

RE: 4493320 WHITE OAK HOMES **Trenco** 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: WHITE OAK HOMESProject Name: 4493320Lot/Block: 3Model: THE BELLAGRACEAddress:Subdivision: CAMERON HILL RDCity: CAMERONState: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.8 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 28 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	171630003	A01	2/26/2025	21	171630023	V01	2/26/2025
2	171630004	A02	2/26/2025	22	171630024	V02	2/26/2025
3	171630005	A03	2/26/2025	23	171630025	V03	2/26/2025
4	171630006	A04	2/26/2025	24	171630026	V04	2/26/2025
5	171630007	A05	2/26/2025	25	171630027	V05	2/26/2025
6	171630008	A06	2/26/2025	26	171630028	V06	2/26/2025
7	171630009	A07	2/26/2025	27	171630029	V07	2/26/2025
8	171630010	A08	2/26/2025	28	171630030	V08	2/26/2025
9	171630011	A09	2/26/2025				
10	171630012	A10	2/26/2025				
11	171630013	B01	2/26/2025				
12	171630014	B02	2/26/2025				
13	171630015	B03	2/26/2025				
14	171630016	C01	2/26/2025				
15	171630017	C02	2/26/2025				
16	171630018	C03	2/26/2025				
17	171630019	M01	2/26/2025				
18	171630020	M02	2/26/2025				
19	171630021	M03	2/26/2025				
20	171630022	M04	2/26/2025				

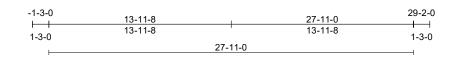
The truss drawing(s) referenced above have been prepared by

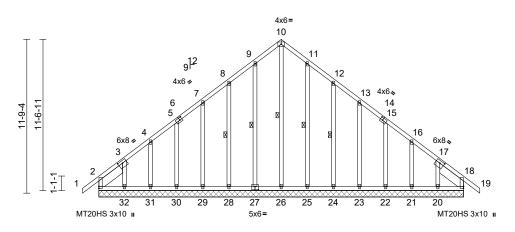
Truss Engineering Co. under my direct supervision

based on the parameters provided by Builders FirstSource-Sumter,SC.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2025


North Carolina COA: C-0844


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	s Truss Type		Ply	WHITE OAK HOMES			
4493320	A01	Common Supported Gable	2	1	Job Reference (optional)	171630003		

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 09:54:51 ID:hBCftMz8uCO8DemMPGDNxPyy75I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

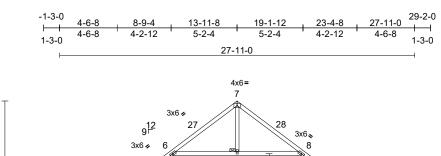
Scale = 1:88.2

27-11-0

Plate Offsets (X, Y): [2:0	-1-12,0-0-1], [3:0-4-0,0-2-4], [6:	0-2-4,0-	2-4], [14:0-2-4,0	0-2-4], [17:0-4-0,0-2	2-4], [18:0)-1-12,0-0-1],	[27:0-3-	0,0-3-0]				
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2	015/TPI2014	CSI TC BC WB Matrix-MS	0.13 0.08 0.20	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.02	(loc) - - 18	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20HS MT20 Weight: 233 lb	GRIP 187/143 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N Left 2x8 S Right 2x8 Structura 6-0-0 oc Rigid ceil	lo.2 lo.3 SP 2400F 2 3 SP 2400F Il wood she purlins.	2.0E or DSS 2-6-5, 2.0E or DSS 2-6-1 eathing directly applie v applied or 10-0-0 oc	5 ed or	FORCES TOP CHORD BOT CHORD	(lb) - Maximum Co Tension 1-2=0/45, 2-3=-80 4-5=-219/210, 5-7 8-9=-224/278, 9-1 10-11=-293/339, ' 12-13=-143/159,' 15-16=-106/86, 16 17-18=-79/53, 18- 2-32=-201/307, 3' 30-31=-201/307, 3')/53, 3-4= '=-192/18 0=-293/3 11-12=-2 13-15=-8 6-17=-19 19=0/45 1-32=-20	277/245, 17, 7-8=-164/2 139, 24/257, 6/80, 4/131, 1/307,	19,	 All Ga Ga Thi cho thi cho thi thi	plates at ble requi- ble studs s truss h ord live lo his truss the botto 6-00 tall ord and a	re 2x4 ires co s space bad no bad no bas be bom cho by 2-0 any oth	() MT20 unless ntinuous bottom c ed at 2-0-0 oc. en designed for a nconcurrent with a een designed for a rod in all areas wh 0-00 wide will fit h eer members.	10.0 psf bottom any other live loads. a live load of 20.0psf ere a rectangle between the bottom
WEBS REACTIONS		2=27-11- 20=27-11 22=27-11 24=27-11 26=27-11 28=27-11 30=27-11 32=27-11		1-25,	WEBS	28-29=-201/307, 2 25-26=-201/307, 2 23-24=-201/307, 2 18-20=-201/307, 2 10-26=-310/208, 9 8-28=-175/145, 7- 5-30=-168/139, 4 3-32=-239/255, 1 12-24=-175/147, 2 15-22=-168/139, 4	26-28=-2 24-25=-2 22-23=-2 20-21=-2 9-27=-15 -29=-167 -31=-169 1-25=-15 13-23=-1	01/307, 01/307, 01/307, 01/307, 01/30, //138, //138, //139, 7/125, 67/137,		11) Pro bea 2, 4 upl joir 254 upl joir 164	ovide me aring pla 57 lb upli ift at join at 29, 11 1 lb upliff ift at join at 22, 11	chanic te capa ift at jo it 27, 1 6 lb up t at joir it 24, 1 0 lb up t at joir	able of withstandii int 18, 11 lb uplift 21 lb uplift at joint 21 lb uplift at joint 30, 109 13 lb uplift at joint 13 lb uplift at joint 14 at joint 21, 227 1t 2 and 57 lb uplift	others) of truss to ng 164 lb uplift at joint at joint 26, 106 lb 28, 113 lb uplift at lb uplift at joint 31, at joint 25, 123 lb 23, 116 lb uplift at lb uplift at joint 20,
22=-116 (LC 13), 23=-113 (LC 13), 22=-116 (LC 13), 23=-113 (LC 13), 26=-11 (LC 11), 27=-106 (LC 12), 28=-121 (LC 12), 29=-113 (LC 12), 30=-116 (LC 12), 31=-109 (LC 12), 32=-254 (LC 12) Max Grav 2=303 (LC 20), 18=239 (LC 22), 20=209 (LC 20), 21=184 (LC 20), 22=184 (LC 20), 25=188 (LC 20), 26=321 (LC 13), 27=194 (LC 19),			 this design Wind: ASC Vasd=103 II; Exp C; E and C-C C to 13-11-8, 16-11-8 to exposed ; members a Lumber DC Truss desigonly. For sise es Standa 	17-20=-245/231 nced roof live loads have been considered for				TH CAROL						

February 26,2025

Page: 1




Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493320	A02	Common	3	1	Job Reference (optional)	171630004

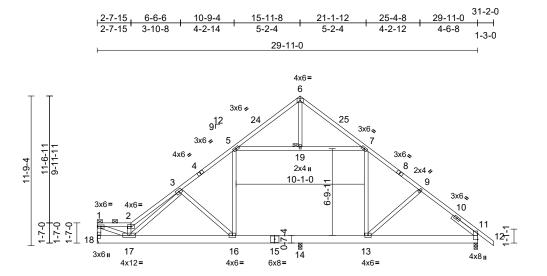
Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 09:54:52 ID:3MRwwfVqhb_Xqz9sWL?Y2Syy8op-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	8-9-4	13-11-8	19-1-12	27-11-0	J
	8-9-4	5-2-4	5-2-4	8-9-4	1
Scale = 1:90.6					
Plate Offsets (X, Y): [2:Edge,0-3-15]					

	,,,,), [<u></u> uge,e e .e												
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.36		0.20	17-21	>841	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.20	Vert(CT)		17-21	>773	180		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.21	Horz(CT)	0.03	12	n/a	n/a		
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS							Weight: 207 lb	FT = 20%
	5-4-7 oc purlins. Rigid ceiling directly bracing. 1 Brace at Jt(s): 18 (size) 2=0-3-8, C Max Horiz 2=-381 (L Max Uplift 2=-292 (L 15=-28 (L Max Grav 2=1031 (L 15=506 (L	2-6-0, Right 2x4 SP M athing directly applie rapplied or 10-0-0 oc 12=0-3-8, 15=0-3-8 C 10) C 12), 12=-297 (LC - C 12) LC 1), 12=1031 (LC 1 LC 19)	d or 3 4 13), 5	Vasd=103m II; Exp C; Er and C-C Ext 13-11-8, Ext 16-11-8 to 2 exposed ; er members an Lumber DOU 0 This truss ha chord live lo. * This truss h on the bottor 3-06-00 tall I chord and an All bearings Provide mec bearing plate	7-10; Vult=130m ph; TCDL=6.0psf; iclosed; MWFRS (erior (2) -1-3-0 to erior (2) 13-11-8 t 9-2-0 zone; cantile d vertical left and d forces & MWFR _=1.60 plate grip [as been designed an onconcurrent has been designed an chord in all area by 2-00-00 wide w hy other members are assumed to b shanical connectio e capable of withs ift at joint 12 and 2	BCDL=6 (envelope 1-9-0, Ini o 16-11-4 ever left a right exp S for rea DOL=1.6 for a 10.1 with any d for a liv with any d for a liv as where vill fit betv s, with BC e SP 240 n (by oth tanding 2	i.Opsf, h=25ft a) exterior zoi erior (1) 1-9 3, Interior (1) and right bosed;C-C for ictions shown) D psf bottom other live loa e load of 20.0 a rectangle ween the bott DL = 10.0psf 10F 2.0E or D ers) of truss t 192 lb uplift at	ne 0 to r n; ds. 0psf om f. uSS. to					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	L	OAD CASE(S)		·							
TOP CHORD	1-2=0/45, 2-4=-1119 6-7=-351/168, 7-8=- 8-10=-1059/397, 10- 12-13=0/45	351/167,	,								12		Bo
BOT CHORD	2-17=-332/1026, 15- 14-15=-150/851, 12-	,										ORFESS	100 Vin
WEBS	6-17=-50/245, 8-14= 8-18=-782/317, 4-17 10-14=-244/244, 7-1		317,							4	Ì		L 22
NOTES										3	į į	JEA	
1) Unbalance	ed roof live loads have	been considered for								ù Weller.		0363	22 🤅 😑

this design.



Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493320	A03	Roof Special	5	1	Job Reference (optional)	171630005

Run: 8.83 S. Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 09:54:53 ID:TGrCTF5ZQ2kloCdiDRIQvNyy8iu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

		L	2-6-3	10-9-4	15-	11-8	21-1-12	1	29-11-	0				
Scale = 1:90.6		Г	2-6-3	8-3-1	5-	2-4	5-2-4	Ţ	8-9-4		- 1			
Loading	(psf)	Spacing	2-0-0		CSI	1	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.40	Vert(LL)	-0.24	16-17	>791	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.32	Vert(CT)	-0.37	16-17	>509	240			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.64	Horz(CT)	0.03	11	n/a	n/a			
BCDL	10.0	Code	IRC2015/TF	PI2014	Matrix-MS		Wind(LL)	0.28	16-17	>675	240	Weight: 223 lb	FT = 20%	

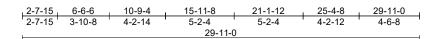
мв	ER

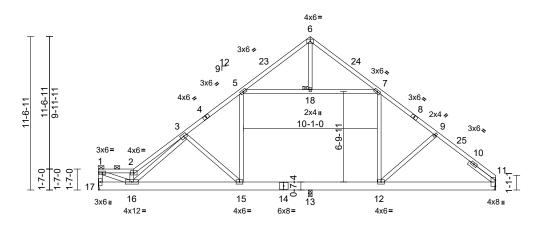
this design.

LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	Mechanical Max Horiz 18=-368 (LC 8) Max Uplift 11=-333 (LC 13), 14=-14 18=-232 (LC 12) Max Grav 11=1042 (LC 20), 14=73	No.2 applied or cals, and 0-0 oc 3) 4) 5) 4 (LC 12), 6) 7)	on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bo chord and any other members, with BCDL = 10.0p Bearings are assumed to be: , Joint 14 SP 2400F : or DSS , Joint 11 SP 2400F 2.0E or DSS .
FORCES	18=966 (LC 1) (lb) - Maximum Compression/Maxir Tension	num	bearing plate capable of withstanding 232 lb uplift 18, 333 lb uplift at joint 11 and 144 lb uplift at joint
TOP CHORD	1-18=-768/225, 1-2=-1484/386, 2-3=-2093/644, 3-5=-1148/489, 5-6=-348/168, 6-7=-358/167, 7-9=- 9-11=-1117/353, 11-12=0/45	,	or the orientation of the purlin along the top and/or bottom chord.
BOT CHORD	17-18=-311/387, 16-17=-331/1132, 14-16=-92/796, 13-14=-92/796, 11-13=-145/846	LO	AD CASE(S) Standard
WEBS NOTES	2-17=-1359/485, 6-19=-10/21, 5-16=-127/317, 5-19=-782/376, 7-19=-782/376, 7-13=0/227, 3-16=- 9-13=-227/233, 1-17=-399/1535, 3-17=-432/1043		
1) Unbalance	ed roof live loads have been consider	ed for	

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-1-12 to 2-7-15, Interior (1) 2-7-15 to 15-11-8, Exterior (2) 15-11-8 to 18-11-8, Interior (1) 18-11-8 to 31-2-0 zone; cantilever left and right exposed ; end vertical right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60) Provide adequate drainage to prevent water ponding.

- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Bearings are assumed to be: , Joint 14 SP 2400F 2.0E or DSS , Joint 11 SP 2400F 2.0E or DSS .
- Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 232 lb uplift at joint 18, 333 lb uplift at joint 11 and 144 lb uplift at joint 14.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



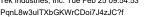


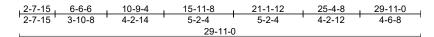
Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493320	A04	Roof Special	1	1	Job Reference (optional)	171630006

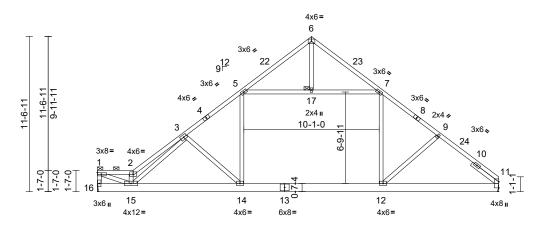
Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 09:54:53 ID:_y3qI5166iGjM3OJgr7K_dyy8cV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:86.8			2-6-3 2-6-3	<u>10-9-4</u> 8-3-1	+	<u>15-11-8</u> 5-2-4	<u>21-1-12</u> 5-2-4		<u>29-11-0</u> 8-9-4			-1	
Loading	(psf) 20.0	Spacing Plate Grip DOI	2-0-0		CSI TC	0.40	DEFL Vert(LL)	in -0 24	(loc) 15-16	l/defl >791		PLATES	G I 24


Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.40 0.32 0.64	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.24 -0.37 0.03 0.28	(loc) 15-16 15-16 11 15-16	l/defl >791 >511 n/a >677	L/d 360 240 n/a 240	PLATES MT20 Weight: 221 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	3-10-1 oc purlins, e 2-0-0 oc purlins (4-8 Rigid ceiling directly bracing. 1 Brace at Jt(s): 1, 18 (size) 11= Mechanic Max Horiz 17=-347 (Max Uplift 11=-291 (17=-232 (Max Grav 11=970 (L 17=970 (L (lb) - Maximum Com	t* 17-1:2x4 SP No.2 - 2-6-0 athing directly applie xcept end verticals, a -9 max.): 1-2. applied or 10-0-0 oc manical, 13=0-3-8, 17: al LC 8) LC 8), 13=-144 (LC LC 12) C 20), 13=726 (LC 1 -C 1)	d or ind 3) 4) 5) = 12), 6) 7)	Vasd=103m; II; Exp C; En and C-C Ext to 15-11-8, E 18-11-8 to 29 exposed ; en and forces & DOL=1.60 pl Provide aded This truss ha chord live loa * This truss ha chord live loa * This truss to on the bottor 3-06-00 tall b chord and ar Bearings are or DSS . Refer to girdd Provide mec bearing plate	7-10; Vult=130m bh; TCDL=6.0psf; closed; MWFRS erior (2) 0-1-12 to ixterior (2) 15-11- 3-11-0 zone; cant d vertical right ex MWFRS for reac ate grip DOL=1.6; quate drainage to s been designed d nonconcurrent has been designed d nonconcurrent has been designed been designed the second in all arec by 2-00-00 wide v by other members assumed to be: er(s) for truss to t hanical connectic c capable of withs lift at joint 11 and	BCDL=6 (envelopp 2-7-15, I 8 to 18-1 ilever left sposed;C- titions shc i0 prevent to for a 10.1 with any d for a liva as where with any d for a liva as where s, with BC , Joint 13 russ conn n (by oth tanding 2	.0psf, h=25ft s) exterior zo nterior (1) 2- 1-8, Interior (and right C for member water pondin D psf bottom other live lose e load of 20. a rectangle ceen the bott DL = 10.0ps SP 2400F 2 nections. ers) of truss 32 lb uplift a	ne 7-15 1) ers g. dds. Opsf om f. 0E to to					
TOP CHORD	Tension 1-17=-770/225, 1-2= 2-3=-2097/644, 3-5= 5-6=-348/168, 6-7=- 9-11=-1121/369			or the orienta bottom chord				size				WTH CA	Rochan
BOT CHORD	16-17=-324/367, 15- 13-15=-113/786, 12- 11-12=-188/857			DAD CASE(S)	Sidilualu					4	È	O. FESS	Ber 1
WEBS NOTES 1) Unbalance this design	2-16=-1362/485, 6-1 5-15=-127/322, 5-18 7-18=-782/378, 7-12 9-12=-226/235, 1-16 3-16=-431/1041 ed roof live loads have	3=-782/378, 2=0/230, 3-15=-455/3 3=-399/1538,	20,										ER CAL


February 26,2025


Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493320	A05	Roof Special	2	1	Job Reference (optional)	171630007

Run: 8.83 S. Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 09:54:53 ID:_y3ql5166iGjM3OJgr7K_dyy8cV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

		L	2-6-3	10-9-4		21-1-	·12		29	-11-0				
Scale = 1:85.9		Г	2-6-3	8-3-1	I	10-4	-8	I	8	-9-4				
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.43	Vert(LL)	-0.26	14-15	>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.34	Vert(CT)	-0.42	14-15	>856	240			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.75	Horz(CT)	0.04	11	n/a	n/a			

Wind(LL)

0.31

14-15

>999

Matrix-MS

LUMBER	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x8 SP 2400F 2.0E or 2x8 SP DSS
WEBS	2x4 SP No.3 *Except* 16-1:2x4 SP No.2
SLIDER	Right 2x4 SP No.2 2-6-0
BRACING	-
TOP CHORD	Structural wood sheathing directly applied or
	3-5-15 oc purlins, except end verticals, and
	2-0-0 oc purlins (4-3-10 max.): 1-2.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
JOINTS	1 Brace at Jt(s): 1,
	17
REACTIONS	(size) 11= Mechanical, 16= Mechanical
	Max Horiz 16=-347 (LC 8)
	Max Uplift 11=-278 (LC 13), 16=-300 (LC 12)
	Max Grav 11=1261 (LC 20), 16=1191 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-16=-900/264, 1-2=-1857/469,
	2-3=-2607/758, 3-5=-1698/466,
	5-6=-354/168, 6-7=-368/170, 7-9=-1648/464,
	9-11=-1730/441
BOT CHORD	15-16=-325/384, 14-15=-464/1686,
	12-14=-227/1357, 11-12=-269/1331
WEBS	2-15=-1621/551, 6-17=-10/31, 5-14=-87/653,
	5-17=-1148/374, 7-17=-1148/374,
	7-12=-71/566, 3-14=-449/318,
	9-12=-184/237, 1-15=-485/1940,
	3-15=-403/951
NOTES	

Unbalanced roof live loads have been considered for

10.0

Code

BCDL

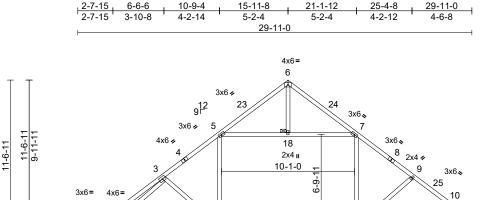
1)

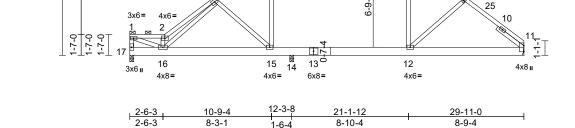
this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-1-12 to 2-7-15, Interior (1) 2-7-15 to 15-11-8, Exterior (2) 15-11-8 to 18-11-8, Interior (1) 18-11-8 to 29-11-0 zone; cantilever left and right exposed ; end vertical right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. 3)
- This truss has been designed for a 10.0 psf bottom 4)
- chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Refer to girder(s) for truss to truss connections. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 300 lb uplift at joint 16 and 278 lb uplift at joint 11.
- Graphical purlin representation does not depict the size 8) or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

IRC2015/TPI2014


240 Weight: 221 lb FT = 20%


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a buss system: below use, the building design inductive is the application of design had been properly incorporate and set of the application of t and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493320	A06	Roof Special	2	1	Job Reference (optional)	171630008

Run: 8.83 S. Feb 18 2025 Print: 8.830 S. Feb 18 2025 MiTek Industries. Inc. Tue Feb 25 09:54:54 ID:_y3ql5166iGjM3OJgr7K_dyy8cV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:87.5				-								
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.32	Vert(LL)	-0.09	12-14	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.24	Vert(CT)	-0.15	12-14	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.53	Horz(CT)	0.01	11	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS		Wind(LL)	0.09	12-21	>999	240	Weight: 221 lb	FT = 20%

LUMBER

this design.

LUMBER										
TOP CHORD	2x4 SP N	0.2								
BOT CHORD	2x8 SP 24	100F 2.0E or 2x8 SP DSS								
WEBS	2x4 SP N	o.3 *Except* 17-1:2x4 SP No.2								
SLIDER	Right 2x4 SP No.2 2-6-0									
BRACING	-									
TOP CHORD	4-2-7 oc p	wood sheathing directly applied or ourlins, except end verticals, and ourlins (5-1-6 max.): 1-2.								
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc								
JOINTS	bracing. 1 Brace a	t Jt(s): 1,								
	18									
REACTIONS	(size)	11= Mechanical, 14=0-3-8, 17=0-3-8								
	Max Horiz	17=-347 (LC 8)								
		11=-339 (LC 13), 14=-336 (LC 12), 17=-293 (LC 13)								
	Max Grav	11=1149 (LC 20), 14=795 (LC 19), 17=996 (LC 20)								
FORCES		imum Compression/Maximum								
	Tension									
TOP CHORD		3/181, 1-2=-1330/359,								
		5/564, 3-5=-1437/610,								
		167, 6-7=-351/162, 7-9=-1261/450,								
	9-11=-138									
BOT CHORD		09/349, 15-16=-196/1020,								
		7/895, 12-14=-97/895,								
14500	11-12=-25									
WEBS		78/376, 6-18=-13/23,								
		2/480, 5-18=-858/468,								
		3/468, 7-12=0/292, 3-15=-383/271,								
	9-12=-254 3-16=-241	4/215, 1-16=-363/1364, 1/639								
NOTES	5-1024	11000								
1) Unbalance	od roof live l	oads have been considered for								
 Unbalance this desire 		Daus have been considered for								

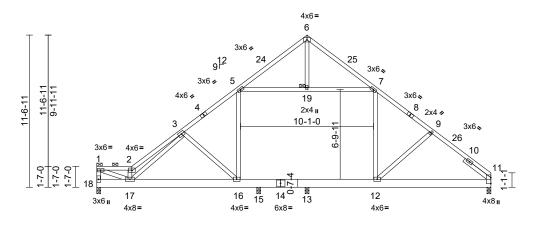
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-1-12 to 2-7-15, Interior (1) 2-7-15 to 15-11-8, Exterior (2) 15-11-8 to 18-11-8, Interior (1) 18-11-8 to 29-11-0 zone; cantilever left and right exposed ; end vertical right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Bearings are assumed to be: Joint 17 SP 2400F 2.0E or DSS , Joint 14 SP 2400F 2.0E or DSS . 6)
- 7) Refer to girder(s) for truss to truss connections. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 293 lb uplift at joint 17, 339 lb uplift at joint 11 and 336 lb uplift at joint 14.
- Graphical purlin representation does not depict the size 9) or the orientation of the purlin along the top and/or bottom chord

LOAD CASE(S) Standard

4)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average and truss component description (trust phonemore) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493320	A07	Roof Special	1	1	Job Reference (optional)	171630009

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MITek Industries, Inc. Tue Feb 25 09:54:54 ID:_y3ql5166iGjM3OJgr7K_dyy8cV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-7-15	6-6-6	10-9-4	15-11-8	21-1-12	25-4-8	29-11-0
2-7-15	3-10-8	4-2-14	5-2-4	5-2-4	4-2-12	4-6-8
			29-11-0)		

	2-6-3	10-9-4 ¹	2-3-8	15-11-8	21-1-12	29-11-0	
Scale = 1:87.5	2-6-3	8-3-1	1-6-4	3-8-0	5-2-4	8-9-4	

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.32	Vert(LL)	-0.05	16-17	>999	360	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.18	Vert(CT)	-0.11	16-17	>999	240		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.52	Horz(CT)	0.01	13	n/a	n/a		
BCDL		10.0	Code	IRC201	5/TPI2014	Matrix-MS		Wind(LL)	0.08	12-22	>999	240	Weight: 221 lb	FT = 20%
LUMBER				2)	Wind: ASCE	7-10; Vult=130mpl	n (3-sec	ond aust)						
TOP CHORD	2x4 SP No	.2		_/		oh; TCDL=6.0psf; E			; Cat.					
BOT CHORD	2x8 SP 24	00F 2.0E	or 2x8 SP DSS		II; Exp C; En	closed; MWFRS (e	nvelope	e) exterior zo	ne					
WEBS	2x4 SP No	.3 *Excep	t* 18-1:2x4 SP No.2		and C-C Ext	erior (2) 0-1-12 to 2	2-7-15, I	nterior (1) 2-	7-15					
SLIDER	Right 2x4													
BRACING	Ū.					9-11-0 zone; cantile								
TOP CHORD	Structural	wood she	athing directly applie	and directly applied or exposed ; end vertical right exposed;C-C for members										
			cept end verticals, a			MWFRS for reacti		wn; Lumber						
	2-0-0 oc p	urlins (5-2	-14 max.): 1-2.			ate grip DOL=1.60								
BOT CHORD	Rigid ceilir	ng directly	applied or 10-0-0 oc	3)		quate drainage to p			g.					
	bracing.			4)		is been designed fo								
JOINTS	1 Brace at	t Jt(s): 1,		-		ad nonconcurrent w								
	19			5)		has been designed			upst					
REACTIONS	(size)	11=0-3-8,	13=0-3-8, 15=0-3-8	,		n chord in all areas by 2-00-00 wide wil			om					
		18=0-3-8				y other members,								
	Max Horiz	18=-347 (LC 8)	6)		are assumed to be								
	Max Uplift	11=-298 (LC 13), 13=-120 (LC	(8), 7)	0	hanical connection								
	-	15=-390 (LC 12), 18=-268 (LC	;13) ⁽⁾										
	Max Grav 11=968 (LC 20), 13=502 (LC 20),					bearing plate capable of withstanding 268 lb uplift at joint 502 (LC 20), 18, 298 lb uplift at joint 11, 390 lb uplift at joint 15 and								
		15=697 (L	_C 19), 18=885 (LC 2	20)	120 lb uplift		io apint	arjoint 10 ai						
FORCES	(lb) Maxi		procesion/Maximum			acjoint to.								

Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or

	15=697 (LC 19), 18=885 (LC 20)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-18=-636/175, 1-2=-1264/344,
	2-3=-1762/543, 3-5=-1141/543,
	5-6=-353/166, 6-7=-350/163, 7-9=-974/382,
	9-11=-1056/392
BOT CHORD	17-18=-313/350, 16-17=-236/915,
	15-16=-51/675, 13-15=-51/675,
	12-13=-51/675, 11-12=-204/817
WEBS	2-17=-1157/376, 6-19=-11/19, 5-16=-221/367,
	5-19=-709/414, 7-19=-709/414, 7-12=0/211,
	3-16=-397/262, 9-12=-259/218,

NOTES

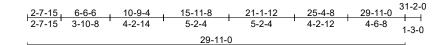
 Unbalanced roof live loads have been considered for this design.

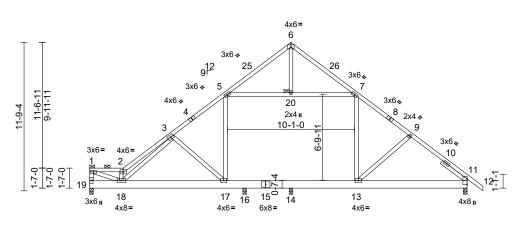
1-17=-349/1301, 3-17=-189/641

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

8)


bottom chord. LOAD CASE(S) Standard



Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493320	A08	Roof Special	3	1	Job Reference (optional)	171630010

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 09:54:54 ID:TGrCTF5ZQ2kloCdiDRIQvNyy8iu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	2-6-3	10-9-4	¹²⁻³⁻⁸ 15-11-8	21-1-12	29-11-0
Scale = 1:91.3	2-6-3	8-3-1	1-6-4 3-8-0	5-2-4	8-9-4

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MS	0.32 0.18 0.51	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.05 -0.11 0.01 0.07	(loc) 17-18 17-18 14 13-23	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 223 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD JOINTS	Right 2x4 SP No.2 Structural wood shu 4-3-4 oc purlins, e: 2-0-0 oc purlins (5- Rigid ceiling directli bracing. 1 Brace at Jt(s): 1, 20	ot* 19-1:2x4 SP No.2 2-6-0 eathing directly applied coept end verticals, ar 3-1 max.): 1-2. y applied or 10-0-0 oc	Vasd=103i II; Exp C; E and C-C E to 15-11-8, 18-11-8 to exposed ; and forces DOL=1.60 3) Provide ad 4) This truss chord live I 5) * This truss	E 7-10; Vult=1300 nph; TCDL=6.0ps inclosed; MWFRS (terior (2) 0-1-12 f Exterior (2) 15-11 31-2-0 zone; cant end vertical right e & MWFRS for rea plate grip DOL=1. equate drainage t has been designe bad nonconcurrer has been design m chord in all are	f; BCDL=6 6 (envelope to 2-7-15, I 1-8 to 18-1 illever left a exposed;C- actions sho .60 o prevent d for a 10.0 nt with any wed for a liv	.0psf; h=25ft s) exterior zointerior (1) 2- 1-8, Interior (1) 2- 1-8, Interior (C for membe wn; Lumber vater ponding) psf bottom other live loa e load of 20.1	ne 7-15 1) ers g.					
	19=0-3-8 Max Horiz 19=-368 Max Uplift 11=-339 16=-391 Max Grav 11=1040		3-06-00 tal chord and 6) All bearing 7) Provide me 20), 19, 339 lb	by 2-00-00 wide any other membe s are assumed to echanical connect te capable of with uplift at joint 11, 3	will fit betw rs, with BC be SP 240 ion (by oth istanding 2	veen the bott DL = 10.0ps 0F 2.0E or D ers) of truss t 66 lb uplift at	f. ISS . to t joint					
FORCES		npression/Maximum	8) Graphical	t at joint 14. ourlin representati itation of the purli			size					
TOP CHORD	1-19=-633/174, 1-2 2-3=-1752/540, 3-5 5-6=-352/166, 6-7= 9-11=-1028/389, 11	=-1130/540, -350/162, 7-9=-974/3	bottom cho	rd.							TH CA	ROUTE
BOT CHORD	18-19=-301/371, 17 16-17=-19/665, 14-	′-18=-215/924, 16=-19/665,							6	r 12	OFESE	Diver
WEBS	,	20=-11/19, 5-17=-221 0=-709/412, 7-13=0/2 3=-260/217,	,						A TURLEY LEVE		SEA 0363	그는 🔺 🎽

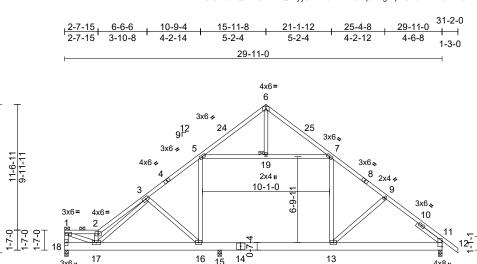
NOTES

 Unbalanced roof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493320	A09	Roof Special	1	1	Job Reference (optional)	171630011

11-9-4


Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 09:54:55 ID:TGrCTF5ZQ2kloCdiDRIQvNyy8iu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

13

4x6=

4x8 I

Page: 1

Scale = 1:91.3			2-6-3 2-6-3	<u>10-9-4</u> 8-3-1	12-3-8 1-6-4	<u>21-1</u> - 8-10		ł	<u>29-11-</u> 8-9-4				
Loading	(psf)	Spacing Plate Grin DOI	2-0-0		CSI	0.32	DEFL Vert(LL)	in -0 09	(loc)	l/defl	PLATES	GRIP 244/190	

15

6x8=

16

4x6=

17

4x8=

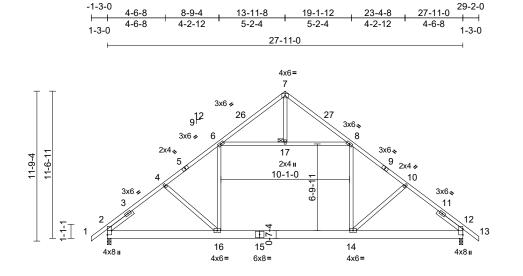
3x6 ...

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.32 0.23 0.52	Vert(CT)	in -0.09 -0.15 0.01 0.09	(loc) 13-15 13-15 11 13-22	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 223 lb	GRIP 244/190 FT = 20%
BOT CHORD 22 WEBS 25 SLIDER R BRACING TOP CHORD S JOINTS 1 19 REACTIONS (siz Ma Ma	ight 2x4 SP No.2 tructural wood she -2-10 oc purlins, e -0-0 oc purlins (5-1 igid ceiling directly racing. Brace at Jt(s): 1, 9 te) 11=0-3-8, x Horiz 18=-368 (x Uplift 11=-380 (18=-292 (x Grav 11=1221) 18=991 (L	t* 18-1:2x4 SP No.2 - 2-6-0 athing directly applied xcept end verticals, a -9 max.): 1-2. applied or 10-0-0 oc 15=0-3-8, 18=0-3-8 LC 8) LC 13), 15=-336 (LC LC 13), 15=-336 (LC LC 20), 15=799 (LC C 20)	d or nd 3) 4) 5) 12), 6) 7)	Vasd=103mp II; Exp C; Enn and C-C Exte to 15-11-8, E 18-11-8 to 31 exposed ; en and forces & DOL=1.60 pl Provide adec This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and an All bearings a Provide mech bearing plate	7-10; Vult=130mp bh; TCDL=6.0psf; closed; MWFRS (e erior (2) 0-1-12 to : xterior (2) 15-11-8 1-2-0 zone; cantile d vertical right exp MWFRS for react ate grip DOL=1.60 juate drainage to p s been designed fad nonconcurrent to as been designed n chord in all area: y 2-00-00 wide wi y other members, are assumed to be hanical connectior capable of withsta- lift at joint 11 and	BCDL=6 envelope 2-7-15, I 3 to 18-1 vore left a bosed;C- ions sho prevent to for a 10.0 with any I for a liv s where II fit betv with BC a SP 240 a (by oth anding 2	i.Opsf, h=25ft a) exterior zoon nterior (1) 2-1 1-8, Interior (1) 2-1 1-8, Interior (1) 2-1 1-8, Interior (1) C for membe work, Lumber water ponding 0 psf bottom other live loas e load of 20.1 a rectangle ween the botto DL = 10.0psf loDF 2.0L or D IOF 2.0L or J 20 ft russ t	ne 7-15 1) ers g. ds. Dpsf c SS. o sSS. o					
TOP CHORD 1- 2-	ension -18=-659/180, 1-2= -3=-1845/561, 3-5=	-1426/606,	8)		rlin representation ation of the purlin a l.			size				¹¹ .4∞246.5094, 13.488	energian.
9- BOT CHORD 17 15	-6=-355/167, 6-7=- -11=-1369/456, 11- 7-18=-296/370, 16- 5-16=-52/879, 13-1 1-13=-210/1027	-17=-163/1025,	^{146,} LC	DAD CASE(S)	Standard							OR SEESS	ROUT
WEBS 2- 5- 7- 9- 3- NOTES	-17=-1172/375, 6-1 -16=-261/474, 5-19 -19=-850/465, 7-13 -13=-254/213, 1-17 -17=-242/639)=-850/465,)=0/290, 3-16=-383/2	72,							A DULLAR DE LA		SEAI 0363	22

this design.

818 Soundside Road Edenton, NC 27932

A. GILBE A. GILDAN February 26,2025


PIC.

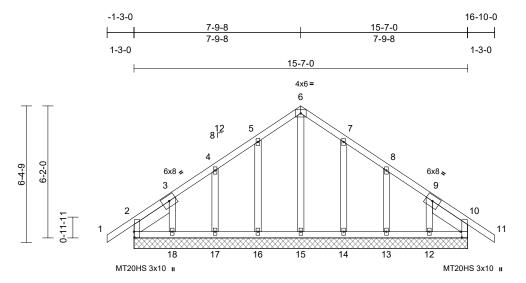
Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493320	A10	Common	3	1	Job Reference (optional)	171630012

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 09:54:55 ID:3MRwwfVqhb_Xqz9sWL?Y2Syy8op-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	8-9-4	19-1-12	27-11-0	
	8-9-4	10-4-8	8-9-4	
Scale = 1:90.4				
Plate Offsets (X, Y): [2:Edge,0-3-15]				

Loading (psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 20.0	Plate Grip DOL	1.15	TC	0.35	Vert(LL)	-0.14	14-24	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.20	Vert(CT)	-0.17	14-24	>999	240		
BCLL 0.0*	Rep Stress Incr	YES	WB	0.35	Horz(CT)	0.03	12	n/a	n/a		
BCDL 10.0	Code	IRC2015/TPI2014	Matrix-MS		Wind(LL)	0.20	16-20	>999	240	Weight: 207 lb	FT = 20%
BCDL 10.0 LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x8 SP 2400F 2.0E o WEBS 2x4 SP No.3 SLIDER Left 2x4 SP No.2 - 2 2-6-0 2-6-0 BRACING TOP CHORD TOP CHORD Structural wood sheat 4-4-0 oc purlins. BOT CHORD BOT CHORD Rigid ceiling directly at bracing. JOINTS 1 Brace at Jt(s): 17 REACTIONS (size) 2=0-3-8, 12 Max Horiz 2=-381 (LC) Max Horiz 2=-381 (LC) Max Grav 2=1261 (LC) FORCES (lb) - Maximum Comp Tension TOP CHORD 1-2=0/45, 2-4=-1552/ 6-7=-355/168, 7-8=-3 8-10=-1457/422, 10-14 12-13=0/45 BOT CHORD 2-16=-350/1362, 14-1 12-13=0/45 BOT CHORD BOT CHORD 2-16=-350/1362, 14-1 12-14=-219/1215 WEBS 6-16=-51/478, 8-14=- 6-17=-1003/336, 8-17 4-16=-222/242, 10-14 <t< td=""><td>or 2x8 SP DSS 2-6-0, Right 2x4 SP No athing directly applied applied or 10-0-0 oc 2=0-3-8 C 10) C 12), 12=-306 (LC 13 C 19), 12=1261 (LC 2 pression/Maximum /400, 4-6=-1458/422, 355/168, 12=-1551/400, 16=-170/1214, -50/477, 7=-1003/336, 4=-222/243, 7-17=-9/2</td><td> 2) Wind: A: Vasd=10 II; Exp C and C-C o.2 13-11-8, 16-11-8 exposed or member 3) This trus chord liv 4) * This trus chord liv 4) * This trus on the b 3-06-00 chord ar 3) 5) All beari 20) 6) Provide bearing 2 and 30 LOAD CASE </td><td>Matrix-MS SCE 7-10; Vult=130m 3mph; TCDL=6.0psf; Enclosed; MWFRS Exterior (2) -1-3-0 to Exterior (2) 13-11-8 t to 29-2-0 zone; cantil ; end vertical left and s and forces & MWFF DOL=1.60 plate grip I s has been designed to ad nonconcurrent iss has been designed to dany other members ngs are assumed to b mechanical connection blate capable of withs 6 lb uplift at joint 12. (5) Standard</td><td>BCDL=6 (enveloped 1-9-0, Into to 16-11-{ ever left at right exp \$S for rea DOL=1.6(for a 10.0 with any d for a liv as where will fit betw s, with BC es SP 240 on (by oth</td><td>cond gust) .0psf; h=25ft;) exterior zon erior (1) 1-9-C 3, Interior (1) and right ossed;C-C for ctions shown;) D psf bottom other live load e load of 20.0 a rectangle veen the bottc. DL = 10.0psf. DF 2.0E or DS ers) of truss to</td><td>Cat. ne) to ; ds.)psf om SS.</td><td>16-20</td><td></td><td>240</td><td>Weight: 207 lb</td><td>EEPERAN</td></t<>	or 2x8 SP DSS 2-6-0, Right 2x4 SP No athing directly applied applied or 10-0-0 oc 2=0-3-8 C 10) C 12), 12=-306 (LC 13 C 19), 12=1261 (LC 2 pression/Maximum /400, 4-6=-1458/422, 355/168, 12=-1551/400, 16=-170/1214, -50/477, 7=-1003/336, 4=-222/243, 7-17=-9/2	 2) Wind: A: Vasd=10 II; Exp C and C-C o.2 13-11-8, 16-11-8 exposed or member 3) This trus chord liv 4) * This trus chord liv 4) * This trus on the b 3-06-00 chord ar 3) 5) All beari 20) 6) Provide bearing 2 and 30 LOAD CASE 	Matrix-MS SCE 7-10; Vult=130m 3mph; TCDL=6.0psf; Enclosed; MWFRS Exterior (2) -1-3-0 to Exterior (2) 13-11-8 t to 29-2-0 zone; cantil ; end vertical left and s and forces & MWFF DOL=1.60 plate grip I s has been designed to ad nonconcurrent iss has been designed to dany other members ngs are assumed to b mechanical connection blate capable of withs 6 lb uplift at joint 12. (5) Standard	BCDL=6 (enveloped 1-9-0, Into to 16-11-{ ever left at right exp \$S for rea DOL=1.6(for a 10.0 with any d for a liv as where will fit betw s, with BC es SP 240 on (by oth	cond gust) .0psf; h=25ft;) exterior zon erior (1) 1-9-C 3, Interior (1) and right ossed;C-C for ctions shown;) D psf bottom other live load e load of 20.0 a rectangle veen the bottc. DL = 10.0psf. DF 2.0E or DS ers) of truss to	Cat. ne) to ; ds.)psf om SS.	16-20		240	Weight: 207 lb	EEPERAN



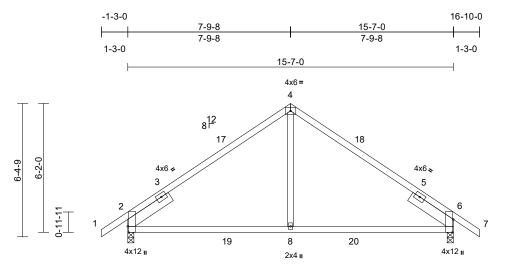
GILB anna Giban February 26,2025

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493320	B01	Common Supported Gable	1	1	Job Reference (optional)	171630013

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 09:54:55 ID:OLLnIPksbVCi041Hv8ieOqyy841-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:53.8					15-7	-0					
Plate Offsets (X, Y):	[2:0-3-4,0-0-4],	[10:0-3-4,0-0-12]									
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.12	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	PLATES MT20HS	GRIP 187/143


15 7 0

TCLL (roof) TCDL BCLL	20.0 10.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 YES		TC BC WB	0.12 0.04 0.09	Vert(LL) Vert(CT) Horz(CT)	n/a n/a 0.00	- - 10	n/a n/a n/a	999 999 n/a	MT20HS MT20	187/143 244/190
BCDL	10.0	Code		5/TPI2014	Matrix-MS	0.09	11012(C1)	0.00	10	11/a	n/a	Weight: 101 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	No.2 2-1-15 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=15-7-0. 13=15-7-1	2-1-15, Right 2x6 SP eathing directly applie r applied or 10-0-0 oc , 10=15-7-0, 12=15-7 0, 14=15-7-0, 15=15- 0, 17=15-7-0, 18=15- C 10)	N(1) 2) d or -0, 3) 7-0, 3)	DTES Unbalanced this design. Wind: ASCE Vasd=103mp II; Exp C; En and C-C Cor 7-9-8, Corne 16-10-0 zone vertical left a forces & MW DOL=1.60 pl Truss design only. For stu see Standard	roof live loads h 7-10; Vult=130r bh; TCDL=6.0ps closed; MWFRS ner (3) -1-3-0 to (3) -7-9-8 to 10 c; cantilever left nd right exposed FRS for reaction ate grip DOL=1. ed for wind load ds exposed to v d Industry Gable	mph (3-sec f; BCDL=6 6 (envelope 1-9-8, Exter and right e d;C-C for n ns shown; 60 ds in the pl wind (norm e End Deta	cond gust) .0ps; h=25ft; a) exterior zor erior (2) 1-9-8 ior (2) 10-9-8 exposed ; end nembers and Lumber ane of the true al to the face ils as applical	s Cat. ne 3 to to ss), ble,					
	Max Uplift 2=-74 (LC 12=-139 (14=-105 (17=-100 (Max Grav 2=198 (LC 12=173 (I 14=189 (I	C 8), 10=-21 (LC 9), (LC 13), 13=-102 (LC (LC 13), 16=-107 (LC (LC 12), 18=-155 (LC C 20), 10=176 (LC 1) LC 20), 13=182 (LC 2 LC 20), 15=175 (LC 2 LC 19), 17=180 (LC 1	13), 5) 12), 6) 12) 7) (0), 8) (2), 0)	All plates are All plates are Gable require Gable studs This truss ha chord live loa * This truss h on the bottom	alified building of MT20 plates un 2x4 () MT20 es continuous b spaced at 2-0-0 s been designe ad nonconcurrer las been design n chord in all arr	nless other unless other ottom chor oc. d for a 10.0 nt with any ed for a liv eas where	wise indicate erwise indicat d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle	d. ted. ds. 0psf				WH CA	BO
FORCES	(lb) - Maximum Com	npression/Maximum			y 2-00-00 wide y other membe		veen the botto	om			, si	R	al lais
TOP CHORD	Tension 1-2=0/42, 2-3=-66/6 4-5=-103/135, 5-6=- 7-8=-103/111, 8-9=- 10-11=0/42	170/190, 6-7=-170/1	11) Provide mech bearing plate 2, 21 lb uplift	are assumed to hanical connect capable of with at joint 10, 107	ion (by oth Istanding 7 Ib uplift at	ers) of truss t ′4 lb uplift at j joint 16, 100	oint Ib			Ø	SEA	
BOT CHORD	2-18=-84/143, 17-18 16-17=-84/143, 15-1 14-15=-84/143, 13-1 12-13=-84/143, 10-1	16=-84/143, 14=-84/143,	12	joint 14, 102 74 lb uplift at 9 Beveled plate?	17, 155 lb uplift lb uplift at joint joint 2 and 21 ll e or shim require truss chord at jo	13, 139 lb b uplift at jo ed to provi	uplift at joint 1 pint 10. de full bearing	2,		1111		0363	
WEBS	6-15=-134/58, 5-16= 4-17=-162/128, 3-18 7-14=-162/128, 8-13 9-12=-186/149	3=-181/162,	L	DAD CASE(S)	,	лпц <i>5)</i> 2, 18	2.					A G February	ILP Nº

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493320	B02	Common	2	1	Job Reference (optional)	171630014

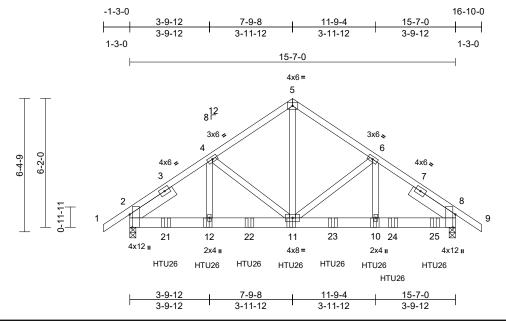
Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 09:54:56 ID:OpIx9nKXb3wXxsRlv?5g0fyy84Z-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Leading (nef)	9	0.01		. (1	1/-141	1.74	
Plate Offsets (X, Y): [2:0-3-8,Edge], [[6:0-7-8,Edge]						
Scale = 1:55.1		7-9-0	7-5	-0			
		7-9-8	 <u>15-</u> 7-9	-		-	
		7.0.0	45				

Loading TCLL (roof) TCDL BCLL	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.73 0.62 0.15	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.16 -0.08	(loc) 8-11 8-15 2	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code		5/TPI2014	Matrix-MS	0.10	Wind(LL)	0.16	8-11	>999		Weight: 76 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2-6-0 Structural wood she 4-11-10 oc purlins.	.C 10) .C 12), 6=-193 (LC 13 C 19), 6=744 (LC 20)	6) ^{d or} LC	on the botton 3-06-00 tall b chord and an All bearings Provide med bearing plate	has been designed in chord in all area by 2-00-00 wide w by other members are assumed to be hanical connection capable of withst uplift at joint 6. Standard	s where ill fit betv , with BC e SP No. n (by oth	e load of 20.0 a rectangle veen the bott :DL = 10.0ps 2 . ers) of truss	om f. to					
FURCES	Tension	ipression/maximum											
TOP CHORD BOT CHORD	1-2=0/42, 2-4=-744/ 6-7=0/42 2-8=-359/601, 6-8=-												
WEBS	4-8=0/378												
this design 2) Wind: ASC Vasd=103r	1) Unbalanced roof live loads have been considered for this design.												

and C-C Exterior (2) -1-3-0 to 1-9-0, Interior (1) 1-9-0 to 7-9-8, Exterior (2) 7-9-8 to 10-9-8, Interior (1) 10-9-8 to 16-10-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads. MALTANA CTA LEADER IN ANY 03632 GI With Channer February 26,2025


SEAL

Page: 1

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493320	B03	Common Girder	1	3	Job Reference (optional)	171630015

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 09:54:56 ID:cznFDu7iX0LmTr?nCdkgaryx8Bt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

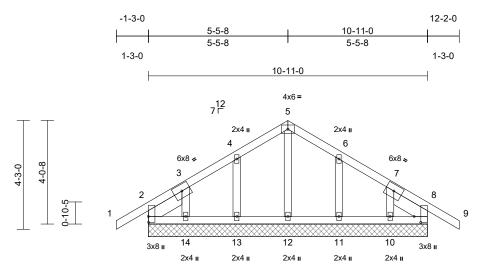
Plate Offsets (X, Y): [2:0-7-8,Edge], [8:0-7-8,Edge]

Scale = 1:55.1

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.35	Vert(LL)		11-12	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.60	Vert(CT)	-0.08	11-12	>999	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.33	Horz(CT)	0.02	8	n/a	n/a		
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS		Wind(LL)	0.05	11-12	>999	240	Weight: 333 lb	FT = 20%
BOT CHORD 2x6 WEBS 2x4 SLIDER Lef 2 BRACING TOP CHORD Str 6-C BOT CHORD Rig br REACTIONS (size Max Max FORCES (lb) Te TOP CHORD 1-2 BOT CHORD 1-2 5-6 BOT CHORD 2-1 0. WEBS 4-1 5-1 BOT CHORD 2-1 10. WEBS 4-1 5-1 80T CHORD 2-1 10. WEBS 4-1 6-1 NOTES	2-6-0 ructural wood she jid ceiling directly acing. a) 2=0-3-8, { Horiz 2=201 (LC : Uplift 2=-1101 (: Grav 2=4211 (I : Grav 2=4211 (I) - Maximum Com nsion 2=0/42, 2-4=-5155 =-3998/1101, 64 12=-1112/4161, 1 -11=-1148/4686, i 12=-320/1356, 4-1 11=-1061/4049, 6 10=-524/2104 e connected toge Is as follows: connected as foll -8-0 oc. d as follows: 2x4 - onsidered equally as front (F) or ba as font (F) or by con. Ply to ply conr tribute only loads	C 7) LC 8), 8=-1373 (LC 9 .C 1), 8=5209 (LC 1) pression/Maximum 5/1346, 4-5=-3997/11 3=-5780/1516, 8-9=0/ 1-12=-1112/4161, 8-10=-1148/4686 11=-1104/421, -11=-1770/603, ther with 10d s: 2x4 - 1 row at 0-9-0 ows: 2x6 - 3 rows - 1 row at 0-9-0 oc.	4) 4) d or 5) 6) 7) 8) 01, 9) 42 10 L (1)	 this design. Wind: ASCE Vasd=103mg II; Exp C; Encantilever lefright exposed This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an All bearings a Provide mech bearing plate joint 2 and 13 Use Simpsor 14-10dx1 1/2 max. starting connect truss Fill all nail ho OAD CASE(S) Dead + Roor Plate Increat Uniform Loa Vert: 1-5 Concentrate Vert: 12= 	of Live (balanced): ase=1.15 ads (lb/ft) =-60, 5-9=-60, 13- ed Loads (lb) -946 (B), 11=-946 946 (B), 23=-946	ch (3-sec BCDL=6 envelope d ; end \ .60 plate for a 10.0 with any d for a liv s where ill fit betv e SP No. h (by oth anding 1 t 8. 26 (10-11 ent space e left end of bottor is in cor : Lumber	considered fo considered fo cond gust) 5.0psf; h=25ft e) exterior zor vertical left an grip DOL=1. D psf bottom other live loa e load of 20.0 a rectangle veen the botto 2. ers) of truss t 101 lb uplift a 6d Girder, xed at 2-0-0 o d to 14-7-4 to n chord. ttact with lum Increase=1.	r ; Cat. ne; id 60 ids. Dpsf om to at ber. 15,					22 EEBER South

February 26,2025

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493320	C01	Common Supported Gable	1	1	Job Reference (optional)	171630016

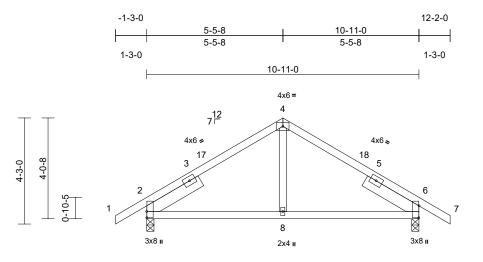
Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 09:54:56 ID:JXmiOkviTvrmZGjVli1?Siyy87g-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	10-11-0	
Scale = 1:45.1		
Plate Offsets (X, Y): [2:0-2-12,0-0-1], [8:0-2-12,0-3-1]		

		J, La s - J, La s - J					· · · ·						
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.03	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.04	Horz(CT)	0.00	8	n/a	n/a		
BCDL	10.0	Code	IRC20	15/TPI2014	Matrix-MS							Weight: 63 lb	FT = 20%
LUMBER			2		7-10; Vult=130n			<u> </u>					
TOP CHORD					ph; TCDL=6.0ps								
BOT CHORD					nclosed; MWFRS rner (3) -1-3-0 to								
OTHERS	2x4 SP No.3		_		er (3) 5-5-8 to 8-5								
SLIDER	Left 2x6 SP No.2 No.2 1-7-10	1-7-10, Right 2x6 SF		12-2-0 zone	; cantilever left a	nd right ex	posed ; end						
BRACING					and right exposed								
TOP CHORD	Structural wood she	athing directly applie	ed or		/FRS for reaction		Lumber						
	6-0-0 oc purlins.				late grip DOL=1. ned for wind load		one of the tru						
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	c `		uds exposed to w								
	bracing.				d Industry Gable								
REACTIONS	· · ·	0, 8=10-11-0, 10=10	-11-0,		ualified building d								
		-0, 12=10-11-0,	4		es continuous bo								
		-0, 14=10-11-0	į) Gable studs	spaced at 2-0-0	oc.	0						
	Max Horiz 2=-131 (L Max Uplift 2=-44 (LC		6) This truss ha	as been designed	d for a 10.) psf bottom						
		.C 13), 11=-99 (LC 13),	3)		ad nonconcurren								
		.C 13), 11=-39 (LC 1 .C 12), 14=-103 (LC			has been designe			0psf					
	Max Grav 2=165 (L0		/		m chord in all are								
		_C 20), 11=193 (LC	20),		by 2-00-00 wide		veen the bott	om					
		LC 22), 13=193 (LC			ny other member		0						
	14=150 (l	_C 19)			are assumed to chanical connection			to					A MARKET AN
FORCES	(lb) - Maximum Com	pression/Maximum	:		e capable of with							THUR C	1110
	Tension				t at joint 8, 99 lb							N'TH CA	Roite
TOP CHORD	1-2=0/38, 2-3=-38/6				9 lb uplift at joint							A VERCO	Sim LA 's
	4-5=-114/128, 5-6=-	,	1,		t joint 2 and 28 lb							C. FEDO	Marin
	7-8=-35/58, 8-9=0/3		, I	OAD CASE(S)	Standard	-				4	1)		1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
BOT CHORD	2-14=-49/90, 13-14=	,	90,	. ,							I N	R /	N 4 🦉
WEBS	11-12=-49/90, 10-11 5-12=-99/0, 4-13=-1										-	SEA	
WED3	6-11=-165/125. 7-10	,	,							3	1	New College of the	
NOTES	0-11-100/120, 7-10									ALL MARK		0363	L 22
NOTES													

1) Unbalanced roof live loads have been considered for this design.


A. GILD

C

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493320	C02	Common	2	1	Job Reference (optional)	171630017

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 09:54:56 ID:MIROnDeve94uwu2HT4erZ3yy880-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

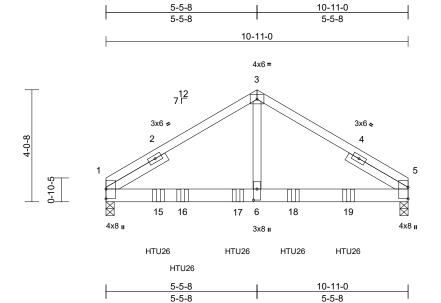
Page: 1

 \vdash

5-5-8	10-11-0
5-5-8	5-5-8

Plate Offsets (X, Y):	[2:0-3-0,0-0-1],	[6:0-5-12,0-0-1]

Scale = 1:46.2


Plate Offsets ((X, Y): [2:0-3-0,0-0-1],	[6:0-5-12,0-0-1]	-									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MS	0.27 0.26 0.08	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.02 -0.04 -0.02 0.03	(loc) 8-11 8-11 2 8-11	I/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 57 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x6 SP No.2 2 2-6-0 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	2-6-0, Right 2x6 SP I athing directly applie applied or 10-0-0 oc 6=0-3-8 C 10) C 12), 6=-151 (LC 1) C 1), 6=512 (LC 1)	4) * This true on the bo 3-06-00 tr chord and No.2 5) All bearin 6) Provide n bearing p 2 and 15° LOAD CASE	ss has been designe ttom chord in all area all by 2-00-00 wide w I any other members gs are assumed to b nechanical connectic late capable of withs I buplift at joint 6.	as where vill fit betv s. be SP No. on (by oth	ve load of 20.0 a rectangle veen the botto .2. uers) of truss t	Opsf om				rrogin. or is	
TOP CHORD BOT CHORD WEBS	Tension 1-2=0/38, 2-4=-473/ 6-7=0/38	175, 4-6=-474/175,										
this design 2) Wind: ASC Vasd=103 II; Exp C; and C-C E 5-5-8, Ext 12-2-0 zor vertical lef forces & M DOL=1.60 3) This truss	ed roof live loads have n. CE 7-10; Vult=130mph imph; TCDL=6.0psf; Bi- Enclosed; MWFRS (er Exterior (2) -1-3-0 to 1-4 erior (2) 5-5-8 to 8-5-8 ne; cantilever left and r ft and right exposed;C- MWFRS for reactions s 0 plate grip DOL=1.60 has been designed foi load nonconcurrent wi	(3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zon 9-0, Interior (1) 1-9-0 , Interior (1) 8-5-8 to ight exposed ; end C for members and hown; Lumber r a 10.0 psf bottom	Cat. le b to								SEA 0363	22 EER.X

A. GILB nin GIL February 26,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schult before the Structure Building former the component component or the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493320	C03	Common Girder	1	2	Job Reference (optional)	171630018

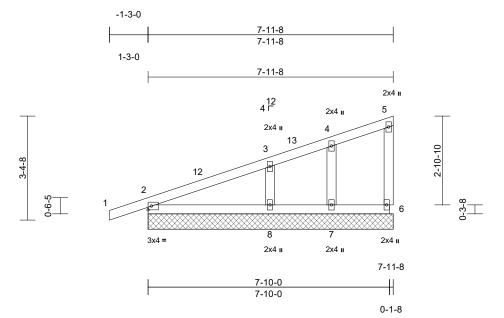
Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 09:54:57 ID:M0wyCPRFfxxINHF?z0qsNTyy88H-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:41.6

Plate Offsets (X, Y): [6:0-4-12,0-1-8]

Loading (psf)	Spacing 2-0	0-0	csi	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 20.0	Plate Grip DOL 1.1	15	TC 0.29	Vert(LL)	-0.05	6-9	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.1	15	BC 0.51	Vert(CT)	-0.10	6-9	>999	240		
BCLL 0.0*	Rep Stress Incr NC	0	WB 0.41	Horz(CT)	0.01	1	n/a	n/a		
BCDL 10.0	Code IRC	C2015/TPI2014	Matrix-MS	Wind(LL)	0.05	6-9	>999	240	Weight: 114 lb	FT = 20%
2-6-0 BRACING TOP CHORD Structural wood shea 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly a bracing. REACTIONS (size) 1=0-3-8, 5 Max Horiz 1=-106 (LC Max Uplift 1=-942 (LC	2-6-0, Right 2x4 SP No.2 athing directly applied or applied or 10-0-0 oc i=0-3-8 C 6) C 8), 5=-862 (LC 9) C 15), 5=3039 (LC 16) pression/Maximum =-3839/1089 -873/3297 her with 10d i: 2x4 - 1 row at 0-9-0 pws: 2x6 - 2 rows 1 row at 0-9-0 oc. applied to all plies, sk (B) face in the LOAD ections have been noted as (F) or (B),	 Vasd=103mp II; Exp C; Encantilever left right exposed 5) This truss ha chord live loa 6) * This truss ha on the botton 3-06-00 tall be chord and an 7) All bearings at 8) Provide mech bearing plate 1 and 862 lb 9) Use Simpsor 14-10dx1 1/2 max. starting connect truss 10) Fill all nail ho LOAD CASE(S) 1) Dead + Roc Plate Increa Uniform Loa Vert: 1-3: Concentrate Vert: 15= 	of Live (balanced): Lumbe ase=1.15	6.0psf; h=25ft; e) exterior zon vertical left and e grip DOL=1.6 0 psf bottom other live load ve load of 20.0 a rectangle ween the botto 20F 2.0E or DS hers) of truss to 242 lb uplift at 6d Girder, zed at 2-0-0 or nd to 8-9-4 to n chord. htact with lumb r Increase=1.1	ne; d 60 ds.)psf 5S . o joint c					22 EERIK W

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)


TRENGINEERING BY AMITCH Affiliate 818 Soundside Road Edenton, NC 27932

February 26,2025

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493320	M01	Monopitch Supported Gable	2	1	Job Reference (optional)	171630019

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries. Inc. Tue Feb 25 09:54:57 ID:irRexRL8liivNy2qvzZaVQyy6t4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

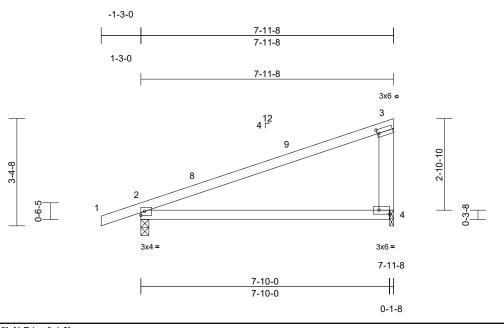
Page: 1

Scale = 1:37.4

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.17 0.10 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 35 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=7-11-8, 8=7-11-8 Max Horiz 2=165 (LC Max Uplift 2=-87 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc 6=7-11-8, 7=7-11-8, C 8) S 8), 6=-34 (LC 12), 7 140 (LC 12)	5) 6) 7) d or 8) 9) 9) =-43	Gable studs s This truss har chord live loa * This truss h on the bottom 3-06-00 tall b chord and an All bearings a Provide mech bearing plate 2, 34 lb uplift	spaced at 2-0-0 oc s been designed f d nonconcurrent v as been designed n chord in all areas y 2-00-00 wide wi y other members. are assumed to be nanical connectior capable of withsta at joint 6, 43 lb up 87 lb uplift at joint	for a 10.0 with any I for a liv s where II fit betw e SP No. n (by oth anding 8 bilft at joi	other live loa e load of 20.0 a rectangle veen the botto 2. ers) of truss t i7 lb uplift at j)psf om o oint					
FORCES	(lb) - Maximum Com Tension 1-2=0/24, 2-3=-293/ 4-5=-31/13, 5-6=-53	102, 3-4=-95/19, /92											
BOT CHORD WEBS	2-8=-154/71, 7-8=-6 4-7=-89/180, 3-8=-2												
NOTES	,											-TUTTING	11100
 this design Wind: ASC Vasd=103 II; Exp C; and C-C C 7-9-12 zor vertical lef MWFRS fr grip DOL= Truss desis only. For see Stand or consult 	CE 7-10; Vult=130mph imph; TCDL=6.0psf; Bi Enclosed; MWFRS (er Corner (3) -1-3-0 to 1-9 ne; cantilever left and r t exposed;C-C for mer or reactions shown; Lu	(3-second gust) CDL=6.0psf; h=25ft; ivvelope) exterior zonu- o, Exterior (2) 1-9-0 ight exposed; end mbers and forces & imber DOL=1.60 plat the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP	e to e s le,									SEA OBEESS SEA O363	ER A S

- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.

ara GIUMAN


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schult before the Structure Building former the component component or the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

February 26,2025

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493320	M02	Monopitch	5	1	Job Reference (optional)	171630020

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 09:54:57 ID:ZI_9p6x?qNDE4GlkgK?cLAyy6ut-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:36.3

Plate	Offsets	(X, Y	'): [3	:0-0-11	,0-1-8],	[4:Edge,0-1-8]	

		i											
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.74	Vert(LL)	0.32	4-7	>289	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.63	Vert(CT)	-0.23	4-7	>396	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.00	Horz(CT)	-0.03	2	n/a	n/a		
BCDL	10.0	Code	IRC2015	5/TPI2014	Matrix-MS							Weight: 32 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x6 SP No.2 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly	cept end verticals.		using ANSI/ designer sho Provide mec bearing plate Provide mec bearing plate 2 and 225 lb	hanical connectior capable of withst uplift at joint 4.	n formul of bear (by oth (by oth	a. Building ing surface. ers) of truss t ers) of truss t	o					
	bracing.		LO	AD CASE(S)	Standard								
	Max Horiz 2=163 (LC Max Uplift 2=-256 (L Max Grav 2=390 (LC (lb) - Maximum Com	C 8), 4=-225 (LC 8) C 1), 4=303 (LC 1)											
TOP CHORD BOT CHORD	Tension 1-2=0/24, 2-3=-261/ ⁻ 2-4=-249/198	169, 3-4=-197/195											
NOTES													
1) Unbalance	d roof live loads have	been considered for	r										
Vasd=103r II; Exp C; E and C-C E: 7-8-12 zon vertical left for membe Lumber DC 3) This truss I chord live I	h. CE 7-10; Vult=130mph mph; TCDL=6.0psf; B(Enclosed; MWFRS (en xterior (2) -1-3-0 to 1-5 te; cantilever left and r t exposed; porch left a ters and forces & MWFf DL=1.60 plate grip DO has been designed for load nonconcurrent wi s has been designed for	CDL=6.0psf; h=25ft; ivelope) exterior zor 9-0, Interior (1) 1-9-0 ight exposed ; end nd right exposed;C- RS for reactions sho L=1.60 = a 10.0 psf bottom th any other live loa	ne) to C wn; ds.									SEA	

 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

5) Bearings are assumed to be: Joint 2 SP No.2 , Joint 4 SP No.2 .

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

February 26,2025

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493320	M03	Monopitch	15	1	Job Reference (optional)	171630021

2-8-8

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries. Inc. Tue Feb 25 09:54:57 ID:SZLNwkpAtVH0jLFZuRIVGLyy6tl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-1-8

Page: 1

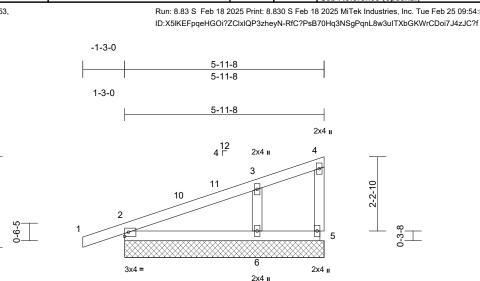
-1-3-0 5-11-8 5-11-8 1-3-0 5-11-8 2x4 🛛 4 ¹² 3 0 9 2-2-10 8 2 0-6-5 0-3-8 0 ٩ 4 2x4 II 3x4 = 5-11-8 5-10-0 t 5-10-0

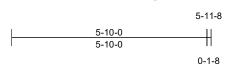
Scale = 1:33.5

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.52	Vert(LL)	0.17	4-7	>415	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.49	Vert(CT)	-0.11	4-7	>619	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.02	2	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MP							Weight: 23 lb	FT = 20%
LUMBER			7) Provide m	echanical connectio	on (by oth	ers) of truss t	0					
TOP CHORD	2x4 SP No.2			ate at joint(s) 2, 4.	Sin (by our		0					
BOT CHORD				echanical connection	on (by oth	ers) of truss t	0					
WEBS	2x4 SP No.2		, bearing p	ate capable of withs	standing 2	13 Ib uplift at	joint					
BRACING			2 and 167	' lb uplift at joint 4.								
TOP CHORD	Structural wood she	athing directly applie	ed or LOAD CASE	S) Standard								
	5-11-8 oc purlins, e											
BOT CHORD			с									
	bracing.											
REACTIONS	(size) 2=0-3-0,	4=0-1-8										
	Max Horiz 2=130 (Le	C 8)										
	Max Uplift 2=-213 (L	_C 8), 4=-167 (LC 8)										
	Max Grav 2=316 (L	C 1), 4=224 (LC 1)										
FORCES	(lb) - Maximum Con Tension	npression/Maximum										
TOP CHORD		/150, 3-4=-154/190										
BOT CHORD												
NOTES												
	ed roof live loads have	been considered fo	r									
, this desig	n.											
2) Wind: AS	CE 7-10; Vult=130mph	n (3-second gust)										
	3mph; TCDL=6.0psf; B											
	Enclosed; MWFRS (er											Ulira
	Exterior (2) -1-3-0 to 1-) to								Nº A CA	6 17.
	ne; cantilever left and i ft exposed; porch left a		<u> </u>								ALL OF	10/1/
	ers and forces & MWF									1	O'VEES8	a: A/2
	OL=1.60 plate grip DC		, , , , , , , , , , , , , , , , , , ,							97		Ni Sil
	has been designed fo											
	load nonconcurrent w		ds.							THE R. P.		
	ss has been designed t)psf						3	i 🧯	SEA	
	ttom chord in all areas								<u>z</u>		0363	22 : =
	all by 2-00-00 wide will	fit between the botto	om									
	any other members.	00 N 0							14			
	gs are assumed to be								â	8 2	N. SNOW	- 6 R. K. S
	it joint(s) 4 considers p SI/TPI 1 angle to grain									1	S. GIN	5. A.S.
		iomula. Bulluing								- <u>(</u>)		. BY N

- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be SP No.2.
- Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 6)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schult before the Structure Building former the component component or the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


GI Witten and Carlors February 26,2025


Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493320	M04	Monopitch Supported Gable	1	1	Job Reference (optional)	171630022

2-8-8

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries. Inc. Tue Feb 25 09:54:57

Page: 1

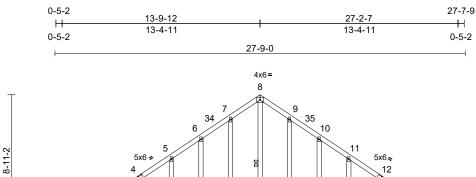
Scale = 1:34.4

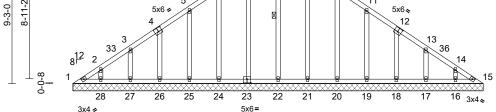
Loading TCLL (roof) TCDL BCLL BCDL	20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.18 0.10 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sheat 5-11-8 oc purlins, exc Rigid ceiling directly a bracing. (size) 2=5-11-8, 5 Max Horiz 2=130 (LC Max Uplift 2=-100 (LC (LC 12) Max Grav 2=220 (LC (LC 1)	cept end verticals. applied or 10-0-0 oc 5=5-11-8, 6=5-11-8 8) 2 8), 5=-9 (LC 8), 6= 1), 5=20 (LC 1), 6=	9) 136	chord live lo * This truss on the botto 3-06-00 tall chord and a All bearings Provide med bearing plat		t with any ed for a liv as where vill fit betw s. be SP No. bn (by oth standing 1	other live loa e load of 20.0 a rectangle veen the botto 2. ers) of truss t 00 lb uplift at	Dpsf om o joint					
FORCES	(lb) - Maximum Comp Tension 1-2=0/24, 2-3=-305/10												

TOP CHORD 4-5=-19/53 BOT CHORD 2-6=-137/66, 5-6=0/0 WEBS 3-6=-212/350

NOTES

1) Unbalanced roof live loads have been considered for this design.


- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) -1-3-0 to 1-9-0, Exterior (2) 1-9-0 to 5-9-12 zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 2-0-0 oc.



Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493320	V01	Valley	1	1	Job Reference (optional)	171630023

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries. Inc. Tue Feb 25 09:54:58 ID:?HcYTzxPCfXQ8Vvndve_W2yy8oF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

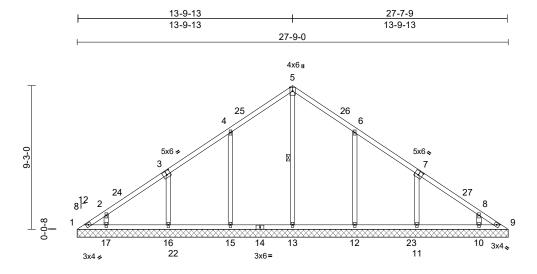
27-7-9

Scale = 1:77.9

Plate Offsets (X, Y): [4:0-3-0,0-3-0], [12:0-3-0,0-3-0], [23:0-3-0,0-3-0]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.17	Horiz(TL)	0.01	15	n/a	n/a		
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS							Weight: 174 lb	FT = 20%
	0.400.0		В		1-28=-141/219, 27 26-27=-141/219, 2							ssumed to be SP	
TOP CHORD					26-27=-141/219, 2 24-25=-149/222, 2								others) of truss to ng 75 lb uplift at joint
BOT CHORD OTHERS	2x4 SP No.2 2x4 SP No.3				24-23149/222, 2 21-22=-147/222, 2								lift at joint 24, 109 lb
BRACING	224 01 110.0				19-20=-147/222, 1								26, 102 lb uplift at
TOP CHORD	Structural wood ch	eathing directly applie	nd or		17-18=-139/216, 1								puplift at joint 21, 106
TOP CHORD	6-0-0 oc purlins.	eating unectly applie			15-16=-139/216				ĺbι	uplift at jo	oint 20,	109 lb uplift at jo	oint 19, 98 lb uplift at
BOT CHORD		y applied or 10-0-0 or	n W	EBS 8	8-22=-230/137, 7-3	23=-154	/124,		joir	nt 18, 10	3 lb up	lift at joint 17, 58	lb uplift at joint 16
	bracing.	,	-		6-24=-160/129, 5-		,			d 4 lb up			
WEBS	1 Row at midpt	8-22			4-26=-154/123, 3-								rovide full bearing
REACTIONS	(size) 1=27-9-0	0, 15=27-9-0, 16=27-9	9-0,		2-28=-139/97, 9-2							chord at joint(s)	1, 15.
	17=27-9	-0, 18=27-9-0, 19=27	-9-0,		10-20=-160/130, 1 12-18=-154/123, 1				LOAD	CASE(S) Sta	ndard	
		-0, 21=27-9-0, 22=27	,		14-16=-139/94	5-171	51/124,						
		-0, 24=27-9-0, 25=27		OTES	1110 100/01								
		-0, 27=27-9-0, 28=27	-3-0		roof live loads hav	e heen i	considered fo	r					
	Max Horiz 1=303 (I		,	this design.	Tool Inc Iodus Ila	C DCCII (
		.C 8), 15=-4 (LC 9), 16 17=-103 (LC 13), 18=			7-10; Vult=130m	oh (3-seo	cond gust)						
		19=-109 (LC 13), 20=		Vasd=103m	oh; TCDL=6.0psf;	BCDL=6	6.0psf; h=25ft	; Cat.					
		21=-96 (LC 13), 23=-		II; Exp C; En	closed; MWFRS (envelope	e) exterior zo	ne					
		24=-106 (LC 12), 25=			erior (2) 0-0-0 to 3			to					
		26=-99 (LC 12), 27=-			erior (2) 13-10-8 to								
	(LC 12),	28=-66 (LC 12)			7-9-0 zone; cantile							-unum	
		_C 20), 15=86 (LC 22			nd vertical left and d forces & MWFR						1	N'AH CA	Ro"
		(LC 20), 17=172 (LC			=1.60 plate grip D			,			- <u>-</u>	A	NAVA 1
		(LC 20), 19=189 (LC 2			ied for wind loads			SS		/	<u>S 3</u>	U.SEF SO	Office
		(LC 20), 21=187 (LC 1 (LC 13), 23=193 (LC	20), ''		ids exposed to wir					6			Mall
		(LC 13), 23=193 (LC (LC 19), 25=190 (LC			d Industry Gable E					1	N N	<u>7</u> 2'	
		(LC 19), 23=190 (LC (LC 19), 27=170 (LC		or consult qu	alified building de	signer as	s per ANSI/TI	PI 1.			- Ferri	SEA	
	28=187		4)		e 2x4 (∥) MT20 ur			ted.			9		
FORCES		mpression/Maximum	5)		es continuous bot		d bearing.					0363	L 22 L BERNA
	Tension		6)		spaced at 2-0-0 o					2	1		<u>i</u> 1
TOP CHORD		239/212, 3-5=-192/1	183, ⁷⁾		s been designed						5		
		-182/239, 7-8=-247/2	280,		ad nonconcurrent						21	A NGIN	FEIRAS
	8-9=-247/266, 9-10)=-184/188,	8)		nas been designeo n chord in all area			lbst				710	The second se
	10-11=-118/121, 1				n chord in all area by 2-00-00 wide w			h			1000	A C	ILD
	13-14=-159/100, 1	4-15=-217/148			by 2-00-00 wide w			5111				THIN C	TUNNY STREET
					., calor moniboro.								126 2025

February 26,2025


Page: 1

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493320	V02	Valley	1	1	Job Reference (optional)	171630024

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 09:54:58 ID:?HcYTzxPCfXQ8Vvndve_W2yy8oF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

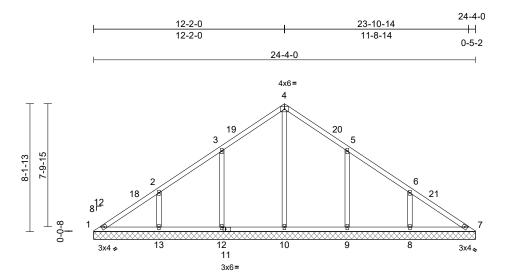
Page: 1

27-7-9

Scale = 1:74.3	2
----------------	---

Plate Offsets (X, Y):	[3:0-3-0,0-3-0], [7:0-3-0,0-3-0]

	(,, ,). [0.0 0 0,0 0 0],	[· · · ·					1	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.20	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.17	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.25	Horiz(TL)	0.01	9	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI201	4 Matrix-MS							Weight: 132 lb	FT = 20%
LUMBER			2) Wind:	ASCE 7-10; Vult=130)mph (3-seo	cond aust)						
TOP CHORD	2x4 SP No.2		,	103mph; TCDL=6.0p		0,	; Cat.					
BOT CHORD			II; Exp	C; Enclosed; MWFR	S (envelop	e) exterior zo	ne					
OTHERS	2x4 SP No.3		and C-	C Exterior (2) 0-0-0 t	o 3-0-0, Int	erior (1) 3-0-0) to					
BRACING			13-10-	B, Exterior (2) 13-10-	8 to 16-10-	B, Interior (1)						
TOP CHORD	Structural wood shea	athing directly applie		3 to 27-9-1 zone; car								
	6-0-0 oc purlins.		expose	d; end vertical left a								
BOT CHORD		applied or 10-0-0 oc		ers and forces & MW			ı;					
	bracing.		Lumbe	r DOL=1.60 plate gri								
WEBS	1 Row at midpt	5-13		lesigned for wind loa								
REACTIONS	(size) 1=27-9-1,	9=27-9-1, 10=27-9-		or studs exposed to								
	11=27-9-1	I, 12=27-9-1, 13=27-		andard Industry Gabl sult qualified building								
	15=27-9-1	I, 16=27-9-1, 17=27-		es are 2x4 () MT20								
	Max Horiz 1=-303 (L			requires continuous b			ieu.					
	Max Uplift 1=-87 (LC		6) Gable	studs spaced at 4-0-0		a bearing.						
		LC 13), 11=-205 (LC	(13), 7) This true	iss has been designed		0 psf bottom						
		LC 13), 15=-229 (LC	(12), chord l	ive load nonconcurre			ds.					
		LC 12), 17=-127 (LC		russ has been desig								
	Max Grav 1=134 (LC		, on the	bottom chord in all a			-					
	,	.C 20), 11=411 (LC 2	^{20),} 3-06-0	0 tall by 2-00-00 wide			om					
		.C 20), 13=424 (LC 2		and any other membe	ers, with BC	DL = 10.0ps	f.					
		.C 19), 16=410 (LC 1	^{19),} 9) All bea	rings are assumed to	be SP No.	2.						11 Sec.
505050	17=281 (L	,	10) Provid	e mechanical connec	tion (by oth	ers) of truss	to				AN A CA	B 17.
FORCES	(lb) - Maximum Com Tension	pression/iviaximum		g plate capable of wit							NATH UT	101 11
TOP CHORD		226/101 1 5- 261/2		o uplift at joint 9, 229						\checkmark	ON FSO	and the
TOF CHORD	5-6=-261/253, 6-8=-	,	40 upint a	i joint 16, 127 lb uplif						12	Ville -	1 Aller
BOT CHORD		,	Joint 12	, 205 lb uplift at joint	11 and 120) lb uplift at jo	int					
BOT CHOILD	15-16=-125/212, 13-		10.									
	12-13=-125/212, 11-			d plate or shim requi			g				SEA	
	10-11=-110/199, 9-1			with truss chord at j	oint(s) 1, 9.				-		0363	
WEBS	5-13=-228/43, 4-15=		LOAD CAS	SE(S) Standard							0303	44 ; <u>;</u>
	3-16=-315/251, 2-17	,										
	6-12=-341/276, 7-11	=-315/252,								9		
	8-10=-251/197									21	S NGIN	FERRA
NOTES											7/0	L 22 EEPX
1) Unbalance	ed roof live loads have	been considered for								Contraction of the second	A C	ILP N
this desig											The C	in the second second
5												- 00 000F



February 26,2025

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493320	V03	Valley	1	1	Job Reference (optional)	171630025

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 09:54:58 ID:jTII8CGLrywateTzi4dJ6lyy8nq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

24-4-0

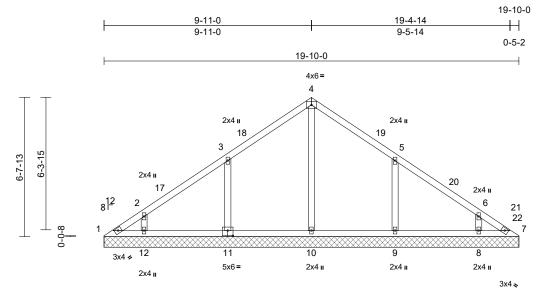
Scale = 1:	73.4
------------	------

Plate Offsets (X, Y): [11:0-2-0,0-1-8]

Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0		1.15		TC	0.21	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.19	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.31	Horiz(TL)	0.01	7	n/a	n/a		
BCDL		10.0	Code	IRC201	5/TPI2014	Matrix-MS							Weight: 111 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 6-0-0 cp n Rigid ceilin bracing. (size) Max Horiz Max Uplift Max Grav	.2 .3 wood she urlins. g directly 1=24-4-0, 9=24-4-0, 13=24-4-(13=-266 (L 13=-220 (L 13=-217 (13=-217 (C 10) : 8), 8=-213 (LC 13), C 13), 12=-219 (LC 12 LC 12) : 20), 7=116 (LC 24), : 20), 9=428 (LC 20), .C 19), 12=420 (LC 19	3) 0, 4) 2), 5) 6) 7) 8)	Vasd=103m; II; Exp C; En and C-C Ext to 12-2-12 to 24 exposed ; en members an Lumber DOL Truss design only. For stu see Standarr or consult qu All plates are Gable requir Gable studs This truss ha chord live loa * This truss f	7-10; Vult=130m sh; TCDL=6.0psf; closed; MWFRS erior (2) 0-0-12 to ixterior (2) 12-2-1 4-12 zone; cant d vertical left and d forces & MWFF =1.60 plate grip I ved for wind loads dids exposed to wid d Industry Gable I lailified building de 2 x4 () MT20 u es continuous boi spaced at 4-0-0 c is been designed ad nonconcurrent nas been designed ad nonconcurrent as been designed	BCDL=6 (envelope (a-velope 3-0-12, I 2 to 15-2 ilever left I right exp Stor rea DOL=1.60 in the plating in the plating in the plating in the plating signer as ness oth ttom chor oc. for a 10.0 with any d for a liv as where	i.Opsř, h=25ft; a) exterior zor nterior (1) 3-0. -12, Interior (1) and right bosed;C-C for ctions shown ane of the trus al to the face) ils as applicat s per ANSI/TF erwise indicat d bearing. D psf bottom other live load e load of 20.0 a rectangle	e -12)) ss , , ble, , 1 1. ed. ds. psf					
FORCES	(lb) - Maxir Tension	num Com	pression/Maximum	9)		ny other members are assumed to b							- A. 2 (6) (10) 4. [14] (6)	Presidential
TOP CHORD			130/195, 3-4=-149/22 38/118, 6-7=-161/170	8, 10) Provide mec	hanical connections constructions and the second seco	n (by oth	ers) of truss to				1	MAH CA	Bo
BOT CHORD	10-12=-173 8-9=-173/1	3/198, 9-1 98, 7-8=- /0, 3-12=-	331/273, 2-13=-322/24	44, LC	1, 219 lb upli	ft at joint 12, 217 9 and 213 lb uplif	lb uplift a	it joint 13, 220			4		OP SS	The sea
NOTES	J-933 I/2	13, 0-0=-	5221242										SEA	L 🏠 🗄

NOTES

1) Unbalanced roof live loads have been considered for this design.


Page: 1

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493320	V04	Valley	1	1	Job Reference (optional)	171630026

Run: 8.83 S. Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 09:54:58 ID:3RYeBvKUgUZt QMwVdDUpoyy8nl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1	9-	1	0	-	0	

Scale = 1:55.1

Plate Offsets (X, Y): [11:0-3-0.0-3-0]

	λ, ř). [11.0-3-0,0-3-	1									-	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.21	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.19	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.14	Horiz(TL)	0.00	7	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS							Weight: 85 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3		Vasd=103m II; Exp C; Ei and C-C Ex	E 7-10; Vult=130 nph; TCDL=6.0ps nclosed; MWFRS terior (2) 0-0-12 Exterior (2) 9-11	sf; BCDL=6 S (envelope to 3-0-12, I	.0psf; h=25ft e) exterior zoi nterior (1) 3-0	ne)-12					

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.
REACTIONS (size) 1=19-10-0, 7=19-10-0, 8=19-10-0,
9=19-10-0, 10=19-10-0,
11=19-10-0, 12=19-10-0
Max Horiz 1=215 (LC 9)
Max Uplift 1=-58 (LC 8), 7=-20 (LC 11),
8=-140 (LC 13), 9=-233 (LC 13),
11=-233 (LC 12), 12=-148 (LC 12)
Max Grav 1=105 (LC 20), 7=67 (LC 13),
8=279 (LC 20), 9=455 (LC 20),
10=393 (LC 22), 11=454 (LC 19),
12=289 (LC 19)
FORCES (Ib) - Maximum Compression/Maximum
Tension
TOP CHORD 1-2=-213/172, 2-3=-175/132, 3-4=-194/200,
4-5=-194/174, 5-6=-116/61, 6-7=-158/99
BOT CHORD 1-12=-82/133, 10-12=-66/133, 9-10=-66/133,
8-9=-66/133, 7-8=-66/133
WEBS 4-10=-178/0, 3-11=-345/281, 2-12=-265/211,
5-9=-345/281, 6-8=-264/208

NOTES

1) Unbalanced roof live loads have been considered for this design.

12-11-12 to 19-5-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

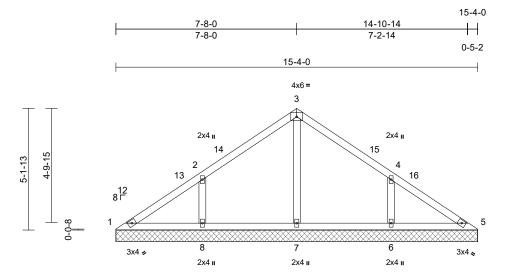
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7)

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 8) All bearings are assumed to be SP No.2

Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 58 lb uplift at joint 1, 20 lb uplift at joint 7, 233 lb uplift at joint 11, 148 lb uplift at joint 12, 233 lb uplift at joint 9 and 140 lb uplift at ioint 8.


LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type Qty Ply WHITE OAK HOMES		WHITE OAK HOMES		
4493320	V05	Valley	1	1	Job Reference (optional)	171630027

Run: 8.83 S. Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 09:54:59 ID:BxrYwMUecUC11PrQlsyXqYy8nY-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale - 1.40.0												-		
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.22	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.11	Vert(TL)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.12	Horiz(TL)	0.00	5	n/a	n/a			
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS							Weight: 61 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins.	athing directly applic	4) 5) 6) 7) ed or	Gable studs This truss ha chord live loa * This truss h on the bottor	es continuous bo spaced at 4-0-0 is been designed ad nonconcurren nas been designe n chord in all are by 2-00-00 wide	oc. I for a 10.0 t with any ed for a liv as where) psf bottom other live loa e load of 20.(a rectangle	Opsf						

15-4-0

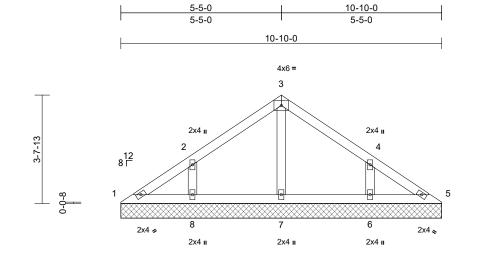
BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 1=15-4-0, 5=15-4-0, 6=15-4-0, 7=15-4-0, 8=15-4-0 Max Horiz 1=-166 (LC 8)

- Max Uplift 1=-26 (LC 13), 6=-226 (LC 13), 8=-228 (LC 12) 1=113 (LC 20), 5=96 (LC 24), Max Grav 6=402 (LC 20), 7=327 (LC 1), 8=405 (LC 19) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-152/177, 2-3=-74/144, 3-4=-74/123, 4-5=-114/128
- BOT CHORD 1-8=-114/147, 7-8=-114/118, 6-7=-114/118, 5-6=-114/118 WEBS 3-7=-256/36, 2-8=-332/259, 4-6=-332/257

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-12 to 3-0-12, Interior (1) 3-0-12 to 7-8-12, Exterior (2) 7-8-12 to 10-8-12, Interior (1) 10-8-12 to 15-4-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

- chord and any other members. 8)
- All bearings are assumed to be SP No.2.
- Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 26 lb uplift at joint 1, 228 lb uplift at joint 8 and 226 lb uplift at joint 6.
- LOAD CASE(S) Standard


Page: 1

Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493320	V06	Valley	1	1	Job Reference (optional)	171630028

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 09:54:59 ID:aGetdcglj9vADMjJGtJgA2yx8UX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

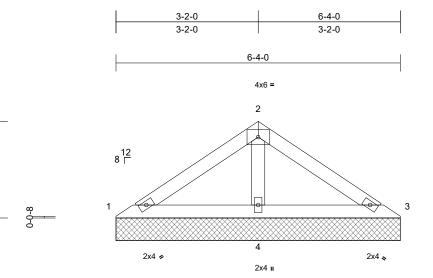
Scale :	= 1:38.9

10-10-0

Loading TCLL (roof) TCDL BCLL BCDL	(ps 20 10 0 10	.0 Plate Grip DOL .0 Lumber DOL .0* Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.11 0.06 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 42 lb	GRIP 244/190 FT = 20%
TOP CHORD 2x4 SP No.2 5) BOT CHORD 2x4 SP No.2 6) DOTHERS 2x4 SP No.3 7) TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. 7) BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. 8) BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. 8) REACTIONS (size) 1=10-10-0, 5=10-10-0, 6=10-10-0, 7=10-10-0, 8=10-10-0, Max Horiz 9) Max Uplift 1=-22 (I C 13) 5=-3 (I C 12)				Gable studs This truss ha chord live loc * This truss I on the bottor 3-06-00 tall h chord and ar All bearings Provide med bearing plate		c. for a 10. with any I for a liv s where Il fit betw e SP No. a (by oth anding 2	0 psf bottom other live loa re load of 20.0 a rectangle veen the botto 2. ers) of truss t 22 lb uplift at ju	Dpsf om o oint					
FORCES	Tension	Compression/Maximu											
TOP CHORD	4-5=-80/66	2-3=-83/102, 3-4=-83/9	15,										
BOT CHORD	1-8=-54/98, 7-8 5-6=-54/74	=-54/74, 6-7=-54/74,											
WEBS	3-7=-162/24, 2-	8=-241/185, 4-6=-241/	/184									- maine	LUID.
NOTES										_	WTH CA	Rollin	
1) Unbalance	ed roof live loads								S	R	D. Wig		

- this design.
- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) 0-0-12 to 3-0-12, Exterior (2) 3-0-12 to 5-5-12, Corner (3) 5-5-12 to 8-5-12, Exterior (2) 8-5-12 to 10-10-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

818 Soundside Road Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES	
4493320	V07	Valley	1	1	Job Reference (optional)	171630029

2-1-13

Run: 8.83 S. Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 09:54:59 ID:OQ?8tgIWJ?fKxHASc7Q4QJyx8UR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-4-0

Scale =	1:25.7

Ocale = 1.20.7												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.11 0.12 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
	6-4-0 oc purlins. Rigid ceiling directly bracing. (size) 1=6-4-0, 3 Max Horiz 1=-66 (LC Max Uplift 1=-10 (LC 4=-109 (L	3=6-4-0, 4=6-4-0 \$ 10) \$ 12), 3=-21 (LC 13),	on the botto 3-06-00 tall chord and a 8) All bearings 9) Provide me bearing plat 1, 21 lb upli LOAD CASE(S	has been designe m chord in all area by 2-00-00 wide w ny other members are assumed to b chanical connectio e capable of withs ft at joint 3 and 109) Standard	as where vill fit betv s. be SP No. on (by oth standing 1	a rectangle veen the botto 2 . ers) of truss t 0 lb uplift at ju	o					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-66/157, 2-3=-6 1-4=-165/115, 3-4=- 2-4=-285/147	6/153										

NOTES

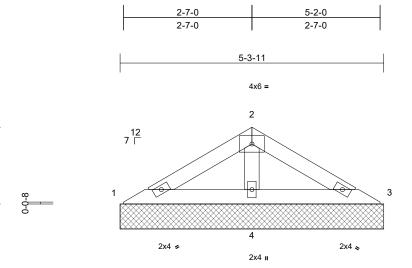
1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. 5)

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Institute (average and truss component description (trust phonemore) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	WHITE OAK HOMES			
4493320	V08	Valley	1	1	Job Reference (optional)	171630030		

1-6-9

Run: 8.83 S Feb 18 2025 Print: 8.830 S Feb 18 2025 MiTek Industries, Inc. Tue Feb 25 09:54:59 ID:UHmCOIZ1ye41NUtmgqaAc0yy8nR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

J9:54:59

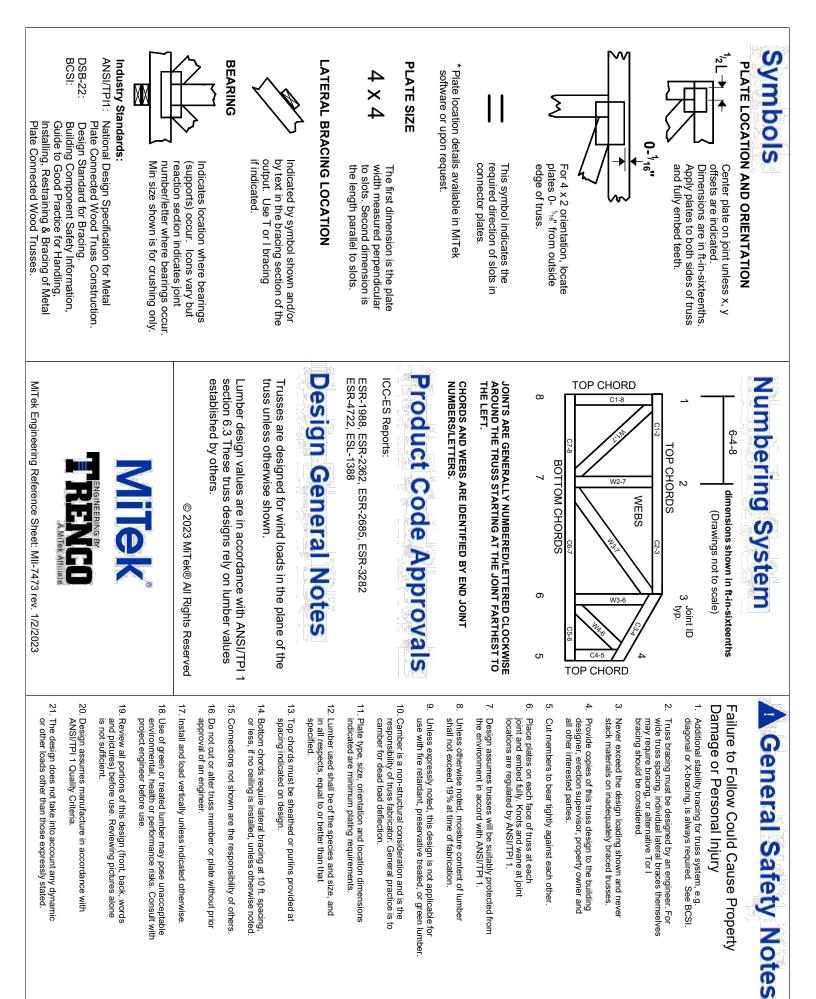
5-2-0

Scale = 1:23.2

Scale = 1:23.2													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2	015/TPI2014	CSI TC BC WB Matrix-MP	0.07 0.08 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	5-2-0 oc purlins. Rigid ceiling directly bracing.	3=5-3-11, 4=5-3-11 11) 2 12), 3=-25 (LC 13), 2 12)	d or	on the bottor 3-06-00 tall b chord and ar 8) All bearings 9) Provide mec bearing plate 1, 25 lb upliff 10) Beveled plat	has been designe m chord in all are: by 2-00-00 wide v hy other members are assumed to t shanical connection c capable of withs t at joint 3 and 76 e or shim require truss chord at join Standard	as where vill fit betv s. be SP No. on (by oth standing 1 Ib uplift a d to provi	a rectangle veen the botto 2 . ers) of truss t 8 lb uplift at j at joint 4. de full bearing	o o oint					
FORCES TOP CHORD BOT CHORD WEBS NOTES	(lb) - Maximum Com Tension 1-2=-67/119, 2-3=-6 1-4=-124/80, 3-4=-1 2-4=-201/98	7/117											

 Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.


4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 4-0-0 oc.

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

