20	Nº. SMO	-enix s

* This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

PIC

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

A. GILBER

February 26,2025

A. GILBEN

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	V08	Valley	1	1	Job Reference (optional)	171630654

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 10:08:57 ID:zzaHwz_hAbjXrT6kWrusdizIYIF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

17-2-5

Scale = 1:44.7

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.28	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.17	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.15	Horiz(TL)	0.00	6	n/a	n/a		
BCDL	10.0	Code	IRC207	5/TPI2014	Matrix-MS							Weight: 67 lb	FI = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 10-0-0 oc purlins. Rigid ceiling directly	athing directly applie applied or 6-0-0 oc	3 4 d or 5 6	 Truss design only. For stu see Standard or consult qu Gable require Gable studs This truss had chord live load 	ed for wind load ids exposed to d Industry Gable alified building es continuous b spaced at 4-0-0 is been designe ad nonconcurre	ds in the pla wind (norm e End Deta designer as ottom chor o c. ed for a 10.0 nt with any	ane of the tru al to the face ils as applica s per ANSI/TI d bearing. O psf bottom other live loa	ss), ble, Pl 1. ds.					
REACTIONS	(size) 1=17-4-0, 7=17-4-0, Max Horiz 1=163 (LC Max Uplift 1=-17 (LC 6=-231 (L 9=-233 (L Max Grav 1=103 (LC 6=451 (LC 9=453 (LC	5=17-4-0, 6=17-4-0 9=17-4-0 2 11) 13), 5=-11 (LC 13), C 13), 7=-5 (LC 12), C 12) 2 23), 5=103 (LC 24) 2 20), 7=397 (LC 1), 2 19)	, , , , 1	 This truss h on the bottor 3-06-00 tall b chord and ar All bearings Provide mec bearing plate 1, 11 lb uplift joint 9 and 23 Beveled plate 	has been desigr in chord in all ar by 2-00-00 wide are assumed to hanical connect capable of witt at joint 5, 5 lb o 31 lb uplift at joi e or shim requir	ed for a liv eas where will fit betw rs. be SP No. tion (by oth hstanding 1 uplift at join nt 6. ed to provi	e load of 20.0 a rectangle veen the botto 2 . ers) of truss t 7 lb uplift at j t 7, 233 lb up de full bearing	Opsf om oont lift at g					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	L	OAD CASE(S)	truss chord at jo Standard	oint(s) 1, 5.							
TOP CHORD	1-2=-136/266, 2-3=- 4-5=-131/214	15/201, 3-4=0/188,											
BOT CHORD	1-9=-204/154, 7-9=-2 5-6=-204/137	204/137, 6-7=-204/1	37,									mm	<u>ши,</u>
WEBS	3-7=-340/61, 2-9=-34	47/259, 4-6=-347/25	8									WAH CA	Ro'l
NOTES											- N	R	- Vi
1) Unbalance this design	ed roof live loads have n.	been considered for								4	È	FES	Riv

Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 8-8-0, Exterior (2) 8-8-0 to 11-8-0, Interior (1) 11-8-0 to 17-4-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber

DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	V09	Valley	1	1	Job Reference (optional)	171630655

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 10:08:57 ID:JxOAzh2p?8LpyE?iJOT1KIzIYIA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale =	1:41.6
---------	--------

11-5-11

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	015/TPI2014	CSI TC BC WB Matrix-MS	0.12 0.06 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 42 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structura 10-0-0 oc Rigid ceil bracing. (size) Max Horiz Max Uplift Max Grav	o.2 o.2 o.3 I wood she : purlins. ing directly 1=11-7-7, 7=11-7-7, 1=-107 (L 1=-20 (LC 6=-150 (L 1=81 (LC (LC 20), 7 19)	athing directly applie applied or 6-0-0 oc 5=11-7-7, 6=11-7-7 8=11-7-7 C 8) 13), 5=-12 (LC 13) C 13), 8=-151 (LC 1 20), 5=78 (LC 24), ('=240 (LC 1), 8=298	ed or 7, 12) 6=297 3 (LC	 4) Gable requir 5) Gable studs 6) This truss had chord live lo 7) * This truss lo on the botton 3-06-00 tall lochord and at 8) All bearings 9) Provide med bearing plate 1, 12 lb uplift uplift at joint 10) Beveled platt surface with 	es continuous b spaced at 3-0-0 as been designe ad nonconcurren has been designe m chord in all ar by 2-00-00 wide ny other membe are assumed to chanical connect e capable of with t at joint 5, 151 I 6. e or shim requir truss chord at jo Standard	bottom chor o cc. ed for a 10.0 nt with any ned for a liv reas where e will fit betw ers. b es P No. tion (by oth- hstanding 2 lb uplift at jo red to provisio point(s) 1, 5.	d bearing.) psf bottom other live loa e load of 20.1 a rectangle eveen the bott 2. ers) of truss t 0 lb uplift at j bint 8 and 15 de full bearin	ids. Dpsf om oint 0 lb g					
FORCES	(lb) - Max	timum Com	pression/Maximum											
TOP CHORD	1-2=-114	/117, 2-3=- 33	52/98, 3-4=-52/84,											
BOT CHORD	552/05 1-8=-71/110, 7-8=-71/70, 6-7=-71/70, 5-6=-71/75													
WEBS	3-7=-187	/37, 2-8=-2	38/174, 4-6=-238/17	73									munn	UIII.
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103	ed roof live n. CE 7-10; Vu 3mph; TCDL	loads have Ilt=130mph .=6.0psf; B	been considered fo (3-second gust) CDL=6.0psf; h=25ft;	or ; Cat.							4	1 III	ORTH CA	ROLIN

- 2 II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-0 to 2-9-11, Interior (1) 2-9-11 to 5-9-11, Exterior (2) 5-9-11 to 8-9-11, Interior (1) 8-9-11 to 11-7-7 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

anna anna The community SEAL 036322 GI 111111111 February 26,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	V10	Valley	1	1	Job Reference (optional)	171630656

1-8-11

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries. Inc. Tue Feb 25 10:08:57 ID:V2YKHSAjPWkGmxLpSCAcH3zIYI?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3

2x4 👟

2x4 🍃

2x4 II

5-9-2

Scale = 1:23.9

Loading TCLL (roof) TCDL BCLL BCDI	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	015/TPI2014	CSI TC BC WB Matrix-MP	0.09 0.10 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	IKUZ	015/1912014	IVIAUIX-IVIP							weight. To b	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-9-2 oc purlins. Rigid ceiling directly bracing.	 7) * This truss has been designed for a lin on the bottom chord in all areas where 3-06-00 tall by 2-00-00 wide will fit bet chord and any other members. 8) All bearings are assumed to be SP Nc 9) Provide mechanical connection (by oth bearing plate capable of withstanding 1, 26 lb uplift at joint 3 and 86 lb uplift 100 DC ASE(S) Standard 						Dpsf Dm o oint					
FORCES	(size) 1=5-9-2, 2 Max Horiz 1=-52 (LC Max Uplift 1=-17 (LC 4=-86 (LC Max Grav 1=70 (LC (LC 1) (lb) - Maximum Com Tension	3=5-9-2, 4=5-9-2 2 8) 2 12), 3=-26 (LC 13), 2 12) 2 3), 3=70 (LC 24), 4 hpression/Maximum	l=351										
TOP CHORD	1-2=-71/133, 2-3=-7	1/131											

BOT CHORD 1-4=-139/91. 3-4=-139/91 WEBS 2-4=-231/115

NOTES

1) Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph (3-second gust)

- 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 4-0-0 oc.

- 5) 6)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

MILLIN \cap Volume and a state of the AND DUDIN SEAL 036322 GI 111111111 February 26,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493324	V11	Valley	1	1	Job Reference (optional)	171630657

2-5-13

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 10:08:57 ID:M7YbieJZ6Ba1wmQ2un3Ri0zSSNQ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

8-4-7

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MS	0.19 0.19 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 8-4-7 oc purlins. Rigid ceiling directly bracing. (size) 1=8-4-7, 3 Max Horiz 1=-77 (LC Max Uplift 1=-15 (LC 4=-144 (L Max Grav 1=82 (LC (LC 1)	athing directly applied applied or 6-0-0 oc 3=8-4-7, 4=8-4-7 ; 8) ; 12), 3=-27 (LC 13), C 12) ; 23), 3=82 (LC 24), 4:	e 7 d or 8 5 L =562	 This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings a Provide mec bearing plate 27 Ib uplift CAD CASE(S) 	s been designed f ad nonconcurrent v has been designed n chord in all areas by 2-00-00 wide wi hy other members. are assumed to be hanical connectior capable of withst at joint 3 and 144 Standard	or a 10.0 with any I for a liv s where II fit betv e SP No. a (by oth anding 1 Ib uplift	D psf bottom other live load e load of 20.0 a rectangle veen the botto 2. ers) of truss to 5 lb uplift at jo at joint 4.	ds. Ipsf om Dont					
FORCES TOP CHORD BOT CHORD WEBS NOTES	(lb) - Maximum Com Tension 1-2=-86/245, 2-3=-8 1-4=-232/135, 3-4=- 2-4=-435/208	pression/Maximum 5/245 232/135											
1) Unbalance	d roof live loads have	been considered for											

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-14 to 3-0-14, Interior (1) 3-0-14 to 4-3-1, Exterior (2) 4-3-1 to 7-5-3, Interior (1) 7-5-3 to 8-5-5 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 4-0-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

