


Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

# Builder: HH Hunt Homes Raleigh Durham

# Model: Greystone FA SP 3FL 3CG FE GLH



## THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

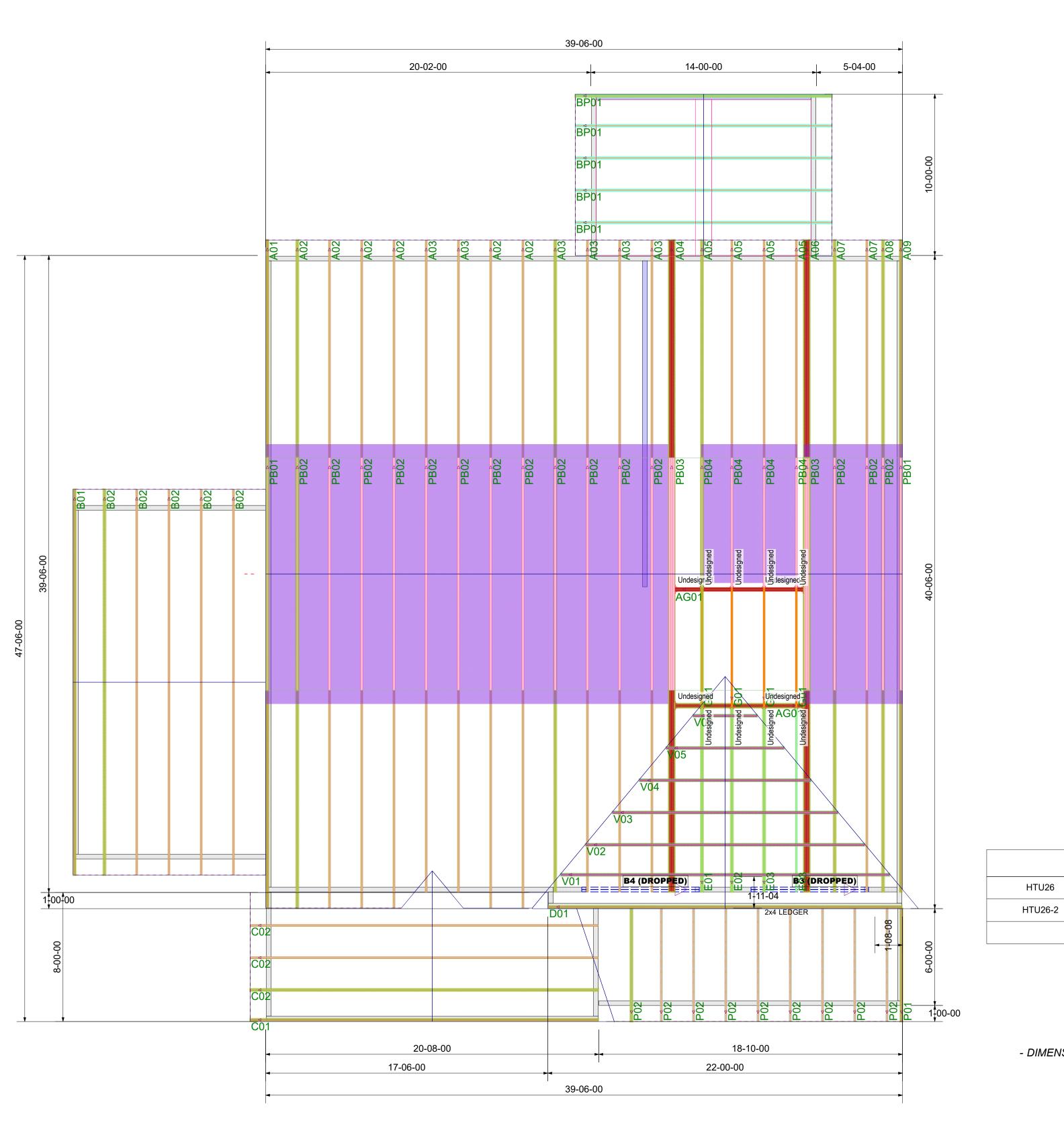
6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

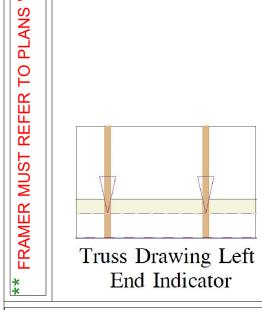
7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death. 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: \_\_\_\_\_

Date: \_\_\_\_\_


U Z


WHILE

REFER

MUST

**E**R





| GIRDERS MUST BE FULLY CONNECTED TOGETHER                              | CONNEC | CTED TOGETHER PRIOR TO ADDING ANY LOADS. DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH. |        | ANSI/TPI 1, all uplift connectors are the responsibility of the bldg designer and or contractor.                                                                                                                                                                                                                         | and or contract              | or.    |
|-----------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------|
| Bla<br><b>25</b>                                                      | Scale: | HH Hunt Homes Raleigh Durham                                                          |        | <b>THIS IS A TRUSS PLACEMENT DIAGRAM ONLY.</b> These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for                                                                                           | 00/00/<br>00/00/<br>00/00/   | 00/00/ |
| /19/202<br>Designer<br>ke Scriv<br>Project Nur<br>030054<br>Sheet Nun | NTS    | Install 50 Magnolia Acres                                                             |        | each truss design identified on the placement drawing. The building designer<br>is responsible for temporary and permanent bracing of the roof and floor<br>systems and for the overall structure. The disign of the tuss support structure<br>including headers, beams, walls, and columns is the responsibility of the | 00 I<br>00 I                 |        |
| :<br>vner<br>mber:<br>- <b>01</b>                                     |        | Roof Truss Layout                                                                     | ramaer | Madison, WI 53179<br>Madison, WI 53179                                                                                                                                                                                                                                                                                   | Name<br>Name<br>Name<br>Name | Name   |

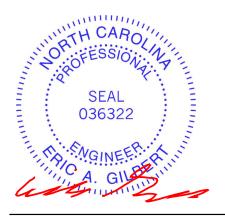
| Hange | er List |
|-------|---------|
|       | 8       |
|       | 4       |
|       |         |

- DIMENSIONS ARE TO OUTSIDE OF SHEATHING





Trenco 818 Soundside Rd Edenton, NC 27932


Re: 25030054-01 Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL 3CG FE GLH

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I72141552 thru I72141583

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844



March 20,2025

### Gilbert, Eric

**IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

| Job         | Truss | Truss Type            | Qty | Ply | Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL |
|-------------|-------|-----------------------|-----|-----|----------------------------------------------------|
| 25030054-01 | A01   | Attic Supported Gable | 1   | 1   | Job Reference (optional)                           |

11-10-3 11-4-0

Scale = 1:82.6

0-11-0

-1-0-0 1-0-0

3

43

4x5=

42

2

5-11-0

5-11-0

11-6-4

5-7-4

8

12 10⊏

7

6 5

41

12-6-0

0-11-12

4x8 🖌 1213

53

, 11 9<sup>10</sup>

Run; 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Mar 19 09:42:35 ID:zM6vSJYbevk?G3HxDbZA6gzZPuM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

40-5-0 27-10-12 26-11-0 39-5-0 14-5-0 0-11-12 11-6-4 MT18HS 10x12 🖌 6x8= 15 \_14 ⊠ 16 🖂 17 18 19 20 8x10、 21 22 52 51 50 49 48 46 47 45 23 4x5 II 24 25 26 27 28°,T 37 36 4x5= 4x5 = 4x5 = 356x12= 34 33 32 31 30 29 6x8= 4x5= 4x8= 6x10= 5x6= 4x5= 4x8= 15-11-0 23-5-0 27-10-12 39-5-0 4-5-12 4-4-12 7-6-0 11-6-4

Plate Offsets (X, Y): [12:0-7-12,0-3-10], [20:0-5-12,0-3-8], [22:0-5-0,0-4-8], [27:Edge,0-0-15], [38:0-2-4,0-2-8]

11-6-4

11-6-4

40

39

5438

5x10=

|                                                                                                           | Te Offsets (X, Y): [12:0-7-12,0-3-10], [20:0-5-12,0-3-8], [22:0-5-0,0-4-8], [27:Edge,0-0-15], [38:0-2-4,0-2-8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                                                                                                         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                      |                                          |                          |                                                |                                                                                                                                                             |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                            |                                                       |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL                                            | 18.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (psf)<br>20.0<br>.9/20.0<br>10.0<br>0.0*<br>10.0 | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                               | 1-10-4<br>1.15<br>1.15<br>YES<br>IRC20 | 4<br>015/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                 | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                                                                                        | 0.58<br>0.40<br>0.95                                                                                                                                                                                 | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT) | in<br>n/a<br>n/a<br>0.02 | (loc)<br>-<br>27                               | l/defl<br>n/a<br>n/a<br>n/a                                                                                                                                 | L/d<br>999<br>999<br>n/a                                                                                                                                                 | PLATES<br>MT20<br>MT18HS<br>Weight: 425 lb                                                                                                                                                                                                                                                                                        | <b>GRIP</b><br>244/190<br>244/190<br>FT = 20%                                                                                                                                                                                                              |                                                       |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>JOINTS | BOT CHORD         2x6 SP 2400F 2.0E         *Except* 38-37,37-34:2x8         SP 2400F 2.0E           WEBS         2x4 SP No.3 *Except* 11-38,21-34:2x4 SP No.2         No.2           OTHERS         2x4 SP No.3         Except* 11-38,21-34:2x4 SP No.3           BRACING         TOP CHORD         Structural wood sheathing directly applied or 6-0-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 12-20.         BOT CHORD           BOT CHORD         Rigid ceiling directly applied or 10-0-0 oc bracing.         BOT CH           WEBS         1 Row at midpt         38-44, 34-45           JOINTS         1 Brace at Jt(s): 46, 47, 48, 49, 50, 51, 52, 53, 55         SF           REACTIONS         (size)         2=39-5-0, 27=39-5-0, 29=39-5-0, WEBS |                                                  |                                                                                                         |                                        | TOP CHORD                                                                                                                                                                                                                                                                                                                                                                                                        | 4-5=-311/152, 5-6=-351/166, 6-7=-334/182,<br>7-8=-409/223, 8-10=-274/269,<br>10-11=-219/269, 11-12=-766/347,<br>12-13=-556/325, 13-14=-556/325,<br>14-15=-556/325, 15-16=-556/325,<br>16-17=-556/325, 17-18=-556/325,<br>18-19=-556/325, 19-20=-555/325,<br>20-21=-394/271, 21-23=-265/249,<br>23-24=-306/198, 24-25=-283/137,<br>25-26=-382/97, 26-27=-248/84, 27-28=0/45 |                                                                                                                                                                                                      |                                          |                          |                                                | ed=91mp<br>erior (2)<br>ical left :<br>eres & MV<br>L=1.60 p<br>ss desig<br>/. For st<br>Standa<br>consult q<br>L=1.15 f<br>w); Pf=1<br>te DOL=<br>1.10, Lu | bh; TCI<br>nclosed<br>zone;<br>and rig<br>WFRS<br>blate gr<br>ned fo<br>tuds ex<br>rd Indu<br>ualified<br>E 7-10<br>Plate D<br>8.9 ps<br>1.15);<br>=50-0-                | Vult=115mph (3<br>DL=6.0psf; BCDL<br>d; MWFRS (enve<br>cantilever left and<br>ht exposed;C-C1<br>for reactions sho<br>ip DOL=1.33<br>r wind loads in th<br>posed to wind (n<br>stry Gable End D<br>d building designe<br>; Pr=20.0 psf (roc<br>OL=1.15); Pg=20<br>f (flat roof snow:<br>Category II; Exp<br>0<br>n designed for g | .=6.0psf; h=25ft;<br>lope) and C-C<br>d right exposed ;<br>for members and<br>wn; Lumber<br>e plane of the tru<br>ormal to the face<br>Details as applica<br>er as per ANSI/T<br>of live load: Lumb<br>J.0 psf (ground<br>Lumber DOL=1.'<br>B; Fully Exp.; | end<br>I<br>Iss<br>2),<br>bble,<br>PI 1.<br>ber<br>15 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  | 9-5-0,<br>9-5-0,<br>9-5-0,<br>11),<br>15),<br>LC<br>LC 14),<br>2),<br>2 11),<br>LC 27),<br>33),<br>27), | NOTES<br>1) Unbalance                  | 27-29=-56/219<br>6-56=-42/77, 55-56<br>38-54=-55/119, 38<br>11-44=-665/77, 34<br>21-45=-871/98, 44<br>52-53=-65/324, 51<br>50-51=-65/324, 47<br>48-49=-65/324, 47<br>48-49=-65/324, 47<br>46-47=-180/53, 45<br>20-46=-53/91, 19<br>17-49=-21/7, 16-50<br>14-52=-71/23, 13-5<br>8-55=-46/192, 39-5<br>40-56=-188/67, 5-4<br>3-43=-85/49, 22-33<br>24-31=-152/73, 25<br>26-29=-366/96, 20<br>d roof live loads hav | -44=-56;<br>-45=-80(<br>-53=-65)<br>-52=-65)<br>-48=-65,<br>-46=-18(<br>47=-393)<br>)=-24/8,<br>53=-70/1<br>55=-44/2<br>41=-175,<br>3=-65/32<br>-30=-59/<br>-47=-15(                                                                                                                                                                                                       | 2/60,<br>1/58,<br>1/324,<br>1/52,<br>1/53,<br>1/00, 18-48=<br>15-51=-9/3,<br>99, 10-54=-22<br>16, 7-56=-182<br>16, 7-56=-182<br>16, 7-56=-182<br>16, 7-56=-182<br>17, 9, 23-32=-85/<br>119,<br>5/661 | 18/4,<br>2/76,<br>2/66,<br>3/71,<br>60,  | ove<br>6) Pro<br>7) All  | rhangs r<br>vide ade<br>plates ar<br>plates ar | non-co<br>equate<br>re MT2<br>re 2x4 I                                                                                                                      | 2.00 times flat rc<br>neurrent with oth<br>drainage to prev<br>0 plates unless on<br>MT20 unless of<br>MT20 unless of<br>MT20 unless of<br>MT20 unless of<br>SEA<br>0363 | er live loads.<br>ent water pondin<br>therwise indicate<br>erwise indicated.                                                                                                                                                                                                                                                      | g.<br>ed.                                                                                                                                                                                                                                                  |                                                       |
| FORCES                                                                                                    | (ID) - Maxir<br>Tension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  | pression/Maximum                                                                                        |                                        | this design                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                      |                                          |                          |                                                |                                                                                                                                                             |                                                                                                                                                                          | MA. G                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                            |                                                       |

March 20,2025

Page: 1



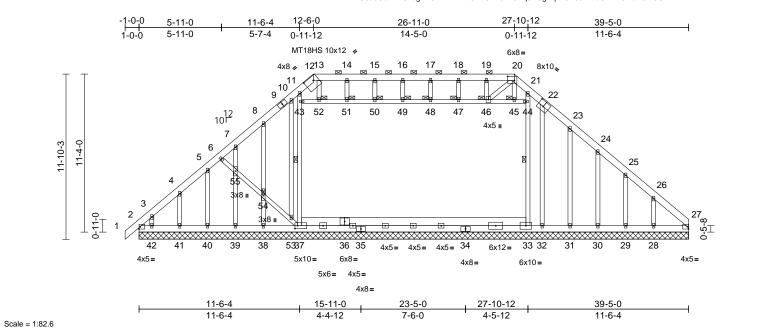
Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 1/2/2023 BEFORE USE WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type            | Qty | Ply | Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL |
|-------------|-------|-----------------------|-----|-----|----------------------------------------------------|
| 25030054-01 | A01   | Attic Supported Gable | 1   | 1   | I72141552<br>Job Reference (optional)              |

- 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 12) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf. 13) Ceiling dead load (10.0 psf) on member(s). 44-53,
- 52-53, 51-52, 50-51, 49-50, 48-49, 47-48, 46-47, 45-46 14) All bearings are assumed to be SP 2400F 2.0E
- 15) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 144 lb uplift at joint 2, 518 lb uplift at joint 39, 2 lb uplift at joint 41, 20 lb uplift at joint 42, 55 lb uplift at joint 43, 1449 lb uplift at joint 33, 10 lb uplift at joint 31, 466 lb uplift at joint 30, 20 lb uplift at joint 29 and 144 lb uplift at joint 2.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 17) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated. 18) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Wed Mar 19 09:42:35 ID:zM6vSJYbevk?G3HxDbZA6gzZPuM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| Job         | Truss | Truss Type            | Qty | Ply | Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL |
|-------------|-------|-----------------------|-----|-----|----------------------------------------------------|
| 25030054-01 | A09   | Attic Supported Gable | 1   | 1   | I72141553<br>Job Reference (optional)              |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Mar 19 09:42:37 ID:DAG0deUuVZR3?ugkDGREkvzZPt9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



| Dioto Offecto (V. V):          | [12:0 7 12 0 2 10] [20:0 5 12 0 2 8] [22:0 5 0 0 4 8] [27:0 2 4 0 2 8]    |
|--------------------------------|---------------------------------------------------------------------------|
| Plate Offsets $(\Lambda, T)$ . | [12:0-7-12,0-3-10], [20:0-5-12,0-3-8], [22:0-5-0,0-4-8], [37:0-2-4,0-2-8] |

|                                                                                                           | x, i). [12.07 12,00                                                                                                                | 10], [20.0 0 12,0 0 0],                                     | [22.0 0 0,0 4 0], [07                            | .0 2 4,0 2 0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                               |                                            |                                                                |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL                                            | (psf)<br>20.0<br>18.9/20.0<br>10.0<br>0.0*<br>10.0                                                                                 | Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr             | 1-10-4<br>1.15<br>1.15<br>YES<br>IRC2015/TPI2014 | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.58<br>0.40<br>0.91                                                                                                                                       | <b>DEFL</b><br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | in<br>n/a<br>n/a<br>0.02                                                                                                                                                                       | (loc)<br>-<br>-<br>27                                                                                                                                             | l/defl<br>n/a<br>n/a<br>n/a                                                                                                                                                                                                                                                                          | L/d<br>999<br>999<br>n/a                                                                                                                                                                                                                                                                                      | PLATES<br>MT20<br>MT18HS<br>Weight: 422 lb | <b>GRIP</b><br>244/190<br>244/190<br>FT = 20%                  |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>JOINTS | SP 2400F 2.0E<br>2x4 SP No.3 *Excep<br>No.2<br>2x4 SP No.3<br>Structural wood she<br>6-0-0 oc purlins, ex<br>2-0-0 oc purlins (6-1 | 0-0 max.): 12-20.<br>/ applied or 10-0-0 oc<br>37-43, 33-44 |                                                  | $\begin{array}{c} 1\text{-}2\text{=}0/45,2\text{-}3\text{-}3\text{-}3\text{-}\\ 4\text{-}5\text{-}322/149,5\text{-}6\text{-}\\ 7\text{-}8\text{-}425/232,8\text{-}1\text{-}\\ 10\text{-}11\text{-}220/278,1\\ 10\text{-}11\text{-}220/278,1\\ 12\text{-}13\text{-}566/331,1\\ 14\text{-}15\text{-}566/331,1\\ 16\text{-}17\text{-}566/331,1\\ 20\text{-}21\text{-}413/277,2\\ 23\text{-}24\text{-}325/207,2\\ 23\text{-}24\text{-}325/207,2\\ 25\text{-}26\text{-}407/95,26\\ 2\text{-}42\text{-}37/224,41\\ 40\text{-}41\text{-}76/224,39\\ 38\text{-}39\text{-}76/224,37\\ 33\text{-}37\text{-}71/255,32\\ 31\text{-}32\text{-}61/231,30\\ 29\text{-}30\text{-}61/231,28\\ \end{array}$ | 80,                                                                                                                                                        | Vas<br>II; E<br>Ext<br>Veri<br>forc<br>DO<br>3) Tru<br>only<br>see<br>or c<br>4) TCI<br>DO<br>sno<br>Pla<br>Ct=<br>5) Thi:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sd=91mp<br>Exp B; E<br>erior (2)<br>tical left<br>tees & MV<br>L=1.60 p<br>ss desig<br>y. For si<br>Standa<br>consult q<br>L: ASC<br>L=1.15 I<br>ww); Pf=1<br>te DOL=<br>1.10, Lu<br>s truss h | oh; TCI<br>nclose<br>zone;<br>and rig<br>WFRS<br>olate guined fo<br>tuds ex<br>rd Indu<br>ualified<br>E 7-10<br>Plate D<br>18.9 ps<br>1.15);<br>u=50-0-<br>as bee | d; MWFRS (enve<br>cantilever left ann<br>what exposed;C-C i<br>for reactions sho<br>rip DDL=1.33<br>r wind loads in th<br>posed to wind (n<br>istry Gable End I<br>d building designu<br>; Pr=20.0 psf (roo<br>)OL=1.15); Pg=20<br>f (flat roof snow:<br>Category II; Exp<br>-0<br>an designed for g | =6.0psf; h=25ft; Cat.<br>lope) and C-C<br>d right exposed ; end<br>for members and<br>wn; Lumber<br>e plane of the truss<br>ormal to the face),<br>Details as applicable,<br>ar as per ANSI/TPI 1.<br>of live load: Lumber<br>0.0 psf (ground<br>Lumber DOL=1.15<br>B; Fully Exp.;<br>reater of min roof live |                                            |                                                                |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                      |                                                                                                                                    |                                                             |                                                  | 27-28=-61/231<br>6-55=-43/91, 54-5i<br>37-53=-56/134, 37<br>11-43=-628/79, 33<br>21-44=-829/77, 43<br>51-52=-61/316, 46<br>47-48=-61/316, 46<br>47-48=-61/316, 46<br>420-45=-54/93, 19<br>17-48=-21/7, 16-4i<br>14-51=-71/23, 13-i<br>8-54=-46/184, 38<br>39-55=-190/70, 5<br>3-42=-82/47, 22-3i<br>24-30=-150/72, 25<br>26-28=-350/87, 20<br>ad toof live loads basi                                                                                                                                                                                                                                                                                                                     | -43=-52<br>-44=-75<br>-52=-61<br>-49=-61<br>-49=-61<br>-45=-17<br>46=-387<br>9=-24/8,<br>52=-70/2<br>54=-45/2<br>40=-178<br>2=-66/32<br>-29=-59<br>-46=-15 | 5/63,<br>4/53,<br>(316,<br>(316,<br>(316,<br>(316,<br>(316,<br>(317, 18-47=-18))<br>(30, 10-53=-22)<br>(00, 10-53=-22)<br>(0 | 3/4,<br>2/77,<br>5/69,<br>7/70,<br>60,                                                                                                                                                         | ove<br>6) Pro<br>7) All<br>8) All                                                                                                                                 | rhangs i<br>vide ade<br>plates ar<br>plates ar                                                                                                                                                                                                                                                       | non-co<br>equate<br>re MT2<br>re 2x4                                                                                                                                                                                                                                                                          | ncurrent with oth<br>drainage to prev      | ent water ponding.<br>therwise indicated.<br>erwise indicated. |
| FORCES                                                                                                    | (lb) - Maximum Con<br>Tension                                                                                                      | npression/Maximum                                           | <ol> <li>Unbalance<br/>this design</li> </ol>    | ed roof live loads hav<br>า.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /e been                                                                                                                                                    | considered for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                               | A. G                                       | ILBLUT                                                         |

March 20,2025

Page: 1



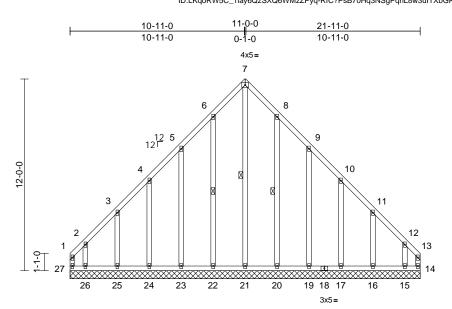
Continued on page 2. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Paracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

| Job                            | Truss                    | Truss Type            | Qty            | Ply         | Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL |         |  |  |  |
|--------------------------------|--------------------------|-----------------------|----------------|-------------|----------------------------------------------------|---------|--|--|--|
| 25030054-01                    | A09                      | Attic Supported Gable | 1              | 1           | Job Reference (optional)                           | 141553  |  |  |  |
| Carter Components (Sanford, NC | .). Sanford. NC - 27332. | Run: 8.73 S Feb 19 2  | 2025 Print: 8. | 730 S Feb 1 | 9 2025 MiTek Industries, Inc. Wed Mar 19 09:42:37  | Page: 2 |  |  |  |

- 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 12) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf. 13) Ceiling dead load (10.0 psf) on member(s). 43-52,
- 51-52, 50-51, 49-50, 48-49, 47-48, 46-47, 45-46, 44-45 14) All bearings are assumed to be SP 2400F 2.0E
- 15) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 141 lb uplift at joint 2, 514 lb uplift at joint 38, 2 lb uplift at joint 40, 20 lb uplift at joint 41, 56 lb uplift at joint 42, 1448 lb uplift at joint 32, 9 lb uplift at joint 30, 438 lb uplift at joint 29, 22 lb uplift at joint 28 and 141 lb uplift at joint 2.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 17) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated. 18) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Wed Mar 19 09:42:37 ID:DAG0deUuVZR3?ugkDGREkvzZPt9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| Job         | Truss | Truss Type             | Qty | Ply | Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL |
|-------------|-------|------------------------|-----|-----|----------------------------------------------------|
| 25030054-01 | D01   | Common Supported Gable | 1   | 1   | I72141554<br>Job Reference (optional)              |

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Wed Mar 19 09:42:38 ID:LKqoRW5C\_1iay6QzSXQ6WMzZPyq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1





| Scale = 1:72.1   |                                              |                        | •                            |                               |                               |               |          |                                                              |                                                    |                        |                     |          |  |
|------------------|----------------------------------------------|------------------------|------------------------------|-------------------------------|-------------------------------|---------------|----------|--------------------------------------------------------------|----------------------------------------------------|------------------------|---------------------|----------|--|
| Loading          | (psf)                                        | Spacing                | 1-10-4                       | CSI DEFL in                   |                               |               | in       | (loc)                                                        | l/defl                                             | L/d                    | PLATES              | GRIP     |  |
| TCLL (roof)      | 20.0                                         | Plate Grip DOL         | 1.15                         | TC                            | 0.16                          | Vert(LL)      | n/a      | -                                                            | n/a                                                | 999                    | MT20                | 244/190  |  |
| Snow (Pf/Pg)     | 13.9/20.0                                    | Lumber DOL             | 1.15                         | BC                            | 0.09                          | Vert(TL)      | n/a      | -                                                            | n/a                                                | 999                    |                     |          |  |
| TCDL             | 10.0                                         | Rep Stress Incr        | YES                          | WB                            | 0.19                          | Horiz(TL)     | 0.00     | 14                                                           | n/a                                                | n/a                    |                     |          |  |
| BCLL             | 0.0*                                         | Code                   | IRC2015/TPI2014              | Matrix-MR                     |                               |               |          |                                                              |                                                    |                        |                     |          |  |
| BCDL             | 10.0                                         | -                      |                              |                               |                               |               |          |                                                              |                                                    |                        | Weight: 180 lb      | FT = 20% |  |
| LUMBER           |                                              | 26-27=-84/102.         | 25-26=-84                    | /102                          |                               | 10) * Th      | is truss | has be                                                       | een designed for                                   | a live load of 20.0psf |                     |          |  |
| TOP CHORD        | 2x4 SP No.2                                  |                        | BOT CHORD                    | 24-25=-84/102, 23-24=-84/102, |                               |               |          |                                                              | on the bottom chord in all areas where a rectangle |                        |                     |          |  |
| BOT CHORD        |                                              |                        |                              |                               | 21-22=-84                     | /102,         |          | 3-06-00 tall by 2-00-00 wide will fit between the bottom     |                                                    |                        |                     |          |  |
| WEBS 2x4 SP No.3 |                                              |                        |                              | 20-21=-84/102, 19-20=-84/102, |                               |               |          | chord and any other members.                                 |                                                    |                        |                     |          |  |
| OTHERS           | DTHERS 2x4 SP No.3 *Except* 21-7:2x4 SP No.2 |                        |                              |                               | 17-19=-84/102, 16-17=-84/102, |               |          | <ol><li>All bearings are assumed to be SP No.2.</li></ol>    |                                                    |                        |                     |          |  |
| BRACING          |                                              |                        | 15-16=-84/102, 14-15=-84/102 |                               |                               |               |          |                                                              |                                                    |                        | others) of truss to |          |  |
| TOP CHORD        | Structural wood she                          | athing directly applie | dor WEBS                     | 7-21=-312/218,                | 6-22=-125                     | /68, 5-23=-13 | 31/91,   | bearing plate capable of withstanding 193 lb uplift at joint |                                                    |                        |                     |          |  |

| TOP CHORD | Structural wood sheathing directly a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| BOT CHORD | 6-0-0 oc purlins, except end vertical<br>Rigid ceiling directly applied or 10-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
| WEBS      | bracing.<br>1 Row at midpt 7-21, 6-22, 8-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ) NOTES           |
| REACTIONS | (size) 14=21-11-0, 15=21-11-0, 16=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-11-0, 17=21-10-10, 17=21-10-10-10-10-10-10-10-10-10-10-10-10-10 | 1) Unba<br>this d |
|           | 19=21-11-0, 20=21-11-0,<br>21=21-11-0, 22=21-11-0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2) Wind:<br>Vasd  |

|        |            | 21-21 11 0, 22-21 11 0,           |
|--------|------------|-----------------------------------|
|        |            | 23=21-11-0, 24=21-11-0,           |
|        |            | 25=21-11-0, 26=21-11-0,           |
|        |            | 27=21-11-0                        |
|        | Max Horiz  | 27=174 (LC 13)                    |
|        | Max Uplift | 14=-158 (LC 13), 15=-135 (LC 15), |
|        | -          | 16=-27 (LC 15), 17=-34 (LC 15),   |
|        |            | 19=-38 (LC 15), 20=-25 (LC 15),   |
|        |            | 22=-26 (LC 14), 23=-37 (LC 14),   |
|        |            | 24=-34 (LC 14), 25=-27 (LC 14),   |
|        |            | 26=-153 (LC 11), 27=-193 (LC 12)  |
|        | Max Grav   | 14=208 (LC 10), 15=196 (LC 26),   |
|        |            | 16=156 (LC 26), 17=156 (LC 26),   |
|        |            | 19=156 (LC 26), 20=161 (LC 26),   |
|        |            | 21=220 (LC 15), 22=162 (LC 25),   |
|        |            | 23=155 (LC 25), 24=156 (LC 25),   |
|        |            | 25=155 (LC 25), 26=212 (LC 25),   |
|        |            | 27=243 (LC 11)                    |
| FORCES | (lb) - Max | imum Compression/Maximum          |
|        | Tension    |                                   |

TOP CHORD 1-27=-164/130, 1-2=-191/163, 2-3=-123/111, 3-4=-110/95, 4-5=-107/112, 5-6=-173/193, 6-7=-228/257, 7-8=-228/257, 8-9=-173/193, 9-10=-107/112, 10-11=-93/73, 11-12=-102/89, 12-13=-163/134, 13-14=-139/105

7-21=-312/218. 6-22=-125/68. 5-23=-131/91. 4-24=-123/82, 3-25=-128/85, 2-26=-143/119, 8-20=-124/68, 9-19=-131/91, 10-17=-123/82, 11-16=-128/85, 12-15=-141/118

- alanced roof live loads have been considered for desian.
- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 4) DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.;
- Ct=1.10 All plates are 2x4 MT20 unless otherwise indicated. 5)
- Gable requires continuous bottom chord bearing. 6)
- Truss to be fully sheathed from one face or securely 7) braced against lateral movement (i.e. diagonal web).
- 8) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 9)
- chord live load nonconcurrent with any other live loads.



27, 158 lb uplift at joint 14, 26 lb uplift at joint 22, 37 lb

25, 153 lb uplift at joint 26, 25 lb uplift at joint 20, 38 lb uplift at joint 19, 34 lb uplift at joint 17, 27 lb uplift at joint

16 and 135 lb uplift at joint 15.

LOAD CASE(S) Standard

uplift at joint 23, 34 lb uplift at joint 24, 27 lb uplift at joint

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietur Information**. Building from the Structure Building Component Advance interpretented and the properties of th and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



818 Soundside Road

Edenton, NC 27932

| Job         | Truss | Truss Type | Qty | Ply | Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL |
|-------------|-------|------------|-----|-----|----------------------------------------------------|
| 25030054-01 | V01   | Valley     | 1   | 1   | I72141555<br>Job Reference (optional)              |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Mar 19 09:42:39 ID:6tJp6GBD6UiRvK1WwCa\_r2zZPyi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

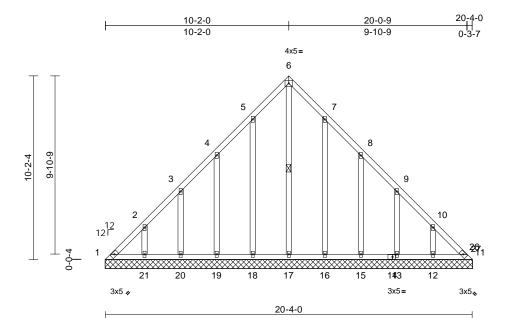


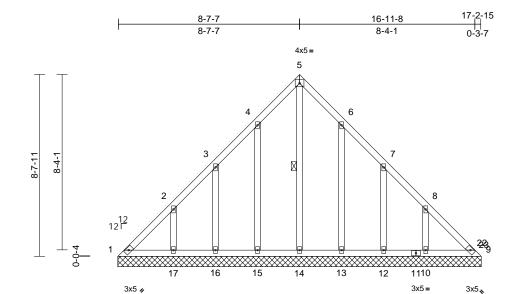

Plate Offsets (X, Y): [14:0-2-0,0-1-8]

|              |                                          |                                                                 |          |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -          |                   |         |         |          |         |                   |                      |  |
|--------------|------------------------------------------|-----------------------------------------------------------------|----------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------|---------|---------|----------|---------|-------------------|----------------------|--|
| Loading      | (psf)                                    | Spacing                                                         | 1-10-4   |                                                             | csi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | DEFL              | in      | (loc)   | l/defl   | L/d     | PLATES            | GRIP                 |  |
| TCLL (roof)  | 20.0                                     | Plate Grip DOL                                                  | 1.15     |                                                             | тс                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.05       | Vert(LL)          | n/a     | -       | n/a      | 999     | MT20              | 244/190              |  |
| Snow (Pf/Pg) | 13.9/20.0                                | Lumber DOL                                                      | 1.15     |                                                             | BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.05       | Vert(TL)          | n/a     | -       | n/a      | 999     |                   |                      |  |
| TCDL         | 10.0                                     | Rep Stress Incr                                                 | YES      |                                                             | WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.15       | Horiz(TL)         | 0.00    | 11      | n/a      | n/a     |                   |                      |  |
| BCLL         | 0.0*                                     | Code                                                            |          | 15/TPI2014                                                  | Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                   |         |         |          |         |                   |                      |  |
| BCDL         | 10.0                                     | Couc                                                            | 11(020   | 10/11/2014                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                   |         |         |          |         | Weight: 141 lb    | FT = 20%             |  |
|              |                                          |                                                                 |          |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                   |         |         |          |         |                   |                      |  |
| LUMBER       |                                          |                                                                 | ١        | VEBS                                                        | 6-17=-160/89, 5-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18=-126/7  | 7, 4-19=-127      | /87,    | 12) Bev | eled pla | te or s | shim required to  | provide full bearing |  |
| TOP CHORD    | 2x4 SP No.2                              |                                                                 |          |                                                             | 3-20=-126/87, 2-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21=-123/6  | 8, 7-16=-125      | /77,    | surf    | ace with | n truss | chord at joint(s) | 1, 11.               |  |
| BOT CHORD    | 2x4 SP No.2                              |                                                                 |          |                                                             | 8-15=-127/87, 9-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13=-126/8  | 37, 10-12=-12     | 0/67    | LOAD    | CASE(S   | ) Sta   | ndard             |                      |  |
| OTHERS       | 2x4 SP No.3                              |                                                                 |          | NOTES                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                   |         |         | •        | •       |                   |                      |  |
| BRACING      |                                          |                                                                 | 1        | ) Unbalanced                                                | roof live loads ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ve been    | considered fo     | r       |         |          |         |                   |                      |  |
| TOP CHORD    | Structural wood she                      | athing directly applie                                          |          | this design.                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                   |         |         |          |         |                   |                      |  |
|              | 6-0-0 oc purlins.                        | aanig anooay appno                                              |          |                                                             | 7-10; Vult=115m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ph (3-sec  | cond gust)        |         |         |          |         |                   |                      |  |
| BOT CHORD    |                                          | applied or 10-0-0 oc                                            |          | Vasd=91mp                                                   | h; TCDL=6.0psf;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BCDL=6.    | 0psf; h=25ft; (   | Cat.    |         |          |         |                   |                      |  |
|              | bracing.                                 |                                                                 |          | II; Exp B; Er                                               | closed; MWFRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (envelope  | e) and C-C        |         |         |          |         |                   |                      |  |
| WEBS         | 1 Row at midpt                           | 6-17                                                            |          | Exterior (2)                                                | zone; cantilever le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ft and rig | ht exposed ;      | end     |         |          |         |                   |                      |  |
| REACTIONS    | (size) 1=20-4-8                          | , 11=20-4-8, 12=20-4                                            | -8.      | vertical left a                                             | and right exposed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ;C-C for r | nembers and       |         |         |          |         |                   |                      |  |
|              |                                          | 8, 15=20-4-8, 16=20-                                            |          |                                                             | VFRS for reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | Lumber            |         |         |          |         |                   |                      |  |
|              | 17=20-4-                                 | 8, 18=20-4-8, 19=20-                                            | 4-8,     |                                                             | late grip DOL=1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                   |         |         |          |         |                   |                      |  |
|              | 20=20-4-                                 | 8, 21=20-4-8                                                    | 3        |                                                             | ned for wind loads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                   |         |         |          |         |                   |                      |  |
|              | Max Horiz 1=143 (Le                      | C 11)                                                           |          |                                                             | uds exposed to w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                   |         |         |          |         |                   |                      |  |
|              | Max Uplift 1=-38 (LC                     | C 12), 11=-14 (LC 13)                                           | ),       |                                                             | d Industry Gable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                   |         |         |          |         |                   |                      |  |
|              | 12=-11 (L                                | _C 15), 13=-39 (LC 1                                            | 5),      |                                                             | ualified building de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                   |         |         |          |         |                   |                      |  |
|              | 15=-35 (L                                | _C 15), 16=-30 (LC 15                                           | 5), 4    |                                                             | E 7-10; Pr=20.0 p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                   | er      |         |          |         |                   |                      |  |
|              |                                          | _C 14), 19=-34 (LC 14                                           |          |                                                             | Plate DOL=1.15); I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                   | -       |         |          |         |                   |                      |  |
|              |                                          | _C 14), 21=-15 (LC 14                                           |          |                                                             | 3.9 psf (flat roof s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                   | 5       |         |          |         |                   |                      |  |
|              | Max Grav 1=112 (L                        |                                                                 |          | Ct=1.10                                                     | 1.15); Category II;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , схр в, г | ully Exp.,        |         |         |          |         |                   | 1111                 |  |
|              |                                          | LC 2), 13=151 (LC 26                                            |          |                                                             | e 2x4 MT20 unles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o othorw   | an indiantad      |         |         |          |         |                   | A - 111              |  |
|              |                                          | LC 26), 16=161 (LC 2                                            | <u> </u> |                                                             | es continuous bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                   |         |         |          |         | IN THU            | AROY                 |  |
|              |                                          | LC 28), 18=163 (LC 2                                            |          |                                                             | spaced at 2-0-0 of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | u bearing.        |         |         |          | 1       | A                 | Sill And             |  |
|              |                                          | LC 25), 20=149 (LC 2                                            | ,        |                                                             | as been designed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0 pef bottom      |         |         |          | ~       | FESC              | Oit Prin             |  |
|              | 21=182 (                                 | ,                                                               | , c      |                                                             | ad nonconcurrent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                   | de      |         |          | 1)      | 11                | Thin                 |  |
| FORCES       | (lb) - Maximum Con                       | npression/Maximum                                               | c        |                                                             | has been designe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                   |         |         |          |         |                   |                      |  |
|              | Tension                                  |                                                                 |          | .,                                                          | m chord in all are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                   | por     |         | -        |         | SE/               | VI : =               |  |
| TOP CHORD    | ,                                        | -121/104, 3-4=-96/80                                            |          |                                                             | om chord in all areas where a rectangle SEAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                   |         |         |          |         |                   | <u>`</u> : : :       |  |
|              |                                          | 33/145, 6-7=-133/145                                            | ,        |                                                             | his truss has been designed for a live load of 20.0psf<br>the bottom chord in all areas where a rectangle<br>6-00 tall by 2-00-00 wide will fit between the bottom<br>ord and any other members.<br>bearings are assumed to be SP No.2.<br>vide mechanical connection (by others) of truss to<br>ring plate capable of withstanding 38 lb uplift at joint<br>4 lb uplift at joint 11, 32 lb uplift at joint 18, 34 lb uplift<br>oint 19, 38 lb uplift at joint 21,<br>lb uplift at joint 16, 35 lb uplift at joint 21,<br>lb uplift at joint 16, 35 lb uplift at joint 21, |            |                   |         |         |          |         |                   |                      |  |
|              | 7-8=-73/75, 8-9=-68                      | 6/40, 9-10=-95/80,                                              | 1        |                                                             | 0) All bearings are assumed to be SP No.2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                   |         |         |          |         |                   |                      |  |
|              |                                          | 10-11=-154/137<br>1-21=-107/132, 20-21=-107/132, 11) Provide me |          |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                   | 0       |         |          | -       | States and        | 1 - S - S -          |  |
| BOT CHORD    |                                          |                                                                 |          | bearing plate capable of withstanding 38 lb uplift at joint |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                   |         |         |          | 21      | C. ENG            | -ERIX S              |  |
|              | 19-20=-107/132, 18<br>17-18=-107/132, 16 |                                                                 |          | 1, 14 lb uplif                                              | 1, 14 lb uplift at joint 11, 32 lb uplift at joint 18, 34 lb uplift                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                   |         |         |          | 1       | S, GIN            | EF. AN               |  |
|              | 15-16=-107/132, 13                       |                                                                 |          | at joint 19, 3                                              | 8 lb uplift at joint :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20, 15 lb  | uplift at joint 2 | 21,     |         |          | 1       | CAL               | BEIN                 |  |
|              | 12-13=-107/132, 11                       |                                                                 |          |                                                             | t joint 16, 35 lb up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | t 15, 39 lb up    | lift at |         |          |         | 11, A. (          | אוויי                |  |
|              | 12 10- 107/102, 11                       | 12- 101/102                                                     |          | joint 13 and                                                | 11 lb uplift at join                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t 12.      |                   |         |         |          |         | in the second     | mm                   |  |

March 20,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




| Job         | Truss | Truss Type | Qty | Ply | Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL |
|-------------|-------|------------|-----|-----|----------------------------------------------------|
| 25030054-01 | V02   | Valley     | 1   | 1   | I72141556<br>Job Reference (optional)              |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Mar 19 09:42:39 ID:x1g4NJF\_hKTbdFUgHThO5JzZPyc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

\_

Page: 1



17-2-15

| Scale = 1:54.8 |  |
|----------------|--|

| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL                                       | (psf)<br>20.0<br>13.9/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                        | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                          | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015/TPI2014                                                                                                                                                                                                                                                                                                                                                  | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.07<br>0.07<br>0.10                                                                                                                                                                                                                                              | <b>DEFL</b><br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                                                                                                                                                                                                                                                                      | in<br>n/a<br>n/a<br>0.00                                        | (loc)<br>-<br>-<br>9 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 109 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------|-----------------------------|--------------------------|----------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Structural wood she<br>6-0-0 oc purlins.<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(size) 1=17-3-7<br>15=17-3-7<br>Max Horiz 1=130 (L0<br>10=-25 (L<br>13=-34 (L<br>16=-40 (L<br>Max Grav 1=117 (L0<br>10=219 (I)<br>13=182 (I)<br>13=182 (I)<br>17=227 (I) | 5-14<br>,9=17-3-7, 10=17-3-7<br>7, 13=17-3-7, 14=17-7<br>7, 16=17-3-7, 17=17-7<br>C 11)<br>C 10), 9=-1 (LC 13),<br>C 15), 12=-42 (LC 14<br>C 15), 15=-35 (LC 14<br>C 14), 17=-29 (LC 14<br>C 26), 9=84 (LC 28),<br>LC 26), 9=84 (LC 28),<br>LC 26), 16=148 (LC 2<br>LC 25), 16=148 (LC 2<br>LC 25) | Vasd=91mp<br>II; Exp B; E<br>Exterior (2)<br>vertical left<br>forces & M<br>DOL=1.60 g<br>3) Truss desig<br>only. For si<br>see Standa<br>or consult q<br>7, 4) TCLL: ASC<br>3-7, DOL=1.15 I<br>7, 5) All plates an<br>4), 6) Gable requi<br>b), 5) All plates an<br>4), 6) Gable requi<br>b), 5) All plates an<br>4), 6) Gable studs<br>8) This truss h<br>(8), 9) * This truss<br>on the botto | 2 7-10; Vult=115m<br>b; TCDL=6.0ps; E<br>h; TCDL=6.0ps; E<br>hclosed; MWFRS (<br>zone; cantilever le<br>and right exposed;<br>VFRS for reactions<br>olate grip DOL=1.3<br>ned for wind loads<br>uds exposed to wi<br>rd Industry Gable E<br>ualified building de<br>E 7-10; Pr=20.0 ps<br>Plate DOL=1.15); F<br>3.9 psf (flat roof si<br>1.15); Category II;<br>e 2x4 MT20 unles<br>res continuous bot<br>s paced at 2-0-0<br>cas been designed<br>ad nonconcurrent<br>has been designed<br>m chord in all area<br>by 2-00-00 wide w | SCDL=6.<br>(envelope<br>ft and rig<br>C-C for n<br>s shown;<br>3<br>in the pland<br>nd (norm<br>End Deta<br>ssigner a:<br>sf (roof liv<br>Pg=20.0 p<br>ow: Lurr<br>Exp B; F<br>s otherwit<br>tom chor<br>ro:<br>for a 10.0<br>with any<br>d for a liv<br>as where | Dpsf; h=25ft; (<br>e) and C-C<br>ht exposed ; (<br>nembers and<br>Lumber<br>ane of the true<br>al to the face<br>ils as applical<br>is as applical<br>is as applical<br>is per ANSI/TF<br>e load: Lumb<br>osf (ground<br>iber DOL=1.1<br>ully Exp.;<br>se indicated.<br>d bearing.<br>D psf bottom<br>other live loa<br>e load of 20.0<br>a rectangle | end<br>ss<br>),<br>ble,<br>Pl 1.<br>er<br>5<br>5<br>ds.<br>0psf |                      |                             |                          |                                  |                                    |
| FORCES                                                                                               | (lb) - Maximum Corr<br>Tension<br>1-2=-130/129, 2-3=-<br>4-5=-111/129, 5-6=-                                                                                                                                                                                                                                              | ny other members<br>are assumed to b<br>chanical connectio<br>e capable of withs                                                                                                                                                                                                                   | e SP No.<br>n (by oth                                                                                                                                                                                                                                                                                                                                                                            | 2 .<br>ers) of truss t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                       |                                                                 | 1 MA                 | OP. FESS                    | ROUT                     |                                  |                                    |
| BOT CHORD                                                                                            | 7-8=-65/62, 8-9=-12<br>1-17=-103/119, 16- <sup>-</sup><br>15-16=-103/119, 14<br>13-14=-103/119, 12<br>10-12=-103/119, 9- <sup>-</sup>                                                                                                                                                                                     | 17=-103/119,<br>-15=-103/119,<br>-13=-103/119,                                                                                                                                                                                                                                                     | at joint 9, 35 lb up<br>lb uplift at joint 17,<br>int 12 and 25 lb up<br>te or shim required                                                                                                                                                                                                                                                                                                     | lift at join<br>34 lb up<br>blift at joir<br>d to provi                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t 15, 40 lb up<br>ift at joint 13,<br>nt 10.<br>de full bearing                                                                                                                                                                                                   | lift at<br>42                                                                                                                                                                                                                                                                                                                                         |                                                                 | 2.111111             |                             | SEA<br>0363              | • –                              |                                    |
| WEBS                                                                                                 | 5-14=-136/51, 4-15=                                                                                                                                                                                                                                                                                                       | =-139/86, 3-16=-132/9<br>=-137/86, 7-12=-132/9                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                  | truss chord at joir<br>Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | iii(s) 1, 9.                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                       |                                                                 |                      |                             |                          | NGIN                             | EER X                              |
| NOTES                                                                                                | ed roof live loads have                                                                                                                                                                                                                                                                                                   | boon considered for                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                       |                                                                 |                      |                             | 11                       | 710                              | BELIN                              |
| u unnalance                                                                                          | -o cool live loads have                                                                                                                                                                                                                                                                                                   | DEED CONSIDERED TOP                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                       |                                                                 |                      |                             |                          |                                  |                                    |

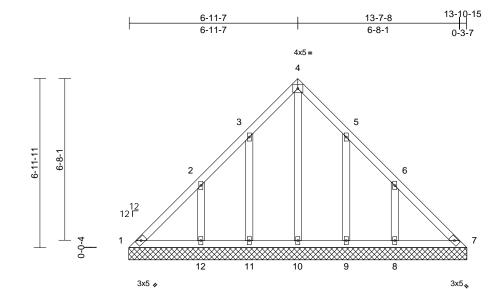
H

#### NOTES

1) Unbalanced roof live loads have been considered for

this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut beformation, available from the Structure Review Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

G unumu.

March 20,2025

| Job         | Truss | Truss Type | Qty | Ply | Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL |
|-------------|-------|------------|-----|-----|----------------------------------------------------|
| 25030054-01 | V03   | Valley     | 1   | 1   | I72141557<br>Job Reference (optional)              |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Mar 19 09:42:40 ID:LcMD?KIs\_Fr9UjDFybE5jyzZPyZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

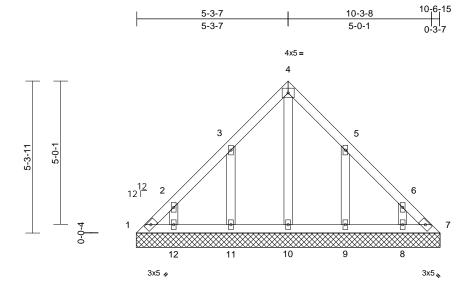


13-10-15

Scale = 1:47.5

|                                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             |                      |                             |                          |                                   |                                    |
|----------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------|-----------------------------|--------------------------|-----------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL | (psf)<br>20.0<br>13.9/20.0<br>10.0<br>0.0*<br>10.0   | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                  | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015/                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.09<br>0.09<br>0.12                                                                                                                                                                                                                                                                                                                                    | DEFL<br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                                                                                                                                                                                                                                                                                                                                           | in<br>n/a<br>n/a<br>0.00                                                                    | (loc)<br>-<br>-<br>7 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 78 lb   | <b>GRIP</b><br>244/190<br>FT = 20% |
| FORCES<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>NOTES              | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | 7, 7=13-11-7, 8=13-17<br>7, 10=13-11-7,<br>-7, 12=13-11-7,<br>C 10)<br>C 10), 8=-38 (LC 15),<br>C 15), 11=-36 (LC 14),<br>C 26), 7=87 (LC 30),<br>C 26), 9=149 (LC 26),<br>LC 2), 11=149 (LC 26),<br>LC 2), 11=149 (LC 25),<br>LC 25)<br>npression/Maximum<br>57/84, 3-4=-69/100,<br>55/62, 6-7=-97/114<br>12=-101/105,<br>101/105,<br>101/105,<br>101/105 | l or<br>3)<br>-7,<br>4)<br>5,<br>6)<br>7)<br>8)<br>9)<br>10)<br>11)<br>5,<br>12) | Vasd=91mpł<br>II; Exp B; Enc<br>Exterior (2) z<br>vertical left a<br>forces & MW<br>DOL=1.60 pl<br>Truss design<br>only. For stu<br>see Standard<br>or consult qu<br>TCLL: ASCE<br>DOL=1.15 pl<br>Snow); Pf=13<br>Plate DOL=1<br>Ct=1.10<br>All plates are<br>Gable requirt<br>Gable studs<br>* This truss ha<br>ochord luive loa<br>* This truss ha<br>on the bottom<br>3-06-00 tall b<br>chord and ar<br>All bearings a<br>Provide mech<br>bearing plate<br>1, 36 lb uplift | 7-10; Vult=115m,<br>n; TCDL=6.0psf; E<br>closed; MWFRS (<br>one; cantilever le<br>dright exposed;<br>FRS for reactions<br>ate grip DOL=1.3<br>ed for wind loads<br>ds exposed to wild<br>ladustry Gable E<br>alified building de<br>7-10; Pr=20.0 ps<br>ate DOL=1.15; ); Category II;<br>-2x4 MT20 unless<br>spaced at 2-0-0 o<br>s been designed<br>at nonconcurrent<br>as to ent spaced at 2-00<br>bean concurrent<br>as been designed<br>at nonconcurrent<br>as to int 11, 40 lb<br>38 lb uplift at joir<br>e or shim requirec<br>truss chord at joir<br>Standard | CDL=6.0<br>envelope<br>ft and rig<br>C-C for n<br>s shown;<br>3<br>in the pla<br>nd (norm<br>End Deta<br>signer as<br>if (roof liv<br>g=20.0 p<br>now: Lum<br>Exp B; F<br>s otherwi<br>tom chor<br>ic.<br>for a 10.0<br>with any<br>d for a liv<br>as where<br>ill fit betv<br>e SP No.<br>n (by oth<br>tanding 1<br>uplift at jot<br>8.<br>d to provid | Opsf; h=25ft; 6<br>and C-C<br>ht exposed ; 1<br>nembers and<br>Lumber<br>ane of the tru:<br>alt to the face<br>ils as applical<br>s per ANS/TF<br>e load: Lumb<br>ssf (ground<br>ber DOL=1.1<br>'ully Exp.;<br>se indicated.<br>d bearing.<br>D psf bottom<br>other live loa<br>e load of 20.0<br>a rectangle<br>ween the bottor<br>2.<br>ers) of truss t<br>2 lb uplift at j<br>bint 12, 37 lb<br>de full bearing. | end<br>ss<br>),<br>ble,<br>Pl 1.<br>er<br>5<br>5<br>ds.<br>Dpsf<br>om<br>o<br>int<br>uplift |                      |                             |                          | ORTH CA<br>ORTEESS<br>SEA<br>0363 | • -                                |
|                                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |                      |                             |                          |                                   | EEP. KINN                          |

The main in G mmm March 20,2025


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type | Qty | Ply | Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL |
|-------------|-------|------------|-----|-----|----------------------------------------------------|
| 25030054-01 | V04   | Valley     | 1   | 1   | I72141558<br>Job Reference (optional)              |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Mar 19 09:42:40 ID:ENbkriLN2ULbzKW0BRJ1tozZPyV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

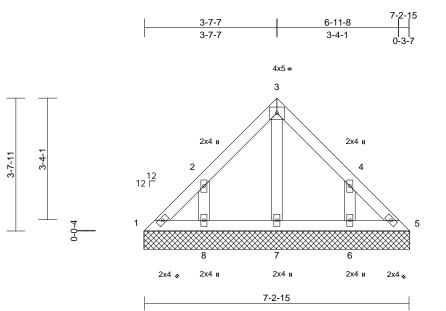
Page: 1



10-6-15

Scale = 1:40.3

| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL                                  | (psf)<br>20.0<br>13.9/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                              | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                   | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015/TPI2014                                                                                                                                                                                         | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.05<br>0.03<br>0.04                                                                                                                                                                                                                               | DEFL<br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                                                                                                                                                                   | in<br>n/a<br>n/a<br>0.00                            | (loc)<br>-<br>-<br>7 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 54 lb | <b>GRIP</b><br>244/190<br>FT = 20% |   |  |  |  |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------|-----------------------------|--------------------------|---------------------------------|------------------------------------|---|--|--|--|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS    | 2x4 SP No.2<br>2x4 SP No.3<br>Structural wood shea<br>6-0-0 oc purlins.<br>Rigid ceiling directly<br>bracing.<br>(size) 1=10-7-7,<br>12=10-7-7<br>Max Horiz 1=79 (LC<br>Max Uplift 1=-17 (LC<br>9=-42 (LC<br>12=-15 (LL<br>Max Grav 1=68 (LC<br>(LC 2), 9=      | applied or 10-0-0 oc<br>7=10-7-7, 8=10-7-7,<br>10=10-7-7, 11=10-7-<br>11)<br>10), 8=-12 (LC 15),<br>15), 11=-42 (LC 14),<br>C 14)           | only. Fo<br>see Sta<br>or const<br>4) TCLL: A<br>DOL=1.<br>Snow); F<br>Plate D0<br>Ct=1.10<br>5) All plate<br>7, 6) Gable s<br>8) This true<br>chord lix<br>9) * This true<br>on the b<br>3-06-00<br>(LC<br>10) All beat<br>11) Provide | signed for wind load<br>r studs exposed to w<br>dard Industry Gable<br>It qualified building d<br>SCE 7-10; Pr=20.0 p<br>5 Plate DOL=1.15);<br>f=13.9 psf (flat roof s<br>DL=1.15); Category II<br>s are 2x4 MT20 unle:<br>quires continuous bo<br>uds spaced at 2-0-0<br>s has been designed<br>e load nonconcurren<br>uss has been designed<br>to an noconcurren<br>tall by 2-00-00 wide i<br>d any other member<br>ngs are assumed to I<br>mechanical connecti<br>olate capable of with | ind (norm<br>End Deta<br>esigner a:<br>signer a:<br>signer a:<br>signer a:<br>pnow: Lum<br>; Exp B; F<br>ss otherwin<br>ttom chor<br>oc.<br>I for a 10.<br>t with any<br>d for a liv<br>as where<br>will fit betv<br>s.<br>oe SP No.<br>on (by oth | al to the face<br>ils as applical<br>s per ANSI/TK<br>e load: Lumb<br>of (ground<br>ober DOL=1.1<br>iully Exp.;<br>d bearing.<br>0 psf bottom<br>other live loa<br>e load of 20.0<br>a rectangle<br>ween the botto<br>2.<br>ers) of truss t | ),<br>ble,<br>Pl 1.<br>er<br>5<br>ds.<br>Opsf<br>om |                      |                             |                          |                                 |                                    |   |  |  |  |
| FORCES<br>TOP CHORD                                                                             | (lb) - Maximum Com<br>Tension<br>1-2=-83/68, 2-3=-87/<br>4-5=-88/82, 5-6=-71/                                                                                                                                                                                   | '<br>'52, 3-4=-88/82,                                                                                                                       | at joint 9<br>12) Beveled                                                                                                                                                                                                               | 1, 42 lb uplift at joint 11, 15 lb uplift at joint 12, 42 lb uplift<br>at joint 9 and 12 lb uplift at joint 8.<br>12) Beveled plate or shim required to provide full bearing                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                             |                                                     |                      |                             |                          |                                 |                                    |   |  |  |  |
| BOT CHORD                                                                                       | 1-12=-52/75, 11-12=<br>9-10=-52/75, 8-9=-52                                                                                                                                                                                                                     | -52/75, 10-11=-52/75<br>2/75, 7-8=-52/75                                                                                                    | LOAD CAS                                                                                                                                                                                                                                | with truss chord at jo<br>E <b>(S)</b> Standard                                                                                                                                                                                                                                                                                                                                                                                                                                            | nt(s) 1, 7.                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                             |                                                     |                      |                             | Tri                      | ORIESS                          | N. N.                              | ~ |  |  |  |
| this desig<br>2) Wind: AS<br>Vasd=91r<br>II; Exp B;<br>Exterior (2<br>vertical le<br>forces & M | 4-10=-77/20, 3-11=-<br>5-9=-148/104, 6-8=-<br>ed roof live loads have<br>n.<br>CE 7-10; Vult=115mph<br>mph; TCDL=6.0psf; BCI<br>Enclosed; MWFRS (or<br>2) zone; cantilever left a<br>ft and right exposed;C-<br>MWFRS for reactions sl<br>0 plate grip DOL=1.33 | 112/74<br>been considered for<br>(3-second gust)<br>DL=6.0psf; h=25ft; Cr<br>velope) and C-C<br>and right exposed ; er<br>C for members and | at.                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                             |                                                     |                      |                             |                          | 111111                          | EER. KIL                           |   |  |  |  |


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



March 20,2025

| Job         | Truss | Truss Type | Qty | Ply | Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL |
|-------------|-------|------------|-----|-----|----------------------------------------------------|
| 25030054-01 | V05   | Valley     | 1   | 1   | I72141559<br>Job Reference (optional)              |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Mar 19 09:42:40 ID:xICWx7TehZcAAtHxmXUNHvzZPyL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



Scale = 1:31.6

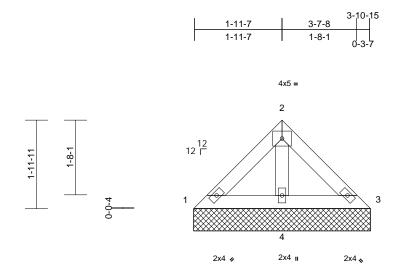
|                                                                |                                                                                                                                                                                                                                                                |                                                                    |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                          |                                                                                                                                                                                                     |                                           |                          |                      |                             |                          |                                 |                                    |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------|----------------------|-----------------------------|--------------------------|---------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL | (psf)<br>20.0<br>13.9/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                             | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC20                                                                                                                                                                                                                                                                                                        | 015/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                            | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                         | 0.06<br>0.03<br>0.03                                                                                                                                                                                | DEFL<br>Vert(LL)<br>Vert(TL)<br>Horiz(TL) | in<br>n/a<br>n/a<br>0.00 | (loc)<br>-<br>-<br>5 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 32 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|                                                                | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Structural wood she<br>6-0-0 oc purlins.<br>Rigid ceiling directly<br>bracing.<br>(size) 1=7-3-7, §<br>8=7-3-7<br>Max Horiz 1=-53 (LC<br>Max Uplift 1=-6 (LC<br>(LC 14)<br>Max Grav 1=63 (LC<br>(LC 26), 7<br>25) | ed or<br>7-3-7,<br>3=-34<br>-184<br>(LC                            | <ul> <li>DOL=1.15 P<br/>snow); Pf=12<br/>Plate DOL=1<br/>Ct=1.10</li> <li>Gable requir</li> <li>Gable studs</li> <li>This truss ha<br/>chord live loz</li> <li>* This truss ha<br/>chord live loz</li> <li>* This truss ha<br/>chord and ar</li> <li>All bearings</li> <li>Provide mec<br/>bearing plate</li> <li>34 lb uplift al</li> </ul> | 7-10; Pr=20.0 ps<br>late DOL=1.15); F<br>3.9 psf (flat roof sr<br>1.15); Category II;<br>es continuous bot<br>spaced at 2-0-0 c<br>as been designed<br>ad nonconcurrent<br>nas been designed<br>ad nonconcurrent<br>nas been designed<br>ad nonconcurrent<br>as been designe<br>n chord in all area<br>by 2-00-00 wide w<br>y other members<br>are assumed to b<br>hanical connectio<br>e capable of with<br>t joint 8 and 32 lb<br>e or shim required | Pg=20.0 ;<br>how: Lum<br>Exp B; F<br>tom choro<br>for a 10.1<br>with any<br>d for a liv<br>as where<br>will fit betw<br>e SP No.<br>n (by oth<br>tanding 6<br>uplift at ji | osf (ground<br>iber DOL=1.1<br>iully Exp.;<br>d bearing.<br>D psf bottom<br>other live loas<br>e load of 20.1<br>a rectangle<br>veen the bott<br>2.<br>ers) of truss t<br>b uplift at jo<br>bint 6. | 15<br>ads.<br>Opsf<br>om<br>to            |                          |                      |                             |                          |                                 |                                    |
| FORCES<br>TOP CHORD                                            | (lb) - Maximum Com<br>Tension<br>1-2=-66/55, 2-3=-68                                                                                                                                                                                                           |                                                                    |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                        | truss chord at joir                                                                                                                                                        |                                                                                                                                                                                                     |                                           | 5                        |                      |                             |                          |                                 |                                    |
| BOT CHORD                                                      | 4-5=-55/45<br>1-8=-36/49, 7-8=-36<br>5-6=-36/49                                                                                                                                                                                                                | , ,                                                                |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                            |                                                                                                                                                                                                     |                                           |                          |                      |                             |                          | mmm                             | unn.                               |
| this design<br>2) Wind: ASC                                    | CE 7-10; Vult=115mph                                                                                                                                                                                                                                           | been considered for<br>(3-second gust)                             |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                            |                                                                                                                                                                                                     |                                           |                          |                      | 4                           |                          | OR FESS                         | ROUNT                              |
| Vasd=91m                                                       | nph: TCDL=6.0psf: BC                                                                                                                                                                                                                                           | DL=6.0psf: h=25ft: C                                               | Cat.                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                            |                                                                                                                                                                                                     |                                           |                          |                      | -                           |                          |                                 |                                    |

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

SEAL 036322 A. GILBERT

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)




| Job         | Truss | Truss Type | Qty | Ply | Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL |
|-------------|-------|------------|-----|-----|----------------------------------------------------|
| 25030054-01 | V06   | Valley     | 1   | 1   | I72141560<br>Job Reference (optional)              |

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Wed Mar 19 09:42:40 ID:irhXdsZfp0c275uTEDdFcbzZPyD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-10-15

Page: 1



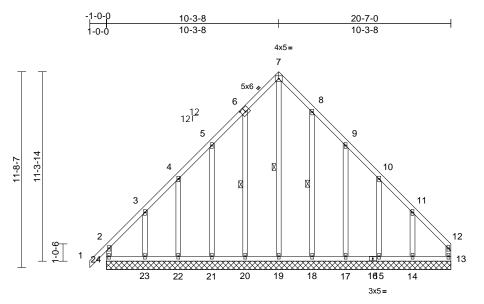
#### Scale = 1:25.7

| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL                                                                                                                                                                                                                                                                                                               | (psf)<br>20.0<br>13.9/20.0<br>10.0<br>0.0*                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015/TPI2014                                                                                                                                                                                | CSI<br>TC<br>BC<br>WB                                                                                                                                                                                                                      | 0.03<br>0.05<br>0.02                                                              | <b>DEFL</b><br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                           | in<br>n/a<br>n/a<br>0.00 | (loc)<br>-<br>-<br>3 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20 | <b>GRIP</b><br>244/190 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------|----------------------|-----------------------------|--------------------------|----------------|------------------------|
| BCDL                                                                                                                                                                                                                                                                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Code                                                                                                                                                                                                                                                                                                                                              | IRC2015/1F12014                                                                                                                                                                                                                | Matrix-MP                                                                                                                                                                                                                                  |                                                                                   |                                                                                            |                          |                      |                             |                          | Weight: 15 lb  | FT = 20%               |
|                                                                                                                                                                                                                                                                                                                                                                      | Max Horiz 1=27 (LC<br>Max Grav 1=55 (LC                                                                                                                                                                                                                                                                                                                                                                                                                                                         | applied or 6-0-0 oc<br>3=3-11-7, 4=3-11-7<br>13)                                                                                                                                                                                                                                                                                                  | <ul> <li>7) This truss h<br/>chord live lo</li> <li>8) * This truss<br/>on the botto</li> <li>3-06-00 tall<br/>chord and a</li> <li>9) All bearings</li> <li>10) Beveled pla<br/>surface with</li> <li>LOAD CASE(S)</li> </ul> | spaced at 2-0-0 oc<br>as been designed for<br>ad nonconcurrent w<br>has been designed<br>m chord in all areas<br>by 2-00-00 wide will<br>ny other members.<br>are assumed to be<br>te or shim required<br>truss chord at joint<br>Standard | or a 10.<br>with any<br>for a liv<br>s where<br>Il fit betw<br>SP No.<br>to provi | other live loa<br>e load of 20.0<br>a rectangle<br>veen the botto<br>2.<br>de full bearing | )psf<br>om               |                      |                             |                          |                |                        |
| FORCES                                                                                                                                                                                                                                                                                                                                                               | (LC 2)<br>(lb) - Maximum Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pression/Maximum                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                            |                                                                                   |                                                                                            |                          |                      |                             |                          |                |                        |
| <ul> <li>this design</li> <li>Wind: ASC</li> <li>Vasd=91m</li> <li>II; Exp B; E</li> <li>Exterior (2)</li> <li>vertical left</li> <li>forces &amp; M</li> <li>DOL=1.60</li> <li>Truss desig</li> <li>only. For s</li> <li>see Standa</li> <li>or consult of</li> <li>TCLL: ASC</li> <li>DOL=1.15</li> <li>snow); Pf=</li> <li>Plate DOL=</li> <li>Ct=1.10</li> </ul> | Tension<br>1-2=-47/56, 2-3=-47<br>1-4=-49/39, 3-4=-49<br>2-4=-123/23<br>d roof live loads have<br><br>E 7-10; Vult=115mph<br>ph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (er<br>and right exposed; C-<br>WFRS for reactions s<br>plate grip DOL=1.33<br>gned for wind loads in<br>studs exposed to wind<br>ard Industry Gable En-<br>qualified building designed<br>DE 7-10; Pr=20.0 psf (<br>DE 7-10; Pr=20.0 psf (<br>Plate DOL=1.15); Pg=<br>13.9 psf (flat roof snor<br>=1.15); Category II; Ez- | /39<br>been considered for<br>(3-second gust)<br>DL=6.0psf; h=25ft; C<br>ivelope) and C-C<br>and right exposed; e<br>C for members and<br>hown; Lumber<br>the plane of the trus<br>(normal to the face)<br>d Details as applicat<br>gner as per ANSI/TP<br>roof live load: Lumber<br>=20.0 psf (ground<br>w: Lumber DOL=1.1!<br>xp B; Fully Exp.; | Sat.<br>and<br>ss<br>,<br>le,<br>l 1.<br>er                                                                                                                                                                                    |                                                                                                                                                                                                                                            |                                                                                   |                                                                                            |                          |                      |                             |                          | SEA<br>0363    | EER KINN               |

5) Gable requires continuous bottom chord bearing.



GI A. GIL


March 20,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type             | Qty | Ply | Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL |
|-------------|-------|------------------------|-----|-----|----------------------------------------------------|
| 25030054-01 | C01   | Common Supported Gable | 1   | 1   | I72141561<br>Job Reference (optional)              |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Mar 19 09:42:38 ID:sW6spIrbFOjB5H2BwO4yrezZQ\_R-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

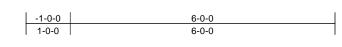


20-7-0

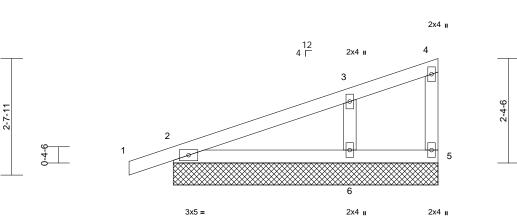
Н

#### Scale = 1:68.9

Plate Offsets (X, Y): [6:0-3-0,0-3-0]


| Loading                                                                                 | (psf)                                                                                                                                                                                                                                | Spacing                                                                                                                                                                                                                                                                 | 1-10-4                                                                                                                                                                                                                                                                   | CSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         | DEFL                                                                              | in           | (loc) | l/defl | L/d | PLATES         | GRIP     |  |  |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------|--------------|-------|--------|-----|----------------|----------|--|--|
| TCLL (roof)                                                                             | 20.0                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                         | 1.15                                                                                                                                                                                                                                                                     | TC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.13                                                    | Vert(LL)                                                                          | n/a          | -     | n/a    | 999 | MT20           | 244/190  |  |  |
| Snow (Pf/Pg)                                                                            | 13.9/20.0                                                                                                                                                                                                                            | Lumber DOL                                                                                                                                                                                                                                                              | 1.15                                                                                                                                                                                                                                                                     | BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.08                                                    | Vert(CT)                                                                          | n/a          | -     | n/a    | 999 |                |          |  |  |
| TCDL                                                                                    | 10.0                                                                                                                                                                                                                                 | Rep Stress Incr                                                                                                                                                                                                                                                         | YES                                                                                                                                                                                                                                                                      | WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.18                                                    | Horz(CT)                                                                          | 0.00         | 13    | n/a    | n/a |                |          |  |  |
| BCLL                                                                                    | 0.0*                                                                                                                                                                                                                                 | Code                                                                                                                                                                                                                                                                    | IRC2015/TPI2014                                                                                                                                                                                                                                                          | Matrix-MR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         |                                                                                   |              |       |        |     |                |          |  |  |
| BCDL                                                                                    | 10.0                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |                                                                                   |              |       |        |     | Weight: 163 lb | FT = 20% |  |  |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD | 6-0-0 oc purlins, exe<br>Rigid ceiling directly<br>bracing.                                                                                                                                                                          | athing directly applied<br>cept end verticals.<br>applied or 6-0-0 oc                                                                                                                                                                                                   | NOTES<br>1) Unbalanced<br>or this design.<br>2) Wind: ASCE<br>Vasd=91mp<br>II; Exp B; Er                                                                                                                                                                                 | <ul> <li>4-22=-119/79, 3-23=-153/112, 8-18=-123/68,<br/>9-17=-133/93, 10-15=-117/76,<br/>11-14=-156/112</li> <li>NOTES</li> <li>I) Unbalanced roof live loads have been considered for<br/>this design.</li> <li>bearing plate capable of withstanding 77 lb uplift at joint 20, 39 lb<br/>uplift at joint 21, 19 lb uplift at joint 22, 86 lb uplift at joint 23, 25 lb uplift at joint 18, 41 lb uplift at joint 17, 20 lb<br/>uplift at joint 15 and 80 lb uplift at joint 14.</li> <li>LOAD CASE(S) Standard</li> </ul>                                                                                                                                       |                                                         |                                                                                   |              |       |        |     |                |          |  |  |
| WEBS                                                                                    |                                                                                                                                                                                                                                      | 7-19, 6-20, 8-18                                                                                                                                                                                                                                                        | vortion linft a                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |                                                                                   |              |       |        |     |                |          |  |  |
|                                                                                         | 17=20-7-0<br>20=20-7-0<br>23=20-7-0<br>23=20-7-0<br>24=174 (L<br>Max Uplift 13=-51 (L<br>15=-20 (L<br>18=-25 (L<br>21=-39 (L<br>23=-86 (L<br>23=-86 (L<br>15=143 (L<br>15=143 (L<br>15=143 (L<br>22=151 (L<br>22=151 (L<br>24=216 (L | C 11), 14=-80 (LC 15),<br>C 15), 17=-41 (LC 15),<br>C 15), 20=-26 (LC 14),<br>C 14), 22=-19 (LC 14),<br>C 14), 24=-77 (LC 10),<br>C 26), 14=212 (LC 27),<br>C 2), 17=160 (LC 27),<br>C 27), 19=232 (LC 15),<br>C 26), 21=154 (LC 26),<br>C 20, 23=197 (LC 26),<br>C 27) | <ul> <li>b, forces &amp; MW</li> <li>c, DOL=1.60 p</li> <li>d) Truss design only. For stit see Standar or consult qu</li> <li>e) TCLL: ASCE DOL=1.15 P</li> <li>snow); Pf=1: Plate DOL=1</li> <li>ct=1.10</li> <li>f) This truss hat load of 12.0 overhangs n</li> </ul> | <ul> <li>only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.</li> <li>t) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10</li> <li>This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.</li> <li>All eleberger 274 MT20 uneque otherwise indicated</li> </ul> |                                                         |                                                                                   |              |       |        |     | ROLIN          |          |  |  |
| FORCES                                                                                  | (lb) - Maximum Com<br>Tension                                                                                                                                                                                                        | pression/Maximum                                                                                                                                                                                                                                                        | 8) Truss to be t                                                                                                                                                                                                                                                         | ully sheathed from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | one fac                                                 | e or securely                                                                     |              |       | Ξ      |     | SEA            | L : E    |  |  |
| TOP CHORD                                                                               | 2-24=-180/71, 1-2=0<br>3-4=-111/97, 4-5=-1<br>7-8=-241/269, 8-9=-<br>10-11=-91/69, 11-12<br>23-24=-72/88, 22-23<br>20-21=-72/88, 19-20                                                                                               | //57, 2-3=-148/128,<br>21/126, 5-7=-241/269,<br>187/205, 9-10=-119/12<br>(=-111/98, 12-13=-100,<br>(=-72/88, 21-22=-72/88<br>(-72/88, 18-19=-72/88<br>(=-72/88, 14-15=-72/88)                                                                                           | 9) Gable studs<br>4, 10) This truss ha<br>46 11) * This truss ha<br>47 11) * This truss ha<br>48 11) * This truss ha<br>49 11) * This truss ha<br>40 00 tall ha<br>40 00 tall ha<br>40 00 tall have have have have have have have have                                   | nst lateral movemen<br>spaced at 2-0-0 oc.<br>as been designed for<br>ad nonconcurrent w<br>has been designed<br>in chord in all areas<br>by 2-00-00 wide will<br>by other members.<br>are assumed to be                                                                                                                                                                                                                                                                                                                                                                                                                                                          | for a 10.0<br>ith any<br>for a liv<br>where<br>fit betv | D psf bottom<br>other live loa<br>e load of 20.0<br>a rectangle<br>veen the botto | ids.<br>Opsf |       | HIM.   |     |                | 22 EB    |  |  |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)




| Job         | Truss | Truss Type                | Qty | Ply | Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL |
|-------------|-------|---------------------------|-----|-----|----------------------------------------------------|
| 25030054-01 | P01   | Monopitch Supported Gable | 1   | 1   | I72141562<br>Job Reference (optional)              |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Mar 19 09:42:39 ID:Lomxlugt?aQOttpRTOp78BzZPzM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

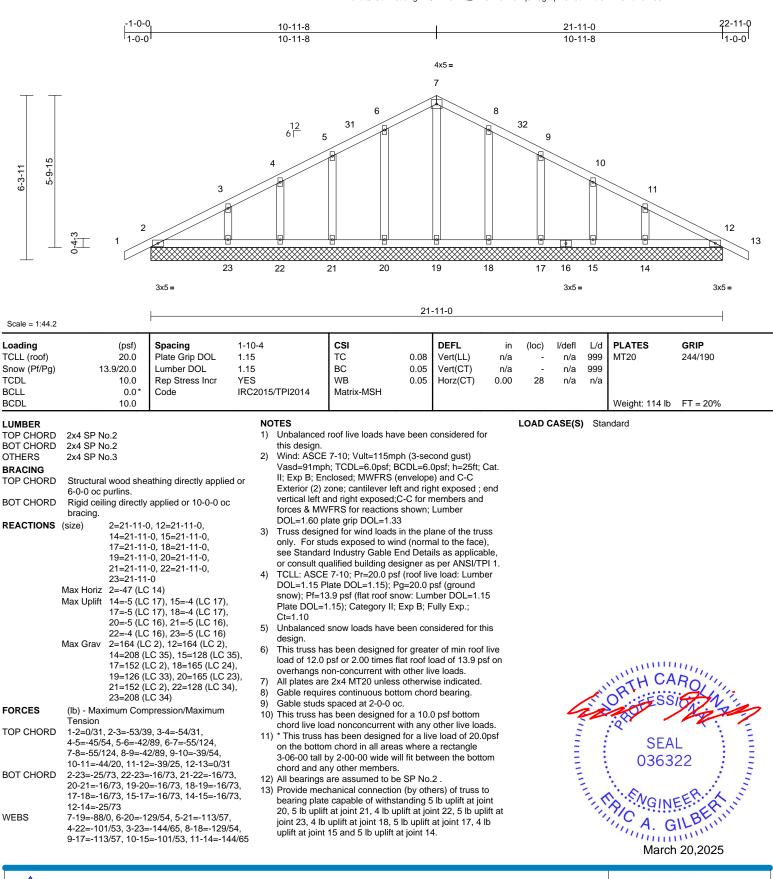






572 =

6-0-0


| Scale = 1:26.1                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      |                                                                                                                                                                         |                                       |       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |               |          |                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------|----------|---------------------------------------|
| Loading                                                                                                                                                       | (psf)                                                                                                                                                                                                                                                                                                                                 | Spacing                                                                                                                                                                                                                           | 1-10-4                                                                                                                                                                                                            | CSI                                                                                                                                                                                                                                                                                                                                                                 | 0.40                                                                                                                                                                                 | DEFL                                                                                                                                                                    | in                                    | (loc) | l/defl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L/d                                   | PLATES        | GRIP     |                                       |
| TCLL (roof)                                                                                                                                                   | 20.0<br>13.9/20.0                                                                                                                                                                                                                                                                                                                     | Plate Grip DOL<br>Lumber DOL                                                                                                                                                                                                      | 1.15<br>1.15                                                                                                                                                                                                      | TC<br>BC                                                                                                                                                                                                                                                                                                                                                            | 0.19<br>0.36                                                                                                                                                                         | Vert(LL)<br>Vert(CT)                                                                                                                                                    | n/a<br>n/a                            | -     | n/a<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 999<br>999                            | MT20          | 244/190  |                                       |
| Snow (Pf/Pg)<br>TCDL                                                                                                                                          | 13.9/20.0                                                                                                                                                                                                                                                                                                                             | Rep Stress Incr                                                                                                                                                                                                                   | YES                                                                                                                                                                                                               | WB                                                                                                                                                                                                                                                                                                                                                                  | 0.36                                                                                                                                                                                 | Horz(CT)                                                                                                                                                                | 0.00                                  | - 2   | n/a<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 999<br>n/a                            |               |          |                                       |
| BCLL                                                                                                                                                          | 0.0*                                                                                                                                                                                                                                                                                                                                  | Code                                                                                                                                                                                                                              | IRC2015/TPI201                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                     | 0.04                                                                                                                                                                                 | 11012(01)                                                                                                                                                               | 0.00                                  | 2     | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a                                   |               |          |                                       |
| BCDL                                                                                                                                                          | 10.0                                                                                                                                                                                                                                                                                                                                  | Code                                                                                                                                                                                                                              | 1102010/111201                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      |                                                                                                                                                                         |                                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | Weight: 24 lb | FT = 20% |                                       |
|                                                                                                                                                               | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>2x4 SP No.3<br>Structural wood she<br>6-0-0 oc purlins, exi<br>Rigid ceiling directly<br>bracing.<br>(size) 2=6-0-0, 5<br>Max Horiz 2=50 (LC<br>Max Uplift 2=-9 (LC<br>Max Grav 2=194 (LC<br>(LC 2)                                                                                      | cept end verticals.<br>applied or 10-0-0 oc<br>5=6-0-0, 6=6-0-0<br>15)<br>12)                                                                                                                                                     | design.<br>5) This tru-<br>load of<br>overha<br>6) Gable overha<br>6) Gable overha<br>7) Gable overha<br>8) This tru-<br>chord li<br>9) * This tru-<br>on the<br>3-06-00<br>chord a<br>10) All bea<br>11) Provide | nced snow loads have<br>ss has been designe<br>12.0 psf or 2.00 times<br>gs non-concurrent w<br>equires continuous b<br>tuds spaced at 2-0-0<br>ss has been designe<br>ve load nonconcurrer<br>uss has been designe<br>totom chord in all are<br>tall by 2-00-00 wide<br>nd any other member<br>ings are assumed to<br>mechanical connecti<br>plate capable of with | d for greate<br>s flat roof le<br>ith other liv<br>ottom chor<br>oc.<br>d for a 10.0<br>th with any<br>ed for a liv<br>eas where<br>will fit betw<br>rs.<br>be SP No.<br>ion (by oth | er of min roof<br>pad of 13.9 p<br>ve loads.<br>d bearing.<br>D psf bottom<br>other live loa<br>e load of 20.0<br>a rectangle<br>veen the bott<br>2.<br>ers) of truss f | f live<br>sf on<br>nds.<br>Opsf<br>om |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |               |          |                                       |
| FORCES                                                                                                                                                        | (lb) - Maximum Com<br>Tension                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                 | and 9 li                                                                                                                                                                                                          | uplift at joint 2.<br>E(S) Standard                                                                                                                                                                                                                                                                                                                                 | g -                                                                                                                                                                                  |                                                                                                                                                                         |                                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |               |          |                                       |
| TOP CHORD                                                                                                                                                     | 1-2=0/22, 2-3=-76/5                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                   | 12/23                                                                                                                                                                                                             | (-)                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                      |                                                                                                                                                                         |                                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |               |          |                                       |
| BOT CHORD<br>WEBS                                                                                                                                             | 2-6=-29/42, 5-6=-26/<br>3-6=-222/107                                                                                                                                                                                                                                                                                                  | /29                                                                                                                                                                                                                               |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      |                                                                                                                                                                         |                                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |               |          |                                       |
| Vasd=91rr<br>II; Exp B; I<br>Exterior (2<br>vertical lef<br>forces & M<br>DOL=1.60<br>2) Truss desi<br>only. For :<br>see Stand<br>or consult<br>3) TCLL: AS( | CE 7-10; Vult=115mph<br>ph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (er<br>) zone; cantilever left at<br>t and right exposed;C-<br>IWFRS for reactions s<br>plate grip DOL=1.33<br>gned for wind loads in<br>studs exposed to wind<br>ard Industry Gable En-<br>qualified building desig<br>CE 7-10; Pr=20.0 psf (<br>Plate DOL=1.15); Pg- | DL=6.0psf; h=25ft; C<br>ivelope) and C-C<br>and right exposed ; e<br>C for members and<br>hown; Lumber<br>the plane of the trus<br>(normal to the face)<br>d Details as applicat<br>gner as per ANS/ITP<br>roof live load: Lumber | end<br>ss<br>,<br>e,<br>1 1.                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      |                                                                                                                                                                         |                                       |       | Le contraction de la contracti | A A A A A A A A A A A A A A A A A A A | SEA<br>0363   | No. No.  | · · · · · · · · · · · · · · · · · · · |

DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10 MGINEER A. GILBER March 20,2025

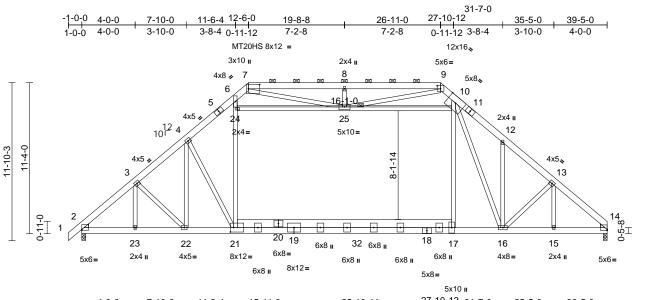
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type             | Qty | Ply | Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL |
|-------------|-------|------------------------|-----|-----|----------------------------------------------------|
| 25030054-01 | B01   | Common Supported Gable | 1   | 1   | I72141563<br>Job Reference (optional)              |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Mar 19 09:42:38 ID:sFaQFUewF9abYgEvQKHzf3zZQ\_i-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




818 Soundside Road

Edenton, NC 27932

| Job         | Truss | Truss Type   | Qty | Ply | Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL |
|-------------|-------|--------------|-----|-----|----------------------------------------------------|
| 25030054-01 | A06   | Attic Girder | 1   | 3   | .lob Reference (optional)                          |

Run: 8.73 E Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries, Inc. Thu Mar 20 11:57:01 ID:obau\_dR0Ce3V8RxAY8uX6HzZPtC-LYkNYCMchlL9044zFatGuXSJx0hwmw\_yE4ITr7zZD1W



|                                   | 4-0-0                | 7-10-0          | 11-6-4         | 15-11-0        | 25-10-11          | 27-10-12 | 2 31-7-0 | 35-5-0 |       |
|-----------------------------------|----------------------|-----------------|----------------|----------------|-------------------|----------|----------|--------|-------|
|                                   | 4-0-0                | 3-10-0          | 3-8-4          | 4-4-12         | 9-11-11           | 2-0-1    | 3-8-4    | 3-10-0 | 4-0-0 |
| Scale = 1:86.4                    |                      |                 |                |                |                   |          |          |        |       |
| Plate Offsets (X, Y): [2:Edge,0-0 | 0-11], [7:0-10-0,0-3 | 3-12], [9:0-3-0 | ),0-2-12], [14 | :Edge,0-0-15], | [21:0-2-12,0-4-0] |          |          |        |       |

| Plate Offsets (                                                | X, Y): [Z:Edge,0-0-11                                                                                                           | ], [7:0-10-0,0-3-12], [                                                                                                                                     | 9:0-3-0,0-4                                             | 2-12], [14:Edg                                                                                                                                                                                                                                                                                                                                                                                                                                                   | je,0-0-15j, [21:0-2-1                                                                                                                                                                                                                                                                                                               | 12,0-4-0                                                                                                                         | ]                                                                                                                                                                         |                                        |                                                                    |                                                                                                        |                                                                            |                                                                                                                                                                            |                                                    |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL | (psf)<br>20.0<br>18.9/20.0<br>10.0<br>0.0*<br>10.0                                                                              | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                          | 1-10-4<br>1.15<br>1.15<br>NO<br>IRC2015                 | 5/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                                          | 0.92<br>0.94<br>0.98                                                                                                             | Vert(CT)                                                                                                                                                                  | in<br>-0.28<br>-0.53<br>-0.01<br>-0.22 | (loc)<br>16-17<br>17<br>2<br>17-21                                 | l/defl<br>>999<br>>889<br>n/a<br>>875                                                                  | L/d<br>240<br>180<br>n/a<br>360                                            | MT20<br>MT20HS                                                                                                                                                             | <b>GRIP</b><br>244/190<br>187/143<br>7 lb FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>WEDGE<br>BRACING   | 2x6 SP 2400F 2.0E<br>SP 2400F 2.0E<br>2x4 SP No.3 *Excep<br>No.2<br>Left: 2x4 SP No.3<br>Right: 2x4 SP No.3                     | ot* 6-21,10-17:2x4 SF                                                                                                                                       | 7:2x8<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>• | D <b>TES</b><br>3-ply truss t                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                     | 1-24=0/2<br>0-16=-2<br>13-16=-<br>25=-10<br>25=-44/1                                                                             | 2604, 6-24=0,<br>66/2123,<br>39/603,<br>41/46,<br>1088, 9-25=-6                                                                                                           | 6/794                                  | loa<br>ove<br>7) Prc<br>8) All<br>9) Thi<br>chc<br>10) * Thi<br>on | d of 12.0<br>erhangs i<br>ovide ade<br>plates ar<br>s truss h<br>ord live lo<br>his truss<br>the botto | psf or<br>non-co<br>quate<br>e MT2<br>as bee<br>bad nor<br>has be<br>m cho | 2.00 times fla<br>oncurrent with of<br>drainage to pr<br>20 plates unles<br>en designed fo<br>nconcurrent wi<br>een designed f<br>rrd in all areas                         |                                                    |
|                                                                | Max Horiz 2=159 (LC<br>Max Grav 2=3161 (L                                                                                       | xept<br>-0 max.): 7-9.<br>applied or 10-0-0 oc<br>both edges of the bot<br>n the room area.<br>14=0-3-8<br>C 9)<br>-C 23), 14=3915 (LC                      | :<br>tom<br>2)<br>24)                                   | <ul> <li>(0.131*x3") nails as follows:</li> <li>Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.</li> <li>Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x8 - 2 rows staggered at 0-9-0 oc.</li> <li>Web connected as follows: 2x4 - 1 row at 0-9-0 oc.</li> <li>Bottom chord ize load (5.0 psf) applied only t</li> <li>This truss is designed in accordance w International Residential Code sections</li> </ul> |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |                                                                                                                                                                           |                                        |                                                                    |                                                                                                        |                                                                            | nember(s). 24-25, 10-25<br>) and additional bottom<br>d only to room. 17-21<br>ance with the 2015<br>ections R502.11.1 and<br>dard ANSI/TPI 1.<br>does not depict the size |                                                    |
| FORCES<br>TOP CHORD<br>BOT CHORD                               | 5-6=-4836/0, 6-7=-2<br>8-9=-3359/0, 9-10=-<br>11-12=-6167/0, 12-1<br>13-14=-5220/0<br>2-23=-112/3242, 22-<br>21-22=0/3149, 20-2 | hen shown.<br>981/0, 4-5=-4935/0,<br>383/0, 7-8=-3359/0,<br>2412/51, 10-11=-607<br>I3=-5484/0,<br>-23=0/3242,<br>1=0/3647, 19-20=0/3<br>2=0/3768, 17-18=0/3 | 3)<br>4)<br>75/0,<br>958, 5)<br>768,                    | Unbalanced<br>this design.<br>Wind: ASCP<br>Vasd=91mp<br>II; Exp B; Ei<br>and right ex<br>Lumber DO<br>TCLL: ASCI<br>DOL=1.15 F<br>snow); Pf=1<br>Plate DOL=<br>Ct=1.10, Lu<br>Rain surcha                                                                                                                                                                                                                                                                       | rwise indicated.<br>I roof live loads hav<br>E 7-10; Vult=115mp<br>bh; TCDL=6.0psf; Bi<br>nclosed; MWFRS (e<br>posed; end vertica<br>L=1.60 plate grip D<br>E 7-10; Pr=20.0 psf<br>Plate DOL=1.15); P(<br>8.9 psf (flat roof sni<br>1.15); Category II;<br>=50-0-0; Min. flat ro<br>ruge applied to all ex-<br>than 0.120 (42) in a | h (3-sec<br>CDL=6.<br>envelope<br>I left and<br>OL=1.33<br>(roof liv<br>g=20.0 p<br>ow: Lum<br>Exp B; F<br>poof snow<br>kposed s | cond gust)<br>Opsf; h=25ff; (<br>e); cantilever (<br>d right expose<br>3<br>re load: Lumb<br>osf (ground<br>ber DOL=1.1<br>Fully Exp.;<br>/ load govern:<br>surfaces with | Cat.<br>left<br>ed;<br>ber<br>15<br>s. |                                                                    | 4                                                                                                      |                                                                            |                                                                                                                                                                            | AL<br>322                                          |

slopes less than 0.500/12 in accordance with IBC



Page: 1

#### Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 1/2/2023 BEFORE USE. WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

1608.3.4.



| Job                                                   | Truss | Truss Type   |                      | Qty            | Ply         | Install 50 Magnolia Acres-Roof-Greystone F        |           |
|-------------------------------------------------------|-------|--------------|----------------------|----------------|-------------|---------------------------------------------------|-----------|
| 25030054-01                                           | A06   | Attic Girder |                      | 1              | 3           | Job Reference (optional)                          | 172141564 |
| Carter Components (Sanford, NC), Sanford, NC - 27332, |       |              | Run: 8.73 E Nov 16 2 | 2023 Print: 8. | 730 E Nov 1 | 6 2023 MiTek Industries, Inc. Thu Mar 20 11:57:01 | Page: 2   |

ID:obau\_dR0Ce3V8RxAY8uX6HzZPtC-LYkNYCMchlL9044zFatGuXSJx0hwmw\_yE4ITr7zZD1W

Carter Components (Sanford, NC), Sanford, NC - 27332,

15) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1354 Ib down and 94 lb up at 20-8-0, and 1776 lb down and 91 lb up at 27-10-8 on bottom chord. The design/ selection of such connection device(s) is the responsibility of others.

16) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15

Uniform Loads (lb/ft) Vert: 1-7=-44, 7-9=-54, 9-14=-44, 21-26=-19,

20-21=-28, 19-20=-28, 17-19=-28, 17-29=-19, 24-25=-19, 10-25=-19

Concentrated Loads (lb)

Vert: 17=-1506 (F), 32=-1154 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut beformation, available from the Structure Review Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

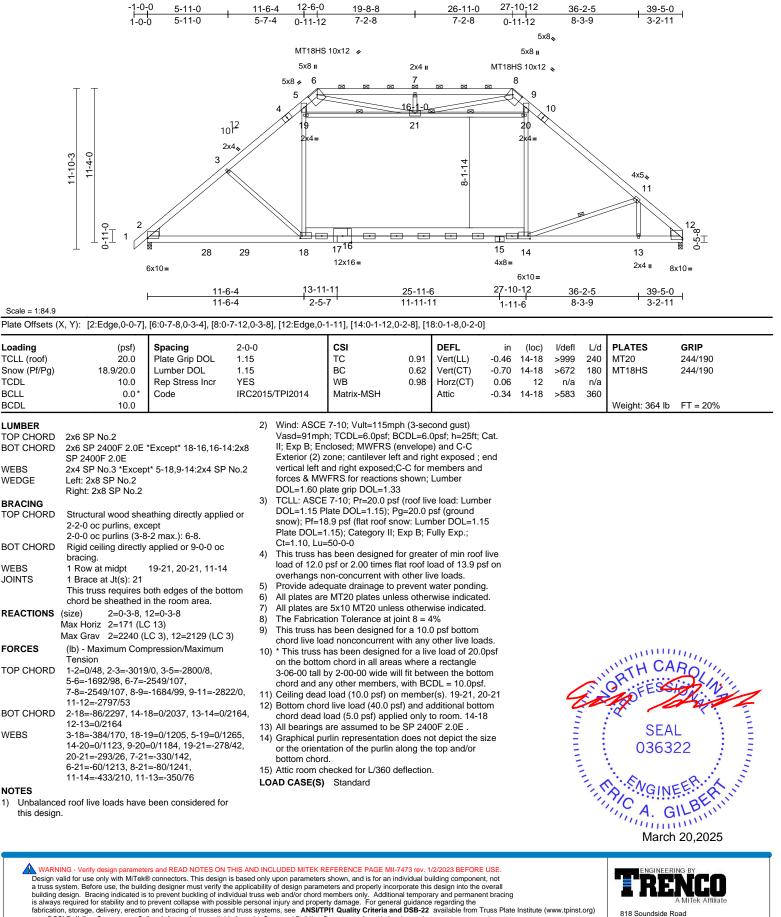


Page: 2

| Job         | Truss | Truss Type | Qty | Ply | Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL |
|-------------|-------|------------|-----|-----|----------------------------------------------------|
| 25030054-01 | A08   | Attic      | 1   | 1   | I72141565<br>Job Reference (optional)              |

TCDL

BCLL

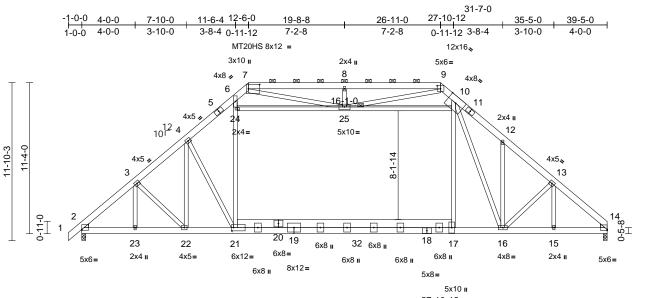

BCDL

1)

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Wed Mar 19 09:42:37 ID:I\_iePITGkFJCNk5YfYw?BizZPtA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Edenton, NC 27932




and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type   | Qty | Ply | Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL |
|-------------|-------|--------------|-----|-----|----------------------------------------------------|
| 25030054-01 | A04   | Attic Girder | 1   | 3   | I72141566                                          |

Run: 8.73 E Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries, Inc. Thu Mar 20 11:59:49 ID:obau\_dR0Ce3V8RxAY8uX6HzZPtC-QtttoeP\_7MVJAuwG5sufiyP3Gk1e7wUgtDSMkOzZD\_u

Page: 1



|                | 4-0-0 | 7-10-0 | 11-6-4 | 15-11-0 | 25-10-11 | 27-10-12 31-7- | 35-5-0 | 39-5-0 |  |
|----------------|-------|--------|--------|---------|----------|----------------|--------|--------|--|
| Scale = 1:86.4 | 4-0-0 | 3-10-0 | 3-8-4  | 4-4-12  | 9-11-11  | 2-0-1 3-8-4    | 3-10-0 | 4-0-0  |  |
| 00010 = 1.00.4 |       |        |        |         |          |                |        |        |  |

| Plate Offsets                                                                                                                                     | (X, Y): [2:Edge,0-0-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ], [7:0-10-0,0-3-12], [                                                                                                                                                                                                                                                                                               | 9:0-3-0,0-                                                                          | 2-12], [14:Ec                                                                                                                                                                                                                                                              | dge,0-0-15], [21:0-1-                                                                                                                                                                                                | -8,0-3-0]                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                       |                                                |                                                                                                                                                                      |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Loading                                                                                                                                           | (psf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Spacing                                                                                                                                                                                                                                                                                                               | 1-10-4                                                                              |                                                                                                                                                                                                                                                                            | CSI                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          | DEFL                                                                                                                                                                                                                                                                                                                                                  | in                                             | (loc)                                                                                                                                                                | l/defl                                                                                                                                                                                                                                                     | L/d                                                                                                                                                                                                        | PLATES                                                                                                                                                                                                                                                                                                                                                          | GRIP                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |
| TCLL (roof)                                                                                                                                       | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Plate Grip DOL                                                                                                                                                                                                                                                                                                        | 1.15                                                                                |                                                                                                                                                                                                                                                                            | тс                                                                                                                                                                                                                   | 0.81                                                                                                                                                                                                                                                                                     | Vert(LL)                                                                                                                                                                                                                                                                                                                                              | -0.25                                          | 17                                                                                                                                                                   | >999                                                                                                                                                                                                                                                       | 240                                                                                                                                                                                                        | MT20                                                                                                                                                                                                                                                                                                                                                            | 244/190                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                   |
| Snow (Pf/Pg)                                                                                                                                      | 18.9/20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lumber DOL                                                                                                                                                                                                                                                                                                            | 1.15                                                                                |                                                                                                                                                                                                                                                                            | BC                                                                                                                                                                                                                   | 0.91                                                                                                                                                                                                                                                                                     | - ( )                                                                                                                                                                                                                                                                                                                                                 | -0.49                                          |                                                                                                                                                                      | >975                                                                                                                                                                                                                                                       | 180                                                                                                                                                                                                        | MT20HS                                                                                                                                                                                                                                                                                                                                                          | 187/143                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                   |
| TCDL                                                                                                                                              | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rep Stress Incr                                                                                                                                                                                                                                                                                                       | NO                                                                                  |                                                                                                                                                                                                                                                                            | WB                                                                                                                                                                                                                   | 0.92                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                       | 0.02                                           | 14                                                                                                                                                                   | n/a                                                                                                                                                                                                                                                        | n/a                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |
| BCLL                                                                                                                                              | 0.0*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Code                                                                                                                                                                                                                                                                                                                  |                                                                                     | 5/TPI2014                                                                                                                                                                                                                                                                  | Matrix-MSH                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                          | Attic                                                                                                                                                                                                                                                                                                                                                 | -0.19                                          |                                                                                                                                                                      | >999                                                                                                                                                                                                                                                       | 360                                                                                                                                                                                                        | I                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |
| BCDL                                                                                                                                              | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                       |                                                                                     |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                       |                                                |                                                                                                                                                                      |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                            | Weight: 120                                                                                                                                                                                                                                                                                                                                                     | 7 lb FT = 20%                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>WEDGE<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>JOINTS<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD | 2x6 SP No.2<br>2x6 SP 2400F 2.0E<br>SP 2400F 2.0E<br>2x4 SP No.3 *Excep<br>No.2<br>Left: 2x4 SP No.3<br>Right: 2x4 SP No.3<br>Structural wood she<br>6-0-0 oc purlins, exc<br>2-0-0 oc purlins, exc<br>2-0-0 oc purlins (6-C<br>Rigid ceiling directly<br>bracing.<br>1 Brace at Jt(s): 25<br>This truss requires the<br>chord be sheathed i<br>(size) 2=0-3-8, '<br>Max Horiz 2=159 (LC<br>Max Grav 2=3238 (I<br>(Ib) - Max. Comp./M<br>(Ib) or less except w<br>2-3=-4371/0, 3-4=-4<br>5-6=-4943/0, 6-7=-2<br>8-9=-3382/0, 9-10=-<br>11-12=-5946/0, 12-1<br>13-14=-5132/0<br>2-23=-111/3316, 22<br>21-22=0/3250, 20-2<br>19-32=0/3810, 18-33 | et* 6-21,10-17:2x4 SF<br>athing directly applie<br>cept<br>-0 max.): 7-9.<br>applied or 10-0-0 oc<br>both edges of the both<br>n the room area.<br>14=0-3-8<br>C 9)<br>-C 23), 14=3838 (LC<br>ax. Ten All forces 2<br>then shown.<br>105/0, 4-5=-5041/0,<br>459/0, 7-8=-3382/0,<br>2304/51, 10-11=-585<br>13=-5330/0, | 7:2x8<br>,<br>d or<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, | (0.131"x3"<br>Top chord:<br>staggered<br>oc.<br>Web conner<br>All loads a<br>except if n<br>CASE(S) s<br>provided tt<br>unless oth<br>Unbalance<br>this design<br>Wind: ASC<br>Vasd=91m<br>II; Exp B; E<br>and right e<br>Lumber D0<br>TCLL: ASC<br>DOL=1.15<br>snow); Pf= | CE 7-10; Vult=115m<br>hph; TCDL=6.0psf; E<br>Enclosed; MWFRS (<br>ixposed; end vertic:<br>DL=1.60 plate grip I<br>CE 7-10; Pr=20.0 ps<br>Plate DOL=1.15); F<br>e18.9 psf (flat roof si                               | 21-24=0/<br>10-16=-2<br>,13-16=-<br>4-25=-95<br>-25=-146<br>gether w<br>ws: 2x6<br>ollows: 2<br>rows sta<br>4 - 1 row<br>lly applie<br>back (B)<br>panectior<br>ds noted<br>ve been<br>ph (3-se<br>3CDL=6.<br>(envelop<br>al left an<br>DOL=1.3<br>sf (roof liv<br>2g=20.0  <br>now: Lun | 2744, 6-24=0,<br>69/1642,<br>40/521,<br>0/47,<br>/976,<br>ith 10d<br>- 2 rows<br>ix6 - 2 rows<br>iggered at 0-7<br>v at 0-9-0 oc.<br>d to all plies,<br>face in the LC<br>is have been<br>as (F) or (B),<br>considered fo<br>cond gust)<br>0psf; h=25ft; (<br>e); cantilever I<br>d right expose<br>3<br>ve load: Lumb<br>psf (ground<br>nber DOL=1.1 | 7-0<br>DAD<br>or<br>Cat.<br>left<br>ed;<br>per | chc<br>10) * TI<br>on<br>3-0<br>chc<br>11) Cei<br>12) Bot<br>chc<br>13) Thi<br>Inte<br>R80<br>14) Gra<br>0 r t<br>bot<br>15) Hau<br>pro<br>lb c<br>94<br>sele<br>res | ord live lo<br>his truss<br>the botto<br>6-00 tall<br>ord and a<br>liling dea<br>tom cho<br>ord dead<br>s truss is<br>ernationa<br>02.10.2 a<br>aphical p<br>he orien<br>tom cho<br>nger(s) o<br>vided su<br>down and<br>lb up at<br>ection of<br>c room o | bad noo<br>has be<br>m choo<br>by 2-C0<br>nay oth<br>d load<br>rd live<br>load (i)<br>s design<br>al Resia<br>and ref<br>uurlin re<br>rd.<br>or othe<br>ffficient<br>d 91 lb<br>27-10,<br>such o<br>thecke | en designed for<br>noconcurrent w<br>een designed<br>rd in all areas<br>00-00 wide will<br>er members.<br>(10.0 psf) on 1<br>load (40.0 psf)<br>5.0 psf) applie<br>ined in accord<br>dential Code s<br>erenced stance<br>apresentation<br>of the purlin al<br>r connection de<br>t to support co<br>up at 20-8-0,<br>-8 on bottom of<br>connection de<br>thers. | r a 10.0 psf bottom<br>ith any other live load<br>for a live load of 20.0<br>where a rectangle<br>fit between the botton<br>member(s). 24-25, 10<br>) and additional botto<br>d only to room. 17-21<br>ance with the 2015<br>ections R502.11.1 ar<br>fard ANSI/TPI 1.<br>does not depict the si<br>ong the top and/or<br>evice(s) shall be<br>ncentrated load(s) 17<br>and 1354 lb down ar<br>hord. The design/<br>vice(s) is the | 0psf<br>om<br>0-25<br>om<br>1<br>nd<br>ize<br>776 |
| TOP CHORD                                                                                                                                         | (lb) or less except w<br>2-3=-4371/0, 3-4=-4<br>5-6=-4943/0, 6-7=-2<br>8-9=-3382/0, 9-10=-<br>11-12=-5946/0, 12-1<br>13-14=-5132/0<br>2-23=-111/3316, 22<br>21-22=0/3250, 20-2<br>19-32=0/3810, 18-3                                                                                                                                                                                                                                                                                                                                                                                                                                           | hen shown.<br>105/0, 4-5=-5041/0,<br>459/0, 7-8=-3382/0,<br>2304/51, 10-11=-585<br>I3=-5330/0,<br>-23=0/3316,<br>1=0/3681, 19-20=0/4<br>2=0/3810, 17-18=0/3                                                                                                                                                           | 3)<br>4)<br>64/0,<br>020, 5)<br>810,                                                | this design<br>Wind: ASC<br>Vasd=91m<br>II; Exp B; E<br>and right e<br>Lumber DC<br>TCLL: ASC<br>DOL=1.15<br>snow); Pf=<br>Plate DOL<br>Ct=1.10, L                                                                                                                         | n.<br>2E 7-10; Vult=115m<br>iph; TCDL=6.0psf; E<br>Enclosed; MWFRS (<br>ixposed; end vertic:<br>DL=1.60 plate grip [I<br>CE 7-10; Pr=20.0 ps<br>Plate DOL=1.15); F<br>18.9 psf (flat roof s;<br>=1.15); Category II; | ph (3-sea<br>3CDL=6.<br>(envelopi<br>al left and<br>DOL=1.3<br>of (roof liv<br>Pg=20.0<br>now: Lun<br>Exp B; F                                                                                                                                                                           | cond gust)<br>Opsf; h=25ft; (<br>e); cantilever l<br>d right expose<br>3<br>ve load: Lumb<br>psf (ground<br>nber DOL=1.1<br>Fully Exp.;                                                                                                                                                                                                               | Cat.<br>left<br>ed;<br>ber<br>15               | 16) Atti                                                                                                                                                             | c room c                                                                                                                                                                                                                                                   | (il)                                                                                                                                                                                                       | ORTH C                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |

load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are MT20 plates unless otherwise indicated.

Mo March 20,2025



GILB

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type   | Qty | Ply | Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL |
|-------------|-------|--------------|-----|-----|----------------------------------------------------|
| 25030054-01 | A04   | Attic Girder | 1   | 3   | I72141566<br>Job Reference (optional)              |

Run: 8.73 E Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries, Inc. Thu Mar 20 11:59:49 ID:obau\_dR0Ce3V8RxAY8uX6HzZPtC-QtttoeP\_7MVJAuwG5sufiyP3Gk1e7wUgtDSMkOzZD\_u

Page: 2

#### LOAD CASE(S) Standard

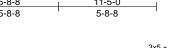
- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1)
  - Increase=1.15 Uniform Loads (lb/ft)

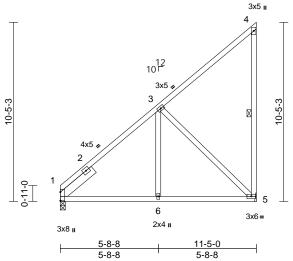
Vert: 1-7=-44, 7-9=-54, 9-14=-44, 21-26=-19, 20-21=-28, 19-20=-28, 17-19=-28, 17-29=-19,

24-25=-19, 10-25=-19

Concentrated Loads (lb)

Vert: 17=-1154 (B), 32=-1506 (B)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




| Job         | Truss | Truss Type   | Qty | Ply | Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL |
|-------------|-------|--------------|-----|-----|----------------------------------------------------|
| 25030054-01 | E01   | Roof Special | 1   | 1   | I72141567<br>Job Reference (optional)              |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Mar 19 09:42:38 ID:Aalmzq\_dZm14qU4Co3ISWzzZPxg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f







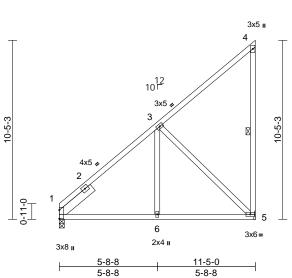
Scale = 1:67.1

#### Plate Offsets (X, Y): [1:Edge,0-0-0]

| Loading              | (psf)                                       | Spacing               | 1-10-4          | csi                    |              | DEFL         | in    | (loc) | l/defl | L/d                 | PLATES                                | GRIP                                  |
|----------------------|---------------------------------------------|-----------------------|-----------------|------------------------|--------------|--------------|-------|-------|--------|---------------------|---------------------------------------|---------------------------------------|
| TCLL (roof)          | 20.0                                        | Plate Grip DOL        | 1.15            | тс                     | 0.88         | Vert(LL)     | -0.03 | 5-6   | >999   | 240                 | MT20                                  | 244/190                               |
| Snow (Pf/Pg)         | 13.9/20.0                                   | Lumber DOL            | 1.15            | BC                     | 0.28         | Vert(CT)     | -0.05 | 5-6   | >999   | 180                 |                                       |                                       |
| TCDL                 | 10.0                                        | Rep Stress Incr       | YES             | WB                     | 0.45         | Horz(CT)     | 0.02  | 1     | n/a    | n/a                 |                                       |                                       |
| BCLL                 | 0.0*                                        | Code                  | IRC2015/TPI2014 | Matrix-MSH             |              |              |       |       |        |                     |                                       |                                       |
| BCDL                 | 10.0                                        |                       |                 |                        |              |              |       |       |        |                     | Weight: 78 lb                         | FT = 20%                              |
| LUMBER               |                                             |                       | 4) * This tru   | ss has been designe    | nd for a liv | voload of 20 | Opef  |       |        |                     |                                       |                                       |
| TOP CHORD            | 2x4 SP No.2                                 |                       |                 | ttom chord in all are  |              |              | .opsi |       |        |                     |                                       |                                       |
| BOT CHORD            | 2x4 SP No.2<br>2x4 SP No.2                  |                       |                 | all by 2-00-00 wide    |              |              | tom   |       |        |                     |                                       |                                       |
| WEBS                 | 2x4 SP No.3                                 |                       |                 | d any other member     |              |              | lonn  |       |        |                     |                                       |                                       |
| SLIDER               | Left 2x6 SP No.2 :                          | 260                   |                 | igs are assumed to b   |              | 2            |       |       |        |                     |                                       |                                       |
|                      | Len 2x0 01 N0.2                             | 2-0-0                 |                 | girder(s) for truss to |              |              |       |       |        |                     |                                       |                                       |
| BRACING<br>TOP CHORD |                                             | المحمد المحملات محاطه |                 | nechanical connection  |              |              | to    |       |        |                     |                                       |                                       |
| TOP CHORD            | Structural wood she<br>6-0-0 oc purlins, ex |                       |                 | late capable of with   |              |              |       |       |        |                     |                                       |                                       |
| BOT CHORD            | Rigid ceiling directly                      |                       | - °.            |                        | 5            |              | ,     |       |        |                     |                                       |                                       |
| BOT CHORD            | bracing.                                    | applied of 10-0-0 c   | JC              | (S) Standard           |              |              |       |       |        |                     |                                       |                                       |
| WEBS                 |                                             | 4-5                   |                 |                        |              |              |       |       |        |                     |                                       |                                       |
|                      |                                             | 5= Mechanical         |                 |                        |              |              |       |       |        |                     |                                       |                                       |
| REACTIONS            | Max Horiz 5=218 (L                          |                       |                 |                        |              |              |       |       |        |                     |                                       |                                       |
|                      | Max Uplift 5=-49 (LC                        | ,                     |                 |                        |              |              |       |       |        |                     |                                       |                                       |
|                      | Max Grav 1=418 (LC                          |                       | )               |                        |              |              |       |       |        |                     |                                       |                                       |
| FORCES               | (lb) - Maximum Com                          | ,, ( ,                | ,               |                        |              |              |       |       |        |                     |                                       |                                       |
| TOROLO               | Tension                                     | ipression/maximum     | 1               |                        |              |              |       |       |        |                     |                                       |                                       |
| TOP CHORD            | 4-5=-183/129, 1-3=-                         | 314/67 3-4=-184/1     | 76              |                        |              |              |       |       |        |                     |                                       |                                       |
| BOT CHORD            | 1-6=-70/301, 5-6=-8                         | ,                     | 10              |                        |              |              |       |       |        |                     |                                       |                                       |
| WEBS                 | 3-5=-404/163, 3-6=0                         |                       |                 |                        |              |              |       |       |        |                     |                                       |                                       |
| NOTES                |                                             |                       |                 |                        |              |              |       |       |        |                     |                                       | 1111                                  |
| 1) Wind: ASC         | CE 7-10; Vult=115mph                        | (3-second gust)       |                 |                        |              |              |       |       |        |                     | WHILL CA                              | Dall                                  |
| Vasd=91m             | nph; TCDL=6.0psf; BC                        | DL=6.0psf; h=25ft;    | Cat.            |                        |              |              |       |       |        | 1                   | altion                                | 10/ 11/2                              |
| II; Exp B; E         | Enclosed; MWFRS (er                         | nvelope) and C-C      |                 |                        |              |              |       |       |        | 1                   | O . EFSS                              | in the                                |
| Exterior (2          | 2) zone; cantilever left                    | and right exposed ;   | end             |                        |              |              |       |       |        | $\epsilon \epsilon$ | in the second                         | Nall                                  |
|                      | t and right exposed;C-                      |                       | ł               |                        |              |              |       |       | 4      | N                   | <u>K</u> 1                            |                                       |
|                      | IWFRS for reactions s                       | hown; Lumber          |                 |                        |              |              |       |       | 1      |                     |                                       |                                       |
|                      | plate grip DOL=1.33                         |                       |                 |                        |              |              |       |       |        | :                   | SEA                                   | NL : =                                |
|                      | CE 7-10; Pr=20.0 psf (                      |                       | ber             |                        |              |              |       |       | =      |                     | 0363                                  | 100 : =                               |
|                      | Plate DOL=1.15); Pg                         |                       |                 |                        |              |              |       |       | -      |                     | 0303                                  | 22 : 2                                |
| <i>,</i> ,           | =13.9 psf (flat roof sno                    |                       | 15              |                        |              |              |       |       |        | 2                   |                                       | 1 - E - E                             |
|                      | .=1.15); Category II; E                     | хр В; Fully Exp.;     |                 |                        |              |              |       |       |        | 3                   | ·                                     | airs                                  |
| Ct=1.10              | haa haan daalay - J.f.                      | * a 10.0 mail hatta   |                 |                        |              |              |       |       |        | 15                  | NGIN                                  | EENAN                                 |
| 3) I NIS TRUSS       | has been designed fo                        | raiu.u dst dottom     |                 |                        |              |              |       |       |        | 1                   | · · · · · · · · · · · · · · · · · · · | A A A A A A A A A A A A A A A A A A A |

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. C A. GILBE March 20,2025

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type   | Qty | Ply | Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL |
|-------------|-------|--------------|-----|-----|----------------------------------------------------|
| 25030054-01 | E02   | Roof Special | 1   | 1   | I72141568<br>Job Reference (optional)              |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Mar 19 09:42:39 ID:TwDPRD30vwv4AY6Yi1N5JRzZPxZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1





#### Scale = 1:67.1

Plate Offsets (X, Y): [1:Edge,0-0-0]

| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                           | (psf)<br>20.0<br>13.9/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                              | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015/TPI2014                                                                                                                    | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                       | 0.95<br>0.30<br>0.49                                                  | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                         | in<br>-0.03<br>-0.06<br>0.02 | (loc)<br>5-6<br>5-6<br>1 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 78 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------|------------------------------|--------------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|
| BCDL<br>LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>SLIDER<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD<br>BOT CHORD<br>BOT CHORD<br>WEBS<br>NOTES<br>1) Wind: ASC<br>Vasd=91n<br>II; Exp B; I<br>Exterior (2<br>vertical lef<br>forces & M<br>DOL=1.60 | 10.0<br>2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Left 2x6 SP No.2:<br>Structural wood she<br>6-0-0 oc purlins, ex<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(size) 1=0-3-8, §<br>Max Horiz 5=235 (LC<br>Max Uplift 5=-53 (LC<br>(lb) - Maximum Corr<br>Tension<br>4-5=-197/140, 1-3=-<br>1-6=-76/324, 5-6=-8<br>3-5=-436/176, 3-6=(C<br>CE 7-10; Vult=115mph<br>nph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (er<br>2) zone; cantilever left :<br>ft and right exposed;C-<br>MWFRS for reactions s<br>0 plate grip DOL=1.33 | 2-6-0<br>athing directly applie<br>cept end verticals.<br>applied or 10-0-0 or<br>4-5<br>5= Mechanical<br>C 13)<br>C 2), 5=481 (LC 25)<br>pression/Maximum<br>339/72, 3-4=-198/19<br>/324<br>0/253<br>(3-second gust)<br>DL=6.0psf; h=25ft; G<br>ivelope) and C-C<br>and right exposed ; e<br>C for members and<br>hown; Lumber | <ul> <li>4) * This trus<br/>on the bot<br/>3-06-00 ta<br/>chord and</li> <li>5) All bearing<br/>6) Refer to g<br/>bearing pl<br/>5.</li> <li>LOAD CASE(</li> </ul> | s has been designe<br>tom chord in all area<br>Il by 2-00-00 wide w<br>any other members<br>is are assumed to b<br>irder(s) for truss to t<br>echanical connectio<br>ate capable of withs | as where<br>vill fit betv<br>s.<br>e SP No<br>russ coni<br>on (by oth | a rectangle<br>veen the both<br>2.<br>nections.<br>ers) of truss | tom                          |                          |                               | 2 million                | Weight: 78 lb                   | ROLIN                              |
| DOL=1.15<br>snow); Pf=<br>Plate DOL<br>Ct=1.10<br>3) This truss                                                                                                                                                                                                                                          | CE 7-10; Pr=20.0 psf (<br>5 Plate DOL=1.15); Pg:<br>=13.9 psf (flat roof snor<br>.=1.15); Category II; E:<br>has been designed fo<br>load nonconcurrent wi                                                                                                                                                                                                                                                                                                                                                                                  | =20.0 psf (ground<br>w: Lumber DOL=1.1<br>xp B; Fully Exp.;<br>r a 10.0 psf bottom                                                                                                                                                                                                                                              | 5                                                                                                                                                                  |                                                                                                                                                                                           |                                                                       |                                                                  |                              |                          | 1100 C                        |                          |                                 | EEP. A.                            |

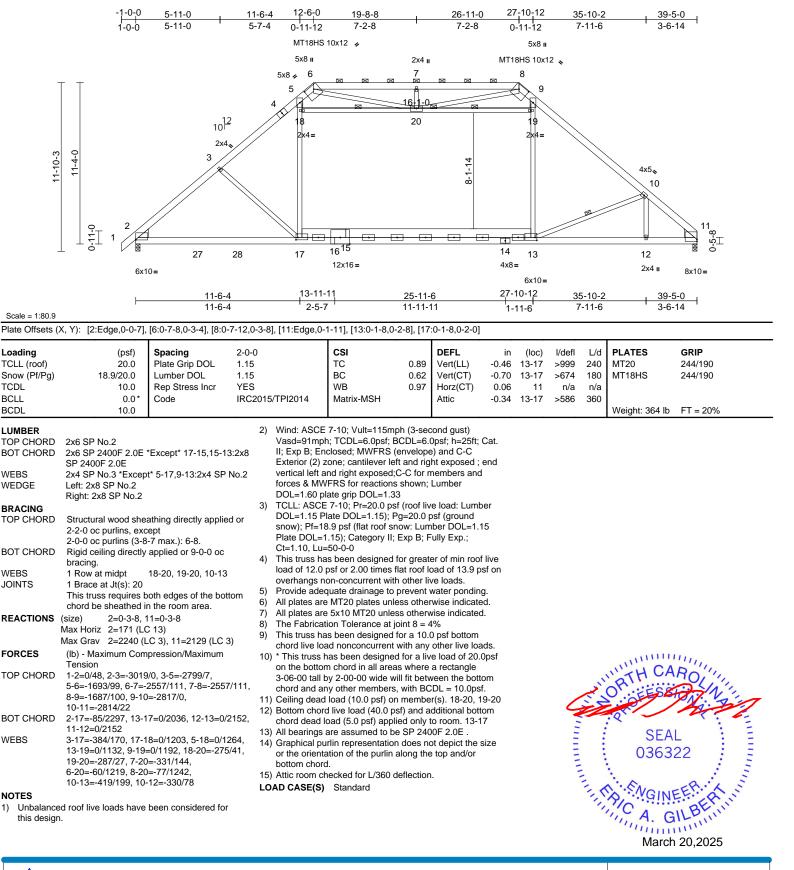
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



818 Soundside Road Edenton, NC 27932

March 20,2025

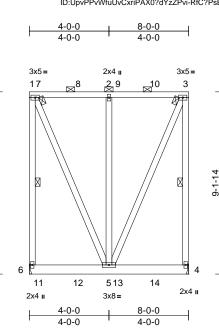
| Job         | Truss | Truss Type | Qty | Ply | Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL |
|-------------|-------|------------|-----|-----|----------------------------------------------------|
| 25030054-01 | A07   | Attic      | 2   | 1   | I72141569<br>Job Reference (optional)              |


1)

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Wed Mar 19 09:42:37 ID:Gn8GCzSezyBMmaWM6rPmfUzZPtB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road


Edenton, NC 27932



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type  | Qty | Ply | Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL |
|-------------|-------|-------------|-----|-----|----------------------------------------------------|
| 25030054-01 | AG01  | Flat Girder | 2   | 2   | I72141570<br>Job Reference (optional)              |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Mar 19 09:42:38 ID:UpvPPvWfuUvCxriPAX0?dYzZPvi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



9-1-14

#### Scale = 1:57.9

| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL                                           | (psf)<br>20.0<br>18.9/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                           | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                               | 1-10-4<br>1.15<br>1.15<br>NO<br>IRC2015/TPI2014                                                                                                                                            | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                   | 0.35<br>0.21<br>0.25                                                                                                              | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                           | in<br>-0.01<br>-0.02<br>0.00 | (loc)<br>4-5<br>4-5<br>4 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 190 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|-------------------------------|--------------------------|----------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS       | 2x6 SP No.2<br>2x4 SP No.3<br>2-0-0 oc purlins (6-0<br>end verticals.<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt                                                                                | applied or 10-0-0 oc<br>1-6, 3-4<br>anical, 6= Mechanical<br>C 6)                                                | DOL=1.15<br>snow); Pf=<br>Plate DOL=<br>Ct=1.10, Lt<br>5) Provide ad<br>6) This truss f<br>chord live I<br>7) * This truss<br>on the bott<br>3-06-00 tal<br>chord and a<br>8) All bearing: | equate drainage to<br>has been designed<br>bad nonconcurren<br>has been designe<br>om chord in all are<br>by 2-00-00 wide v<br>any other members<br>are assumed to b | Pg=20.0 p<br>now: Lum<br>; Exp B; F<br>l for a 10.0<br>t with any<br>ed for a liv<br>as where<br>will fit betv<br>s.<br>pe SP No. | osf (ground<br>iber DOL=1.<br>iully Exp.;<br>water pondin<br>0 psf bottom<br>other live los<br>e load of 20.<br>a rectangle<br>ween the bott<br>2. | 15<br>g.<br>ads.<br>Opsf     |                          |                               |                          |                                  |                                    |
| FORCES<br>TOP CHORD<br>BOT CHORD                                                                         | Max Grav 4=1371 (L<br>(Ib) - Maximum Com<br>Tension<br>1-6=-1248/29, 1-2=-<br>3-4=-1112/73                                                                                                                   | LC 21), 6=1793 (LC 2<br>apression/Maximum<br>409/8, 2-3=-409/8,                                                  | <sup>22)</sup> 10) Provide me<br>bearing pla<br>6 and 84 lb<br>11) Graphical p                                                                                                             | der(s) for truss to the<br>chanical connection<br>te capable of withs<br>uplift at joint 4.<br>burlin representation<br>tation of the purlin<br>rd.                  | on (by oth<br>standing 8<br>on does no                                                                                            | ers) of truss<br>30 lb uplift at<br>ot depict the                                                                                                  | joint                        |                          |                               |                          |                                  |                                    |
| (0.131"x3<br>Top chord<br>oc.<br>Bottom ch<br>staggered                                                  | s to be connected toge<br>") nails as follows:<br>Is connected as follows<br>nords connected as foll<br>at 0-9-0 oc.                                                                                         | s: 2x4 - 1 row at 0-9-(<br>ows: 2x6 - 2 rows                                                                     | provided su<br>lb down an<br>at 2-5-8, a<br>y 428 lb dow<br>The design<br>responsibil                                                                                                      | ,                                                                                                                                                                    | concentra<br>3, 457 lb c<br>d 65 lb up<br>6-3-12 on<br>connectio                                                                  | ated load(s) 4<br>lown and 67<br>o at 4-5-8, an<br>bottom chor<br>n device(s) i                                                                    | lb up<br>nd<br>d.<br>s the   |                          | 4                             |                          | OP FESE                          | ROLIN                              |
| <ol> <li>All loads a except if n<br/>CASE(S)<br/>provided t<br/>unless oth</li> <li>Wind: ASG</li> </ol> | ected as follows: 2x4 -<br>are considered equally<br>noted as front (F) or ba<br>section. Ply to ply conr<br>o distribute only loads<br>nerwise indicated.<br>CE 7-10; Vult=115mph<br>path: TCDL = 0 0pt F2C | applied to all plies,<br>ck (B) face in the LO.<br>nections have been<br>noted as (F) or (B),<br>(3-second gust) | AD Uniform L<br>Vert: 1-<br>Concentra<br>Vert: 7-<br>12=-35                                                                                                                                | now (balanced): Lu<br>1.15<br>oads (lb/ft)<br>3=-54, 4-6=-19<br>tted Loads (lb)<br>189, 8=-173, 9=-<br>8 (B), 13=-363 (B)                                            | 173, 10=-                                                                                                                         | 173, 11=-36                                                                                                                                        |                              |                          | THE PARTY OF                  |                          | SEA<br>0363                      | 22                                 |

 Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.33

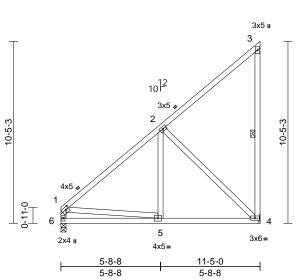
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



818 Soundside Road Edenton, NC 27932

March 20,2025

A. GILD


C

| Job         | Truss | Truss Type  | Qty | Ply | Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL |
|-------------|-------|-------------|-----|-----|----------------------------------------------------|
| 25030054-01 | E03   | Jack-Closed | 2   | 1   | I72141571<br>Job Reference (optional)              |

Run; 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Mar 19 09:42:39 ID:ESiR6yA11Nvx7nj4AjXzd7zZPxR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1





Scale = 1:66.1

#### Plate Offsets (X, Y): [1:0-2-0,0-1-12]

|              |                                                                      | 1                      |               |                                                    |              |               |       |       |        |     |               |                   |
|--------------|----------------------------------------------------------------------|------------------------|---------------|----------------------------------------------------|--------------|---------------|-------|-------|--------|-----|---------------|-------------------|
| Loading      | (psf)                                                                | Spacing                | 2-0-0         | CSI                                                |              | DEFL          | in    | (loc) | l/defl | L/d | PLATES        | GRIP              |
| TCLL (roof)  | 20.0                                                                 | Plate Grip DOL         | 1.15          | TC                                                 | 0.96         | Vert(LL)      | 0.03  | 4-5   | >999   | 240 | MT20          | 244/190           |
| Snow (Pf/Pg) | 13.9/20.0                                                            | Lumber DOL             | 1.15          | BC                                                 | 0.31         | Vert(CT)      | -0.05 | 4-5   | >999   | 180 |               |                   |
| TCDL         | 10.0                                                                 | Rep Stress Incr        | YES           | WB                                                 | 0.47         | Horz(CT)      | 0.01  | 4     | n/a    | n/a |               |                   |
| BCLL         | 0.0*                                                                 | Code                   | IRC2015/TPI20 | 14 Matrix-MSH                                      |              |               |       |       |        |     |               |                   |
| BCDL         | 10.0                                                                 |                        |               |                                                    |              |               |       |       |        |     | Weight: 81 lb | FT = 20%          |
| LUMBER       |                                                                      |                        | 4) * This     | truss has been design                              | ed for a liv | e load of 20. | 0psf  |       |        |     |               |                   |
| TOP CHORD    | 2x4 SP No.2                                                          |                        |               | bottom chord in all are                            |              |               |       |       |        |     |               |                   |
| BOT CHORD    |                                                                      |                        |               | 00 tall by 2-00-00 wide                            |              | veen the bott | tom   |       |        |     |               |                   |
| WEBS         | 2x4 SP No.3                                                          |                        |               | and any other membe                                |              | <u>^</u>      |       |       |        |     |               |                   |
| BRACING      |                                                                      |                        | Ó D-(         | arings are assumed to<br>to girder(s) for truss to |              |               |       |       |        |     |               |                   |
| TOP CHORD    | Structural wood she                                                  |                        |               | le mechanical connect                              |              |               | to    |       |        |     |               |                   |
| BOT CHORD    | 6-0-0 oc purlins, ex<br>Rigid ceiling directly                       |                        | , h           | g plate capable of with                            |              |               |       |       |        |     |               |                   |
| BOT CHOILD   | bracing.                                                             | applied of 0-5-15 0    | 4.            |                                                    |              |               |       |       |        |     |               |                   |
| WEBS         | 1 Row at midpt                                                       | 3-4                    | LOAD CA       | SE(S) Standard                                     |              |               |       |       |        |     |               |                   |
| REACTIONS    | (size) 4= Mecha                                                      | anical, 6=0-3-8        |               |                                                    |              |               |       |       |        |     |               |                   |
|              | Max Horiz 6=238 (LO                                                  | C 13)                  |               |                                                    |              |               |       |       |        |     |               |                   |
|              | Max Uplift 4=-56 (LC                                                 |                        |               |                                                    |              |               |       |       |        |     |               |                   |
|              | Max Grav 4=476 (LO                                                   | ,, , , ,               |               |                                                    |              |               |       |       |        |     |               |                   |
| FORCES       | (lb) - Maximum Com                                                   | pression/Maximum       |               |                                                    |              |               |       |       |        |     |               |                   |
| TOP CHORD    | Tension<br>1-6=-398/62, 1-2=-4                                       | 95/62 2 2- 201/10      | 1             |                                                    |              |               |       |       |        |     |               |                   |
| TOP CHORD    | 3-4=-199/142                                                         | 05/02, 2-5=-201/19     | ι,            |                                                    |              |               |       |       |        |     |               |                   |
| BOT CHORD    |                                                                      | 208/408                |               |                                                    |              |               |       |       |        |     |               |                   |
| WEBS         | 1-5=-130/269, 2-5=0                                                  | )/245, 2-4=-423/166    |               |                                                    |              |               |       |       |        |     |               |                   |
| NOTES        |                                                                      |                        |               |                                                    |              |               |       |       |        |     | minin         | UIL.              |
|              | CE 7-10; Vult=115mph                                                 |                        |               |                                                    |              |               |       |       |        |     | IN'TH CA      | ROUL              |
|              | nph; TCDL=6.0psf; BC                                                 |                        | Cat.          |                                                    |              |               |       |       |        | N   | R             |                   |
|              | Enclosed; MWFRS (er                                                  |                        | a .a .d       |                                                    |              |               |       |       |        | No. | O'.FESS       | Oi Pin            |
|              | <ol> <li>zone; cantilever left<br/>t and right exposed;C-</li> </ol> |                        |               |                                                    |              |               |       |       |        | 25  |               | Thin              |
|              | WFRS for reactions s                                                 |                        |               |                                                    |              |               |       |       |        |     |               |                   |
|              | plate grip DOL=1.33                                                  | - ,                    |               |                                                    |              |               |       |       | Ξ      |     | SEA           | 1. <del>1</del> E |
|              | CE 7-10; Pr=20.0 psf (                                               |                        | er            |                                                    |              |               |       |       |        |     |               | • –               |
|              | Plate DOL=1.15); Pg                                                  |                        | -             |                                                    |              |               |       |       | 1      |     | 0363          | 22 : :            |
|              | =13.9 psf (flat roof sno<br>.=1.15); Category II; E                  |                        | 5             |                                                    |              |               |       |       |        |     |               | 1 E -             |
| Ct=1.10      | - 1.13), Calegory II, E                                              | νμ Β, Fully Exp.,      |               |                                                    |              |               |       |       |        | 2.  | N.E.          | Richs             |
|              | has been designed fo                                                 | r a 10.0 psf bottom    |               |                                                    |              |               |       |       |        | 25  | GIN           | EFR               |
| chord live   | load nonconcurrent w                                                 | ith any other live loa | ds.           |                                                    |              |               |       |       |        | 1   | C A           | ILBEIT            |
|              |                                                                      | -                      |               |                                                    |              |               |       |       |        |     | 1, A. (.      |                   |

GI March 20,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut beformation, available from the Structure Review Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type | Qty | Ply | Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL |
|-------------|-------|------------|-----|-----|----------------------------------------------------|
| 25030054-01 | PB01  | Piggyback  | 2   | 1   | Job Reference (optional)                           |

4x5 =

6-6-13

6-6-13

Carter Components (Sanford, NC), Sanford, NC - 27332,

Scale = 1:42.6

Loading

TCDL

BCLL

BCDL

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

this design.

WEBS

NOTES

1)

TCLL (roof)

Snow (Pf/Pg)

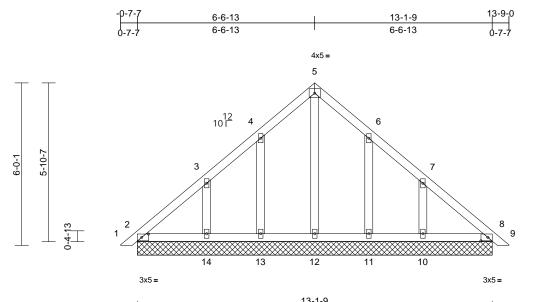
Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Wed Mar 19 09:42:39 ID:rVBsupM7joOuV?n6T0oB80zZPvu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

13-1-9

6-6-13

13-9-0

0-7-7


Page: 1

5 12 10 Г 4 6 ,-0-6 3 7 1 8 2 9 14 13 12 11 10 3x5 = 3x5 = 13-1-9 Plate Offsets (X, Y): [2:0-3-1,0-1-8], [8:0-3-1,0-1-8] 1-10-4 CSI DEFL l/defl L/d PLATES GRIP (psf) Spacing in (loc) 20.0 Plate Grip DOL 1.15 TC 0.06 Vert(LL) 999 MT20 244/190 n/a n/a 13.9/20.0 Lumber DOL 1.15 BC 0.05 Vert(CT) n/a n/a 999 Rep Stress Incr WB Horz(CT) 8 10.0 YES 0.04 0.00 n/a n/a 0.0 IRC2015/TPI2014 Matrix-MSH Code 10.0 Weight: 72 lb FT = 20% 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. 2x4 SP No 2 II; Exp B; Enclosed; MWFRS (envelope) and C-C 2x4 SP No 2 Exterior (2) zone; cantilever left and right exposed; end 2x4 SP No.3 vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber Structural wood sheathing directly applied or DOL=1.60 plate grip DOL=1.33 6-0-0 oc purlins. 3) Truss designed for wind loads in the plane of the truss Rigid ceiling directly applied or 10-0-0 oc only. For studs exposed to wind (normal to the face), bracing. see Standard Industry Gable End Details as applicable, **REACTIONS** (size) 2=13-1-9, 8=13-1-9, 10=13-1-9, or consult qualified building designer as per ANSI/TPI 1. 11=13-1-9, 12=13-1-9, 13=13-1-9, 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 14=13-1-9 DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground Max Horiz 2=83 (LC 13) snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Max Uplift 10=-31 (LC 15), 11=-19 (LC 15), Plate DOL=1.15); Category II; Exp B; Fully Exp.; 13=-20 (LC 14), 14=-32 (LC 14) Ct=1.10 Max Grav 2=123 (LC 27), 8=122 (LC 2), This truss has been designed for greater of min roof live 5) 10=202 (LC 27), 11=142 (LC 27), load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on 12=114 (LC 29), 13=142 (LC 26), overhangs non-concurrent with other live loads. 14=202 (LC 26) All plates are 2x4 MT20 unless otherwise indicated. 6) (Ib) - Maximum Compression/Maximum Gable requires continuous bottom chord bearing. 7) Tension Gable studs spaced at 2-0-0 oc. 8) 1-2=0/18, 2-3=-84/62, 3-4=-85/41, This truss has been designed for a 10.0 psf bottom 9) 4-5=-96/90. 5-6=-96/90. 6-7=-69/32. chord live load nonconcurrent with any other live loads. 7-8=-66/43.8-9=0/18 10)\* This truss has been designed for a live load of 20.0psf 2-14=-47/78, 13-14=-47/78, 12-13=-47/78, on the bottom chord in all areas where a rectangle 11-12=-47/78, 10-11=-47/78, 8-10=-47/78 3-06-00 tall by 2-00-00 wide will fit between the bottom 5-12=-73/27. 4-13=-115/68. 3-14=-140/83. chord and any other members. CITICO MANDALINE 6-11=-114/68, 7-10=-140/83 11) All bearings are assumed to be SP No.2 . SEAL 12) Provide mechanical connection (by others) of truss to 036322 Unbalanced roof live loads have been considered for bearing plate capable of withstanding 20 lb uplift at joint 13, 32 lb uplift at joint 14, 19 lb uplift at joint 11 and 31 lb uplift at joint 10. 13) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer. LOAD CASE(S) Standard G mmm March 20,2025 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) 818 Soundside Road and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com) Edenton, NC 27932

| Job         | Truss | Truss Type | Qty | Ply | Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL |
|-------------|-------|------------|-----|-----|----------------------------------------------------|
| 25030054-01 | PB03  | Piggyback  | 2   | 3   | I72141573<br>Job Reference (optional)              |

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Wed Mar 19 09:42:39 ID:0LqbdlIM7ydIn4Ky7lhnvIzZPw\_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

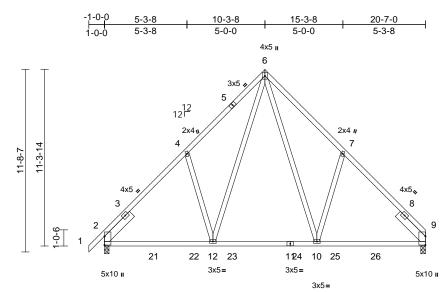
Page: 1



|                                                        | IX | J=1-9 |   |
|--------------------------------------------------------|----|-------|---|
| Scale = 1:42.6                                         |    |       | 1 |
| Plate Offsets (X, Y): [2:0-3-1,0-1-8], [8:0-3-1,0-1-8] |    |       |   |
|                                                        |    |       |   |

|                                                                                       | A, T). [2.0-3-1,0-1-0],                                                                                                     | [0.0-3-1,0-1-0]                                                                                                           |                                         |                                                                                                                               |                                                                                                                                                                                                                              |                                                                                   |                                                                                                                |                           |      |                         |                                       |                     |                                                 |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------|------|-------------------------|---------------------------------------|---------------------|-------------------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL<br>LUMBER<br>TOP CHORD | (psf)<br>20.0<br>13.9/20.0<br>10.0<br>0.0*<br>10.0<br>2x4 SP No.2                                                           | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                        | 1-10-4<br>1.15<br>1.15<br>YES<br>IRC201 | except if note                                                                                                                | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH<br>considered equall<br>ed as front (F) or b                                                                                                                                             | ack (B)                                                                           | face in the LC                                                                                                 | in<br>n/a<br>0.00<br>DAD  | bea  | aring plat              | te capa                               | able of withstandi  | others) of truss to<br>ng 20 lb uplift at joint |
| BOT CHORD                                                                             | 2x4 SP No.2                                                                                                                 |                                                                                                                           |                                         |                                                                                                                               | ction. Ply to ply con<br>distribute only load                                                                                                                                                                                |                                                                                   |                                                                                                                |                           |      | 31 lb up<br>ift at join |                                       | oint 14, 19 lb upli | t at joint 11 and 31 lb                         |
| OTHERS                                                                                | 2x4 SP No.3                                                                                                                 |                                                                                                                           |                                         |                                                                                                                               | wise indicated.                                                                                                                                                                                                              | Sholeu                                                                            | as (F) 01 (B),                                                                                                 |                           |      |                         |                                       | ustry Piggyback 1   | russ Connection                                 |
| BRACING<br>TOP CHORD                                                                  | Structural wood she                                                                                                         | athing directly applie                                                                                                    | dor 3                                   |                                                                                                                               | roof live loads hav                                                                                                                                                                                                          | e been                                                                            | considered fo                                                                                                  | r                         | Det  | ail for C               | onnect                                | tion to base truss  |                                                 |
|                                                                                       | 6-0-0 oc purlins.                                                                                                           |                                                                                                                           |                                         | this design.                                                                                                                  | 7 40 14 14 445                                                                                                                                                                                                               |                                                                                   |                                                                                                                |                           |      |                         |                                       | ouilding designer.  |                                                 |
| BOT CHORD                                                                             | Rigid ceiling directly<br>bracing.                                                                                          | applied or 10-0-0 oc                                                                                                      | , 4)                                    | Vasd=91mpl                                                                                                                    | 7-10; Vult=115mp<br>n; TCDL=6.0psf; B<br>closed; MWFRS (6                                                                                                                                                                    | CDL=6.                                                                            | 0psf; h=25ft; 0                                                                                                | Cat.                      | LOAD | CASE(S                  | ) Sta                                 | ndard               |                                                 |
|                                                                                       | 11=13-1-5<br>14=13-1-5<br>Max Horiz 2=83 (LC<br>Max Uplift 10=-31 (L<br>10=-31 (L<br>10=202 (L<br>10=202 (L                 | 13)<br>C 15), 11=-19 (LC 1<br>C 14), 14=-31 (LC 1<br>C 27), 8=121 (LC 2),<br>LC 27), 11=142 (LC 2<br>LC 29), 13=142 (LC 2 | -1-9,<br>5), 5)<br>4) 5)<br>27),        | vertical left a<br>forces & MW<br>DOL=1.60 pl<br>Truss design<br>only. For stu<br>see Standard<br>or consult qu<br>TCLL: ASCE | tone; cantilever lef<br>nd right exposed;<br>(FRS for reactions<br>ate grip DOL=1.32<br>ate dror wind loads<br>uds exposed to wird<br>d Industry Gable E<br>tailified building de:<br>7-10; Pr=20.0 psi<br>late DOL=1.15); P | C-C for r<br>shown;<br>in the pl<br>id (norm<br>nd Deta<br>signer a:<br>(roof liv | nembers and<br>Lumber<br>ane of the true<br>al to the face<br>ils as applicat<br>s per ANSI/TF<br>e load: Lumb | ss<br>),<br>ble,<br>PI 1. |      |                         |                                       |                     |                                                 |
| FORCES                                                                                | (lb) - Maximum Com<br>Tension                                                                                               | pression/Maximum                                                                                                          |                                         | snow); Pf=13                                                                                                                  | 3.9 psf (flat roof sn<br>.15); Category II;                                                                                                                                                                                  | ow: Lun                                                                           | ber DOL=1.1                                                                                                    | 5                         |      |                         |                                       |                     |                                                 |
| TOP CHORD                                                                             | 1-2=0/18, 2-3=-83/6<br>4-5=-96/91, 5-6=-96<br>7-8=-65/43, 8-9=0/1                                                           | /91, 6-7=-68/33,                                                                                                          | 7)                                      | Ct=1.10<br>This truss ha                                                                                                      | is been designed f                                                                                                                                                                                                           | or great                                                                          | er of min roof                                                                                                 |                           |      |                         |                                       | WH CA               | ROUT                                            |
| BOT CHORD                                                                             | 2-14=-46/78, 13-14=                                                                                                         | ,                                                                                                                         | ,                                       |                                                                                                                               | on-concurrent with                                                                                                                                                                                                           |                                                                                   |                                                                                                                |                           |      | /                       | 32                                    | C FEOS              | M. Mar                                          |
| WEBS                                                                                  | 11-12=-46/78, 10-11<br>5-12=-74/28, 4-13=-<br>6-11=-114/68, 7-10=                                                           | 114/68, 3-14=-140/8                                                                                                       | 4, 9                                    | Gable requir                                                                                                                  | e 2x4 MT20 unless<br>es continuous bott<br>spaced at 2-0-0 of                                                                                                                                                                | om choi                                                                           |                                                                                                                |                           |      | 2                       | 1                                     |                     | well.                                           |
| NOTES                                                                                 |                                                                                                                             |                                                                                                                           |                                         |                                                                                                                               | is been designed f                                                                                                                                                                                                           |                                                                                   | ) psf bottom                                                                                                   |                           |      | = =                     |                                       | SEA                 | L <u>i</u> E                                    |
| Top chords<br>follows: 2x<br>Bottom cho                                               | to be connected toge<br>s connected with 10d<br>(4 - 1 row at 0-9-0 oc.<br>ords connected with 1<br>(4 - 1 row at 0-9-0 oc. | (0.131"x3") nails as                                                                                                      | 1:<br>as                                | chord live loa<br>2) * This truss h<br>on the bottor<br>3-06-00 tall h<br>chord and an                                        | ad nonconcurrent of<br>has been designed<br>in chord in all area<br>by 2-00-00 wide with<br>y other members.<br>are assumed to be                                                                                            | with any<br>I for a liv<br>s where<br>Il fit betv                                 | other live load<br>e load of 20.0<br>a rectangle<br>veen the botto                                             | )psf                      |      | LUA.                    | A A A A A A A A A A A A A A A A A A A | 0363                | E.P                                             |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

| Job         | Truss | Truss Type | Qty | Ply | Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL |
|-------------|-------|------------|-----|-----|----------------------------------------------------|
| 25030054-01 | C02   | Common     | 3   | 1   | I72141574<br>Job Reference (optional)              |

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Wed Mar 19 09:42:38 ID:9s1VHiw\_bXcBRM4XqMibd7zZQ\_K-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 20-7-0 6-11-8

Page: 1



| 6-11-8 | 13-7-8 |
|--------|--------|
| 6-11-8 | 6-8-0  |
|        |        |

| Scale = 1:73.9 |           |                 |                 |                   |           |                |       | 0 11 0 |        |     |                |          |
|----------------|-----------|-----------------|-----------------|-------------------|-----------|----------------|-------|--------|--------|-----|----------------|----------|
| Loading        | (psf)     | Spacing         | 2-0-0           | CSI               |           | DEFL           | in    | (loc)  | l/defl | L/d | PLATES         | GRIP     |
| TCLL (roof)    | 20.0      | Plate Grip DOL  | 1.15            | TC                | 0.30      | Vert(LL)       | -0.08 | 10-12  | >999   | 240 | MT20           | 244/190  |
| Snow (Pf/Pg)   | 13.9/20.0 | Lumber DOL      | 1.15            | BC                | 0.46      | Vert(CT)       | -0.12 | 10-12  | >999   | 180 |                |          |
| TCDL           | 10.0      | Rep Stress Incr | YES             | WB                | 0.30      | Horz(CT)       | 0.02  | 9      | n/a    | n/a |                |          |
| BCLL           | 0.0*      | Code            | IRC2015/TPI2014 | Matrix-MSH        |           |                |       |        |        |     |                |          |
| BCDL           | 10.0      |                 |                 |                   |           |                |       |        |        |     | Weight: 139 lb | FT = 20% |
| LUMBER         |           |                 | 4) This truss   | has been designed | for great | er of min root | live  |        |        |     |                |          |

- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.2 \*Except\* 10-7,12-4:2x4 SP No.3 WFBS SI IDER Left 2x6 SP No.2 -- 2-6-0, Right 2x6 SP No.2 -- 2-6-0 BRACING TOP CHORD Structural wood sheathing directly applied or 5-9-1 oc purlins BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 2=0-3-8, 9=0-3-8 Max Horiz 2=170 (LC 13) Max Grav 2=925 (LC 26), 9=876 (LC 26) FORCES (Ib) - Maximum Compression/Maximum Tension
- TOP CHORD 1-2=0/53, 2-4=-941/102, 4-6=-892/243, 6-7=-896/243, 7-9=-942/102 2-12=-122/698, 10-12=0/478, 9-10=-62/629 BOT CHORD WEBS 6-10=-127/522, 7-10=-282/203.

6-12=-127/515, 4-12=-282/203

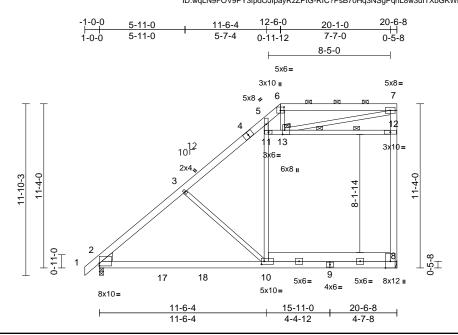
#### NOTES

- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

- load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads. \* This truss has been designed for a live load of 20.0psf
- 6) on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf.
- 7) All bearings are assumed to be SP No.2.
- LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Edenton, NC 27932

| Job         | Truss | Truss Type | Qty | Ply | Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL |
|-------------|-------|------------|-----|-----|----------------------------------------------------|
| 25030054-01 | A05   | Attic      | 4   | 1   | I72141575<br>Job Reference (optional)              |

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Wed Mar 19 09:42:36 ID:wqLN9FOV9PY3fpdOJIpayRzZPtG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

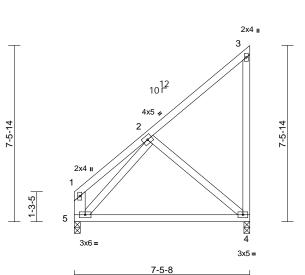
Page: 1



Scale = 1:79.5

#### Plate Offsets (X, Y): [2:Edge,0-2-3], [6:0-3-0,0-2-12], [10:0-2-4,0-2-8], [13:0-3-8,0-1-12]

|                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                       |                                                                           |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |          |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|
| Loading                                                                                                               | (psf)                                                                                                                                                                                                                                                                                                                                                | Spacing                                                                                                                                                                                                        | 1-10-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                    | DEFL                                                                                                                                                                                                                                                                                  | in                                                                        | (loc) | l/defl | L/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PLATES                | GRIP     |
| TCLL (roof)                                                                                                           | 20.0                                                                                                                                                                                                                                                                                                                                                 | Plate Grip DOL                                                                                                                                                                                                 | 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.93                                                                                                                                                                                                                               | Vert(LL)                                                                                                                                                                                                                                                                              | -0.51                                                                     | 10-16 | >475   | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MT20                  | 244/190  |
| Snow (Pf/Pg)                                                                                                          | 18.9/20.0                                                                                                                                                                                                                                                                                                                                            | Lumber DOL                                                                                                                                                                                                     | 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.50                                                                                                                                                                                                                               | Vert(CT)                                                                                                                                                                                                                                                                              | -1.00                                                                     | 10-16 | >243   | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |          |
| TCDL                                                                                                                  | 10.0                                                                                                                                                                                                                                                                                                                                                 | Rep Stress Incr                                                                                                                                                                                                | YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.89                                                                                                                                                                                                                               | Horz(CT)                                                                                                                                                                                                                                                                              | 0.05                                                                      | 2     | n/a    | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |          |
| BCLL                                                                                                                  | 0.0*                                                                                                                                                                                                                                                                                                                                                 | Code                                                                                                                                                                                                           | IRC2015/TPI201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                    | Attic                                                                                                                                                                                                                                                                                 | -0.47                                                                     | 8-10  | >449   | 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |          |
| BCDL                                                                                                                  | 10.0                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                       |                                                                           |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Weight: 212 lb        | FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>WEDGE<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>JOINTS<br>REACTIONS | 2x6 SP No.2<br>2x6 SP 2400F 2.0E<br>2400F 2.0E<br>2x4 SP No.3 *Excep<br>2.0E, 5-10:2x4 SP N<br>Left: 2x8 SP No.2<br>Structural wood she<br>2-2-0 oc purlins, ex<br>2-0-0 oc purlins, ex<br>2-0-0 oc purlins (6-0<br>Rigid ceiling directly<br>bracing.<br>2 Rows at 1/3 pts<br>1 Brace at Jt(s): 13<br>This truss requires b<br>chord be sheathed in | Io.1<br>athing directly applied<br>cept end verticals, and<br>-0 max.): 6-7.<br>applied or 10-0-0 oc<br>12-13<br>both edges of the botto<br>n the room area.<br>B= Mechanical<br>C 13)<br>C 27), 8=1255 (LC 3) | Vasd=5<br>II; Exp<br>Exterio<br>OVEL=1<br>3) TCLL:<br>or DOL=1<br>3) TCLL:<br>or DOL=1<br>(1) TOL=1<br>(2) TCLS<br>(2) TCLS | SCE 7-10; Vult=115m<br>1mph; TCDL=6.0psf; I<br>3; Enclosed; MWFRS<br>(2) zone; cantilever le<br>left and right exposed;<br>(WFRS for reactions<br>60 plate grip DOL=1.3<br>SCE 7-10; Pr=20.0 ps<br>15 Plate DOL=1.15); F<br>Pf=18.9 psf (flat roof si<br>DL=1.15); Category II;<br>1, Lu=50-0-0<br>ss has been designed<br>12.0 psf or 2.00 times<br>Igs non-concurrent wit<br>adequate drainage to<br>adequate drainage to<br>so has been designed<br><i>ve load nonconcurrent</i><br>uss has been designed<br><i>ve load nonconcurrent</i><br><i>ve load nonconcurrent</i><br><i>ve</i> | CDL=6.<br>(envelop)<br>ft and rig<br>C-C for rs<br>s shown;<br>3<br>sf (roof lin<br>Pg=20.0<br>how: Lun<br>Exp B; f<br>for great<br>flat roof I<br>h other li<br>for a 10.<br>with any<br>d for a lin<br>as where<br>rill fit betw | Opsf; h=25ft;<br>a) and C-C<br>ht exposed;<br>nembers and<br>Lumber<br>re load: Lumb<br>obsf (ground<br>ber DOL=1.<br>Fully Exp.;<br>er of min roo<br>boad of 13.9 p<br>we loads.<br>water pondin<br>0 psf bottom<br>other live loa<br>re load of 20.<br>a rectangle<br>veen the bott | end<br>d<br>ber<br>15<br>of live<br>osf on<br>ng.<br>ads.<br>.0psf<br>tom |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |          |
| TOP CHORD<br>BOT CHORD<br>WEBS                                                                                        | 7-12=-577/100<br>2-10=-445/813, 8-10                                                                                                                                                                                                                                                                                                                 | 55/63, 8-12=-641/68,<br>)=-126/364<br>1=0/524, 5-11=-19/47<br>3=-1279/111,                                                                                                                                     | 9) Bottom<br>chord c<br>10) Bearing<br>Joint 8<br>4, 11) Refer t<br>12) Graphi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dead load (10.0 psf) of<br>chord live load (40.0 p<br>ead load (5.0 psf) appl<br>s are assumed to be: .<br>SP No.2.<br>girder(s) for truss to t<br>al purlin representatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sf) and a<br>ied only<br>Joint 2 S<br>russ coni<br>n does n                                                                                                                                                                        | dditional both<br>to room. 8-10<br>P 2400F 2.0E<br>nections.<br>ot depict the                                                                                                                                                                                                         | tom<br>D<br>E ,                                                           |       | 4      | A.L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OP FESS               | ROLIN    |
| NOTES                                                                                                                 | 0-13=-202/100, 7-13                                                                                                                                                                                                                                                                                                                                  | -122/1141                                                                                                                                                                                                      | or the or bottom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rientation of the purlin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | along the                                                                                                                                                                                                                          | e iop and/or                                                                                                                                                                                                                                                                          |                                                                           |       | E      | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0363                  |          |
|                                                                                                                       | d roof live loads have                                                                                                                                                                                                                                                                                                                               | been considered for                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | om checked for L/360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | deflectior                                                                                                                                                                                                                         | ) <b>.</b>                                                                                                                                                                                                                                                                            |                                                                           |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 0505                | : :      |
| this design                                                                                                           |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E(S) Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                       |                                                                           |       |        | and the second s | MGIN<br>A. C<br>March | EER      |


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut beformation, available from the Structure Review Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| Job         | Truss | Truss Type   | Qty | Ply | Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL |
|-------------|-------|--------------|-----|-----|----------------------------------------------------|
| 25030054-01 | G01   | Jack-Partial | 4   | 1   | I72141576<br>Job Reference (optional)              |

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Wed Mar 19 09:42:39 ID:YQoe\_DUOMseUiXY136\_XY7zZPvk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f





#### Scale = 1:49

| Loading      | (psf)     | Spacing         | 1-10-4          | CSI       |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
|--------------|-----------|-----------------|-----------------|-----------|------|----------|-------|-------|--------|-----|---------------|----------|
| TCLL (roof)  | 20.0      | Plate Grip DOL  | 1.15            | TC        | 0.37 | Vert(LL) | -0.14 | 4-5   | >607   | 240 | MT20          | 244/190  |
| Snow (Pf/Pg) | 13.9/20.0 | Lumber DOL      | 1.15            | BC        | 0.62 | Vert(CT) | -0.28 | 4-5   | >304   | 180 |               |          |
| TCDL         | 10.0      | Rep Stress Incr | YES             | WB        | 0.12 | Horz(CT) | 0.00  | 4     | n/a    | n/a |               |          |
| BCLL         | 0.0*      | Code            | IRC2015/TPI2014 | Matrix-MP |      |          |       |       |        |     |               |          |
| BCDL         | 10.0      |                 |                 |           |      |          |       |       |        |     | Weight: 52 lb | FT = 20% |

BOT CHORD 2x4 SP No 2 WEBS 2x4 SP No.3 \*Except\* 5-1:2x6 SP No.2 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **REACTIONS** (size) 4=0-3-0, 5=0-3-0 Max Horiz 5=110 (LC 14) Max Uplift 4=-56 (LC 14) Max Grav 4=277 (LC 25), 5=263 (LC 2) FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-46/72, 2-3=-91/59, 1-5=-60/45 BOT CHORD 4-5=-124/159 WEBS 2-4=-207/161, 2-5=-195/0, 3-4=-100/67

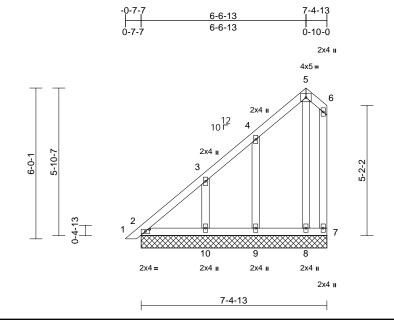
# NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2 . 6)
- Provide mechanical connection (by others) of truss to 7) bearing plate capable of withstanding 56 lb uplift at joint 4

LOAD CASE(S) Standard




Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a fuss system. Derive use, the building designer host verify the applications of design had used in the property incorporate and sestign net of the overall building design. Bracing indicated is to prevent building of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type | Qty | Ply | Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL |
|-------------|-------|------------|-----|-----|----------------------------------------------------|
| 25030054-01 | PB04  | Piggyback  | 4   | 1   | I72141577<br>Job Reference (optional)              |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Mar 19 09:42:39 ID:BBSKNiDbY6tb39tomUbNfUzZPw4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

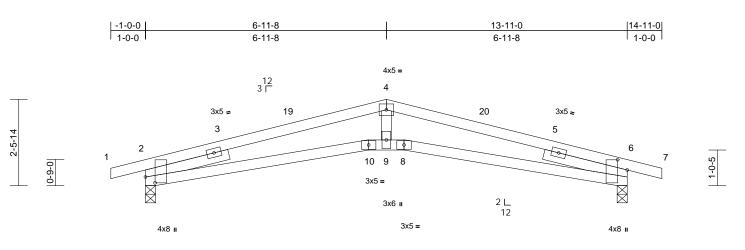


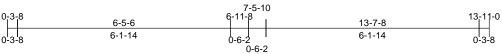


Scale = 1:45.9

Plate Offsets (X, Y): [2:0-2-1,0-1-0]

|                                                                                                | (X, 1): [2:0 2 1,0 1 0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                           |                      |                             |                          |                                 |                                    |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------|--------------------------|---------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL                                 | (psf)<br>20.0<br>13.9/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                         | 1-10-4<br>1.15<br>1.15<br>YES<br>IRC2015                             | J/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                               | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.33<br>0.05<br>0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                                   | in<br>n/a<br>n/a<br>0.00                                                                                                  | (loc)<br>-<br>-<br>7 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 50 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| this desig<br>2) Wind: AS<br>Vasd=911<br>II; Exp B;<br>Exterior (<br>vertical le<br>forces & I | <ul> <li>2x4 SP No.2</li> <li>2x4 SP No.3</li> <li>2x4 SP No.3</li> <li>2x4 SP No.3</li> <li>Structural wood she</li> <li>6-0-0 oc purlins, ex</li> <li>Rigid ceiling directly bracing.</li> <li>(size) 2=7-4-13, 9=7-4-13, 9=7-4-13, Max Horiz 2=121 (LC Nax Uplift 2=-11 (LC 8=-25 (LC 10=-31 (LC 10=-31 (LC 10=-31 (LC 10=201 (LC 10=-20/18, 2-3=-211/4-5=-92/89, 5-6=-94)</li> <li>2-10=-63/69, 9-10=-7-8=-63/69 5-8=-126/89, 4-9=-1</li> <li>xed roof live loads have</li> </ul> | r applied or 10-0-0 oc<br>, 7=7-4-13, 8=7-4-13<br>, 10=7-4-13<br>C 13)<br>C 10), 7=-31 (LC 10),<br>C 13), 9=-22 (LC 14),<br>, C 14)<br>C 27), 7=45 (LC 13),<br>C 26), 9=151 (LC 26)<br>LC 26)<br>hpression/Maximum<br>199, 3-4=-137/132,<br>//102, 6-7=-73/71<br>63/69, 8-9=-63/69,<br>24/85, 3-10=-142/91<br>been considered for<br>a (3-second gust)<br>DL=6.0psf; h=25ft; C<br>tivelope) and C-C<br>and right exposed; te<br>C for members and | 5)<br>6)<br>7)<br>8)<br>9)<br>10)<br>11)<br>12)<br>13)<br>LO<br>Cat. | only. For sti<br>see Standar<br>or consult qu<br>TCLL: ASCE<br>DOL=1.15 P<br>snow); Pf=1:<br>Plate DOL= <sup>-</sup><br>Ct=1.10<br>This truss ha<br>load of 12.0<br>overhangs n<br>All plates ard<br>Gable studs<br>This truss ha<br>chord live lo<br>on the botton<br>3-06-00 tall<br>chord and ai<br>All bearings<br>Provide mec<br>bearing plate<br>7, 11 lb uplif<br>joint 9, 31 lb<br>See Standau<br>Detail for Cc | need for wind loads<br>uds exposed to wird<br>d Industry Gable E<br>jailified building des<br>7-10; Pr=20.0 psf<br>late DOL=1.15); P<br>3.9 psf (flat roof sn<br>1.15); Category II; I<br>as been designed f<br>psf or 2.00 times fl<br>on-concurrent with<br>a 2x4 MT20 unless<br>res continuous bott<br>spaced at 2-0-0 or<br>as been designed<br>f ad nonconcurrent with<br>a so the members.<br>are assumed to be<br>chanical connectior<br>e capable of withsta<br>t at joint 2, 25 lb up<br>uplift at joint 10 ar<br>d Industry Piggyba<br>onnection to base tu<br>fied building desig<br>Standard | Ind (norm<br>ind Deta<br>signer as<br>f (roof liv<br>g 220.0 p<br>ow: Lum<br>Exp B; F<br>or great<br>lat roof liv<br>o ther liv<br>o the liv<br>o ther liv<br>o ther liv<br>o the liv | al to the face<br>ils as applica<br>is per ANSI/TI<br>ve load: Lumb<br>osf (ground<br>aber DOL=1.1<br>fully Exp.;<br>er of min roof<br>oad of 13.9 p;<br>ve loads.<br>se indicated.<br>d bearing.<br>0 psf bottom<br>other live loa<br>e load of 20.0<br>a rectangle<br>veen the bottw<br>2.<br>ers) of truss t<br>31 lb uplift at joint 2<br>s Connection | i),<br>ble,<br>PI 1.<br>ber<br>15<br>15<br>f live<br>sf on<br>sf on<br>ds.<br>Opsf<br>om<br>to<br>joint<br>blift at<br>2. |                      |                             |                          | SEA<br>0363                     | EER HALL                           |


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com) March 20,2025


A MiTek Aft 818 Soundside Road Edenton, NC 27932

| Job         | Truss | Truss Type   | Qty | Ply | Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL |
|-------------|-------|--------------|-----|-----|----------------------------------------------------|
| 25030054-01 | BP01  | Roof Special | 5   | 1   | Job Reference (optional)                           |

Run; 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Mar 19 09:42:38 ID:QatbQjIwRIIOyT3BJXDYaSzZPxG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



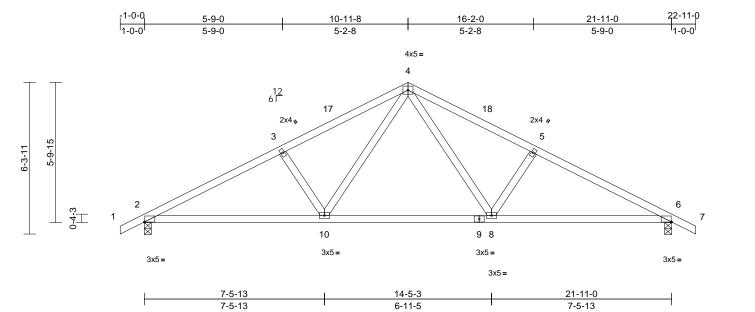


Scale = 1:33.3

#### Plate Offsets (X, Y): [2:0-2-1,0-3-5], [6:0-3-9,0-3-5]

| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                                                                                                                                                                                                                      | (psf)<br>20.0<br>13.9/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                              | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                   | 1-10-4<br>1.15<br>1.15<br>YES<br>IRC20 | 15/TPI2014                                                                                                                                                                                                                                                                 | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                         | 0.47<br>0.62<br>0.24                                                                                                                           | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                              | in<br>-0.11<br>-0.23<br>0.09            | (loc)<br>10<br>10<br>6 | l/defl<br>>999<br>>739<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 54 lb   | <b>GRIP</b><br>244/190<br>FT = 20% |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------|-------------------------------|--------------------------|-----------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>SLIDER<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>BOT CHORD<br>BOT CHORD                                                                                                                                                                                                                                                                                                                                                                                   | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Left 2x4 SP No.3 2<br>2-6-0<br>Structural wood she<br>3-9-12 oc purlins.<br>Rigid ceiling directly<br>bracing.<br>(size) 2=0-3-8, 6<br>Max Horiz 2=-15 (LC<br>Max Grav 2=572 (LC<br>(lb) - Maximum Com<br>Tension<br>1-2=0/17, 2-4=-1692<br>6-7=0/17<br>2-10=-189/1627, 9-1<br>8-9=-181/1604, 6-8= | athing directly applie<br>applied or 10-0-0 or<br>5=0-3-8<br>: 13)<br>C 2), 6=572 (LC 2)<br>pression/Maximum<br>t/239, 4-6=-1692/239<br>0=-181/1604, | 6<br>ed or 7<br>5<br>8<br>9<br>4       | <ul> <li>design.</li> <li>This truss hat load of 12.0 overhangs n</li> <li>This truss hat chord live load the bottor</li> <li>This truss live bottor</li> <li>3-06-00 tall live chord and and and live baring at jc</li> <li>Bearing at jc</li> <li>using ANSI/</li> </ul> | snow loads have I<br>as been designed f<br>psf or 2.00 times f<br>on-concurrent with<br>is been designed f<br>has been designed<br>in chord in all area<br>by 2-00-00 wide wi<br>yy other members,<br>are assumed to be<br>int(s) 2, 6 conside<br>ICPI 1 angle to grai<br>build verify capacity<br>Standard | for great<br>lat roof lin<br>other lin<br>for a 10.<br>with any<br>d for a liv<br>s where<br>ill fit betw<br>e SP No.<br>rs parall<br>n formul | er of min roo<br>oad of 13.9 p<br>ve loads.<br>0 psf bottom<br>other live loa<br>e load of 20.<br>a rectangle<br>veen the bott<br>2.<br>el to grain va<br>a. Building | f live<br>osf on<br>ads.<br>Opsf<br>com |                        |                               |                          |                                   |                                    |
| <ul> <li>WEBS 4-9=-3/589</li> <li>NOTES</li> <li>1) Unbalanced roof live loads have been considered for this design.</li> <li>2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces &amp; MWFRS for reactions shown; Lumber POOL 100.0000000000000000000000000000000000</li></ul> |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                      |                                        |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                |                                                                                                                                                                       |                                         |                        | 0.000                         | N                        | ORTH CA<br>ORTEESS<br>SEA<br>0363 | • -                                |

DOL=1.60 plate grip DOL=1.33 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground 3) snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10


THE OWNER WAR G mmm March 20,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut beformation, available from the Structure Review Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type | Qty | Ply | Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL |
|-------------|-------|------------|-----|-----|----------------------------------------------------|
| 25030054-01 | B02   | Common     | 5   | 1   | I72141579<br>Job Reference (optional)              |

Run; 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Mar 19 09:42:38 ID:9bV4jujJbJTcukHFLlvcRXzZQ\_b-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



| Scale = | 1:47.9 |
|---------|--------|
|---------|--------|

#### Plate Offsets (X, Y): [2:0-0-4,Edge], [6:0-0-4,Edge]

| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL                                            | (psf)<br>20.0<br>13.9/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                    | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                         | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201 | 5/TPI2014                                                                                                                           | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                           | 0.40<br>0.57<br>0.22                                                                    | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                       |                        | (loc)<br>10-13<br>10-13<br>6 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 101 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------|------------------------------|-------------------------------|--------------------------|----------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS                | 2x4 SP No.2<br>2x4 SP No.3<br>Structural wood she<br>4-4-5 oc purlins.<br>Rigid ceiling directly<br>bracing.                                                                                                                                                          | applied or 10-0-0 o<br>6=0-3-8<br>C 14)                                                                                                           | ic<br>8)                               | load of 12.0<br>overhangs n<br>This truss ha<br>chord live loa<br>* This truss h<br>on the bottor<br>3-06-00 tall h<br>chord and ar | as been designed f<br>psf or 2.00 times fl<br>on-concurrent with<br>seen designed<br>ad nonconcurrent<br>as been designed<br>n chord in all areas<br>by 2-00-00 wide wi<br>by other members.<br>are assumed to be<br>Standard | at roof lo<br>other li<br>or a 10.<br>with any<br>l for a liv<br>s where<br>ll fit betw | bad of 13.9 p<br>ve loads.<br>D psf bottom<br>other live loa<br>re load of 20.<br>a rectangle<br>veen the bott | osf on<br>ads.<br>Opsf |                              |                               |                          |                                  |                                    |
| FORCES                                                                                                    | (lb) - Maximum Corr                                                                                                                                                                                                                                                   | ,. ,                                                                                                                                              |                                        |                                                                                                                                     |                                                                                                                                                                                                                               |                                                                                         |                                                                                                                |                        |                              |                               |                          |                                  |                                    |
| TOP CHORD<br>BOT CHORD<br>WEBS                                                                            | 4-5=-1362/225, 5-6=<br>2-10=-110/1323, 8-1<br>4-8=-53/524, 5-8=-3                                                                                                                                                                                                     | =-1518/212, 6-7=0/3<br>10=-5/873, 6-8=-113                                                                                                        | 34<br>3/1323                           |                                                                                                                                     |                                                                                                                                                                                                                               |                                                                                         |                                                                                                                |                        |                              |                               |                          |                                  |                                    |
| NOTES                                                                                                     | 3-10=-339/150                                                                                                                                                                                                                                                         |                                                                                                                                                   |                                        |                                                                                                                                     |                                                                                                                                                                                                                               |                                                                                         |                                                                                                                |                        |                              |                               |                          |                                  |                                    |
| 1) Unbalanc                                                                                               | ed roof live loads have                                                                                                                                                                                                                                               | been considered fo                                                                                                                                | or                                     |                                                                                                                                     |                                                                                                                                                                                                                               |                                                                                         |                                                                                                                |                        |                              |                               |                          | mm                               | U111                               |
| Vasd=91r<br>II; Exp B;<br>Exterior (2<br>vertical le<br>forces & M<br>DOL=1.6(<br>3) TCLL: AS<br>DOL=1.15 | n.<br>CE 7-10; Vult=115mph<br>mph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (er<br>2) zone; cantilever left a<br>ft and right exposed;C-<br>WWFRS for reactions s<br>0 plate grip DOL=1.33<br>CE 7-10; Pr=20.0 psf (<br>5 Plate DOL=1.15); Pg:<br>=13.9 psf (flat roof snoi | DL=6.0psf; h=25ft; (<br>nvelope) and C-C<br>and right exposed ;<br>C for members and<br>hown; Lumber<br>foof live load: Lumb<br>=20.0 psf (ground | end<br>oer                             |                                                                                                                                     |                                                                                                                                                                                                                               |                                                                                         |                                                                                                                |                        |                              |                               | A. I.                    | SEA<br>0363                      | • –                                |

Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

# GI in antin March 20,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| Job         | Truss | Truss Type | Qty | Ply | Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL |
|-------------|-------|------------|-----|-----|----------------------------------------------------|
| 25030054-01 | A02   | Attic      | 6   | 1   | Job Reference (optional)                           |

11-10-3

Scale = 1:84.9

Loading

TCDL

BCLL

BCDL

TCLL (roof)

Snow (Pf/Pg)

-1-0-0

1-0-0

 $6 \times 10 =$ 

Spacing

Code

(psf)

20.0

10.0

0.0

10.0

18.9/20.0

5-11-0

5-11-0

Run; 8,73 S Feb 19 2025 Print; 8,730 S Feb 19 2025 MiTek Industries, Inc. Wed Mar 19 09:42:36 ID:KP0WnHRORKxeWHMz\_QNIa3zZPtD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

12-6-0 27-10-12 11-6-4 19-8-8 26-11-0 35-10-0 39-5-0 40-5-0 3-7-0 0-11-12 7-2-8 7-2-8 0-11-12 7-11-4 1-0-0 5 - 7 - 45x8. MT18HS 10x12 🖌 5x8 II 5x8 II MT18HS 10x12 💊 2x4 II 7 6 8 5x8 🖌 5 9 10 10<sup>12</sup> 22 2 2x4 3 8-1-14 4x5。 11 12 ┮┓⊡ 18 16 29 30 19 15 14 12x16= 4x8= 2x4 I 6x10= 13-11-1 27-10-12 11-6-4 25-11-6 35-10-0 39-5-0 2-5-7 11-6-4 11-11-11 7-11-4 1-11-6 3-7-0 Plate Offsets (X, Y): [2:Edge,0-0-7], [6:0-7-8,0-3-4], [8:0-7-12,0-3-8], [12:Edge,0-0-7], [15:0-1-8,0-2-8], [19:0-1-8,0-2-0] 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (loc) Plate Grip DOL 1.15 TC 0.88 Vert(LL) -0.46 15-19 >999 240 MT20 244/190 Lumber DOL 1.15 BC 0.62 Vert(CT) -0.70 15-19 >675 180 MT18HS 244/190 WB Rep Stress Incr YES 0.97 Horz(CT) 0.06 12 n/a n/a IRC2015/TPI2014 Matrix-MSH -0.34 15-19 >586 360 Attic

LUMBER 2x6 SP No.2 TOP CHORD 2x6 SP 2400F 2.0E \*Except\* 19-17,17-15:2x8 BOT CHORD SP 2400F 2.0E WEBS 2x4 SP No.3 \*Except\* 5-19,9-15:2x4 SP No.2 Left: 2x8 SP No.2 WEDGE Right: 2x8 SP No.2 BRACING TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except 2-0-0 oc purlins (3-8-8 max.): 6-8. BOT CHORD Rigid ceiling directly applied or 9-0-0 oc bracing. WEBS 1 Row at midpt 20-22, 21-22, 11-15 JOINTS 1 Brace at Jt(s): 22 This truss requires both edges of the bottom chord be sheathed in the room area. **REACTIONS** (size) 2=0-3-8, 12=0-3-8 Max Horiz 2=-175 (LC 12) Max Grav 2=2240 (LC 3), 12=2180 (LC 3) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/48, 2-3=-3018/0, 3-5=-2798/6, 5-6=-1693/99, 6-7=-2557/110, 7-8=-2557/110, 8-9=-1686/100, 9-11=-2815/0, 11-12=-2806/0, 12-13=0/48 BOT CHORD 2-19=-70/2302, 15-19=0/2035, 14-15=0/2139, 12-14=0/2139 WEBS 3-19=-385/170, 19-20=0/1203, 5-20=0/1264, 15-21=0/1131, 9-21=0/1191, 20-22=-274/41, 21-22=-288/27, 7-22=-331/144, 6-22=-60/1219. 8-22=-77/1242. 11-15=-409/197. 11-14=-331/78 NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone: cantilever left and right exposed : end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=18.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10. Lu=50-0-0
- This truss has been designed for greater of min roof live 4) load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- 6) All plates are MT20 plates unless otherwise indicated. All plates are 5x10 MT20 unless otherwise indicated.
- 7) 8) The Fabrication Tolerance at joint 8 = 4%
- 9)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Ceiling dead load (10.0 psf) on member(s). 20-22, 21-22 12) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 15-19
- 13) All bearings are assumed to be SP 2400F 2.0E
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 15) Attic room checked for L/360 deflection.
- LOAD CASE(S) Standard



Weight: 367 lb

FT = 20%

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type | Qty | Ply | Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL |
|-------------|-------|------------|-----|-----|----------------------------------------------------|
| 25030054-01 | A03   | Attic      | 6   | 1   | I72141581<br>Job Reference (optional)              |

1-10-3

Scale = 1:84.9

Loading

TCDL

BCLL

BCDL

WEBS

WEDGE

BRACING

TOP CHORD

BOT CHORD

**REACTIONS** (size)

WEBS

JOINTS

FORCES

LUMBER

TOP CHORD

BOT CHORD

TCLL (roof)

Snow (Pf/Pg)

5-11-0

5-11-0

3

28

 $6 \times 10 =$ 

Spacing

Code

Plate Grip DOL

Rep Stress Incr

19-21, 20-21, 11-14

Lumber DOL

(psf)

20.0

10.0

0.0

10.0

18.9/20.0

2x6 SP No.2

bracing.

1 Row at midpt

1 Brace at Jt(s): 21

Max Horiz 2=171 (LC 13)

SP 2400F 2.0E

Left: 2x8 SP No.2

Right: 2x8 SP No.2

2-2-0 oc purlins, except

2-0-0 oc purlins (3-8-15 max.): 6-8.

chord be sheathed in the room area.

2=0-3-8, 12=0-3-8

(lb) - Maximum Compression/Maximum

Rigid ceiling directly applied or 9-0-8 oc

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Mar 19 09:42:36 ID:KP0WnHRORKxeWHMz\_QNIa3zZPtD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

12-6-0 27-10-12 11-6-4 19-8-8 26-11-0 35-3-3 39-5-0 5-7-4 0-11-12 7-2-8 7-2-8 0-11-12 7-4-7 4-1-13 5x8. MT18HS 10x12 🖌 5x8 II 5x8 II MT18HS 10x12 💊 2x4 I 7 6 8 5x8 🖌 5 9 10  $10^{12}$ 21 20 244 2x4 8-1-14 4x5. 11 12 8-⊊⊥ 9-0 17 16 15 29 18 14 13 12x16= 4x8= 2x4 II 6x10= 13-11-11 27-10-12 11-6-4 25-11-6 35-3-3 39-5-0 11-6-4 2-5-7 11-11-11 7-4-7 1-11-6 4-1-13 Plate Offsets (X, Y): [2:Edge,0-0-11], [6:0-7-8,0-3-4], [8:0-7-12,0-3-8], [12:Edge,0-0-7], [14:0-1-8,0-2-8], [18:0-1-8,0-2-0] 2-0-0 CSI DEFL in (loc) l/defl L/d PLATES GRIP 1.15 тс 0.88 Vert(LL) -0.46 14-18 >999 240 MT20 244/190 1.15 BC 0.63 Vert(CT) -0.70 14-18 >678 180 MT18HS 244/190 WB YES 0.96 Horz(CT) 0.06 12 n/a n/a IRC2015/TPI2014 Matrix-MSH -0.33 14-18 >591 360 Attic Weight: 364 lb FT = 20% 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C 2x6 SP 2400F 2.0E \*Except\* 18-16,16-14:2x8 Exterior (2) zone: cantilever left and right exposed : end vertical left and right exposed;C-C for members and 2x4 SP No.3 \*Except\* 5-18,9-14:2x4 SP No.2 forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground Structural wood sheathing directly applied or snow); Pf=18.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10. Lu=50-0-0 This truss has been designed for greater of min roof live 4) load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding. This truss requires both edges of the bottom 6) All plates are MT20 plates unless otherwise indicated. 7) All plates are 5x10 MT20 unless otherwise indicated. 8) The Fabrication Tolerance at joint 8 = 8%9) This truss has been designed for a 10.0 psf bottom Max Grav 2=2240 (LC 3), 12=2129 (LC 3) chord live load nonconcurrent with any other live loads. 10) \* This truss has been designed for a live load of 20.0psf ORTH on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

Tension TOP CHORD 1-2=0/48, 2-3=-3018/0, 3-5=-2798/7, 5-6=-1695/100, 6-7=-2572/117, chord and any other members, with BCDL = 10.0psf. 7-8=-2572/117, 8-9=-1692/102, 9-11=-2811/0, 11) Ceiling dead load (10.0 psf) on member(s). 19-21, 20-21 11-12=-2827/0 12) Bottom chord live load (40.0 psf) and additional bottom BOT CHORD 2-18=-83/2296, 14-18=0/2035, 13-14=0/2139, chord dead load (5.0 psf) applied only to room. 14-18 12-13=0/2139 13) All bearings are assumed to be SP 2400F 2.0E 3-18=-384/171, 18-19=0/1201, 5-19=0/1262, 14) Graphical purlin representation does not depict the size 14-20=0/1147, 9-20=0/1208, 19-21=-271/40, or the orientation of the purlin along the top and/or 20-21=-278/28, 7-21=-332/146. bottom chord. 6-21=-61/1230, 8-21=-72/1243 15) Attic room checked for L/360 deflection. 11-14=-403/185, 11-13=-315/81

#### NOTES

WEBS

1) Unbalanced roof live loads have been considered for this design.

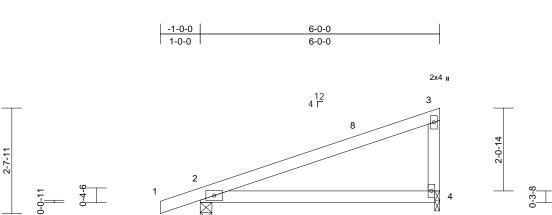
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

LOAD CASE(S) Standard

G mmm March 20,2025

SEAL

036322


818 Soundside Road Edenton, NC 27932

VULLING

| Job         | Truss | Truss Type | Qty | Ply | Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL |
|-------------|-------|------------|-----|-----|----------------------------------------------------|
| 25030054-01 | P02   | Monopitch  | 9   | 1   | I72141582<br>Job Reference (optional)              |

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Wed Mar 19 09:42:39 ID:wyZN53RKiRuETpHbIBSRKzzZPzg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 II



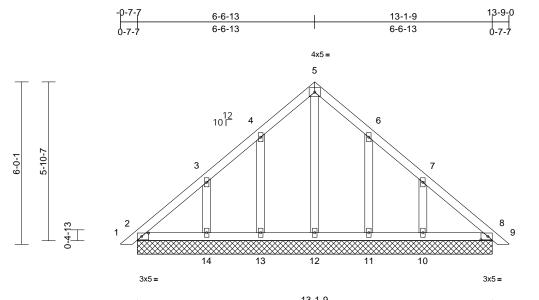




Scale = 1:28.9

|                                                                                                                                           |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                           | 1                                           |                                                                                                           |                          |                              |       |       |          |      |               |          |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------|------------------------------|-------|-------|----------|------|---------------|----------|
| Loading                                                                                                                                   | (psf)                                                                                                                                                                                                                                                                              | Spacing                                                                                                                                                                   | 1-10-4                                      | CSI                                                                                                       |                          | DEFL                         | in    | (loc) | l/defl   | L/d  | PLATES        | GRIP     |
| TCLL (roof)                                                                                                                               | 20.0                                                                                                                                                                                                                                                                               | Plate Grip DOL                                                                                                                                                            | 1.15                                        | TC                                                                                                        | 0.47                     | Vert(LL)                     | -0.05 | 4-7   | >999     | 240  | MT20          | 244/190  |
| Snow (Pf/Pg)                                                                                                                              | 13.9/20.0                                                                                                                                                                                                                                                                          | Lumber DOL                                                                                                                                                                | 1.15                                        | BC                                                                                                        | 0.37                     | Vert(CT)                     | -0.11 | 4-7   | >634     | 180  |               |          |
| TCDL                                                                                                                                      | 10.0                                                                                                                                                                                                                                                                               | Rep Stress Incr                                                                                                                                                           | YES                                         | WB                                                                                                        | 0.00                     | Horz(CT)                     | 0.00  | 2     | n/a      | n/a  |               |          |
| BCLL                                                                                                                                      | 0.0*                                                                                                                                                                                                                                                                               | Code                                                                                                                                                                      | IRC2015/TPI2014                             | Matrix-MP                                                                                                 |                          |                              |       |       |          |      |               |          |
| BCDL                                                                                                                                      | 10.0                                                                                                                                                                                                                                                                               |                                                                                                                                                                           |                                             |                                                                                                           |                          |                              |       |       |          |      | Weight: 22 lb | FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING                                                                                       | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3                                                                                                                                                                                                                                          |                                                                                                                                                                           | on the botto<br>3-06-00 tall<br>chord and a | has been designed<br>om chord in all area<br>by 2-00-00 wide w<br>iny other members<br>e assumed to be: J | is where<br>ill fit betv | a rectangle<br>veen the bott | om    |       |          |      |               |          |
| TOP CHORD                                                                                                                                 | Structural wood she                                                                                                                                                                                                                                                                | athing directly applie                                                                                                                                                    | d or SP No.3.                               |                                                                                                           |                          |                              |       |       |          |      |               |          |
|                                                                                                                                           | 6-0-0 oc purlins, ex                                                                                                                                                                                                                                                               |                                                                                                                                                                           | <ol><li>8) Bearing at j</li></ol>           | oint(s) 4 considers                                                                                       |                          |                              | 9     |       |          |      |               |          |
| BOT CHORD                                                                                                                                 | Rigid ceiling directly<br>bracing.                                                                                                                                                                                                                                                 | applied or 10-0-0 oc                                                                                                                                                      | designer sh                                 | TPI 1 angle to grai                                                                                       | y of bear                | ing surface.                 |       |       |          |      |               |          |
| REACTIONS                                                                                                                                 | (size) 2=0-3-8, 4                                                                                                                                                                                                                                                                  | 4=0-1-8                                                                                                                                                                   |                                             | chanical connection<br>e at joint(s) 4.                                                                   | n (by oth                | ers) of truss                | to    |       |          |      |               |          |
|                                                                                                                                           | Max Horiz 2=50 (LC                                                                                                                                                                                                                                                                 | ,                                                                                                                                                                         |                                             | chanical connection                                                                                       | n (by oth                | ers) of truss t              | to    |       |          |      |               |          |
|                                                                                                                                           | Max Uplift 2=-9 (LC                                                                                                                                                                                                                                                                | /                                                                                                                                                                         |                                             | e capable of withst                                                                                       |                          |                              |       |       |          |      |               |          |
|                                                                                                                                           | Max Grav 2=277 (L0                                                                                                                                                                                                                                                                 | ,, ( )                                                                                                                                                                    |                                             |                                                                                                           | -                        |                              |       |       |          |      |               |          |
| FORCES                                                                                                                                    | (lb) - Maximum Corr<br>Tension                                                                                                                                                                                                                                                     | pression/Maximum                                                                                                                                                          | LOAD CASE(S                                 | Standard                                                                                                  |                          |                              |       |       |          |      |               |          |
| TOP CHORD                                                                                                                                 | 1-2=0/22, 2-3=-88/4                                                                                                                                                                                                                                                                | 8, 3-4=-142/85                                                                                                                                                            |                                             |                                                                                                           |                          |                              |       |       |          |      |               |          |
| BOT CHORD                                                                                                                                 | 2-4=-42/76                                                                                                                                                                                                                                                                         |                                                                                                                                                                           |                                             |                                                                                                           |                          |                              |       |       |          |      |               |          |
| NOTES                                                                                                                                     |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                           |                                             |                                                                                                           |                          |                              |       |       |          |      |               |          |
| Vasd=91m<br>II; Exp B; I<br>Exterior (2<br>vertical lef<br>forces & N<br>DOL=1.60<br>2) TCLL: AS(3<br>DOL=1.15<br>snow); Pf=<br>Plate DOL | CE 7-10; Vult=115mph<br>pph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (er<br>) zone; cantilever left it<br>and right exposed;C-<br>IWFRS for reactions s<br>plate grip DOL=1.33<br>CE 7-10; Pr=20.0 psf (<br>Plate DOL=1.15); Pg:<br>=13.9 psf (flat roof sno<br>=1.15); Category II; E: | DL=6.0psf; h=25ft; C<br>ivelope) and C-C<br>and right exposed ; e<br>C for members and<br>hown; Lumber<br>roof live load: Lumbe<br>=20.0 psf (ground<br>w: Lumber DOL=1.1 | nd<br>Pr                                    |                                                                                                           |                          |                              |       |       | U.       | E.   | ORTH CA       |          |
| Ct=1.10                                                                                                                                   | ed snow loads have be                                                                                                                                                                                                                                                              | en considered for th                                                                                                                                                      | ic                                          |                                                                                                           |                          |                              |       |       | 1111 WAY |      | 0363          |          |
| design.                                                                                                                                   |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                           |                                             |                                                                                                           |                          |                              |       |       | =        |      | 0303          | 22 : 5   |
| 4) This truss                                                                                                                             | has been designed fo                                                                                                                                                                                                                                                               |                                                                                                                                                                           |                                             |                                                                                                           |                          |                              |       |       |          |      |               | 1 E -    |
|                                                                                                                                           | 0 psf or 2.00 times fla                                                                                                                                                                                                                                                            |                                                                                                                                                                           | fon                                         |                                                                                                           |                          |                              |       |       |          | 2. 1 | N. EN         | -cRix S  |
|                                                                                                                                           | non-concurrent with o                                                                                                                                                                                                                                                              |                                                                                                                                                                           |                                             |                                                                                                           |                          |                              |       |       |          | 32   | S, GIN        | EFR      |
| ,                                                                                                                                         | has been designed fo                                                                                                                                                                                                                                                               |                                                                                                                                                                           | lo                                          |                                                                                                           |                          |                              |       |       |          | 1    | CA            | BEIN     |
| chora live                                                                                                                                | load nonconcurrent wi                                                                                                                                                                                                                                                              | un any other live load                                                                                                                                                    | 15.                                         |                                                                                                           |                          |                              |       |       |          |      | 11, A. C      | allin    |
|                                                                                                                                           |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                           |                                             |                                                                                                           |                          |                              |       |       |          |      | March         | 20 2025  |




Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

| Job         | Truss | Truss Type | Qty | Ply | Install 50 Magnolia Acres-Roof-Greystone FA SP 3FL |
|-------------|-------|------------|-----|-----|----------------------------------------------------|
| 25030054-01 | PB02  | Piggyback  | 15  | 1   | I72141583<br>Job Reference (optional)              |

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Wed Mar 19 09:42:39 ID:Qf\_lhz7aQfsk6wFGIpRVKozZPwC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



|                                                    |  | 13 | -1-9 |  |
|----------------------------------------------------|--|----|------|--|
| Scale = 1:42.6                                     |  |    |      |  |
| Plate Offsets (X, Y): [2:0-3-1,0-1-8], [8:0-3-1,0- |  |    |      |  |
|                                                    |  |    |      |  |

| Plate Offsets                                                                                                                                     | (X, Y): [2:0-3-1,0-1-8],                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [8:0-3-1,0-1-8]                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                            |                      |                             |                          |                                 | -                                  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------|--------------------------|---------------------------------|------------------------------------|--|
| Loading<br>TCLL (roof)<br>Snow (Pf/Pg)<br>TCDL<br>BCLL<br>BCDL                                                                                    | (psf)<br>20.0<br>13.9/20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                          | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201                                                                                                | 5/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.06<br>0.06<br>0.05                                                                                                                                                                                                                                                                                                                    | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                                                                    | in<br>n/a<br>n/a<br>0.00                                                                                   | (loc)<br>-<br>-<br>8 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 72 lb | <b>GRIP</b><br>244/190<br>FT = 20% |  |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>NOTES | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Structural wood she<br>6-0-0 oc purlins.<br>Rigid ceiling directly<br>bracing.<br>(size) 2=13-1-9,<br>11=13-1-5<br>14=13-1-5<br>Max Horiz 2=90 (LC<br>Max Uplift 10=-34 (L<br>13=-21 (L<br>Max Grav 2=133 (LC<br>10=218 (L<br>(10) - Maximum Com<br>Tension<br>1-2=0/19, 2-3=-90/6<br>4-5=-104/97, 5-6=-1<br>7-8=-71/46, 8=90/11<br>2-14=-50/84, 10-11<br>5-12=-79/29, 4-13=-<br>6-11=-123/73, 7-10=<br>ed roof live loads have | applied or 10-0-0 oc<br>8=13-1-9, 10=13-1-9,<br>13, 12=13-1-9, 13=13-<br>13)<br>C 15), 11=-21 (LC 18<br>C 14), 14=-34 (LC 14<br>C 27), 8=131 (LC 2),<br>LC 27), 8=131 (LC 2),<br>C 27), 11=153 (LC 2),<br>C 29), 13=153 (LC 2),<br>C 26)<br>pression/Maximum<br>7, 3-4=-92/45,<br>04/97, 6-7=-74/35,<br>9<br>-50/84, 12-13=-50/8<br>124/73, 3-14=-151/89<br>151/89 | d or<br>3)<br>9,<br>1-9,<br>4)<br>5),<br>4)<br>27),<br>5),<br>27),<br>5),<br>6)<br>7)<br>8)<br>9)<br>4,<br>10<br>4,<br>12<br>12<br>12 | Vasd=91mpl<br>II; Exp B; En<br>Exterior (2) z<br>vertical left a<br>forces & MW<br>DOL=1.60 pl<br>Truss design<br>only. For stu<br>see Standard<br>or consult qu<br>TCLL: ASCE<br>DOL=1.15 P<br>snow); Pf=13<br>Plate DOL=1<br>Ct=1.10<br>This truss ha<br>load of 12.0<br>overhangs n<br>All plates are<br>Gable requiri<br>Gable studs<br>This truss ha<br>chord live loa<br>0) * This truss f<br>on the bottor<br>3-06-00 tall<br>chord and ar<br>) All bearings :<br>Provide mec<br>bearing platt<br>13, 34 lb upli<br>uplift at joint | 7-10; Vult=115mp<br>7; TCDL=6.0psf; B<br>closed; MWFRS (e<br>cone; cantilever lef<br>nd right exposed; C<br>(FRS for reactions<br>ate grip DOL=1.33;<br>ed for wind loads<br>ids exposed to win<br>d Industry Gable E<br>ialified building de:<br>7-10; Pr=20.0 psf<br>late DOL=1.15); P<br>8.9 psf (flat roof sn<br>.15); Category II; I<br>is been designed f<br>psf or 2.00 times fl<br>conconcurrent with<br>2 x4 MT20 unless<br>es continuous bott<br>spaced at 2-0-0 or<br>is been designed f<br>ad nonconcurrent with<br>2 x4 MT20 unless<br>es continuous bott<br>spaced at 2-0-0 or<br>is been designed f<br>ad nonconcurrent with<br>a capable of withst:<br>ft at joint 14, 21 lb<br>10.<br>d Industry Piggyba | CDL=6.<br>envelope<br>t and rig<br>C-C for r<br>shown;<br>in the pl<br>d (norm<br>and Deta<br>signer a<br>f (roof lix)<br>g=20.0<br>ow: Lun<br>Exp B; F<br>or great<br>lat roof l<br>other li<br>other li<br>other vi<br>or a 10.<br>with any<br>l for a lix<br>s where<br>ll fit betw<br>e SP No<br>h (by oth<br>anding 2<br>uplift at | Opsf; h=25ft; (<br>a) and C-C<br>ht exposed; ,<br>nembers and<br>Lumber<br>ane of the tru<br>lal to the face<br>ils as applical<br>s per ANSI/TF<br>re load: Lumb<br>osf (ground<br>ber DOL=1.1<br>fully Exp.;<br>er of min roof<br>bad of 13.9 pi<br>ve loads.<br>se indicated.<br>d bearing.<br>0 psf bottom<br>other live loa<br>re can of truss t<br>21 b uplift at j<br>joint 11 and 3 | end<br>ss<br>),<br>ble,<br>PI 1.<br>er<br>15<br>flive<br>sf on<br>ds.<br>Opsf<br>om<br>co<br>oint<br>34 lb |                      |                             | 1                        | OR LEESS                        | ROUNT                              |  |
|                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | fied building desig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                            |                      |                             | 11                       | A. C.<br>March                  | 1LBF<br>20,2025                    |  |



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut beformation, available from the Structure Review Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

